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Abstract

 

Chemoresistance and metastasis are the main reasons for treatment failure in melanoma 

patients. MAPK pathway is often hyperactivated in melanoma due to BRAF mutations. BRAF 

and MEK inhibitors revolutionized the standard-care of patients with advanced melanoma. Yet, 

patients develop resistance to these drugs very fast.  

Previous studies showed that Tribbles homolog 2 (TRIB2) is overexpressed in melanoma and 

confers resistance to chemotherapeutic and targeted drugs such as darcarbazin, PI3K and 

mTOR inhibitors. Furthermore, TRIB2 protein contains a MEK1 binding site. Taking this into 

account, we hypothesize that TRIB2 might confer resistance to MEK inhibition. 

In order to test our hypothesis, we generated isogenic melanoma cell lines with TRIB2 

knockdown, using shRNA, and cells with TRIB2 depletion using CRISPR technique.  

Since the members of the Tribbles protein family might be functionally redundant and 

compensate for TRIB2 depletion, we decided to determine mRNA and protein levels of TRIB1, 

TRIB2 and TRIB3 using q-PCR and Western-Blot techniques, respectively, on a panel of 

melanoma and non-melanoma cell lines. We treated these isogenic cell lines with the MEK 

inhibitor Refametinib for 72h. The resistance was evaluated through cell death analysis, using 

cell counting based on trypan-blue and annexin V/ Propidium iodide staining. 

The isogenic cell lines were successfully established and determined that compensation of 

TRIB2 through TRIB1 or TRIB3 only plays a minor role.  Importantly Refametinib treatment 

of melanoma cell lines with different levels of TRIB2 showed that cell death correlated with 

TRIB2 expression level suggesting that TRIB2 confers resistance to MEK inhibitors. 

Understanding the resistance mechanisms to the therapeutic agents can improve the outcomes 

of current therapies and contribute to the development of new therapeutic approaches.  
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Resumo 

 

Melanoma é uma das formas mais agressivas do cancro da pele, sendo responsável por 80% 

das mortes para este tipo de cancro. Trata-se de um cancro é potencialmente metastático 

altamente resistente à terapia, levando a uma baixa taxa de sobrevivência. Existem duas vias de 

sinalização que estão comummente mutadas ou hiperactivas neste cancro, que contribuem para 

a proliferação celular e para a resistência a algumas terapias que atuam segundo as vias de 

sinalização PI3K e MAPK.  

A via-de-sinalização MAPK está frequentemente hiperactiva devido a mutação numa das 

serinas/treoninas kinases que compõem a via, BRAF. Vemurafenib foi o primeiro fármaco 

“alvo” aprovado pela FDA no melanoma, e sem dúvida revolucionou a terapia no melanoma. 

Trata-se de um inibidor do RAF, específico para a mutação V600E. Contudo, o melanoma é 

um cancro altamente heterogéneo e os pacientes eventualmente adquirem resistência a esta 

terapia. Por isso, têm se apostado no desenvolvimento de inibidores de MEK, que se localiza 

jusante de BRAF na via de sinalização. No entanto, os mecanismos de resistência continuam a 

ser das maiores preocupações, e das principais causas de morte nestes pacientes. Recentemente 

o nosso grupo identificou um novo mecanismo de resistência aos inibidores de PI3K/ mTOR, 

BEZ235, a inibidores de PI3K, BAY236, BAY439, inibidores do mTOR, Rapamycin e até 

mesmo a fármacos citotóxicos utilizados na quimioterapia (DTIC, gemcitabine and 5-

fluorouracil) mediado por TRIB2. TRIB2 é uma pseudokinase que pertence à família de 

proteínas Tribbles, constituída por três elementos: TRIB1, TRIB2 e TRIB3, altamente 

conservados e homólogos. Na sua estrutura, TRIB2 possui um domínio pseudokinase, um 

domínio COP1 e um domínio de ligação às proteínas MAPK. Este estudo em que foi 

identificado um mecanismo de resistência mediado por TRIB2, demonstrou que TRIB2 se liga 

ao AKT via domínio COP1 ativando o AKT através da fosforilação da serina 473. Uma vez 

fosforilado e ativo, o AKT fosforila MDM2, que regula a atividade de p53, sendo considerado 

um oncogene. Quando MDM2 está fosforilado, fosforila o p53 enviando-o para degradação, 

bloqueando assim os mecanismos apoptóticos mediados por p53. Os autores demonstraram 

ainda que o AKT, uma vez ativado, fosforila também FOXO3a, um gene supressor de tumores, 

enviando o para degradação. Estudos anteriores demonstraram que a proteína TRIB2 é 

sobreexpressa em linhas celulares de melanoma e também em pacientes com melanoma. 

Considerando estas três principais observações: (a) TRIB2 na sua estrutura tem um domínio de 

ligação MAPK, (b) TRIB2 está sobreexpressa em Melanoma e (c) TRIB2 confere resistência 
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aos inibidores de PI3K e mTOR, levantamos a hipótese de que TRIB2 confere também 

resistência a inibidores de MEK. 

TRIB2 pertence à família de proteínas tribbles que são altamente conservados entre espécies e 

apresentam alta homologia, podendo ter funções redundantes. Deste modo, antes de testarmos 

a nossa hipótese, decidimos averiguar os níveis de mRNA, através de q-PCR, e de proteína, 

através de um western blot, dos diferentes tribbles em linhas celulares de melanoma (G361, 

SK-Mel-28 e A375), osteossarcoma e HEK293T. Os resultados mostram que os níveis de 

mRNA de TRIB1 e TRIB2 são maiores em linhas celulares de melanoma comparativamente às 

linhas HEK293T e osteossarcoma, enquanto os de TRIB3 são mais elevados na linha celular 

HEK293T em relação às linhas celulares de melanoma e a de osteossarcoma. Os resultados de 

expressão de proteína mostram que todas os membros da família Tribbles são mais expressos 

nas linhas celulares de melanoma comparativamente às linhas celulares de Osteossarcoma e 

HEK293T.  

Para testar a nossa hipótese criámos dois sistemas diferentes em linhas celulares de melanoma: 

uma linha celular com níveis de expressão de TRIB2 mais reduzidos (knockdown) através de 

shRNA; outro onde eliminamos a expressão de TRIB2 utilizando a técnica CRISPR-Cas9.  Para 

obtenção de knockdowns para TRIB2 transfetámos um plasmídeo que codifica com shRNA 

que codifica para TRIB2que é depois processado a small interference (si)RNA, e liga-se ao 

mRNA específico promovendo a sua degradação. O knockdown foi conseguido na linha celular 

G361. Nas restantes (SK-Mel-28 e A375) o controlo da técnica, shGFP interferiu também com 

a expressão de TRIB2. A técnica de CRISPR Cas9 baseia-se o sistema imune de E. coli: este 

sistema é constituído por single-guide RNA (sgRNA) e pela Cas9, uma nuclease que reconhece 

a sequência especifica e causa quebras duplas no DNA, que são depois corrigidas pelo sistema 

de reparação de material genético NHEJ levando a pequenas inserções ou deleções, culminando 

na perda de função do gene alvo. As células foram transfetadas com um plasmídeo que codifica 

para sgRNA e também para a Cas9. Foram testados vários clones para a obtenção de TRIB2 

knockouts (KO), apenas uma parte está representada neste trabalho. Optámos por utilizar um 

KO de SK-Mel-28 (#8) e um de G361 (#14).  Estas duas técnicas já tinham sido previamente 

validadas no nosso laboratório.  

O processo de obtenção de linhas celulares é bastante moroso, por isso decidimos otimizar 

algumas condições para depois testarmos a nossa hipótese de que TRIB2 confere resistência à 

inibição de MEK. Testámos duas concentrações para o inibidor de MEK (Refametinib) 100nM 

e 1µM onde é possível observar que ambas as concentrações inibem a via de sinalização e 
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induzem morte celular. Optámos por usar as duas concentrações visto que utilizamos diferentes 

linhas celulares que se comportam de maneira distinta. Testámos também períodos curtos e 

longos de exposição ao fármaco, e verificámos que após 72 horas a via ainda está inibida. Deste 

modo, optámos por este período de incubação pois facilita a análise da morte celular. Testámos 

também plaquear diferentes números de células, para ter a certeza que estas não morriam por 

falta de espaço, mas sim devido ao inibidor, e observámos que o número de células plaqueadas 

não exerce influência na morte celular. Decidimos também averiguar qual o melhor tempo de 

incubação do controlo positivo para morte celular (etoposide) onde verificámos que 48horas de 

incubação causa mais morte celular. 

Após a obtenção das linhas celulares, as células foram submetidas ao tratamento com um 

inibidor de MEK, Refametinib, durante 72 horas. A morte celular foi avaliada através de 

contagem de células com trypan blue (células mortas surgem com citoplasma azul), através da 

técnica Annexin V / Propidium Iodide (PI), um método para identificar as células em apoptose 

que se baseia na integridade da membrana celular (as células em apoptose apresentam 

mudanças na morfologia da membrana celular que permite a estes componentes se ligarem aos 

alvos e emitir fluorescência) e apenas com PI. As técnicas Annexin V/PI e apenas marcação 

com PI foram analizadas no aparelho FACs Calibur utilizando o programa CellQuestPro. Todos 

os dados foram tratados/ analisados utilizando GraphPad Prism6. Os nossos resultados mostram 

que a morte celular se correlaciona com os níveis de expressão de TRIB2: nos vários sistemas 

utilizados, as células com reduzida ou sem expressão de TRIB2 morreram mais que as que 

tinham TRIB2, sugerindo que esta proteína pode, de algum modo, conferir resistência à inibição 

do MEK.  

Em suma, este trabalho mostra evidencias que sugerem que TRIB2 confere resistência à 

inibição do MEK tornando TRIB2 um alvo importante na terapia do melanoma. Estudos 

anteriores sugerem TRIB2 como um biomarcador no Melanoma, uma vez que este prediz a 

resposta clinica a uma dada terapia. Neste estudo demonstramos evidências que TRIB2 confere 

também resistência à inibição do MEK e que poderá ser útil no futuro, para diferenciar os 

doentes que poderão beneficiar da terapia. Um estudo aprofundado dos mecanismos de 

resistência aos fármacos contribui para o desenvolvimento e melhoria das terapias, aumento a 

esperança de vida dos doentes oncológicos. 
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1 

 

1. Introduction 

 

1.1 Cancer 

Cancer is among the leading causes of death worldwide. In 2013 there were 14.9 million of new 

cancer cases and 8.2 million deaths worldwide. Cancer incidence has been increasing in most 

countries since 1990. By 2030 it is expected 21.7 million new cases and 13 million cancer 

deaths (1, 2). Genetic differences and environmental factors, including infectious agents, 

lifestyle and culture, such as smoking, dietary patterns, sun exposure, physical inactivity and 

reproductive behaviors have been known to be the major risk factors for cancer (3-5).  

Cancer is usually viewed as an evolutionary process that results from the accumulation of 

mutations (usually somatic mutations) or epigenetic events (which do not alter DNA sequence, 

conferring a selective growth advantage and ultimately uncontrolled proliferation (6). There are 

two major types of mutations: the hereditary that arise on a germ cell (7, 8) and somatic 

mutations that occur in any non-germ cell. The latter include base pair substitutions, small 

insertions or deletions, chromosomal rearrangements and gain or losses of gene copy number. 

Tumorigenesis is a multi-step process that can arise from the alteration in three main types of 

genes: oncogenes with dominant gain of function: genes that stimulate cell division, inhibit cell 

differentiation and halt cell death; tumor suppressor genes loss-of-function: genes that inhibit 

cell proliferation and regulate apoptosis; and DNA repair genes (9, 10). Traditionally, the 

accumulation of genetic mutations has been considered the major cause of cancer progression. 

However, this paradigm has changed and is currently accepted that epigenetic changes also play 

an important role in cancer development (11).  

After centuries of research it is now established that cancer is a very complex group of diseases. 

In 2001 Hanahan and Weinberg described for the first time “rules that govern the transformation 

of normal cells into malignant cancers”, known as the “hallmarks of cancer”.  These hallmarks 

can be defined as a small number of molecular, biochemical and cellular characteristics shared 

by most of all human cancer (12, 13). The first six hallmarks of cancer described were 

(figure1.1): self-sufficiency in growth signals, insensitivity to anti-growth signals, limitless 

replicative potential, sustained angiogenesis, evading apoptosis and tissue invasion and 

metastasis (12). In 2011, Hanahan and Weinberg purposed two new hallmarks essential for 

malignant transformation: genomic instability which confers tumor heterogeneity and 
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inflammation which is believed to foment multiple hallmarks functions. There are two more 

capabilities emerging: a reprograming metabolism and avoid immune destruction (13). 

 

  

Figure 1.1. The hallmarks of Cancer. Almost every cancer has acquired some capabilities 

during its development. The first 6 hallmarks of cancer suggested in 2000 were: sustaining 

proliferative signaling, reducing their dependence on growth factors from normal tissue 

microenvironment, evading growth suppressors, resisting cell death, allowing cells to 

proliferate out of control, angiogenesis in order to obtain oxygen and nutrients, immortality and 

invasion & metastasis mainly due to morphological cell changes and activation of 

metalloproteases. In 2011, the same authors suggested 2 new hallmarks of cancer involved in 

cancer pathogeny: genomic instability that allows cancer cells with driver mutations to 

proliferate and gives rise to tumor heterogeneity and tumor promoting inflammation that can 

support and enhance the other capabilities. New capabilities are emerging:  one of them involves 

the ability of cancer cells to reprogram its metabolism in order to sustain neoplasic proliferation 

and the other involves the ability to avoid immune system mediated destruction. Adapted from 

Hanahan D. and Weisenberg R., Cell 2011. 
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1.2 Melanoma 

Melanoma is the most dangerous form of skin cancer and represents less than 5% of all skin 

cancers, yet is responsible for 80% of skin cancer deaths (14). Metastatic melanoma has a poor 

clinical outcome, about 5% after six months. The World Health Organization (WHO) estimates 

that each year are diagnosed 132,000 of new cases of melanoma. The International Agency for 

Research on Cancer (IARC) estimates that in Europe there is 100,000 new cases and 22,000 

deaths each year (15-17).  

Melanoma is a cancer that arises from melanocytes, which are specialized pigmented cells 

(figure 1.2), derived from the neural crest and are found predominantly in the skin and hair 

follicles. A major risk associated with melanoma is the ultraviolet radiation (UV), along with 

the family history, fair skin and immunosupression. Melanoma has a high somatic mutation 

rate, among the highest of any cancer type, largely attributed to UV radiation (18). In response 

to UV radiation, keratinocytes, which are cells that secrete the major structural components of 

the epidermal barrier, synthesize factors that regulate melanocyte survival, differentiation, 

proliferation and motility. In this way, keratinocytes stimulate melanocytes to produce melanin 

resulting in the tanning response. When exposed to UV radiation, melanocytes are activated 

and secrete melanin and protect the neighboring cells from further damage (15, 18-21). 

Increased survival features of melanocytes depend not only on themselves, but also on paracrine 

stimulation from fibroblasts and keratinocytes. Melanocytes can escape their regulation by 

keratinocytes through disrupted intracellular signaling due to mutations in growth regulatory 

genes, production of autocrine growth signals and loss of adhesion receptors. Therefore, 

melanocytes can proliferate and spread, leading to the formation of a naevus (a pre-malignant 

lesion) (15, 21). 

Melanoma is highly metastatic, and highly resistant to treatment (22-24). As mentioned before, 

melanocytes derived from neural crest cells. These cells undergo epithelial-mesenchymal-

transition (EMT) in order to migrate and exit from the neural tube. In a similar way, melanoma 

cells are able to undergo EMT in the initial events of metastasis to dissociate from surrounding 

keranocytes (22). In fact, metastasis are the main cause of the death in melanoma patients (25). 
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1.2.1 Melanoma Classification 

 

Melanoma can be categorized into five different stages according to their tumor thickness, 

number of metastatic nods and distant metastasis (figure 1.3). The first stage, stage 0 is the less 

aggressive one, when cell proliferations is limited to the epidermis and has not reached the 

underlying dermis. In these stage the treatment applied is surgical resection. Melanomas in 

stage I and II differ on tumor thickness and ulceration and are treated by surgical resection 

followed by drug or radiation treatment. When melanoma spreads to the lymph nodes is 

classified as stage III. In this case surgical removal of the lymph nodes is required. Stage IV 

refers to a cancer that has spread into distant organs, and it is treated with chemotherapy. 

According to American Joint Committee on Cancer (AJCC), Melanoma can be clinically 

categorized in 5 different subtypes including: superficial spreading melanoma, amelanotic 

melanoma, nodular melanoma, acral lentiginous melanoma, and uveal melanoma (table 1.1) 

(15, 18, 21, 26-29). 

  

Figure 1.2. Anatomy of the normal skin. Melanocytes are specialized pigmented cells that 

produce melanin and reside in the basal layer of human skin. Adapted from National Cancer 

Institute, 2017. 
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Subtype Description Frequency Common Site 

Superficial 

Spreading 

Melanoma 

Form of melanoma in which 

cancer cells tend to stay within 

the tissue of origin:  epidermis. 

 

70 % Trunk of men 

Legs of Women 

Amelanotic 

Melanoma 

Type of skin cancer in which 

the cells do not produce 

melanin, they have lack of 

pigment. 

2-8 % Glabrous skin 

(skin that is 

normally devoid of 

hair) 

Nodular melanoma Melanoma cells proliferate 

downwards through the skin 

(vertical growth). 

10-25% Trunk of men 

Legs of Women 

Acral Lentiginous 

Melanoma 

Form 

of melanoma characterized by 

its site of origin: palm, sole, or 

beneath the nail. 

5% Palms 

Soles 

Nails 

Uveal Melanoma Melanoma of the eye. 3-5% Iris, ciliary body or 

choroid 

Table 1.1- Clinical Classification of Melanoma. Adapted from Chudnovsky Y. et al, JCI 

2005. 

Figure 1.3. The four stages of Melanoma. Melanoma is staged depending on tumor thickness, 

number of metastatic nodes and distant metastasis. Stage 0-II is confined to the epidermis, 

stage III includes lesions spread to the lymph nodes and on stage IV the lesions spread to other 

organs. Adapted from Colegio Oficial de Enfermeros de Badajoz, 2017. 
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1.2.2 Melanoma Genetics 

The MAPK signaling cascade plays a key role in melanoma, making it an important therapeutic 

target. In normal cells, the MAPK pathway (figure 1.4) is activated by mitogens or hormones 

and extracellular growth factors. This signaling pathway controls fundamental cellular 

processes such as growth, proliferation, differentiation, migration and apoptosis (30, 31). The 

MAPK pathway includes a small G protein (RAS) and three serine/threonine protein kinases: 

B- type RAF kinase (RAF), Mitogen-activated protein kinase kinase (MEK) and Extracellular 

signal-regulated kinase(ERK). The binding of mitogens, hormones, cytokines or 

neurotransmitters to tyrosine kinase receptors causes its dimerization, which triggers the 

activation of RAS. Mechanistically, the phosphorylated SH2 (Src Homology 2) of GRB2 

(Growth factor receptor-bound protein 2), an adaptor protein, brings Son of Sevenless (SOS) 

into close proximity to GDP-Ras and converts it into Guanosine-5'-triphosphate (GTP) -Ras 

(activated form) by catalyzing the GDP to GTP (32). This guanine nucleotide exchange leads 

to the activation of RAS signaling. Once activated, RAS attracts and binds RAF, which usually 

is found in cytosol, via effector loop. Therefore, RAF becomes attached to the membrane via 

RAS. In this way, RAF becomes activated and is able to activate a second kinase, MEK, by 

phosphorylating its serine / threonine domains (33). MEK is considered a “dual specificity 

kinase”, which means that it is able to phosphorylate serine/ threonine residues as well as 

tyrosine residues. By phosphorylation, MEK activates ERK1 and ERK2 that, once activated, 

each of these ERKs phosphorylates downstream substrates regulating several cellular processes 

(33). The activation of MAPK signaling potentiates PI3K signaling. These pathways can 

interact at different levels creating a complex network. The resulting signaling cascade 

culminates with translocation of ERK to the nucleus where it activates transcription factors, 

resulting in gene expression (15, 17, 32, 34, 35). Some transcription factors activated by ERK 

are cdc25 (phosphatase), MSK1/2 (stress activated kinases) and CREB. Once activated, these 

transcription factors regulate cell proliferation and survival (36, 37). Most cancer lesions that 

lead to constitutive activation of ERK signaling occur during the early steps of tumorigenesis. 

The constitutive activation of ERK signaling can result from the overexpression of receptor 

tyrosine kinases (RTKs), activating mutations in receptor tyrosine kinases, sustained autocrine 

production of activating ligands, RAS mutations and BRAF mutations (38).  

MAPK and PI3K pathways are key regulators of cell proliferation in melanoma. The 

most common mutation found in melanoma is in BRAF (~50%) (39, 40),  followed by 

Phosphatase and tensin homolog  ( PTEN) (30-50%) (41) and NRAS mutations (10-20%), 
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figure 1.4 (39, 42). AKT3 is activated in ~60% of melanomas, due to its overexpression or 

alterations in upstream regulators such as PTEN (43). BRAF and NRAS mutations can result in 

hyperactivated ERK, which is present in up to 90% of human melanomas (26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 Melanoma Treatment 

 Until 2010 the standard care for metastatic melanoma included surgical resection, 

chemotherapy and high interleukine 2 (IL-2) doses (figure 1.5) (17). When detected early, 

melanoma can be treated by surgical resection, which has over 95% success rate at stages I/II 

(44). If detected in advanced stages, melanoma is difficult to treat since currently there is no 

effective treatment. Melanoma lesions can be asymptomatic for long periods, or be detected at 

stage IV without a clearly identified primary lesion. The main drugs used in melanoma patients 

are chemotherapy, immunotherapy and targeted therapies (table 1.2). Despite all the efforts, 

melanoma is still one of the most aggressive cancers, with extremely poor prognosis (21, 44, 

45).  

 

Figure 1.4. The MAPK signaling pathway.  Growth factors bind to the tyrosine kinase 

receptor, which brings SOS into close proximity. GDP-RAS is converted into GTP-RAS and 

phosphorylates RAF. RAF phosphorylates MEK, and MEK phosphorylates ERK. ERK 

translocates into the nucleus and stimulates transcription of target genes.  Mutations in NRAS 

are found in ~20% of melanoma patients. MAPK pathway is frequently activated by mutations 

on BRAF (~50%). The PI3K pathway can be activated due to PTEN mutations (30-50%) or 

AKT mutations (~30% in AKT3).   
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Surgical Resection 

Surgical resection is still the first treatment choice for patients with early stages melanoma 

having huge success rate in stage I/II. In cases of metastatic melanoma, surgical resection has 

a minimal impact in treatment (44, 46). The treatment choice for melanoma patients in stage I-

III is surgery. An important prognostic indicator, which provides information about disease 

progression independently of the treatment, is the analysis of sentinel lymph node (SNL), the 

first node draining the primary melanoma in the lymphatic system (47). The first rout of 

metastasis in melanoma is the lymphatic system, making the study of SNL an important toll 

because it allows the detection of locoregional dissemination (46, 47). If melanoma is spread 

to the SLN it is performed a complete lymphadenectomy as a gold standard treatment in order 

to remove metastatic cells present in the lymphatic drainage (48). 

 

 

 

  

Figure 1.5. Treatment applied in metastatic melanoma. Dacarbazine was the first 

chemotherapeutic drug used, followed by high doses of Interleukine 2 (IL-2). After 2010 new 

therapeutic strategies became available such as immunotherapies (exp. Ipilimumab, 

Nivolumab) and targeted therapies (examples: Vemurafenib and Trametinib). Adapted from 

Sullivan EJ et al, CCR 2013. 
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 Drug Group Drug Class Examples Effects 

C
H

E
M

O
T

H
E

R
A

P
Y

 

Alkylating 

Agentes 

Nitrosaureas 
Fotemustine/ 

Carmustine 
SsDNA breaks 

Nitrogen Mustards Cyclophosphamide DNA crosslinking 

Triazenes 

Dacarbazine/ 

Temolozomide 

 

Inhibition of nucleic 

acid and protein 

synthesis 

Antibiotics 
Anthracyclines 

 

Doxorubicin 

(adriamycin) 

SsDNA breaks 

DNA crosslinking 

Inhibition of DNA 

and RNA replication 

Plant-derived 

products 
Vinca Alkaloids Vincristine 

Altered cell division, 

motility 

Taxanes  Taxol 
Altered cell division, 

motility 

Hormonal 

Analogs 
Antiestrogen Tamoxifen 

Altered estrogen 

signaling 

Platinium 

Drugs 
 Cisplatin 

SsDNA and dsDNA 

breaks 

IM
M

U
N

O
T

H
E

R
A

P
Y

 

Cytokines  IL-2 

Growth and 

activation of T-cells 

and natural killers, 

promoting tumor 

regression 

Checkpoint 

inhibitors 

 
Ipilimumab (antibody 

against CTLA-4) 

Promotes T-cell 

activation and 

proliferation ; 

amplifies T cell 

immunity 

 

Nivolumab / 

Pembrolizumab  

( antibodies against PD-

1) 

Promotes T cell 

activation, IL-2 

production and 

mediates immune 

toxicity 

T
A

R
G

E
T

E
D

 

T
H

E
R

A
P

IE
S

 BRAF 

inhibitors 
 

Vemurafenib (against 

V600E mutation) 

Anti- proliferative 

effects 

MEK 

inihibitors 
 Trametinib 

Induces cell cycle 

arrest and reduces 

tumor growth 

Table 1.2. Drugs used in melanoma.  
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Chemotherapy 

Cytotoxic chemotherapy has been used for the treatment of metastatic melanoma for the last 

decades. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which 

is a characteristic of cancerous cells, but it is also a characteristic of normal cells with fast 

proliferation rates, such as the bone marrow, skin cells, gastrointestinal tract cells and hair 

follicles cells. The fact that chemotherapeutic agents non-specifically target cells that are 

dividing rapidly is the major reason for their toxicity (49-52). The first chemotherapeutic agent 

used to treat advanced melanoma was dacarbazine (DTIC), an alkylating agent (figure 1.5). The 

alkylating agents are the most widely used anti-cancer drugs and have the ability to covalently 

bind an alkyl group to the DNA bases (commonly to the N7 guanine) forming an adduct, 

thereby preventing multiplication of rapidly growing cells. DTIC has an overall response rate 

ranging between 10-20% and only allow a complete remission on 5% of patients (21, 53, 54). 

Temozolomide (TMZ) is another alkylating agent widely used in melanoma that has some 

advantages over many alkylating agents because of its unique chemical structure and 

pharmacokinetic properties. In particular, its small weight allows the compound to cross the 

blood brain barrier. This drug has shown efficacy in the treatment of malignant brain tumors 

and metastatic melanoma in the brain (55, 56). Other cytotoxic chemotherapeutic drugs have 

been tested such as nitrosaureas (Carmustine), vinka alcaloides (Vincristine), taxanos (Taxol) 

and platinium compounds (Cisplatin) (table 1.2) but they had no better results than DTIC (21, 

53, 54). Another nitrosourea used is Fotemustine, which was proven to be efficient, mainly in 

brain metastasis giving its high lipophilicity (57). Other conventional chemotherapeutic drugs 

have also been used to treat melanoma, such as plant-derived products, antibiotics and hormonal 

analogs (table 2). Alkylating agents, along with most other cytotoxic agents, are not “magic 

bullets” envisioned by Paul Erhlich: drugs that go straight to their intended cell-structural 

targets. The resistance to conventional chemotherapeutic agents in melanoma leads to an 

extremely poor prognosis (21, 53, 54, 58-63).  

 

The scientific progress during the last decades, allowed for a deeper study of molecular 

mechanisms driving melanoma progression, leading to an improvement in melanoma treatment. 

Since the last decade two new therapeutic approaches improved the standard care for melanoma 

patients: Immunotherapies and targeted therapies (17, 64).   



Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK  

 

11 

 

Immunotherapy  

Melanoma is a highly immunogenic type of cancer, and melanocytes have the ability to induce 

adaptive immune responses. The primary effector cells of the adaptive immune response against 

cancer are the T lymphocytes that include helper T cells and cytotoxic T lymphocytes (65, 66). 

The ability of melanoma cells to induce adaptive immune responses was associated with the 

fact that melanoma has a high mutation load that leads to the presentation of immune 

stimulatory neoantigens. Neoantigens are antigenic proteins that have new epitopes that have 

not been previously exposed / recognized by the immune system, leading to an immune 

response (67-69).  The statement that melanoma is highly immunogenic is supported on several 

observations: (a) spontaneous remissions occur; (b) in about 5% of the melanomas the primary 

tumor is not found; (c) it was found that primary tumor and metastasis have infiltrated 

lymphocytes; (d) studies demonstrated that tumor infiltrating T lymphocytes can recognize 

some melanoma antigens; (e) melanomas respond to immunotherapy. In cases of 

immunosuppression the risk of developing melanoma is higher (70). Immunotherapy is defined 

as the use of the immune system to treat cancer (71, 72). Immunotherapy, including cytokine 

and vaccine treatments are an alternative to conventional chemotherapeutic drugs (73). One of 

the first “immunotherapeutic tools” used was IL-2, started in the 90’s. Initial studies revealed 

that IL-2 is able to induce tumor regression in melanoma and other malignancies (65). Yet, IL-

2 has shown some degree of toxicity mainly associated to vascular leak syndrome (VLS) (65). 

VLS is a phenomenon characterized by an increased vascular permeability along with protein 

and fluid extravasation, resulting in interstitial edema and organ failure (74). Recently, three 

new immunotherapeutic drugs have been approved by the FDA to treat melanoma: Ipilimumab, 

an antagonist monoclonal antibody to CTLA-4 (approved in 2011), (figure 1.6) Pembrolizumab 

and Nivolumab. Pembrolizumab and Nivolumab are both antagonist monoclonal antibodies to 

PD-1 and were approved in 2014 (65, 73, 75). Immune checkpoints are negative regulators of 

the immune system, important to maintain self-tolerance and avoid an auto-immune response. 

Melanoma cells can take advantage of this mechanism and block an immune response against 

them. The anti-CTLA-4 antibody binds to CTLA-4 receptor blocking CTLA-4 signaling. This 

blockade contributes to T cell activation and proliferation, amplifying T cell mediated immunity 

against melanoma cells (76). Similar to CTLA-4, PD-1 is also a checkpoint inhibitor, playing a 

key role in immune tolerance.  In cancer cells, PD-1 interaction with its ligand promotes T cell 

apoptosis limiting T cell proliferation and inhibiting IL-2 production. The PD-1 pathway 

blockade induces T cell activation and proliferation, enhancing anti-tumoral activity (70, 77). 

However, these therapies have an extremely high cost, and do not benefit the majority of the 
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patients. In fact, the immunotherapy is only beneficial to 15- 50% of melanoma patients. Some 

patients have intrinsic resistance in tumor cells that have genetic or non-genetic changes that 

contributes to natural cell survival. One example is that tumors can express proteins with few 

molecular exchanges, making the immune system unable to recognize these antigens as foreign. 

It is also possible that, with tumor development, cancer cells lose a proportion of its non-silent 

mutations, producing lower ratio of antigenic epitopes leading to a phenomenon called the 

immunoadaption of tumors. Moreover, cancer cells have developed mechanisms to escape the 

immune system resulting in a less efficient therapy (14, 64, 70-72, 74). Another promising 

strategy is the use of this dual inhibition combined with immunotherapy including IL-2, 

interferon, anti-CTLA4, anti-PD1 (78, 79). The future of immunotherapies includes the 

understanding of resistance mechanisms and the development / improvement of biomarkers in 

order to provide information about the patient response to the treatment. Hopefully, the ability 

to distinguish patients that may benefit from these treatments may improve the clinical outcome 

of melanoma patients (37). In the past few years much attention has been focused on the 

development of targeted therapies (17, 64). 

 

 

 

 

 

 

 

 

  

 

 

  

Figure 1.6. Immune checkpoint blockade in Melanoma. Ipilimumab (against CTLA-4) 

blocks the immunosuppression induced by the interaction between the B7 family and CTLA-

4 proteins. Nivolumab or Pembrolizumab (against PD-1) blocks the interaction of PD-L1 

ligand to its receptor. The inhibition of these immune checkpoints allows the immune system 

to target cancer cells. 
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Targeted Therapies 

Over the past years a new generation of cancer treatment arose, such as targeted therapies. 

Targeted therapies interfere with disease-specific proteins involved in tumorigenesis (49, 50, 

80). Target-based therapies are considered to be the future of cancer treatment and much 

attention has been focused on developing inhibitors for MAPK signaling pathway. MAPK 

pathway is often hyperactivated in melanoma due to BRAF and NRAF mutations (two thirds of 

melanomas) (15, 18, 38).  

Deregulation of the MAPK pathway, described in section 1.2.2, is frequent in melanoma 

leading to increased cell proliferation, invasion, metastasis and angiogenesis, making this 

pathway an important target in melanoma treatment. Despite recent therapeutic advances in the 

treatment of advanced melanoma, targeting RAS has not been so successful. NRAS mutations 

are commonly found in codon 12, 13 and 61 and have been associated and aggressive clinical 

which is easy to understand since active RAS can activate both MAPK and PI3K pathways 

leading to tumor progression and cancer cell survival. Although much effort has been made to 

target NRAS, to date no effective anti- RAS therapies have been successfully developed. 

Previous strategies were focused mainly in posttranslational modifications of NRAS using 

farnesyltransferase inhibitors. Nowadays the efforts are focused on targeting NRAS with small 

molecules or siRNA and mainly on downstream effectors of NRAS (81-83).  BRAF, one of the 

downstream effector of NRAS, is one of the three human RAF genes (together with A-RAF and 

C-RAF) and it is one of the most common mutated genes in melanoma ~50%. The most 

common mutation leads to a substitution of a glutamic acid for a valine at position 600 (V600E). 

The mutant V600E BRAF protein results in increased kinase activity (10 fold more activity) 

which induces hyperactivity of MAPK pathway, stimulating proliferation, survival and neo-

angiogenesis by stimulating autocrine vascular endothelial growth factor (VEGF), contributing 

to the development of nevi. Some studies have shown that V600E BRAF regulates expression 

of IL-8 a pro-inflammatory chemokine to promote tumor growth and angiogenesis. This mutant 

form also induces metastasis by triggering invasive cellular behavior and by promoting IL-8 

mediated anchoring of melanoma cells to the vascular endothelium, which helps cell 

extravasation and the development of lung metastasis. As mentioned before, the most common 

gene mutated in melanoma is BRAF. Patients with BRAF mutations were associated with a 

poor prognosis. (15, 32, 38, 84). Sorafenib is a nonselective inhibitor of tyrosine kinases (like 

BRAF) and RTKs such as vascular endothelial growth factor receptor (VEGFR) and was the 

first BRAF inhibitor investigated in clinical trials in melanoma (38). Clinical trials using 
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sorafenib as a monotherapy failed to demonstrate anti-tumor activity (85). Studies using 

sorafenib along with other therapeutic agents such as DTIC, carboplatin and paclitaxel in 

patients with metastatic melanoma were also clinically ineffective. (85-88). The limited activity 

of sorafenib in tumors with BRAF mutations contributed to the development of new inhibitors 

with greater selectivity such as Vemurafenib. This inhibitor was the first molecularly targeted 

therapy approved by the FDA in 2011 for the treatment of advanced melanoma (89). This drug 

has shown potent anti-proliferative effects in several preclinical models, including the ones 

harboring the V600E mutation. The mechanism of action involves selective inhibition of the 

mutated BRAF V600E kinase, which leads to reduced MAPK signaling activity. A phase III 

clinical trial comparing Vemurafenib and DTIC as first line therapy showed that Vemurafenib 

improved overall and progression-free survival compared to DTIC group. However, were 

detected some adverse effects associated with Vemurafenib such as arthralgia, rash, fatigue, 

alopecia, photosensitivity, nausea and diarrhea. In fact, there are some cutaneous adverse effects 

described in 92-95% of melanoma patients treated with BRAF inhibitors. There are also some 

benign and malignant lesions associated with Vemurafenib treatment, being the most commons 

squamous cell carcinoma and keratocanthoma (73, 84, 89, 90). The mechanism behind the 

neoplasia development points to MAPK re-activation in skin with mutated RAS.  BRAF 

inhibitors activate C-RAF in wildtype cells, that can induce ERK signaling, leading to 

squamous cell carcinoma development. Some of the patients treated with Vemurafenib also 

developed basal cell carcinoma (84, 91). The major problem / concern using Vemurafenib (and 

also other inhibitors) is that patients eventually develop resistance to therapy, leading to a poor 

prognosis. Actually, there are already some resistance mechanisms associated with BRAF 

inhibitors such as re-activation of MAPK signaling, changes in ERK1/2 regulated cell cycle 

events, activation of alternative signaling pathways and chromatin-regulating events (92). Re-

activation of MAPK signaling can emerge due to mutations on RAS, which promotes C-RAF 

dimerization and activation and due to ERK mutations. In fact, a study has demonstrated that 

elevated expression of C-RAF was associated with a mutant BRAF melanoma cell resistance 

to AZ628, a RAF inhibitor (92-94). Herkert B. et al., also showed that ~40% of melanoma 

patients with BRAF mutations have concomitant loss of PTEN, contributing to the 

hyperactivation of PI3K pathway and consequently to cancer cell survival (95-97) . 

 Vemurafenib revolutionized the standard care of melanoma patients. Yet, a big part of 

melanoma patients dies from resistance once drugs stop having a clinical effect. An intrinsic 

mechanism of resistance to Vemurafenib is the expression of Hepatocyte growth factor (HGF), 
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which leads to increased cell proliferation (98). Acquired resistance mechanisms were also 

described such as upstream mutations on NRAS, downstream mutations of MEK and BRAF 

splice variants.  Considering these complications, an alternative strategy is the development of 

inhibitors for downstream effectors of BRAF, such as MEK (99-103).  

Nowadays, selective MEK inhibitors represent a promising new therapeutic option in BRAF 

and NRAS mutated melanomas. Some studies demonstrate that preclinical models with BRAF 

mutations are sensitive to MEK inhibitors. Patients harboring NRAS mutations were found to 

be partially sensitive to MEK inhibitors (104, 105). In BRAF mutated melanoma murine 

xenografs, MEK inhibitors contributed to tumor regression through increased apoptosis and 

reduced angiogenesis and proliferation (104, 106) The first MEK inhibitor, PD098059, was 

described in 1995  (104, 107, 108). Until now, about thirteen MEK inhibitors have been tested 

in the clinic. The first MEK inhibitor approved by FDA in 2013 was Trametinib 

(GSK1120212), a selective inhibitor of MEK1 and MEK2 (100, 104, 108). MEK inhibitors can 

be classified in two major classes: Adenosine Triphosphate (ATP) competitive or non-ATP 

competitive inhibitors (108). The ATP competitive inhibitors bind to the ATP binding site of 

MEK, preventing MEK to be phosphorylated. E6201 is an ATP-competitive MEK inhibitor 

that proved to be effective against Vemurafenib resistance melanoma harboring a MEK1 

mutation in a preclinical model (109). However, the sensitivity to E6201 was correlated to 

wildtype PTEN suggesting that parallel signaling of PI3K pathway may play a role in resistance 

to this inhibitor (110). Most of MEK inhibitors are non-ATP competitive, which means that 

they bind to an allosteric binding site close to the ATP binding site preventing MEK activation. 

MEK 1 and 2 are very similar and consists in a N-terminal sequence, a kinase domain and a C-

terminal sequence. In the N-terminal sequence MEK1/2 contains an inhibitory/allosteric 

segment, which is only present in MEK1/2 and not in the other MAPKK. This allosteric 

segment present in MEK1/2 is relatively unique making the ATP non- competitive MEK 

inhibitors highly specific (108, 111). Trametinib is an orally available, small molecule, non-

ATP competitive MEK inhibitor that induces cell cycle arrest, reducing tumor grow. It was 

proven to be clinically effective in the presence of BRAF and NRAS mutations. Therefore, it 

was accepted by the FDA as a single agent for the treatment of patients with V600E BRAF and 

in combination with dabrafenib (104, 112). Refamatinib is a non-ATP competitive MEK 

inhibitor very similar to Trametinib, which is still in clinical trials (108). Another MEK inhibitor 

approved by FDA in 2015 for the treatment of advanced melanoma is Cobimetinib in 

combination with Vermurafenib. Cobimetinib is also an ATP non-competitive MEK 1/2 
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inhibitor (113, 114). Although all the efforts in developing an effective treatment, resistance to 

therapy is still the most difficult issue to be overcome. Patients develop resistance to almost all 

drugs, including to MEK inhibitors, such as the mutation MEK1 P124L (the substitution of a 

leucine by a proline), resulting in a gain-of-function mutation. Mutations on ERK were also 

associated with MEK inhibitors resistance leading to MAPK hyperactivation (94, 115-117). 

Another resistance mechanism is the activation of PI3K pathway. It was already shown that 

PI3K and MAPK pathways interact in order to regulate several cellular processes like cell 

proliferation and apoptosis. The MAPK pathway cross-activates PI3K signaling through 

regulation of PI3K, Tuberous Sclerosis Complex 2 (TSC2) and mTORC1. GTP-RAS can bind 

and activate directly PI3K kinase.  When RAS or PTEN are mutated, even in the presence of a 

MEK inhibitor, the PI3K pathway remains active contributing to tumor growth. Taking this into 

account, the inhibition of both PI3K and MAPK pathways might be used to more efficiently 

treat melanoma patients. Nowadays, there are several fair options for melanoma treatment. Yet, 

there are still significant obstacles to be overcome, like resistance mechanisms, that should be 

treated as a priority in melanoma care (32, 118, 119). 

 

1.2.4 Resistance mechanisms 

Understanding the mechanisms underlying the resistance associated with different therapeutic 

agents can improve the outcome of current therapies and contribute to the development of new 

therapeutic approaches. As mentioned before, one of the biggest concerns in melanoma is the 

development of resistance to treatment. Resistance can be intrinsic, meaning that it exists 

before the treatment or acquired when the resistance occurs after the treatment, which means 

that the tumor was initially sensitive to the treatment. There are some acquired resistance 

mechanisms already described, such as mutation on drug target / pathway, drug inactivation, 

drug efflux pumps, DNA damage repair, activation of alternative pathways, tumor 

heterogeneity and one of the most commons, defects in cell death control (figure 1.7) (120-

122). 
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Most of the anti-cancer drugs must undergo metabolic activation in order to have a clinical 

effect. The toxicity to the normal tissues is a limiting factor to the amount of drug that can be 

administered. The amount of drug that reaches the tumor mass is also limited by the drug 

pharmacokinetics (absorption, distribution, metabolism and elimination) (121). Cancer cells 

can develop resistance to the treatments due to a decreased drug activation or drug inactivation. 

This phenomenon can occur, for example, due to Glutathione – S- Transferase (GST) 

superfamily, a group of detoxifying enzymes that protect cellular macromolecules from attack 

by reactive electrophiles. GST play an important role in the regulation of MAPK pathway via 

protein- protein interactions (122-124). Some studies show an increased expression of GST in 

cancer allowing the detoxification of the anticancer drugs, which culminates in less efficient 

cytotoxic damage of cells (122, 123, 125). Glutathione transferase levels were found to be 

Figure 1.7. Mechanisms of acquired resistance to cancer therapy. The main resistance 

mechanisms to cancer therapy involve changes in drug metabolism, like drug inactivation, 

mutation of drug target or target pathway, and drug efflux pumps that decreases the amount of 

drug that has an effect on cancer cells. The crosstalk between oncogenic pathways is also an 

important resistance mechanism. Some cancer cells are also able to increase DNA repair 

allowing mutated cells to survive. Tumor heterogeneity plays also a crucial role in therapy 

resistance: not all cells are sensitive to treatment, and resistant cells can proliferate and 

contribute to tumor growth. One of the main resistance mechanisms is dysregulated cell death 

control which leads to cancer cell survival, and consequently, to cell proliferation and tumor 

grow. 
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higher in melanoma cells compared to normal melanocytes, which allows cancer cells to protect 

themselves against oxidative stress (126, 127).  This increased expression of GST has also been 

associated with resistance to apoptosis (122, 123, 125).  

A drug’s efficacy is influenced by the drug target or mutations in the drug target pathway. Many 

anticancer drugs target topoisomerase II (example Etoposide) which is a nuclear enzyme 

essential for DNA replication, chromosome condensation and chromosome segregation. This 

enzyme forms a complex with DNA that is normally transient. When a topoisomerase II 

inhibitor is present, the complex stabilizes leading to DNA damaged and later results in cell 

death. Some cancer cells acquire mutations in topoisomerase II gene, conferring resistance to 

this type of anticancer drugs (122, 128, 129). A study shows that melanoma cells exposed to 

etoposide (which induces DNA damage) have tenfold reduced topoisomerase II activity 

corresponding to an increased drug resistance (126, 130, 131). Another example is the mutation 

of cellular receptors such as Epidermal Growth Factor Receptor (EGFR) or in one of its 

downstream targets (122, 128, 129). 

The efficacy of a drug depends also in the real amount of drug able to reach the tumor. One of 

the most resistance mechanisms studied is the drug efflux that results in a reduced drug 

accumulation. Several cell membrane transport proteins, such as the ATP – Binding Cassette 

(ABC) proteins have been associated with drug resistance by promoting drug efflux (121, 122). 

The ABC superfamily proteins function as ATP-dependent efflux transports, mediating drug 

efflux resulting in lower drug accumulation (126, 132). P- glycoprotein (Pgp) and multidrug 

resistance protein (MRP) belongs to ABC transports superfamily and are thought to contribute 

to treatment failure (133). Melanoma cells express MRP, yet a study shows that its expression 

did not increase after chemotherapy (134). 

The response to anticancer drugs culminates direct or indirectly in DNA damage, leading to 

cell death. An increased repair of drug-induced DNA damage is an important mechanism of 

chemo-resistance. The DNA damage response can occur through the nucleotide excision repair 

(NER), or homologous recombination (HR). This mechanism can reverse the effect induced by 

anticancer drugs, such as cisplatin, that causes DNA crosslinks leading to apoptosis.  There are 

some studies showing that some drug resistant melanoma cell lines present an increased NER 

of DNA damage (126, 135). Furthermore, DNA-mismatch repair (MMR) deficiency results in 

drug-resistance by changing the ability of cancer cells to repair DNA damage (136). 

The crosstalk between signaling pathways in cancer is also a mechanism that can contribute to 

drug resistance (137). Connections between signaling pathways give the cell the ability to deal 

with perturbations of homeostasis. In this way, cancer cells are able to activate a similar 
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mechanism through the activation of an alternative pathway which will compensate the drug 

effect on one pathway. It has been shown that the crosstalk between MAPK and PI3K/AKT 

signaling pathways contributes to resistance in melanoma (137, 138). RAS is a small G protein 

located upstream of this two pathways. Upon MAPK inhibition, cancer cells display a strong 

PI3K activation leading to cell survival and melanoma progression (64, 138).  

The deregulation of the apoptotic pathway is probably one of the most important mechanisms 

of resistance in melanoma cells. Apoptosis, often called programmed cell death, involves two 

different pathways: an intrinsic and an extrinsic pathway. The extrinsic pathway is triggered by 

binding of Fas ligand to death receptors that belong to the Tumor Necrosis Factor (TNF) 

superfamily. These are extracellular membrane receptors, which activates caspase 8 an 

important component of the apoptotic pathway. Caspases are enzymes that cleave after aspartic 

acid and become activated upon cleavage by other caspases (proteolytic cascade). The intrinsic 

pathway can be triggered by different stimuli, including death receptor signaling and 

intracellular signals like the absence of growth factor, hormones or cytokines (negative stimuli) 

and radiation, toxins, hypoxia and free radicals (positive stimuli). Once activated, the intrinsic 

pathway leads to the release of mitochondrial cytochrome-c, which in combination with Apaf-

1 results in caspase 9 activation. The intrinsic pathway is mainly controlled by Bcl2 proteins, 

which include proteins with pro- and anti- apoptotic activity. The two pathways converge with 

the activation of caspase 3 and 7 that cleave proteins responsible for nuclear membrane and 

cytoskeletal structure, replication systems and DNA repair (126, 139). Dysregulated cell death 

control can be associated with three main molecular changes: enhanced survival signals, 

activation of anti-apoptotic factors and inactivation of pro-apoptotic effectors(21, 126, 140). 

Tumor heterogeneity also plays a crucial role in anticancer drug resistance. Tumor 

heterogeneity can be defined as the differences between tumors of the same type in different 

patients and between cancer cells within the same tumor mass (141, 142).  Resistance can 

develop from a clone with a specific characteristic that allows it to survive to a certain drug, 

that proliferates originating a resistant cell subpopulation. Recent studies have demonstrated 

that a fraction of cells that compose part of the heterogeneous tumor mass have stem cell 

properties and are usually drug resistance. The cancer treatment affects the sensitive cells, but 

not the resistant cells that survive and can expand contributing to the disease relapse (122, 141).  
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1.2.5 The Role of TRIB2 in resistance to anti-melanoma drugs 

 

Recently, the Link lab has discovered a novel resistance mechanism to anti-cancer drugs 

currently in clinical trials, namely to BEZ235, a PI3K/mTOR inhibitor, BAY236 and 

BAY1082439, both PI3K inhibitors and Rapamycin, a mTOR inhibitor and also to conventional 

cytotoxic drugs DTIC, gemcitabine and 5-fluorouracil, mediated by Tribbles homolog 2 

(TRIB2) (143). TRIB2 is a protein that belongs to the Tribbles family of proteins, enhanced 

cell resistance to these drugs (143) . Furthermore, TRIB2 protein levels were correlated with 

AKT activation. TRIB2 was able to inhibit Forkhead BoxO (FOXO), a tumor suppressor gene, 

contributing to the malignant phenotype of melanoma cells. These findings suggest that TRIB2 

is conferring resistance by reducing cell death induced by PI3K/mTOR inhibitors (143, 144). 

In fact, previous studies from this group proved that TRIB2 is overexpressed in melanoma cell 

lines and in melanoma patients. TRIB2 expression correlates with disease stage and clinical 

progression, suggestingTRIB2 as a potential biomarker for diagnosis and prognosis of 

melanoma (14, 144).  

The Link lab found that TRIB2 is a repressor of FOXO through a screening for FOXO 

repressors (144). FOXO suppresses cell survival and proliferation through regulation of the 

expression of apoptotic proteins and cell cycle regulators. Some studies have shown that 

hyperactivation of MAPK pathway leads to FOXO inactivation (37, 145). Since FOXO 

functions as a tumor suppressor gene inactivated in many human cancers inhibiting its repressor 

proteins might represent an attractive therapeutic strategy to reactivate them. ERK and p38 are 

known to phosphorylate FOXO1 at various sites, suggesting that MAPK signaling cascade may 

play a key role in FOXO regulation (37, 119, 146). FOXO regulation is receiving increasing 

attention in cancer research since FOXO family members were found to be associated with 

cancer initiation, progression and resistance (36). FOXO proteins represent a subfamily of 

transcription factors that belong to the forkhead family (145, 147). In mammals there are 4 

FOXO genes: FOXO1, FOXO3, FOXO4, and FOXO6 involved in crucial cellular processes like 

regulation of stress resistance, metabolism, cell cycle arrest and apoptosis (146-148). FOXOs 

activity is regulated at three different levels: subcellular localization, stability and 

transcriptional activity (144). This regulation is mediated by different processes such as 

phosphorylation, acetylation and ubiquitination FOXO proteins regulate biological processes 

involved in cell proliferation, cell cycle progression, cell differentiation, tissue homeostasis, 

angiogenesis and apoptosis through apoptotic genes such as cyclin-dependent kinase inhibitor 
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p27, BIM, Fas ligand and Bcl-6 (36, 37, 146, 147, 149). As result, it is not surprising that 

deregulation of FOXO proteins may be involved in some pathological processes such as cancer.  

It was shown that the activation of PI3K or MAPK pathways leads to the repression of FOXO-

mediated growth arrest and apoptosis (37). FOXO transcription factors are tumor suppressors 

that are inactivated in some human cancers (36, 150). It was shown that FOXO overexpression 

inhibits tumor growth in vitro and tumor size in vitro in breast cancer, correlating FOXO 

cytoplasmic localization of FOXO with a poor prognosis. Contrarily, when FOXO has a nuclear 

localization cell cycle stops, angiogenesis is reduced and apoptosis is induced, contributing to 

tumor regression. The tumor suppressor role of FOXO was also described in leukemia, prostate 

cancer, and glioblastoma (150-154). Most importantly, recent studies, have revealed that the 

cytostatic and cytotoxic effects of many chemotherapeutic agents, including paclitaxel, 

doxorubicin, lapatinib, gefitinib, imatinib, cisplatin and tamoxifen are mediated by FOXO 

activity (36). Therefore, FOXO can be determinant to the sensitivity to chemotherapeutic drugs. 

It has been established that AKT phosphorylates FOXO proteins, promoting cell survival, since 

FOXO regulates pro-apoptotic proteins including TRAIL and BIM. FOXO phosphorylation by 

AKT induces its translocation to cell cytoplasm and posterior degradation, in particular 

FOXO3a, which is also regulated by MAPK pathway. FOXO can be inactivated, also by the 

crosstalk between PI3K and MAPK pathways (36, 155). Thus, FOXO is considered a very 

important target to melanoma treatment. An interesting approach would be the reactivation of 

FOXO to take advantage of its tumor suppressor properties. Importantly Zanella F. et al., 

discovered, TRIB2 as a novel FOXO-repressor, that might be useful as a target to reactivate 

FOXO factors(144).  

 

 

Tribbles 

TRIB2 belongs to the tribble family of genes, first described in 2000 as a Drosophila protein 

that coordinates morphogenesis by inhibiting mitosis. Tribble family members were identified 

in a genetic screen that aimed at identifying mutations that control cell division and cell 

migration during embryonic Drosophila development. The name originates from the fictional 

small animal that vexed the crew of the Enterprise in the “Trouble with Tribbles” episode from 

Star Trek television series (156, 157). Tribbles encodes an evolutionarily conserved protein 

family that influences cell proliferation, motility and metabolism (158). Tribbles homologs are 

characterized by the presence of a N-terminal portion, a central serine/threonine kinase like 

domain and a C-terminal that contains a COP-1 binding site for E3 ubiquitin ligases and a 
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MEK1 binding site which mediates interactions with multiple Mitogen-activated protein kinase 

kinases (MAPKKs) (figure 1.8). These proteins are considered catalytically inactive since they 

lack conserved residues from the characteristic ATP binding site. Thus, are considered 

pseudokinases (156-159). However, recent data shows that human TRIB2 has the ability to bind 

and hydrolyze ATP showing a weak kinase activity(160-162).   

 

 

 

 

 

 

 

 

 

The mechanism of action of Tribble proteins is still not fully understood, though some 

investigators hypothesized that Tribble proteins function as scaffold proteins that contributes to 

balance signaling pathways, and in several contexts they facilitate ubiquitin-dependent 

degradation of their target protein (156, 163). There are three mammalian Tribble homologs 

proteins: TRIB1, TRIB2 and TRIB3. Its structure includes a pseudokinase domain, a MEK1 

and a COP-1 binding site in the C-terminal (158, 161). TRIB1 is highly expressed in the bone 

marrow, peripheral blood leukocytes, thyroid gland and pancreas (158, 164). TRIB2 is highly 

expressed in peripheral blood leukocytes, thymus, heart, brain, kidney, lung, skin and white 

adipose tissue while TRIB3 is more expressed in human liver (158, 164). Tribbles family 

members coordinate a number of critical cellular processes including glucose and lipid 

metabolism, inflammation, cellular stress, survival, apoptosis and tumorigenesis (158). Tribble 

s proteins regulate AKT and MAPK signaling pathways via regulating the activity of MAPK 

and PI3K pathways. TRIB2 was described as a dosage dependent suppressor of FOXO, mainly 

as modulator of cytoplasmic location of FOXO3a (157, 161). Aberrant regulation of 

pseudokinases has been implicated in the progression of cancer (157). Recent studies have 

shown that Tribble pseudokinases play an important role dysregulating signaling in malignant 

hematopoiesis. In fact, TRIB1 and TRIB2 appear to function as oncogenes in acute 

myelogenous leukemia (AML) (164-166). TRIB1 and TRIB2 induce efficient degradation of 

one of the members of CCAAT/ enhancer binding proteins (C/EBPs), C/EBP α. C/EBPs are 

Figure 1.8. Structure of the Tribble protein family. Tribble proteins have 3 main domains: 

a central serine/ threonine pseudokinase domain, MEK1 binding domains, which mediates 

interaction with MAPK and COP-1 binding site. 
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transcription factors that regulate several processes like cell cycle, inflammation, metabolism, 

differentiation a proliferation. The C/EBP α function is better characterized in the hematopoietic 

system: controls maturation of myeloid lineage (167, 168). The C/EBP α has two main 

isoforms: p42 that function as a tumor suppressor gene and p30, an N–terminally truncated 

form that function as an oncogene. TRIB2 is highly expressed in patients with AML. It was 

shown that TRIB2 leads to the degradation of C/EBP α p42 via E3 ligase COP1 domain, leaving 

p30 isoform intact, which leads to uncontrolled proliferation.  

In vitro and in vivo data shows that TRIB2 transcript levels are elevated in melanoma cell lines 

and in patients with malignant melanoma (144). These high levels TRIB2 were shown to 

facilitate the growth and survival of melanomas by downregulation of FOXO activity (14). 

Published work from the Link laboratory has shown that TRIB2 knockdown increases the 

activity of FOXO in melanoma and reverts the malignant phenotype of malignant melanoma 

cells where TRIB2 is overexpressed (144). More recently, Hill et al., showed that TRIB2 could 

be used as a biomarker for diagnosis and progression of melanoma (14, 144). A biomarker can 

be defined as a biological characteristic that can be objectively measured and evaluated as an 

indicator of a determined process or disease. In these way, a biomarker is a powerful tool that 

provides information about the disease progression (169, 170). In oncology, a biomarker 

provides information about differential diagnosis, prognosis, prediction of response to the 

treatment and they are essential to monitor disease progression. Biomarkers can be classified 

as predictive, prognostic or diagnostic biomarkers. A predictive biomarker helps to predict a 

response to a specific treatment regarding a specific characteristic such as the presence/absence 

of a protein. A prognostic biomarker gives information about the disease progression, 

recurrence or death independently of the treatment received. A diagnostic biomarker is used in 

order to detect/ confirm the presence of a specific disease or a specific condition that allows the 

classification of a subtype of disease (170-172). Hill et al., found that TRIB2 expression 

correlated with disease stage and prognosis. They demonstrated, with a statistical significant 

transcription difference, that TRIB2 expression was elevated in metastatic melanoma samples 

compared to normal skin (14). This group also proved that TRIB2 protein levels correlates with 

AKT activation: TRIB2 interacts with AKT activating it via COP-1 domain. Through this 

experiments they were able to show that TRIB2 confers resistance to inhibitors such as PI3K 

inhibitors (BAY236 and BAY1082439) , mTOR (a serine/threonine kinase that belongs to PI3K 

pathway) inhibitors (Rapamycin), PI3K/MTOR inhibitors (BEZ235) and also to conventional 

cytotoxic drugs (DTIC, gemcitabine and 5-fluorouracil) (143).  In this study, they created stable 

isogenic TRIB2 cell lines and submitted them to BEZ235, a PI3K/mTOR inhibitor. Through 
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the analysis of SubG1 cell population and reduced caspase 3 activation, they proved that the 

high levels of TRIB2 correlated with cell resistance to this drug (143). The same happened 

when cell lines were treated with BAY236 and BAY439, both PI3K inhibitors: TRIB2 reduced 

cell death induced by these drugs. When exposed to Rapamycin, an mTOR inhibitor, the 

isogenic cell lines with higher levels of TRIB2 displayed resistance to this compound (143). A 

deeper investigation demonstrated that cell lines with higher TRIB2 protein levels correlated 

with AKT activation through its phosphorylation on serine 473 and also with increased total 

AKT. In melanoma cells with TRIB2 depletion the levels of AKT pSer473 and total AKT were 

lower (143). Surprisingly, TRIB2 overexpression contributed to increased levels of AKT 

pSer473 and total AKT before and after the treatment with PI3K and mTOR inhibitors which 

suggests that drugs targeting PI3K and mTOR may not be clinically efficient in tumors where 

TRIB2 is overexpressed, like in melanoma. Moreover, they proved that TRIB2- mediated 

resistance was AKT-dependent via FOXO3a (143). AKT1 phosphorylates FOXO3a (tumor 

suppressor gene) for proteasome degradation, and also activates E3 ubiquitin ligase mouse 

double minute 2 homologue (MDM2) with consequent apoptosis inhibition mediated by p53. 

MDM2 is considered and oncogene once it regulates p53 activity (173). MDM2 function as a 

E3 ligase that ubiquitinates p53 for degradation blocking its transcriptional activity directly 

(174-176). The authors showed that TRIB2 and AKT interacts and form a complex, promoting 

AKT activation and consequent inhibition of P53 mediated apoptosis. Concomitant to reduced 

p53 protein levels, they also found that P53 target genes were downregulated, including: p21, 

MDM2, Bax and Puma. TRIB2 COP1 binding site was shown to be essential for AKT 

activation. In this way, through several experiments, our group showed that TRIB2 is able to 

activate AKT leading to P53 and FOXO3a inactivation and confers resistance to PI3K inhibitors 

(143). In vivo experiments confirmed that TRIB2 confers resistance to PI3K inhibitors. The 

authors created isogenic 293T subcutaneous tumors in the flanks of NOD/Scid mice. Tumor 

growth revealed to be independent of TRIB2 status. When treated daily with BEZ235, a 

PI3K/mTOR inhibitor, the 293T-GFP xenograft tumors reduced significantly while 293T-

TRIB2 tumors were highly resistant to treatment showing that the high levels of TRIB2 reduced 

the efficacy of BEZ235 in vivo (143). To compare to a clinical situation, they analyzed tumor 

tissue samples from melanoma, pancreatic and colon cancer were analyzed, they found that the 

levels of TRIB2 transcription and proteins were elevated in tumor tissues compared to the 

normal tissue samples. Similar to in vitro models, they proved that in tumor samples the levels 

of TRIB2 the levels of AKT pSer473 and pSer253-FOXO3a protein levels were significantly 

higher, confirming their experiments. Also, they demonstrated that the transcripts and proteins 
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of FOXO dependent gene such as BIM, FasLG and TRAIL were significantly lower in 

melanoma samples compared to the normal control tissue samples (143). In summary, Hill et 

al., discovered a new mechanism: TRIB2 binds to AKT via COP1 domain promoting the 

activation of AKT via Ser473 phosphorylation, which in turn phosphorylated MDM2, 

increasing its activity inhibiting p53 mediated apoptosis (figure 1.9). AKT also leads to 

FOXO3a phosphorylation via Ser235 sending it to degradation. This study was extremely 

important once it revealed a novel resistance mechanism of TRIB2 mediated resistance to PI3K 

inhibitors, meaning that patients with TRIB2 overexpression are predicted to respond poorly to 

these treatments, rendering TRIB2 as a biomarker predicting the treatment outcome (143). 

Taking into account that:  (a) TRIB2 has a MEK1 binding site (figure 1.8) (157, 158, 177); (b) 

TRIB2 is highly expressed in melanoma cell lines and  in patients with melanoma (144) and (c) 

TRIB2 confers resistance to PI3K and mTOR inhibitors (143) we hypothesize  that TRIB2  

might also be conferring resistance to MEK inhibition as well, through a similar or unrelated 

mechanism. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Proposed model of TRIB2 mediated drug-resistance. In the left, with low levels 

of TRIB2 pathway is inhibited leading to apoptosis and tumor regression and consequently a 

good clinical response. In the right, with high levels of TRIB2, TRIB2 binds to AKT via COP1 

domain causing its activation via p-Ser473AKT. Activated AKT causes MDM2 

phosphorylation via Ser166 which and turn phosphorylates P53 sending it to degradation. AKT 

also phosphorylates FOXO3a via Ser235 sending it also to degradation, culminating with cell 

survival, tumor growth and finally, treatment failure. Adapted from Hill et all, Nat Comm, 

2017(143). 
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2. Methods 

 

2.1 Cell culture 

Cell culture is one of the most important tools used in molecular biology, providing systems to 

study the majority of diseases. The cell lines used are described in section 2.2. The cells were 

cultivated in Dulbecco’s Modified Eagle’s Medium (DMEM) with Ultraglutamine 1 and 4,5g/L 

Glucose (Lonza, Verviers, Belgium) supplemented with 10% Fetal Bovine Serum (FBS) 

(Biowest, South America) and 5ml of Penicilin / Streptamicin (Amresco, Ohio). All cell lines 

were routinely cultured in 100mm plates (SLP life science, Korea) or 60mm plates (SLP life 

science, Korea) and maintained in an incubator (Thermo electron corporation 311, Canada) at 

37ºC and 5% carbon dioxide (CO2). Culture medium was changed every 2 or 3 days. When 

cells reached 70-80% confluency, cells were washed twice with 1X Phosphate Bovine Serum 

(PBS) (Sigma Aldrich, USA) and coated with 1.5X Trypsin (Sigma Aldrich, USA), diluted in 

PBS. Trypsin is used to detach cells from the plates and maintain a subculture. 

For long term storage, we trypsinized and centrifuged cells (VWR 881117, Taiwan) at 1100 

revolutions per minute (rpm) for 4 minutes, we removed the supernatant and ressuspended the 

cells in fresh media supplemented with 10% FBS and 10% Dimethyl-sulfoxide (DMSO) 

(VWR, France) that functions as a cryopreserving agent. Cells were stored in cryovials (VWR, 

China) at -80ºC and then, transferred to -150ºC. 

For thawing, we placed the cryovials for a couple of seconds at 37ºC water bath (Clifton, Great 

Britain) and the solution transferred to 15ml falcon tubes (Labbox, Spain), and then centrifuged 

at 1100 rpm for 4minutes. We discarded the supernatant, containing DMSO in order to avoid 

cell damage, and cells were ressuspended in 1ml media and plated in 100mm plates. 

We performed cell counting using a Neubauer chamber (Blau brand, Germany). Briefly, we 

collected 10µL of cell suspension and mixed with 10µL Trypan Blue (Sigma Aldrich, UK) in 

an Eppendorf tube (Eppendorf, Germany). We transferred 10µl to the Neubauer chamber and 

the four external corners were counted. Cell concentration was obtained according to this 

equation: (X1+ X2 + X3+ X4)/4 x 2 x 104 cells /mL (figure 2.1). 

All the procedures were performed under sterile conditions using a laminar flow chamber 

(Microflow, advanced biosafety cabinet class II, UK). 

 

 



Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK  

 

27 

 

 

 

 

 

 

 

 

 

 

 

2.2 Cell lines characterization 

For our study we used the following melanoma cell lines: G361, SK-Mel-28 and A375 and the 

non-melanoma cell lines: U2OS (osteosarcoma) and Human Embryonic Kidney (HEK) 293T 

cells. All of them provided by American Type Culture Collection (ATCC). Melanoma cell lines 

are characterized in table 2.1 

 

 

  

 BRAF NRAS P53 

G361 Wt* / Mutant Wt Wt 

SK-Mel-28 Mutant Wt R273H 

A375 Mutant ND** ND 

Table 2.1. Genetic characterization of the melanoma cell lines used. 

X1 X2 

X3 X4 

Figure 2.1. Scheme of a Neubauer Chamber. The total number of cells results from the 

average number of cells from the four external corners, X1, X2, X3 and X4 multiplied by the 

factor of dilution (in our case 2) and by 104: (X1+ X2 + X3+ X4)/4 x 2 x 104 cells /mL. Adapted 

from Ansair N. et al, Methods Cell Biol, 2013. 

*Wt – Wild Type; **ND – non-descriminated 
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 Since Tribbles family members are highly conserved and might be functionally redundant, we 

decided to analyze the mRNA and protein levels of all three proteins. We evaluated mRNA and 

protein levels using quantitative polymerase chain reaction (q-PCR) and Western Blot (WB) 

techniques, respectively. 

 

2.3 q-PCR 

The q-PCR is a sensitive method that allows the detection and quantification of minute amounts 

of nucleic acids. First, RNA is transcribed into a complementary DNA (cDNA) by reverse 

transcriptase from mRNA. Then, cDNA is used as a template for the qPCR reaction. The 

reaction is detected by the use of fluorescent reporters that permits the detection after 

hybridization of the probe with its complementary sequence, allowing to follow the procedure 

at the time that it happens and the quantification of the product accumulation (178). 

RNA extraction 

In order to perform the RNA extraction, we used E.Z.N.A.® Total RNA Kit (Omega) protocol, 

describe in annex A, from cell pellets collected from each cell line.  

CDNA synthesis 

For the cDNA synthesis we used NZY first-strand cDNA synthesis kit (Nzytech, Lisbon) 

thermal cycler (TC-48, BioRad) protocol in Annex B. The resulting cDNA was divided, one 

part was diluted 1:10 to the PCR and the remaining was frozen at –80ºC.  

PCR 

PCR is composed of 3 different steps: Denaturation in which the high temperature allows the 

separation of the DNA into 2 single strands; Annealing when the temperature is lowered 

allowing the primers to attach to the DNA strand; the final step is the Extension in which the 

temperature is raised again and a new complementary strand of DNA is formed by Taq 

polymerase (179). For qPCR we used LuminoCt Syber Green qPCR ReadyMix L6544 (Sigma 

Aldrich, USA). The protocol included 20 seconds at 94ºC plus 3 seconds at 94ºC for 

denaturation, 20 seconds at 56ºC for annealing/extension and then at 4ºC. We performed three 

technical replicates. The primers used are described in table 2.2. Results were analyzed using 

Bio-Rad CFX Manager 3.1 software. 
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2.4 Western Blot 

The protein levels were assessed using the WB technique, commonly used to separate and 

identify proteins. Briefly, the proteins are separated according to their molecular weight in a 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).  The percentage of 

SDS gel should be according to the size of the proteins of interest. The separated proteins are 

then transferred to a nitrocellulose membrane. Next, the membrane is blocked, usually in 5% 

milk diluted in 1X tris-buffered saline tween (TBS-T), to prevent the antibodies from binding 

to the membrane nonspecifically. After blocking, the proteins of interest are detected using 

specific primary antibodies and the revelation solution (180). 

Once the cell plates (60mm) were confluent, we performed two washes with 1X PBS and 

trypsinized the cells. Next, we centrifuged cells at 1100 rpm for 4m and discarded the 

supernatant. We ressuspended the cell pellet in 1X PBS and centrifuged for brief seconds. We 

removed the supernatant and froze the cell pellet at -20ºC. 

 

Protein Extraction 

The protein extraction is the first step of WB. Protein extraction was performed in ice, using 

RIPA buffer (0,1% sodium dodecyl sulfate (SDS) (Applichem, Germany), 0,5 % Sodium 

deoxycholate (DOC) (Sigma Aldrich, New Zeeland), 1% Nonidet P (NP) 40 (Sigma Aldrich, 

USA), 50mM Tris Hydrochloric acid (HCl) pH 8(Sigma Aldrich, USA), 150 mM NaCl (Merck, 

Germany), 0,05M NaF (VWR, EC), 1 mM sodium orthovanadate (OVO4) (Sigma Aldrich, 

Gene Oligo Name Sequence Supplier 

TRIB1 hTRIB1_RTPCR_FOR_I ATCGCCGACTACCTGCTG NZYTech 

hTRIB1_RTPCR_REV_I GTAATGTTGCTGTGCGATGG NZYTech 

TRIB2 hTRIB2_RTPCR_FOR_I GACTCCGAACTTGTCGCATT NZYTech 

hTRIB2_RTPCR_REV_I ATGAGCAGACAGGCAAAAGC NZYTech 

TRIB3 hTRIB3_RTPCR_FOR_I TGCCCTACAGGCACTGAGTA NZYTech 

hTRIB3_RTPCR_REV_I GTCCGAGTGAAAAAGGCGTA NZYTech 

GAPDH GAPDH FOR RT-PCR CAATGACCCCTTCATTGACC NZYTech 

GAPDH REV RT-PCR TTGATTTTGGAGGGATCTCG NZYTech 

Table 2.2. Primers used in q-PCR. 
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USA), 0,0001µg/µL Calyculin (Santa Cruz, Dallas), 0,01 0,0001µg/µL Protease Inhibitors 

Cocktail (PIC) (Sigma Aldrich, USA)) that effectively lyses and extracts membrane, 

cytoplasmic and nuclear proteins while avoiding protein degradation. We add the proper 

amount of RIPA to the cell pellet and homogenized the samples by repetitive pipetting followed 

by a 20-minute incubation on an orbital shaker (Labnet, New Jersey) at 4ºC. Next, we 

centrifuged the samples at 15000 rpm (VWR, Japan) for 20 minutes at 4ºC. Once centrifuged, 

we transferred the supernatant (protein fraction) to a new Eppendorf tube.  

 

Protein Quantification 

Next, we normalized all samples to the same final protein concentration using the Bradford 

(NZTech, Portugal) assay accomplished by measurement of absorbance at 590 nm. It is a 

colorimetric protein assay based on an absorbance shift of Comassie Brilliant Blue, being a 

rapid and sensitive method. This method relies in the fact that the concentration of an unknown 

sample is based on a protein standard/ reference with similar properties to the sample being 

analyzed, like Bovine Serum Albumin (BSA) 2mg/mL (ThermoFisher Scientific, USA) with 

serial dilutions (181, 182). The Bradford assay involves the binding of Comassie Blue dye to 

proteins. This dye can present three different colors: cationic (red), neutral (green) and anionic 

(blue). In the presence of proteins, the dye is converted to a stable blue form, detected at 595nm 

using a microplate reader. For calculation of protein concentration, we used a linear standard 

curve, obtained from BSA solutions with different concentrations: 0µg/mL, 150 µg/mL, 300 

µg/mL, 600µg/mL 800 µg/mL,1000 µg/mL and 2000 µg/mL. We diluted our samples with 10 

of dilution factor. From this dilution, we loaded 5µL to a microplate (in duplicated) and added 

250µL of Bradford to each well. The absorbance was measured on a microplate reader (Tecan 

Life Sciences, Austria) using I-control software. Using the absorbance and our linear standard 

curve ("y = mx + b" where y = absorbance at 595 nm and x = protein concentration) we 

calculated our protein concentration and calibrated our samples at the same concentration. Our 

laemli 6x stock solution contains 0,2M TrisHCl (Sigma Aldrich, USA) pH6.8, 40% of glycerol 

(Sigma Aldrich, USA), 0,04% Blue Bromophenol (Santa Cruz, Dallas), 0,3 M of SDS 

(Applichem, Germany) and 20% of β-Mercaptoethanol (Sigma Aldrich, Steinheim). Laemmli 

buffer allows to see the sample during loading and the run (blue bromophenol), increases the 

density of the sample (glycerol). The SDS present in laemmli buffer denatures proteins and 

gives negative charge so they can be separated by size. The β-Mercaptoethanol reduces 

disulfide bonds. We heated the samples at 95º in a sample mixer/ heater (thermo shaker, EU) 
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for 5 minutes. This step will allow denaturation of the proteins and migration through an electric 

field. Samples were immediately loaded on a gel or kept at -20º C for long-term storage.  

 

SDS-PAGE 

Proteins were separated according to their molecular weight on a 10% SDS-PAGE gel (0,4M 

Tris (Sigma Aldrich, USA) pH 8.8, 10% acrylamide (Fisher BioReagents, USA), 0,1% SDS 

(Applichem, Germany), 0,1% Ammonium Persulfate (APS) (Sigma Aldrich, USA), 0,15% 

Tetramethylethylenediamine (TEMED) (Santa Cruz Biotechnologies, Dallas). The stacking gel 

was prepared with 0,1 M Tris (Sigma Aldrich, USA) pH 6.5, 3,8% acrylamide, 0.08% SDS 

0,1% APS, 0,1% TEMED. The electrophoresis was performed in SDS-Page running buffer 

(0,02M Tris (Sigma Aldrich, USA), 0,025M Glycine (Sigma Aldrich, Belgium), and 

0,003MSDS (Applichem, Germany)) using the BIO-RAD WB power source initially at 75V 

until proteins reach the running gel and then at 140V. 

 

Protein Transference and detection 

We performed a wet transfer on a nitrocellulose membrane (Amersham, UK). The SDS-PAGE 

Transfer Buffer used contained 20% methanol (VWR, France), 0,05M TRIS (Sigma Aldrich, 

USA) and 0,05M Glycine (Sigma Aldrich, Belgium)). Following, we blocked the membrane in 

5% milk (Nestlé, Portugal) for one hour, and incubated with the primary antibody (see 

antibodies and dilutions in annex C) overnight at 4ºC using an roller mixer (Stuart, UK) (see 

primary antibodies references in annex C). Next day, the membranes were washed three times 

for five minutes with TBS-Tween (0,075M Tris (Sigma Aldrich, USA), 0,15M NaCl (Merck 

Millipore, Germany) and 0.1% Tween 20 (Merck Millipore, EC) followed by one-hour 

incubation at room temperature with the proper secondary antibody (see annex C). All 

membranes were washed three times for five 5 minutes. Later, all membranes were incubated 

for 5 minutes in a home-made enhanced chemiluminescente (ECL) (1,25mM Luminol (Sigma 

Aldrich, USA) diluted in DMSO, 0,2 mM p-coumaric acid (Sigma Aldrich, UK) diluted in 

DMSO, 0,1M TRIS pH 8,5, 0,01% H2O2 (VWR, EC) and signal was developed using the 

Chemidoc (BioRad, USA). Briefly, in the presence of horseradish peroxidase (HRP), coupled 

to the antibodies, and peroxide, luminol oxidizes producing an excited state product that emits 

light. Light emission signal was captured using ImageLab (Bio-Rad) software. 
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2.5 Cell lines generation 

In order to test our hypothesis, that TRIB2 confers resistance to MEK inhibition, and taking 

into account the protein expression of the three Tribbles in melanoma cell lines, we generated 

TRIB2 knockdown using shRNA, and TRIB2 knockout (KO) using Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR). This dual approach allows us to have, on 

one hand a system with lower expression of TRIB2 and on the other hand a system where we 

abrogated TRIB2 expression (figure 2.2). With these tools we will be able to evaluate the effect 

of TRIB2 expression after MEK inhibition. At the same time, we also generated TRIB2-FLAG 

knock-in (KI) for future experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.1 shTRIB2 

Interference RNA (RNAi) is a powerful tool to study gene function through gene silencing. The 

silence mechanisms can lead to the degradation of the target mRNA and can be induced by 

double stranded siRNA or vector based short hairpin RNA (shRNA). We used shRNA against 

TRIB2 (see the construct maps on Annex D). The mechanism for protein knockdown consists 

in the introduction of a bacterial vector encoding for a shRNA of interest. The vector is 

incorporated in cell nucleus and shRNA is synthetized in the nucleus of transfected cells. The 

shRNA, an oligonucleotide sequence that contains a loop structure, is processed to small 

Figure 2.2. Different cell systems to test if TRIB2 confers resistance to MEK inhibition. 
We created a system with lower expression of TRIB2 using a short hairpin technique and a 

system in which we abrogated TRIB2 expression using the CRISPR-Cas9 technique. In this 

way, we originated 2 different systems to test our hypothesis that TRIB2 confers resistance 

to MEK inhibition. 
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interference RNA (siRNA) by DICER (ribonuclease III enzyme). The siRNA is then loaded 

onto the RISC complex where the process of target mRNA recognition and degradation takes 

course (183, 184). The siRNA binds to the target mRNA in a sequence specific manner leading 

to its cleavage (183, 184). These tools have been previously generated and validated in our lab. 

We plated the cells the day before transfection. Next day, we changed the media before and 

transfected 2µg of the plasmid coding for the shGFP (technical control) and the shTRIB2 (see 

Annex D) using lipofectamin 2000 (Thermo Scientific, Scotland). The day after we replace the 

plates with fresh media, and 48 hours after transfection we added puromycin (Amresco, Ohio) 

selection.  

 

2.5.2 TRIB2 KO – CRISPR 

For TRIB2 abrogation we used CRISPR-Cas9 technique. CRISPR-CasCas9 allows genome 

editing being considered highly specific and efficient. This technique is based on a small guide 

RNA that defines the target location and the Cas9, a nuclease that induces double strand breaks 

(dsbreaks) at specific genome loci. Protospacer adjacent motif (PAM) is a 2-6bp immediately 

adjacent to DNA sequence targeted by Cas9, which is crucial for the Cas9 to recognize, bind 

and cleave the target (185). Using this method small non sense mutations are introduced into 

the reading frame of a target gene via NHEJ a repair mechanism that joins the 2 broken ends 

together leading to insertions/ deletions. The CRISPR-Cas9 machinery can be introduced into 

cells through lentivirus or DNA vector transfection (186). 

The CRISPR-CasCas9 system targeting TRIB2 was previously designed and validated in our 

laboratory. Similar to what previously described, we plated the cells the day before transfection 

in 6-well plates. We transfected 2µg of the plasmid coding for guide RNA and Cas9 (px459, 

addgene, pSpCas9(BB)-2A-Puro (PX459)). We changed the media the following day and added 

puromycin two days after for 48h to select the cells that contained the plasmid. In order to get 

individual clones, we trypsinized the cells and performed 4-5 serial dilutions to allow single 

clones to grow individually. The different clones are selected by washing the cells twice with 

1X PBS and individually trypsinized and plated them in a 24 well plate. When confluent, we 

trypsinized the cells and plated them in two 60mm plates, one plate was used to extract protein 

and test by WB and the second plate was used to keep a frozen stock. 
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2.5.3 TRIB2-FLAG KI – CRISPR 

If our hypothesis of TRIB2 overexpression being responsible for conferring resistance to MEK 

inhibitors is confirmed, we will proceed to characterize underlying the mechanism through the 

analysis of protein-protein interaction and protein-localization assays. To this end, we 

simultaneously generated a TRIB2-FLAG Knock-In (KI) also using the CRISPR-Cas9 system. 

The CRISPR-Cas9 system can be used to generate a knock-In, an insertion of exogenous DNA 

sequence to a specific locus in mammalian cells. This occurs when dsbreaks induced by 

CRISPR-Cas9 are repaired by homology directed repair (HDR) in the presence of a specific 

template (187). FLAG is a tag. A tag is composed of a small DNA sequence, which is fused 

with the protein of interest using DNA recombinant technology. The specific tag, along with 

the respective antibody, allows protein detection in a very specific and sensitive manner. Tags 

are also used for protein purification and identification of protein-protein interactions (188, 

189).  

 

The protocol was similar to the one described in TRIB2 KO -CRISPR (section 2.5.2), with the 

difference that during the transfection we added an oligo (NZY Tech, sequence: CTC GCC 

AGC GAC TCA TCT CTC CAG CGG GTT TTT TTT) that is used as a template for HDR. 

Clones were validated by WB. 

 

 

 

2.6 Experimental Conditions Optimization  

2.6.1 Drug concentration and time-points 

To confirm that our drug, Refametinib (Bay 86-9766, or as in several figures referred to as 

BAY766; MEK inhibitor, kindly provided by Bayer AG, Germany), induced cell death and in 

which concentrations and time-points it was mostly effective, we performed a pilot experiment. 

In this experiment we tested two different drug concentrations, 100nM and 1µM and six 

different time-points: 4, 8, 12, 24, 48 and 72 hours, based on previous studies (143, 144). We 

plated the cells the day before and added the drug after changing the media. Cells were then 

trypsinized, centrifuged and ressuspended in fresh media.  

To confirm that Refametinib inhibits MAPK pathway we performed a Western Blot to evaluate 

the phosphorylation status of a downstream effector of MEK, ERK using a phosphor specific 

antibody against p-ERK (annex C). 
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Our main goal is to investigate if TRIB2 confers resistance to MEK inhibition. We analyzed 

cell death as a readout for resistance. In this way, was important to confirm that our MEK 

inhibitor, Refametinib (BAY766) induces cell death in our melanoma cell lines. 

Cell death was analyzed using Annexin V / Propidium Iodite Protocol. 

 

Annexin V / Propidium Iodite (PI) Protocol 

We performed Annexin V/PI protocol to analyze cell death after 72 hours treatment. Apoptosis 

is a cell death program. Annexin V / PI protocol is widely used to determine if cells are viable, 

apoptotic, or necrotic by analyzing the differences in the plasma membrane integrity and 

permeability (190).  

PI is a nuclear stain, and it is economic, stable and a good indicator of cell viability making it a 

better choice, compared to other nuclear stains. PI staining is dependent on plasma membrane 

integrity. Cells undergoing late apoptosis or necrosis have changes in plasma and nuclear 

membranes. In this way, PI enters in the cell, passes the disrupted nuclear membrane and 

intercalates with nucleic acids, and display a red fluorescence. (190-192).  

Annexins are a family of calcium-dependent phospholipid-binding proteins. Annexins bind to 

phosphatidylserine (PS) to identify apoptotic cells. In normal viable cells, PS is located on the 

cytoplasmic surface of the cell membrane. During apoptosis, PS is translocated from the inner 

to the outer of cell membrane. PS is exposed to the external cellular environment, making it 

accessible to annexin. Annexin V binds to PS and displays a highly fluorescent signal (191, 

193). Annexin V/PI protocol was done according to Annexin V/PI protocol sc- 4252 SK (Santa 

Cruz biotechnology), annex E. Etoposide (Sigma Aldrich, USA) was used as a positive control 

since it induces cell death. Results were obtained with Fluorescent Activated Cell Scanning 

(FACS) Calibur (BD Biosciences, Ireland) using CellQuestPro software and treated in 

GraphPad Prism6.  
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2.7 MEK inhibition Experiments 

In order to understand if TRIB2 was conferring resistance to MEK inhibitors we used the tools 

that he have generated: cell lines with TRIB2 KD and KO and added Refametinib, also known 

as BAY 86-9766, MEK inhibitor, to evaluate cell death as a readout for drug resistance. 

We plated the cells the day before, changed the media and add Refametinib at 100nM and 1µM 

for 72 hours and then analyzed cell death. The details of the experiments are described in table 

2.3 (Annex F). 

 

 

 

 

 A375 TRIB2 

knockdown 

G361 TRIB2 

Knockdown 

G361 TRIB2 

Knockout 

SK-Mel-28 

TRIB2 

Knockout 

Number of 

cells plated 

100000 200000 125000 125000 

Time of 

Treatment 

72hours 72hours 72hours 72hours 

Positive 

control for 

cell death 

Etoposide 50µM 

for 48h 

Etoposide 50µM 

for 48h 

Etoposide 

50µM for 48h 

Etoposide 

50µM for 48h 

Cell death 

analysis 

Trypan blue cell 

death counting 

Trypan blue cell 

death counting 

Trypan blue 

cell death 

counting 

Trypan blue 

cell death 

counting / 

Propidium 

Iodite 

Protocol 

 

The experiment with SK-Mel-28 KO (#8) cell line was performed twice. Results were analyzed 

using GraphPad Prism 6. Statistical analysis was performed using two-way Analysis of 

Variance (ANOVA) and Bonferroni’s correction test in GraphPad Prism 6. 

Table 2.3. Details of MEK inhibitor Refametinib (BAY766) experiments in different 

cell lines. 
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3. Results 

 

Tribbles are pseudokinases that play important roles in immune function, lipoprotein 

metabolism, cellular differentiation and proliferation being crucial in eukaryotic signaling (194-

197). Tribbles proteins are highly conserved, have a MEK1 binding domain and regulate the 

MAPK signaling pathway (177, 198, 199). The Link lab discovered TRIB2 as a FOXO 

repressor protein by conducting a screening for FOXO suppressors (144). It was shown that 

TRIB2 is overexpressed in melanoma cell lines and patients (144), and it confers resistance to 

PI3K and mTOR inhibitors (143). The aim of this master project was to investigate if TRIB2 

confers resistance to MEK inhibitors. 

 

3.1. Characterization of Cell Lines  

3.1.1. TRIB1 and TRIB2 mRNA levels are higher in melanoma cell lines. 

Considering that Tribbles are highly homologs and conserved (200) they can have redundant 

functions. We decided to create isogenic cell lines for TRIB2 to test our hypothesis that TRIB2 

confers resistance to MEK inhibition. Since Tribbles members are highly conserved and 

homolog we decided to investigate the mRNA and protein levels of all three tribbles in 

melanoma and non-melanoma cell lines. If Tribbles have redundant function it means that other 

Tribbles members can compensate TRIB2 depletion.  We characterized a panel of melanoma 

and non-melanoma cell lines (listed in section 2.2). We investigated the mRNA levels, using q-

PCR technique, of all three Tribble members considering that their levels are not described yet 

in melanoma and non-melanoma cell lines. The results were normalized to the non-melanoma 

U2OS cell line (osteosarcoma cells) since this cell line did not show visible TRIB2 protein 

expression by western blot (143). Data was analyzed using Bio Rad CFX manager 3.1 software. 

In general, Tribbles mRNA levels were higher in melanoma cell lines compared to non-

melanoma cell lines U2OS, and HEK293T (figure 3.1). TRIB2 mRNA levels (figure 3.1 A) 

were higher in melanoma cell lines, (except for A375 cell line) than in non-melanoma cells. 

TRIB1 (figure 3.1 B) mRNA levels were higher in melanoma cell lines (except in A375 cells), 

and in HEK293T cells which in turn was slightly higher than in A375 cell line. TRIB3 (Figure 

3.1 C) mRNA levels were higher in melanoma cell lines compared to U2OS cell line. HEK293T 

cell line had the higher TRIB3 mRNA levels.  



Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK  

 

38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.1. Tribbles mRNA levels of a panel of melanoma and non-melanoma cell lines. 
Melanoma cell lines are represented in blue (G361, SK-Mel-28 and A375), U2OS 

(osteosarcoma cell line) is represented in orange and HEK293T (human embryonic kidney cell 

line) is represented in pink. mRNA expression levels were evaluated using RT-PCR and data 

was analyzed using Bio-Rad CFX manager 3.1 software. Y axis represents the fold change 

relative to U2OS cell line. (A) TRIB2 mRNA levels; (B) TRIB1 mRNA levels;) (C) TRIB3 

mRNA levels. Three technical replicates. GAPDH- housekeeping gene. One experiment has 

been performed. 

A B 

C 
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3.1.2. Tribbles protein levels are higher in melanoma cell lines. 

Transcript levels do not always correspond to protein levels. We wondered whether Tribbles 

mRNA levels correlated with protein levels in the panel of cell lines that we used (section 2.2). 

To investigate this, we evaluated the protein expression by western blot using specific 

antibodies (see annex C). Figure 3.2 shows that the expression of all Tribble proteins was higher 

in melanoma cell lines compared to U2OS and HEK293T cell lines. In non-melanoma cell lines, 

the expression of TRIB2 was undetectable, the expression of TRIB1 was similar between 

HEK293T and U2OS cell lines. Interestingly, G361 cell line showed increased TRIB3 

expression in comparison with the remaining melanoma cell lines. Our results indicate that 

TRIB1 and TRIB2 protein expression correlate with mRNA levels. TRIB3 protein levels are in 

fact higher in the panel of melanoma cell lines compared to the non-melanoma cells correlating 

with the transcript levels obtained by RT-PCR. Intriguingly, TRIB3 band in HEK293T cell line 

is very faint compared to the rest of the cell lines, indicative of low expression, but the mRNA 

levels were the highest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Tribble protein levels in melanoma and non-melanoma cell lines. The first three 

lanes correspond to melanoma cell lines and the two last lanes correspond to HEK293T and 

U2OS cell lines respectively. Protein levels were assessed with Tribble specific antibodies by 

western blot technique. Tubulin was used as a loading control. 20µg total protein loaded per 

lane and separated by 10% SDS-PAGE. One experiment has been performed. 
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3.2 Optimizing Experimental Conditions  

To test the effect of TRIB2 on MEK resistance we have decided to assess cell death induced by 

the MEK inhibitor (Refametinib) with different approaches. For that reason, we primarily 

optimized different variables that will influence the success of the following experiments. 

3.2.1. 100nM of Refametinib is sufficient to inhibit MAPK pathway. 

We determined the optimal concentration of Refametinib to use in the different melanoma cell 

lines.  We used two different concentrations 100nM and 1µM (based in previous studies in our 

lab) during drug exposure for 2, 4, 8, and 24 hours (figure 3.3). To confirm the efficacy of MEK 

inhibition, we performed a western blot and analyzed the phosphorylation status of ERK protein 

using a phospho specific antibody against ERK in SK-MEK-28 cell line. ERK is a downstream 

effector of MEK and it is directly phosphorylated by MEK (201, 202). Two hours after 

treatment the MAPK pathway was already inhibited as it can be seen in figure 3.3 by the 

absence of p-ERK signal (figure 3.3). This effect is phosphorylation specific and not due to 

alterations on total protein levels since total ERK levels are maintained. Additionally, 100nM 

of Refametinib was sufficient to inhibit the MAPK pathway. Here we demonstrate that 

Refametinib successfully inhibits MEK1/2 in our melanoma cell lines and that the pathway is 

inhibited as soon as two hours and as long as 24 hours after treatment. 

 

 

Figure 3.3. Effect of Refametinib treatment on MAPK pathway in SK-Mel-28 cell line. 

SK-Mel-28 cell line was treated with Refametinib (BAY766), a selective MEK inhibitor for 

2, 4, 8 and 24 hours using two different concentrations 100nM and 1µM. *NT-Non-treated 

cells. MAPK pathway activation status was evaluated using a phosphor-specific antibody 

against ERK. GAPDH was used as a loading control. 20µg total protein loaded per lane and 

separated by 10% SDS-PAGE. One experiment has been performed. 
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 3.2.2. Refametinib treatment for 72hours induces cell death.  

Our main goal was to study the role of TRIB2 in resistance to MEK inhibition by analyzing the 

effect on cell death. In order to allow cell death to occur and detect it, we decided to test longer 

drug incubation time-points. To this end, we repeated the experiment performed in the previous 

section (3.2.1) but included an additional time point of 72 hours.  

After 72 hours of Refametinib treatment, we documented the overall cells phenotype with bright 

light pictures. Figure 3.4 shows that treatment with the MEK inhibitor reduced cell density 

when compared to DMSO treatment. Cell death is also notably higher in both concentrations, 

compared to the control.  

 

 

 

 

 

 

 

 

 

In order to analyze cell death, we performed Annexin V/PI protocol that allows the detection 

of apoptotic cells using flow cytometry. Annexin V/ PI protocol is used to identify apoptotic 

cells population through differences in plasma membrane integrity and permeability. Etoposide 

is known to induce DNA double strand breaks (ds-breaks) resulting in cell death (203, 204) and 

it is commonly used as a positive control in apoptosis induction experiments. Upon 16 hours 

treatment, Etoposide lead to 12,60% of apoptotic cell death. Refametinib treatment induced cell 

death at both concentrations, being higher with increasing concentration. At 100nM 

concentration, Refametinib induced 13,10%, similar to what we obtained with Etoposide 

(12,60%). The concentration of 1µM of Refametinib treatment for 72hours induced 30,90% of 

cell death (figure 3.5). These results are preliminary data obtained from one experiment that 

have to be confirmed by additional experiments. 

 

 

Figure 3.4. SK-Mel-28 cell line treated with Refametinib for 72hours. SK-Mel-28 cell line 

density and appearance after 72hours of treatment with 100nM or 1μM Refametinib. 

Amplification 100x. Images are representative of three independent experiments. 
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We verified the MAPK pathway status in this experiment to confirm the efficacy of the inhibitor 

Refametinib after 72 hours of incubation. We showed that even 72 hours after treatment the 

MAPK pathway is still turn-off as it can be observed by the lack of p-ERK signal seen in figure 

3.6.  

Since the pathway was still inhibited after 72h of Refametinib treatment, and we were able to 

detect cell death after this period with Annexin V/ PI, we opted for this time-point. Exposure 

to 100nM and 1μM Refametinib potently inhibited the MAPK pathway. Since we were testing 

our hypothesis in several melanoma cell lines with different sensitivities, we decided to use 

both concentrations in future experiments.  

Figure 3.5. Effect of Refametinib treatment on apoptotic cell death in SK-Mel-28 cell 

line. SK-MEL28 cell line was cultured for 72 hours with Refametinib inhibitor and cell death 

was assessed with AnnexinV/PI. The data was obtained with Facs-Calibur using 

CellQuestPro software and analyzed with GraphPad prism6 (one experiment). The Y axis 

represents the percentage of apoptotic cells. The X axis shows the different treatments: 

DMSO (vehicle), different concentrations of Refametinib and Etoposide. One experiment has 

been performed. 
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3.3. Generation of cell lines with different TRIB2 status 

We hypothesized that TRIB2 confers resistance to MEK inhibition. To test our hypothesis, we 

needed a system in which we would have different amounts of TRIB2. To generate such a cell 

system, we decided to abrogate TRIB2 expression using CRISPR-Cas9 technique and reduce 

TRIB2 expression levels using short hairpin RNAs (shRNA) against TRIB2. Both techniques 

were performed in three melanoma cell lines: G61, SK-Mel-28 and A375. We plated the cells 

the day before transfection and transfected different shTRIB2 to obtain TRIB2 knockdowns. 

To generate the TRIB2 knockout we transfected a plasmid coding simultaneously for single 

guide RNA (sgRNA) and Cas9.  Clones were selected and validated by western blot using a 

specific antibody against TRIB2. 

  

Figure 3.6. Effect of Refametinib treatment on MAPK pathway in SK-Mel-28 cell line. SK-

Mel-28 cell line was treated with Refametinib, a selective MEK inhibitor for 4, 24, 48 and 72 

hours using two different concentrations 100nM and 1µM. *NT-Non-treated cells. MAPK 

pathway activation status was evaluated using a phospho-specific antibody against ERK. 

Tubulin was used as a loading control. 20µg total protein loaded per lane and separated by 10% 

SDS-PAGE. One experiment has been performed. 
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3.3.1. A375  

3.3.1.1. A375: TRIB2 Knockdown 

We transfected A375 cell line with five different short hairpins against TRIB2 previously used 

in our lab (144).  All five short hairpins reduced TRIB2 expression as shown in figure 3.7. The 

negative control (shGFP) also seemed to have an effect on TRIB2 expression. For this reason, 

we also included the parental A375 cell line as a control.  

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1.2. Refametinib treatment caused increased cell death in A375 TRIB2 

knockdown.  

Considering that our negative control (shGFP) interfered with TRIB2 expression (figure 3.7), 

we used the parental cell line as a control. A375 cells were treated with 100 nM Refametinib 

for 72 hours and this treatment induced 20% of cell death in the knockdown cell line (shTRIB2 

#1) compared to 13,8% of cell death in the parental cell line (figure 3.8). Using a higher 

concentration (1µM) of Refametinib caused 48,2% of cell death in the knockdown cell line 

compared to 26,7% in the parental cell line (figure 3.8).  This data suggests that TRIB2 confers 

resistance to MEK inhibition. However, as shGFP caused reduced expression of TRIB2 through 

an unknown mechanism we decided to use additional cell lines to confirm the result.  

 

Figure 3.7. TRIB2 Knockdown in A375 cell line. A375 was transfected with five different 

short hairpins against TRIB2. A375 P represents the parental cell line. Short hairpin against 

GFP refers to the negative control. Protein expression levels were analyzed by western blot 

with a specific TRIB2 antibody. Tubulin was used as a loading control. 20µg total protein 

loaded per lane and separated by 10% SDS-PAGE. Images are representative of two 

independent experiments. 
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3.3.2. G361 

3.3.2.1 G361: TRIB2 knockdown  

We tested two different shRNA against TRIB2 in G361 cell line. The shTRIB2 #2 showed to 

be more efficient downregulating TRIB2 expression when compared to shTRIB2 #1 (figure 

3.9). In this cell line the shGFP did not interfere with TRIB2 expression. The following 

experiments were performed using shTRIB2 #2.  

 

 

 

 

 

Figure 3.8. Cell death analysis of Refametinib treatment in A375 TRIB2 Knockdown cell 

line. The different cell lines are represented in different shades of blue: white corresponds to 

A375 parental cell line (A375P), grey to the control transfected with shRNA against GFP 

(shGFP) and the black to the A375 TRIB2 knockdown (shTRIB2 #1). Red arrows sign the 

percentage of cell death in A375 P and the TRIB2 knockdown (#shTRIB2 1) cell line under 

Refametinib (BAY766) treatment. Etoposide was used at 50 µM for 48 hours. The Y axis 

shows the percentage of dead cells and in X axis the different treatments. Cell death was 

analyzed with trypan blue cell death counting. Results were analyzed with GraphPad prism6. 

NT- non-treated cells. Graph represents one experiment. 
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3.3.2.2.  Refametinib caused increased cell death in G361 TRIB2 knockdown.  

We next tested the effect of TRIB2 upon Refametinib treatment. To this end we used G361 

shTRIB2 #2 cell line (figure 3.9) and analyzed cell death with trypan blue cell death counting 

(as mentioned in section 2.1) and also with PI staining.  

G361 shTRIB2 #2 knockdown treated with 100nM of Refametinib for 72 hours induced a 

modest increase in cell death (29%) compared to the control (shGFP) (21,7% of cell death) 

(figure 3.10). At 1µM concentration cell death was high in both cell lines suggesting that this 

concentration was cytotoxic for G361 cell line causing unspecific cell death. 

 

 

 

 

 

 

 

Figure 3.9. TRIB2 Knockdown in G361 cell line. G361 cell line was transfected with two 

different shRNA against TRIB2 (shTRIB2 #1 and shTRIB2 #2). Negative control refers to short 

hairpin against GFP (shGFP) and parental cell line is represented by G361P. Western blot using 

an antibody specific to TRIB2; GAPDH was used as a loading control. 20µg total protein loaded 

per lane and separated by 10% SDS-PAGE. Images are representative of two independent 

experiments. 
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During cell death, cells undergo plasma membrane changes, allowing the PI, fluorochrome, to 

pass thought it and bind to DNA, displaying fluorescence. We analyzed the percentage of 

SubG1 cells as an indicator of cell death in FACs Calibur using CellQuestPro software after 

staining with PI.  

This analysis revealed a significant difference in cell death between the G361 shTRIB2 #2 

(586%) and the control shGFP (26,7%) upon treatment with 100nM of Refametinib (figure 

3.11). This difference was also evident with a higher concentration of MEK inhibitor, although 

the difference was only 10%.  In fact, using 1µM Refametinib cell death in G361 shGFP caused 

48% of cell death. These observations may indicate that 1µM is cytotoxic for G361 cell lines. 
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Figure 3.10. Cell death analysis of Refametinib treatment in TRIB2 knockdown. G361 

shGFP (in grey) and G361 shTRIB2 #2 (in black) were treated with Refametinib for 72 hours. 

Cell death was assessed by trypan blue exclusion test. Etoposide was used at 50 µM for 48 

hours as a positive control. Y axis shows the percentage of dead cells and X axis the different 

treatments. Results were analyzed with GraphPad prism6. Graph represents one experiment. 
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3.3.2.3. G361: TRIB2 Knockout 

We screened thirteen G361 clones for TRIB2 knockout. Clones were tested assessing protein 

levels with a specific TRIB2 antibody by western blot. Figure 3.12 shows five clones including. 

Clone #14 which was positive for TRIB2 knockout.  
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Figure 3.12. TRIB2 Knockout (KO) in G361 cell line. The first lane shows G361 

parental cell line followed by different G361 clones for TRIB2 KO. Clone #14 was a 

positive KO for TRIB2 Protein levels were evaluated by western blot using a specific 

antibody against TRIB2. GAPDH was used as a loading control. 20µg total protein 

loaded per lane and separated by 10% SDS-PAGE. One experiment has been performed. 

 

Figure 3.11. PI staining of G361 cell line upon Refametinib treatment. G361 shGFP (in 

grey) and G361 shTRIB2 #2 (in black) were treated with Refametinib for 72 hours. Percentage 

of SubG1 cells was obtained after PI staining and analyzed with BD FACs Calibur and 

CellQuest software. Etoposide was used at 50 µM for 48 hours. Y axis shows the percentage 

of SubG1 cells and the X axis the different treatments. Results were analyzed with GraphPad 

prism6. Graph represents one experiment 
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3.3.2.4. Refametinib caused increased cell death in G361 TRIB2 knockout. 

We used G361 #14, a KO for TRIB2 (figure 3.12) and the parental cell line G361 to quantify 

cell death using trypan blue exclusion test. Results from this experiment were very similar to 

the ones obtained using G361 TRIB2 knockdown (figure 3.11). Refametinib treatment at 

100nM caused 33% of cell death in the knockout cell line and 22% in the parental cell line 

(figure 3.13). As in the previous experiment with G361 TRIB2 knockdown, the difference in 

cell death between parental cell line and the cell line with TRIB2 depletion, was not detected at 

1µM Refametinib concentration: cell death was high in both cell lines (59,5% in the knockout 

and 66,3% in the parental cell line) which may suggest that this concentration is cytotoxic for 

G361 cell line causing unspecific cell death. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Influence of Refametinib treatment in cell death using G361 TRIB2 

knockout cells. G361 P (in grey) and G361 KO (in black) were treated with Refametinib for 

72 hours. Cell death was assessed by trypan blue exclusion test. Etoposide was used at 50 µM 

for 48 hours as a positive control. Y axis shows the percentage of dead cells and X axis the 

different treatments. Results were analyzed with GraphPad prism6. Graph represents one 

experiment. 
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3.3.3. SK-Mel-28 cell line 

3.3.3.1. SK-Mel-28: TRIB2 Knockout 

In SK-Mel-28 we screened 15 different clones for TRIB2 knockouts. Clones were tested 

through the analysis of protein expression by Western Blot technique. In this cell line we 

obtained several TRIB2- knockouts: #5A, #40, #1, #6 and #8 with complete TRIB2 abrogation 

(figure 3.14). We selected a positive TRIB2 knockout clone: SK-Mel-28 #8 to be used in the 

following experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3.2. Refametinib treatment in SK-Mel-28 with different levels of TRIB2 shows 

that cell death correlates with TRIB2. 

To test the effect of TRIB2 expression after MEK inhibition we used SK-Mel-28 #8 TRIB2 KO 

cell line and analyzed the cell death percentage upon 72 hours of Refametinib treatment Results 

were analyzed by trypan blue cell death counting and PI staining.  

In order to determine the effect of the vecle on cell viability we treated the cells with DMSO 

and observed that, cell death was similar between parental cell line (9,11%) and the knockout 

cell line (11,56%) (figure 3.15). Etoposide induced 40% of cell death in the parental cell line. 

In the parental cell line, the difference in cell death between the higher and the lower 

concentration of Refametinib treatment was 23,4% and was statistically significant, (*p≤0.05). 

Comparing both cell lines, 1 µM of Refametinib treatment induced a higher percentage of cell 

death in the SK-Mel-28 TRIB2 knockout, statistically significant(*p≤0.05). In the presence of 

Figure 3.14. TRIB2 Knockout (KO) in SK-Mel-28 cell line. The first lane shows SK-Mel-

28 parental cell line TRIB2 followed by different SK-Mel-28 clones for TRIB2 KO. Protein 

levels were evaluated by western blot using a specific antibody against TRIB2. GAPDH was 

used as a loading control. 20µg total protein loaded per lane and separated by 10% SDS-

PAGE. One experiment has been performed.  
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TRIB2 (parental cell line), 1µM of Refametinib caused cell death in 30,2% of cells while the 

cell line where TRIB2 has been depleted Refametinib caused death in 76,9% of the cells, a 2.5 

fold increase c. (figure 3.15). These results strongly suggest that TRIB2 is conferring resistance 

to MEK inhibition. 
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The difference in cell death between both cell lines was also detected with PI staining. Results 

show that, under the same conditions, Refametinib treatment for 72 hours caused more cell 

death in cells with TRIB2 depletion. Comparing both cell lines, using 100nM Refametinib, the 

percentage of SubG1 cells in parental cell line was only 5,9% compared to 22% in the knockout 

cell line (3.7 times more cell death in the TRIB2 knockout cell line). This difference was also 

detected using a high concentration of our drug (1µM) causing 22% cell death in parental cell 

line compared to 47% in the knockout (figure 3.16).  

Figure 3.15. Cell death analysis of Refametinib treatment in TRIB2 knockout. SK-Mel-

28 P (in grey) and SK-Mel-28 KO (in black) were treated with Refametinib for 72 hours. 

Cell death was assessed by trypan blue exclusion test. Etoposide was used at 50 µM for 48 

hours as a positive control. Y axis shows the percentage of dead cells and X axis the different 

treatments. Results were analyzed with GraphPad prism6. Standard Deviation (SD) is present 

in the graph. Results were analyzed with two-way anova (ANOVA) and Bonferroni 

correction in GraphPad prism6. *p≤0.05; **p≤0.01; ***p≤0.001. NT=non-treated cells.  

Graph represents two independent experiments. 
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In our negative control, DMSO treatment, cell death was also higher in the TRIB2 knockout 

cell line (7%) compared to the parental cell line (0,5%) which may indicate that DMSO can be 

more toxic to this cell line. However, this difference is not high. Also the positive control, 

caused 15,6% of cell death in the TRIB2 knockout cell line, and 12,2% in the parental cell line, 

also a minimal difference. The difference in cell death due to Refametinib treatment was more 

than the double comparing both cell lines. Refametinib Results from SK-Mel-28 TRIB2 

knockout cell line demonstrated that TRIB2 presence correlated with cell death Yet, this 

experiment should be repeated. 
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Figure 3.16. Cell death analysis after 72hours of Refametinib treatment in SK-Mel-28 

TRIB2 KO cell line. The different cell lines are represented in different colors: grey 

corresponds to SK-Mel-28 parental cell line, represented by SK-Mel-28P and black to the SK-

Mel-28 TRIB2 knockout cell line, represented by SK-Mel-28 KO. The positive control for cell 

death was 50 µM Etoposide for 48 hours. Y axis shows the percentage of SubG1 cells and in 

X axis the different treatments applied in these cell lines. % of SubG1 cell line was achieved 

using BD FACs Calibur and CellQuest software. Results were analyzed with GraphPad 

prism6. Graph represents one experiment. 
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3.3.3.3.SK-Mel-28: TRIB2 Knock-In 

The fact that we have data that strongly indicates that TRIB2 confers resistance to MEK 

inhibition, MEK inhibition prompts us to study the underlying molecular mechanism. In order 

to perform experiments like Co-Immunoprecipitation to test protein-protein interaction or 

protein localization assays upon MEK inhibitor treatment using the endogenous TRIB2 protein, 

we seek to generate TRIB2-FLAG Knock-In (KI) using the CRISPR-Cas9 system. Similar to 

the knockout, a knock-in can be obtained with the introduction of the same tools into the cell, 

a sgRNA and a Cas9 protein, plus an oligo, a DNA sequence to serve as a template to the 

Homology Direct repair mediated by the CAS9 (187). FLAG is a tag used for the study of 

structural and functional protein properties (205).  

 

We screened 63 clones for A375 cell line, 23 clones for SK-Mel-28 cell line and clones for 

G361 cell line are yet to be tested. We obtained positive TRIB2-FLAG knock-in for SK-Mel-

28 cell line (figure 3.17). In figure 3.17 we show some of the clones tested for TRIB2-FLAG 

knock-in. Clone #13 was a positive knock-in that expresses both TRIB2 and FLAG. The other 

two clones #12 and #15 have a less strong expression of TRIB2 and FLAG. 

 

   

Figure 3.17. TRIB2-FLAG Knock-In (KI) in SK-Mel-28 cell line. The first lane shows SK-

Mel-28 parental cell line (SK-Mel-28 P) followed by different SK-Mel-28 clones marked by 

# and its number for TRIB2 KI. Red arrows show a positive Knock-In for TRIB2-FLAG. 

Protein levels were evaluated by western blot using specific antibodies against TRIB2 and 

FLAG. GAPDH was used as a loading control. 20µg total protein loaded per lane and 

separated by 10% SDS-PAGE. One experiment has been performed. 

 

SK-Mel-28 #13 was a positive TRIB2-FLAG KI (red arrows). Protein levels were analyzed 

by Western Blot. GAPDH was used as a loading control. (20µg total protein loaded per lane 

and separated by 10% SDS-PAGE). 
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4. Discussion 

 

Melanoma is one of the deadliest cancers mainly due to its highly metastatic propensity, 

frequent relapses and its high resistance to therapy (22, 24). Melanomas are highly resistant to 

therapies, and despite all the scientific advances this is still a major concern in public health. 

The clinical benefit from current therapies applied in Melanoma is quite limited (73, 103) and 

understanding the resistance mechanisms, is crucial to improve therapies and the outcome of 

melanoma patients. Here we provide evidences that TRIB2 confers resistance to MEK 

inhibition in melanoma. Based on  the fact that (a) TRIB2 has a MEK1 binding site; (b)  TRIB2 

is overexpressed in melanoma (144) and (c) TRIB2 confers resistance to some PI3K and mTOR 

inhibitors (143) we hypothesized that TRIB2 confers resistance to MEK inhibitors. 

We first analyzed Tribbles expression on a panel of melanoma and non-melanoma cell lines 

and decided which cell system would be a better option to test our hypothesis. Tribbles mRNA 

levels are higher in melanoma cell lines compared to non-melanoma cell lines (U2OS and 

HEK293T). Studies demonstrate that Tribbles are highly conserved and display also a high 

degree of similarity between the human Tribbles amino acid sequences being TRIB1/TRIB2 

71,3%, TRIB1/TRIB3 53,3% and TRIB2/TRIB3 53,7% conserved (158, 206). It has been 

reported that the expression of both TRIB1 and TRIB2 induces AML in mice (164).  This 

similarity between TRIB1/TRIB2 and their oncogenic activities in AML suggest redundant 

functions, but a formal proof for this hypothesis remains to be established.  

Protein levels of the three tribbles members were higher in melanoma cell lines compared to 

the non-melanoma cell lines U2OS and HEK293T that, overall, correlates with our RT-PCR 

data. Surprisingly, the band for TRIB3 protein levels in HEK293T cell line was very faint 

comparing to the TRIB3 mRNA expression data. TRIB3 is mostly regulated at the 

transcriptional level (207) which may explain the difference between mRNA and protein levels 

in HEK293T cell line. The levels of mRNA not always correlate with the protein levels possibly 

due to post-transcriptional mechanisms, such as transcript turnover and the action of micro 

RNAs (miRNAs), and the fact that proteins can have different half-lives (208). Also, the 

absence of correlation can be due to errors and noise from both experiments to detect mRNA 

and protein expression (208). According to previous studies, TRIB2 protein levels were low in 

U2OS cells (143) , consistent with our data. Soubeyrand et al., presented evidences that TRIB1 
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may be post-translationally regulated. Nonetheless, the authors did not detect TRIB1 protein 

expression in HEK293T cell line as in our data (209).  

Overall, in our cell line panel mRNA levels correlated with protein levels. Okamoto H. et al., 

showed that Tribbles members are differentially expressed in different tissues (210) and that 

the expression of TRIB1 and TRIB2 did not change in mice with TRIB3 depletion, indicating 

the absence of a compensatory mechanism(210). This initial data shows that different 

melanoma cell lines have high endogenous TRIB2 levels. For this reason, we decided to 

downregulate and abrogate TRIB2 expression in this melanoma cell line panel, creating two 

different cell systems with the same genetic background and different levels of TRIB2. These 

tools were fundamental to test the effect of TRIB2 mediated resistance to MEK inhibitors. To 

this end, we used Refametinib, a non-ATP competitive MEK1/2 inhibitor that showed to reduce 

proliferation in some cell lines, including SK-Mel-28 and A375 (211, 212).  

Refametinib successfully inhibited MAPK pathway and induced cell death. In our 

experimental conditions, the MAPK pathway was inhibited after Refametinib treatment since 

we did not detect p-ERK upon MEK inhibition. This inhibitory effect is specific and not due to 

changes on total ERK levels. Moreover, we can conclude that the lowest concentration of 

Refametinib was enough to inhibit MAPK pathway. In fact, also the lowest concentration of 

Refametinib was enough to induce cell death in melanoma cell line. After 72hours of 

Refametinib treatment, the percentage of cell death was similar to the one generated by 

Etoposide (positive cell death control) treatment. The  MAPK pathway was still inhibited after 

72 hours of Refametinib treatment. The half maximal inhibitory concentration (IC50) , 

measured by the incorporation of radioactive phosphate from ATP into ERK as substrate,  for 

Refametinib is between 19nM (MEK1) and 47 nM (MEK2) (211). In Hepatocellular carcinoma 

cell lines Refametinib had an half-maximum inhibitory concentration values between 33nM to 

762nM (213) Here, we demonstrated that 100nM Refametinib inhibited MAPK signaling in 

melanoma cell lines.  

TRIB2 downregulation was successful in G361 melanoma cell line, using shTRIB2 #2. 

TRIB2 knockdown was performed in all three melanoma cell lines, since they have high 

endogenous TRIB2 levels. We successfully downregulated TRIB2 expression in A375 cell line. 

However, the negative control shRNA against GFP also interfered with TRIB2 expression. The 

RNAi mediated silencing is time consuming and associated with off-target effects (183).  Many 

studies have shown a RNAi can silence several transcripts (214, 215) due to partial 

complementarity between RNAi and the unintended target (215). Here, probably the shGFP 
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had some homology to TRIB2 mRNA promoting its degradation. To guarantee that our negative 

control would not interfere with our protein of interest, we should have used an empty vector 

instead (183).   

Refametinib treatment caused increased cell death in TRIB2 knockdown cell lines. Using 

the TRIB2 knockdowns cell lines, our preliminary data shows that TRIB2 may be in fact 

conferring resistance to MEK inhibitors. Refametinib treatment induced an increase in cell 

death in the A375 TRIB2 knockdown cell line, comparing to the parental cell line. This 

difference was attenuated when we used lower Refametinib concentrations. This is probably 

due to the fact that there might be residual TRIB2 expression levels that can impact the effect 

of cell death at lower drug concentrations. Iverson C et al., demonstrated that the inhibition of 

A375 cells proliferation, by Refametinib was preferentially by cell cycle arrest rather that 

apoptosis because membrane integrity was maintained in the presence of Refametinib and also 

SubG1 population was very low (211). This might suggest that 100nM Refametinib induced 

cell cycle arrest rather than cell death explaining the fact that under the lower concentration, 

the difference in cell death between both cell lines was lower. G361 TRIB2 knockdown cells 

showed higher cell death levels compared to control cells only at 100nM concentration. In fact, 

treatment of A375 cells with 1µM of Refametinib induced the same amount of cell death than 

the exposure of G361 cells to 100Nm Refametinib. This observation indicates that G361cells 

are more sensitive to MEK inhibition than A375 cells. This was not completely unexpected 

since different cell lines have different tolerance to different drugs. Importantly, PI staining 

showed a higher difference in cell death between the TRIB2 knockdown and the isogenic 

control cells. Using flow cytometry, apoptotic cells stained with PI are hypodiploid (result from 

DNA fragmentation, a characteristic of apoptosis) and detected as a subG1 peak, while normal 

cells are diploid (216, 217). Trypan blue cell death counting is performed manually with a 

Neubauer chamber, which makes this technique more prone to human error. Another factor is 

the time that live cells are in contact with trypan blue that is highly toxic causing increase cell 

death (218, 219) and masking the differences between cell lines with and without TRIB2. This 

problem is overcome with PI staining since cells are fixed immediately after collection.  

Refametinib treatment caused increased cell death in TRIB2 knock-out cell lines. In the 

TRIB2 downregulation system we reduced TRIB2 expression while in the knockout we 

abrogated TRIB2 expression. Results from TRIB2 knockout cells provided further evidence 

that TRIB2 is conferring resistance to Refametinib treatment. In G361 and SK-Mel-28 

melanoma cell we successfully obtained TRIB2 knockouts using the CRISPR Cas9 system.  
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Results obtained from G361 TRIB2 knockouts were quite similar to the ones obtained with 

G361 TRIB2 knockdown: cell death was higher in cells with TRIB2 depletion using 100nM 

Refametinib compared to the control. This difference is higher in the TRIB2 knockout G361 

cell line compared to the G361 TRIB2 knockdown.   

Importantly, SK-Mel-28 TRIB2 knockout cells are more sensitive to the treatment with 100nM 

and 1Μm of Refametinib than the parental cell line, strongly suggesting that TRIB2 mediates 

resistance to MEK inhibitors. Results from SK-MEL-28 cell line reinforced the hypothesis that 

TRIB2 may be conferring resistance to MEK inhibitors.  

TRIB2-FLAG knock-in was successful in SK-Mel-28 cell line. 

We also wanted to characterize the underlying mechanism through how TRIB2 might be 

conferring resistance to MEK inhibition with the analysis of protein-protein interaction and 

protein-localization assays. Having this in mind we tried to generate FLAG-TRIB2 knock-in 

(KI) also using CRISPR-Cas9 system in the same panel of melanoma cell lines. We tested 

several clones and obtained positive FLAG-TRIB2 KI in SK-MeL-28. Consistent with other 

studies (220, 221), we also noted that a gene knock-in using CRISPR-Cas9 was low efficiency 

10-20%. For that reason, we tested several clones from each cell line. Some clones had a weaker 

expression of TRIB2 and FLAG compared to other clones. This can be due to mutations (indels) 

generated during the knock-in process that affects protein expression. Shin SE et al., reported 

that CRISPR-Cas9 knock-in also generates mutations through NHEJ (222). Recent studies 

shows that Homology Direct Repair (HDR) can be favored by the inhibition of NHEJ, 

improving the efficiency of gene editing tools (223).   

The mechanism by which TRIB2 confers resistance to MEK inhibitors remains yet to be 

established. Possible hypothesis are: (a) by direct interaction with MEK, (b) by   regulating 

downstream pro or anti-apoptotic proteins,  (c) by the regulation of other subfamilies of MAPK 

(p38 and JNK) or (d) through a similar mechanism described by Hill et al. (143). A good 

hypothesis would be that, under MEK inhibition, TRIB2 could increase the activation of AKT, 

resulting in PI3K pathway activation. This is a possibility considering that several studies points 

to crosstalk as one of the main causes of treatment resistance because they can counterbalance 

treatment effects (64, 137, 138, 224). Inhibiting one pathway (in this case MAPK) TRIB2 could 

compensate this and activate PI3K pathway with consequent tumor progression. In fact, Jae-

Kyung Won et al., showed that BRAF V600E mutated cells in the presence of a MEK inhibitor 

showed high levels of phosphorylated AKT, while levels of phosphorylated ERK were down 
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suggesting that bypassing ERK signaling to the activation of PI3K pathway leads to resistance 

to the MEK inhibitors (225). Another plausible mechanism would be a direct interaction 

between TRIB2 and MEK1 since TRIB2 has a MEK1 binding domain (177). Also, there are 

several studies showing that TRIB2 regulates MAPKs activity (194), so it is possible that 

TRIB2 might be involved in MEK inhibition-mediated resistance. In addition, it is also possible 

that TRIB2 may confer resistance to MEK inhibitors through the regulation of the other MAPK. 

So far, three main subgroups of MAPK have been identified: ERKS, JNKs and p38-MAPKs 

(annex G). ERKs are essentially involved in cell survival while JNKs and p-38 mediates cell 

stress responses and apoptosis (226-228). JNK and p-38 regulates BCL-2 proteins, including 

BAX, which was already associated with radio resistance (228, 229). Also TRIB2 

overexpression was associated with low levels of BAX in radioresistant cells (229). Another 

interesting fact, is that TRIB2 was found to modulate JNK and p-38 but not ERK1/2 in 

inflammatory bowel disease (197). Moreover, p-38 is activated by MAP kinase kinase (MKK) 

3/6 and JNK by MKK 4/7 while ERK is activated by MEK 1/2. (230-232). p-38 has a dual role 

in apoptosis: promote apoptosis or anti-apoptotic and proliferative effects, demonstrated in 

cancer cells. p-38 increases the malignant potential of cancer cells by increasing proliferation 

and inhibiting apoptosis in prostate cancer (233), breast cancer (234), liver cancer (235), lung 

cancer (236), colon cancer (237) and bladder (238). In some cancers, p38 can play a tumor 

suppressor role (239, 240). Some studies start to demonstrate the role of p38 in melanoma 

tumorigenesis. A study with 8 melanoma cell lines revealed that 7 had both p-ERK and p-38 

activated (241). The same study shows a positive feedback-loop between this 2 pathways 

showing that are both activated in melanoma. Apparently, in melanoma p-38 is required for cell 

migration and proliferation. This means that future treatment should target both pathways (241). 

The inhibition of MAPK pathway by MEK inhibitor can somehow increase p-38 promoting 

cell survival. This hypothesis that TRIB2 may modulate p38 in melanoma promoting resistance 

should be further investigated.  

Here, we show data supports the idea that TRIB2 may be conferring resistance to MEK 

inhibitors: TRIB2 levels correlated with cell death, making it an important therapeutic target in 

melanoma therapy. Understanding the resistance mechanisms to the therapeutic agents can 

improve the outcomes of current therapies and contribute to the development of new therapeutic 

approaches. 

  



Characterization of TRIB2-mediated resistance to pharmacological inhibition of MEK  

 

59 

 

5. Conclusion and Future Perspectives 

 

Melanoma is the deadliest form of skin cancer, being responsible for 80% of skin cancer deaths. 

Chemoresistance and the high rate of metastasis are the main reasons for treatment failure (15-

17, 21). The identification and characterization of resistance mechanisms to therapies is crucial 

to develop new improved therapies. In the last decade two new therapeutic strategies 

revolutionized the standard care for melanoma patients: immunotherapies based on 

immunocheckpoint inhibitors and targeted therapies including BRAF and MEK inhibitors (17, 

64). Only 30% of the melanoma patients can benefit from immunotherapy because most of the 

patients are intrinsically resistant (17, 64). The development of BRAF inhibitors, such as 

Vemurafenib, improved survival of melanoma patients. Yet, most of the patients who initially 

respond, eventually acquire resistance to this compound (92). A promising strategy is the 

development of new inhibitors for downstream effectors of BRAF, such as MEK. The first 

MEK inhibitor approved for clinical use by the FDA was Trametinib that was proven to be 

clinically effective in the presence of BRAF and NRAS mutations (104, 105). Resistance is a 

major concern in melanoma treatment. The understanding of resistance mechanism should be 

a major concern in cancer treatment. The concept of personalized medicine emerged some years 

ago: a medicine / treatment based on the person’s unique clinical, genetic and environmental 

conditions. In practical terms, means that if we can prove that a given protein is conferring 

resistance to a certain therapy, we can divide population and only administrate the therapy to 

the ones who we predict favorable responses (80, 242). The Link lab has discovered a novel 

resistance mechanism to PI3K and mTOR inhibitors mediated by TRIB2 (143). TRIB2 was 

found to be overexpressed in melanoma and has a MEK binding site in its structure (156, 159). 

Our data provides evidences that TRIB2 is conferring resistance to the MEK inhibitor 

Refametinib, similar to trametinib, making TRIB2 an important target in melanoma therapy. 

Further studies are needed to understand the mechanism by which TRIB2 promotes resistance 

to this drug. A reasonable hypothesis is a similar mechanism to the one described in the PI3K 

pathway (143). Alternatively, the modulation of p38 (the crosstalk between p-ERK and p-38 

promotes cell proliferation and migration in melanoma (241)) and JNK signaling or by direct 

interaction with MEK (197, 241) are also possible mechanisms that can explain this effect.  

In summary, despite the advances in the field of melanoma treatment in the past few years, 

there are still significant obstacles to be overcome that should be treated as a priority in 

melanoma treatment. Understanding the resistance mechanisms to therapeutic agents can 
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certainly improve the outcome of current therapies and contribute to the development of new 

therapeutic approaches. TRIB2 is presented here as potential candidate for MEK inhibition 

mediated resistance, representing an attractive therapeutic target to the development of future 

inhibitors in melanoma. TRIB2 was already suggested as a biomarker that predicts clinical 

responses to melanoma therapy (14). Here, we show further evidences that TRIB2 might be 

useful to predict which patients may benefit from therapy: Patients with TRIB2 overexpression 

may not clinically benefit from PI3K and mTOR inhibitors, MEK inhibitors and possibly to 

other therapies including imunnocheckpoint inhibitors. Future research may be focused on 

improving the risk-benefit of targeted therapies and immunotherapies by understanding the 

resistance mechanisms to these therapies and establishing biomarkers in order to provide 

information about the patient response to the treatment. Hopefully, the ability to distinguish 

patients that may benefit from these treatments may improve the clinical outcome of melanoma 

patients (243). 
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ANNEXES
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ANNEX A- E.Z.N.A Total RNA Kit (Omega) Protocol 

Principle 

The E.Z.N.A.® Total RNA Kits utilized the reversible binding properties of HiBind® matrix, 

a new silica-based material, combined with the speed of mini-column spin technology to 

provide a fast and easy way for isolating total cellular RNA from cultured cells or animal 

tissues.  A specifically formulated high salt buffer system allows more than 100 µg of RNA 

molecules greater than 200 bases to bind to the matrix.  Cells or tissues are first lysed and 

homogenized under denaturing conditions that practically inactivate RNases.  After adjust the 

binding condition by add ethanol, samples are then applied to the HiBind® spin columns to 

which total RNA binds, while cellular debris and other contaminants are effectively washed 

away.  High quality RNA is finally eluted in DEPC-treated sterile water. 

Procedure:  

1. Lyse cells or tissues with 350µl of TRK Lysis Buffer. Remember to add 20µl of 2-

mercaptoethanol per 1 ml of TRK Lysis Buffer before use.  

350µl of TRK Lysis Buffer is sufficient for# 5 x 106 cells or approximately 20 mg disrupted 

tissue (~3 mm cube).  For difficult tissues, more than 5 x 106 cells, or greater than 20 mg tissue, 

use 700 µl of TRK Lysis Buffer.  However, use no more than 30 mg tissue.  

For tissue culture cells grown in monolayer (fibroblasts, endothelial cells, etc.), lyse the cells 

directly in the culture vessel as follows. Aspirate culture medium completely and add TRK 

Lysis Buffer directly to the cells. Use 700µl for T35 flasks or 10 cm dishes, and 350µl for 

smaller vessels. Pipette buffer over entire surface of vessel to ensure complete lysis. Transfer 

lysate to a clean 1.5 ml microfuge tube and proceed to step 2 below. (This method is preferable 

to trypsinization followed by washing because it minimizes RNA degradation by nuclease 

contamination.) 

For cells grown in suspension cultures, pellet cells at no greater than 1,500 rpm (400 x g) for 5 

min. Discard supernatant, add TRK Lysis Buffer, lyse by vortex or pipetting up and down, and 

transfer to a clean 1.5 ml microfuge tube. Proceed to step 2. 

For tissue samples, homogenize using one of the methods discussed on page 4.  For fatty tissues 

such as brain or adipose tissues, please use E.Z.N.A.® Total RNA Kit II (Product # R6934). 

For fibrous sample such as sample for muscle or heart, use protocol B in this user manual. Also 

OBI offers special designed kit for fibrous tissues (Product # R6688).  Unless using liquid 
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nitrogen, homogenize samples directly in TRK Lysis Buffer/2-mercaptoethanol and                        

proceed to step 2. 

2. Add an equal volume (350 µl or 700 µl) 70% Ethanol to the lysate and mix thoroughly by 

vortexing.  

3. Apply sample onto HiBind® RNA spin column. The maximum capacity of the spin cartridge 

is 750 ml. (Larger volumes can be loaded successively.)  A precipitate may form on addition of 

ethanol in step 2. Vortex and add the entire mixture to the column. With the spin column inside 

a 2ml collecting tube (supplied with kit), centrifuge at 10,000 x g for 15 seconds at room 

temperature.  Discard flowthrough and collection tube. 

4. Place column in a clean 2ml collection tube, and add 300 µl RNA Wash Buffer I. Centrifuge 

and discard flow-through.  Reuse the collection tube in step 6. If on-membrane DNase I 

digestion is desired, proceed step 5, otherwise go to step 6. 

5. DNase digestion (Optional) Since HiBind® RNA resin and spin-column technology actually 

removes most of DNA without the DNase treatment, it is not necessary to do DNase digestion 

for most downstream applications. However, certain sensitive RNA applications might require 

further DNA removal. Following steps provide on-membrane DNase I digestion:( see DNase I 

cat.# E1091for detail information) 

a. For each HiBind® RNA column, prepare the DNase I digestion reaction mix as follows: 

 

 

 

 

 

 

 

  

 

b. Pipet 75 µl of the DNase I digestion reaction mix directly onto the surface of HiBind® RNA 

resin in each column. Make sure to pipet the DNase I digestion reaction mixture directly onto 
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the membrane. DNase I digestion will not be completed if some of the mix stick to the wall or 

the O-ring of the HiBind® RNA column. 

c. Incubate at room temperature(25-30NC) for 15 minutes 

6. Place column in a 2ml collection tube, and add 500 µl RNA Wash Buffer I. (If on-membrane 

DNase digestion was performed in the previous step, wait at least 5 minutes before proceeding).  

Centrifuge and discard flow-through. 

7. Place column in the same 2ml collection tube, and add 500 µl RNA Wash Buffer II diluted 

with ethanol. Centrifuge and discard flow-through. Reuse the collection tube in step 8. 

Note: Wash Buffer II Concentrate must be diluted with absolute ethanol before use.  Refer to 

label on bottle for instruction. 

8. Wash column with a second 500 µl of Wash Buffer II as in step 7. Centrifuge and discard 

flow-through. Then with the collection tube empty, centrifuge the spin cartridge for 1 min at 

full speed to completely dry the HiBind® matrix. 

9. Elution of RNA. Transfer the column to a clean 1.5 ml microfuge tube (not supplied with 

kit) and elute the RNA with 50-100 µl of DEPC-treated water (supplied with kit). Make sure to 

add water directly onto column matrix.  Centrifuge 1 min at maximum speed.  A second elution 

may be necessary if the expected yield of RNA >50 µg.  Alternatively, RNA may be eluted 

with a greater volume of water. While additional elutions increase total RNA yield, the 

concentration will be lowered since more than 80% of RNA is recovered with the first elution. 

Pre-heating the water to 70oC before adding to column and incubating column 5 min at room 

temperature before centrifugation may increase yields.  
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ANNEX B- NZY First Strand CDNA Synthesis Kit 

 

Description 

The NZY First-Strand cDNA Synthesis Kit is a system that includes all the necessary 

components to synthesize firststrand cDNA, except template RNA.   

The resulting single-stranded cDNA is suitable for use in realtime quantitative Reverse 

Transcription PCR (RT-qPCR). NZY First-Strand cDNA Synthesis Kit is formulated to provide 

high yields of full-length cDNA products and to increase sensitivity in RT-qPCR. 

 

 

 

 

 

 

 

 

 

Protocol 

1. On ice, add the following reaction components into a sterile, nuclease-free 

microcentrifuge tube (for multiple reactions, a master mix without RNA may be 

prepared): 
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2. Mix gently and incubate at 25 °C for 10 min.  

 3. Incubate at 50 °C for 30 min.  

 4. Inactivate the reaction by heating at 85 °C for 5 min, and then chill on ice.  

 5. Add 1 µL of NZY RNase H (E.coli ) and incubate at 37 °C for 20 min.  

 6. Use the cDNA product directly in PCR or qPCR diluted in TE buffer or undiluted; 

or store at -20 °C until required. 

 

Important notes   

 High quality intact RNA, free of residual genomic DNA and RNases is essential for 

full-length, high quality cDNA synthesis and accurate RNA quantification. For this 

reason, special precautions should be taken when working with RNA:  

 o Aseptic conditions should be maintained: always wear gloves; change gloves 

whenever you suspect 

that they are contaminated; use RNase-free tubes and pipet tips; designate a special area 

and equipment for RNA work only. o DNase I (not provided) may be used to eliminate 

genomic DNA contamination from the starting total RNA.  o The template RNA should 

be stored at -70 °C. Avoid multiple freeze/thaw cycles of RNA.   

  This kit does not include control RNA.  

  Keep all reagents of the kit on ice while setting up the reactions.  

  When performing RT-qPCR using the synthesized cDNA as template, no more than 

1/10 of the final PCR volume should be derived from the reverse-transcription product. 

For instance, use up to 5 µL of cDNA obtained in the firststrand synthesis in a 50 µL 

PCR reaction. 
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ANNEX C- Antibodies list 
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ANNEX D- Plasmids used in shRNA technique 

D.1- shGFP 
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D.2- shTRIB2 1 
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D.3- shTRIB2 2 
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D.4- shTRIB2 3 
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D.5- shTRIB2 4 
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D.6- shTRIB2 5 
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ANNEX E- Annexin V/ PI Apoptosis Detection Kit: SC-4252 AK 

 

The AnnexinV apoptosis detection kit includes the reagents required for identifying a 

population of cells that have initiated apoptosis using a simple staining procedure and analysis 

by fluorescence microscopy or flow cytometry. 

Analysis of samples can be done on live cells and does not require cell fixation. Normal viable 

cells in culture will stain negative for Annexin V FITC and negative for PI. Cells that are 

induced to undergo apoptosis will stain positive for Annexin V FITC and negative for PI as 

early as 1 hour after stimulation. Both cells in later stages of apoptosis and necrotic cells will 

stain positive for Annexin V FITC and PI. 

 

 

 

 

 

 

Protocol: 

1. Induce apoptosis according to the desired method. 

2. Collect supernatant. Wash with PBS 1X, collect supernatant. Trypsinize cells and 

transfer cells to a 15mL conical tube. Pellet cells by low speed centrifugation at 1500 

rpm for 5 minutes. Wash cells once with PBS and ressuspend pellet in 500 µL 1X Assay 

Buffer. 

3. Transfer 100µL aliquot of cells 1 x 105 cells to a 5mL flow cytometry tube.  

4. To cell samples add 1µL of Annexin V FITC and 10µL of Propidium Iodite (PI) per 

100µL cell samples. 

5. Vortex samples gently and incubate 15 minutes at room temperature, in the dark. 

6. Add 400 µL of 1X Assay Buffer to each tube. 

7. Analyze samples using a single laser emitting light at 488 nm for FITC.  
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Reccomended Negative Controls:  

a. No Annexin V / No PI 

b. Annexin V alone 

c. PI alone 

ANNEX E- PI Protocol 
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ANNEX F- Propidium Iodide Protocol 

 

1. Harvest cells in the appropriate manner, and wash in PBS 1X. 

2. Fix in cold 70% Etanol (EtOH). Add dropwise to the cell pellet while vortexing to 

minimize clumpling. 

3. Let the cells fix at least for 30minutes at 4ºC (Samples can be left at this stage for several 

weeks). 

4. To make sure that only DNA is stained, treat samples with Ribonuclease (50µL of 

100µg/mL RNAse). 

5. Add 200 µL of PI (50µg/mL). 

6. Analyze samples by flow cytometry (PI is excited at 488nm laser and emission of 

fluorescence is collected above 580nm.  

 

Note: Phosphate Buffer is composed of 192 parts of 0.2M Na2HPO4 and 8 parts of 0.1M citric 

acid (pH 7.8) 
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ANNEX G: MAPK Pathways 

 

 

Figure G1. The three main subgroups of MAPK ERKS, JNKs and p38-

MAPKs. 


