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1 MARETEC, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, Lisboa,

Portugal, 2 CCMAR, Center of Marine Science,—CIMAR Laboratorio Associado, F.C.T., University of

Algarve, Campus Gambelas, Faro, Portugal, 3 Instituto de Ciencias Ambientales y Evolutivas, Facultad de

Ciencias, Universidad Austral de Chile, Casilla, Valdivia, Chile, 4 CNRS, Sorbonne Universités, UPMC

University Paris VI, UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS,

Place G. Tessier, Roscoff, France

* vasco.vieira@tecnico.ulisboa.pt

Abstract

Survival is a fundamental demographic component and the importance of its accurate esti-

mation goes beyond the traditional estimation of life expectancy. The evolutionary stability

of isomorphic biphasic life-cycles and the occurrence of its different ploidy phases at uneven

abundances are hypothesized to be driven by differences in survival rates between haploids

and diploids. We monitored Gracilaria chilensis, a commercially exploited red alga with an

isomorphic biphasic life-cycle, having found density-dependent survival with competition

and Allee effects. While estimating the linear-in-the-parameters survival function, all model I

regression methods (i.e, vertical least squares) provided biased line-fits rendering them

inappropriate for studies about ecology, evolution or population management. Hence, we

developed an iterative two-step non-linear model II regression (i.e, oblique least squares),

which provided improved line-fits and estimates of survival function parameters, while

robust to the data aspects that usually turn the regression methods numerically unstable.

Introduction

Survival is one of the determinants of population viability. Its accurate estimation and manipu-

lation is essential for the management of endangered species, invasive species, plagues and

commercially exploited species. Survival is also one of the fundamental drivers of fitness and

life-cycle evolution. It has been hypothesized as one of the vital rates through which sympatric

kelp species differentiate their adaptation to the environment and consequently, their niche

occupation [1]. In isomorphic biphasic life-cycles, dissimilar survival rates between the haploid

and diploid generations cause their uneven field abundances [2–6] and are necessary for the

prevalence of this type of life-cycle [7]. Furthermore, when these species follow a life strategy

dominated by investment in survival, it takes only small differences between haploid and dip-

loid survival for niche differentiation [8–11]. Population density is one of the factors most

conspicuously affecting survival. Its most generalized dynamics is decreasing survival with
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increasing densities due to competition for resources. It is the basic driver of the self-thinning

of monospecific stands of plants [12–14], algae [15–18] and animals [19–20]. However, sur-

vival (as well as other vital rates) can also decrease at very low densities, a dynamics known as

the Allee effects that occurs in animal, plant and algae populations by a multitude of factors

[21,22].

The integration of both competition and Allee effects inevitably leads to a non-linear den-

sity-dependent survival function. To facilitate parameter estimation, this function can be

transposed into a 3rd degree polynomial in order to density (x). Although it is non-linear, if

each of the xn is considered as an independent variable, it becomes a linear-in-the-parameters

polynomial of which coefficients can be estimated using Ordinary Least Squares (OLS) or

other model I regression algorithms minimizing the vertical residuals. However, this class of

methods is only valid when the error in the x estimates is minimal when compared to the error

in the y estimates. The appropriate alternative is a Model II regression minimizing the residu-

als perpendicular to the regression line [23–27]. Unfortunately for the common user (i.e, non-

specialized in numerical analysis), this class of methods requires complex calculus, particularly

when applied to non-linear models. Furthermore, their numerical stability demands for sam-

ple sizes that are unrealistically large for most ecological applications. Hence, model II regres-

sions are not frequently used in ecology and rarely so when non-linear models are involved.

In this study, we derived a density-dependent survival function for Gracilaria chilensis, a

red seaweed with a classical isomorphic biphasic life cycle, and tested for differences among its

haploid males, haploid females and diploids stages. We developed a non-linear model II

regression with an improved line-fit even with small sample sizes. It is an iterative, two-step,

Linear-in-the-parameters, Oblique Least Squares (LOLS) method, that is numerically stable in

situations where other methods are usually unstable. To compare the parameters obtained

from the several algorithms tested, we developed a user-friendly Matlab-based software pack-

age that includes a simple and short tutorial (S1 File).

Gracilaria chilensis

This red alga is heavily cultivated and harvested for agar in the intertidal along the Chilean

shore. Its life-cycle alternates between free living isomorphic haploid (gametophytes) and dip-

loid (tetrasporophytes) phases. The gametophytes are either male or female [4,7,28]. Diploids

(D), haploid males (M) and haploid females (F) were monitored in 5 intertidal rock-pools

within 2 sites (Corral 39˚52’27”S / 73˚24’02” W and Niebla 39˚55’47”S / 73˚23’57”W) along

the margins of the Valdivia river estuary, from October 2009 to February 2011 at 4 month

intervals. No specific permissions were required for these locations and activities. The sam-

pling sites were not in protected areas, G. chilensis is not an endangered or protected species,

and the sampling method was non-destructive. All individuals within each rock-pool at each

time were mapped. M, F and D fronds were identified using first the observation of reproduc-

tive structures in a tissue sample under a binocular microscope and the methodology devel-

oped in Guillemin et al. [29] for the remaining vegetative individuals. Frond length and

diameter were recorded for each individual observed at each census in each rock pool. Individ-

ual biomass was represented by the volume (vi) of a cylinder of equal length and diameter as

the frond, significantly correlated with dry weight (r2 = 0.877;P< 0.0001; n = 281). Every indi-

vidual absent after 4 months was re-checked after 8 month for confirmation of death.

The density-dependent survival (s)

The biomass density of each pool was approximated by total frond volume per rock-pool area

(Vp = ∑Vi), rescaled to units of L�m-2. The survival (s) dependency on Vp followed the shape of
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a quadratic function (Fig 1), with a peak survival at intermediate densities and increased mor-

tality at lower and higher densities, corresponding to Allee effects and competition, respec-

tively. The quadratic function s = smax-b0(Vp-Vopt)
2 defined the maximum survival (smax)

attained at an optimal biomass density (Vopt). The parameter b0 represented the sensitivity of s
to Vp, with higher b0 yielding steeper curves. However, the sensitivity of s was observed to be

asymmetrical relative to lower vs higher Vp, meaning Allee effects and competition did not act

proportionally. Therefore, b0 was replaced by b0(1+b1(Vp-Vopt)), resulting in a density-depen-

dent survival function also including the sensitivity asymmetry parameter b1 (Eq 1). If survival

changed more with higher densities (i.e, Allee effects < competition), then b1>0. On the other

hand, if survival changed more with lower densities (i.e, Allee effects > competition), then

b1<0.

s ¼ smax � b0ð1þ b1ðVp � VoptÞÞ � ðVp � VoptÞ
2

ð1Þ

The procedure to estimate the parameters smax, Vopt, b0 and b1 was to re-formulate Eq (1) as

a 3rd degree polynomial in order to x = Vp i.e, s = β0+β1x+β2x2+β3x3, and determine the βi coef-

ficients from a regression algorithm. The several algorithms tested are presented below in

increasing order of complexity. Afterwards, the solutions to the survival parameters were

obtained from Eq (2a). However, with Vp ranging from 0.1 to 12 and s ranging between 0.2

and 0.8, several methods had unstable calculus leading to unreliable results. Hence, both vari-

ables were forced to vary within {-1 1} by transforming x = (2V-maxV-minV)/(maxV-minV) and

Fig 1. Linear-in-the-parameters regressions to estimate the survival (s) dependency on population

density (V). A: all stages pooled together for an estimation by (OLS) Ordinary Least Squares, (WLS)

Weigthed Least Squares, (IRLS) Iterative Re-weighted Least Squares, (N-RM) maximum likelihood

estimation iterated by Newton-Raphson Method (grp) with data grouped, (LOLS) or Linear-in-the-parameters

Oblique Least Squares. B: estimation by LOLS independently for (F) females, (M) males, and (D) diploids.

doi:10.1371/journal.pone.0167418.g001
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y = (2s-maxs-mins)/(maxs-mins), with the left superscripts max and min corresponding to the maxi-

mum and minimum observed values, respectively. While it solved the numerical instability,

the estimation of the model parameters needed Eq (2b) proceeding Eq (2a).

xopt ¼
b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2

2
� 3b1b3

q

� 3b3

_S ¼ b0 � b2x2
opt � 2b3x3

opt

_b0 ¼ � b2 � 3b3xopt

_b1 ¼
b3

b2 þ 3b3xopt

ð2aÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

Vopt ¼
xoptð� Þ þ þ

2

smax ¼
_Smaxð� Þ þ þ

2

b0 ¼
2 _b0ð� Þ

ð� Þ
2

b1 ¼
2 _b1

�

ð2bÞ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Ordinary Least Squares (OLS)

Polynomials of orders higher than 1 are non-linear models. However, considering the xi as

independent variables, polynomials are linear-in-the-parameters and these can be estimated

by OLS. Calculus was simpler transposing the model to matrix algebra (Eq 3). Using matrix

notation: y = Xβ+ε, where y was the (n×1) vector with the observations of y, X was the (n×4)

matrix with the observations of xi (i = 0,. . .,3), β was the (4×1) vector with the βi coefficients

and ε was the (n×1) vector with the error in the τp observations. Then, β was obtained from

β = (XTX)-1XTy, where the superscript T denotes the matrix transpose.

y1

. . .

yn

2
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3
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x0
1

x1
1
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1

x3
1

. . . . . . . . . . . .
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n x2
n x3

n

2
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3
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5 �
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2
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4

3

7
7
7
7
5
þ

ε1

. . .

εn

2

6
4

3

7
5 ð3Þ

Weigthed Least Squares (WLS)

The WLS estimated β weighting the observations by the (p×p) matrix W, the inverse of their

variance-covariance matrix. Hence, the regression model was upgraded from the previous

OLS to become β = (XTWX)-1XTWy.

Iterative Re-weigthed Least Squares (IRLS)

The IRLS estimated β minimizing the weighted y-residuals (Eq 4) while re-estimating their

weights (wp) at each iteration (Eq 5). This procedure demanded for initial estimates to be pro-

vided. The interval 0<ϕ<2 guaranteed that the observations with smaller residuals i.e, closer
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to the central tendency, had iteratively increasing weight on the parameter estimation.

btþ1 ¼ argmin
b

Pn
p¼1

wpbtjy � c0 � c1x � c2x
2 � c3x

3j
�

ð4Þ

wp ¼ jyp � c0 � c1x � c2x
2 � c3x

3j
�� 2

ð5Þ

Maximum Likelihood Estimation (MLE)

A preliminary manual fit suggested the error in the s estimates (εp = yobs-yest) followed a nor-

mal distribution N(0,σ2). Therefore, its associated likelihood function (L) used the normal dis-

tribution formula (Eq 6). However, it was preferable to use its log-likelihood function (ℓ =

logL) because a posterior step required the partial derivatives and these were easier to estimate

from a sum (∑) than from a product (∏) and an exponent. The logarithmic function being

monotonic, the maximum of L and ℓ coincided. Hence, the estimates of β maximized ℓ(0,σ2|

εp) from Eqs (7) and (8) knowing that εp = f(yobs, yest) and yest = g(β,x).

L 0; s2 _ εp

� �
¼
Qn

p¼1

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p exp

� ε2
p

2s2

� �

ð6Þ

‘ 0; s2jεp

� �
¼
� n
2

log 2ps2ð Þ �
1

2s2

Pn
p¼1
ðyobs � b0 � b1x � b2x

2 � b3x
3Þ

2
ð7Þ

ðb0; b1; b2; b3Þ ¼ argmax
b

‘ð0; s2jεpÞ ð8Þ

When the maximum of ℓ was attained, the first-order partial derivatives of ℓ in order to β (i.

e, @ℓ/@βi) became zero. The Newton-Raphson method [30,31] numerically determined these

roots from βt+1 = βt-f’(ℓ)/f’’(ℓ). This was a system of 4 equations (@ℓ/@β0 = 0, @ℓ/@β1 = 0, @ℓ/

@β2 = 0 and @ℓ/@β3 = 0) with 4 unknowns (β0, β1, β2 and β3). However, σ2 was also unknown

and needed to be estimated apart from ℓ as it was its forcing function. Then, β assumed the val-

ues that maximized ℓ (Eq 8) while minimizing σ2 (Eq 9). This duality corresponded to a system

of 8 equations, where the four @σ2/@βi = 0 were added to the four @ℓ/@βi = 0 while preserving

the four βi unknowns. Finding its roots required adapting the Newton-Raphson method to Eq

(10), with the (8×1) vector u of first order partial derivatives (Eq 11a), and the (8×4) Jacobian

matrix J extracted from u (Eq 11b).

ðb0; b1; b2; b3Þ ¼ argmin
b

s2jyobs; x ð9Þ

btþ1 ¼ bt � ðJ
T � JÞ� 1JT � u ð10Þ
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u ¼

@
‘

s2

" #

@b
¼

@‘
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8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
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9
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ð11aÞ
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@2s2
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@b2@b2
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@b2@b3

@2s2

@b3@b0

@2s2

@b3@b1

@2s2

@b3@b2

@2s2

@b3@b3

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð11bÞ

The computation of u and J was easier with a calculus vectorization similar to that by Vieira

et al. [32]. It started by defining M (Eq 12) with entries μm,k = ∑xm�sobs
k, • m = 0,. . .,6 ^

k = 0,. . .,2. Matrix algebra estimated faster μ = {x0, x1, x2, x3, x4, x5, x6}T�{y0, y1, y2}. It was also

defined B = {1, -β0, -β1, -β2, -β3}. This way ℓ could be estimated from Eq (13) and σ2 from Eq
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(14), were n is the sample size and
 is the Hadamard product i.e, matrix element-wise.

M ¼

m0;2 m0;1 m1;1 m2;1 m3;1

m0;1 m0;0 m1;0 m2;0 m3;0

m1;1 m1;0 m2;0 m3;0 m4;0

m2;1 m2;0 m3;0 m4;0 m5;0

m3;1 m3;0 m4;0 m5;0 m6;0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð12Þ

‘ 0; s2 _ εp

� �
¼
� n
2

log 2ps2ð Þ �
1

2s2

P
ðBT � B
MÞ ð13Þ

s2 ¼
1

n
P
ðBT � B
MÞ ð14Þ

Their partial derivatives had the vectorial representation vi = @B/@ci, corresponding to v0 =

{0, -1, 0, 0, 0}, v1 = {0, 0, -1, 0, 0}, v2 = {0, 0, 0, -1, 0}and v3 = {0, 0, 0, 0, -1}. Then, u and J were

estimated inserting Eqs (15) to (18) into Eqs (11a and 11b).

@‘

@bi
¼
� 1

2s2

P
ðvTi � B
M þ BT � vi 
MÞ; 8i ¼ 0; . . . 3 ð15Þ

@s2

@bi
¼

1

n
P
ðvTi � B
M þ BT � vi 
MÞ; 8i ¼ 0; . . . 3 ð16Þ

@2‘

@bi@bj
¼
� 1

2s2

P
ðvTi � vj 
M þ vTj � vi 
MÞ; 8i ¼ 0; . . . 3 ð17Þ

@s2

@bi@bj
¼

1

n
P
ðvTi � vj 
M þ vTj � vi 
MÞ; 8i ¼ 0; . . . 3 ð18Þ

The Newton-Raphson method is very sensitive and prone to overshooting the roots esti-

mates, and so requires initial conditions that are not too far from the solution. Hence, we pre-

formed a manual line-fit to estimate a provisional β by solving the systems of Eqs (2a) and (2b)

backwards.

The method was improved by grouping the data into three V classes: (A) 0<V<4, (B)

4<V<5 and (C) 5<V<12 L�m-2, with class B giving special attention to the line-fit in the area

where smax and Vopt occurred. The MLE was adapted to run simultaneously over the three clas-

ses by concatenating {ℓA σ2
A ℓB σ2

B ℓC σ2
C}T. The system changed to 24 equations with 4

unknowns, with roots determined from Eqs (10) and (11), where u was a (24×1) vector and J a

(24×4) matrix. Eqs (13) to (18) were solved independently for groups A, B and C. An analysis

to the line-fit evolution during the Newton-Raphson iterations demonstrated that σ2
A had a

far greater weight than σ2
B or σ2

C, with its optimization even driving C into a worsening line-

fit. To overcome this bias, the optimization of σ2 was standardized to its value at the previous

iteration, which only required replacing n by nσ2 in the denominators of Eqs (16) and (18).

Linear-in-the-parameters Oblique Least Squares (LOLS)

This is a model II regression minimizing the oblique residuals (i.e, perpendicular to the regres-

sion line). However, because the line was curved, each iteration comprised a first step to

LOLS Better Fits Density-Dependent Survival Function
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determine the vectors perpendicular to the third degree polynomial and a second step mini-

mizing the sum of their magnitudes.

Step 1: Each observation was defined by vector {x,y} and their estimated values { _x,_y}. In car-

tesian coordinates, each residual was defined as vector A = {x-_x,y-_y}. A perpendicular to the

polynomial was determined by making it perpendicular to the polynomial’s derivative, also

defined in Cartesian coordinates as vector B = {δ,δ�@ _y/@ _x}, by preference using small δ. When

vectors A and B were perpendicular, their inner product was null i.e, A◦B = 0. Hence, _x and _y
were determined nesting Eq (19).

ðx � _xÞdþ ðy � _yÞd
@ _y
@ _x
¼ 0

_y ¼ b0 þ b1 _x þ b2 _x2 þ b3 _x3

@ _y
@ _x
¼ b1 þ 2b2 _x þ 3b3 _x2

ð19Þ

The calculus was performed using matrix algebra. The vectors with the y components of A

and B were defined as Ay = {y,-β0,-β1 _x,-β2 _x2,-β3 _x3} and By = {β1,2β2 _x,3β3 _x2}. The inner product

was re-written as:

A�B ¼ dðx � _xÞ þ d
P
ðAT

y � ByÞ ð20Þ

The Newton-Raphson method generally took four iterations of _xt+1 = _xt-f(_x)/f’(_x) to con-

verge into the roots of Eq (20) with a change rate<0,1%. The derivative f’(_x) was given by Eq

(21), which required the derivatives of Ay (Eq 22) and By (Eq 23).

f 0 _xð Þ ¼ � dþ d
P @

@ _x
AT

y � By þ AT
y �

@

@ _x
By

� �

ð21Þ

@

@ _x
Ay ¼ 0; 0; � b1; � 2b2 _x; � 3b3 _x2f g ð22Þ

@

@ _x
By ¼ 0; 2b2; 6b3 _xf g ð23Þ

A provisional β was required, providing the initial conditions for the first time step 1 was

implemented. This was arbitrarily chosen aiming to be close to the expected final solution.

Subsequent re-runs of step 1 used the β provided by step 2.

Step 2: the magnitude of each oblique residual was given by |res| = ((x-_x)2+(y- _Xβ)2)1/2, with

the (1×4) design matrix _X = {1, _x, _x2, _x3}. The minimum sum of their squares i.e, SSE = ∑res2,

was achieved when @SSE/@β = 0. These roots were found numerically by iterating the New-

ton-Rahpson method under the form βt+1 = βt-SSE’/SSE’’. The numerator SSE’ was the (4×1)

vector with the first order partial derivatives @SSE/@βi = -∑(y- _Xβ)_xi,8 i = 0,. . .,3. Upgrading _X

to the (n×4) design matrix and y to the (n×1) vector y including all n observations, matrix cal-

culus estimated SSE’ = _XT( _Xβ-y). The denominator SSE’’ was the (4×4) Jacobian matrix with

the second order partial derivatives @2SSE/@βi@βj = ∑_xi_xj, 8 i,j = 0,. . .,3. Matrix calculus esti-

mated it from SSE’’ = ( _XT _X). Merging all yielded the incremental βt+1 = βt-( _XT _X)-1 _XT( _Xβ-

y). Only a single iteration within step 1 was performed, after which the perpendicular coordi-

nates of the residuals needed to be re-estimated.
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Testing differences between life-cycle stages

We tested whether the parameters smax, Vopt, b0 and b1 changed significantly with ploidy or sex

using non-parametric permutation tests with 1000 randomizations. The test accuracy was

improved by keeping the identity of the observations relatively to the non-tested properties i.e,

observations were permuted within their site and season [17,18]. A suited definition of the sur-

vival function required merging sites and seasons. Thus, differences between treatments within

these factors could not be tested. The sample size was 35 and one degree of freedom was lost

with the estimation of each of the four model parameters. Because Vopt was the only parameter

whose estimation was independent, the ANCOVA approach was followed i.e, first we esti-

mated whether Vopt was significantly different among ploidies or sexes. Only in case it was not,

did we estimate whether τmax, b0 and b1 were significantly different among ploidies or sexes.

Results and Discussion

Gracilaria chilensis exhibited a clear pattern of maximum survival attained at optimal interme-

diate densities (Fig 1). The decreased survival of the ramets at higher densities has been widely

detected in algae and attributed to competition [15–18]. But their decreased survival at lower

densities (Allee effects) has hardly been reported. Crowding has been demonstrated to protect

from desiccation in intertidal algae stands [33] and we hypothesize that it may also protect

against hydrodynamic stress. The LOLS applied to each of the life-cycle stages showed no sig-

nificant differences between males, females and diploids for any of the survival function

parameters (Fig 1B and Table 1). If there were any actual differences between the density-

dependent survival of the stages, these differences were masked by the error. Whenever testing

the relation between variables x and y, there are two usual sources of error: (i) measurement

error, and (ii) the influence of extra variables over x and/or y. In our case, a weakness of the

data set constituted a third source of error undermining the parameter estimation: our obser-

vations predominantly corresponded to low population densities and thus, the line-fits that

described the dynamics at high population densities were relatively weak. Our four monthly

survey interval enhanced this issue. In hind side, a shorter time interval would have provide

better density-dependent survival data and a better definition of the full function.

Finding the best parameter estimates also required solving problems specific to the numeri-

cal methods (Fig 1A and Table 2). The OLS line-fit concentrated the positive residuals on the

centre, largely underestimating the maximum survival rate (smax) at optimal densities. The

WLS represented only a slight improvement, while the IRLS represent no improvement at all.

Besides, when diploids, males and females were pooled separately (n = 3 months×3 years×5

pools = 35) the results varied significantly with the ϕ and the initial estimates provided. Upon

smaller sample sizes, particular observations erroneously became anchor-points (or attractors)

to the IRLS line-fit. The standard MLE provided a line-fit equal to the OLS. When the data was

split into the three V classes, it became evident that the optimization of the fit at lower densities

Table 1. The ploidy specific survival functions with parameters estimated by the LOLS (value) and the significance (p) of their differences among

(M) males, (F) females and (D) diploids, as estimated from randomization tests. Sample size n = 35.

smax Vopt b0 b1

M F D M F D M F D M F D

(value) .724 .742 .661 4.261 3.898 3.88 .038 .039 .031 -.122 -.118 -.118

(p) M F D M F D M F D M F D

M .732 .358 .147 .121 .898 .514 .658 .662

F .283 .932 .484 .992

doi:10.1371/journal.pone.0167418.t001
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was worsening the fit at intermediate and higher densities. While σ2
A decreased from 335�10−4

to 187�10−4, σ2
B increased from 73�10−4 to 155�10−4 and σ2

C increased from 117�10−4 to

123�10−4. The MLE with these three V classes weighted by the inverse of their variance pro-

vided a line-fit that was only slightly different. All these methods fall upon the class of model I

regressions, characterized by a minimization of the vertical residuals i.e, of the error in the

response variable. Besides method-specific fails, their generalized bias also resulted from the

fact that the error in the estimation of the predictor was larger than the error in the estimation

of the response. In fact, we had more confidence in the estimation of the survival rates (ramets

were either dead or alive) than in the estimation of the individual sizes and consequent popula-

tion biomass densities. In such cases, model I regressions are inadequate and model II regres-

sion are the proper alternative [25–27]. Classical error-in-the-variables algorithms for model II

regressions estimate the true parameter values by use of high-order moments (or cumulants).

However, besides extremely complicated for non-linear models, the use of high-order

moments turns them numerically unstable, requiring extremely large data sets (n>900) for

reliable estimates [34–36]. The instrumental variables (an alternative class of error-in-the-vari-

ables algorithms) demands for a subset of data with known errors to train the algorithm into

the estimation of the true parameter values. Principal Components Analysis (PCA) and

Reduced Major Axis (RMA) are model II regression algorithms with a different strategy: they

do not aim at estimating the true parameter values but simply at minimizing the oblique resid-

uals i.e., perpendicular to the line-fit [23–27]. Although this simplifies and numerically stabi-

lizes them, working fine with smaller data sets, they are exclusive to linear models, and thus

inapplicable to our linear-in-the-parameters third degree polynomial.

It was based in the PCA and RMA rationale that we developed the Linear-in-the-parame-

ters Oblique Least Squares (LOLS) regression method, minimizing the squared residuals per-

pendicular to a curve line. This procedure distributed the positive and negative residuals

evenly along the x axis, contrasting with the other tested algorithms (Fig 1A). However, as the

LOLS had no closed form solution, it required being iterated over two steps: one to update the

orientations of the vectors of residuals and another to minimize their magnitudes. This

method was still fallible when (-if) working with the original variables. Whenever at least one

of the variables ranged beyond |1| or their variances were conspicuously unbalanced, the

method became numerically unstable. Often, the vertical (or the horizontal) component of the

oblique residuals became meaningless and the LOLS was in practice performing a horizontal

(or vertical) regression. This problem was solved by transforming both variables to range

within -1<xj<1. Overall, although computationally more demanding, the LOLS was still fast

providing a solution that was much more satisfactory than the solutions provided by the for-

mer algorithms (Fig 1A and Table 2). It estimated conspicuously higher maximum survival

rate (smax) at lower optimum density (Vopt) with higher density-dependence (b0) and bigger

asymmetry between competition and Allee effects (b1). An apparent draw-back was the

Table 2. The overall survival function with parameters estimated by different methods. Sample size

n = 105.

smax Vopt b0 b1

OLS 0.558 5.004 0.008 -0.059

WLS 0.588 4.432 0.014 -0.108

IRLS 0.561 4.489 0.021 -0.123

N-RM 0.558 5.004 0.008 -0.059

N-RM gp 0.578 4.786 0.011 -0.087

LOLS 0.701 4.009 0.035 -0.119

doi:10.1371/journal.pone.0167418.t002
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function increasing back again at the extreme of higher densities. However, this error was only

a consequence of the small number of observations in that area of the function, it should not

happen with more complete data sets and hence should be negligible for the majority of future

model applications. The consistency of the LOLS fits among stages (n = 35) contrasted with

the inconsistency demonstrated by other methods, and in particular by the IRLS.

Conclusions

The accurate estimation of survival is essential for ecological and evolutionary studies, as well

as for population management. As found in other organisms, the survival of Gracilaria chilen-
sis is sensitive to both competition and Allee effects, and thus is optimized at intermediate den-

sities. Although computationally more demanding, the LOLS algorithm was the method

providing the best description of this non-linear function. This method is better suited in situ-

ations demanding for non-linear model II regression methods i.e, when the error in the esti-

mation of the predictor x is comparable to the error in the estimation of the response y.

Furthermore, its conjugation with the transformations of both predictor and response to vary

within {-1, 1} made the LOLS robust in situations where the other methods tested were fallible

and numerically unstable. Therefore, the LOLS should have a wide applicability.
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