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Abstract

Starting from the notions of q-entailment and p-entailment, a two-dimensional

notion of entailment is developed with respect to certain generalized q-matrices

referred to as B-matrices. After showing that every purely monotonic single-

conclusion consequence relation is characterized by a class of B-matrices with

respect to q-entailment as well as with respect to p-entailment, it is observed

that, as a result, every such consequence relation has an inferentially four-valued

characterization. Next, the canonical form of B-entailment, a two-dimensional

multiple-conclusion notion of entailment based on B-matrices, is introduced, pro-

viding a uniform framework for studying several different notions of entailment

based on designation, antidesignation, and their complements. Moreover, the

two-dimensional concept of a B-consequence relation is defined, and an abstract

characterization of such relations by classes of B-matrices is obtained. Finally, a

contribution to the study of inferential many-valuedness is made by generalizing

Suszko’s Thesis and the corresponding reduction to show that any B-consequence

relation is, in general, inferentially four-valued.
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1. Introduction

A (logical) matrix is usually defined as a pair 〈A, D〉, where A is an algebra

similar to a propositional language L (we shall identify the language L with

its set of formulas), andD is a subset of A’s carrier set A (see, e.g., [15, 29]).

Intuitively, A (sometimes denoted as ‘V’) is a non-empty set of truth-values,

and D is a set of designated truth-values. If C is the set of connectives of

L, then 〈A, D〉 can be presented as a tuple 〈V, D, {fc | c ∈ C}〉, where fc is

a function on V with the same arity as c. With a view towards obtaining a

semantics for L, an entailment relation is associated to a given matrix in a

certain canonical way. For that purpose, a class of valuations is fixed, and

often, in order to obtain a ‘truth-functional semantics’, the class Hom(L,A)

of all homomorphisms of L into A is considered (see [22]). If M = 〈A, D〉 is
a matrix, the single-conclusion entailment relation |=M ⊆ 2L × L induced

by M is defined as follows:

Γ |=M ϕ iff (ν(Γ) ⊆ D implies ν(ϕ) ∈ D, for every ν ∈ Hom(L,A)),

where ν(Γ) = {ν(ψ) | ψ ∈ Γ}.
If truth-functionality of the semantics is not required, the algebraic

structure of A is not exploited in the same way, so that the first component

of a matrix 〈A, D〉 may just as well be any set V, and Hom(L,A) may

be replaced by any collection S of functions from L into V. Given such

practice, the notion of a matrix can be broadened into a triple 〈V, D, S〉, as
is implicitly done in [4]. In particular, if S is a singleton set, then 〈V, D, S〉
may be seen as a semantical model based on the matrix 〈V, D〉.

Let M be a class of matrices. The relation |=M ⊆ 2L × L (entailment

with respect to M) is defined by setting Γ |=M ϕ iff Γ |=M ϕ for all

M ∈ M. A relation ⊢ ⊆ 2L ×L is said to be Tarskian if for every ϕ, ψ ∈ L
and every Γ,∆ ⊆ L:

(Ref) Γ ⊢ ϕ, whenever ϕ ∈ Γ

(Mon) If Γ ⊢ ϕ then Γ ∪∆ ⊢ ϕ

(Trn) If Γ ⊢ ϕ for every ϕ ∈ ∆ and Γ ∪∆ ⊢ ψ, then Γ ⊢ ψ

Above, ‘Ref’, ‘Mon’ and ‘Trn’ stand, respectively, for reflexivity, mono-

tonicity, and transitivity (or closure). It can readily be checked that every

relation |=M is a Tarskian consequence relation.

Well-studied and important generalizations of the concept of a matrix

are G. Malinowski’s notion of a q-matrix [13] and S. Frankowski’s notion
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of a p-matrix [7, 8]. A q-matrix (quasi matrix) is a structure 〈A,D+,D−〉,
where A is an algebra similar to a propositional language L, and where D+

and D− are subsets of A, and D+ ∩ D− = ∅. Usually, D+ is referred to

as the set of designated values and D− as the set of antidesignated values.

A p-matrix (plausibility matrix) is a structure 〈A,D+,D∗〉, where A is an

algebra similar to a propositional language L and D+ ⊆ D∗ ⊆ A. The set

D∗ is usually referred to as the set of plausible, non-antidesignated values.

We adopt a compact notation that avoids superscripts and the bar-

notation for set-theoretic complementation, introducing the symbols Y,

Y

,

N, and Nto denote, respectively, the sets of designated, non-designated (V\
Y), antidesignated, and non-antidesignated (V\N) values. With a cognitive

twist, they might be taken as representing acceptance, non-acceptance,

rejection and non-rejection.1

If M = 〈A,Y,N〉 is a q-matrix, the q-entailment relation |=q
M

⊆ 2L×L
induced by M is defined with respect to a truth-functional semantics as

follows:

Γ |=q
M
ϕ iff (ν(Γ) ∩ N = ∅ implies ν(ϕ) ∈ Y, for every ν ∈ Hom(L,A)).

If M = 〈A,Y, N〉 is a p-matrix, the p-entailment relation |=p
M

⊆ 2L × L
induced by M is defined with respect to a truth-functional semantics as

follows:

Γ |=p
M
ϕ iff (ν(Γ) ⊆ Y implies ν(ϕ) ∈ N, for every ν ∈ Hom(L,A)).

These definitions are extended to classes of matrices exactly as in the case

of the Tarskian notion of consequence.

Let Q be the class of all q-matrices, and P be the class of all p-matrices.

Clearly, every q-matrix M = 〈A,Y,N〉 uniquely determines a p-matrix

Mp = 〈A,Y, A\N〉, and conversely, every p-matrix M = 〈A,Y, N〉 uniquely
determines a q-matrix Mq = 〈A,Y, A \ N〉. The functions (·)p and (·)q are

injective, for every M ∈ Q, we have Mpq = M, and for every M ∈ P,

we have Mqp = M. The functions (·)q◦p and (·)p◦q are thus bijections,

and every q-matrix (p-matrix) can be ‘seen’ as a p-matrix (q-matrix). In-

deed, Frankowski [8] “for the sake of convenience” considers q-entailment

1Malinowski [13] regards D+ as the set of accepted values and D− as the set of
rejected values. Since acceptance is usually associated with the attitude of belief, and
rejection with the attitude of disbelief, Malinowski’s understanding of D+ and D− may
be classified as doxastic.
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over p-matrices, and in [24] p-entailment is defined over q-matrices. More-

over, Frankowski uses a deductive perspective on p-matrices to investigate

q-consequence, and Malinowski [19] observes that while q-entailment gener-

alizes the Tarskian notion of consequence by changing the notion of proof,

the generalization produced by p-entailment changes the form of rules of

inference. That being said, we will not study in the present paper the asso-

ciated proof theory of either of these notions of consequence, but will focus

instead on their semantical and their abstract characterizations.

The relations |=q
M (resp. |=p

M), where M is a class of q-matrices (resp.

p-matrices) are examples of what Malinowski (resp. Frankowski) refer to as

‘q-consequence relations’ (‘p-consequence relations’). A relation ⊢ ⊆ 2L×L
is said to be a q-consequence relation if in addition to (Mon) the following

quasi closure axiom is respected for every Γ ∪ {ψ} ⊆ L:

(QTrn) Γ ∪ {ϕ | Γ ⊢ ϕ} ⊢ ψ implies Γ ⊢ ψ

Quasi closure is a restricted form of ‘(cumulative) transitivity’, and clearly

constitutes a weakened version of the Tarskian axiom (Trn). A relation

⊢ ⊆ 2L × L is called a p-consequence relation if ⊢ satisfies reflexivity and

monotonicity. It can readily be checked that every q-entailment relation is a

q-consequence relation, and every p-entailment relation is a p-consequence
relation.

We will say that the language L has algebraic character in case it is the

term algebra generated by a set of propositional variables over a proposi-

tional signature. Endomorphisms of L are called substitutions. Given

one such substitution σ : L −→ L and given Π ⊆ L we write σ(Π) for

{σ(π) | π ∈ Π}. A relation ⊢ ⊆ 2L × L is said to be substitution-invariant

(a.k.a. ‘structural’) if for Γ ∪ {ϕ} ⊆ L, and every endomorphism σ of L,
the following axiom is respected:

(SI) Γ ⊢ ϕ implies σ(Γ) ⊢ σ(ϕ)

It is well known that every substitution-invariant Tarskian consequence

relation is characterized by a class of matrices (cf. [28]). In addition, Mali-

nowski [13] proved that every substitution-invariant q-consequence relation
is characterized by a class of q-matrices, and Frankowski [7] proved that

every substitution-invariant p-consequence relation is characterized by a

class of p-matrices.

In the present paper we will deal with certain generalized q-matrices

which we shall refer to as ‘B-matrices’. For B-matrices the restriction on q-
matrices according to which no value is both designated and antidesignated
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is abandoned.2 This generalization is less straightforward for p-matrices,

what makes it attractive to consider p-entailment and other forms of en-

tailment over B-matrices.

A (logical) B-matrix for L is a structure 〈V,Y,N, S〉, where Y ⊆ V ,
N ⊆ V , and the semantics S is a collection of mappings ν : L −→ V called

valuations. In case L has algebraic character and V is an algebra of the same

similarity type as L, one may naturally consider a truth-functional seman-

tics S defined by the collection Hom(L,V) of all homomorphisms from L
into V. Given a family M = {Mi}i∈I of B-matrices, we will associate to it

the semantics SM given by
⋃

i∈I Si.

As is well-known, the semantic characterization of Tarskian conse-

quence relations in terms of matrices gives room to the so-called Suszko

Reduction (cf. [3]), which shows that every Tarskian consequence relation

may be alternatively characterized by a class of semantical models with

two-element carriers. Roman Suszko [25] proposed indeed to distinguish

between ‘algebraic valuations’, which are homomorphic and which he also

called reference assignments, and ‘logical valuations’, which are not nec-

essarily homomorphic. From that perspective, what is normally called a

κ-valued logic may then be called a referentially many-valued logic. The

so-called Suszko’s Thesis (see [15, Ch. 4]) consists in the claim that every

referentially many-valued logic can be given a ‘bivalent description’, namely

a characterization in terms of so-called logical valuations whose codomains

have at most two ‘logical values’, the True and the False. As a practical

application of that idea, the Suszko Reduction, seen as the technical coun-

terpart of Suszko’s Thesis, has nowadays been given a fully algorithmic

implementation that applies to any finite-valued logic, and this has been

used to provide uniform classic-like analytic deductive counterparts to all

such logics (cf. [5]).

Grzegorz Malinowski is especially well-known for his investigation of

inferential many-valuedness (see [13, 14, 16, 17, 18, 19, 20]). Such enterprise

consists in pushing the frontiers of Suszko’s Thesis in order to accommodate

2In [26], the set of designated values D of a matrix is required to be non-empty,
and in [6], D is required to be a non-empty, proper subset of V. Following the defi-
nition of matrices in [6], in [24, p.174] it is assumed that in a (generalized) q-matrix
〈V, D+, D−, {fc | c ∈ C}〉, the sets D+ and D− are distinct, non-empty, proper subsets
of V. With a view towards defining useful entailment relations induced by a matrix
or by a (generalized) q-matrix, these restrictions are quite natural and reasonable; for
the general characterization of consequence relations, however, such restrictions do not
apply.
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for other notions of consequence that do not in general allow for a bivalent

description. Malinowski [14] proved that every q-consequence relation has

a characterization by a class of q-matrices with three-element carrier sets,

and showed that the original version of Suszko’s Thesis did not apply in

general to q-consequence. Such characterization is said to be inferentially

three-valued, insofar as it makes use of the three sets Y, N, and V \ (Y∪N)

into which the carrier set of a q-matrix may be partitioned. Frankowski [9]

makes an analogous observation for p-consequence relations: to characterize
the latter as inferentially three-valued, he makes use of the three sets Y,

V \ Nand N\ Y into which the carrier of a p-matrix may be partitioned.

As we will see, in the case of B-matrices, the distinguished sets Y and

N do not, in general, give rise to a partition of the set V of truth values in

a similar fashion, and their corresponding (four-valued) inferential charac-

terization must be attained using a different strategy. Whilst, on the one

hand, a logical matrix displays only one distinguished subset of V, namely

D, and a second subset of V is given by the complement of D, on the other

hand a q-matrix or, more generally, a B-matrix, displays two distinguished

sets, Y and N. In [24], starting from such a generalized perspective on the

notion of a logical matrix, special attention is paid to the following four,

in general pairwise distinct, notions of entailment, with respect to a given

generalized q-matrix M:

t-ent.: Γ |=t
M
ϕ iff (ν(Γ) ⊆ Y implies ν(ϕ) ∈ Y, for all ν ∈ Hom(L,A))

f -ent.: Γ |=f
M
ϕ iff (ν(Γ) ⊆ Nimplies ν(ϕ) ∈ N, for all ν ∈ Hom(L,A))

q-ent.: Γ |=q
M
ϕ iff (ν(Γ) ⊆ Nimplies ν(ϕ) ∈ Y, for all ν ∈ Hom(L,A))

p-ent.: Γ |=p
M
ϕ iff (ν(Γ) ⊆ Y implies ν(ϕ) ∈ N, for all ν ∈ Hom(L,A))

We shall here build on that perspective and generalize it in various respects,

in particular by using the distinguished sets Y and N of a B-matrix to

originate the four logical values represented by the sets

Y

∩N,

Y

∩ N, Y∩N,

and Y ∩ N. In the present paper we will show how several distinct notions

of entailment, including all the ones mentioned above, may be defined with

the use of such distinguished sets, on top of the thereby defined ‘logical

values’.

In what follows, it is first shown that every purely monotonic single-

conclusion consequence relation is characterized by a class of B-matrices

with respect to q-entailment as well as with respect to p-entailment, and

it is observed that, as a result, every purely monotonic single-conclusion
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consequence relation has an inferentially four-valued semantics. Next, the

notion of entailment is generalized so as to obtain a two-dimensional notion
of B-entailment, based on B-matrices, that subsumes the above defined no-

tions of t-, f -, q- and p-entailment. In a multiple-conclusion setting, sixteen

notions of entailment are studied in detail, from both an abstract viewpoint

and an inferential viewpoint. It is shown that these notions collapse into

four classes, in terms of their abstract characterizations. The Tarskian no-

tion of consequence is also generalized to the two-dimensional setting by

introducing the notion of a B-consequence relation that subsumes, among

others, the notions of q- and p-consequence. Moreover, an abstract charac-

terization of B-consequence relations by classes of B-matrices is presented.

Next, the Suszko Reduction is generalized to show that any B-consequence

relation has, in general, an inferentially four-valued characterization. Fi-

nally, for any given specific B-entailment relation, it is shown that it may

accommodate in a natural way up to nine one-dimensional notions of en-

tailment of different kinds.

2. Abstract characterization of single-conclusion purely

monotonic consequence relations

In this section we show that every purely monotonic consequence relation

C ⊆ 2L×L —namely, a relation respecting axiom (Mon)— is characterized

by a class of B-matrices with respect to q-entailment as well as by a class of

B-matrices with respect to p-entailment. Given Γ∪{ϕ} ⊆ L and C ⊆ 2L×L,
we shall write C(Γ) for {ϕ | (Γ, ϕ) ∈ C}. Note that in terms of the latter

unary operation on 2L, monotonicity means simply that C(Φ) ⊆ C(Φ∪Ψ).

Let C ⊆ 2L×L be a purely monotonic consequence relation. For every

Γ ⊆ L, the tuple M
q
Γ = 〈L,C(Γ),L \ Γ, {id}〉, where id is the identity

mapping on L, is a B-matrix. We call M
q
Γ the Lindenbaum B-matrix of Γ

with respect to q-entailment and set Bq
C = {Mq

Γ | Γ ⊆ L}.

Theorem 1. Every purely monotonic consequence relation C is character-
ized by some class of Lindenbaum B-matrices with respect to q-entailment.

Proof: We show that C is characterized by Bq
C.

(⇒) Let ϕ ∈ C(Γ), let M
q
∆ be an arbitrary B-matrix from Bq

C, and suppose

that Γ ∩ (L \∆) = ∅ and hence Γ ⊆ ∆. By monotonicity, we know that

C(Γ) ⊆ C(∆). Therefore, Γ |=q
M

q

∆

ϕ. Since ∆ was arbitrary, it follows that

Γ |=q
B

q

C

ϕ.
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(⇐) Suppose that Γ |=q
B

q

C

ϕ. We then have Γ |=q
M

q

∆

ϕ for everyM
q
∆ ∈ Bq

C. In

particular, Γ |=q
M

q

Γ

ϕ. Since Γ∩(L\Γ) = ∅, we conclude that ϕ ∈ C(Γ).

Let C ⊆ 2L × L be a purely monotonic consequence relation. For

every Γ ⊆ L, the tuple M
p
Γ = 〈L,Γ,L \ C(Γ), {id}〉 is a B-matrix. We call

M
p
Γ the Lindenbaum B-matrix of Γ with respect to p-entailment and set

Bp
C = {Mp

Γ | Γ ⊆ L}.

Theorem 2. Every purely monotonic consequence relation C is character-
ized by some class of Lindenbaum B-matrices with respect to p-entailment.

Proof: We show that C is characterized by Bp
C.

(⇒) Let ϕ ∈ C(Γ), let M
p
∆ be an arbitrary B-matrix from Bp

C, and suppose

that Γ ⊆ ∆. By monotonicity, we know that C(Γ) ⊆ C(∆). Therefore

ϕ 6∈ L \ C(∆) and thus Γ |=p
M

p

∆

ϕ. Since ∆ was arbitrary, it follows that

Γ |=p
B

p

C

ϕ.

(⇐) Suppose that Γ |=p
B

p

C

ϕ. Then Γ |=p
M

p

∆

ϕ for every M
p
∆ ∈ Bp

C. In

particular, Γ |=p
M

p

Γ

ϕ. Since Γ is the set of designated values of M
p
Γ, we

have ϕ 6∈ L \ C(Γ), and hence ϕ ∈ C(Γ).

If we have homomorphic valuations in mind, a few adjustments in the

above characterizations are in order. In particular, the Lindenbaum matri-

ces M
q
Γ and M

p
Γ are in such case redefined so that instead of S = {id} we

take S = Hom(L,L).

Theorem 3. Every substitution-invariant purely monotonic consequence
relation C is characterized by some class of B-matrices with respect to q-
entailment, with homomorphic valuations.

Proof: We show again that C is characterized by Bq
C.

(⇒) Let ϕ ∈ C(Γ), let M
q
∆ = 〈L,C(∆),L \∆,Hom(L,L)〉 be an arbitrary

B-matrix from Bq
C, and let σ be an arbitrary endomorphism of L for which

σ(Γ) ∩ (L \∆) = ∅. Then σ(Γ) ⊆ ∆. By substitution-invariance, σ(ϕ) ∈
C(σ(Γ)), and by monotonicity, C(σ(Γ)) ⊆ C(∆). Thus, σ(ϕ) ∈ C(∆).

Therefore, Γ |=q
M

q

∆

ϕ. Since ∆ was arbitrary, it follows that Γ |=q
B

q

C

ϕ.

(⇐) Suppose that Γ |=q
B

q

C

ϕ. Then Γ |=q
M

q

∆

ϕ for every M
q
∆ ∈ Bq

C. In par-

ticular, Γ |=q
M

q

Γ

ϕ. Since the identity mapping id on L is an endomorphism

of L, and Γ ∩ (L \ Γ) = ∅, it follows that ϕ ∈ C(Γ).
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Theorem 4. Every substitution-invariant purely monotonic consequence
relation C is characterized by some class of B-matrices with respect to p-
entailment, with homomorphic valuations.

Proof: We show again that C is characterized by Bp
C.

(⇒) Let ϕ ∈ C(Γ), let M
p
∆ = 〈L,∆,L \ C(∆),Hom(L,L)〉 be an arbitrary

B-matrix from Bp
C, and let σ be an arbitrary endomorphism of L with

σ(Γ) ⊆ ∆. By substitution-invariance, σ(ϕ) ∈ C(σ(Γ)), and by monotonic-

ity, C(σ(Γ)) ⊆ C(∆). Therefore σ(ϕ) 6∈ L\C(∆) and thus Γ |=q
M

q

∆

ϕ. Since

∆ was arbitrary, we conclude that Γ |=q
B

p

C

ϕ.

(⇐) Suppose that Γ |=p
B

p

C

ϕ. Then Γ |=p
M

p

∆

ϕ for every M
p
∆ ∈ Bp

C. In

particular, Γ |=p
M

p

Γ

ϕ. Since C(Γ)∩(L\C(Γ)) = ∅, we obtain ϕ ∈ C(Γ).

Given the above characterizations, it is possible to upgrade the machin-

ery behind the so-called Suszko Reduction, as will be done in Section 5, to

show that every monotonic relation C ⊆ 2L×L has an at most four-valued

(in general non-truth-functional) semantics. Let M = 〈V,Y,N, S〉 be a

B-matrix. It is enough then to build out of this a B-matrix M
′ which is in-

distinguishable from M from the viewpoint of q- as well as of p-entailment,

by setting M
′ = 〈{F,N,B, T}, {B, T}, {F,B}, {ν4 | ν ∈}〉 where

ν4(ϕ) =



















F if ν(ϕ) ∈

Y

∩ N

N if ν(ϕ) ∈

Y

∩ N

B if ν(ϕ) ∈ Y ∩ N

T if ν(ϕ) ∈ Y ∩ N

It is not difficult to see that for any Γ ∪ {ϕ} ⊆ L, we have Γ |=q
M

ϕ iff

Γ |=q
M′ ϕ and Γ |=p

M
ϕ iff Γ |=p

M′ ϕ (for a more general and detailed version

of this result, check the proof of Theorem 11).

3. A uniform framework for the study of diverse forms

of entailment

We now introduce a two-dimensional, B-matrix-based notion of semantical

consequence. Consider a B-matrix M = 〈V,Y,N, S〉. The semantical no-

tion of B-entailment canonically induced by the semantics S is defined by

setting:
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Φ11

Φ21

∣

∣

Φ12

Φ22

is S-valid iff

there is no ν ∈ S such that

ν(Φ11) ⊆ Nand ν(Φ12) ⊆

Y

and

ν(Φ21) ⊆ Y and ν(Φ22) ⊆ N

(B-entailment)

where each Φmn denotes an arbitrary subset of L. Rather than saying that
Φ11

Φ21

∣

∣

Φ12

Φ22

is S-valid, sometimes we say that
Φ11

Φ21

∣

∣

Φ12

Φ22

is valid for M, and we

omit the reference to the semantics or to the matrix if the context suffices

to disambiguate it.

From the above definition of distinguished sets, it is straightforward to

note that B-entailment always enjoys, in particular, the following properties

concerning S-validity:

(Iny)
∅

Φ

∣

∣

Ψ
∅

is valid, whenever Φ ∩Ψ 6= ∅

(Inn) Φ
∅

∣

∣

∅

Ψ
is valid, whenever Φ ∩Ψ 6= ∅

(C1y) if both
Φ11

Φ21∪{ϕ}

∣

∣

Φ12

Φ22

and
Φ11

Φ21

∣

∣

Φ12∪{ϕ}

Φ22

are valid,

then
Φ11

Φ21

∣

∣

Φ12

Φ22

is valid

(C1n) if both
Φ11∪{ϕ}

Φ21

∣

∣

Φ12

Φ22

and
Φ11

Φ21

∣

∣

Φ12

Φ22∪{ϕ}
are valid,

then
Φ11

Φ21

∣

∣

Φ12

Φ22

is valid

Any expression of the form
Φ11

Φ21

∣

∣

Φ12

Φ22

will henceforth be called a B-

statement. In case both Φ11 and Φ22 are empty, we will write the cor-

responding B-statement as

:

Φ21

∣

∣

Φ12

: , and call it a T-statement (mnemonic:

Y ⇒ Y). In addition, and using a similar notational convention, the ex-

pression
Φ11

:

∣

∣

:

Φ22

will be called an F-statement (mnemonic: N⇒ N), the

expression
Φ11

:

∣

∣

Φ12

: will be called a Q-statement (mnemonic: N⇒ Y), and

the expression

:

Φ21

∣

∣

:

Φ22

will be called a P-statement (mnemonic: Y ⇒ N).

In general, we will say about a B-matrix that it allows for gappy rea-

soning in case

Y

∩ N6= ∅ (equivalently,

Y

6⊆ N or N6⊆ Y), and say that

it allows for glutty reasoning in case Y ∩ N 6= ∅ (equivalently, N 6⊆

Y

or

Y 6⊆ N). It is easy to check that the following properties are respected

whenever glutty reasoning is not allowed for:
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(Inu)
∅

Φ

∣

∣

∅

Ψ
is valid, whenever Φ ∩Ψ 6= ∅

(C1u) if both
Φ11∪{ϕ}

Φ21

∣

∣

Φ12

Φ22

and
Φ11

Φ21

∣

∣

Φ12∪{ϕ}

Φ22

are valid,

then
Φ11

Φ21

∣

∣

Φ12

Φ22

is valid

and the following properties are respected whenever gappy reasoning is not
allowed for:

(Ina) Φ
∅

∣

∣

Ψ
∅

if valid, whenever Φ ∩Ψ 6= ∅

(C1a) if both
Φ11

Φ21∪{ϕ}

∣

∣

Φ12

Φ22

and
Φ11

Φ21

∣

∣

Φ12

Φ22∪{ϕ}
are valid,

then
Φ11

Φ21

∣

∣

Φ12

Φ22

is valid

Note that a B-matrix with a semantics S allows for gappy reasoning iff the

Q-statement
ϕ

:

∣

∣

ϕ

: fails to be S-valid, for some ϕ ∈ L, and it allows for glutty

reasoning iff the P-statement

:

ϕ

∣

∣

:

ϕ fails to be S-valid, for some ϕ ∈ L.
Fixed a B-matrix M, and the collection S of all T-statements validated

by its semantics, we associate to M a one-dimensional gt-entailment rela-

tion |=gt ⊆ 2L × 2L by setting Φ |=gt Ψ iff

:

Φ

∣

∣

Ψ

: is in S. Along the same

lines, we define a one-dimensional gf-entailment relation |=gf ⊆ 2L × 2L

from the collection of all F-statements validated by the semantics of M.

Similarly, we define a gq-entailment relation and a gp-entailment relation,

respectively, from the collection of all Q-statements and the collection of

all P-statements validated by the semantics of M. For each such notion of

gx-entailment we define a one-dimensional gx\u-entailment relation from a

collection of X-statements together with the assumption (expressed by an

appropriate collection of P-statements, as pointed out above) that M does

not allow for glutty reasoning, and define a gx\a-entailment relation from

a collection of X-statements together with the assumption (expressed by

a collection of Q-statements) that M does not allow for gappy reasoning.

Analogously, a gx\ua-entailment relation will be defined from a collection of

X-statements together with the assumption thatM allows neither for glutty

nor for gappy reasoning. A gt\ua-entailment relation over M will here more

simply be called a t-entailment relation over M, and a gf\ua-entailment re-

lation over M will be called an f-entailment relation over M. In addition,

a gq\u-entailment relation over M will here more simply be called a q-

entailment relation over M, and a gp\u-entailment relation over M will

be called a p-entailment relation over M. To simplify notation, we shall

also use wq instead of gq\ua, and wp instead of gp\ua. Finally, gp\a-
entailment relations over M may be said to be ‘dual’ to q-entailment (they
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consist in collections of P-statements disallowing gaps, instead of collec-

tions of Q-statements disallowing gluts), and will henceforth be referred to

as d-entailment relations. Analogously, gq\a-entailment relations over M

dualize p-entailment, and will henceforth be referred to as b-entailment re-

lations.3 Please refer to Table 1 for a compilation of the above definitions

and notational conventions.4

It is easy to attest that a B-matrix allowing for gappy reasoning does

not in general give support to (Ina) and (C1a). To check this, it suffices

to consider a B-matrix such that Y ∪ N 6= V and consider a semantics

containing a valuation ν and some ϕ ∈ L such that ν(ϕ) ∈

Y

∩ N. The

failure of (Ina) —and the ensuing failure of ϕ |=q ϕ, in general— justi-

fies why q-entailment is often said to be ‘non-reflexive’, while the failure

of (C1a) —and the fact that Φ |=p Ψ does not necessarily follow from

Φ ∪ {ϕ} |=p Ψ and Φ |=p Ψ ∪ {ϕ}— justifies why p-entailment is said

to be ‘non-transitive’. For analogous reasons, d-entailment also fails, in

general, to be reflexive, and b-entailment also fails, in general, to be tran-

sitive. At any rate, in case a B-matrix identifies designatedness with non-

antidesignatedness (i.e., in case it takes Y = N) and identifies antidesig-

natedness with non-designatedness (i.e., it takes N =
Y

), then it should be

clear that the properties called (Inx) and (C1x), for x ∈ {y, n, a, u}, are all
enjoyed by the corresponding B-entailment relation, and there is in such a

situation no difference in semantic status to be found between T-, F-, Q-

and P-statements.

4. Consequence in one and in two dimensions

Following Shoesmith & Smiley’s [23], a symmetrical one-dimensional gener-

alization of the Tarskian notion of consequence is given by a 2-place relation

·  · on subsets of L subject to the following axioms:

3The attentive reader will have noticed that q-entailment and p-entailment general-
ize to a multiple-conclusion environment the notions of q-entailment and p-entailment
introduced in Section 1. Moreover, it is worth noting that the notion of d-entailment, as
dual to q-entailment, was introduced in a single-conclusion environment by Malinowski
in [17].

4As mnemonics, we let ‘g’ stand for ‘generalized’, ‘w’ for ‘weakened’, ‘a’ for ‘gaps’
and ‘u’ for ‘gluts’.
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x-entailment X-statements logical values matrix geometry

t T:

:

Φ

∣

∣

Ψ

: (Y⇒Y )

neither gaps

nor gluts

Y
Y= N N=

Yf F: Φ

:

∣

∣

:

Ψ
( N⇒ N)

wq Q: Φ

:

∣

∣

Ψ

: ( N⇒Y)

wp P:
:

Φ

∣

∣

:
Ψ

(Y⇒ N)

gt\u T

no gluts:

:

ϕ

∣

∣

:

ϕ

Y
Y N

gf\u F

q Q

p P

gt\a T

no gaps:
ϕ

:
∣

∣

ϕ
:

Y
Y Ngf\a F

b (dual-p) Q

d (dual-q) P

gt T
may allow

for both

gappy

and glutty

reasoning

Y N

Y
gf F

gq Q

gp P

Table 1. Some one-dimensional notions of entailment over B-matrices

(Over) Φ  Ψ, whenever Φ ∩Ψ 6= ∅

(1Ext) if Φ  Ψ, then Φ ∪ Φ′  Ψ ∪Ψ′

(CTrn) given Π ⊆ L, if Φ ∪ Σ  Ψ ∪ (Π \ Σ) for every Σ ⊆ Π,

then Φ  Ψ

Above, ‘Over’, ‘Ext’ and ‘CTrn’ stand, respectively, for overlap, extend-

ability and (cumulative) transitivity. Whenever there is need to avoid

ambiguity, instead of simply writing Φ  Ψ we shall say that
[

Φ ; Ψ
]

holds according to ·  ·. We omit the reference to the consequence relation

if the context suffices to disambiguate it.
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While, on the one hand, it is an easy exercise to check that t-, f-, gt-,

gf-, gt\u-, gt\a-, gf\u-, gf\a-, wq-, and wp-entailment relations all respect

the above axioms, on the other hand it is well known that any relation

respecting these axioms may be characterized by an appropriate class of

matrices. We revise such result in the context of B-consequence and B-

entailment by showing first that for each particular symmetrical Tarskian

consequence relation C there is a t-entailment relation that characterizes

it in terms of families of B-matrices. For that matter we will say that a

subset ∆ of L is t-closed if
[

∆ ; (L \∆)
]

fails to hold (according to C),

and we will associate to such t-closed set the semantical model given by

a B-matrix M
t = 〈L,Y,N, S〉 where Y = ∆, N = L \ ∆, and S contains

just the semantical model given by the identity mapping id on L. We call

Lindenbaum t-bundle Bt
C the family of B-matrices associated to all the

t-closed subsets of L. Then:

Theorem 5. Any t-consequence relation C is sound and complete with
respect to Bt

C, that is,
[

Φ ; Ψ
]

holds according to C iff Φ |=t Ψ is SBt
C
-

valid.

Proof: (⇒) Suppose Φ |=t Ψ is not SBt
C
-valid. By the definition of t-

entailment, this is to say that

:

Φ

∣

∣

Ψ

: is not SBt
C
-valid. So, there must be

some B-matrix 〈L,Y,L\Y, {id}〉 in the Lindenbaum t-bundle Bt
C for which

:

Φ

∣

∣

Ψ

: fails to be valid. By the definition of S-validity, and taking into

account that id is the identity mapping on L, it follows that Φ ⊆ Y and

Ψ ⊆ L \ Y. By the very definition of Bt
C, we know that Y is t-closed, thus

[

Y ; (L \ Y)
]

fails to hold according to C. Using (1Ext), we then conclude

that
[

Φ ; Ψ
]

fails to hold according to C.

(⇐) Suppose now that
[

Φ ; Ψ
]

fails to hold according to C. By (CTrn),

we know that there must be some Y ⊆ L such that
[

Φ ∪ Y ; Ψ ∪ (L \ Y)
]

fails to hold according to C. By (Over), it follows that Φ ⊆ Y and Ψ ⊆
L \ Y. Thus, by the definition of t-entailment, we see that Φ |=t Ψ is not

valid, that is, the T-statement

:

Φ

∣

∣

Ψ

: is not valid according to the B-matrix

M
t = 〈L,Y,L \ Y, {id}〉. So, a fortiori, this same T-statement also fails to

be valid according to Bt
C.

The very same result holds for the gt-, gt\a- and gt\u-entailment relations,

for which the notion of t-closure applies equally well. It is easy to adapt that

result for f-entailment. Indeed, call f-closed any subset ∆ of L such that
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[

(L \∆) ; ∆
]

fails to hold (according to a given consequence relation C),

associate to such f-closed set a B-matrix M
f = 〈L,L \ ∆,∆, {id}〉, and

let the corresponding Lindenbaum f-bundle be the family of B-matrices

associated to the f-closed subsets of L. The necessary adjustments in the

proof of Theorem 5 are then immediate. Again, the very same result holds

for the gt-, gf\a- and gf\u-entailment relations. In addition, either result

may be adapted to the case of wq- and wp-entailment relations — here,

given that the latter entailment relations are neither gappy nor glutty, one

may use the fact that Y = Nand N =

Y

.

We prove next an analogous result for q-entailment and its dual. To

axiomatize q-entailment we will make use of extendability and transitivity.

Accordingly, a q-consequence relation will be a relation subject to axioms

(1Ext) and (CTrn). It is an easy exercise to check that q-entailment rela-

tions respect both these axioms. Given a q-consequence relation C, and two

disjoint subsets ∆1 and ∆2 of L, we will say that 〈∆1,∆2〉 is a q-closed pair

if
[

L \∆2 ; L \∆1

]

fails to hold (according to C), and we will associate to

such q-closed pair a B-matrix M
q = 〈L,Y,N, S〉 where Y = ∆1, N = ∆2,

and S contains just the identity mapping id on L. We call Lindenbaum

q-bundle Bq
C the family of B-matrices associated to all the q-closed pairs

of L. We can then prove that:

Theorem 6. Any q-consequence relation C is sound and complete with
respect to Bq

C, that is,
[

Φ ; Ψ
]

holds according to C iff Φ |=q Ψ is SBq

C
-

valid.

Proof: (⇒) Suppose Φ |=q Ψ is not SBq

C
-valid. By the definition of q-

entailment, this is to say that Φ

:

∣

∣

Ψ

: is not SBq

C
-valid. So, in the Lindenbaum

q-bundle Bq
C there must be some B-matrix 〈L,Y,N, {id}〉 where Y ∩N = ∅

for which Φ

:

∣

∣

Ψ

: fails to be valid. By the definition of B-entailment, it follows

that Φ ⊆ Nand Ψ ⊆

Y

. By the very definition of Bq
C, we know that 〈Y,N〉

is q-closed, thus
[

N;

Y]
fails to hold according to C. Then, using (1Ext)

we conclude that
[

Φ ; Ψ
]

fails to hold according to C.

(⇐) Suppose now that
[

Φ ; Ψ
]

fails to hold according to C. By (CTrn)

we know that there must be some set N⊆ L such that
[

Φ ∪ N; Ψ ∪

Y]
,

where

Y

= L \ N, fails to hold according to C. Note that L \ (Ψ ∪

Y

) and

L \ (Φ ∪ N) are disjoint, thus 〈Ψ ∪

Y

,Φ ∪ N〉 is a q-closed pair according

to C. By the definition of q-entailment, we then see that Φ |=q Ψ is not
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valid, that is, the Q-statement Φ

:

∣

∣

Ψ

: is not valid according to the B-matrix

M
q = 〈L,L\(Ψ∪

Y

),L\(Φ∪ N), {id}〉. So, a fortiori, this same Q-statement

also fails to be valid according to Bq
C.

It is easy to adapt this result for d-entailment. In that case, given

a q-consequence relation C, we might call d-closed any pair 〈∆1,∆2〉 of

sets such that ∆1 ∪∆2 = L and
[

∆1 ; ∆2

]

fails to hold (according to C),

associate to such d-closed pair a B-matrix M
d = 〈L,∆1,∆2, {id}〉, and

let the corresponding Lindenbaum d-bundle be the family of B-matrices

associated to the d-closed subsets of L. The necessary adjustments in the

proof of Theorem 6 are then immediate.

To prove an analogous result for p-entailment (Y ⇒ N) and its dual, we

first define a p-consequence relation as a relation subject to axioms (Over)

and (1Ext). It is an easy exercise to check that p-entailment respects axioms

(Over) and (1Ext). Given a p-consequence relation C, and two disjoint

subsets ∆1 and ∆2 of L, we will say that 〈∆1,∆2〉 is a p-closed pair if
[

∆1 ; ∆2

]

fails to hold (according to C), and we associate to such p-closed

pair a B-matrix M
p = 〈L,Y,N, S〉 where Y = ∆1, N = ∆2, and S = {id}.

We call Lindenbaum p-bundle Bp
C the family of B-matrices associated to all

the p-closed pairs of L. We can then prove that:

Theorem 7. Any p-consequence relation C is sound and complete with
respect to Bp

C, that is,
[

Φ ; Ψ
]

holds according to C iff Φ |=p Ψ is SBp

C
-

valid.

Proof: (⇒) Suppose Φ |=p Ψ is not SBp

C
-valid. By the definition of p-

entailment, this is to say that

:

Φ

∣

∣

:

Ψ
is not SBp

C
-valid. So, in the Lindenbaum

p-bundle Bp
C there must be some B-matrix 〈L,Y,N, {id}〉 where Y ∩N = ∅

for which

:

Φ

∣

∣

:

Ψ
fails to be valid. By the definition of B-entailment, it follows

that Φ ⊆ Y and Ψ ⊆ N. By the very definition of Bp
C, we know that 〈Y,N〉

is p-closed, thus
[

Y ; N
]

fails to hold according to C. Using (1Ext), we

conclude that
[

Φ ; Ψ
]

fails to hold according to C.

(⇐) Suppose now that
[

Φ ; Ψ
]

fails to hold according to C. By (Over), it

follows that Φ and Ψ are disjoint, thus 〈Φ,Ψ〉 is a p-closed pair according

to C. By the definition of p-entailment, this implies that Φ |=p Ψ fails to

be valid, given that the P-statement

:

Φ

∣

∣

:

Ψ
fails to be valid according to the

B-matrix M
p = 〈L,Φ,Ψ, {id}〉. So, a fortiori, this same P-statement also

fails to be valid according to Bp
C.
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To adapt this result for b-entailment, given a p-consequence relation C,

we might call b-closed any pair 〈∆1,∆2〉 of sets such that ∆1 ∪ ∆2 = L

and
[

L \∆2 ; L \∆1

]

fails to hold (according to C), associate to such b-

closed pair a B-matrix M
b = 〈L,∆1,∆2, {id}〉, and let the corresponding

Lindenbaum b-bundle be the family of B-matrices associated to all the b-

closed subsets of L. The necessary adjustments in the proof of Theorem 7

are then immediate.

Finally, we shall prove an analogous result that applies to gq-,

gp-, gd- and gb-entailment. All these forms of entailment will be seen

to be characterized by the notion of gq-consequence axiomatized simply by

(1Ext). To start with, it is easy to check that these forms of entailment

do indeed respect (1Ext). Now, given a gq-consequence relation C, and

two arbitrary subsets ∆1 and ∆2 of L, we will say that 〈∆1,∆2〉 is a gq-

closed pair if
[

(L \∆2) ; (L \∆1)
]

fails to hold (according to C), and we

will associate to such gq-closed pair a B-matrix M
gq = 〈L,Y,N, S〉 where

Y = ∆1, N = ∆2, and S contains just the identity mapping id on L. We

call Lindenbaum gq-bundle Bgq
C the family of B-matrices associated to all

the gq-closed pairs of L. We can then prove that:

Theorem 8. Any gq-consequence relation C is sound and complete with
respect to Bgq

C , that is,
[

Φ ; Ψ
]

holds according to C iff Φ |=gq Ψ is SBgq

C
-

valid.

Proof: (⇒) Suppose Φ |=gq Ψ is not SBgq

C
-valid. By the definition of gq-

entailment, this is to say that Φ

:

∣

∣

Ψ

: is not SBgq

C
-valid. So, in the Lindenbaum

gq-bundle Bgq
C there must be some B-matrix 〈L,Y,N, {id}〉 for which Φ

:

∣

∣

Ψ

:

fails to be valid. By the definition of B-entailment, it follows that Φ ⊆ N

and Ψ ⊆

Y

. By the very definition of Bgq
C , we know that 〈Y,N〉 is gq-closed,

thus
[

N;

Y]
fails to hold according to C. Using (1Ext), we conclude that

[

Φ ; Ψ
]

fails to hold according to C.

(⇐) Suppose now that
[

Φ ; Ψ
]

fails to hold according to C. So, 〈L\Ψ,L\Φ〉
is a gq-closed pair. By the definition of gq-entailment, this implies that

Φ |=gq Ψ fails to be valid, given that the Q-statement Φ

:

∣

∣

Ψ

: fails to be valid

according to the B-matrix M
gq = 〈L,L\Ψ,L\Φ, {id}〉. So, a fortiori, this

same Q-statement also fails to be valid according to Bgq
C .

The latter applies to gb-entailment without modifications, given that in

such case we are dealing again with an arbitrary collection of Q-statements.
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To adapt the latter result for arbitrary collections of P-statements that are

characteristic both of gp-entailment and of gd-entailment, we proceed as

follows. Given a gq-consequence relation C, we might call gp-closed any

pair 〈∆1,∆2〉 of L such that
[

∆1 ; ∆2

]

fails to hold (according to C),

associate to such gp-closed pair a B-matrix M
b = 〈L,∆1,∆2, {id}〉, and

let the corresponding Lindenbaum gp-bundle be the family of B-matrices

associated to the gp-closed subsets of L. The necessary adjustments in the

proof of Theorem 8 are then immediate. The result applies to gd-entailment

without modifications. Note also that such results generalize Theorems 1

and 2 from Section 2.

Following [2], we now introduce a two-dimensional generalization of

the standard multiple-conclusion notion of consequence given by (Over),

(1Ext) and (CTrn). The canonical notion of B-consequence is a 2×2-place

relation ·
·

∥

∥

·
·
on subsets of L subject to the following axioms:

(Overy) Φ11

Φ21

∥

∥

Φ12

Φ22

, whenever Φ21 ∩ Φ12 6= ∅

(Overn) Φ11

Φ21

∥

∥

Φ12

Φ22

, whenever Φ11 ∩ Φ22 6= ∅

(2Ext) if Φ11

Φ21

∥

∥

Φ12

Φ22

, then Φ11∪Ψ11

Φ21∪Ψ21

∥

∥

Φ12∪Ψ12

Φ22∪Ψ22

(CTrny) given Π ⊆ L,

if Φ11

Φ21∪Σ

∥

∥

Φ12∪(Π\Σ)
Φ22

for every Σ ⊆ Π, then Φ11

Φ21

∥

∥

Φ12

Φ22

(CTrnn) given Π ⊆ L,

if
Φ11∪(Π\Σ)

Φ21

∥

∥

Φ12

Φ22∪Σ for every Σ ⊆ Π, then Φ11

Φ21

∥

∥

Φ12

Φ22

Whenever there is need to avoid ambiguity, instead of simply writing
Φ11

Φ21

∥

∥

Φ12

Φ22

we shall say that
[Φ11 ; Φ21

Φ12 ; Φ22

]

holds according to ·
·

∥

∥

·
·
. The veri-

fication that B-entailment is a form of B-consequence, i.e., that it respects

all the above axioms, is an easy exercise.

An important property of consequence relations defined over languages

with algebraic character is the so-called substitution-invariance

(a.k.a. ‘structurality’), that can here be represented by the following axiom:

(SI) for every endomorphism σ of L, if Φ11

Φ21

∥

∥

Φ12

Φ22

, then
σ(Φ11)
σ(Φ21)

∥

∥

σ(Φ12)
σ(Φ22)

It is easy to see that any B-matrix based on a truth-functional semantics

respects the axiom (SI).
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We proceed to show that any particular B-consequence relation C may

be given an adequate semantics in terms of B-entailment. For that matter

we will say that the pair 〈Ψy,Ψn〉 of subsets of L is B-closed if
[ L\Ψn ; Ψy

L\Ψy ; Ψn

]

fails to hold (according to C), and we will associate to such B-closed pair

a B-matrix M
B = 〈L,Y,N, S〉 where Y = Ψy, N = Ψn, and S contains

just the identity mapping id on L. We call Lindenbaum B-bundle BB
C the

family of B-matrices associated to all the B-closed pairs of subsets of L.
The following result shows that any B-consequence relation may be fully

characterized by its associated Lindenbaum B-bundle.

Theorem 9. Any B-consequence relation C is sound and complete with

respect to BB
C , that is,

[Φ11 ; Φ21

Φ12 ; Φ22

]

holds according to C iff
Φ11

Φ21

∣

∣

Φ12

Φ22

is SBB
C
-

valid.

Proof: (⇒) Suppose
Φ11

Φ21

∣

∣

Φ12

Φ22

is not SBB
C
-valid. This means that there is

some B-matrix 〈L,Y,N, {id}〉 in the Lindenbaum B-bundle BB
C for which

Φ11

Φ21

∣

∣

Φ12

Φ22

fails to be valid. By the definition of S-validity, and taking into

account that id is the identity mapping on L, it follows that Φ21 ⊆ Y,

Φ11 ⊆ L \ N, Φ22 ⊆ N and Φ12 ⊆ L \ Y. Given that, by the very definition

of BB
C , the pair 〈Y,N〉 is B-closed, we know that

[ L\N ; Y
L\Y ; N

]

fails to hold.

Using (2Ext), we conclude then that
[Φ11 ; Φ21

Φ12 ; Φ22

]

fails to hold.

(⇐) Suppose now that
[Φ11 ; Φ21

Φ12 ; Φ22

]

fails to hold. By (CTrny), we know that

there must be some Y ⊆ L such that
[ Φ11 ; Φ21∪Y

Φ12∪(L\Y) ; Φ22

]

fails to hold. By

(Overy), it follows that Φ21 ⊆ Y and Φ12 ⊆ L \ Y. Analogously, using

(CTrnn) and (Overn) we conclude that Φ11 ⊆ L \ N and Φ22 ⊆ N. Thus,

it follows by the definition of B-entailment that the B-statement
Φ11

Φ21

∣

∣

Φ12

Φ22

is not valid according to the B-matrix 〈L,Y,N, {id}〉, so a fortiori it also

fails to be valid according to BB
C .

An important specialization of the above result may be proved in case

we associate B-consequence to a language and a semantics structured in

the appropriate ways:

Theorem 10. Any substitution-invariant B-consequence relation C is char-
acterizable by the Lindenbaum B-bundle of truth-functional B-matrices BB

C .

Proof: (⇒) Suppose
Φ11

Φ21

∣

∣

Φ12

Φ22

is not SBB
C
-valid. This means that there is

some truth-functional B-matrix 〈L,Y,N,Hom(L,L)〉 in the Lindenbaum B-
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bundle BB
C for which

Φ11

Φ21

∣

∣

Φ12

Φ22

fails to be valid. Note that in this B-matrix

valuations are simply identified with substitutions. By definition of S-

validity, it follows that there is some substitution σ ∈ Hom(L,L) such that

σ(Φ21) ⊆ Y, σ(Φ11) ⊆ L \ N, σ(Φ22) ⊆ N and σ(Φ12) ⊆ L \ Y. Given that

the pair 〈Y,N〉 is B-closed, by the definition of BB
C , we know that

[ L\N ; Y
L\Y ; N

]

fails to hold. Using (2Ext), we conclude that
[ σ(Φ11) ; σ(Φ21)
σ(Φ12) ; σ(Φ22)

]

fails to hold.

Finally, from (SI) it follows that
[Φ11 ; Φ21

Φ12 ; Φ22

]

fails to hold.

(⇐) This direction follows closely the proof of Theorem 9(⇐). Indeed, note

that id is an endomorphism of L, and invoke the definition of validity for

B-entailment.

Substitution-invariant versions of Theorems 5, 6, 7 and 8 may be easily

obtained by following a similar line of reasoning as in Theorem 10.

5. Inferential many-valuedness

Generalizing Suszko’s Thesis, one may now show that a B-consequence

relation is, in general, inferentially four-valued. For that purpose, consider

the following set V4 = {F,N,B, T} of truth-values. Given a B-matrix

M = 〈V,Y,N, S〉, let ♭ : V −→ V4 be defined by setting:

♭(w) =



















F if w ∈

Y

∩ N

N if w ∈

Y

∩ N

B if w ∈ Y ∩ N

T if w ∈ Y ∩ N

TF

B

N

Y

N

YN

On top of this definition, consider the B-matrixM4=〈V4,{B,T},{F,B}, S4〉,
where S4 = {♭ ◦ ν | ν ∈ S}. Then it is not hard to check that:

Theorem 11. M and M4 characterize the same logic, that is,
Φ11

Φ21

∣

∣

Φ12

Φ22

is
S-valid iff it is S4-valid.

Proof: Obviously, any valuation ν in S that witnesses the invalidity of
Φ11

Φ21

∣

∣

Φ12

Φ22

according to M translates into a valuation ν4 = ♭◦ν that witnesses

the invalidity of
Φ11

Φ21

∣

∣

Φ12

Φ22

according to M4. For the converse direction,

let ν be a valuation in M4 such that ν(Φ21) ⊆ {B, T}, ν(Φ11) ⊆ {N,T},
ν(Φ22) ⊆ {F,B} and ν(Φ12) ⊆ {F,N}. By definition of M4, we know that
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ν = ♭◦νM for some νM ∈ S. Let LT ⊆ Φ21∪Φ11 be defined as ν−1({T}) (the
inverse image of T under ν), let LB ⊆ Φ21 ∪ Φ22 be defined as ν−1({B}),
let LN ⊆ Φ11 ∪ Φ12 be defined as ν−1({N}), and let LF ⊆ Φ22 ∪ Φ12 be

defined as ν−1({F}).
Now, given ϕ ∈ Φ21, we have to show that νM(ϕ) ∈ Y. Note that ν(ϕ)

belongs to ν(Φ21) (the direct image of Φ21 under ν), so by the assumption

that ν(Φ21) ⊆ {B, T}, it follows that ν(ϕ) ∈ {B, T}, thus ϕ ∈ LB ∪ LT =

ν−1({B, T}). But by the definition of ♭, we know that ♭(νM(ϕ)) = ν(ϕ) ∈
{B, T} iff νM(ϕ) ∈ Y. We reason in an analogous way to check that

νM(ϕ) ∈ Nfor ϕ ∈ Φ11, that νM(ϕ) ∈ N for ϕ ∈ Φ22, and that νM(ϕ) ∈

Y

for ϕ ∈ Φ12.

Note that when gappy reasoning is not allowed for (i.e., in case

Y

∩ N=

∅), then V4 reduces to V⊤
3

= {F,B, T}, and when glutty reasoning is not

allowed for (i.e., in case Y ∩ N = ∅), then V4 reduces to V⊥
3

= {F,N, T}.
Finally, in case neither gappy nor glutty reasoning are allowed for, then

V4 reduces to V2 = {F, T}. Considering the definitions summarized in

Table 1 (check in particular its last column), one may accordingly say that,

in principle, from an inferential viewpoint:

(M1) t- and f-entailment are inferentially two-valued;

the same applies to wq- and wp-entailment

(M2) q-, d-, p-, b-entailment are all inferentially three-valued

the same applies to gt\u-, gt\a-, gf\u- and gf\a-entailment

(M3) q- and p-entailment may allow for gaps;

b- and d-entailment may allow for gluts

(M4) all generalized notions of entailment

(gx-entailment, for x ∈ {t, f, q, p}),
are inferentially four-valued

As we have seen in the previous sections, several in principle distinct

one-dimensional consequence relations may be defined from any given B-

consequence relation. We have also just shown, above, that such conse-

quence relations can be endowed with semantics based on at most four

inferential values, and so we may hereupon use the latter to go about in-

vestigating the former. Given a specific B-consequence relation C, by the

t-aspect of C we will refer to all the T-statements that hold in C together

with the assumptions that neither gaps nor gluts are present (notation:

|=t
C). Analogously, the gt-aspect of C will refer to all the T-statements

that hold in C, without the assumptions about gaps and gluts (notation:
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p,wp, t, f,wq, b

gt\u gf\u gt\a gf\a

q, gq gt gf gp, d

Fig. 1: Aspects of a given B-entailment relation

|=gt
C ). We may similarly define the x-aspect of C for each of the forms of

x-entailment described in Table 1. From that perspective, we explore in

what follows the set-theoretic inter-relations between the various notions

of entailment introduced before.

Theorem 12. Let C be a B-consequence relation over a language L. Then,
the Hasse diagram in Figure 1 represents all connections in terms of strict
set-theoretic inclusion between the various aspects of C. In other words:

(1) If x1 is above x2, then |=x2
C ⊆ |=x1

C

(2) If x1 is above x2, then |=x2
C 6⊇ |=x1

C

(3) If x1 and x2 are not comparable, then |=x1
C 6⊆ |=x2

C and |=x2
C 6⊆ |=x1

C

Proof: For the first part of the proof, let M4 = 〈{F,N,B, T}, {B, T},
{F,B}, S〉 be an inferentially four-valued characterization of C. Checking

the equalities ( |=q
C = |=gq

C , etc) is an easy exercise using the definitions

summarized in Table 1, and is left to the reader. To check that |=q
C ⊆

|=
gt\u

C , let us suppose that Φ |=
gt\u

C Ψ is not S-valid. In that case, there

must be some ν ∈ S such that (a) ν(Φ) ⊆ {B, T} \ {B} = {T} and

(b) ν(Ψ) ⊆ {F,N}\{B}. But from (a) it follows that (c) ν(Φ) ⊆ {N,T} =

{N,T} \ {B}. So, from (c) and (b) we conclude that Φ |=q
C Ψ is not S-

valid. Next, to check that |=
gt\u

C ⊆|=t
C , we suppose this time that Φ |=t

C Ψ

is not S-valid. This means that there must be some ν ∈ S such that (a′)

ν(Φ) ⊆ {B, T} \ {N,B} = {T} and (b′) ν(Ψ) ⊆ {F,N} \ {N,B} = {F}.
From (b′) we conclude that (c′) ν(Ψ) ⊆ {F,N} = {F,N}\{B}. Then, from

(a′) and (c′) it follows that Φ |=
gt\u

C Ψ is not S-valid. The remaining ten

inclusions may be checked in a similar way, and the corresponding exercise

is again left to the reader.
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For the second part of the proof, let C be a B-consequence relation

containing the six following unary 4-valued connectives, characterized by

their respective truth-tables:

◦1 ◦2 ◦3 ◦4 ◦5 ◦6

F F F F F F F

N N F B B N F

B F N B F N B

T N N N B B B

Let’s denote by J(x, n) the judgment of the form ϕ |=x
C ◦nϕ. We will show

that for each choice of x1, x2 ∈ {t, q, d, gt, gf, gt\u, gt\a, gf\u, gf\a},
with x1 6= x2, there is some n ∈ {1, 2, 3, 4, 5, 6} such that J(x1, n) is S-

valid while J(x2, n) is not S-valid (or the other way round). Note first

that: (i) J(x, 1) is S-valid iff x ∈ {t, q, gf, gf\u, gf\a}, (ii) J(x, 2) is S-valid

iff x ∈ {t, d, gt\a, gf\a}, (iii) J(x, 3) is S-valid iff x ∈ {t, gt\a, gf\u, gf\a},
(iv) J(x, 4) is S-valid iff x ∈ {t, q, gt\u, gf\u}, (v) J(x, 5) is S-valid iff x ∈
{t, gt\u, gt\a}, and (vi) J(x, 6) is S-valid iff x ∈ {t, gt, gt\u, gt\a}. One may

now evaluate the converses of the twelve inclusions from the first part of

the proof. For instance, to conclude that |=q
C 6⊇ |=

gt\u

C one may invoke

either item (v) or item (vi), and to conclude that |=
gt\u

C 6⊇ |=t
C items (i) or

(ii) or (iii) will do the job. The other ten cases are left as exercise to the

reader.

For the third part of the proof, containing the remaining fourty pairwise

comparisons between one-dimensional entailment relations of various kinds

induced by a given two-dimensional entailment relation, one may again use

the connectives from the second part of the proof. Items (i)–(vi) will suffice

for the reader to complete the argument.

6. Summary and outlook

To sum up, let us recall that in the present paper we have first shown that

every purely monotonic single-conclusion consequence relation is semanti-

cally characterized by a certain class of generalized q-matrices, which we

call B-matrices. We next introduced a two-dimensional multiple-conclusion

notion of entailment based on B-matrices, which provides a uniform frame-

work for studying several different notions of entailment based on des-

ignation, antidesignation, and their complements. Let us underline that
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we take the two-dimensional presentation to be quite useful in compari-

son with a linear presentation, because it nicely supports seeing affinities,

for instance, between different forms of ‘reflexivity’ of entailment, such as

(Iny), (Inn), (Inu) and (Ina), which impose distinct semantic constraints on

the geometry of the underlying matrices. Moreover, the generalization to

a multiple-conclusion framework emphasizes the symmetries between the

four positions of a B-statement, and the multiplicity of inferential values

in B-matrices allows one to accommodate at the same time not only an

understanding of entailment as the preservation of some property from the

premises to the conclusion of an inference, but also other, non-Tarskian

conceptions of semantical consequence such as p- and q-entailment. Here,

we defined the two-dimensional concept of a B-consequence relation, and

presented an abstract characterization of B-consequence relations by classes

of B-matrices, and eventually it was also shown that any B-consequence re-

lation is, in general, inferentially four-valued. Our study is not alone in that

quest: our result about inferential four-valuedness, applied to the multiple-

conclusion one-dimensional framework, may be seen as a particular case of

a result from Humberstone, in [11], where the author analyzes the situation

in which the consequence relations are allowed to involve sets of formulas

from two different languages, both associated to logics characterized in

terms of t-entailment; Ripley and French, in [10], also investigate infer-

ential many-valuedness, its connections with q- and p-entailment, and the

abstract characterizations of the consequence relations thereby involved,

including the purely monotonic case, with an approach based on the well-

known Galois connection between semantics and the abstract notion of

consequence. Such investigations make clear that logic should not be re-

stricted to the study of Tarski-type, Scott-type, or Shoesmith-Smiley-type

consequence relations. The present effort should be seen thus as a contri-

bution to the discussion about the concept of entailment and, hence, also

the understanding of logic as a discipline.

It is worth briefly highlighting here some of the principal novelties

brought by the present study, as well as pointing out some possible di-

rections for further investigation. The multiple-conclusion versions of q-
entailment and p-entailment, here dubbed q-entailment and p-entailment,

have first been introduced in this paper, together with their duals given

by the notions of d-entailment and b-entailment. Figure 2 groups the

one-dimensional notions of entailment hereby defined in terms of their ab-

stract characterizations: (i) t- and gt-entailment, and their duals f- and
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gq, gp

b, p d, q

wq, gt\u, gt\a, gt, t, f, gf, gf\a, gf\u,wp

Fig. 2: Classes of consequence relations, from an abstract viewpoint

gf-entailment have been seen to be characterized by axioms (Over), (1Ext)

and (CTrn), which are known to provide the most natural generalization

of the Tarskian single-conclusion notion of consequence, and the same ap-

plies to other notions of entailment introduced in the present paper; (ii) q-

entailment and its dual d-entailment have been seen to be characterized

by (1Ext) and (CTrn); (iii) p-entailment and its dual b-entailment have

been seen to be characterized by (Over) and (1Ext); in addition, (iv) gq-

and its dual gp-entailment have been seen to be characterized by (1Ext),

that is, by ‘pure monotonicity’. The Hasse diagram in Figure 2 shows how

the classes of entailment relations of each kind are organized according to

set-theoretic inclusion: we have seen, for instance, that each consequence

relation characterized in terms of t-entailment is also characterizable in

terms of f-entailment, and vice versa, we have seen that each of the latter

may be seen as particular cases of some consequence relation characterized

in terms of q-entailment, and so forth.

From the viewpoint of the reduction results presented in Section 5, one

should note in particular that: (i) the t-aspect of a given B-consequence

relation does not in general coincide with its gt-aspect, for the latter allows

for two extra inferential values and consequently more valuations based on

them; (ii) the gt-aspect of a given B-consequence relation treats as a gap

what its gf-aspect treats as a glut, and vice versa, and so they might not co-

incide; (iii) the q-aspect and the p-aspect of a given B-consequence relation

do not in general coincide, even though both allow for gappy reasoning, and

a similar thing might be said about the d-aspect and the b-aspect of a given

B-consequence relation, with the difference that the two latter aspects allow

for glutty instead of gappy reasoning; (iv) the gq-aspect and the gp-aspect

of a given B-consequence do not in general coincide, in spite of both being

in principle logically four-valued and of both respecting the same abstract

axioms. In terms of the sixteen kinds of entailment relation studied in the
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present paper, Figure 1 shows how some two-dimensional notions of con-

sequence may indeed exhibit up to nine different aspects. Of course, one

does not need to rest content with those specific aspects: other interesting

notions of entailment are in principle definable by yet other combinations

of distinguished sets of logical values. One might take it that the different

one-dimensional aspects of a given two-dimensional notion of consequence

play a role similar to the one played by the ‘zero-dimensional’ notion of

tautology with respect to the usual one-dimensional Tarskian consequence

relations. It is worth noticing, at any rate, that the distinct aspects of a

specific B-consequence represent logics on their own right, and might be

taken to vindicate a variety of logical pluralism in which logics of different

kinds may be said to ‘cohabitate’ the same generalized logical structure.

We have presented B-matrices as a natural generalization of q-matrices,

and by explicitly adding a semantics to the notion of logical matrix we have

made it clear that the abstract characterization results apply very naturally

even in the case of consequence relations in which substitution-invariance

is not at issue. From the viewpoint of B-consequence we have also seen

that q-entailment and p-entailment have much more in common than they

might originally have appeared to have. For instance, both of these non-

Tarskian notions of entailment respect the forms of overlap and cumulative

transitivity represented at the diagonals of the two-dimensional syntacti-

cal representation of B-consequence. An explanation of why q-entailment

appears to fail ‘reflexivity’, at the one-dimensional level, is to be found at

the two-dimensional level, where q-consequence is seen to be defined by a

collection of Q-statements but respects a particular form of overlap that

is given only by a P-statement. Explanations of why q-entailment only

respects a weakened form of ‘transitivity’, and also of why p-entailment

appears to fail ‘transitivity’ may also be found at the two-dimensional level

— again p-consequence is defined by a collection of P-statements, but the

appropriate additional notion of transitivity respected by it is only express-

ible as a Q-statement.

The two-dimensional presentation was also adopted in [12] to define

predicate sequent systems for partial logics whose semantics is inferentially

three-valued, and in [1] to define a propositional sequent system for an

inferentially four-valued version of the logic of First Degree Entailment. In

the present paper we have only dealt with specific logics in proving the

second half of Theorem 12. As a matter of fact, it may be shown that any

(non-deterministic) connective of any arity may be characterized in terms of
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appropriate collections of B-statements. We shall however leave the details

of that result, as well as a general proof-theoretic study of B-entailment,

as matter for future work.

It has generally been held in the literature that at least one of the

‘logical values’ obtained by Suszko Reduction represents a distinguished set

of values in the corresponding notion of matrix, by way of an appropriate

(generalized) characteristic function that applies to the algebraic values.

Malinowski [21, p. 1], for example explains that

two facets of many-valuedness — referential and inferential —

are unravelled. The first, fits the standard approach and it

results in multiplication of semantic correlates of sentences,

and not logical values in a proper sense. The second many-

valuedness is a metalogical property of inference and refers to

partition of the matrix universe into more than two disjoint

subsets, used in the definition of inference.

For the generalized version of q-entailment introduced here, we have up-

graded the inferential reduction by exploring a very different strategy in

order to obtain the logical values out of the distinguished subsets used in the

corresponding definition of B-entailment. This way one sees that, in gen-

eral, the distinguished sets of the logical matrices need not be mapped onto

logical values; rather, the logical values play a direct role in defining the

carrier of the matrix obtained through the reduction, but only play an indi-

rect role in defining the notion of entailment. Starting from B-consequence

one obtains inferentially three-valued and inferentially two-valued notions

of entailment by excluding some logical values through the addition of ap-

propriate forms of the axiom (Over). A similar strategy might be used

to go beyond four logical values: for instance, to obtain five logical values

one could naturally add an additional independent distinguished set to the

definition of B-matrix and appropriately add a further dimension to the

corresponding notion of entailment; then, to exclude three out of the eight

logical values thereby induced, one would again add appropriate variations

of the axiom (Over).

The traditional proof of the logical two-valuedness of Tarskian conse-

quence relations relies on the division of the set of truth-values into a set

of designated values and its complement. Given that these sets uniquely

determine one another, the Suszko Reduction may actually be claimed to

demonstrate the ‘logical mono-valuedness’ of Tarskian consequence rela-
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tions, as has been remarked in [27, 24]. Since the four subsets

Y

∩N,

Y

∩ N,

Y∩N, and Y∩ Nthat are singled out from a given B-matrixM = 〈V,Y,N, S〉
to obtain the B-matrix M4 = 〈V4, {B, T}, {F,B}, S4〉 are uniquely deter-

mined by Y, N and their complements, through set-theoretic intersection,

it might now be held that B-consequence relations are, in general, not only

inferentially four-valued, but actually ‘logically bi-valued’.

According to G. Malinowski [20], “[g]etting logical n-valuedness for

n > 3 is tempting” and Malinowski identifies as a first step in that direction

a division of the matrix universe into more than three mutually disjoint

subsets. This might suggest identifying the logical values with mutually

disjoint subsets of V. The disjointness requirement, however, creates a

problem for B-matrices because the set Y ∩ N may in general be non-

empty. Nonetheless, the idea of identifying the logical values with subsets

of V points at an alternative direction into which the notion of B-entailment

can be generalized. Along the lines of R. Wojcicki’s [28, 29] notion of a

ramified (or general) matrix, a generalized B-matrix for a language L could

be defined as a tuple 〈V, D1, . . . , Dn, S〉, where V is a set, Di ⊆ V for every

i ∈ {1, . . . , n}, and S is a collection of mappings ν : L −→ V . Then

again, set-theoretic combinations of the distinguished subsets Di and their

complements might be used to define notions of entailment that reach far

beyond the ones considered in the present paper.
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