
Highlights. 

- Wastes from Cr/Ni/Cu plating have been checked as black pigment in glazes. 

- Dried wastes (110 C) are gray but color changes to black upon firing (1000 C). 

- Dried wastes produce glaze defects (pin-holing and crawling). 

- Fired powders (1000 C) do not induce glaze defects, giving intense black colors.  

 

*Highlights (for review)
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Abstract. 

The non-ferrous metal industry, such as Cr/Ni/Cu plating, produces acid sludge which is 

usually neutralized with lime slurry in batch processes, and the resulting waste is dewatered by 

vacuum filtration or filter-pressing. Dewatered sludge contains calcium sulphate (CaSO4) 

coming from the neutralization process, as well as transition metals (Cr, Ni and Cu), oil, grease 

and suspended solids. In this communication, two residual sludges from Cr/Ni/Cu plating have 

been dried (110 ºC) and fired (1100 ºC), and both dried (gray coloured) and fired powders 

(black coloured) have been characterized by DTA-TG, XRD and SEM-EDX techniques. XRD 

shows only quartz crystallization in dried samples, while NiCr2O4 chromite spinel and NiO 

periclase crystallize in fired powders, along with CaSO4 anhydrite and CaSiO3 wollastonite. 

The powders have been introduced as ceramic pigments into three different conventional 

glazes: a) a lead bisilicate (PbO.2SiO2) double fire frit (1000ºC), b) a double fire frit with low 

lead content (1000ºC), and c) a double fire frit without lead (1050ºC). Glazed samples were 

characterized by UV-Vis-NIR (diffuse reflectance) and CIEL*a*b* (color parameters). Dried 

powders induce glaze defects (pin-holing and crawling), but fired powders did not show these 

faults exhibiting more intense (higher L*) and yellowish (higher b*) black colors than the 

standard spinel. 

Keywords: plating wastes, ceramic pigment, recycling, circular economy 

1. Introduction. 

Hazardous wastes management has gained increasing interest in the last decades due to 

environmental concerns and the recognition that natural resources are limited. The valorization 

of wastes, and specially the hazardous wastes, is a “green” target and involves economic 

benefits to companies associated to the waste transformation into new resources and 

minimizing the disposal costs in landfill. The waste valorization is inscribed into the concept of 

circular economy that, going beyond the current extractive industrial model based on "take, 

make and dispose”, is restorative and regenerative by design. Relying on system-wide 

innovation, it aims to redefine products and services to design waste out, while minimizing 

negative impacts. Underpinned by a transition to renewable energy sources, the circular model 

builds the economic, natural and social capital [1], resting on three principles: a) Preserve and 

enhance natural capital by controlling finite stocks and balancing renewable resource flows; b) 

Optimize resource yields by circulating at all times products, components, and materials in both 

technical and biological cycles; c) Foster system effectiveness by revealing and avoiding 

negative externalities. This includes reducing damage to systems and areas such as food, 

mobility, shelter, education, health and entertainment, and managing externalities, such as land 

use, air, water and noise pollution, and the release of toxic substances. Literature is prolific in 

examples of production of ceramic pigments from residues [2,3], but their industrial 

applications are scarce due to concerns related to its low pigmenting capacity, low confidence 

in its chemical stability and the treatment costs of the powders for its application as pigments 

*Manuscript
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(normally they require a previous elimination of toxics and always a preliminary calcination). 

Therefore, it is necessary to attain an acceptable coloring capacity (in comparison with 

commercial pigments) and a stable composition of the residues for conferring the products a 

stable color. It must be highlighted that the use of industrial wastes as secondary raw materials 

is a very interesting eco-purpose, but it is also necessary for the proposed procedure to 

accomplish the sustainability requirements in agreement with the circular economy concept. In 

this sense there are three important aspects to analyze [4]: 

 a) The comparative results with similar commercial products (in this case ceramic 

pigments) in order to analyze the feasibility of substitution.   

 a) Worker’s health and safety. It is necessary to analyze the hazardous characteristics 

of the proposed wastes. If a material does not fulfill the safety concerns, its sustainability is low 

and must be either purified (or stabilized) or discarded. 

 b) Pollution transference. The presence on the wastes of organic pollutants and 

volatile pollutants (e.g. SO2, CN
-
, halogens…) will produce the transference of pollutants from 

wastes to air.  

The non-ferrous metal industry, such as Cr/Ni/Cu plating, produces acid sludge which is 

usually neutralized with lime slurry in batch processes, and the resulting waste is dewatered by 

vacuum filtration or filter-pressing. Dewatered sludge contains calcium sulphate (CaSO4), a 

product of the neutralization process, as well as Cr, Ni, Cu and oil, grease and suspended solids. 

There has been a great interest in the ceramic industry for developing high stable pigments that 

show intense tonalities and also that comply with technological and environmental demands. 

Industrial processes like aluminum anodizing and powder surface coating or Cr/Ni plating 

consume large amounts of water. As a result, a huge flow of wastewater has to be treated 

yielding high amounts of sludge. Traditionally, waste products are disposed of as soil 

conditioners or in land filling. More recently, recycling methods of such waste products have 

emerged as interesting alternative procedures [5]. In this communication, two residual sludges 

from Cr/Ni/Cu plating were dried (110 ºC) and fired (1100 ºC), and then both the dried (gray 

colored) and fired (black colored) powders were added to ceramic glazes to measure its 

pigmenting capacity compared with a commercial black pigment based on the Fe-Cr-Mn spinel. 

2. Material and methods.   

Two residual sludges coming from the Cr/Ni/Cu plating industry were dried (110 ºC) and fired 

(1100 ºC/1h). Then, both dried (gray colored) and fired (black colored) powders were 5-wt% 

added to three kinds of glazes (see oxide composition of the ceramic frits in Table 1): (I) a lead 

bisilicate (PbO.2SiO2) double fire frit (1000 ºC), (II) a double fire frit with low lead content 

(1000 ºC), and (III) a double fire frit without lead (1050 ºC). 

Samples were characterized by the following techniques: a) X-Ray Diffraction (XRD) was 

carried out on a Siemens D5000 diffractometer using Cu Ka radiation, 10-70 º2q range, scan 

rate 0.02 º2q/s, 4 s per step and 40 kV and 20 mA conditions, b) DTA-TG thermal analysis was 

performed (with a heating speed of 5 ºC/min) in a TGA/SDTA851e/LF/1600 equipment 

supplied by Mettler Toledo, c) UV-Vis-NIR spectra of both powders and 5 wt%-glazed samples 

were collected using a Jasco V670 spectrometer through diffuse reflectance technique, d) 

L*a*b* color parameters of glazed samples were measured following the CIE-L*a*b* 

(Commission International de l'Eclairage) colorimetric method
 

using a X-Rite SP60 

spectrometer, with standard lighting D65 and 10º observer. On this method, L* is a measure of 

lightness (100=white, 0=black), while a* and b* measure the chroma (-a*=green, +a*=red, 

-b*=blue, +b*=yellow), e) Microstructure characterization of powders was carried out by 
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Scanning Electron Microscopy (SEM), using a Leo-440i microscope supplied by LEYCA. 

3. Results and discussion. 

Table 1 displays SEM micrographs and the oxide composition of frits obtained by EDX 

analysis and Table 2 shows SEM micrographs and the oxide composition of wastes (dried and 

fired), which was also obtained by EDX analysis. XRD patterns of dried and fired wastes are 

shown in Figure 1: in dried powders only quartz crystallization is detected, while in fired 

powders NiCr2O4 chromite spinel and NiO periclase crystallize along with CaSO4 anhydrite 

and CaSiO3 wollastonite. DTA-TG thermal analyses of dried samples are shown in Figure 2.a. 

As it may be appreciated, both dried wastes show a sharp exothermic DTA band at 345 ºC 

associated to the combustion of the oil and grease contained in the wastes, and this process is 

accompanied by a weight loss at TG analysis around 15 and 14% for R1S and R2S, respectively. 

Moreover, both samples lose 5 wt% and 8 wt% at 445 ºC and 1100 ºC, respectively, which 

would be associated to the reactions between residual lime and sulphate and quartz (445 ºC) and 

thermal decomposition of anhydrite (1100 ºC) respectively. In addition, a very weak exothermic 

DTA band is observed at 710 ºC, that could be associated to the detected crystallizations, such 

as the chromite spinel [6]. The total weight loss amount evaluated from TG analysis or LOI 

(Lost of Ignition in Table 2) are similar. On the other hand, the DTA-TG analyses of fired 

wastes (R1C and R2C) show that these wastes still lose weight at 1100 ºC (12 and 6% for R1C 

and R2C, respectively), that would be associated to the decomposition of residual anhydrite. 

Regarding to their coloring properties once introduced as ceramic pigments into three different 

conventional glazes, the dried powders produce glaze defects (pin-holing and crawling), but 

fired powders did not show these faults, giving rise to colored glazes exhibiting colorations 

ranging from gray to pure black. In Table 3 the black colors are compared with those obtained 

with a commercial Fe-Cr-Mn black spinel as standard reference: it can be pointed out that fired 

wastes produce more intense black colors, showing lower L* values than the standard spinel, 

but shift to a yellow shade showing a* values around 3-5. In agreement with L*a*b* parameters 

(Table 3), the UV-Vis-NIR spectra shown in Figure 2.b indicate that dried powders increase the 

overall absorbance when glazed (indeed, L* values also decrease). The fired powders R1C and 

R2C show more stable or constant absorbance levels (and also on its L* values) that are similar 

to absorbance of the powder in frit II, slightly higher in Frit III and slightly lower in Frit I. 

4. Conclusions. 

Two residual sludges from Cr/Ni/Cu plating have been dried (110 ºC) and fired (1100 ºC) and 

then both the dried (gray colored) and fired (black colored) powders have been added to glazes 

in order to check its pigmenting capacity compared with a commercial black pigment based on 

Fe-Cr-Mn spinel. The obtained results indicate that the fired powders still show a weight loss at 

1100 ºC that would be associated to release of SO2 from anhydrite decomposition, and this 

instability could compromise its safe handling as a pigment. On the other hand, dried powders 

produce defects in the glaze (pin-holing and crawling), but fired powders did not show these 

faults, giving more intense black colors than the standard spinel, although the tone slightly 

shifts to yellow. 
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Figure 1. XRD of wastes 1 and 2. CRYSTALLINE PHASES: Q(Quartz), A(Anhydrite CaSO4), 

S(Spinel NiCr2O4), N(Periclase NiO),W(Wollastonite CaSiO3). 
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Click here to download Figure: ENVIO Figures WASTES IN GLAZES.doc



 

 

Figure 2. a) DTA-TG of wastes (dried and fired), b) UV-Vis-NIR of powders and 5wt% glazed 

tablets. 
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Table 1. SEM micrographs and oxide composition of frits obtained by EDX analysis. 

 

 I II III 

Oxide 

   
SiO2 35 75 59 

Na2O - 5 4 

K2O - 2 5 

CaO - 2 15 

MgO - - - 

ZnO - - 9 

Al2O3 - 10 8 

PbO 65 6 - 

 

Table



 

Table 2. SEM micrographs and oxide composition of wastes (dried and fired) obtained by EDX 

analysis. 

 

 (%) R1S 

dried waste 1  
R2S 

dried waste 2 
R1C 

fired waste 1 
R2C 

fired waste 2 
Al2O3 3.71 2.61 2.71 0.50 
SiO2 11.41 24.52 9.04 23.22 
SO3 13.27 9.33 9.35 7.45 
CaO 17.09 13.70 17.18 14.57 

Cr2O3 22.61 17.54 26.62 21.34 
NiO 22.84 20.20 18.82 22.70 
CuO 9.07 12.10 8.46 10.22 

Humidity 9.76 8.66 - - 

LOI - - 30.41 29.95 

 

SEM 

    
 

 

Table 3. L*a*b* parameters of powders and 5wt% glazed samples. 

 

 R1S 

dried waste 1  
R2S 

dried waste 2 
R1C 

fired waste 1 
R2C 

fired waste 2 
STANDARD 

Fe-Cr-Mn 

spinel. 

powder 57.4/-7.2/1.6 62.9/-8.4/4.2 21.5/2.4/3.3 30.7/0.6/3.5 39.7/-0.3/0.2 

Frit I 35.8/4.3/45.8 38.1/3.6/53.5 25.1/-0.3/0.4 26.7/-0.2/2.1 - 

Frit II 32.2/-2.5/3.4 34.7/-3.6/1.9 31.4/-3.3/-2.7 30.9/-2.9/-3.3 - 

Frit III 28.0/-0.5/3.4 38.1/3.6/3.5 17.6/-0.1/5.5 20.7/-0.9/6.3 27.7/0.1/0.8 
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