Matrices A such that $A^{s+1} R=R A^{*}$ with $R^{k}=I$

Minerva Catral ${ }^{*}$ Leila Lebtahi ${ }^{\dagger}$ Jeffrey Stuart ${ }^{\ddagger}$ Néstor Thome ${ }^{\S}$

March 17, 2018

Abstract

We study matrices $A \in \mathbb{C}^{n \times n}$ such that $A^{s+1} R=R A^{*}$ where $R^{k}=I_{n}$, and s, k are nonnegative integers with $k \geq 2$; such matrices are called $\{R, s+1, k, *\}$-potent matrices. The $s=0$ case corresponds to matrices such that $A=R A^{*} R^{-1}$ with $R^{k}=I_{n}$, and is studied using spectral properties of the matrix R. For $s \geq 1$, various characterizations of the class of $\{R, s+1, k, *\}$-potent matrices and relationships between these matrices and other classes of matrices are presented.

Keywords: $\{R, s+1, k, *\}$-potent matrix; k-involutory.
AMS subject classification: Primary: 15A21; Secondary: 15A09.

1 Introduction

The set of $n \times n$ complex matrices is denoted by $\mathbb{C}^{n \times n}$. The symbols A^{*} and A^{\dagger} denote the conjugate transpose and the Moore-Penrose inverse, respectively, of $A \in \mathbb{C}^{n \times n}$. The set of distinct eigenvalues of A (the spectrum of A) is denoted by $\sigma(A)$. The symbol I_{n} denotes the identity matrix of $\mathbb{C}^{n \times n}$.

Throughout this paper we will use matrices $R \in \mathbb{C}^{n \times n}$ such that $R^{k}=I_{n}$ where $k \in\{2,3,4, \ldots\}$. These matrices R are called k-involutory $[29,30,32]$, and are a generalization of the well-studied involutory matrices (the $k=2$ case). We say that k is minimal with respect to $R^{k}=I_{n}$ if k is the smallest integer over all $h \in\{2,3,4, \ldots\}$ such that $R^{h}=I_{n}$. Note that the definition given in [29, 30] differs from that in [32]; in this paper we adopt the definition given in [32], namely that R is k-involutory does not require that k be minimal with respect to $R^{k}=I_{n}$.

[^0]For a k-involutory matrix $R \in \mathbb{C}^{n \times n}$ and $s \in\{0,1,2,3, \ldots\}$, a matrix $A \in$ $\mathbb{C}^{n \times n}$ is called $\{R, s+1, k\}$-potent if it satisfies

$$
\begin{equation*}
A^{s+1} R=R A \tag{1}
\end{equation*}
$$

$[17,8]$. These matrices generalize the centrosymmetric matrices (matrices $A \in$ $\mathbb{C}^{n \times n}$ such that $A=J A J$ where J is the $n \times n$ antidiagonal matrix [31]), the matrices $A \in \mathbb{C}^{n \times n}$ such that $A P=P A$ where P is an $n \times n$ permutation matrix [25], and $\{K, s+1\}$-potent matrices (matrices $A \in \mathbb{C}^{n \times n}$ for which $K A K=A^{s+1}$ where $\left.K^{2}=I_{n}[18,19,20]\right)$.

Characterizations of $\{R, s+1, k\}$-potent matrices were presented in [17], and properties of a matrix group constructed from an $\{R, s+1, k\}$-potent matrix were studied in [8]. Motivated by the results found in these papers and their connections to important known classes of matrices, we investigate matrices $A \in \mathbb{C}^{n \times n}$ where A in the right-hand side of (1) is replaced by $f(A)$ for some function f. In (1), $f(A)=A$ and in this paper $f(A)=A^{*}$. We introduce and study this further class of matrices related to the $\{R, s+1, k\}$-potent matrices.

Definition 1. Let $A \in \mathbb{C}^{n \times n}, R \in \mathbb{C}^{n \times n}$ be k-involutory (that is, $R^{k}=I_{n}$ for some integer $k \geq 2$), and $s \in\{0,1,2,3, \ldots\}$. The matrix A is called $\{R, s+$ $1, k, *\}$-potent if it satisfies

$$
\begin{equation*}
A^{s+1} R=R A^{*} \tag{2}
\end{equation*}
$$

The set of all $\{R, s+1, k, *\}$-potent matrices will be denoted by $\mathcal{P}_{R, s, k, *}$.
If $A \in \mathcal{P}_{R, s, k, *}$ and $A=A^{*}$, then A is an $\{R, s+1, k\}$-potent matrix. Hence, we are interested in non-Hermitian $\{R, s+1, k, *\}$-potent matrices. In this case, A^{s+1} and A have the same spectrum up to conjugation.

The $s=0$ case corresponds to matrices such that $A=R A^{*} R^{-1}$. This class has been investigated when R is either a permutation matrix or an involution, and will be further addressed in Section 2. Matrices in $\mathcal{P}_{R, s, k, *}$ generalize the perhermitian matrices (matrices $A \in \mathbb{C}^{n \times n}$ such that $A=J A^{*} J$ where J is the $n \times n$ antidiagonal matrix [24]) and the κ-Hermitian matrices (matrices $A \in \mathbb{C}^{n \times n}$ such that $A=K A^{*} K$ where K is any $n \times n$ involutory permutation matrix [13]).

A Toeplitz matrix $T=\left[t_{i j}\right] \in \mathbb{C}^{n \times n}$ satisfies $t_{i j}=t_{j-i}$ for some given sequence t_{-n}, \ldots, t_{n}, while a Hankel matrix $H=\left[h_{i j}\right] \in \mathbb{C}^{n \times n}$ satisfies $h_{i j}=$ h_{i+j-2} for some given sequence $h_{0}, \ldots, h_{2 n}$; note that if J is the $n \times n$ antidiagonal matrix, then $J T$ is Hankel and $H J$ is Toeplitz [14]. Every real Toeplitz matrix T can be written as $T^{t}=J^{-1} T J$, similarly $H^{t}=J^{-1} H J$ for any Hankel matrix H with real entries (here B^{t} denotes the transpose of B); these matrices provide interesting examples of $\{R, s+1, k, *\}$-potent matrices $(R=J, s=0$, and $k=2$).

The well-known Sylvester equations $B X+X^{*} C=E$, for arbitrary matrices B, C and E of conformable sizes, are widely studied in the literature, and the homogeneous case $(E=0)$ has recently attracted the attention of several researchers due to its relationship with palindromic eigenvalue problems [27].
$\{R, s+1, k, *\}$-potent matrices can be seen as solutions to a subclass of the homogeneous Sylvester equations $\left(B=R^{-1}, C=-R^{-1}\right.$ where R is k-involutory, and $s=0$) since the resulting equations relate a matrix with its conjugate transpose by a k-involutory similarity.

It is known that any $n \times n$ matrix over any field is congruent to its transpose by an involutory congruence, i.e, for any $n \times n$ matrix A, there is an X with $X^{2}=I_{n}$ such that $X A X^{t}=A^{t}[15,10]$. In [9], it was shown that any projector (idempotent matrix) is unitarily similar to its conjugate transpose.

The concepts of generalized and hypergeneralized projectors were introduced by Groß and Trenkler [12]: For $A \in \mathbb{C}^{n \times n}, A$ is called a generalized projector if $A^{2}=A^{*}$, and A is called a hypergeneralized projector if $A^{2}=A^{\dagger}$. Benítez and Thome [6] have extended the definition of generalized projectors to k-generalized projectors and in this paper we define k-hypergeneralized projectors, for any integer k greater than or equal to 2 . Results concerning generalized and hypergeneralized projectors and their extensions can be found in $[2,3,4,6,12,26,28]$. Matrices $A \in \mathbb{C}^{n \times n}$ satisfying $\left(A-p I_{n}\right)\left(A-q I_{n}\right)=O$ for some $p, q \in \mathbb{C}$ are called quadratic matrices [1]; such matrices were generalized and studied in [11]. We extend the definition in [1] to what we will call $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$-potent matrices.

Except in Section 2, we will assume $s \in \mathbb{N}$. The $s=0$ case is discussed in Section 2. In Section 3, we derive properties of $\{R, s+1, k, *\}$-potent matrices and give various characterizations. In [8] it was proved that an $\{R, s+1, k\}$ potent matrix is always diagonalizable but this is not always true for matrices in $\mathcal{P}_{R, s, k, *}$. We impose conditions on R or on the matrix A to recover some of the properties obtained for the former class of matrices. In Section 4, we study the relationship between $\{R, s+1, k, *\}$-potent matrices and other classes of matrices such as the $\{s+1\}$-generalized projectors, the $\{s+1\}$-hypergeneralized projectors, and the $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$-potent matrices. We summarize these relationships in a diagram provided in Figure 1.

$2 A R=R A^{*}$ when $R^{k}=I_{n}$

In this section, we analyze the case $s=0$. The techniques used for this case are different from those for the case $s \geq 1$, which will be discussed separately in the next section. We begin with the following lemma regarding k-involutory matrices. The expression $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ is the greatest common divisor of integers a_{1}, \ldots, a_{n}.

Lemma 2. Let $R \in \mathbb{C}^{n \times n}$ with $R^{k}=I_{n}$ for some positive integer $k \geq 2$. Then $\sigma(R) \subseteq\left\{\omega, \omega^{2}, \omega^{3}, \ldots, \omega^{k}=1\right\}$ where $\omega=\exp \left(\frac{2 \pi i}{k}\right)$. Further, there exists an invertible $S \in \mathbb{C}^{n \times n}$ such that $R=S D S^{-1}$ with

$$
D=\omega^{\alpha_{1}} I_{n_{1}} \oplus \omega^{\alpha_{2}} I_{n_{2}} \oplus \cdots \oplus \omega^{\alpha_{p}} I_{n_{p}}
$$

where p is the number of distinct eigenvalues in $\sigma(R)$, where the α_{j} are positive integers with $1 \leq \alpha_{1}<\alpha_{2}<\cdots<\alpha_{p} \leq k$, and where the dimension of the
eigenspace of R for $\omega^{\alpha_{j}}$ is n_{j} for each j. The minimality of k with respect to $R^{k}=I_{n}$ is equivalent to $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}, k\right)=1$.

Proof. Since $R^{k}-I_{n}=O$, the minimum polynomial of R must divide $x^{k}-1$, which has no repeated roots, and hence, all eigenvalues of R are $k^{t h}$ roots of unity, and all Jordan blocks for R are 1×1. Let $g=\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}, k\right)$. Then there are positive integers $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$ so that $\alpha_{j}=g \beta_{j}$ for each j, and a positive integer h so that $k=g h$. Then, for each j,

$$
\omega^{\alpha_{j}}=\exp \left(\frac{2 \pi i}{k} \alpha_{j}\right)=\exp \left(\frac{2 \pi i}{k} g \beta_{j}\right)=\exp \left(\frac{2 \pi i}{h} \beta_{j}\right)
$$

so that $\omega^{\alpha_{j}}$ is actually an $h^{t h}$ root of unity where $h=k / g$. Then

$$
D^{h}=\bigoplus_{j=1}^{p}\left(\omega^{\alpha_{j}}\right)^{h} I_{n_{j}}=I_{n}
$$

Since $R^{h}=I_{n}$ if and only if $D^{h}=I_{n}$, the minimality of k is equivalent to $g=1$.

One would hope that $A R=R A^{*}$ would imply that $D=S^{-1} R S$ and $B=$ $S^{-1} A S$ would satisfy $B D=D B^{*}$. However, this requires that

$$
B D=\left(S^{-1} A S\right)\left(S^{-1} R S\right)=S^{-1}(A R) S=S^{-1}\left(R A^{*}\right) S
$$

and

$$
D B^{*}=\left(S^{-1} R S\right)\left(S^{-1} A S\right)^{*}=S^{-1} R\left(S S^{*}\right) A^{*}\left(S^{-1}\right)^{*}
$$

are the same, which need not be true. What is needed is that $S^{-1}=S^{*}$, which is to say, what is needed is that R is unitarily diagonalizable. While requiring that $R=R^{*}$ suffices, so does the weaker condition, $R R^{*}=R^{*} R$. (The matrix R is called a normal matrix when the weaker condition holds, and this condition is equivalent to unitary diagonalizability.)

Consequently, we assume that R is a normal matrix. We examine what the condition $B D=D B^{*}$ implies about the matrix B. Begin by imposing the block partitioning of D on B. Observe that under Hermitian transpose, the block $\left(B^{*}\right)_{i j}$ is the block $\left(B_{j i}\right)^{*}$ for $1 \leq i, j \leq p$. Then $B D=D B^{*}$ is equivalent to the conditions

$$
B_{i j} \omega^{\alpha_{j}} I_{n_{j}}=\omega^{\alpha_{i}} I_{n_{i}}\left(B^{*}\right)_{i j} \text { for } 1 \leq i, j \leq p
$$

Equivalently,

$$
\begin{equation*}
B_{i j}=\omega^{\alpha_{i}-\alpha_{j}}\left(B^{*}\right)_{i j} \text { for } 1 \leq i, j \leq p \tag{3}
\end{equation*}
$$

Observe that when $i=j$, it follows that $B_{i i}=\left(B^{*}\right)_{i i}=\left(B_{i i}\right)^{*}$. Hence, each diagonal block of B must be Hermitian.

Now suppose that $i \neq j$. Note that (3) gives

$$
B_{i j}=\omega^{\alpha_{i}-\alpha_{j}}\left(B^{*}\right)_{i j}=\omega^{\alpha_{i}-\alpha_{j}}\left(B_{j i}\right)^{*}
$$

and it also gives $B_{j i}=\omega^{\alpha_{j}-\alpha_{i}}\left(B_{i j}\right)^{*}$. The latter implies $\left(B_{j i}\right)^{*}=\omega^{\alpha_{i}-\alpha_{j}} B_{i j}$. Combining these results, we see that when $i \neq j$,

$$
B_{i j}=\omega^{\alpha_{i}-\alpha_{j}}\left(B_{j i}\right)^{*}=\omega^{\alpha_{i}-\alpha_{j}} \omega^{\alpha_{i}-\alpha_{j}} B_{i j}=\omega^{2\left(\alpha_{i}-\alpha_{j}\right)} B_{i j}
$$

When $2\left(\alpha_{i}-\alpha_{j}\right) \not \equiv 0 \bmod k, B_{i j}=0_{n_{i} \times n_{j}}$. Note that $2\left(\alpha_{i}-\alpha_{j}\right) \not \equiv 0 \bmod k$ can be restated as $2 \alpha_{i} \not \equiv 2 \alpha_{j} \bmod k$. Also, when $2 \alpha_{i} \equiv 2 \alpha_{j} \bmod k$, no restrictions are imposed on $B_{i j}$.

When is $2 \alpha_{i} \equiv 2 \alpha_{j} \bmod k$, and how does this depend on k ?
When k is odd, 2 is invertible $\bmod k$, and consequently, $2 \alpha_{i} \equiv 2 \alpha_{j} \bmod k$ if and only if $\alpha_{i} \equiv \alpha_{j} \bmod k$. Since α_{i} and α_{j} are distinct integers in $\{1,2, \ldots, k\}$, $2\left(\alpha_{i}-\alpha_{j}\right) \not \equiv 0 \bmod k$. Thus, when k is odd, B must be a direct sum of Hermitian matrices.

What about when $k=2 m$ for some positive integer m ? Note that $\omega^{m}=$ $\exp \left(\frac{2 \pi i}{k} m\right)=\exp (\pi i)=-1$. Since α_{i} and α_{j} are distinct integers in $\{1,2, \ldots, k\}$, $0<\left|\alpha_{i}-\alpha_{j}\right|<k$, and consequently, $2\left(\alpha_{i}-\alpha_{j}\right) \equiv 0 \bmod k$ if and only if $2\left|\alpha_{i}-\alpha_{j}\right|=k$, or equivalently, if and only if $\left|\alpha_{i}-\alpha_{j}\right|=m$. That is, when $\alpha_{i}<\alpha_{j}$, this means $\alpha_{j}=\alpha_{i}+m$, and when $\alpha_{i}>\alpha_{j}$, this means $\alpha_{i}=\alpha_{j}+m$. Thus, if $k=2 m$, and if whenever $\omega^{\alpha_{i}}$ is in $\sigma(R), \omega^{\alpha_{i}+m}=-\omega^{\alpha_{i}} \notin \sigma(R)$, then B must be a direct sum of Hermitian matrices.

The interesting case is when $k=2 m$ and for at least one $i,\left\{\omega^{\alpha_{i}},-\omega^{\alpha_{i}}\right\} \subseteq$ $\sigma(R)$. In this case, the diagonal blocks of B are all Hermitian, and for $B_{i j}$ where $\alpha_{j} \equiv \alpha_{i}+m \bmod k, B_{j i}=\omega^{\alpha_{j}-\alpha_{i}}\left(B_{i j}\right)^{*}=\omega^{m}\left(B_{i j}\right)^{*}=-\left(B_{i j}\right)^{*}$. Apparently, in this case, there will be some nontrivial off-diagonal blocks, which are connected by a skew-Hermitian relationship to other off-diagonal blocks.

The preceding arguments lead to the main result of this section.
Theorem 3. Suppose n, k are positive integers, and $A, R \in \mathbb{C}^{n \times n}$ where R is normal and k-involutory, with k minimal with respect to $R^{k}=I_{n}$. Let $S, D \in$ $\mathbb{C}^{n \times n}$ be the unitary and diagonal matrices, respectively, given in Lemma 2 such that $R=S D S^{*}$. Then, $A R=R A^{*}$ holds if and only if $B D=D B^{*}$ where $B=S^{*} A S$. Further,

1. When k is odd, $B D=D B^{*}$ if and only if $B=\bigoplus_{j=1}^{p} B_{j j}$ where each $B_{j j}$ is an arbitrary $n_{j} \times n_{j}$ Hermitian matrix.
2. When $k=2 m$ for some positive integer m, partition B into blocks using the natural partition of D. The following are equivalent:
(a) $B D=D B^{*}$
(b) For $1 \leq j \leq p, B_{j j}$ is an arbitrary $n_{j} \times n_{j}$ Hermitian matrix. $B_{i j}=$ $0_{n_{i} \times n_{j}}$ whenever $\left|\alpha_{i}-\alpha_{j}\right| \neq m$. If $\alpha_{j}=\alpha_{i} \pm m$ (equivalently, $\omega^{\alpha_{j}}=$ $-\omega^{\alpha_{i}}$) for some α_{i} with $1 \leq \alpha_{i} \leq m$ and some α_{j}, then $B_{i j}$ is an arbitrary $n_{i} \times n_{j}$ complex matrix such that $B_{j i}=-\left(B_{i j}\right)^{*}$.

Corollary 4. Suppose $A, R \in \mathbb{C}^{n \times n}, R=R^{*}$, and $R^{k}=I_{n}$ for some minimal positive integer k. Then $k \in\{1,2\}$. If $R= \pm I_{n}$, then $A R=R A^{*}$ if and only if $A=A^{*}$. If $R \neq \pm I_{n}$, then $\sigma(R)=\{-1,1\}, k=2$, and there exists a unitary $S \in \mathbb{C}^{n \times n}$ such that $R=S\left(I_{n_{1}} \oplus(-1) I_{n_{2}}\right) S^{*}$ where $n_{1}>0$ is the multiplicity of 1 in $\sigma(R)$ and $n_{2}>0$ is the multiplicity of -1 in $\sigma(R)$. Let $B=S^{*} A S$. Then $A R=R A^{*}$ if and only if

$$
B=\left[\begin{array}{cc}
B_{11} & B_{12} \\
-\left(B_{12}\right)^{*} & B_{22}
\end{array}\right]
$$

where $B_{11} \in \mathbb{C}^{n_{1} \times n_{1}}$ and $B_{22} \in \mathbb{C}^{n_{2} \times n_{2}}$ are Hermitian, and $B_{12} \in \mathbb{C}^{n_{1} \times n_{2}}$ is arbitrary.

Proof. If $R=R^{*}$, then $\sigma(R)$ must be real, so $\sigma(R) \subseteq\{-1,1\}$, and hence, $k \in\{1,2\}$ by the minimality condition. If $\sigma(R)=\{1\}$, then $k=1$ and $R=I_{n}$. If $\sigma(R)=\{-1\}$, then $k=2$ and $R=-I_{n}$. If $\sigma(R)=\{-1,1\}$, then use the preceding theorem with $k=2$ and $p=2$.

The next corollary follows by using a similar argument.
Corollary 5. Suppose $A, R \in \mathbb{C}^{n \times n}$, $R^{*}=-R$, and $R^{k}=I_{n}$ for some minimal positive integer k. Then $k=4$. If $R= \pm i I_{n}$, then $A R=R A^{*}$ if and only if $A=A^{*}$. If $R \neq \pm i I_{n}$, then $\sigma(R)=\{-i, i\}$ and there exists a unitary $S \in \mathbb{C}^{n \times n}$ such that $R=S\left(i I_{n_{1}} \oplus(-i) I_{n_{2}}\right) S^{*}$ where $n_{1}>0$ is the multiplicity of i in $\sigma(R)$ and $n_{2}>0$ is the multiplicity of $-i$ in $\sigma(R)$. Let $B=S^{*} A S$. Then $A R=R A^{*}$ if and only if

$$
B=\left[\begin{array}{cc}
B_{11} & O \\
O & B_{22}
\end{array}\right]
$$

where $B_{11} \in \mathbb{C}^{n_{1} \times n_{1}}$ and $B_{22} \in \mathbb{C}^{n_{2} \times n_{2}}$ are Hermitian.
The following example illustrates the second case in Theorem 3.
Example 6. Suppose that $k=4$ and $\sigma(R)=\{i,-1,-i\}$. Here $\omega=i, \alpha_{1}=1$, $\alpha_{2}=2, \alpha_{3}=3, n_{1}=4$ and $n_{2}=n_{3}=1$. Then $k=2 m$ where $m=2 ; \omega^{\alpha_{1}}$ and $\omega^{\alpha_{3}}=-\omega^{\alpha_{1}}$ are in $\sigma(R)$; and $\omega^{\alpha_{2}}$ is in $\sigma(R)$ but $\omega^{\alpha_{2}+m}=-\omega^{\alpha_{2}}$ is not. Suppose that $S=I_{6}$ so $R=D$. If $A \in \mathbb{C}^{6 \times 6}$ satisfies $A R=R A^{*}$, then A_{11}, A_{22} and A_{33} must be arbitrary Hermitian matrices; A_{12}, A_{21}, A_{23} and A_{32} must be zero matrices; A_{13} must be arbitrary, and $A_{31}=-\left(A_{13}\right)^{*}$. That is, $A R=R A^{*}$ holds if and only if A satisfies

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & a_{14} & 0 & a_{16} \\
a_{12}^{*} & a_{22} & a_{23} & a_{24} & 0 & a_{26} \\
a_{13}^{*} & a_{23}^{*} & a_{33} & a_{34} & 0 & a_{36} \\
a_{14}^{*} & a_{24}^{*} & a_{34}^{*} & a_{44} & 0 & a_{46} \\
0 & 0 & 0 & 0 & a_{55} & 0 \\
-a_{16}^{*} & -a_{26}^{*} & -a_{36}^{*} & -a_{46}^{*} & 0 & a_{66}
\end{array}\right]
$$

where each diagonal entry of A is real.

3 Characterizations of $\{R, s+1, k, *\}$-potent matrices

For a matrix $A \in \mathbb{C}^{n \times n}$, the group inverse, if it exists, is the unique matrix $A^{\#}$ satisfying the matrix equations $A A^{\#} A=A, A^{\#} A A^{\#}=A^{\#}$, and $A A^{\#}=A^{\#} A$; it is well known that $A^{\#}$ exists if and only if $\operatorname{rank} A^{2}=\operatorname{rank} A[5]$.

Throughout this section, we assume that s, k are integers with $s \geq 1$ and $k \geq 2$. First, we list some properties of $\{R, s+1, k, *\}$-potent matrices.

Lemma 7. Suppose that $A \in \mathcal{P}_{R, s, k, *}$. Then the following statements hold.
a. $A^{\#}$ exists.
b. $A^{\#} \in \mathcal{P}_{R, s, k, *}$.
c. $A A^{\#} \in \mathcal{P}_{R, s, k, *}$.
d. $\sigma(A) \subseteq\{0\} \cup\left\{\exp \left(\frac{2 \pi t}{s+2} i\right), t \in\{0,1, \ldots, s+1\}\right\}$.

Proof. (a) Since $s \geq 1, \operatorname{rank}(A)=\operatorname{rank}\left(A^{*}\right)=\operatorname{rank}\left(R^{-1} A^{s+1} R\right)=\operatorname{rank}\left(A^{s+1}\right) \leq$ $\operatorname{rank}\left(A^{2}\right) \leq \operatorname{rank}(A)$. Thus, $\operatorname{rank}\left(A^{2}\right)=\operatorname{rank}(A)$.
(b) Using the relation $\left(A^{*}\right)^{\#}=\left(A^{\#}\right)^{*}$, we obtain $\left(A^{*}\right)^{\#}=\left(R^{-1} A^{s+1} R\right)^{\#}=$ $R^{-1}\left(A^{s+1}\right)^{\#} R=R^{-1}\left(A^{\#}\right)^{s+1} R=\left(A^{\#}\right)^{*}$.
(c) Since $A, A^{\#} \in \mathcal{P}_{R, s, k, *},\left(A A^{\#}\right)^{s+1}=A^{s+1}\left(A^{\#}\right)^{s+1}=R A^{*} R^{-1} R\left(A^{\#}\right)^{*} R^{-1}=$ $R A^{*}\left(A^{\#}\right)^{*} R^{-1}=R\left(A^{\#} A\right)^{*} R^{-1}=R\left(A A^{\#}\right)^{*} R^{-1}$.
(d) From $R A^{*} R^{-1}=A^{s+1}$, we have $[\sigma(A)]^{s+1}=\sigma\left(A^{s+1}\right)=\sigma\left(R A^{*} R^{-1}\right)=$ $\sigma\left(A^{*}\right)=\overline{\sigma(A)}$, where $\overline{\sigma(A)}$ means the set of the conjugate of the eigenvalues of A. Thus, $\lambda \in \sigma(A)$ if and only if $\lambda^{s+1}=\bar{\lambda}$, which becomes $r^{s+1} \exp ((s+1) i \theta)=$ $r \exp (-i \theta)$ where we assume that $\lambda=r \exp (i \theta)$. Now, taking modulus the two possibilities are $r=0$ which implies $\lambda=0$, or $\lambda=\exp \left(\frac{2 \pi t}{s+2} i\right), t \in$ $\{0,1, \ldots, s+1\}$.

Some results related to Lemma 7 were given in [16].
The next result presents a characterization of matrices in $\mathcal{P}_{R, s, k, *}$.
Theorem 8. Let $A, R \in \mathbb{C}^{n \times n}$ be such that $R^{k}=I_{n}$ and $r=\operatorname{rank}(A)$. Then A is an $\{R, s+1, k, *\}$-potent matrix if and only if there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ such that

$$
A=P\left[\begin{array}{ll}
C & O \tag{4}\\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad R=P\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] P^{*}
$$

for $X \in \mathbb{C}^{r \times r}$ satisfying $X C^{*}=C^{s+1} X$ with X nonsingular and for any nonsingular $T \in \mathbb{C}^{(n-r) \times(n-r)}$.

Proof. By Lemma 7, A has index at most 1. So, the core-nilpotent representation gives

$$
A=P\left[\begin{array}{ll}
C & O \\
O & O
\end{array}\right] P^{-1}
$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$. Substituting in $A^{s+1}=$ $R A^{*} R^{-1}$ we get

$$
P^{-1} R\left(P^{-1}\right)^{*}\left[\begin{array}{cc}
C^{*} & O \\
O & O
\end{array}\right] P^{*} R^{-1} P=\left[\begin{array}{cc}
C^{s+1} & O \\
O & O
\end{array}\right]
$$

Denoting $Z=P^{-1} R\left(P^{-1}\right)^{*}$ and partitioning Z as

$$
Z=\left[\begin{array}{ll}
X & Y \\
V & T
\end{array}\right]
$$

of adequate sizes, we arrive at

$$
\left[\begin{array}{ll}
X & Y \\
V & T
\end{array}\right]\left[\begin{array}{cc}
C^{*} & O \\
O & O
\end{array}\right]=\left[\begin{array}{cc}
C^{s+1} & O \\
O & O
\end{array}\right]\left[\begin{array}{cc}
X & Y \\
V & T
\end{array}\right]
$$

from where we obtain $X C^{*}=C^{s+1} X, Y=O$, and $V=O$. Since R is nonsingular, X and T are nonsingular as well. Substituting in the expression $R=P Z P^{*}$, we get the representation (4).

From Theorem 8, it follows that if A is an $\{R, s+1, k, *\}$-potent matrix with A as in (4) then

$$
A^{\#}=P\left[\begin{array}{cc}
C^{-1} & O \\
O & O
\end{array}\right] P^{-1}
$$

Observe that in Theorem 8 we obtain the condition $X C^{*}=C^{s+1} X$ but, in general, we cannot conclude that C is an $\{X, s+1, k, *\}$-potent matrix. Moreover, while A is similar to a block diagonal matrix via the matrix P, the corresponding relation for R using the same P is a congruence to a block diagonal matrix. The concept of $E P$ matrices allows us to improve the form in (4) by giving (unitary) similarity in R as well.

Recall that a matrix $A \in \mathbb{C}^{n \times n}$ is called $E P$ if $A A^{\dagger}=A^{\dagger} A$ [7], or equivalently, if there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$ such that

$$
A=U\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] U^{*}
$$

Theorem 9. Let $A, R \in \mathbb{C}^{n \times n}$ be such that $R^{k}=I_{n}$ and $r=\operatorname{rank}(A)$. Consider the following three conditions:
a. A is an EP matrix.
b. A is an $\{R, s+1, k, *\}$-potent matrix.
c. There exist a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in$ $\mathbb{C}^{r \times r}$ such that

$$
A=U\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] U^{*} \quad \text { and } \quad R=U\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] U^{*}
$$

where C is a $\{X, s+1, k, *\}$-potent matrix for $X \in \mathbb{C}^{r \times r}$ and any $T \in$ $\mathbb{C}^{(n-r) \times(n-r)}$ satisfying $T^{k}=I_{n-r}$.

Then any two of these conditions (a)-(c) imply the third one.
Proof. $(a)+(b) \Longrightarrow(c)$: Assume that

$$
A=U\left[\begin{array}{ll}
C & O \\
O & O
\end{array}\right] U^{*}
$$

for some unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$. Now, a similar proof as that of Theorem 8 gives $(c) .(a)+(c) \Longrightarrow(b)$: This can be directly derived from Theorem $8 .(b)+(c) \Longrightarrow(a)$: This direction is trivial.

The findings in the next result relate to some facts about the diagonalization of a matrix in $\mathcal{P}_{R, s, k, *}$.

Theorem 10. Let $A, R \in \mathbb{C}^{n \times n}$ be such that $R^{k}=I_{n}$ and A is an $\{R, s+$ $1, k, *\}$-potent matrix. Then
a. $A^{(s+1)^{2 j}}=\left(R\left(R^{-1}\right)^{*}\right)^{j} A\left(R^{*} R^{-1}\right)^{j}, j=1, \ldots, k$.
b. If R is normal, then $A^{(s+1)^{2 k}}=A$. In this case, $A^{\#}=A^{(s+1)^{2 k}-2}$.
c. If R is Hermitian, then $A^{(s+1)^{2}}=A$. In this case, $A^{\#}=A^{(s+1)^{2}-2}$.
d. If R is normal, then A is diagonalizable.

Proof. (a) The definition $A^{s+1}=R A^{*} R^{-1}$ implies $A^{(s+1)^{2}}=\left(A^{s+1}\right)^{s+1}=$ $R\left(A^{s+1}\right)^{*} R^{-1}=R\left(R^{-1}\right)^{*} A R^{*} R^{-1}$. Similarly,

$$
A^{(s+1)^{3}}=\left(A^{(s+1)^{2}}\right)^{s+1}=R\left(R^{-1}\right)^{*} R A^{*} R^{-1} R^{*} R^{-1}
$$

and $A^{(s+1)^{4}}=\left(R\left(R^{-1}\right)^{*}\right)^{2} A^{*}\left(R^{-1} R^{*}\right)^{2}$. The result follows by induction. (b) If R is normal, then $\left(R^{*}\right)^{-1} R=R\left(R^{*}\right)^{-1}$ and inductively,

$$
\left(R\left(R^{-1}\right)^{*}\right)^{k}=R^{k}\left(\left(R^{-1}\right)^{*}\right)^{k}=R^{k}\left(\left(R^{k}\right)^{*}\right)^{-1}=I_{n}
$$

and

$$
\left(R^{*} R^{-1}\right)^{k}=\left(R^{*}\right)^{k}\left(R^{-1}\right)^{k}=\left(R^{k}\right)^{*}\left(R^{k}\right)^{-1}=I_{n}
$$

since $R^{k}=I_{n}$. Now, the result follows from (a). (c) If $R^{*}=R$ and $R^{k}=I_{n}$, then $R^{2}=I_{n}$ because R is (unitarily) diagonalizable and

$$
\sigma(R) \subseteq \mathbb{R} \cap\left\{\exp \left(\frac{2 \pi q}{k} i\right), q \in\{0,1, \ldots, q-1\}\right\} \subseteq\{-1,1\}
$$

Hence, $R^{-1}=R=R^{*}$. Now, again the result follows from (a). (d) This follows from (b) and by taking into account that all the roots of the polynomial $p(z)=z^{(s+1)^{2 k}}-z$ are simple. In order to compute the group inverses of A in parts (b) and (c) the following general fact is used: $A^{\#}=A^{\ell}$ if and only if $A^{\ell+2}=A$ for some given integer $\ell \geq 1$.

While in [8] it was proved that an $\{R, s+1, k\}$-potent matrix is always diagonalizable, this property is not always true for matrices in $\mathcal{P}_{R, s, k, *}$. The next example illustrates this fact.
Example 11. Let ω be a primitive root of unity of order $2 m$,

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } \quad R_{\omega}=\left[\begin{array}{ccc}
0 & \sqrt{s+1} & 0 \\
\frac{1}{\sqrt{s+1}} & 0 & 0 \\
0 & 0 & \omega
\end{array}\right]
$$

Then $R_{\omega}^{2 m}=I_{3}$ and the matrix

$$
X=\left[\begin{array}{cc}
0 & \sqrt{s+1} \\
\frac{1}{\sqrt{s+1}} & 0
\end{array}\right]
$$

satisfies $X C^{*}=C^{s+1} X$ and $X^{2}=I_{2}$ where $C=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Hence, A is a $\left\{R_{\omega}, s+1,2 m, *\right\}$-potent matrix. It is clear that A is not diagonalizable.

Recall that for a pair of matrices $A, B \in \mathbb{C}^{n \times n}$, the commutator $[A, B]$ is defined as $[A, B]=A B-B A$.
Lemma 12. Let $R \in \mathbb{C}^{n \times n}$ be such that $R^{k}=I_{n}$. The set

$$
G=\left\{A \in \mathcal{P}_{R, s, k, *}:[A, B]=O, \forall B \in \mathcal{P}_{R, s, k, *}\right\}
$$

is a semigroup under matrix multiplication.
Proof. Let $A_{1}, A_{2} \in G$. Then, $A_{1}, A_{2} \in \mathcal{P}_{R, s, k, *}$, and for $i=1,2$ we have $A_{i} B=$ $B A_{i}$ for all $B \in \mathcal{P}_{R, s, k, *}$. In particular, $A_{1} A_{2}=A_{2} A_{1}$. Since $R A_{i}^{*} R^{-1}=A_{i}^{s+1}$ for $i=1,2$, we get

$$
\left(A_{1} A_{2}\right)^{s+1}=A_{1}^{s+1} A_{2}^{s+1}=R A_{1}^{*} A_{2}^{*} R^{-1}=R\left(A_{2} A_{1}\right)^{*} R^{-1}=R\left(A_{1} A_{2}\right)^{*} R^{-1}
$$

that is $A_{1} A_{2} \in \mathcal{P}_{R, s, k, *}$. Moreover, $\left(A_{1} A_{2}\right) B=A_{1} B A_{2}=B\left(A_{1} A_{2}\right)$ for all $B \in \mathcal{P}_{R, s, k, *}$. Hence, $A_{1} A_{2} \in G$.

Remark 13. If $A, B \in \mathcal{P}_{R, s, k, *}$ satisfy $A B=B A$, then $A B \in \mathcal{P}_{R, s, k, *}$.

4 Relationship between $\mathcal{P}_{R, s, k, *}$ and other classes of matrices

First, we present a general result whose proof will be useful in this section.
Lemma 14. Let $A \in \mathbb{C}^{n \times n}$ be a matrix of index 1 and $\operatorname{rank}(A)=r>0$. Then A is a normal matrix if and only if there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ be such that

$$
A=P\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad P^{*} P=\left[\begin{array}{cc}
M & O \\
O & N
\end{array}\right]
$$

where $M \in \mathbb{C}^{r \times r}$ and $N \in \mathbb{C}^{(n-r) \times(n-r)}$ are both positive definite matrices and C^{*} commutes with $M C M^{-1}$.

Proof. It is well known that any matrix of index 1 has the form

$$
A=P\left[\begin{array}{ll}
C & O \\
O & O
\end{array}\right] P^{-1}
$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$. Substituting in $A A^{*}=$ $A^{*} A$ and reordering factors yield

$$
P^{*} P\left[\begin{array}{ll}
C & O \tag{5}\\
O & O
\end{array}\right]\left(P^{*} P\right)^{-1}\left[\begin{array}{cc}
C^{*} & O \\
O & O
\end{array}\right] P^{*} P=\left[\begin{array}{cc}
C^{*} & O \\
O & O
\end{array}\right] P^{*} P\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right]
$$

Partitioning $P^{*} P$ with adequate sizes to the partition considered for A we obtain

$$
P^{*} P=\left[\begin{array}{cc}
M & Q \\
Q^{*} & N
\end{array}\right]
$$

with M and N Hermitian. Since P is nonsingular, by using the positive definiteness of $P^{*} P$ it is easy to see that M and N are positive definite. The inversion formula of Banachiewicz-Schur ensures the nonsingularity of the Schur complement $W=\left(P^{*} P\right) / M=N-Q^{*} M^{-1} Q$ and gives

$$
\left(P^{*} P\right)^{-1}=\left[\begin{array}{cc}
M^{-1}+M^{-1} Q W^{-1} Q^{*} M^{-1} & -M^{-1} Q W^{-1} \\
-W^{-1} Q^{*} M^{-1} & W^{-1}
\end{array}\right]
$$

Substituting in (5) and making the block products we get

$$
\left[\begin{array}{cc}
M L M & M L Q \\
Q^{*} L M & Q^{*} L Q
\end{array}\right]=\left[\begin{array}{cc}
C^{*} M C & O \\
O & O
\end{array}\right]
$$

where $L=C\left(M^{-1}+M^{-1} Q W^{-1} Q^{*} M^{-1}\right) C^{*}$. Thus, $M L M=C^{*} M C, M L Q=$ $O, Q^{*} L M=O$, and $Q^{*} L Q=O$. By the nonsingularity of M and N we get $L Q=O$ and $Q^{*} L=O$, that is

$$
O=C\left(M^{-1}+M^{-1} Q W^{-1} Q^{*} M^{-1}\right) C^{*} Q=C M^{-1}\left(I_{r}+Q W^{-1} Q^{*} M^{-1}\right) C^{*} Q
$$

This last expression gives $\left(I_{r}+Q W^{-1} Q^{*} M^{-1}\right) C^{*} Q=O$. Similarly, from $O=$ $Q^{*} L=Q^{*} C\left(I_{r}+M^{-1} Q W^{-1} Q^{*}\right) M^{-1} C^{*}$ we get $Q^{*}\left(I_{r}+M^{-1} Q W^{-1} Q^{*}\right)=$ O. Now, substituting the expression of L in $M L M=C^{*} M C$ we arrive at $M C M^{-1}\left(I_{r}+Q W^{-1} Q^{*} M^{-1}\right) C^{*} M=C^{*} M C$ which implies

$$
O=M C M^{-1}\left(I_{r}+Q W^{-1} Q^{*} M^{-1}\right) C^{*} Q=C^{*} M C M^{-1} Q,
$$

from where $Q=O$ due to the nonsingularity of C and M. Hence,

$$
P^{*} P=\left[\begin{array}{cc}
M & O \\
O & N
\end{array}\right]
$$

with $M C M^{-1} C^{*}=C^{*} M C M^{-1}$ since $L=C M^{-1} C^{*}$. The converse is evident.

In Lemma 7 we proved that the projector $A A^{\#} \in \mathcal{P}_{R, s, k, *}$ provided that $A \in \mathcal{P}_{R, s, k, *}$. The next result characterizes all projectors that belong to $\mathcal{P}_{R, s, k, *}$.

Theorem 15. Let $A \in \mathbb{C}^{n \times n}$ be a projector, i.e., $A^{2}=A$. Then the following conditions are equivalent:
a. A is $\{R, s+1, k, *\}$-potent.
b. $A R=R A^{*}$.
c. There exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that

$$
A=P\left[\begin{array}{cc}
I_{r} & O \\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad R=P\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] P^{*}
$$

where $X \in \mathbb{C}^{r \times r}$ and $T \in \mathbb{C}^{(n-r) \times(n-r)}$ are nonsingular matrices.
Proof. Since $A^{2}=A$, we get $A^{s+1}=A$ for all s and

$$
A=P\left[\begin{array}{ll}
I_{r} & O \tag{6}\\
O & O
\end{array}\right] P^{-1}
$$

(a) \Longleftrightarrow (b) This follows directly from the definitions. (b) \Longleftrightarrow (c) The form of R can be found by substituting (6) into $A R=R A^{*}$ and partitioning

$$
P^{-1} R\left(P^{-1}\right)^{*}=\left[\begin{array}{cc}
X & Y \\
Z & T
\end{array}\right]
$$

Remark 16. Note that in the above theorem the value used for s was not relevant.

In Theorem 9 we have characterized all $\{R, s+1, k, *\}$-potent matrices that are $E P$. Next, we characterize $\{R, s+1, k, *\}$-potent matrices that are normal.

Theorem 17. Let $A \in \mathbb{C}^{n \times n}$ be a nonzero $\{R, s+1, k, *\}$-potent matrix. Then A is normal if and only if there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ such that

$$
A=P\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad R=P\left[\begin{array}{cc}
X M & O \\
O & T N
\end{array}\right] P^{-1}
$$

where $M \in \mathbb{C}^{r \times r}$ and $N \in \mathbb{C}^{(n-r) \times(n-r)}$ are both positive definite matrices and $X \in \mathbb{C}^{r \times r}$ and $T \in \mathbb{C}^{(n-r) \times(n-r)}$ are nonsingular matrices such that $X C^{*}=$ $C^{s+1} X$.

Proof. By Theorem 8 there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ such that

$$
A=P\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad R=P\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] P^{*}
$$

for $X \in \mathbb{C}^{r \times r}$ satisfying $X C^{*}=C^{s+1} X$ with X nonsingular and for any nonsingular $T \in \mathbb{C}^{(n-r) \times(n-r)}$. Assume that A is normal. Then, a similar proof to that of Lemma 14 yields

$$
P^{*}=\left[\begin{array}{cc}
M & O \\
O & N
\end{array}\right] P^{-1}
$$

where $M \in \mathbb{C}^{r \times r}$ and $N \in \mathbb{C}^{(n-r) \times(n-r)}$ are both positive definite matrices. Thus, we can deduce that

$$
R=P\left[\begin{array}{cc}
X M & O \\
O & T N
\end{array}\right] P^{-1}
$$

The converse is evident.
In [12], Groß and Trenkler defined generalized projectors as matrices $A \in$ $\mathbb{C}^{n \times n}$ that satisfy $A^{2}=A^{*}$ and denoted this class of matrices by GP. In [6], Benítez and Thome introduced $\{s+1\}$-generalized projectors (for $s \geq 1$) and for ease we call these matrices $\{s+1\}$-GP matrices [19]. A matrix $A \in \mathbb{C}^{n \times n}$ is called an $\{s+1\}-G P$ matrix if $A^{*}=A^{s+1}$; we denote the set of all $n \times n$ $\{s+1\}$-GP matrices by $G P_{s+1}$. The matrices in $G P_{s+1}$ are characterized as follows [6]:
$A \in G P_{s+1} \Longleftrightarrow A$ is normal and $\sigma(A) \subseteq\{0\} \cap \Omega_{s+2} \Longleftrightarrow A$ is normal and $A^{s+3}=A$
where Ω_{s+2} denotes the roots of unity of order $s+2$. We next give another characterization.

Lemma 18. Let $A \in \mathbb{C}^{n \times n}$. Then A is $a\{s+1\}$-GP matrix if and only if there exist a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D=\left[d_{i j}\right] \in \mathbb{C}^{r \times r}$ such that

$$
A=U\left[\begin{array}{cc}
D & O \\
O & O
\end{array}\right] U^{*}
$$

with $d_{j j} \in \Omega_{s+2}$.
Proof. This is a straightforward extension of [6, Corollary 2.2].
Now, we characterize $\{R, s+1, k, *\}$-potent matrices that are in $G P_{s+1}$.
Theorem 19. Let $A \in \mathbb{C}^{n \times n}$ be an $\{R, s+1, k, *\}$-potent matrix. Then, the following statements are equivalent:
a. A is $a\{s+1\}-G P$.
b. $A^{*} R=R A^{*}$.
c. There exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D=\left[d_{i j}\right] \in$ $\mathbb{C}^{r \times r}$ such that

$$
A=U\left[\begin{array}{cc}
D & O \\
O & O
\end{array}\right] U^{*} \quad \text { and } \quad R=U\left[\begin{array}{cc}
R_{1} & O \\
O & R_{2}
\end{array}\right] U^{*}
$$

where $d_{j j} \in \Omega_{s+2}$ with $R_{1} \in \mathbb{C}^{r \times r}$ satisfying $R_{1}^{*} D=D R_{1}$ and $R_{2} \in$ $\mathbb{C}^{(n-r) \times(n-r)}$.

Proof. From the definition $A^{s+1}=R A^{*} R^{-1}$, it is easy to see that $A^{s+1}=A^{*}$ and $A^{*} R=R A^{*}$ are equivalent; thus $(a) \Longleftrightarrow(b)$. Now, suppose that A is a $\{s+1\}$-GP matrix. By Lemma 18

$$
A=U\left[\begin{array}{ll}
D & O \\
O & O
\end{array}\right] U^{*}
$$

under the conditions indicated there. Consider the partition

$$
U^{*} R U=\left[\begin{array}{ll}
R_{1} & R_{3} \\
R_{4} & R_{2}
\end{array}\right]
$$

according to the sizes of the partition of $U^{*} A U$. Equating blocks, we obtain that the expression $A^{*} R=R A^{*}$ is equivalent to $D^{*} R_{1}=R_{1} D^{*}, R_{3}=O$, and $R_{4}=O$, since D is nonsingular; thus $(a) \Longleftrightarrow(c)$.

Now, we relate the class of $\{R, s+1, k, *\}$-potent matrices to the class of $\{s+1\}$-HGP matrices. In [12], Groß and Trenkler defined hypergeneralized projectors as matrices $A \in \mathbb{C}^{n \times n}$ that satisfy $A^{2}=A^{\dagger}$ and denoted this class of matrices by HGP. We call a matrix $A \in \mathbb{C}^{n \times n}$ an $\{s+1\}$-hypergeneralized potent (or $\{s+1\}$-HGP) matrix if $A^{s+1}=A^{\dagger}$ and we denote the set of all $n \times n$ $\{s+1\}$-HGP matrices by $H G P_{s+1}$. The matrices in $H G P_{s+1}$ are characterized as follows:

$$
A \in H G P_{s+1} \Longleftrightarrow A \text { is } E P \text { and } A^{s+3}=A
$$

Theorem 20. Let $A \in \mathbb{C}^{n \times n}$ be an $\{R, s+1, k, *\}$-potent matrix. Then, the following statements are equivalent:
a. A is an $\{s+1\}$-HGP matrix.
b. $A^{\dagger} R=R A^{*}$.
c. There exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in$ $\mathbb{C}^{r \times r}$ such that

$$
A=U\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] U^{*} \quad \text { and } \quad R=U\left[\begin{array}{cc}
R_{1} & O \\
O & R_{2}
\end{array}\right] U^{*}
$$

where $C^{-1} R_{1}=R_{1} C^{*}$ with $R_{1} \in \mathbb{C}^{r \times r}$ and $R_{2} \in \mathbb{C}^{(n-r) \times(n-r)}$ satisfying $R_{1}^{k}=I_{r}$ and $R_{2}^{k}=I_{n-r}$.

Proof. The equivalence (a) \Longleftrightarrow (b) follows directly from the definitions. Suppose that A is a $\{s+1\}$-HGP. Then A is $E P$, so there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$ such that

$$
A=U\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] U^{*}
$$

It is clear that

$$
A^{\dagger}=U\left[\begin{array}{cc}
C^{-1} & O \\
O & O
\end{array}\right] U^{*}
$$

Figure 1: Relation between $\{R, s+1, k+*\}$-potent matrices and other classes

Now we consider the partition

$$
U^{*} R U=\left[\begin{array}{ll}
R_{1} & R_{3} \\
R_{4} & R_{2}
\end{array}\right]
$$

according to the sizes of the partition of $U^{*} A U$. Substituting in $R A^{*}=A^{\dagger} R$ and equating blocks we obtain $R_{1} C^{*}=C^{-1} R_{1}, R_{3}=O$, and $R_{4}=O$. Thus, the conditions on R have been obtained. Observe that $R^{k}=I_{n}$ implies $R_{1}^{k}=I_{r}$ and $R_{2}^{k}=I_{n-r}$. Hence $(\mathrm{a}) \Longrightarrow(\mathrm{c})$. Finally, $(\mathrm{c}) \Longrightarrow(\mathrm{b})$ is straightforward.

We summarize all the information studied in this section in Figure 1.
A matrix $A \in \mathbb{C}^{m \times n}$ is a partial isometry if $A^{\dagger}=A^{*}$, or equivalently, $A A^{*} A=A$ [22]. The relation between $\mathcal{P}_{R, s, k, *}$ and partial isometries is presented in the next result.

Theorem 21. Let $A \in \mathbb{C}^{n \times n}$ be a matrix in $\mathcal{P}_{R, s, k, *}$. As in Theorem 8, let

$$
A=P\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad R=P\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] P^{*}
$$

and partition $P^{*} P$ as

$$
P^{*} P=\left[\begin{array}{cc}
M & L \\
L^{*} & N
\end{array}\right]
$$

Then A is a partial isometry if and only if $I_{r}+L\left(N-L^{*} M^{-1} L\right)^{-1} L^{*} M^{-1}=$ $M C^{-1} M^{-1}\left(C^{-1}\right)^{*}$.

Proof. The result is obtained by substituting in $A A^{*} A=A$ the expression of A given in the statement and by using the Banachiewicz-Schur formula for the inverse of $P^{*} P$.

Finally, we present the relationship between $\mathcal{P}_{R, s, k, *}$ and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$ potent matrices. The latter is an extension of the $\left\{\alpha_{1}, \alpha_{2}\right\}$-quadratic matrices [23].

Definition 22. A matrix $A \in \mathbb{C}^{n \times n}$ is called an $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$-potent matrix if

$$
\left(A-\alpha_{1} I_{n}\right)\left(A-\alpha_{2} I_{n}\right) \ldots\left(A-\alpha_{\ell} I_{n}\right)=0
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell} \in \mathbb{C}$ are pairwise distinct.
The set of all $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$-potent matrices will be denoted by $\mathcal{N}\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$.
If $\ell=2$, matrices in $\mathcal{N}\left\{\alpha_{1}, \alpha_{2}\right\}$ are called $\left\{\alpha_{1}, \alpha_{2}\right\}$-quadratic [1, 11]. Allowing equalities between $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}$, the choice $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{\ell}=0$ leads to nilpotent matrices.

Lemma 23. A nonzero $\{R, s+1, k, *\}$-potent matrix is not nilpotent.
Proof. Suppose that $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k, *\}$-potent matrix that is not the zero matrix. By Theorem 8,

$$
A=P\left[\begin{array}{ll}
C & O \\
O & O
\end{array}\right] P^{-1}
$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$. If we assume that $A^{m}=O$ for some positive integer m then $C^{m}=O$, which is impossible.

Theorem 24. Let $A \in \mathcal{P}_{R, s, k, *}$, and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell} \in \mathbb{C}$ be pairwise distinct. Then $A \in \mathcal{N}\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\}$ if and only if $\alpha_{1}=0$,

$$
A=L\left[\begin{array}{cc}
D & O \\
O & O
\end{array}\right] L^{-1} \quad \text { and } \quad R=L\left[\begin{array}{cc}
Y & O \\
O & T
\end{array}\right] L^{*}
$$

for some nonsingular matrix $L \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D=\left[d_{i j}\right] \in \mathbb{C}^{r \times r}$ where $d_{j j} \in\left\{\alpha_{2}, \ldots, \alpha_{\ell}\right\} \cap\left\{\exp \left(\frac{2 \pi t}{s+2} i\right), t \in\{0,1, \ldots, s+1\}\right\}$ for $j=1,2, \ldots, r$ and some nonsingular matrices $Y \in \mathbb{C}^{r \times r}, T \in \mathbb{C}^{(n-r) \times(n-r)}$ such that $Y D^{*}=$ $D^{s+1} Y$.

Proof. Since $A \in \mathcal{P}_{R, s, k, *}$, by Theorem 8 we have

$$
A=P\left[\begin{array}{cc}
C & O \\
O & O
\end{array}\right] P^{-1} \quad \text { and } \quad R=P\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] P^{*}
$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}, X \in \mathbb{C}^{r \times r}$, and $T \in \mathbb{C}^{(n-r) \times(n-r)}$ such that $X C^{*}=C^{s+1} X$. Suppose that $\left(A-\alpha_{1} I_{n}\right)\left(A-\alpha_{2} I_{n}\right) \ldots\left(A-\alpha_{\ell} I_{n}\right)=0$ where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell} \in \mathbb{C}$ are pairwise distinct. Then

$$
P\left[\begin{array}{cc}
\Pi_{j=1}^{\ell}\left(C-\alpha_{j} I_{r}\right) & O \\
O & (-1)^{\ell} \Pi_{j=1}^{\ell} \alpha_{j} I_{n-r}
\end{array}\right] P^{-1}=O
$$

So, $\Pi_{j=1}^{\ell}\left(C-\alpha_{j} I_{r}\right)=O$ and $\Pi_{j=1}^{\ell} \alpha_{j}=0$. It is clear that there is at least one $j \in\{1,2, \ldots, \ell\}$ such that $\alpha_{j}=0\left(\right.$ since $\alpha_{i} \neq \alpha_{q}$ if $\left.i \neq q\right)$. Without loss of generality, we can assume that $\alpha_{1}=0$ (consequently, $\alpha_{j} \neq 0$ for all $j \in\{2, \ldots, \ell\})$. Now, $\Pi_{j=2}^{\ell}\left(C-\alpha_{j} I_{r}\right)=O$ because C is nonsingular, and $p(x)=\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{\ell}\right)$ is a (monic) annihilator polinomial of C with all its factors linear. Since all $\alpha_{j} \in \mathbb{C}$ and \mathbb{C} is algebraically closed, C must be diagonalizable. Let $C=Q D Q^{-1}$ with D diagonal. Then

$$
A=P\left[\begin{array}{cc}
Q D Q^{-1} & O \\
O & O
\end{array}\right] P^{-1}=L\left[\begin{array}{cc}
D & O \\
O & O
\end{array}\right] L^{-1}
$$

where $L=P\left[\begin{array}{cc}Q & O \\ O & I_{n-r}\end{array}\right]$. Hence, A is diagonalizable. Substituting now, $C=Q D Q^{-1}$ in $\Pi_{j=2}^{\ell}\left(C-\alpha_{j} I_{r}\right)=O$ we get $\Pi_{j=2}^{\ell}\left(D-\alpha_{j} I_{r}\right)=O$, that is for every $i=1,2, \ldots, \ell, \Pi_{j=2}^{\ell}\left(d_{j j}-\alpha_{j}\right)=0$, thus, $d_{j j} \in\left\{\alpha_{2}, \ldots, \alpha_{\ell}\right\}$ for all $j=1,2, \ldots, r$. From Lemma $7, d_{j j} \in\left\{\exp \left(\frac{2 \pi t}{s+2} i\right), t \in\{0,1, \ldots, s+1\}\right\}$ for all $j \in\{1,2, \ldots, r\}$. By using $X C^{*}=C^{s+1} X$ and $C=Q D Q^{-1}$, we can denote $Y=Q^{-1} X\left(Q^{*}\right)^{-1}$ to arrive at

$$
R=P\left[\begin{array}{cc}
X & O \\
O & T
\end{array}\right] P^{*}=L\left[\begin{array}{cc}
Y & O \\
O & T
\end{array}\right] L^{*},
$$

with $Y D^{*}=D^{s+1} Y$ and Y nonsingular.
Remark 25. Notice that, if either $\alpha_{j} \neq 0$ for all $j \in\{1,2, \ldots, \ell\}$ or if $\alpha_{j} \notin$ $\left\{\exp \left(\frac{2 \pi t}{s+2} i\right), t \in\{0,1, \ldots, s+1\}\right\}$ for some $j \in\{2, \ldots, \ell\}$ then $\mathcal{N}\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right\} \cap$ $\mathcal{P}_{R, s, k, *}=\emptyset$.

Acknowledgements

The second and fourth authors have been partially supported by Ministerio de Economía y Competitividad of Spain (Grant MTM2013-43678-P).

References

[1] M. Aleksiejczyk, A. Smoktunowicz. On properties of quadratic matrices, Mathematica Pannonica, 11, 239-248, 2000.
[2] O.M. Baksalary, Revisitation of generalized and hypergeneralized projectors, in: B. Schipp, W. Krämer(eds), Statistical Inference, Econometric Analysis and Matrix Algebra-Festschrift in Honour of Götz Trenkler, Springer, Heidelberg, 317-324, 2008.
[3] J.K. Baksalary, O.M. Baksalary, J. Groß. On some linear combinations of hypergeneralized projectors, Linear Algebra and its Applications, 413, 264-273, 2006.
[4] J.K. Baksalary, O.M. Baksalary, X. Liu, G. Trenkler. Further results on generalized and hypergeneralized projectors, Linear Algebra and its Applications, 429, 1038-1050, 2008.
[5] A. Ben-Israel, T. Greville. Generalized Inverses: Theory and Applications, John Wiley \& Sons, 2nd Edition, 2003.
[6] J. Benítez, N. Thome. Characterizations and linear combinations of k generalized projectors, Linear Algebra and its Applications, 410, 150-159, 2005.
[7] S.L. Campbell, C.D. Meyer Jr. Generalized Inverse of Linear Transformations. Dover, New York, Second Edition, 1991.
[8] M. Catral, L. Lebtahi, J. Stuart, N. Thome. On a matrix group constructed from an $\{R, s+1, k\}$-potent matrix, Linear Algebra and its Applications, 461, 200-201, 2014.
[9] D. Doković. Unitary similarity of projectors, Aequationes Mathematicae, 42, 220-224, 1991.
[10] D. Doković, F. Szechtman, K. Zhao. An algorithm that carries a square matrix into its transpose by an involutory congruence transformation, Electronic Journal of Linear Algebra, 10, 320-340, 2003.
[11] R.W. Farebrother, G. Trenkler. On generalized quadratic matrices, Linear Algebra and its Applications, 410, 244-253, 2005.
[12] J. Groß, G. Trenkler. Generalized and hypergeneralized projectors, Linear Algebra and its Applications, 264, 463-474, 1997.
[13] R.D. Hill, S.R. Waters. On κ-Real and κ-Hermitian Matrices, Linear Algebra and its Applications, 169, 17-29, 1992.
[14] R. Horn, C. Johnson. Matrix Analysis, Cambridge U. P., New York, Second Edition, 2013.
[15] R.A. Horn, V.V. Sergeichuk. Congruences of a square matrix and its transpose, Linear Algebra and its Applications, 389, 347-353, 2004.
[16] L. Lebtahi, P. Patrício, N. Thome. Special elements in a ring related to Drazin inverses, Linear and Multilinear Algebra, 61, 1017-1027, 2013.
[17] L. Lebtahi, J. Stuart, N. Thome, J.R. Weaver. Matrices A such that $R A=$ $A^{s+1} R$ when $R^{k}=I$, Linear Algebra and its Applications, 439, 1017-1023, 2013.
[18] L. Lebtahi, O. Romero, N. Thome. Characterizations of $\{K, s+1\}$-potent matrices and applications, Linear Algebra and its Applications, 436, 293306, 2012.
[19] L. Lebtahi, O. Romero, N. Thome. Relations between $\{K, s+1\}$-potent matrices and different classes of complex matrices, Linear Algebra and its Applications, 438, 1517-1531, 2013.
[20] L. Lebtahi, O. Romero, N. Thome. Algorithms for $\{K, s+1\}$-potent matrix constructions, Journal of Computational and Applied Mathematics, 249, 157-162, 2013.
[21] D. Mošić, D. Djordjević. Moore-Penrose-invertible normal and Hermitian elements in rings, Linear Algebra and its Applications, 431, 732-745, 2009.
[22] D. Mošić, D. Djordjević. Partial isometries and EP elements in rings with involution, Electronic Journal of Linear Algebra, 18, 761-772, 2009.
[23] T. Petik, M. Uç, H. Özdemir. Generalized quadraticity of linear combination of two generalized quadratic matrices, Linear and Multilinear Algebra, $63,12,2430-2439,2015$.
[24] I. S. Pressman. Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, Linear Algebra and its Applications, 284, 239-258, 1998.
[25] J. Stuart, J. Weaver. Matrices that commute with a permutation matrix, Linear Algebra and its Applications, 150, 255-265, 1991.
[26] G.W. Stewart. A note on generalized and hypergeneralized projectors, Linear Algebra and its Applications, 412, 408-411, 2006.
[27] F. De Terán, F. M. Dopico, N. Guillery, D. Montealegre, N. Reyes. The solution of the equation $A X+X^{*} B=0$, Linear Algebra and its Applications, 438, 2817-2860, 2013.
[28] M. Tos̆ić, D. S. Cvetković-Ilić. The invertibility of the difference and the sum of commuting generalized and hypergeneralized projectors, Linear and Multilinear Algebra, 61, 4, 482-493, 2013.
[29] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries, Linear Algebra and its Applications, 429, 2278-2290, 2008.
[30] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra and its Applications, 432, 2782-2797, 2010.
[31] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues and eigenvectors, American Mathematical Monthly, 2, 10, 711-717, 1985.
[32] M. Yasuda. Some properties of commuting and anti-commuting minvolutions. Acta Mathematica Scientia, 32B(2), 631-644, 2012.

[^0]: *Department of Mathematics, Xavier University, Cincinnati, OH 45207, USA. E-mail: catralm@xavier.edu.
 ${ }^{\dagger}$ Departamento de Matemáticas, Universitat de València. E-46100 Valencia, Spain. Email: leila.lebtahi@uv.es.
 \ddagger Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, USA. Email: jeffrey.stuart@plu.edu.
 §Instituto Universitario de Matemática Multidiscilpinar. Universitat Politècnica de València. E-46022 Valencia, Spain. E-mail: njthome@mat.upv.es.

