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Abstract Sparse coding has recently been a hot topic

in visual tasks in image processing and computer vision.

It has applications and brings benefits in reconstruction-

like tasks and in classification-like tasks as well. How-

ever, regarding binary classification problems, there are

several choices to learn and use dictionaries that have

not been studied. In particular, how single-dictionary

and dual-dictionary approaches compare in terms of

classification performance is largely unexplored. We com-

pare three single-dictionary strategies and two dual-

dictionary strategies for the problem of pedestrian clas-

sification (“pedestrian” vs “background” images). In

each of these five cases, images are represented as the

sparse coefficients induced from the respective dictio-

naries, and these coefficients are the input to a regu-

lar classifier both for training and subsequent classifi-

cation of novel unseen instances. Experimental results

with the INRIA pedestrian dataset suggest, on the one

hand, that dictionaries learned from only one of the

classes, even from the background class, are enough for

obtaining competitive good classification performance.

On the other hand, while better performance is gener-

ally obtained when instances of both classes are used

for dictionary learning, the representation induced by

a single dictionary learned from a set of instances from

both classes provides comparable or even superior per-

formance over the representations induced by two dic-

tionaries learned separately from the pedestrian and

background classes.
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1 Introduction

Many signals of interest can be represented as a lin-

ear combination of a (limited) number of words from a

dictionary. These words, also known as atoms, can be

predefined with known functions such as wavelets, or

learned from some training data. Due to its theoreti-

cal and practical benefits, these sparse representations

and the corresponding methodologies [8] have in the

last decade attracted greater attention from the com-

puter vision community, mostly for reconstruction-like

tasks, including image denoising [9, 24], inpainting [10],

and facial images compression [3]. More recently, they

have also been applied in classification tasks [42] such

as face recognition [47, 7], object and pedestrian detec-

tion [41, 32, 17, 22] or action recognition [4, 1, 55, 45,

53]. Benefits that sparse representations can provide in-

clude removing irrelevant or noisy variables, obtaining

more easily interpretable models, and overfitting pre-

vention [28].

An overview of recent work on sparse coding and

dictionary learning is provided in the following para-

graphs (Sect. 1.1).

1.1 Related work

The goal of this overview is not to be comprehensive,

since the literature is vast, but to provide an idea of

relevant research problems and progresses being made.

The review then focuses on problems closer to the one

addressed in this paper.
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Dealing with the computational cost. Learning dictio-

naries from data is generally preferred over analytically

computed ones, but this learning comes at a significant

computational cost. One approach to reduce the com-

putational complexity is to impose a separable struc-

ture on the dictionary so that separable dictionaries

can be learned, which allows larger signals (e.g. image

patches) and efficient reconstruction tasks [12]. Instead

of considering dictionaries of 1D atoms, the so-called 2D

dictionaries are learned, with brings significant memory

savings [14]. One interesting idea is to build dictionar-

ies that are sparse themselves, which turns out to be

a formulation that is both efficient (like analytical dic-

tionaries) and flexible (like learned dictionaries) [34].

Building on this work, more general approaches [40] and

improvements [43] have been devised. Since batch algo-

rithms for dictionary learning and sparse coding may

consume much computer memory, incremental versions

of such algorithms are also designed [16, 25, 43] for when

memory is scarce and/or training sets are large.

Including manifold structure. While geometrical infor-

mation of data can be useful for discrimination, most

sparse coding techniques ignore this structure. To ad-

dress this, a graph-based algorithm was introduced to

explicitly capture the manifold of the data [56]. How-

ever, since Laplacian regularization is shown to have

some drawbacks such as poor generalization ability, a

non-linear generalization [21], and Hessian regulariza-

tion have been proposed as alternatives [57], for multi-

view learning [19], including action recognition [20].

Incorporating task awareness. In the context of their
use for learning tasks, dictionaries may be learned dis-

criminatively [52] for classification and, more generally,

for a variety of other tasks [27]. A unified objective func-

tion including reconstruction error, classification error

and a label consistency constraint allows to learn the

dictionary, the coding parameters and the classifier pa-

rameters simultaneously [16]. When a target domain

differs from a source domain, as in the case of off-frontal

faces (target) and frontal faces (source), learning a com-

mon dictionary that represents both domains can be

preferable [37]. Similarly, for multi-view action recogni-

tion, besides view-specific dictionaries, view-shared fea-

tures can be modelled by a common dictionary which

turns out to be able to represent actions from unseen

views [55].

Enhancing images by exploiting multimodality. For some

tasks, dictionaries for several images of different char-

acteristics can be combined. For instance, for image

deblurring, dictionaries for blurred and for clean im-

age patches are first (jointly) learned. The latter dic-

tionary is then used to get a reconstructed clean patch

from the sparse representation of a blurred patch ob-

tained with the former dictionary [23, 39]. Similar ideas

have been developed for other problems such as super-

resolution [51], or pan-sharpening [59].

Improving the sparsity concept. Sparse-based classifica-

tion for face verification [47] is among the first and

mostly studied applications of sparse representations

for image classification. Some authors have challenged

the idea that the sparsity concept really applies or bring

any advantage to this problem [33, 38]. However, sub-

sequent work has been overcoming the limitations of

the sparse-based classification regarding noise in train-

ing data and reduced number of instances per class.

Essentially, the improvements have come by modeling

separately clean prototypes of the target identities and

the intra-class variability that can even be shared by

faces from different persons [7]. This allows that fewer

face images per person are required [6]. Further im-

provements are possible by modelling linear variations

(e.g. wearing glasses or lighting issues) and non-linear

ones (e.g. facial expression changes) [11].

Sparse coding in pedestrian classification. Not much re-

search has been carried out regarding pedestrian classi-

fication or detection using sparse representations. Within

the more general problem of object detection, local his-

tograms of sparse codes are shown to outperform the

conventional histogram of oriented gradients (HOG),
particularly with large patch sizes [32]. The non-linear

extension of sparse-based classification by using the ker-

nel trick [54] has been explored in the context of hier-

archical local representations, with better performance

than non-sparse methods [44]. For detecting situations

such as “a person riding a bike”, which involve two

classes, the concatenation of the two class-specific dic-

tionaries learned from the corresponding data provides

better results than by using these two dictionaries sep-

arately [41]. Also sparse coding has been shown to gen-

erally outperform PCA in pedestrian classification [49],

and can be used for pedestrian detection refinement [18].

Instead of learning a dictionary from raw data, the

HOG descriptor computed over this data can directly

be used as the atoms of the dictionary [17]. Addition-

ally, in order to handle occlusion and background clut-

ter, this dictionary is complemented with the canonical

basis. L1-norm minimization applied on vHOG [58] (a

variable-size block version of HOG) is reported to out-

perform both HOG+SVM and vHOG+Adaboost [50]
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for pedestrian detection. An histogram of sparse coeffi-

cients derived from several dictionaries computed with

different sparsity constraints is shown to yield improved

performance [22].

1.2 Overview and contributions of this work

This work addresses one practical aspect of dictionary

usage for pedestrian classification. As a binary prob-

lem (“pedestrian” vs “background” classes), it has its

own particularities worth studying. For instance, in face

verification or action recognition, many possible classes

(person identities or action categories) are considered

and sparsity can be advantageously related to more

(non-zero) sparse coefficients being concentrated on the

part of the representation corresponding to a single

class (out of many others). Unlike these multi-class sce-

narios, the pedestrian classification is a two-class prob-

lem, which could even be set as one-class problem, where

the class of interest (pedestrian) is relatively well-defined,

and the out-of-class instances (non-pedestrian, back-

ground clutter or texture-poor areas) is very broad and

not so well-defined. It is known that the choice of the

dictionary has an impact on the semantics of the data

that is captured [48], and this may affect the classifica-

tion performance.

Therefore, it is relevant to study the effect on the

classification performances of learning and using differ-

ent dictionaries. By considering two classes, one choice

is to learn two different class-specific dictionaries, but it

is also possible to just learn a single dictionary, for the

pedestrian (positive) class, for the non-pedestrian (neg-

ative) class, or for both classes. In turn, there are several

choices when generating the sparse representation of a

new image given one or two of these dictionaries. Since

it is not straightforward to decide in advance which

option is the best one, this work focuses on experimen-

tally evaluating five different approaches: three single-

dictionary strategies and two dual-dictionary strategies.

As in most cases in image processing, the atoms

of the dictionary are taken or learned in the space of

the raw image data. However, in classification tasks one

might also consider higher-level image representations.

Although of significant importance, the difference be-

tween both approaches has generally been overlooked.

To address this issue, this work explores whether raw

images or the well-known histogram of oriented gra-

dients (HOG) descriptor [5] is more adequate for the

problem at hand. At least in image processing task, it

is also customary to divide an input image into a grid

for computational or discriminatory purposes, with ei-

ther all cells in the grid contributing to a single dic-

tionary or having one dictionary per cell. In contrast,

we use the full image or HOG descriptor as a single

atom. Finally, we use a general-purpose classifier in-

stead of heuristic sparse-representation-based scoring or

decision functions.

Concretely, the two main contributions of this work

are:

– Proposing and comparing different options to learn

and use dictionaries for the binary problem of pedes-

trian classification: three single-dictionary strategies

and two dual-dictionary strategies

– Comparing the classification performance between

using raw images and high-level signals when learn-

ing the dictionaries.

With respect to the conference paper this work builds

on [36], the second contribution is new since previously

only the high-level descriptor was tested. As for the first

contribution, the strategies are now compared more sys-

tematically, including the comparison under the same

amount of training signals, which was an issue not con-

sidered before, and statistical tests have been applied to

find out when and which strategies significantly differ.

Therefore, by providing some insights into dictionary

usages, the work can guide researchers and practition-

ers when choosing adequate dictionaries and parame-

ters for particular problem settings.

The rest of the paper is organized as follows. The

methodology, including the different dictionary strate-

gies, is described first (Sect. 2). Then, extensive exper-

imentation is reported, covering the difference between

raw-images and higher-level representations (Sect. 4.1),

the effect of dictionary size and the sparsity constraint

(Sect. 4.2), and the impact of the size of the training

set for dictionary learning (Sect. 4.3). Conclusions are
finally provided (Sect. 5).

2 Methodology

Let us consider a dictionary D ∈ Rn×k, i.e. with k

atoms (code-words) each of dimension n. The “size” of

a dictionary is defined as its number of atoms, k. Given

a signal x ∈ Rn, it can be represented by the sparse

representation α ∈ Rk found from a given dictionary

D. In visual tasks where reconstruction is required, a

signal x can be (approximately) recovered by x̃ = Dα.

On the contrary, in a classification task, the sparse rep-

resentation itself, α, can be used as the feature vector,

which is the approach taken in this work.

In the following sections, we describe first how the

different sparse representations proposed are defined

(Sect. 2.1), then the design decisions regarding the for-

mulation used to learn the dictionaries and compute the

corresponding sparse representations (Sect. 2.2), and
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how the sparse representations are used for classifica-

tion (Sect. 2.3). Finally, we detail how these different

components are combined (Sect. 2.4).

2.1 Sparse representations

Typically, in face recognition and other multi-class prob-

lems, several dictionaries are learned, one per class,

which are afterwards concatenated into a larger dic-

tionary. However, in a binary problem like pedestrian

classification, we wonder whether both dictionaries are

required or just any one of them can successfully be

used, or which is the best way to combine them. There-

fore, the following strategies are explored (Table 1):

Single-dictionary strategies. A single dictionary

is learned, but three possibilities (S+, S−, and S∗) are

considered depending on which data is used for learn-

ing, either the positive instances (i.e. those from the

positive class), the negative instances, or all of them,

respectively.

Dual-dictionary strategies. Here, the two class-

specific dictionaries are learned separately and then ei-

ther concatenated into a larger one [D+,D−] ∈ Rn×2k,

or considered separately from the set {D+,D−}. The

sparse representations are respectively obtained from

the concatenated dictionary (strategy S±), or by con-

catenating the representations α+ and α− separately

built from D+ and D− (strategy S+−). In other words,

in S± it is the dictionaries that are concatenated and

yield a single sparse representation α± for a given in-

stance x, whereas in S+− it is the coefficients α+ and

α− that are concatenated, resulting inα+− = [α+,α−],

also for each instance.

Therefore, the sparse representations have k com-

ponents in the single-dictionary strategies, and 2k for

the dual-dictionary strategies. Similar considerations

apply for the sizes of the dictionaries, which is k for

the single-dictionary strategies, but 2k for the dual-

dictionary strategy S±. In S+−, two dictionaries are

separately involved, each of size k.

Regarding S∗, where instances of both classes are

used, it is possible to consider a ratio r of positive in-

stances and the remaining ratio 1 − r of negative in-

stances. Then, the strategies S+ and S− can be seen as

particular extreme cases of the r-parameterized S∗(r),

namely, S+ = S∗(1), and S− = S∗(0). In this work

we consider S∗ = S∗( 1
2 ), to have a balanced situa-

tion between the extremes S+ and S−. Although S∗ is

considered here as a single-dictionary strategy, it may

actually be regarded as an hybrid between the pure

single-dictionary strategies S+ and S− and the dual-

dictionary strategies S± and S+−, in the sense that it

uses instances of both classes (as in the dual strategies)

even though a single dictionary is used (as in the single

strategies).

As a key practical consideration, we take care that

the number of instances used for dictionary learning

is the same for all the different dictionaries compared.

This eludes the possible undesirable effect on perfor-

mance caused by using different number of training in-

stances for learning different dictionaries.

The goal of this work is thus to study the relative

merits of these five sparse representations, three (α+,

α−, α∗) with single dictionaries, and two (α±, α+−)

with dual dictionaries, and how they behave in discrim-

inative terms.

As in common practice [28], instances are subtracted

the average of the training instances before dictionary

learning, and the learned dictionaries are (atom-wise)

L2-normalized. In S+, S− and S+−, it is the average of

the instances of corresponding class that is subtracted,

while in S∗ and S± it is the global average (without

distinction of classes). The entire procedure is exactly

the same for either both input signals (the gray-level

images or the HOG descriptor).

2.2 Optimization model

Several optimization models are possible to learn the

dictionary D ∈ Rn×k and the sparse representation

coefficients A = [α1, . . . ,αm] ∈ Rk×m from m train-

ing instances X = [x1, . . . ,xm] ∈ Rn×m. One choice

is to minimize the L1 norm of the coefficients α while

guaranteeing a reconstruction error lower than an up-

per bound ε,

min
D,αi

||αi||1 s.t. ||xi −Dαi||22 ≤ ε, ∀ i ∈ {1, . . . ,m},

(1)

as used in [47]. Alternatively, one can seek to minimize

the reconstruction error for a given sparsity constraint λ

(i.e. the maximum number of non-zero entries allowed),

min
D,A
||X−DA||22 s.t. ||αi||0 ≤ λ, ∀ i ∈ {1, . . . ,m}, (2)

which is the approach taken in [32], and the one used

here because setting the sparsity constraint λ can be

relatively more intuitive than setting the allowed re-

construction error ε, since λ is a natural number with

known bounds given D, and it is more user-meaningful.

Notice that the higher the value of the constraint λ, the

lower the sparsity, i.e. less zero-valued coefficients.

For the sake of clarity when we formally formu-

late our strategies (Sect. 2.4) in terms of these pro-

cedures, let D(X;λ) be the optimization process corre-

sponding to Eq. (2) returning a dictionary D and the
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Table 1 Dictionary learning and usage strategies studied

Strategy Training data Dictionary/-ies Sparse representation

name for dict. learning notation notation

S+ Positive instances D+ α+

S− Negative instances D− α−

S∗ All instances together D∗ α∗

S± All instances, per class [D+,D−] α±

S+− All instances, per class {D+,D−} α+− = [α+,α−]

sparse representations A for the given training data

X. Let A(X;D) be the optimization process returning

the sparse representation corresponding to data X for

a given dictionary D. This optimization is equivalent

to Eq. 2 but fixing the dictionary D and only optimiz-

ing for A. To simplify this notation, some given values

for the sparsity constraint λ and dictionary size k are

assumed and therefore excluded from the notation.

2.3 Classification

One interesting aspect of sparse representations is that

they can very directly and quite efficiently be used for

classification. Thus, simple decision functions have been

proposed in the literature, such as choosing the class

whose corresponding dictionary induces representations

with either minimum reconstruction error [47], or the

maximum sum of coefficients [4]. Although interesting,

these kinds of functions have two limitations: they are

heuristic in nature, and are not (directly) applicable to

single dictionary cases. Therefore, we used a general-

purpose classifier that can be computationally costlier,

but it does not have these limitations, and it is therefore

more suitable for the purpose of comparing the different

strategies.

2.4 Formally defining the strategies

After presenting the strategies, the dictionary and sparse

representation learning procedures and the classifica-

tion choices, we can put all together for a more precise

presentation, as follows.

Let X+
D and X−D be the data corresponding to the

positive (pedestrian) and negative (background) instances

used for dictionary learning. Let X+
C and X−C be the

data used for training the classifier, corresponding to

the positive and negative instances. Notice that X+
D ⊂

X+
C , and X−D ⊂ X−C , i.e. the data used for dictionary

learning are a subset of the complete training dataset.

The matrices of sparse coefficients of given data points

follow the notation of the vectors of sparse coefficients

used in Table 1. For instance, the sparse representation

of the m instances, X = [x1, . . . ,xm] ∈ Rn×m, is de-

noted as A± = [α±1 , . . . ,α
±
m] ∈ Rk×m under strategy

S±. Additionally, a subindex p or n is added to these

matrices A to refer to either the positive and negative

instances they are computed from.

Let [Za,Zb] ∈ Rm×(na+nb) be the matrix resulting

from horizontally stacking the matrices Za ∈ Rm×na

and Zb ∈ Rm×nb , (i.e. they have the same number of

rows). For our purposes, Z will either be data instances

X, dictionaries D, or sparse coefficients A.

Then, the proposed strategies (Sect. 2.1, Table 1)

can be defined more precisely as follows:

S+ ≡


D+ = D(X+

D)

A+
p = A(X+

C ;D+)

A+
n = A(X−C ;D+)

(3)

S− ≡


D− = D(X−D)

A−p = A(X+
C ;D−)

A−n = A(X−C ;D−)

(4)

S∗ ≡


D∗ = D([X+

D,X
−
D])

A∗p = A(X+
C ;D∗)

A∗n = A(X−C ;D∗)

(5)

S± ≡


D+ = D(X+

D)

D− = D(X−D)

A±p = A(X+
C ; [D+,D−])

A±n = A(X−C ; [D+,D−])

(6)

S+− ≡


D+ = D(X+

D)

D− = D(X−D)

A+−
p = [A(X+

C ;D+),A(X+
C ;D−)]

A+−
n = [A(X−C ;D+),A(X−C ;D−)]

(7)

Notice that the dictionaries D+ and D−, learned

for S+ and S−, respectively, are the same as those re-

quired also for S± and S+−. Thus, when using these

strategies together (e.g. during experimentation), these

dictionaries can indeed be reused in practice without

the need of being recomputed.

Then, for supervised classification, the sparse rep-

resentations of positive and negative instances, As
p and

As
n, with s ∈ {+,−, ∗,±,+−} according to correspond-

ing strategy, are used as input for training the classifier.
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The sparse representations for the test data correspond-

ing to the positive and negative classes, X+ and X−,

are obtained in the same way as for the training data

X+
C and X−C , and hence are not shown here.

3 Experimental setup

3.1 Dataset, classifier and experimental protocol

The INRIA Person Dataset [5] was used in the exper-

iments. Although it is a dataset mostly intended for

person detection, it can also be used for classification

since its structure contains already cropped positive ex-

amples, as well as scenes that are guaranteed to con-

tain no person and thus can be sampled to get a large

amount of negative examples. The dataset is also split

into training and test subsets.

Therefore, we took the training set of 2,416 already-

cropped pedestrian images as positive windows, and the

1,218 human-absent scenes were randomly cropped 5

times thus yielding 6,090 negative windows in total.

The test consists of 1,132 positive windows and 453

negative scenes, which we randomly cropped 3 times to

obtain an almost balanced test set with 1,359 negative

instances. These choices were guided by those made in

the paper this one builds on [? ]. This time, the training

and test subsets were joined, and considered as a whole

set which is subject to a 5-fold cross validation, thus

allowing for a rigorous validation protocol. Therefore,

our final dataset consisted of 3,548 positive and 7,449

negative instances.

For each split of the 5-fold, four of the folds, with

mc = 8, 797 instances, were used for training the clas-

sifier, while 2,200 instances were kept for testing. From

the set of mc instances used, only a subset of md <

mc instances was considered for dictionary learning for

each strategy, and will be indicated in the correspond-

ing section below. All the samplings were stratified, i.e.

the proportion between positive and negative instances

was maintained in all the folds.

For HOG computation, images were cropped to 128×
64 pixels, then divided into blocks of 2× 2 square cells,

with an overlap between them in each dimension of one

cell, each cell having 8 pixels on each side and creating

a 9-bin histogram of oriented gradients that were L2

normalized. The size of the resulting HOG descriptor

is dH = 3780. This dimensionality was used to resize

the images accordingly, so that the signals used for dic-

tionary learning are approximately of the same length

in each case. Images are therefore resized to 86 × 44,

resulting in a vector of size dI = 86 · 44 = 3784 ≈
dH . Notice, however, that the dimensionality of the in-

stances considered afterwards for training and classifi-

cation is much lower, given by the dictionary size, i.e.

k for single-dictionary strategies and 2k for the dual-

dictionary strategies.

3.2 Hyperparameters

We mostly used a linear SVM, but some tests were

performed with a non-linear SVM with a Radial-Basis

Function (RBF) kernel for comparison. The values for

the regularization parameter C in SVM and the scale

parameter γ in the Gaussian function for the RBF SVM

were found by a 5-fold cross-validation with grid search,

by optimizing the F1 measure (Section 3.3). The tested

ranges were C ∈ {2i : i ∈ {−8,−5,−2, 1, 4, 7, 10}} and

γ ∈ {10i : i ∈ {−4,−3, . . . , 3, 4}}.
Experiments were performed for varying values of

the dictionary size k, the sparsity constraint λ, the

training set size for dictionary learning md, for the five

strategies, two classifiers (linear SVM and RBF SVM)

and two signals (gray-level images vs HOG). To avoid

a combinatorial explosion of tests resulting in unafford-

able computational requirements, subsets of these six

factors were selected according to the purpose of each

experiment, by setting sensible default values for the

remaining fixed factors. The values for these factors are

specified in the corresponding Sections 4.1–4.3 below.

3.3 Performance assessment

Classification performance is reported using several mea-

sures (Table 2). They use the number of true (false)

positives, t+ (f+), the number of true (false) nega-

tives, t− (f−), and the total number of positive (neg-

ative) test instances, n+ = t+ + f− (n− = t− + f+).

As widely known, different measures provide different

views of the performance, and some of them, such as

the accuracy, do not adequately represent the classifier

performance in scenarios of class imbalance. In those

cases, the F -measure F1 or the Matthews Correlation

Coefficient (MCC) [30] provide a more unbiased perfor-

mance summary. The MCC ∈ [−1,+1], with +1 being

perfect classification, 0 random prediction, and−1 com-

plete misclassification, is one good performance metric

under class imbalance [2]. Therefore, we use it for sum-

marizing the results of most of the performed tests. All

of the measures will be expressed as percentages here,

even for MCC whose values can be lower than 0.

Box-and-whisker plots [35] are provided for visually

depicting the average performance and its variability

across the 5 folds. To compare the statistical signif-

icance of the difference between or within strategies,

the Wilcoxon signed-rank test [46] is used. As a paired
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Table 2 Measures of classification performance (see the text for the definition of t+, t−, f+, f−, n+ and n−)

Measure Symbol Definition

Accuracy Acc t++t−

n++n−

Precision Pre t+

t++f+

Recall Rec t+

n+

F-measure F1 2 · Pre·Rec
Pre+Rec

Matthews correlation coefficient MCC t+·t−−f+·f−
√

(t++f+)·(t++f−)·(t−+f+)·(t−+f−)

Table 3 Visual representations of significance degree found
by the statistical test given a p-value. The lower the p-value,
the higher the significance

? test could not be performed (e.g. not enough data)
p < 0.01
p < 0.05
p < 0.1
p > 0.1 (no significance)

difference test, it is applied to compare results for the

same folds. Since a minimum number of samples is re-

quired, sometimes it was applied to groups of values

(e.g. two close values of λ) to have more samples. The

p-values are given in some detailed tabular results, and

they are in some cases complemented or replaced by a

visual representation (Table 3) of the degree of signifi-

cance found.

3.4 Software

An efficient implementation of HOG, provided by the

library OpenCV [13] and recommended optimal param-

eters [5] indicated in Section 3.1 were used.

For dictionary learning and sparse coding, the SPAr-

se Modeling Software, v2.6 (SPAMS) [25, 26] was used.

The functions used were spams.trainDL() (with pa-

rameters mode=3, and lambda1=λ) for dictionary learn-

ing, and spams.omp() (with parameter lambda=λ) for

computing the sparse representation of a given signal

using a learned dictionary, through the Orthogonal Match-

ing Pursuit (OMP) algorithm [29], both from the Python-

interface provided by the library. The number of iter-

ations was set to 150, which was experimentally found

to be a safe value for convergence.

For classifier learning, hyperparameter validation,

performance computation, and the statistical tests, the

functionality of the Python machine learning toolkit,

scikit-learn [31] was used. Box-and-whisker plots were

drawn with the well-known Python’s matplotlib [15].

4 Experimental results

The experimental study includes the following aspects:

the comparison of sparse representations derived from

raw-image and higher-level representations (Sect. 4.1);

the effect of dictionary size and the sparsity constraint

(Sect. 4.2); and the impact of the size of the training

set for dictionary learning (Sect. 4.3).

4.1 Low- vs high-level signal

We first study the difference of learning the dictionary

of either the raw images or the higher-level represen-

tations such as the HOG descriptor. To that end, we

focus on S+, and fix the training set size md, the spar-

sity constraint λ and the dictionary size k to sensible

default values: md = 1000, λ = 80, k = 400.

Results (Table 4) are far superior when the HOG de-

scriptor is used for dictionary learning and subsequent

sparse coding the images. This is an indication that,

while it makes sense to use raw images for sparse coding

for reconstruction-like purposes, the use of higher-level
representations can be beneficial for classification-like

tasks [Conclusion C1] (Sect. 5).

We also analyze whether a non-linear classifier (an

SVM with RBF kernel) may outperform a linear one

(SVM without kernel). It can be found (Table 5) that

the RBF SVM outperforms the linear SVM, more no-

tably in the case of images than in the case of HOG.

However, even with the RBF kernel, results with images

are inferior to those with HOG, even with the simpler

linear SVM.

The HOG-induced sparse coefficients and the linear

SVM are used for the rest of the experiments.

4.2 Effect of dictionary size and sparsity constraint

Both the sparsity constraint λ and the size of the dic-

tionary k may have an impact on the subsequent sparse

coefficients and, in turn, the classification performance.

We tested k ∈ {60, 100, 200, 400, 800}, λ ∈ {λ′ : λ′ ≤
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Table 4 Performance [Average (std. dev.)] with low-level (raw image) and high-level (HOG) representations.

Signal Acc F1 MCC Pre Rec

Image 87.41 (0.65) 79.25 (1.14) 70.55 (1.56) 84.59 (1.07) 74.55 (1.47)
HOG 97.22 (0.29) 95.67 (0.45) 93.62 (0.67) 96.0 (0.63) 95.35 (0.32)

Table 5 Performance with linear (L) and RBF (R) SVM for the first data split

Acc F1 MCC Pre Rec
Signal L R L R L R L R L R
Image 87.1 91.2 78.7 86.0 69.9 79.7 84.5 88.8 73.7 83.4
HOG 97.2 98.5 95.6 97.7 93.5 96.6 95.9 97.3 95.4 98.0

k, λ′ ∈ {10, 20, 60, 100, 200, 400, 800}} under all of the

strategies.

4.2.1 General patterns

Results for S+ (Fig. 1) clearly indicate that for a given

dictionary size k, the higher the sparsity constraint λ,

the higher the performance [Conclusion C2]. It can also

be observed that, even though good performance can be

obtained with relatively small dictionaries, it gets stable

when λ approaches k. Although this means that bigger

dictionaries are generally advisable for higher perfor-

mance, it is interesting to note that smaller dictionar-

ies may suffice for a given computational-classification

performance trade-off [Conclusion C2]. For instance, re-

ferring to Fig. 1, for a target MCC ≈ 94 (expressed in

%) one may choose k & 400 (with λ > 100), but the

smaller k = 200 (with λ & 60) would also meet the

requirement, and at half dimensionality.

The need of a big value for the sparse constraint λ

may be explained by both the comparatively high di-

mensionality of the signal and the high intra-class vari-

ability of both the positive and the negative classes.

Therefore, a given instance can only be well approxi-

mated as a linear combination of many atoms of the

dictionary.

4.2.2 Comparing strategies

These patterns observed for S+ can also be roughly ob-

served in the other strategies, albeit with some notice-

able differences among them. A selection of plots shown

side-by-side (Fig. 2) allows an easier comparison among

the single-dictionary strategies. Furthermore, and in-

terestingly, using a dictionary learned only from HOG

descriptors from background images (S−) can lead to

comparable performance with the case of using the dic-

tionary learned from HOG descriptors of pedestrian im-

ages (S+) [Conclusion C3]. However, the performance

of S− can be somehow lower, particularly for smaller

sparsity constraints. On the other hand, the use of dic-

tionaries learned from HOG descriptors of both classes,

S∗, leads generally to higher performance, particularly

for the lower values of the sparsity constraint λ [Conclu-

sion C4]. This implies that if very sparse representations

are desired, learning a dictionary from instances of both

classes can be particularly preferable, even if the total

number of training instances is the same, not bigger.

This best single-dictionary strategy (S∗) is com-

pared with the dual-dictionaries. Again, a selection of

plots (Fig. 3) indicates that the hybrid strategy S∗ of-

fers higher performance than the dual strategies (S±,

S+−), specially for low sparsity constraints λ. One im-

portant practical implication of these results is that

is is computationally beneficial to learn just one dic-

tionary of mixed instances over learning two separate

class-specific dictionaries, resulting also in representa-

tions of lower dimensionality and, optionally, sparser

[Conclusion C4]. Regarding the two dual strategies, not

very marked differences exist between them, although

S+− seems to behave slightly better than S±.

4.2.3 Statistical significance

Since the above observations are subjective and qualita-

tive in nature, statistical tests can provide more objec-

tive and quantitative insights into whether some inter-

esting differences are actually statistically significant.

Wilcoxon pair tests between the set of results corre-

sponding to the 5 data splits for a given strategy, λ,

and k were performed. Pairs of relevant strategies were

compared for several different subsets of λ and k. Re-

sults (Table 6) reveal remarkable differences in most

tests. In general, the compared strategies do not differ

at larger values of λ and k (Tests 1f,2f,3f), something

that could already be suspected by looking at the plots

(Figs. 2,3). For instance, S+ is shown to significantly

outperform S± in all tested conditions (Tests 3a-3e)

except for k = λ ∈ {400, 800} (Test 3f). Notice that

statistically differences are found between strategies S±

and S+− (Test 4a-f) even though subjectively their per-

formance look rather similar in the corresponding plots.

The comparison of the single-dictionary strategies, S+

and S−, with one of the dual-dictionary strategy (S±)
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Fig. 1 Performance for different dictionary sizes (k) and varying sparsity constraint (λ) for strategy S+

discloses some differences, generally at lower confidence

level (Tests 5b-f and 6f). When the performance of the

two compared strategies are found to differ, it can gen-

erally be found which strategy performs better by sim-

ple visual comparison of the corresponding plots.

Besides comparing strategies for given k and λ, there

are other comparisons of practical interest. For instance,

within the same strategy S∗, does performance improve

significantly with bigger dictionaries? We can find (Ta-

ble 7) that this may be true for higher values of the

sparsity constraint λ (Test 1d), but not otherwise (Tests

1a-c). The performances between different sparsity con-

straints are found statistically different at several dic-

tionary sizes (Tests 2a-e). When comparing the perfor-

mance between dictionaries of different sizes (and lower

sparse constraints), some (Test 3b) or no (Tests 3a,c)
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Fig. 2 Comparing strategies S+, S− and S∗ for the same dictionary size (k) and varying sparsity constraint (λ)

Fig. 3 Comparing strategies S∗, S± and S+− for the same dictionary size (k) and varying sparsity constraint (λ)

statistical differences are found, which emphasizes the

idea that lower dimensionality is possible for compara-

ble performance.

4.3 Effect of training size for dictionary learning

The previous tests were performed for a fixed (refer-

ence) training set of sizemd = 1000 for dictionary learn-

ing. However, it is interesting to understand how much

this size affects the performance within each strategy,

and how the different strategies compare under different

training sizes. To that end, we tested three other train-

ing sizes md ∈ {10, 100, 500}, i.e. one hundredth, one

tenth and half the reference size for k = 200 and λ ∈
{60, 100}. The classification performance with md = 10

(i.e. two orders of magnitude lower than the reference

size) was very poor and therefore excluded from the

results reported here. A selection of illustrative plots

(Fig. 4 for single dictionaries and Fig. 5 for dual dic-

tionaries) suggests that when the training size is an

order of magnitude smaller, the performance decays no-

ticeably [Conclusion C5]. In absolute terms, the perfor-

mance gap seems to be larger in the single-dictionary

strategies. Nevertheless, the performance does no de-

grade when using half the number of instances. The

paired Wilcoxon test, performed by joining the results

with λ = 60 and λ = 100, confirms that the difference

between md = 100 and md = 500 is statistically signif-

icant (p-value = 0.00506 < 0.01), but it is not between

md = 500 and md = 1000. These results suggest that

some training instances and learning time can be saved

without an impact on classification performance.

When comparing the strategies pair-wise for the
three training sizes md (Fig. 6), it can be observed that

performances have higher variance with smaller train-

ing set size, which makes sense. The pattern of when

the strategies differ significantly across the size of the

training set is not very clear. Tentatively, one might

argue that the difference between any of the two pure

single-dictionary strategies with any other strategy (ei-

ther single or dual) tend to slightly decrease with bigger

training sets. On the other hand, the difference between

the hybrid strategy, S∗, and the dual-dictionary strate-

gies, S± and S+−, tends to increase [Conclusion C6].

Arguably, the most interesting observation is that with

small training sets the hybrid or the dual strategies are

preferable, but with bigger training sets the differences

shrink somehow. Regarding S+ and S−, one may sen-

sibly conclude that if limited instances are available, it

is better to learn and use a dictionary of positive in-

stances. Nevertheless, as more instances are available,

this choice is less important and S− can do a good job

with only negative instances.
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Table 6 Paired tests comparing A vs B for diferent pairs of strategies under given conditions

Test A B conditions p-value significance
1a S+ S− k ∈ {60, 100}, λ ∈ {10, 20} 0.00014
1b S+ S− k = 200, λ ∈ {10, 20} 0.00506
1c S+ S− k ∈ {400, 800}, λ ∈ {10, 20} 0.02277
1d S+ S− k = 200, λ ∈ {100, 200} 0.72128
1e S+ S− k ∈ {400, 800}, λ ∈ {100, 200} 0.00282
1f S+ S− k ∈ {400, 800}, λ ∈ {400, 800} 0.90956

2a S+ S∗ k ∈ {60, 100}, λ ∈ {10, 20} 9e− 05
2b S+ S∗ k = 200, λ ∈ {10, 20} 0.00506
2c S+ S∗ k ∈ {400, 800}, λ ∈ {10, 20} 9e− 05
2d S+ S∗ k = 200, λ ∈ {100, 200} 0.00506
2e S+ S∗ k ∈ {400, 800}, λ ∈ {100, 200} 0.00022
2f S+ S∗ k ∈ {400, 800}, λ ∈ {400, 800} 0.57006

3a S∗ S± k ∈ {60, 100}, λ ∈ {10, 20} 9e− 05
3b S∗ S± k = 200, λ ∈ {10, 20} 0.00506
3c S∗ S± k ∈ {400, 800}, λ ∈ {10, 20} 9e− 05
3d S∗ S± k = 200, λ ∈ {100, 200} 0.00506
3e S∗ S± k ∈ {400, 800}, λ ∈ {100, 200} 0.00039
3f S∗ S± k ∈ {400, 800}, λ ∈ {400, 800} 0.17285

4a S± S+− k ∈ {60, 100}, λ ∈ {10, 20} 0.00151
4b S± S+− k = 200, λ ∈ {10, 20} 0.00506
4c S± S+− k ∈ {400, 800}, λ ∈ {10, 20} 9e− 05
4d S± S+− k = 200, λ ∈ {100, 200} 0.05934
4e S± S+− k ∈ {400, 800}, λ ∈ {100, 200} 0.00102
4f S± S+− k ∈ {400, 800}, λ ∈ {400, 800} 0.00632

5a S+ S± k ∈ {60, 100}, λ ∈ {10, 20} 9e− 05
5b S+ S± k = 200, λ ∈ {10, 20} 0.02182
5c S+ S± k ∈ {400, 800}, λ ∈ {10, 20} 0.03334
5d S+ S± k = 200, λ ∈ {100, 200} 0.02182
5e S+ S± k ∈ {400, 800}, λ ∈ {100, 200} 0.05222
5f S+ S± k ∈ {400, 800}, λ ∈ {400, 800} 0.07829

6a S− S± k ∈ {60, 100}, λ ∈ {10, 20} 9e− 05
6b S− S± k = 200, λ ∈ {10, 20} 0.00506
6c S− S± k ∈ {400, 800}, λ ∈ {10, 20} 0.52565
6d S− S± k = 200, λ ∈ {100, 200} 0.00934
6e S− S± k ∈ {400, 800}, λ ∈ {100, 200} 0.57549
6f S− S± k ∈ {400, 800}, λ ∈ {400, 800} 0.04799

Table 7 Paired tests comparing A vs B within S∗ under given conditions

Test A B conditions p-value significance
1a k = 60 k = 200 S∗, λ ∈ {10, 20} 0.87848
1b k = 60 k = 400 S∗, λ ∈ {10, 20} 0.05934
1c k = 400 k = 800 S∗, λ ∈ {10, 20} 0.24112
1d k = 400 k = 800 S∗, λ ∈ {100, 200} 0.00506

2a λ = 10 λ = 20 S∗, k ∈ {60, 100} 0.00506
2b λ = 10 λ = 20 S∗, k ∈ {100, 200} 0.00506
2c λ = 10 λ = 60 S∗, k ∈ {60, 100} 0.00506
2d λ = 10 λ = 60 S∗, k ∈ {100, 200} 0.00506
2e λ = 60 λ = 100 S∗, k ∈ {100, 200} 0.07446

3a k = 200, λ ∈ {100, 200} k = 400, λ ∈ {200, 400} S∗ 0.16881
3b k = 200, λ ∈ {100, 200} k = 800, λ ∈ {200, 400} S∗ 0.03666
3c k = 400, λ ∈ {100, 200} k = 800, λ ∈ {200, 400} S∗ 0.24112

5 Conclusions

The results of the experiments under the tested con-

ditions led to the following conclusions, regarding the

pedestrian classification performance.

C1: The sparse representations induced from dictionar-

ies learned from higher-level descriptor such as HOG
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Fig. 4 Performance of single-dictionary strategies by varying the training size (md) for dictionary learning

are more discriminative than those from dictionaries

learned directly from gray-level images.

C2: In general, the larger the dictionaries and the lower

the sparsity (corresponding to larger sparsity con-

straint), the better. However, in some cases it is pos-

sible to get some similar performance with smaller

dictionaries and/or sparser solutions, with the cor-

responding computational advantage.

C3: It is possible to get competitive performance with a

variety of dictionary choices, even with a single dic-

tionary learned from only negative instances. How-

ever, if instances of only one class have to be used

for dictionary learning, the use of instances of the

positive class is advisable.

C4: It seems preferable to use dictionaries learned from

a mixture of positive and negative classes over dic-

tionaries of only one of the classes. Nevertheless, for

a fixed dictionary size, a dictionary learned from

both classes without distinction among them offers

equal or better performance than the dual strate-

gies involving learning two separate class-specific

dictionaries. This winner strategy in discriminative
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Fig. 5 Performance of dual-dictionary strategies by varying the training size (md) for dictionary learning

terms is also computationally advantageous since it

requires learning one dictionary, not two, and the

sparse representation has half dimensionality with

respect the dual-dictionary strategies.

C5: Although larger training sizes for dictionary learn-

ing produce better results, only changes in size which

are larger in at least one order of magnitude result

in noticeable better performance.

C6: While the evidence is not strong, the performance

gap between pure single- and dual-dictionary strate-

gies decreases when dictionaries are learned with

more training instances, whereas the difference be-

tween the hybrid strategy and the dual strategies

becomes statistically significant with larger training

sets.

Some possibilities for further work include: studying

the effect of using other optimization models for dic-

tionary learning and sparse coding; exploring whether

simple and efficient ad hoc decision functions are pos-

sible, and finding out how they perform with respect

to general-purpose classifiers; and whether the current

representation in terms of sparse coefficients can be

rethought so that the sparsity can actually be exploited

in order to achieve lower dimensionality without any

decay of the classification performance.
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Górriz in an earlier stage of this work is acknowledged.

This work is partly funded by the Spanish Ministerio

de Economı́a, Industria y Competitividad (TIN2013-

46522-P), and Generalitat Valenciana (PROMETEOII

/2014/062).

References

1. Alfaro A, Mery D, Soto A (2016) Action recogni-

tion in video using sparse coding and relative fea-

tures. In: Computer Vision and Pattern Recogni-

tion (CVPR), pp 2688–2697

2. Boughorbel S, Jarray F, El-Anbari M (2017) Opti-

mal classifier for imbalanced data using Matthews

correlation coefficient metric. PLoS ONE 12(6)

3. Bryt O, Elad M (2008) Compression of facial im-

ages using the K-SVD algorithm. Journal of Vi-

sual Communications and Image Representation

19(4):270–282



14 V. Javier Traver, Carlos Serra-Toro

S− S∗ S± S+−

S+

S−

S∗

S±

S− S∗ S± S+−

S+
?

S−

S∗

S±

S− S∗ S± S+−

S+

S−

S∗

S±

Fig. 6 Performance for different training sizes for dictionary learning (md)

4. Castrodad A, Sapiro G (2012) Sparse modeling of

human actions from motion imagery. International

Journal of Computer Vision (IJCV) 100(1)

5. Dalal N, Triggs B (2005) Histograms of oriented

gradients for human detection. In: Computer Vision

and Pattern Recognition (CVPR)

6. Deng W, Hu J, Guo J (2012) Extended SRC: Un-

dersampled face recognition via intraclass variant

dictionary. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 34(9):1864–1870

7. Deng W, Hu J, Guo J (2013) In defense of sparsity

based face recognition. In: Computer Vision and

Pattern Recognition (CVPR)

8. Elad M (2010) Sparse and Redundant Representa-

tions: From Theory to Applications in Signal and

Image Processing. Springer

9. Elad M, Aharon M (2006) Image denoising via

learned dictionaries and sparse representation. In:

Computer Vision and Pattern Recognition (CVPR)



Analysis of Single and Dual Dictionary Strategies in Pedestrian Classification 15

10. Fadili MJ, Starck JL, Murtagh F (2009) Inpaint-

ing and zooming using sparse representations. The

Computer Journal 52:64–79

11. Gao Y, Ma J, Yuille AL (2017) Semi-supervised

sparse representation based classification for face

recognition with insufficient labeled samples. IEEE

Transactions on Image Processing 26(5):2545–2560

12. Hawe S, Seibert M, Kleinsteuber M (2013) Sepa-

rable dictionary learning. In: Computer Vision and

Pattern Recognition (CVPR), pp 438–445

13. Howse J, Joshi P, Beyeler M (2016) OpenCV: Com-

puter Vision Projects with Python. Packt

14. Hsieh SH, Lu CS, Pei SC (2014) 2D sparse dictio-

nary learning via tensor decomposition. In: IEEE

Global Conference on Signal and Information Pro-

cessing (GlobalSIP), pp 492–496

15. Hunter JD (2007) Matplotlib: A 2D graphics en-

vironment. Computing in Science and Engineering

9(3):90–95

16. Jiang Z, Lin Z, Davis LS (2013) Label consistent

K-SVD: Learning a discriminative dictionary for

recognition. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence (PAMI) 35(11):2651–

2664

17. Krishna Vinay G, Haque SM, Venkatesh Babu R,

Ramakrishnan K (2012) Human detection using

sparse representation. In: IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP)

18. Liang F, Tang S, Zhang Y, Xu Z, Li J (2014) Pedes-

trian detection based on sparse coding and transfer

learning. Machine Vision and Applications (MVA)

25(7):1697–1709

19. Liu W, Tao D, Cheng J, Tang Y (2014) Multiview

Hessian discriminative sparse coding for image an-

notation. Computer Vision and Image Understand-

ing (CVIU) 118(Supplement C):50–60

20. Liu W, Liu H, Tao D, Wang Y, Lu K (2015) Multi-

view Hessian regularized logistic regression for ac-

tion recognition. Signal Processing 110:101–107

21. Liu W, Zha ZJ, Wang Y, Lu K, Tao D (2016) p-

Laplacian regularized sparse coding for human ac-

tivity recognition. IEEE Transactions on Industrial

Electronics 63(8):5120–5129

22. Liu Y, Lasang P, Siegel M, Sun Q (2016) Multi-

sparse descriptor: A scale invariant feature for

pedestrian detection. Neurocomputing 184:55–65

23. Lou Y, Bertozzi AL, Soatto S (2011) Direct sparse

deblurring. Journal of Mathematical Imaging and

Vision 39(1):1–12

24. Mairal J, Elad M, Sapiro G (2008) Sparse repre-

sentation for color image restoration. IEEE Trans-

actions on Image Processing 17(1):53–69

25. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online

dictionary learning for sparse coding. In: Interna-

tional Conference on Machine Learning (ICML)

26. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online

learning for matrix factorization and sparse coding.

Journal of Machine Learning Research 11:19–60

27. Mairal J, Bach F, Ponce J (2012) Task-driven

dictionary learning. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (PAMI)

34(4):791–804

28. Mairal J, Bach F, Ponce J (2014) Sparse model-

ing for image and vision processing. Foundations

and Trends in Computer Graphics and Vision 8(2–

3):85–283

29. Mallat S, Zhang Z (1993) Matching pursuits with

time-frequency dictionaries. IEEE Transactions on

Signal Processing 41(12):3397–3415

30. Matthews BW (1975) Comparison of the predicted

and observed secondary structure of T4 phage

lysozyme. Biochimica et Biophysica Acta (BBA) -

Protein Structure 405(2):442–451

31. Pedregosa F, Varoquaux G, Gramfort A, Michel

V, Thirion B, Grisel O, Blondel M, Prettenhofer

P, Weiss R, Dubourg V, Vanderplas J, Passos A,

Cournapeau D, Brucher M, Perrot M, Duchesnay

E (2011) Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research 12:2825–

2830

32. Ren X, Ramanan D (2013) Histograms of sparse

codes for object detection. In: Computer Vision and

Pattern Recognition (CVPR)

33. Rigamonti R, Brown M, Lepetit V (2011) Are

sparse representations really relevant for image

classification? In: Computer Vision and Pattern

Recognition (CVPR)

34. Rubinstein R, Zibulevsky M, Elad M (2010) Dou-

ble sparsity: Learning sparse dictionaries for sparse

signal approximation. IEEE Transactions on Signal

Processing 58(3):1553–1564

35. Sahay A (2016) Data Visualization, Volume I. Busi-

ness Expert Press

36. Serra-Toro C, Hernández-Górriz Á, Traver VJ
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