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Abstract: The matrix variate elliptical generalization of [30] is presented
in this work. The published Gaussian case is revised and modified. Then,
new aspects of identifiability and consistent estimation of mean form and
mean form difference are considered under elliptical laws. For example, in-
stead of using the Euclidean distance matrix for the consistent estimates,
exact formulae are derived for the moments of the matrix B = Xc (Xc)T ;
where Xc is the centered landmark matrix. Finally, a complete application
in Biology is provided; it includes estimation, model selection and hypoth-
esis testing.
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1. Introduction

Statistical theory of shape is a versatile technique of classification and compar-
ison of “objects” in several disciplines. It can be set in terms of matrix variate
theory, then a plenty of distributional results are available for applications. How-
ever, some strong problems appear: the use of asymptotic distributions, tangent
plane inference, isotropic models, Gaussian assumptions, etc.; see [16]. In partic-
ular, the implementation of procrustes theory has received critics from experts
on morphometrics and related fields, see [30].

Recently, the so called generalized shape theory has emerged as a robust
alternative for the addressed disadvantages. It is based on exact shape densities
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indexed by families of distributions with elliptical contours. The shape densities
are given in terms of series of Jack polynomials, which are eigenfunctions of
the Laplace-Beltrami operator, [40]. Single polynomial can be calculated by the
algorithm of [27], but the series involve difficult problems. The generalized shape
theory has reached a moderate computational success in the following contexts:
via QR decomposition ([22], [10]), singular value decompositions ([28], [21], [14],
[7], [8]), affine ([22], [14], [4], [3], [5]), and Pseudo-Wishart ([9]).

Each approach models the shape of the objects under geometrical transforma-
tions. The methods give some invariants of interest for applications. For exam-
ple: 1. affine transformation removes any geometrical information of rotation,
translation, scaling and uniform shear; 2. similarity transformations via QR,
SVD or Pseudo-Wishart remove rotation, translation and scaling. 3. projective
shape removes affine effect and projection.

About the computation in the likelihood estimation, some affine densities
can be reduced to polynomials of low degree; then the associated inference gives
robust estimation of location and scale population parameters.

However, likelihood estimation with similarity shape distributions is a diffi-
cult task, because it demands the computation of infinite series of Jack poly-
nomials. A common computational practice considers isotropic models, but this
assumption is unrealistic in applications. Users of Euclidean shape theory expect
estimation of the correlation structure of the landmarks, in order to provide a
full description of the objects, see [32].

Instead of the likelihood approach, some authors have proposed the method-
of-moments estimators under Gaussian models. The technique provides a com-
putable and consistent estimation of mean form and variance-covariance struc-
ture, see [30], [31], [39] and the references therein. In fact, [30] showed that the
addressed procrustes analysis yield inconsistent estimators of mean form as well
as shape. He also proved that variance-covariance parameters are nonidentifi-
able under this analysis. [41] also reported the inability of procrustes methods
to estimate the correct variance-covariance structure. It is important to note
that procrustes analysis is a widely used method for shape estimation in several
fields, see [16].

Thus the method-of-moments estimators can be considered as a promising
technique in shape theory. Some studies can include: a revision of the Gaus-
sian case given in [30]; a generalization in the context of elliptical laws, model
selection criteria and shape hypothesis testing.

With the modified Gaussian case of [30], we can establish a connection with
the theoretical studies of [33], [36] and [11]. And then we can provide a unified
approach in the general framework of the matrix variate elliptical shape theory.

The above discussion is placed in this work as follows: Section 2 clarifies
some results of the published Gaussian case and proposes a generalization in
the context of matrix variate elliptical distributions. The section includes: the
identifiability and estimability of the parameters; the perturbation model under
a matrix variate elliptical distribution; the invariance and the nuisance param-
eters. Section 3 studies the consistent estimation of the population parameters
under dependence and independence. It also gives exact formulae for the mo-
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ments estimators. Section 4 provides a consistent estimation for a general non-
negative definite correlation matrix. Section 5 gives extensions of form difference
under the Euclidean Distance Matrix and elliptical models. Finally, Section 6
gives a complete example with the main results of the paper. It also proposes a
model selection criteria.

2. Preliminary results

In this section we review some Gaussian distributional results of [30]. Then
the statistical model of the paper is proposed under a general matrix variate
elliptical distribution.

2.1. Matrix variate elliptical distribution

A detailed discussion of matrix variate elliptical distributions can be found in
[19] and [23].

Remark 2.1. There are two definitions for a matrix variate Gaussian distri-
bution. The first one is written as

Y ∼ NK×D(μ,Σ,Θ),

see [1], [18] and [19]. In general, the estimation of Σ or Θ is not possible, but
the Kronecker product Σ ⊗ Θ (or Θ ⊗ Σ) is identifiable, see [30], [18]. Then,
given that Cov(vecY) = Θ⊗Σ, and Cov(vecYT ) = Σ⊗Θ, a number of authors
use the alternative notation,

Y ∼ NK×D(μ,Σ⊗Θ),

where “vec” denotes the vectorization operator, see [36] and [23]. The same
situation appears in the matrix variate elliptical case; in this paper we will follow
the second notation.

Definition 2.1. The K ×D random matrix Y is said to have a matrix variate
elliptical distribution, with location parameter μ ∈ �K×D and scale parameter
Σ⊗Θ ∈ �KD×KD, if its density function with respect to the Lebesgue measure
(dY) is given by

dFY (Y) = |Σ|−D/2|Θ|−K/2h[trΘ−1(Y − μ)TΣ−1(Y − μ)](dY). (2.1)

Here Σ ∈ �K×K and Θ ∈ �D×D are positive definite matrices, denoted by
Σ > 0 and Θ > 0. The function h : � → [0,∞) is termed the density generator
and it is required that

∫∞
0

uKD/2−1h(u)du < ∞. We collect the above definition
in the notation Y ∼ EK×D(μ,Σ ⊗ Θ, h). Finally, the characteristic function
ψY(T) of Y is given by

ψY(T) = etr(iμTT)φ(trTΘTTΣ), (2.2)
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with i =
√
−1, φ : [0,∞) → � and etr(·) = exp(tr(·)). Note that ψY also exists

when Σ and/or Θ are semidefinite positive matrices; in such case Y is said to
have a singular matrix multivariate elliptical distribution, see Remark 2.2.

Moreover, observe that Cov(vecY) = c0Θ⊗Σ, and Cov(vecYT ) = c0Σ⊗Θ
where c0 = −2φ′(0) and

φ′(0) =
dφ(t2)

dt

∣∣∣∣
t=0

;

see [19, Theorm 2.6.5, p. 62] and [23, Corollary 3.2.1.1, p. 94 and Theorem
2.4.1, p. 33].

Now, if

Y =

⎛⎜⎜⎜⎝
YT

(1)

YT
(2)

...
YT

(k)

⎞⎟⎟⎟⎠ = (Y1,Y2, . . . ,YD), μ =

⎛⎜⎜⎜⎝
μT

(1)

μT
(2)

...
μT

(k)

⎞⎟⎟⎟⎠ = (μ1,μ2, . . . ,μD),

Σ =

⎛⎜⎜⎜⎝
σ11 σ12 · · · σ1K

σ21 σ22 · · · σ2K

...
...

. . .
...

σK1 σK2 · · · σKK

⎞⎟⎟⎟⎠ and Θ =

⎛⎜⎜⎜⎝
θ11 θ12 · · · θ1D
θ21 θ22 · · · θ2D
...

...
. . .

...
θD1 θD2 · · · θkD

⎞⎟⎟⎟⎠ ,

then it is easy to check that

1. Y(i) ∼ ED(μ(i), σiiΘ, h), i = 1, 2, . . . ,K,
2. Yj ∼ EK(μj , θjjΣ, h), j = 1, 2, . . . , D,

see [19]. Thus,

1. Cov(Y(i)) = c0σiiΘ, i = 1, 2, . . . ,K,
2. Cov(Yj) = c0θjjΣ, j = 1, 2, . . . , D.

We must point out that the last two asseverations are incorrectly stated in [30]
under the context of a perturbation model.

Finally, note that the matrix variate elliptical distributions generalize the
Gaussian case. They include the contaminated Gaussian, Pearson type II and
VII, Kotz, Jensen-Logistic, power exponential and Bessel distributions, among
others; and these distributions have tails that are more or less weighted, and/or
present a greater or smaller degree of kurtosis than the Gaussian distribution.

2.2. Identifiability and estimability of the parameters

In this section we study the identifiability and estimability of the parameters μ
and Σ⊗Θ.

First observe that the density (2.1) can be written as

dF
vecYT

(vecYT ) = |Σ⊗Θ|−1/2h[vecT (Y−μ) (Σ⊗Θ)
−1

vec(Y−μ)](d vecYT ),
(2.3)
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see [36, p. 79] and [23, Theorem 2.1.1, p. 20]. Here we have used the fact
that vecT X(DB ⊗ CT ) vecX = tr(BXTCXD) and |A|m|B|n = |A ⊗ B|,
with vecT X ≡ (vecX)T , A ∈ �n×n and B ∈ �m×m, see [36, Section 2.2,
pp. 72–76] and [19, Section 1.4, pp. 11–13]. Denoting vecYT = y ∈ �KD and
Σ⊗Θ = Ξ, the density (2.3) provides the distribution of the vector y; moreover,
y ∼ EKD(vecμ,Ξ, h).

Now, assume that our data consist of a sample of matrices Y1,Y2, . . . ,Yn

from a given population. Define the random matrix

Y = (vecYT
1 , vecY

T
2 , . . . , vecY

T
n )

T ∈ �n×KD,

and suppose that Y1,Y2, . . . ,Yn are independent. Then, by [11], the density
function of Y is

dF
Y
(Y) = |Σ⊗Θ|−n/2h[tr(Y−M)(Σ⊗Θ)−1(Y−M)T ](dY), (2.4)

where

M = 1n vec
T μ ∈ �n×KD,

and 1n = (1, 1, . . . , 1)T ∈ �n; i.e. Y ∼ En×KD(M,Σ⊗Θ⊗ In, h). Now, consider
p = KD in [19, Theorem 4.1.1, p.129], where KD < n. Given that h(·) is nonin-
creasing and continuous, then themaximum likelihood estimate of (vecμ,Σ⊗Θ)
is (

ṽecμ, Σ̃⊗Θ
)
= (ȳ, λmaxS).

In this case, λmax is the critical point where h∗(λ) attains its maximum, and

h∗(λ) = λ−KDn/2h(KD/λ).

Note that

ȳ =
1

n
YT1n ∈ �KD, and S = YTHnY ∈ �KD×KD,

where Hn = In−
1

n
1n1

T
n defines an orthogonal projection, i.e., Hn = HT

n = H2
n.

Alternatively

ȳ =
1

n

n∑
i=1

vecYT
i , and S =

n∑
i=1

(vecYT
i − ȳ)(vecYT

i − ȳ)T ,

then the estimator of μ is

μ̃ = Ȳ =
1

n

n∑
i=1

Yi.

At this point, we can apply [19, Section 4.3] and derive classical properties

of the maximum likelihood estimators μ̃ and Σ̃⊗Θ. Some characteristics are:



Estimation of mean form 2429

sufficiency, completeness, consistency and unbiasedness. For example, if h(·) is
nonincreasing and continuous, and Y has a finite 2nd moment, then

μ̂ = Ȳ and Σ̂⊗Θ =
1

2(1− n)ψ′(0)
S,

are unbiased estimators of μ and Σ⊗Θ.

Remark 2.2. When the columns and/or rows of Y ∼ EK×D(μ,Σ ⊗ Θ, h)
are linearly dependent, the matrix Y is said to have a singular matrix variate
elliptical distribution. In this case Y has a density respect to the Hausdorff
measure. Moreover, such dependence is summarized in the rank of the matrices
Σ and/or Θ. This will be denoted by Y ∼ Es,r

K×D(μ,Σ ⊗ Θ, h), where s =
rank(Σ) ≤ K and r = rank(Θ) ≤ D, see [23, Definition 2.1.1, p. 19], [13]
and [15]. We also note that the maximum likelihood estimators under singular
matrix variate elliptical models follow the same rules of the singular Gaussian
case, see [26] and [38, Section 8a.5, pp. 528–532].

2.3. Perturbation model under a matrix variate elliptical
distribution

Assume that the random matrix X ∈ �K×D represents a geometrical figure
comprisingK landmarks inD dimensions, withK > D.X is called the landmark
coordinate matrix, see [30].

Consider an independent sample of landmark coordinate matrices
Xi ∈ �K×D, i = 1, 2, . . . , n, from a given population.

The statistical model of this work is a generalization of the perturbation law
used by [30]. If μ ∈ �K×D is the corresponding mean form, then we propose
the model

Xi = (μ+Ei)Γi + ti, , i = 1, 2, . . . , n, (2.5)

where Ei ∼ EK×D(0,ΣK ⊗ ΣD, h). The orthogonal matrices Γi ∈ �D×D are
rotation and/or reflection of (μ + Ei). Meanwhile, the matrices ti ∈ �K×D

(ti = 1ka
T
i ) represent translations with some ai ∈ �D. From [19, eq. (3.3.10),

p. 103] or [23, Theorem 2.1.2, p. 20] we have that

Xi ∼ EK×D(μΓi + ti,ΣK ⊗ ΓT
i ΣDΓi, h), i = 1, 2, . . . , n. (2.6)

The parameters of interest are (μ,ΣK ⊗ΣD) and the nuisance parameters are
(ΓT

i , ti) i = 1, 2, ..., n. A detailed explanation of the corresponding Gaussian
perturbation model can be found in [30].

Now, note that

vecXT = diag(G) vec(M+ E)T + vecTT ,

with

diag(G) =

⎛⎜⎜⎜⎝
IK ⊗ ΓT

1 0 · · · 0
0 IK ⊗ ΓT

2 · · · 0
...

...
. . .

...
0 0 · · · IK ⊗ ΓT

n

⎞⎟⎟⎟⎠ ,
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then the model (2.5) can be written in the form

X = diag(M+ E)GT + T.

Where

diag(M+ E) =

⎛⎜⎜⎜⎝
vecT (μ+E1)

T 0 · · · 0
0 vecT (μ+E2)

T · · · 0
...

...
. . .

...
0 0 · · · vecT (μ+En)

T

⎞⎟⎟⎟⎠ ,

X =

⎛⎜⎜⎜⎝
vecT XT

1

vecT XT
2

...
vecT XT

n

⎞⎟⎟⎟⎠ , M = 1n vec
T μT , E =

⎛⎜⎜⎜⎝
vecT ET

1

vecT ET
2

...
vecT ET

n

⎞⎟⎟⎟⎠ T =

⎛⎜⎜⎜⎝
vecT tT1
vecT tT2

...
vecT tTn

⎞⎟⎟⎟⎠ ,

and G =
(
IK ⊗ ΓT

1 |IK ⊗ ΓT
2 | · · · |IK ⊗ ΓT

n

)
. Observe also that

E ∼ En×KD(0, In ⊗ΣK ⊗ΣD, h),

or

vecET ∼ EnKD(vec0, In ⊗ΣK ⊗ΣD, h).

Hence

vecXT∼EnKD

(
diag(G) vecMT + vecTT , diag(G)(In ⊗ΣK ⊗ΣD) diag(G)T , h

)
.

Recall that vec(yxT ) = x⊗ y, for vectors x and y, then

diag(G) vecMT =

⎛⎜⎜⎜⎝
IK ⊗ ΓT

1 0 · · · 0
0 IK ⊗ ΓT

2 · · · 0
...

...
. . .

...
0 0 · · · IK ⊗ ΓT

n

⎞⎟⎟⎟⎠(1n ⊗ vecμT
)

=

⎛⎜⎜⎜⎝
(IK ⊗ ΓT

1 ) vecμ
T

(IK ⊗ ΓT
2 ) vecμ

T

...
(IK ⊗ ΓT

n ) vecμ
T

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
vec(μΓ1)

T

vec(μΓ2)
T

...
vec(μΓn)

T

⎞⎟⎟⎟⎠ .

So, diag(G)(In ⊗ΣK ⊗ΣD) diag(G)T is
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=

⎛⎜⎜⎜⎝
ΣK ⊗ ΓT

1 ΣDΓ1 0 · · · 0
0 ΣK ⊗ ΓT

2 ΣDΓ2 · · · 0
...

...
. . .

...
0 0 · · · ΣK ⊗ ΓT

nΣDΓn

⎞⎟⎟⎟⎠
=

n∑
i=1

En
ii ⊗ΣK ⊗ ΓT

i ΣDΓi,

where En
ii = eni (e

n
i )

T and eni is the ith column unit vector of order n.
Finally, observe that

E(vecXT ) =

⎛⎜⎜⎜⎝
vec(μΓ1)

T

vec(μΓ2)
T

...
vec(μΓn)

T

⎞⎟⎟⎟⎠+ vecTT =

n∑
i=1

eni ⊗
(
vec(μΓi)

T + vec tTi
)
,

and

E(X) =

n∑
i=1

eni
(
vec(μΓi)

T + vec tTi
)T

,

therefore

X ∼ En×KD

(
n∑

i=1

eni
(
vec(μΓi)

T + vec tTi
)T

,
n∑

i=1

En
ii ⊗ΣK ⊗ ΓT

i ΣDΓi, h

)
.

2.4. Invariance and nuisance parameters

A first analysis of the elliptical perturbation law involves the nuisance param-
eters. As in the Gaussian case of [30], we can remove the nuisance parameters
by using a simple transformation.

From (2.6)

Xi ∼ EK×D(μΓi + ti,ΣK ⊗ ΓT
i ΣDΓi, h), i = 1, 2, . . . , n.

Setting Xc
i = HKXi and using HK1K = 0k and 1T

KHK = 0T
k , we obtain

Xc
i ∼ E(K−1),D

K×D (μ∗Γi,Σ
∗
K ⊗ ΓT

i ΣDΓi, h), i = 1, 2, . . . , n, (2.7)

where μ∗ = HKμ and Σ∗
K = HKΣKHK . Note that HKti = HK1KaTi = 0

for all i = 1, 2, . . . , n, then the summation of the columns of μ∗ is zero, which
means that it is a centered matrix.

Recall that K > D and rank(Σ∗
K) = K − 1, then by [13] and [15] we get

Bi = Xc
i (Γ

T
i ΣDΓi)

−1(Xc
i )

T ∼ GPWq
K(D,Σ∗

K ,ΣD,Ω, h), i = 1, 2, . . . , n.
(2.8)
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where

Ω = (Σ∗
K)−μ∗Γi(Γ

T
i ΣDΓi)

−1ΓT
i (μ

∗)T = (Σ∗
K)−μ∗Σ−1

D (μ∗)T ,

q = min((K − 1), D) and A− is any symmetric generalized inverse of A such
that AA−A = A = AT . By definition, Bi is said to have a generalized singular
pseudo-Wishart distribution, which is independent of the nuisance parameters.

Remark 2.3. Observe that Bi can be written as

Bi = Xc
i (Γ

T
i ΣDΓi)

−1(Xc
i )

T = Xc
iΓ

T
i Σ

−1
D Γi(X

c
i )

T = YiΣ
−1
D YT

i

where Yi = Xc
iΓ

T
i and

Yi ∼ E(K−1),D
K×D (μ∗,Σ∗

K ⊗ΣD, h), i = 1, 2, . . . , n.

In particular, if ΣD = ID and

Xc
i = (Xc

1,i|Xc
2,i| · · · |Xc

D,i),

with

Xc
d,i ∼ E(K−1)

K (μ∗Γie
K
d ,Σ∗

K , h), d = 1, 2, . . . , D; i = 1, 2, . . . , n,

then we have,

Bi = Xc
i (X

c
i )

T =
D∑

d=1

Xc
d,i(X

c
d,i)

T ;

furthermore,

Bi ∼ GPWq
K(D,Σ∗

K , ID,Ω, h), i = 1, 2, . . . , n, (2.9)

where Ω = (Σ∗
K)−μ∗(μ∗)T .

Remark 2.4. The corresponding result in [30] is obtained as a particular case
of (2.9); just note that μ∗(μ∗)T is the noncentrality parameter of [30] and we
have used Ω = (Σ∗

K)−μ∗(μ∗)T , see [36, Definition 10.3.1, pp. 441–442].

In addition, defining Xc as X, we get

vec (Xc)
T
= [In ⊗ (Hk ⊗ ID)] vecXT .

Hence, Xc = X(Hk ⊗ ID). Now, observing that (Hk ⊗ ID) vec tTi = 0, for all
i = 1, 2, . . . , n, we obtain

Xc ∼ En,(K−1)D
n×KD

(
n∑

i=1

eni vec
T (μ∗Γi)

T ,

n∑
i=1

En
ii ⊗Σ∗

K ⊗ ΓT
i ΣDΓi, h

)
, (2.10)

where Σ∗
K = HkΣKHk.
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In the same way of [30], assuming ΣD = ID and using

In =

n∑
i=1

En
ii,

we have

Xc ∼ En,(K−1)D
n×KD

(
n∑

i=1

eni vec
T (μ∗Γi)

T , In ⊗Σ∗
K ⊗ ID, h

)
.

3. Consistent estimation of μ and ΣK

The Gaussian case of [30] studied the consistent estimation with the Euclidean
distance matrix, in our elliptical setting we can go further and use the exact
expressions for the first two moments of the matrix B.

Behind the common assumption of independent landmarks along the D axes,
we are formally consideringΣD = ID in the context of a matrix variate Gaussian
model. However, in the elliptical case the perspective is wider and we have two
possible scenarios:

1. Independence and non correlated landmarks
2. Probabilistic dependence and non correlated landmarks.

In both cases ΣD = ID, but the moments of the matrix B are different.

Remark 3.1. In the context of matrix variate elliptical theory, the concepts
of independence and non correlation are only equivalent in the Gaussian case.
Suppose that the vector Z = (z1, z2)

T has a bi-dimensional elliptical distribu-
tion and Cov(Z) = I2, then z1 and z2 are independent if and only if Z has a
bi-dimensional Gaussian distribution. But, if z1 and z2 have a one-dimensional
elliptical distribution with Var(zi) = 1 and Cov(z1, z2) = 0, then they are uncor-
related and can be considered independent, see [23, Section 6.2, p. 1] and [20,
Section 4.3, p. 105].

In summary, we will find the first two moments of

B = YYT =

D∑
d=1

ydy
T
d , (3.1)

where ΣD = ID. This includes two cases: a) the yd’s are independent and
uncorrelated; or b) the yd’s are dependent and uncorrelated.

3.1. Moments of B under dependence

First assume that ΣD �= ID.

Suppose that Y ∼ E(K−1),D
K×D (μ,Σ⊗Θ, h), where

Y = (y1|y2| · · · |yD) and μ = (μ1|μ2| · · · |μD),

ΣD = Θ, Σ∗
K = Σ and μ∗ = μ.
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Now, for x,y ∈ �n we know that vecxyT = y⊗x and xyT = x⊗yT = yT⊗x,
see [33]. Therefore vecyyT vecT yyT = y ⊗ yT ⊗ y ⊗ yT ; this property will be
useful in the following result.

Theorem 3.1. Let Y ∼ E(K−1),D
K×D (μ,Σ⊗Θ, h). Then

1. E(vecY vecT Y) = c0(Θ⊗Σ) + vecμ vecT μ, and
2. E(vecY vecYT ⊗ vecY vecYT )

= κ0[(I(KD)2 +KKD)(Θ⊗Σ⊗Θ⊗Σ) + vec(Θ⊗Σ) vecT (Θ⊗Σ)]

+ c0(IK2 +KK)[vecμ vecT μ⊗ (Θ⊗Σ) + (Θ⊗Σ)⊗ vecμ vecT μ]

+ c0[vec(Θ⊗Σ)(vecT μμT ) + (vecT μμT ) vec(Θ⊗Σ)]

+ vecμ vecT μ⊗ vecμ vecT μ,

where KKD is the commutation matrix defined in [33]. ψ
U
(t) = φ(t2) is the

characteristic function of the univariate elliptical distribution, c0 = E(u2) and
3κ0 = E(u4), with

E(u2) =
1

i2
d2ψU (t)

dt2

∣∣∣∣
t=0

and E(u4) =
1

i4
d4ψU (t)

dt4

∣∣∣∣
t=0

,

see [23, p. 127].
Some particular values of c0 and κ0 are given in Table 1.

Proof. Differentiating (2.2) and using [12], we get

E(vecY ⊗ vecT Y) = E(vecY vecT Y)

=
1

i2
∂2ψvecY(vecT)

∂ vecT∂ vecTT

∣∣∣∣
vecT=0

and

E(vecY ⊗ vecYT ⊗ vecY ⊗ vecYT )

= E(vecY vecYT ⊗ vecY vecYT )

=
1

i4
∂4ψvecY(vecT)

∂ vecT∂ vecTT∂ vecT∂ vecTT

∣∣∣∣
vecT=0

.

Now,

B = YYT =

D∑
d=1

ydy
T
d ,

thus

E(B) = E
(
YYT

)
= E

(
D∑

d=1

ydy
T
d

)
=

D∑
d=1

E
(
ydy

T
d

)
.

Also note that

Cov(vecY) = E(vecY vecT Y)− E(vecY)E(vecT Y),
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Table 1

Particular values of c0 and κ0.

Distribution c0 κ0

Multiuniformea 1 1
3

Gaussianb 1 1

Kotzc
Γ
[
2N+1

2s

]
r1/sΓ

[
2N−1

2s

] Γ
[
2N+3

2s

]
3r2/sΓ

[
2N−1

2s

]
td

m

m− 2

m2

(m− 2)(m− 4)

Pearson Type IIe
1

2m+ 3

1

(2m+ 3)(2m+ 5)

Pearson type VIIf
m

2N − 3

m2

(2N − 3)(2N − 5)

aFrom [20, Theorem 3.3, p. 72].
bFrom [23, Remark 3.2.2, p. 125].
cFrom [37], where r, s > 0 and 2N + 1 > 2.
dFrom [23, p. 128], or [20, p. 88], where m > 0.
eFrom [20, Section 3.4.2, p. 89], where m > −1.
fFrom [20, Section 3.3.4, p. 84], where N > 1/2, m > 0.

where Y ∈ �K×D. Therefore

Cov(vecB) = Cov
(
vec
(
YYT

))
= Cov

(
D∑

d=1

vec
(
ydy

T
d

))

= E

[(
D∑

d=1

vec
(
ydy

T
d

))( D∑
s=1

vecT
(
ysy

T
s

))]

− E

(
D∑

d=1

vec
(
ydy

T
d

))
E

(
D∑

d=1

vecT
(
ydy

T
d

))

=

[
D∑

d=1

D∑
s=1

E
(
ydy

T
s ⊗ ydy

T
s

)]

− vec

(
D∑

d=1

E
(
ydy

T
d

))
vecT

(
D∑

s=1

E
(
ysy

T
s

))
. (3.2)

Then, we need to find E
(
ydy

T
d

)
and E

(
ydy

T
s ⊗ ydy

T
s

)
. These moments are

derived in the following result.

Theorem 3.2. Assume that Y ∼ E(K−1),D
K×D (μ,Σ⊗Θ, h), with

Y = (y1|y2| · · · |yD),μ = (μ1|μ2| · · · |μD),

and Θ = (θds). Then
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1. E(ydy
T
d ) = c0θddΣ+ μdμ

T
d , and

2. E
(
ydy

T
s ⊗ ydy

T
s

)
= κ0θ

2
ds[(IK2 +KK)(Σ⊗Σ) + vecΣ vecT Σ

+ c0θds[(IK2 +KK)(μdμ
T
s ⊗Σ+Σ⊗ μdμ

T
s )]

+ c0θds[vecΣ vecT μdμ
T
s + vecμdμ

T
s vecT Σ]

+μdμ
T
s ⊗ μdμ

T
s .

Proof. First note that yd = YeDd , then applying Theorem 3.1 we find

E(ydy
T
d ) = E(vecyd vec

T yd) = E(vecYeDd vecT YeDd )

= (eD T
d ⊗ IK)E(vecY vecT Y)(eDd ⊗ IK)

= (eD T
d ⊗ IK)(c0(Θ⊗Σ) + vecμ vecT μ)(eDd ⊗ IK)

= c0θddΣ+ μdμ
T
d .

Where we have used the fact that vecABC = (CT ⊗B) vecB, a⊗A = aA and
(A⊗D)(B⊗E)(C⊗ F) = (ABC⊗DEF). Similarly,

E
(
ydy

T
s ⊗ ydy

T
s

)
= RTE(vecY vecYT ⊗ vecY vecYT )R1

with RT = (eD T
d ⊗ IK) ⊗ (eD T

d ⊗ IK) and R1 = (eDs ⊗ IK) ⊗ (eDs ⊗ IK).
Finally, the required result is obtained by using Kmn(A ⊗ B) = (B ⊗ A)Kts

and Kmm ≡ Km; where A ∈ �n×s and B ∈ �m×t, see [33].

Consider the following notation for certain double summation.

Definition 3.1. Let A ∈ �p×q such that

A =

⎛⎜⎜⎜⎝
A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amm

⎞⎟⎟⎟⎠ , Aij ∈ �r×s

with, mr = p and ns = q. Then we define

m,n

�
i,j

A =

m∑
i=1

n∑
j=1

Aij ∈ �r×s.

If m = n then,
m,m

�
i,j

≡
m
�
i,j
.

Let the partitioned matrices A = (Aij) and B = (Bij). If � denotes the
Khatri-Rao product, then

A�B = (Aij ⊗Bij)ij ,

see [38, p.30]. In particular, for C = (cij), we have

C�A = (cijAij)ij .

Moreover,

�
i,j

(C�A) =
∑
i

∑
j

(cijAij)ij .
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Theorem 3.3. Suppose that Y ∼ E(K−1),D
K×D (μ,Σ⊗Θ, h), with

Y = (y1|y2| · · · |yD) and μ = (μ1|μ2| · · · |μD).

If we define

B = YYT =

D∑
d=1

ydy
T
d ,

then

E(B) = c0 tr(Θ)Σ+ μμT ,

and

Cov(vecB)) = (IK2 +KK)
{
κ0 tr

(
Θ2
)
(Σ⊗Σ)

+ c0

[
D
�
i,j

(
Θ� vecμ vecT μ

)
⊗Σ

+Σ⊗
D
�
i,j

(
Θ� vecμ vecT μ

)]}
+
[
κ0 tr

(
Θ2
)
− c20 tr

2(Θ)
]
vecΣ vecT Σ

+ c0

{
vecΣ vecT

D
�
i,j

(
Θ� vecμ vecT μ

)
+ vec

D

�
i,j

(
Θ� vecμ vecT μ

)
vecT Σ

+tr(Θ)
[
vecΣ vecT μμT + vecμμT vecΣ

]}
.

Proof. This is a consequence of (3.1), (3.2), Definition 3.1 and Theorem 2.

Corollary 3.1. In Theorem 3.3 assume that Θ = ID. Then

E(B) = Dc0Σ+ μμT ,

and

Cov(vecB)) = (IK2 +KK)
{
Dκ0(Σ⊗Σ) + c0

[
μμT ⊗Σ+Σ⊗ μμT

]}
+ D

[
κ0 −Dc20

]
vecΣ vecT Σ

+ (1−D)c0[vecΣ vecT μμT + vecμμT vecT Σ].

With some errors, [23, Theorem 3.2.13 and Example 3.2.1] derived general
and particular examples. For instance, in the central case μ = 0 with D = n−1,
they found the factor D(κ0 − c20) instead of the right term D

(
κ0 −Dc20

)
. The

univariate published version of the one-dimensional Student’s t-distribution is
also incorrect.
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3.2. Moments of B under independence

Define Y and μ as follows:

Y = (y1|y2| · · · |yD) and μ = (μ1|μ2| · · · |μD),

where y1,y2, . . . ,yD are independent and

yd ∼ E(K−1)
K (μd, θddΣ;h).

Given

B = YYT =

D∑
d=1

ydy
T
d ,

we have

E(B) = E
(
YYT

)
= E

(
D∑

d=1

ydy
T
d

)
=

D∑
d=1

E
(
ydy

T
d

)
.

For d �= s = 1, 2 . . . , D, the independence assumption means that
Cov(yd,ys) = 0.

But, the independence of yd under d = 1, 2, . . . , D implies that

Cov(vecB) = Cov
(
vec
(
YYT

))
= Cov

(
D∑

d=1

vec
(
ydy

T
d

))

=

D∑
d=1

Cov
(
vec
(
ydy

T
d

))
=

D∑
d=1

Cov (yd ⊗ yd) .

Then, we need to find E
(
ydy

T
d

)
and

Cov (yd ⊗ yd) = E((yd ⊗ yd) (yd ⊗ yd)
T
)− E (yd ⊗ yd)E (yd ⊗ yd)

T

= E
(
ydy

T
d ⊗ ydy

T
d

)
− E
(
vecydy

T
d

)
E
(
vecT ydy

T
d

)
.

These results are summarized next.

Corollary 3.2. Let yd ∼ E(K−1)
K (μd, θddΣ;h), d = 1, 2, . . . , D, where

y1,y2, . . . ,yD are independent. Then

1. E(ydy
T
d ) = c0θddΣ+ μdμ

T
d , and

2. Cov(yd ⊗ yd) = Cov(vecydy
T
d )

= (IK2 +KK)
{
κ0θ

2
dd(Σ⊗Σ) + c0θdd

[
μdμ

T
d ⊗Σ+Σ⊗ μdμ

T
d

]}
+ θ2dd(κ0 − c20) vecΣ vecT Σ.

Proof. The results follow by taking d = s in Theorem 3.2.
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Theorem 3.4. Suppose that yd ∼ E(K−1)
K (μd, θddΣ;h), d = 1, 2, . . . , D, with

Y = (y1|y2| · · · |yD) and μ = (μ1|μ2| · · · |μD).

Define Θ = diag(θ11, θ22, . . . , θdd), and

B = YYT =

D∑
d=1

ydy
T
d .

Then,

E(B) = c0 tr(Θ)Σ+ μμT

Cov(vecB) = (IK2 +KK)
{
κ0 tr

(
Θ2
)
(Σ⊗Σ)

+ c0

[(
D∑

d=1

θddμdμ
T
d

)
⊗Σ+Σ⊗

(
D∑

d=1

θddμdμ
T
d

)]}
+ (κ0 − c20) tr

(
Θ2
)
vecΣ vecT Σ

Proof. By Corollary 3.2,

E(B) = E
(
YYT

)
= E

(
D∑

d=1

ydy
T
d

)
=

D∑
d=1

E
(
ydy

T
d

)
=

D∑
d=1

(
c0θddΣ+ μdμ

T
d

)
= c0 tr(Θ)Σ+

D∑
d=1

μdμ
T
d = c0 tr(Θ)Σ+ μμT .

Similarly,

Cov(vecB) = Cov
(
vec
(
YYT

))
= Cov

(
D∑

d=1

vec
(
ydy

T
d

))

=

D∑
d=1

Cov
(
vec
(
ydy

T
d

))
,

and the required result is derived.

Now, if Θ = ID we can get the following statement:

Corollary 3.3. Let yd ∼ E(K−1)
K (μd,Σ;h), d = 1, 2, . . . , D, where y1,y2, . . . ,

yD are independent. Then

1. E(ydy
T
d ) = c0Σ+ μdμ

T
d , and

2. Cov(yd ⊗ yd) = Cov(vecydy
T
d )

= (IK2 +KK)[κ0(Σ⊗Σ) + c0(μdμ
T
d ⊗Σ+Σ⊗ μdμ

T
d )]

+(κ0 − c20) vecΣ vecT Σ,
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Theorem 3.5. Suppose that yd ∼ E(K−1)
K (μd,Σ;h), d = 1, 2, . . . , D, where

Y = (y1|y2| · · · |yD), μ = (μ1|μ2| · · · |μD)

and

B = YYT =

D∑
d=1

ydy
T
d .

Then,

E(B) = Dc0Σ+ μμT

Cov(vecB) = (IK2 +KK)[Dκ0(Σ⊗Σ) + c0(μμ
T ⊗Σ+Σ⊗ μμT )]

+ D(κ0 − c20) vecΣ vecT Σ

Proof. This is a consequence of Theorem 3.4.

The Gaussian case follows easily:

Corollary 3.4. If Y ∼ N (K−1),D
K×D (μ,Σ⊗ ID). Then, c0 = κ0 = 1, and

E(B) = DΣ+ μμT

Cov(vecB) = (IK2 +KK)[D(Σ⊗Σ) + μμT
d ⊗Σ+Σ⊗ μμT ].

3.3. Method-of-moments estimators

We return to the original notation Θ = ΣD, Σ = Σ∗
K and μ = μ∗.

In this section we will derive the method-of-moments estimators of Σ∗
K and

μ∗.
The first two sample moment estimators of B are given by

Ẽ(B) =
1

n

n∑
i=1

Bi = B̄ = (b̄ij), i, j = 1, . . . ,K,

and

˜Cov(vecB) =
1

n

n∑
i=1

(vecBT
i − vec Ẽ(B))(vecBT

i − vec Ẽ(B))T = S,

where S = (str ), t, r = 1, 2, . . . ,K2. Moreover, for i ≤ j, M = μ∗μ∗T = (mij) =
MT and Σ∗

K = (σij), we have

E(bij) = E(eTi Bej) = eTi E(B)ej

= eTi (Dc0Σ
∗
K + μ∗μ∗T )ej = Dc0σij +mij . (3.3)

Note that the above expectation holds for independent and dependent cases.
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3.3.1. Dependent case

Start with:

Cov(bij) = Cov(eTi Bej) = Cov(vec eTi Bej) = Cov((ej ⊗ ei)
T vecB)

= (ej ⊗ ei)
T Cov(vecB)(ej ⊗ ei)

= (ej ⊗ ei)
T {(IK2 +KK) {Dκ0(Σ

∗
K ⊗Σ∗

K)

+ c0
[
μ∗μ∗T ⊗Σ∗

K +Σ∗
K ⊗ μ∗μ∗T ]}

+ D
[
κ0 −Dc20

]
vecΣ∗

K vecT Σ∗
K

+ (1−D)c0[vecΣ
∗
K vecT μ∗μT∗

+ vecμ∗μ∗T vecT Σ∗
K ]
}
(ej ⊗ ei).

Now, for i ≤ j, i, j = 1, 2, . . . ,K we obtain

Cov(bij) = D
[
κ0σiiσjj + (2κ0 − c20)σ

2
ij

]
+ c0 [mjjσii +miiσjj + 2(2−D)mijσij ] ; (3.4)

where we have used the equalities: (ej ⊗ei)
TKK = (ei⊗ej)

T and (A⊗B)(C⊗
D) = (AC⊗BD). By (3.3) and taking mij = b̄ij −Dc0σij in (3.4), we get

Cov(bij) = D(κ0 − 2c20)σiiσjj +D(2κ0 − (1 + 2(2−D))c20)σ
2
ij

+ c0
[
b̄jjσii + b̄iiσjj + 2(2−D)b̄ijσij

]
. (3.5)

Finally, by (3.5) and sij = ˜Cov(bij) we have:

Theorem 3.6. Assume that B ∼ GPWq
K(D,Σ∗

K , ID,Ω, h). The method-of-
moments estimators of Σ∗

K and M = μ∗μ∗T are given by the following exact
expressions:

For i = 1, 2, . . . ,K:

σ̃ii =

√
Q2

ii + 4Psii −Qii

2P
, (3.6)

with Q2
ii + 4Psii ≥ 0, P = D(κ0 − 2c20) + D(2κ0 − (1 + 2(2 − D))c20), and

Qii = 2c0(3−D)bii.
m̃ii = bii −Dc0σ̃ii, (3.7)

where σ̃ii has been previously found in (3.6).
If P = 0, then σ̃ii = sii/Qii.
For i < j, i = 1, . . . , (K − 1), j = 2, . . . ,K:

σ̃ij =

√
(2−D)2c20b

2

ij −R(Tij − sij)− (2−D)c0bij

R
, (3.8)

where (2−D)2c20b
2

ij −R(Tij − sij) ≥ 0, R = D(2κ0 − (1 + 2(2−D))c20), and

Tij = D(κ0 − 2c20)σ̃iiσ̃jj + c0(bjj σ̃ii + biiσ̃jj).
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Here σ̃ii and σ̃jj were previously computed in (3.6).

m̃ij = bij −Dc0σ̃ij , (3.9)

Denote the solution as
(M̃, Σ̃∗

K).

Note that sij comes from the diagonal of S ∈ RK2×K2

, because sij = ˜Cov(bij).
Finally, if R = 0, then σ̃ij = (sij − Tij) /

(
2(2−D)c0bij

)
.

Remark 3.2. Special attention must be payed on P , Qii, R, Tij , and the sign
of the square root. They depend on the selected model, the sample statistics sij
and bij.

3.3.2. Independent case

For this case,

Cov(bij) = Cov(eTi Bej) = Cov(vec eTi Bej) = Cov((ej ⊗ ei)
T vecB)

= (ej ⊗ ei)
T Cov(vecB)(ej ⊗ ei)

= (ej ⊗ ei)
T {(IK2 +KK)[Dκ0(Σ

∗
K ⊗Σ∗

K)

+ c0(μ
∗μ∗T ⊗Σ∗

K +Σ∗
K ⊗ μ∗μ∗T )]

+ D(κ0 − c20) vecΣ
∗
K vecT Σ∗

K}(ej ⊗ ei).

Hence

Cov(bij) = D
[
κ0σiiσjj + (2κ0 − c20)σ

2
ij

]
+ c0 (mjjσii +miiσjj + 2mijσij) .

(3.10)
By (3.3) and substitution of mij = sij −Dc0σij in (3.10), we obtain

Cov(bij) = D(κ0 − 2c20)σiiσjj +D(2κ0 − 3c20)σ
2
ij + c0

[
b̄jjσii + b̄iiσjj + 2b̄ijσij

]
.

Summarizing:

Theorem 3.7. Assume independent yd ∼ E(K−1)
K (μd,Σ;h), for d = 1, 2, . . . , D.

Define
Y = (y1|y2| · · · |yD) μ = (μ1|μ2| · · · |μD),

and

B = YYT =

D∑
d=1

ydy
T
d .

Then, the method-of-moments estimators of Σ∗
K and M = μ∗μ∗T are given by

the following exact expressions:
For i = 1, 2, . . . ,K:

σ̃ii =

√
Q2

ii + 4Psii −Qii

2P
, (3.11)
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with Q2
ii + 4Psii ≥ 0, P = D(3κ0 − 5c20), and Qii = 4c0bii.

m̃ii = bii −Dc0σ̃ii, (3.12)

where σ̃ii has been previously found in (3.11).
If P = 0, then σ̃ii = sii/Qii.
For i < j, i = 1, . . . , (K − 1), j = 2, . . . ,K:

σ̃ij =

√
c20b

2

ij −R(Tij − sij)− c0bij

R
, (3.13)

where b
2

ij −R(Tij − sij) ≥ 0, R = D(2κ0 − 3c20) and

Tij = D(κ0 − 2c20)σ̃iiσ̃jj + c0bjj σ̃ii + c0biiσ̃jj .

Here σ̃ii and σ̃jj were previously computed in (3.11).

m̃ij = bij −Dc0σ̃ij , (3.14)

Denote the solution as
(M̃, Σ̃∗

K).

As before, given that sij = ˜Cov(bij), then the sij ’s are in the diagonal of matrix

S ∈ RK2×K2

.
Finally, if R = 0, then σ̃ij = (sij − Tij) /

(
2c0bij

)
.

Remark 3.3. Recall that the method-of-moments estimators are not uniquely
defined. For example, assume that the method-of-moments estimator of g(θ) is
required, instead of the estimation of θ. We have a number of different ways. We
can obtain the method-of-moments estimator θ̃ of θ and then use it for finding
g(θ̃) as an estimator of g(θ). Alternatively, we can find the moments of the

function g(θ) and then obtain the method-of-moments estimator g̃(θ) of g(θ).
The resulting method-of-moments estimators are usually different in both cases,
see [35, Section 7.2.1, p.276]. Furthermore, by the law of large numbers the
method-of-moments estimators provides (under suitable conditions) consistent
estimators, see [38, section 5d.1, p. 351].

Principal Coordinate Analysis, summarized by [30], provides the following
algorithm for μ∗. The procedure finds the estimated coordinates of the mean

form by using the method-of-moments estimator M̃. Note that the mean form
is invariant under translation, rotation, and reflection transformations.

Theorem 3.8. Let M̃ be the method-of-moments estimator of M = μ∗μ∗T

(for dependent or independent cases). Let M̃ = V1LV
T
1 the nonsingular part of

the corresponding spectral decomposition, where V1 is a semiorthogonal matrix.
Here V1 ∈ �K×D, VT

1 V1 = ID and L = diag(λ1, . . . , λD), where D is the rank

of M̃. Then the method-of-moments estimator of μ∗ is

μ̃∗ = V1W,

with W = diag(
√
λ1, . . . ,

√
λD).
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Proof. The required result follows from Remark 3.3.

Theorem 3.9. Let (μ̃∗, Σ̃∗
K) be the method-of-moments estimators of

(μ∗,Σ∗
K).

Then as n → ∞

(μ̃∗, Σ̃∗
K) → (μ∗,Σ∗

K) in probability.

Proof. The required result is derived by applying the consistency of the sample
moments and the continuity of the function (μ∗,Σ∗

K) in (E(B),Cov(vecB)),
see [38, Section 5d.1, p. 351].

4. Consistent estimation when ΣD is a general non-negative definite
matrix

This section is motivated by the Gaussian version of the maximum likelihood
estimation derived by [18]. We provide a heuristic evaluation of the elliptical case
under our approach based in the method-of-moments estimation. Our algorithm
is based in the following modified expressions:

Σ̃D =
1

nK

n∑
i=1

(
Xc

i − μ̃∗)T (Σ̃∗
K)−

(
Xc

i − μ̃∗) , (4.1)

Σ̃∗
K =

1

nD

n∑
i=1

(
Xc

i − μ̃∗) Σ̃−1
D

(
Xc

i − μ̃∗)T . (4.2)

Algorithm

Initialization:

r = 0; Σ∗r
K = Σ̃∗

K ; Σr
D =

1

nK

n∑
i=1

(
Xc

i − μ̃∗)T (Σ∗r
K )−

(
Xc

i − μ̃∗);
r = r + 1

Σ∗r+1
K =

1

nD

n∑
i=1

(
Xc

i − μ̃∗) (Σr
D)

−1 (
Xc

i − μ̃∗)T ;

Σr+1
D =

1

nK

n∑
i=1

(
Xc

i − μ̃∗)T (Σ∗r
K )−

(
Xc

i − μ̃∗) ;
While

||Σr+1
D −Σr

D||2 > ε1 or ||Σ∗r+1
K −Σ∗r

K ||2 > ε2,
Repeat:

r = r + 1;
Σ∗r

K = Σ∗r+1
K ;

Σr
D = Σr+1

D ;
Recompute Σ∗r+1

K and Σr+1
D .

The solutions are:
Σ̃∗

K = Σ∗r
K ; Σ̃D = Σr

D.
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Where ε1 and ε2 define two infinitesimal positive quantities and || · ||2 is the

Euclidean norm,

(
||A||2 =

√
tr
(
AAT

))
.

Theorem 4.1. Let (μ̃∗, Σ̃∗
K ⊗ Σ̃D) be the method-of-moments estimators of

(Σ∗
K ,μ∗ ⊗ΣD). Then as n → ∞

(μ̃∗, Σ̃∗
K ⊗ Σ̃D) → (μ∗,Σ∗

K ⊗ΣD) in probability.

Proof. This is a consequence of Remark 3.3.

5. Estimation of the form difference

A detailed discussion of Euclidean Distance Matrix, matrix form, form difference
and their probabilistic and geometrical properties can be found in [29, 30].

Consider the following square symmetric matrix, also known as the Euclidean
Distance Matrix:

F(X) =

⎛⎜⎜⎜⎝
0 d(1, 2) . . . d(1,K − 1) d(1,K)

d(2, 1) 0 . . . d(2,K − 1) d(2,K)
...

...
...

. . .
...

d(K, 1) d(K, 2) . . . d(K,K − 1) 0

⎞⎟⎟⎟⎠ ,

where d(i, j) denotes the Euclidean distance between landmarks i and j. In
shape theory this matrix is termed form matrix. Some interesting properties of
form matrix are given in [29]. For example, F(X) is a maximal invariant under
the group of transformations consisting of translation, rotation, and reflection.
Therefore, F(X) retains all the geometrical relevant information about the form
of the object.

Let X1,X2, . . . ,Xn be n independent observations from a population I and
let Y1,Y2, . . . ,Ym be m independent observations from a population II. Let
μX be the mean form of population I with corresponding form matrix F

(
μX
)
.

In a similar way denote μY and F
(
μY
)
for the population II. [30] provides the

the following concept:

Definition 5.1. The form difference between population I and II is defined as

FDM
(
μX,μY

)
= F
(
μX
)
∗ F
(
μY
)−H

,

where ∗ denotes the Hadamard product and 0/0 = 0. Here A−H denotes the
inverse of A with respect to the Hadamard product. [6] give a formula for this
inverse in terms of the usual product.

The next result applies the Remark 3.3 in the consistent estimation of the
form difference between two populations. It assumes non-isotropic perturbed
landmarks within the axes but isotropic relation between them.
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Theorem 5.1. Let
(
μX,Σ∗

KX ⊗ΣDX

)
and
(
μY,Σ∗

KY ⊗ΣDY

)
be the corre-

sponding parameters of populations I and II. If ΣDX = ΣDY = ID, then

F̃DM
(
μ̃X, μ̃Y

)
= F̃
(
μ̃X
)
∗ F̃
(
μ̃Y
)−H

→ FDM
(
μX,μY

)
in probability.

Theorem 5.2. Let
(
μX,Σ∗

KX ⊗ΣDX

)
and
(
μY,Σ∗

KY ⊗ΣDY

)
be the corre-

sponding parameters of populations I and II. Then

F̃DM
(
μ̃X, μ̃Y

)
= F̃
(
μ̃X
)
∗ F̃
(
μ̃Y
)−H

→ FDM
(
μX,μY

)
in probability.

6. Example

The mouse vertebra problem was originally studied in the Gaussian case by [16]
(see also [34]). A further analysis under elliptical models was implemented by
[8]. The experiment considers the second thoracic vertebra T2 of two groups of
mice: large and small. The mice are selected and classified according to large or
small body weight; in this case, the sample consists of 23, 23 and 30 large, small
and control bones, respectively. The vertebras are digitized and summarized
in six mathematical landmarks which are placed at points of high curvature;
they are symmetrically selected by measuring the extreme positive and negative
curvature of the bone. Figure 1 shows the sample for the three groups with the
corresponding (x, y) cartesian coordinates of the six landmarks in the bones.
Note that the clusters of the landmarks have different shapes, then the usual
normal isotropic model considered in the Gaussian literature is not appropriate,
see [16] and the references within. The shape difference analysis among the
three groups is quite solved by different approaches. However the correlation
structure among landmarks requires more research. Perform inference with such
non isotropic shape distributions is very difficult. It has forced the use of strong
assumptions about correlation.

More than an example, this landmark data is highly valuable for a correlation
structure analysis. The symmetry of the vertebra, certainly suggests a priori non
isotropic model. The control group is also useful for comparisons and correctness.

Theorems 3.6 and 3.8 can be easily implemented for a number of models.
We focus on the main novelty (Theorem 3.6) and a Kotz type model (including
Gaussian). This model is very flexible and meaningful for various values of the
parameters r, s and N , see appendix.

First we illustrate Theorem 3.7 under six different models with independent
landmarks. Moment-method estimates of mean shape by using the classical
Gaussian model is shown in figure 2. For standard plots, we show the Book-
stein’s coordinates of the cartesian coordinates computed in the theorems of the
paper, see [16]. Then we can compare directly the estimations. Bookstein’s co-
ordinates are easily obtained by fixing a reference line with landmarks 1 and 2.
Both landmarks are sent to (−0.5, 0) and (0.5, 0), respectively, then we plot the
coordinates of the remaining four landmarks of the mean shape. This display is
also useful because the mean shape is collected in four landmarks instead of six.
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Fig 1. Mouse vertebra sample

In the Gaussian case the estimate is unrealistic, we expect a mean form
similar to the ideal vertebra. Note that each point of the polygon represents
a landmark of the bone. In the Gaussian case, the assumption of landmark
independence explains the broken symmetry in the estimate. However, if we
consider more robust isotropic models than Gaussian, the estimation tends to
recover the symmetry of the vertebra. Indeed, this is a surprising and interesting
aspect to research, because the independence of the landmarks is neglected by
the complexity of the model and the mean form gets closer to the ideal vertebra.
The addressed evolution from Kotz 1 to Kotz 5 is depicted in figures 3 to 7.
The Bookstein’s coordinates of the estimated mean form are colored in order
to perform comparisons. Here S, L and C, denote the small, large and control
groups, respectively.

Fig 2. Moment method estimates under independence: Gaussian model
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Fig 3. Moment method estimates under independence: Kotz 1 model

Fig 4. Moment method estimates under independence: Kotz 2 model

The addressed heuristic evolution suggests also the role of the analysis in
shape data. First note that the mouse vertebra data is based on non anatomical
landmarks, then a number of models have equal chance to estimate the mean
form and the correlation structure. In this case, we have noticed that the classical
isotropic Gaussian model of the literature is not appropriate. Then, we can
propose robust laws and a selection criteria. However, for anatomical landmark
data modeled by an expert in morphometrics, we must follow the proposed law
and robust models cannot be implemented.

We now focus on the dependent case and the moment method estimators of
Theorem 3.6. Given that the Gaussian case is out of any consideration, then we
study other Kotz models. In order to illustrate the important effect of landmark
dependence, we study a simple non Gaussian Kotz model. Consider the Kotz
1 function with N = 2, r = 1/2 and s = 1. We will compare its performance
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Fig 5. Moment method estimates under independence: Kotz 3 model

Fig 6. Moment method estimates under independence: Kotz 4 model

via Theorem 3.6 with another mean shape estimations. Table 2 provides com-
parisons among mean shape estimates of the small group. We include the mean
shape by moments of Theorem 3.6, the mean shape by the Fréchet method (see
[25]), and the mean shape by Bookstein method (see [2]). We can compare di-
rectly the estimations if we use Bookstein’s coordinates, i.e. the reference line is
given by landmarks 1 and 2. Both landmarks are sent to (−0.5, 0) and (0.5, 0),
respectively, then the mean shape is comprised in the remaining four land-
marks. Certainly, the estimations are truly similar. Recall that Kotz 1 law with
independent landmarks gave a low moment method estimator of mean shape.
However, under the expected and realistic dependence, the same model equals
the mean shape estimators derived by standard shape theories, see figures 3
and 8, respectively.
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Fig 7. Moment method estimates under independence: Kotz 5 model

Table 2

Mean shape estimation in the small group by Theorem 3.6 (Kotz 1), Fréchet (F), and
Bookstein (B).

Th. 6, μ̃1 Th. 6, μ̃2 B. μ̃1 B. μ̃2 F. μ̃1 F. μ̃2

-0.5 0 -0.5 0 -0.5 0
0.5 0 0.5 0 0.5 0

0.084507028 0.3301634 0.08469746 0.2933430 0.08490820 0.2924684
0.014836162 0.6957339 0.01215768 0.5613175 0.01245608 0.5589496
-0.073397569 0.3394693 -0.06874750 0.2991278 -0.06869796 0.2982314
-0.005026754 -0.2184060 -0.02502185 -0.3041418 -0.02512807 -0.3044915

The exact estimation of Theorem 3.6 also agrees with literature about strong
difference in Gaussian mean shape between the small (S) and large (L) groups.
Figure 8 also shows the mean shape estimation of the control (C) group. As we
expect, the control group must tend to show strong symmetry among landmarks,
by “averaging” in some sense the small and large estimates.

For a complete analysis we have included the so called Kotz 1, Kotz 2, Kotz
3, Kotz 4 and Kotz 5 models, with parameters (N = 2, s = 1, r = 1/2);
(N = 3, s = 1, r = 1/2); (N = 2, s = 2, r = 1/2); (N = 2, s = 3, r = 1/2)
and (N = 20, s = 20, r = 1/2), respectively. The appendix gives the tech-
nical details about the generalized singular Pseudo-Wishart distributions and
the particular Kotz Pseudo-Wishart distributions referred in this example. The
corresponding mean shapes estimates were computed for the 5 models, but for
reasons of space, we only show the results of the Kotz 5 function. This model
was suggested by its performance with Theorem 3.7 and certain selection cri-
teria that we will propose later, see figure 9. The figure shows the sample of
the three groups, Small:�, Large: +, Control: ×. It also plots the Kotz 5 mean
shape joined with colored dash lines. For a simple plot, we have used again
the addressed Bookstein’s coordinates with landmarks 1 and 2 as the reference
base-line.
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Fig 8. Moment method estimates under dependence: Kotz 1 model

Fig 9. Mean shape estimates for large, small and control groups under the Kotz 5 model

Now we apply the routine of Section 4 for a consistent estimation of the
general non-negative definite matrix ΣD. We show the results for the Kotz 5
model. First, we set the tolerance ε1 = ε2 = 0.000005 in the three groups (small,
large and control). The number of iterations to reach that tolerance in the three
groups was 57, 53 and 61, respectively.

The estimated covariance matrices for the small group are given next. For a
simple interpretation we provide the correlation matrix ρ instead of Σ. Recall

that ρ = (diag(Σ))
− 1

2 Σ (diag(Σ))
− 1

2 ):

ρ̃
∗
K =

⎛⎜⎜⎜⎜⎜⎝
1.0000000 −0.88123087 −0.45286210 −0.0947470 0.3167573 0.1049686
−0.8812309 1.00000000 −0.01931031 −0.3859582 −0.7246992 0.3741399
−0.4528621 −0.01931031 1.00000000 0.9267571 0.6990041 −0.9323209
−0.0947470 −0.38595825 0.92675709 1.0000000 0.9113738 −0.9979133
0.3167573 −0.72469917 0.69900414 0.9113738 1.0000000 −0.9087033
0.1049686 0.37413987 −0.93232089 −0.9979133 −0.9087033 1.0000000

⎞⎟⎟⎟⎟⎟⎠ ;
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and
ρ̃D =

(
1.00000000 −0.1305434
−0.1305434 1.00000000

)
.

For the large group the estimated correlation matrices are:

ρ̃
∗
K =

⎛⎜⎜⎜⎜⎜⎝
1.00000000 −0.65790585 −0.49909037 −0.05610956 −0.07744806 0.42376772
−0.65790585 1.00000000 0.06499537 −0.44441269 −0.29572585 0.03327717
−0.49909037 0.06499537 1.00000000 0.42647926 0.65775361 −0.76574318
−0.05610956 −0.44441269 0.42647926 1.00000000 0.65493138 −0.73668655
−0.07744806 −0.29572585 0.65775361 0.65493138 1.00000000 −0.79064351
0.42376772 0.03327717 −0.76574318 −0.73668655 −0.79064351 1.00000000

⎞⎟⎟⎟⎟⎟⎠;

and
ρ̃D =

(
1.00000000 −0.2080039
−0.2080039 1.00000000

)
.

Meanwhile in the control group the estimated correlation matrices are:

ρ̃
∗
K =

⎛⎜⎜⎜⎜⎜⎝
1.00000000 −0.6179802 −0.6137305 −0.3968700 0.05198526 0.5036286
−0.61798019 1.0000000 −0.1036402 −0.4037052 −0.70811391 0.2660900
−0.61373047 −0.1036402 1.0000000 0.7604036 0.50488092 −0.8386367
−0.39687003 −0.4037052 0.7604036 1.0000000 0.64810504 −0.9587295
0.05198526 −0.7081139 0.5048809 0.6481050 1.00000000 −0.6427126
0.50362856 0.2660900 −0.8386367 −0.9587295 −0.64271257 1.0000000

⎞⎟⎟⎟⎟⎟⎠;

and
ρ̃D =

(
1.00000000 0.1048453
0.1048453 1.00000000

)
.

The three groups reveal null correlation between the axes. However, high
correlation among landmarks is found, as we expected from the symmetry of
the bones. The estimates in the experimental groups (S, L) detect the differential
landmarks for both mean shapes. In the control group, the estimates tends to
follow the main contribution of those differential landmarks, as we expect.

We have also run the routines for the models Kotz 1, to Kotz 4 with the
same tolerance. They reached the stability between 50 to 70 iterations in the
three groups. Similar conclusions about the almost null correlation among axes
and strong correlation among landmarks were found in the models. We omit the
results for models 1 to 4 and focus on the Kotz 5 model, which is the “best” of
them under the following selection criteria.

For a model selection criteria, the control group plays a fundamental role. In
this case we look for the minimum coefficient of variation with the small and
large groups. We also consider the distance between the small and the large
group relative to the mean with controls. We apply a non-Euclidian distance
between covariance matrices, a technique due to [17]. The method is appropriate

for meaningful correlation matrices, in this case it is performed only for Σ̃∗
K . In

Tables 3 and 4, the notation K1,..., K5, s, l, c, stand for Kotz 1,..., Kotz 5,
small, large and control, respectively.

Tables 3 and 4 show the pairwise covariance distances and the percentage of
the variation coefficient is presented in parenthesis. We are searching for models
which reflect the role of the control group and separate the classes properly.
The analysis must be complemented with the mean shape estimates. Moreover,
a third criterion considers the distance with another accepted estimate; in this
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Table 3

Model selection criteria.

K1l K1c K2s K2l K2c K3s K3l K3c
K1s 12.9 8.7(37) 12.8 15.9 14.1 11.8 15.7 13.7
K1l 5.1(37) 10.6 6.1 8.4 10.8 5.1 8.5
K1c 9.6 9.1 8.9 9.2 8.6 8.7
K2s 11.0 11.0(14) 6.0 11.1 10.7
K2l 9.0(14) 12.0 1.5 9.1
K2c 11.6 8.8 0.9
K3s 12.1 11.2(15)
K3l 9.0(15)

Table 4

Model selection criteria.

K4s K4l K4c K5s K5l K5c
K1s 11.1 15.0 13.1 11.1 13.9 12.1
K1l 11.3 3.9 8.6 12.2 2.4 2.8
K1c 9.2 7.7 8.4 9.7 6.4 4.8
K2s 8.9 10.8 10.3 10.9 10.1 9.7
K2l 13.3 3.0 9.5 14.7 4.4 7.0
K2c 12.4 8.5 2.1 13.4 8.2 8.4
K3s 6.4 11.6 10.7 9.2 10.7 9.8
K3l 13.2 1.6 9.5 14.6 3.3 6.2
K3c 11.9 8.7 1.2 12.9 8.4 8.3
K4s 12.6 11.4(16) 6.8 11.6 10.6
K4l 9.1(16) 13.9 1.8 5.1
K4c 12.3 8.7 8.3
K5s 12.8 11.6(74)
K5l 3.6(74)

case we use the Fréchet mean shape. The addressed mean shape distance can
be achieved by a number of approaches, see for example [24].

Kotz 3 and Kotz 4 models behave well with low variation coefficient, but
they are far from the control group and the sample. If we find the so called
Riemannian distance among the moment method estimates and the Fréchet
and Bookstein mean shapes, we obtain the results of table 5:

Table 5

Model selection criteria.

K2 K3 K4 K5 F. B.
K1 0.274 0.236 0.211 0.180 0.113 0.112
K2 0.082 0.128 0.153 0.189 0.191
K3 0.048 0.078 0.131 0.133
K4 0.035 0.099 0.100
K5 0.067 0.068
F 0.002

The mean shape of the Kotz 5 model is very near to the estimates computed
by Fréchet and Bookstein (which are also similar). It also reflects good difference
between the small and large groups. Then collecting the results, we can propose
Kotz type 5 model as a suitable law for modeling this particular example. Note
that this selection agrees with the conclusion proposed in the independent case.
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It is important to quote, that a mathematical or statistical selection is just
a suggestion. In this case we proceed because the experiment lacks of a priori
assumption for anatomical landmark distribution. In our case, literature shows
no expert assumption about normality, see [16] and the references therein. It
was traditionally set in the Gaussian theory in order to simplify computations.

However, if an expert in morphometrics has set the Gaussian model for this
experiment, then the above selection criteria is out of significance. Because, as
we have shown in this landmark data, the moments-method estimates does not
work properly under Gaussian models.

Now, at this stage, the conclusion about Kotz 5 model ratifies that non-
Gaussian models explain better the three samples. An elliptical isotropic ap-
proach also verified this conclusion, see for example [8].

Once the model is selected, we are interested in application of Section 5,
about estimation of mean form difference. In fact, we can go further with hy-
pothesis testing for equality of the associated Euclidean Distance Matrices of
two populations.

The methodology can be found in [31] and the references therein. We want
to test H0 : F(μX) = cF(μY), for some c > 0, where μX and μY are the
population mean shape. Consider a sample of objects X’s and Y’s. The exact
formulae of Theorem 3.6 give the estimated mean shapes μ̃X and μ̃Y . Then we

can derive the form difference matrix FDM
(
μ̃X, μ̃Y

)
. This matrix can define

a number of statistics for testing H0; however, [31] recommend the following:

T = max
i,j

FDMij/min
i,j

FDMij ,

where FDMij is the i, j−element of matrix FDM. Note that if H0 is true T
is close to 1. Moreover, T satisfies the desirable property of invariance under
scaling, see [31] for more details.

The null distribution is difficult to obtain even in the Gaussian case. But,
we can obtain an empirical null distribution by using a bootstrap procedure,
see [31] and the references therein. For similar samples of the current example,
those authors propose a bootstrap of size 100.

Once the empirical distribution is obtained, a p-value based on the upper tail
of the observed statistics can be computed. It rejects H0 for small values near
to 0.1.

Table 6 reports the tests for the Gaussian case and the Kotz 5 model. It
shows the p-values for the three possible pairs of groups in this experiment.
Under the expected dependent condition of Theorem 3.6, the Gaussian model
cannot detect the role of the control test, giving a wrong conclusion. The se-
lected model with covariance distances, separates the control group but does
not provide strong evidence of shape difference between small and large bones.
This opens a discussion about the coordinate free approach of [31], because
the pairwise-element quotient in the matrix form difference is neglecting some
important information of this matrix. Then two challenges for a future work
can be proposed: 1) Robust definitions of FDM and 2) exact distributions of
FDM(X,Y).
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Table 6

p-values of testing the equality of mean shape under different models and pairs of
populations.

Small-Large Small-Control Large-Control
Gaussian 0.00 0.00 0.00
Kotz 5 0.12 0.51 0.74

7. Conclusions

1. This work proposes a theory for the estimation of mean form and mean
form difference under elliptical laws. This approach models a wide range
of real situations, with more or less heavy tails and more or less kurtosis
than the Gaussian model.

2. The method-of-moments provides consistent estimators under the ellipti-
cal models.

3. Exact formulae, easy to compute, are given for the estimators.
4. Some research alternatives can be proposed. Instead of the assumptions in

subsections 2.3 and 2.4, we can consider: Assume that the joint distribution
of E1,E2, . . . ,En is

E = (E1,E2, . . . ,En) ∼ EK×nD(0,ΣK ⊗ΣD ⊗ In, h),

where Cov(vecET ) = ΣK ⊗ΣD ⊗ In. Then non central generalization of
[19, Eq. 3.4.14, p. 109] and [23, Theorem 5.1.6, p. 170], provides the joint
distribution of B1,B2, . . . ,Bn as follows:

B = (B1,B2, . . . ,Bn) ∼ GPWK,n

(
Σ∗

K ,
D

2
,
D

2
, . . . ,

D

2
,Ω, h

)
,

where Ω = (Σ∗
K)

−
μ∗Σ−1

D μ∗T . Note that this case assumes a dependent
sample X1, . . . ,Xn.

5. Recall that the method-of-moments estimators are not uniquely defined,
see Remark 3.3. Then the method-of-moments estimator of ΣD can be
obtained from the first two moments of B.

Appendix A: Particular generalized Pseudo-Wishart singular
distributions

The following result is a particular case of [13] or [15], when Θ is non singular
matrix.

Theorem A.1 (Generalized singular Pseudo-Wishart distributions). Assume

that Y ∼ EK−1,D
K×D (μ,Σ⊗Θ, h), where h admits a power series expansion

h(v + a) =

∞∑
t=0

h(t)(a)vt

t!
.
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in �. Let q = min(K − 1, D); then the density of B = YΘ−1YT is given by

=
πqD/2|L|(D−K−1)/2

Γq[D/2]

⎛⎝(K−1)∏
i=1

λ
D/2
i

⎞⎠
∞∑
t=0

∑
κ

h(2t)(tr(Σ−B+Ω))

t!

Cκ(ΩΣ−B)(
1
2 D
)
κ

(dB)

(A.1)
where B = W1LW

T
1 , is the nonsingular spectral decomposition of B with W1

a semiorthogonal matrix, i.e. WT
1 W1 = Iq, and L = diag(l1, . . . , lq); Ω =

Σ−μΘ−1μT . (dB) is the Hausdorff measure defined in [13, Section 5]. λi,
i = 1, . . . , (K − 1), are the non null eigenvalues of Σ. Cκ(A) are the zonal
polynomials of A indexed by the partition κ = (t1, . . . , tα) of t, with

∑α
1 ti = t.

(a)κ =
∏α

j=1(a − (j − 1)/2)tj , (a)t = a(a + 1) · · · (a + t − 1) is the generalized

hypergeometric coefficient and Γs(a) = πs(s−1)/4
∏s

j=1 Γ(a − (j − 1)/2) is the
multivariate gamma function, see [36];

Corollary A.1 (Singular Pseudo-Wishart Gaussian distribution). Assume that

Y ∼ NK−1,D
K×D (μ,Σ ⊗Θ), and let q = min(K − 1, D); then the density of B =

YΘ−1YT is given by

= C etr

(
− 1

2
(Σ−B−Ω)

)
0F1

(
1

2
D;

1

4
ΩΣ−B

)
(dB). (A.2)

Here

C =
πD(q−(K−1))/2|L|(D−K−1)/2

2D(K−1)/2Γq[D/2]

(
K−1∏
i=1

λ
D/2
i

) ,

where 0F1(·) is a hypergeometric function with a matrix argument, see [36, p.
258].

Appendix B: Singular Pseudo-Wishart Kotz distribution

Firs recall that the K ×D random matrix X is said to have a singular matrix
variate symmetric Kotz type distribution with parameters N, r, s ∈ �, μ : K×D,
Σ : K ×K, of rank K − 1, Θ : D ×D with r > 0, s > 0, 2N + (K − 1)D > 2,
Σ > 0, and Θ > 0 if its density is

sr(2N+(K−1)D−2)/2sΓ [(K − 1)D/2]

π(K−1)D/2Γ [(2N + (K − 1)D − 2)/2s]

(
K−1∏
i=1

λ
D/2
i

)
|Θ|(K−1)/2

×
[
trΘ−1(Y − μ)TΣ−(Y − μ)

]N−1
exp
{
−r trs Θ−1(Y − μ)TΣ−(Y − μ)

}
.

When T = s = 1, and R = 1/2 we get the singular matrix variate gaussian
distribution.
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Note that particular singular Pseudo-Wishart distributions just depend on
the general derivative h(2t)(·) of the elliptical generator function; it seems a
trivial fact, but the general formulae involves cumbersome expressions indexed
by partitions, see [4]. In the Kotz type distributions they derived the following
expressions.

When s = 1, the Kotz type models and their general derivative simplify
substantially. Thus, the following expressions applies for Gaussian, Kotz 1, and
Kotz 2 models, with parameters N = 1, s = 1, r = 1/2; N = 2, s = 1, r = 1/2;
N = 3, s = 1, r = 1/2; respectively. The generator model is given by

h(y) =
rN−1+(K−1)D/2Γ [(K − 1)D/2]

π(K−1)D/2Γ [N − 1 + (K − 1)D/2]
yN−1 exp{−ry},

And, the corresponding k-th derivative of h, follows from

dk

dyk
yN−1 exp[−ry],

which is given by

(−r)kyN−1 exp[−ry]

{
1 +

k∑
v=1

(
k

v

)[v−1∏
i=0

(N − 1− i)

]
(−ry)−v

}
,

where k = 2t.
For the remaining models of the example, the so termed Kotz 3, Kotz 4 and

Kotz 5, have parameters N = 2, s = 2, r = 1/2; N = 2, s = 3, r = 1/2 and
N = 20, s = 20, r = 1/2, respectively. The generator function is given by:

h(y) =
sr(2N+(K−1)D−2)/2s Γ[(K − 1)D/2]

π(K−1)D/2Γ [(2N + (K − 1)D − 2)/2s]
yN−1 exp (−rys) .

The required k-th derivative of h, follows from dk

dyk exp (−rys), which is given
by

yT−1e−Rys

{∑
κ∈Pk

k!(−R)
∑k

i=1 vi
∏k−1

j=0 (s− j)
∑k

i=j+1 vi∏k
i=1 vi!(i!)

vi
y
∑k

i=1(s−i)vi

+
k∑

m=1

(
k

m

)[m−1∏
i=0

(T − 1− i)

]

×
∑

κ∈Pk−m

(k −m)!(−R)
∑k−m

i=1 vi
∏k−m−1

j=0 (s− j)
∑k−m

i=j+1 vi∏k−m
i=1 vi!(i!)vi

y
∑k−m

i=1 (s−i)vi−m

⎫⎬⎭ ,

where
∑

κ∈Pk
denotes the summation over all the partitions

κ =
(
kvk , (k − 1)vk−1, . . . , 3v3,2

v2 ,1v1
)
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of k, with
∑k

i=1 ivi = k, i.e. κ is a partition of k consisting of v1 ones, v2 twos,
v3 threes, etc. It is important to quote that all the singular Pseudo-Wishart
distributions based on Kotz type kernels can be computed by some modifications
of the Gaussian version in [27]. See for example [9] and similar works of the
authors on shape theory.
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differential calculus and moments of a random matrix elliptical, Serie
Colección “Estad́ıstica Multivariable y Procesos Estocásticos”. Universi-
dad de Granada, Espańa, (in Spanish).
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