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Abstract

We present a general expression for any term of the Magnus series as an iterated integral of a linear
combination of independent right-nested commutators with given coefficients. The relation with the
Malvenuto—Reutenauer Hopf algebra of permutations is also discussed.

1. Introduction

Given the linear differential equation
Y'(t) = AOY (1), Y(©0) =1, (D
where A(f)isa N x N matrix, it is well known that Y () = exp ( fo ‘A (s) ds) is no longer the solution unless

[A(t,), A(t;)] = Ofor arbitrary t,, f,, or at least I:j(;tA(s), A(t)] = 0,where[A, B] = AB — BA denotes the
usual commutator. One can still get an exponential approximation for the solution of (1), however, by applying a
procedure proposed by Magnus [24]. In that case

Y (1) = exp Q(2), 2

where €2 is now an infinite series

oo
Q@) = ), with %(0) = 0, 3)
k=1
whose terms are increasingly complex expressions involving time-ordered integrals of nested commutators of A
evaluated at different times. It is the purpose of this work to provide a general expression for this series as iterated
integrals of linear combinations of independent commutators.

In its original formulation [24], the Magnus expansion was established more generally as follows. Let A(f) be
aknown function of tin the ring of all power series of the type

A(t) = i U, t"

n=0
and let Y(#) be an unknown function satisfying the initial value problem (1). Then it is possible to express Y(¢) as
(2), where €(¢) is obtained by inserting (2) into (1) and solving the differential equation
daQ

[o'e} Bn ;
- > - adPA, Q) = 0. (4)
n=0 ""*

by iteration. Here

addA = A, adbT'A = [Q, adbA], k>0

© 2018 The Author(s). Published by IOP Publishing Ltd
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and {B, } are Bernoulli numbers. This procedure leads to an infinite series for €2,
Q(t) = Q](t) + Qz(t) + Q3(t) + o

the first terms of which are

- [ " A(n)d,

(1) = —% I t [ S " Al dn, A(n)]dtl
1 t f f
% =— j; [ fo A(t)dt, [ j; A(l‘z)dl‘z,A(tl)]]dl‘l
1 rt f t,
+ Zj:) [j; [fo A(t)dts, A(tz)]dtz, A(tl)]dtl (5)

and a more involved expression for 2, (see e.g. [19]). It can be shown that one has convergence in a
neighborhood of t = 0. By doing some algebra it is possible to write down explicitly at least the first {2, as linear
combinations of iterated integrals of nested commutators of A evaluated at different times, but the complexity of
this task increases steadily with k. For instance, working out the successive integrals appearing in 25 as given by
(5) we get

A1) = é ) " ) " dn, ) "ty (A, [A), A()]] + [A®), [A(L), AW, ©)

whereas similar expressions for {2, and {25 have been presented in [29]. At any rate, this structure is especially
favorable in practice when the differential equation evolves in a Lie group and the series is truncated: the
approximation thus obtained still belongs to the same Lie group and thus shares with the exact solution relevant
qualitative properties [10, 19].

Since the 1960s the Magnus expansion (often with different names) has been used to render analytical
approximations in many different areas of science, ranging from nuclear, atomic and molecular physics to
nuclear magnetic resonance, quantum electrodynamics, control theory, and also as a numerical integrator for
differential equations in the realm of geometric numerical integration (see [10] for a review). Here the aim is to
construct integration schemes that preserve the main qualitative features of the exact solution, such as its
invariant quantities or the geometric structure [8, 17]. The convergence of the expansion is also an important
feature and several results are available in the literature [9, 13, 22, 27].

Different procedures have been proposed along the years to obtain explicit expressions of {2; for any kin
terms of commutators: recurrence relations [21], techniques based on binary trees [20], combinatorial
techniques applied to iterated integrals [2, 26, 31], etc. The expressions thus obtained for {2, present however
some limitations: they are not unique (due to the Jacobi identity and other identities appearing at higher orders)
and very often not all the terms are independent. For certain applications it might be of some interest to get
expressions similar to (5) for any given {2y, i.e., writing an arbitrary (2 as an iterated integral of (a linear
combination of) independent nested commutators. As far as we know, this has been carried out onlyup tok = 6
[22] and itis the purpose of this paper to provide a general expression for any k > 1, namely we will provide an
explicit formula for €2 as an iterated integral of a linear combination of (k — 1)! right-nested independent
commutators of A evaluated at different times. In doing so we will relate the Magnus expansion with the well
known Malvenuto—Reutenauer Hopf algebra of permutations [18], thus providing a new illustration of this
abstract algebraic structure.

2. The Magnus expansion in terms of iterated integrals

Asin[2,30] our starting point is to write the Magnus series (3) in terms of iterated integrals of A. This can be
achieved by considering the Neumann (Dyson) series for the solution of (1),

t t 3
Yt)=1+ A(s)ds + dh dty A(h)A(ty) + -+
() fo (s)ds fo 1f0 2 A()A(t)
or, in general,

Y(t) =1+ i Bi(1) )

n=1
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with
o= [ " dn [ "ty [ "ty AAD) - Alh). ®

This is a convergent series for all # (if A is bounded), but, in contrast to the Magnus expansion, when truncated no
longer preserves qualitative properties of the exact solution. In particular, if A(?) is a skew-Hermitian operator,
the approximation thus obtained is no longer unitary.

The € can in fact be expressed in terms of the iterated integrals (8) by taking logarithms in (3) and equating
with (7),

S @) = log[I + ZPk(t)).

k=1 k=1

Then

1.
Qn = Pn - —,R;«g])a n 2 2> (9)

where

Rr(,j) - ZPiIPiZ ... P (i - +ij=n)

ij
and the sum extends over all i, i, ... §jsuch thati; + i, + .-+ + i; = n[12]. Thus, in particular, we get for the
first terms

Ql = P1
1
Q, =P, — —P}
2

1 1
Qy=P; — E(Plp2 + P,P) + gpf

1 1 1
Q=P — E(Plp3 + P3P, + P} + 5(PIZP2 + P,P,P, + P,P}) — ZP;*. (10)

Notice, however, that from €2, on, these expressions are not yet written in terms of time-ordered integrals. To
achieve this goal we have to express the products P; --- P; appearingin (9) as iterated integrals. In this respect, it
is useful to introduce the following notation:

t t ts
A(iliz...in)zfo dtlfo dt2-~-f0 dty A(t) AL - Aty). (11)

Observe that the order in the integration is fixed, whereas the ordering of the product appearing in the integrand
is indicated by the sequence iy, 7, ... i,,. According with this notation, we have

A(l):fo A ), A(1z)=j; dtlj;l dty A()A(t)
A(2341) = j; dt j; 't j; "ty j; " dty A()A(t) A (L) A(H)

etc, whereas (8) simply reads
B,(t) = AQ12 ... n).

Having established a one-to-one correspondence between iterated integrals and permutations via equation (11),
itis possible to encode the products appearing in (9) also in terms of permutations. Thus, in particular,

0, =A(12) — %A(l) -A(D)
0= A(123) — %A(l) CA(12) — %A(lZ) CA(D) + %A(l) CAQ) - AQD).
According with Fubini’s theorem,
(e o ) _ (e} X ’ ) 12
J. dyfy feoyyde= [ dx [ sy dy (12)
wehave A(1) - A(1) = A(12) + A(21),sothat

0, =A12) — %(A(12) + A(21) = %(A(IZ) — A(21)). (13)
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Analogously, using again (12) one has

A(l) - A(12) = A(123) + A(213) + A(312)
A(12) - A(1) = A(123) + A(132) + A(231)
A1) - A1) - A(1) = A(123) + A(132) + A(213) + A(231) + A(312) + A(321), (14)

so that, by inserting (14) into the expression of {25 given in (10), we arrive at

1 1 1 1 1 1
Oy = —A(123) — — A(132) — — A(213) — — A(231) — — A(312) + — A(321). 1
3 3(3) 6(3) 6(3) 6(3) 6(3)+3(3) 15)

This procedure can be generalized to higher orders by realizing that any product of integrals encoded in terms of
permutations appearing in {2, can be replaced by a sum of all possible permutations of time ordering consistent
with whatever time ordering existed within the factors of the original product [15]. This is again a consequence
of Fubini’s theorem (12). Thus, A(1) - A (12) in equation (14) is the sum of all permutations of three elements
such that the second index is always less than the third index. On the other hand, in A(1) - A(1) - A(1) thereis
no special ordering, so that there is no preferential order for the decomposition (and thus all possible
permutations have to be taken into account), whereas

A(1) - A(123) = A(4123) + A(3124) + A(2134) + A(1234).

By applying this procedure to 2, as given by (10) we get alinear combination with rational coefficients of all the
4! = 24 permutations from the set { 1, 2, 3, 4}. In general, we have foranyn > 2,

b!
- A(o), (16)

Qu(t) = > (=%

oeS,

d,' d
n

where 0 € G, denotes a permutationof { 1,2, ...,n }, d, is the number of ascents in o, dj, is the number of
descents and the sum is over the n! permutations of the symmetric group &,,. We recall that o has an ascent in 7 if
o(i) < o(i+ 1),i =1,...,n — landithasadescentiniifo(i) > o(i + 1). Here

(i1iy ... i) = (6 (1) 0(2) ... 0(n)).Clearlyd, + d, = n — 1sothat(16) can be written only in terms of either
d, or dy,. In this last case one has the alternative expression

1

Q) = = 32 (~ 1y A, (17)
n geq, (nil)
dy
or more explicitly
Q(t)*il S (b ft an [ dr ~-ft"" dty Aty A (o) - Aty (18)
= " 0 1 0 2 0 n (1) o (2) o(n))-

n=1 e, (n;l)
b

This formula has been published a number of times in the literature, obtained by different techniques
[2,7,26,30].If oneis interested in writing 2, explicitly as an element in the Lie algebra generated by the family A
(t), the usual approach is then to apply the Dynkin—Specht—Wever theorem [11] to equation (17): the resulting
expression is obtained by replacing

1
A(to1)A(ts2) - Altsy) by ;[A(ta(l))) [A(te2)s 5 [Alto-1)> Alte@)] -+ 1]

in (17). In that case, though, not all the commutators appearing in the corresponding formula are linearly
independent among each other, due to antisimmetry and the Jacobi identity. By contrast, in the formulation we
propose all the terms are independent.

3. Iterated integrals and the Hopf algebra of permutations

The product A(o) - A(7), with o and 7 two given permutations, that we introduced in the previous section just as
asymbolic way of encoding the product of iterated integrals Pj, correspond in fact to a much deeper
characterization of the set of permutations. This is in fact related with the Malvenuto—Reutenauer Hopf algebra
of permutations, introduced and studied in [25, 28]. We next briefly recall the construction of this Hopf algebra.
In doing so we follow the notation used originally in [25] for the product(s) and coproduct(s).

By following [4], let us denote by &Sym the graded Q-vector space with fundamental basis given by the
disjoint union of the symmetric groups S, forall n > 0. In particular, &y = {()} and the elements of &, are
considered as words & = (a;a,... a,,) on the alphabet {1, 2, ..., n}. In[25] two Hopf algebra structures on &Sym
are introduced as follows.
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The product ' of 0 € & and 7 € & is defined by
ocx'tT=0 w T, (19)

where 7 isthewordin {k + 1, ...,k + £} is obtained by replacingin 7 each iby i + k, and w denotes the usual
shuffle product. Thus, for instance,

(1) * '(12) = (123) + (213) + (231)
(1) *'(21) = (132) + (312) + (321)
(12) * '(12) = (1234) + (1324) + (1342) + (3124) + (3142) + (3412).

Notice that the empty word (permutation) acts as the unit element. Given aword a = (a,4,... a,,,) without
repeats over the alphabet {1, 2, ..., m}, its standardization st(«) is the word obtained by applying to « the
unique increasing bijection {ay, ..., a,,} — {1, 2, ..., m}. For instance, st((324)) = (213) and st(()) = ().
Then the coproduct ¢ is defined as
§(o) = Z st(u) ® st(v),
a=uv

where the sum is over all concatenation factorizations of «v. In particular,

6'((2431)) = st(()) ® st((2431)) + st((2)) ® st((431)) + st((24)) ® st((31))
+ st((243)) ® st((1)) + st((2431)) @ st(())
=() ® (243D + (1) ® (321) + (12) ® (21) + (132) ® (1) + (2431) ® ().

With the counit defined by € (()) = 1ande(a) = 0if o haslength >1, &Sym is a non-commutative and non-
cocommutative Hopf algebra, graded by the length of permutations.

As amatter of fact, another product * and another coproduct ¢ can be defined endowing SSym with a
second Hopf algebra structure which happens to be isomorphic to the previous one. Given, as before, 0 € &;
and T € &,

o xT= Zuv, (20)

where the sum is over all u, v such that st(u) = o, st(v) = 7and the concatenated word uvis a permutation in
&y ¢- Thus, for instance,

(1) * (12) = (123) + (213) + (312)
(1) * (21) = (132) + (231) + (321)
(12) * (12) = (1234) + (1324) + (1423) + (2314) + (2413) + (3412).

Denoting by oz the word obtained from « by removing all letters that are not in B, the coproduct is defined as

For example,

6((2431)) = () ® st((2431)) + (1) @ st((243)) + (21) @ st((43))
+(231) ® st((4)) + (2431) @ st(())
=() ® (2431) + (1) ® (132) + (21) ® (21) + (231) @ (1) + (2431) ® ().

These two graded Hopf algebras on GSym are isomorphic and dual to each other (i.e., self-dual) with respect to
the inner product (,) defined as [18, 28]

: _ -1
<J, T> _ {1 lf J—.T
0 otherwise
Then, the existence of the antipode is automatic [ 18]. Moreover, the antipode has infinite order, as shown in [4],
where explicit formulas have also been derived.
Furthermore, if § : &Sym —> &Sym denotes the linear involution that takes a permutation o to its inverse,

0(c) = o', then these two Hopf algebras are conjugated by 6:
ocx7=000(0) *'0(1)) and 6(0) = (0 @ 0)('(0(0))). (21)

We notice at once the connection between the product of iterated integrals arising from the application of
Fubini’s theorem (see e.g. (14)) and the product * of permutations in the Hopf algebra &Sym via the one-to-one
correspondence between iterated integrals and permutations (11): it clearly holds that

A(o) - A(T) = A(o * 7). (22)

Relation (22) can be found in reference [2], where the product  is referred to as shuffle product of permutations.
One might ask what is the equivalent, at the level of iterated integrals, of the product *’ in &Sym. To this end,
we remark that it is possible to define another one-to-one correspondence between iterated integrals and

5
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permutations, in addition to (11). Specifically, let us denote
t fy Lipy
Aty i = [ dn [ [ dn, AWA®) - A, (23)
0 0 0

so that the indices of the permutation indicate the simplex in which the integration is carried out, whereas the
order in the functions appearing in the integrand is fixed. Then, it is straightforward to verify that

Aliniy -+ ip) = A((idy -+ 1)) = Ay -+ i)

Thus, the product of iterated integrals of the form (23) corresponds precisely to the product " in SSym, and the
map 0 relates both types of iterated integrals, i.e.,

Al(0) - Al(T) = Ao * 7). (24)

4. Magnus series in terms of right-nested independent commutators

The algorithm based on the application of (9), the product of permutations * and the relation (22) allows us to
construct {2,,in the Magnus series explicitly in terms of elements in GSym forany n > 1. We next show that, by
appropriately manipulating the expression (17), it is possible to write €2,, in such a way that only right-nested
independent commutators are present.

To illustrate the procedure, consider again the expressions of 2, and €25 given by (13) and (15), respectively.
Itis clear that (13) already corresponds to the formula collected in (5) for 2,, or equivalently

1 prt f
G0 =~ [ dn [ dn [A@), Aw),
2 Jo 0
whereas (15) can be written as
Q3 = %(A(123) — AQ213)) — %(A(231) — A(321) — é(A(312) — A(321))
+ é(A(123) — A(132)),
ie.,
1 rt f t,
G=— [ an ["dn [T dnlaw), A@IAG)
6 Jo 0 0
1 prt f t
—— | d dt dt;[A(ty), A(t3)] A
o an [ dn [ dniaw), Ae)A®w
1 rt t t
—— [Can [Tdn [T dna@)Am), Aw)]
6 Jo 0 0
1 rt f t,
= [Can [Cdn [T anamiA®), Aw),
6 Jo 0 0
whence the expression (6) is recovered. Alternatively, Jacobi identity allows us to write also
1 pt f t
= [ dn [dn [ dn (A, (@), A
3Jo 0 0
1 prt f t
— = [Can [T dn [ di 1A, 1AW, A@IL
6 Jo 0 0
If we denote, in general,
t 31 b1
Aliy o] = [ dt [ty [ dnAG), A, 1A, ), AG) - ]
then we can write in a more compact way
1 1 1
Q, = ——A[2, 1], Q3 =—A[3,2,1] — —A[2, 3, 1].
2 5 (2, 1] 373 [ ] p [ ]
For higher order terms the same strategy can be applied, namely we can expand (17) and then collect the
resulting terms into multiple commutators, although the procedure is cuambersome for n > 4. Werely instead
in results presented in [15] concerning the set of all (N — 1)-fold commutators of N different (abstract) linear

operators Oy, O,, ..., On. Specifically, in the appendix of [ 15] it is shown that

(1) This set forms a vector space of dimension (N — 1)L.

6
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(2) A possible basis for this vector space is formed by right-nested commutators of the form

[Oms [Op...[Ok Oj] ... 1.

(3) In forming such a basis we can use only those right-nested commutators ending with a particular but
otherwise arbitrary operator selected from the collection O, O,, ..., On. If we choose this operator as Oy,
then the basis is formed by the right-nested commutators of the form

[Ok’ [O) . ~[Oi) Ol] oo ]])
where the indices k, j, ... iare all possible permutations of {2, 3, ... N } (clearly, (N — 1)! permutations).

(4) Consider an expression which is known to be decomposable into a set of (N — 1)-fold commutators of N
objects and suppose all the right-nested commutators ending with O, are used as a basis for the
decomposition. Then, the coefficient of the right-nested commutator [Oy, [O;,...[O;, O] ... ]]isthe
coefficient of the permutation o = (kj...il) in the original expression.

These results can be readily applied to the expression (17) for 2, by identifying O; = A(t;). In particular, for
)5 abasis of right-nested commutators can be taken as {[A (£3), [A(12), A(0)]], [A(%2), [A(53), A(W)]]},
associated with the permutations (321) and (231), respectively. The coefficientsof (321 )and (23 1) in (15) are
respectively % and — %, andso

] 1
Q= —A[3,2, 1] — —A[2, 3, 1]
T3 6

in accordance with the previous direct calculation.
Taking into account these considerations, we can write in general

0,0 = 3 (-1t LT 4 5.6), 63), o, 1, (25)
> n!

where now the sum extends over the (n — 1)! permutations 0 of {2, 3, ..., n } and d, (respectively, d}) is the
number of ascents (respect., descents) of the permutation o and thus d, + d, = n — 2. Notice that the total
number of descents of the permutation (6(2) o(3) ... o(n) 1)is precisely d;, + 1. Alternatively,

R - DIIY RS S PR

Qn(t)_ng( D *(n_l) fo dtlfo dt, fo dt,
dy+1

[A(t,2)s [A(to3) -+ [Altow)s A(D)] -+ 11 (26)

As an illustration, the expression of €2, reads

1 1 1
QU=——A[4,3,2,11+ —A[4,2,3,1] + —A[3,2,4,1
4= [ ] B [ ] ) [ ]

a1+ LA a3 - LA 3411
12 12 12

According with the preceding results, one could select any other A(#;) as the last operator (to the right) in the
nested commutators, and so there are n different but equivalent expressions for €2,,. In particular, if we take
O, = A(t,), then

Qn(t) =

l — db 1 ' " cee e
. UE%A( 1) (H;) fo dy . dt, fo dt,
[At, ) [Ato2) -+ [Altom-1)> At)] -+ 11 (27)

In any case, these identities can be readily implemented in a computer algebra system to generate any order in
the Magnus expansion.

5. Concluding remarks

The Magnus expansion is an extremely useful device when dealing with time-dependent linear differential
equations of the form Y’ = A(¥) Y. It yields the solution of such equations in exponential form, the exponent
defined as an infinite series whose terms can be constructed in a recursive way as multiple integrals of nested
commutators of the operator A(f) defining the differential equation. Given its ubiquitous nature and the wide
range of applications in physics and mathematics, it is hardly surprising that along the years several authors have

7
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proposed explicit formulas for the terms €2,,(¢) of the Magnus series. As a matter of fact, the same formulas can be
found in various published references, independently obtained by different authors. Such expressions could be
classified into two types: either 2, is written as a time-ordered integral of a sum of products of A evaluated at
different times (as in [26]) or it is expressed as multiple integrals of a linear combination of (1 — 1)-nested
commutators [19]. Of course, as pointed out in section 2, by application of the Dynkin—Specht—Wever (DSW)
theorem it is always possible to get an expression of the second type from the first approach. The drawback,
though, is that there are many redundancies due to the Jacobi identity and other identities of commutators
appearing at high orders.

By contrast, in the procedure we propose here no use is done of the DSW theorem from (18). Instead we
apply the results obtained by Dragt & Forestin [15] to get a general expression for 2, as an iterated integral of a
linear combination of (n — 1)! right-nested independent commutators of A evaluated at different times. Other
expressions of this type have been obtained up to {2¢ containing less terms [22], although no general expression
has been proposed.

When developing our procedure we have also established a remarkable connection of the Magnus expansion
with the Malvenuto—Reutenauer Hopf algebra. This rather special Hopf algebra is non commutative, non
cocommutative, free as an algebra, cofree as a coalgebra and self-dual [18]. We have seen that the products
defining this structure admits a natural interpretation in terms of products of the iterated integrals appearing in
the Magnus expansion, so this feature provides an additional, physical realization of the Hopf algebra of
permutations.

Given the close connection between the Magnus expansion and the Baker—Campbell-Hausdorff (BCH)
formula (see e.g. [30]), it is clear that the expression (27) can be used to get the homogeneous Lie polynomials
Z,,(X, Y) in the expansion

o0
Z=log(eXe) =X+Y+ > Z.X, Y).
m=2
Proceeding in this way we recover the result obtained in [23], although the resulting commutators appearing in
(27) are not all independent. An algorithm for expressing Z in terms of a basis of the free algebra generated by X
and Yhasbeen presented in [14].

Although here we have treated only linear differential equations, it is clear that the same approach can also be
applied to nonautonomous nonlinear systems with only minimal changes [3, 30] and in fact to any problem
where iterated integrals of the type considered in this work appear, such as the Wilcox expansion in quantum
mechanics [32], chronological calculus in control theory [ 1], rough paths, etc.

Other issues remain of course to be analyzed in more detail, in particular the connection with other Hopf
algebras closely related with the Malvenuto—Reutenauer Hopf algebra such as the Hopf algebra of heap-ordered
trees [16], the role played by connected permutations [28] in our setting and the formulation at the level of the
Hopfalgebra of the results obtained by Dragt & Forest. This will be the subject of a forthcoming paper [5].

After the completion of this work, we have become aware that the authors of [6] independently have
obtained expression (27) as a consequence of their treatment of the Euler idempotent based on the computation
of alogarithm in a certain pre-Lie algebra of planar, binary, rooted trees.
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