Matrices A such that $A^{s+1}R = RA^*$ with $R^k = I$

Minerva Catral* Leila Lebtahi[†] Jeffrey Stuart[‡] Néstor Thome[§]

March 17, 2018

Abstract

We study matrices $A \in \mathbb{C}^{n \times n}$ such that $A^{s+1}R = RA^*$ where $R^k = I_n$, and s,k are nonnegative integers with $k \geq 2$; such matrices are called $\{R,s+1,k,*\}$ -potent matrices. The s=0 case corresponds to matrices such that $A=RA^*R^{-1}$ with $R^k=I_n$, and is studied using spectral properties of the matrix R. For $s\geq 1$, various characterizations of the class of $\{R,s+1,k,*\}$ -potent matrices and relationships between these matrices and other classes of matrices are presented.

Keywords: $\{R, s+1, k, *\}$ -potent matrix; k-involutory. **AMS subject classification**: Primary: 15A21; Secondary: 15A09.

1 Introduction

The set of $n \times n$ complex matrices is denoted by $\mathbb{C}^{n \times n}$. The symbols A^* and A^{\dagger} denote the conjugate transpose and the Moore-Penrose inverse, respectively, of $A \in \mathbb{C}^{n \times n}$. The set of distinct eigenvalues of A (the spectrum of A) is denoted by $\sigma(A)$. The symbol I_n denotes the identity matrix of $\mathbb{C}^{n \times n}$.

Throughout this paper we will use matrices $R \in \mathbb{C}^{n \times n}$ such that $R^k = I_n$ where $k \in \{2, 3, 4, \ldots\}$. These matrices R are called k-involutory [29, 30, 32], and are a generalization of the well-studied involutory matrices (the k=2 case). We say that k is minimal with respect to $R^k = I_n$ if k is the smallest integer over all $h \in \{2, 3, 4, \ldots\}$ such that $R^h = I_n$. Note that the definition given in [29, 30] differs from that in [32]; in this paper we adopt the definition given in [32], namely that R is k-involutory does not require that k be minimal with respect to $R^k = I_n$.

^{*}Department of Mathematics, Xavier University, Cincinnati, OH 45207, USA. E-mail: catralm@xavier.edu.

[†]Departamento de Matemáticas, Universitat de València. E–46100 Valencia, Spain. E-mail: leila.lebtahi@uv.es.

[‡]Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, USA. E-mail: jeffrey.stuart@plu.edu.

[§]Instituto Universitario de Matemática Multidiscilpinar. Universitat Politècnica de València. E-46022 Valencia, Spain. E-mail: njthome@mat.upv.es.

For a k-involutory matrix $R \in \mathbb{C}^{n \times n}$ and $s \in \{0, 1, 2, 3, \dots\}$, a matrix $A \in \mathbb{C}^{n \times n}$ is called $\{R, s+1, k\}$ -potent if it satisfies

$$A^{s+1}R = RA \tag{1}$$

[17, 8]. These matrices generalize the centrosymmetric matrices (matrices $A \in \mathbb{C}^{n \times n}$ such that A = JAJ where J is the $n \times n$ antidiagonal matrix [31]), the matrices $A \in \mathbb{C}^{n \times n}$ such that AP = PA where P is an $n \times n$ permutation matrix [25], and $\{K, s+1\}$ -potent matrices (matrices $A \in \mathbb{C}^{n \times n}$ for which $KAK = A^{s+1}$ where $K^2 = I_n$ [18, 19, 20]).

Characterizations of $\{R, s+1, k\}$ -potent matrices were presented in [17], and properties of a matrix group constructed from an $\{R, s+1, k\}$ -potent matrix were studied in [8]. Motivated by the results found in these papers and their connections to important known classes of matrices, we investigate matrices $A \in \mathbb{C}^{n \times n}$ where A in the right-hand side of (1) is replaced by f(A) for some function f. In (1), f(A) = A and in this paper $f(A) = A^*$. We introduce and study this further class of matrices related to the $\{R, s+1, k\}$ -potent matrices.

Definition 1. Let $A \in \mathbb{C}^{n \times n}$, $R \in \mathbb{C}^{n \times n}$ be k-involutory (that is, $R^k = I_n$ for some integer $k \geq 2$), and $s \in \{0, 1, 2, 3, ...\}$. The matrix A is called $\{R, s + 1, k, *\}$ -potent if it satisfies

$$A^{s+1}R = RA^*. (2)$$

The set of all $\{R, s+1, k, *\}$ -potent matrices will be denoted by $\mathcal{P}_{R,s,k,*}$.

If $A \in \mathcal{P}_{R,s,k,*}$ and $A = A^*$, then A is an $\{R, s+1, k\}$ -potent matrix. Hence, we are interested in non-Hermitian $\{R, s+1, k, *\}$ -potent matrices. In this case, A^{s+1} and A have the same spectrum up to conjugation.

The s=0 case corresponds to matrices such that $A=RA^*R^{-1}$. This class has been investigated when R is either a permutation matrix or an involution, and will be further addressed in Section 2. Matrices in $\mathcal{P}_{R,s,k,*}$ generalize the perhermitian matrices (matrices $A \in \mathbb{C}^{n \times n}$ such that $A = JA^*J$ where J is the $n \times n$ antidiagonal matrix [24]) and the κ -Hermitian matrices (matrices $A \in \mathbb{C}^{n \times n}$ such that $A = KA^*K$ where K is any $n \times n$ involutory permutation matrix [13]).

A Toeplitz matrix $T = [t_{ij}] \in \mathbb{C}^{n \times n}$ satisfies $t_{ij} = t_{j-i}$ for some given sequence t_{-n}, \ldots, t_n , while a Hankel matrix $H = [h_{ij}] \in \mathbb{C}^{n \times n}$ satisfies $h_{ij} = h_{i+j-2}$ for some given sequence h_0, \ldots, h_{2n} ; note that if J is the $n \times n$ antidiagonal matrix, then JT is Hankel and HJ is Toeplitz [14]. Every real Toeplitz matrix T can be written as $T^t = J^{-1}TJ$, similarly $H^t = J^{-1}HJ$ for any Hankel matrix H with real entries (here B^t denotes the transpose of B); these matrices provide interesting examples of $\{R, s+1, k, *\}$ -potent matrices (R = J, s = 0, and k = 2).

The well-known Sylvester equations $BX + X^*C = E$, for arbitrary matrices B, C and E of conformable sizes, are widely studied in the literature, and the homogeneous case (E=0) has recently attracted the attention of several researchers due to its relationship with palindromic eigenvalue problems [27].

 $\{R, s+1, k, *\}$ -potent matrices can be seen as solutions to a subclass of the homogeneous Sylvester equations $(B = R^{-1}, C = -R^{-1})$ where R is k-involutory, and s = 0 since the resulting equations relate a matrix with its conjugate transpose by a k-involutory similarity.

It is known that any $n \times n$ matrix over any field is congruent to its transpose by an involutory congruence, i.e, for any $n \times n$ matrix A, there is an X with $X^2 = I_n$ such that $XAX^t = A^t$ [15, 10]. In [9], it was shown that any projector (idempotent matrix) is unitarily similar to its conjugate transpose.

The concepts of generalized and hypergeneralized projectors were introduced by Groß and Trenkler [12]: For $A \in \mathbb{C}^{n \times n}$, A is called a generalized projector if $A^2 = A^*$, and A is called a hypergeneralized projector if $A^2 = A^{\dagger}$. Benítez and Thome [6] have extended the definition of generalized projectors to k-generalized projectors and in this paper we define k-hypergeneralized projectors, for any integer k greater than or equal to 2. Results concerning generalized and hypergeneralized projectors and their extensions can be found in [2, 3, 4, 6, 12, 26, 28]. Matrices $A \in \mathbb{C}^{n \times n}$ satisfying $(A - pI_n)(A - qI_n) = O$ for some $p, q \in \mathbb{C}$ are called quadratic matrices [1]; such matrices were generalized and studied in [11]. We extend the definition in [1] to what we will call $\{\alpha_1, \alpha_2, \ldots, \alpha_\ell\}$ -potent matrices.

Except in Section 2, we will assume $s \in \mathbb{N}$. The s=0 case is discussed in Section 2. In Section 3, we derive properties of $\{R,s+1,k,*\}$ -potent matrices and give various characterizations. In [8] it was proved that an $\{R,s+1,k\}$ -potent matrix is always diagonalizable but this is not always true for matrices in $\mathcal{P}_{R,s,k,*}$. We impose conditions on R or on the matrix A to recover some of the properties obtained for the former class of matrices. In Section 4, we study the relationship between $\{R,s+1,k,*\}$ -potent matrices and other classes of matrices such as the $\{s+1\}$ -generalized projectors, the $\{s+1\}$ -hypergeneralized projectors, and the $\{\alpha_1,\alpha_2,\ldots,\alpha_\ell\}$ -potent matrices. We summarize these relationships in a diagram provided in Figure 1.

2
$$AR = RA^*$$
 when $R^k = I_n$

In this section, we analyze the case s=0. The techniques used for this case are different from those for the case $s\geq 1$, which will be discussed separately in the next section. We begin with the following lemma regarding k-involutory matrices. The expression $\gcd(a_1,\ldots,a_n)$ is the greatest common divisor of integers a_1,\ldots,a_n .

Lemma 2. Let $R \in \mathbb{C}^{n \times n}$ with $R^k = I_n$ for some positive integer $k \geq 2$. Then $\sigma(R) \subseteq \{\omega, \omega^2, \omega^3, \dots, \omega^k = 1\}$ where $\omega = \exp\left(\frac{2\pi i}{k}\right)$. Further, there exists an invertible $S \in \mathbb{C}^{n \times n}$ such that $R = SDS^{-1}$ with

$$D = \omega^{\alpha_1} I_{n_1} \oplus \omega^{\alpha_2} I_{n_2} \oplus \cdots \oplus \omega^{\alpha_p} I_{n_n}$$

where p is the number of distinct eigenvalues in $\sigma(R)$, where the α_j are positive integers with $1 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_p \leq k$, and where the dimension of the

eigenspace of R for ω^{α_j} is n_j for each j. The minimality of k with respect to $R^k = I_n$ is equivalent to $\gcd(\alpha_1, \alpha_2, \dots, \alpha_p, k) = 1$.

Proof. Since $R^k - I_n = O$, the minimum polynomial of R must divide $x^k - 1$, which has no repeated roots, and hence, all eigenvalues of R are k^{th} roots of unity, and all Jordan blocks for R are 1×1 . Let $g = \gcd(\alpha_1, \alpha_2, \ldots, \alpha_p, k)$. Then there are positive integers $\beta_1, \beta_2, \ldots, \beta_p$ so that $\alpha_j = g\beta_j$ for each j, and a positive integer h so that k = gh. Then, for each j,

$$\omega^{\alpha_j} = \exp\left(\frac{2\pi i}{k}\alpha_j\right) = \exp\left(\frac{2\pi i}{k}g\beta_j\right) = \exp\left(\frac{2\pi i}{h}\beta_j\right)$$

so that ω^{α_j} is actually an h^{th} root of unity where h = k/g. Then

$$D^h = \bigoplus_{j=1}^p \left(\omega^{\alpha_j}\right)^h I_{n_j} = I_n.$$

Since $R^h = I_n$ if and only if $D^h = I_n$, the minimality of k is equivalent to g = 1.

One would hope that $AR = RA^*$ would imply that $D = S^{-1}RS$ and $B = S^{-1}AS$ would satisfy $BD = DB^*$. However, this requires that

$$BD = (S^{-1}AS)(S^{-1}RS) = S^{-1}(AR)S = S^{-1}(RA^*)S$$

and

$$DB^* = (S^{-1}RS)(S^{-1}AS)^* = S^{-1}R(SS^*)A^*(S^{-1})^*$$

are the same, which need not be true. What is needed is that $S^{-1} = S^*$, which is to say, what is needed is that R is unitarily diagonalizable. While requiring that $R = R^*$ suffices, so does the weaker condition, $RR^* = R^*R$. (The matrix R is called a normal matrix when the weaker condition holds, and this condition is equivalent to unitary diagonalizability.)

Consequently, we assume that R is a normal matrix. We examine what the condition $BD = DB^*$ implies about the matrix B. Begin by imposing the block partitioning of D on B. Observe that under Hermitian transpose, the block $(B^*)_{ij}$ is the block $(B_{ji})^*$ for $1 \le i, j \le p$. Then $BD = DB^*$ is equivalent to the conditions

$$B_{ij}\omega^{\alpha_j}I_{n_j} = \omega^{\alpha_i}I_{n_i}(B^*)_{ij}$$
 for $1 \le i, j \le p$.

Equivalently,

$$B_{ij} = \omega^{\alpha_i - \alpha_j} (B^*)_{ij} \quad \text{for } 1 \le i, j \le p.$$
 (3)

Observe that when i = j, it follows that $B_{ii} = (B^*)_{ii} = (B_{ii})^*$. Hence, each diagonal block of B must be Hermitian.

Now suppose that $i \neq j$. Note that (3) gives

$$B_{ij} = \omega^{\alpha_i - \alpha_j} (B^*)_{ij} = \omega^{\alpha_i - \alpha_j} (B_{ji})^*;$$

and it also gives $B_{ji} = \omega^{\alpha_j - \alpha_i} (B_{ij})^*$. The latter implies $(B_{ji})^* = \omega^{\alpha_i - \alpha_j} B_{ij}$. Combining these results, we see that when $i \neq j$,

$$B_{ij} = \omega^{\alpha_i - \alpha_j} (B_{ji})^* = \omega^{\alpha_i - \alpha_j} \omega^{\alpha_i - \alpha_j} B_{ij} = \omega^{2(\alpha_i - \alpha_j)} B_{ij}.$$

When $2(\alpha_i - \alpha_j) \not\equiv 0 \mod k$, $B_{ij} = 0_{n_i \times n_j}$. Note that $2(\alpha_i - \alpha_j) \not\equiv 0 \mod k$ can be restated as $2\alpha_i \not\equiv 2\alpha_j \mod k$. Also, when $2\alpha_i \equiv 2\alpha_j \mod k$, no restrictions are imposed on B_{ij} .

When is $2\alpha_i \equiv 2\alpha_j \mod k$, and how does this depend on k?

When k is odd, 2 is invertible mod k, and consequently, $2\alpha_i \equiv 2\alpha_j \mod k$ if and only if $\alpha_i \equiv \alpha_j \mod k$. Since α_i and α_j are distinct integers in $\{1, 2, \ldots, k\}$, $2(\alpha_i - \alpha_j) \not\equiv 0 \mod k$. Thus, when k is odd, B must be a direct sum of Hermitian matrices.

What about when k=2m for some positive integer m? Note that $\omega^m=\exp\left(\frac{2\pi i}{k}m\right)=\exp(\pi i)=-1$. Since α_i and α_j are distinct integers in $\{1,2,\ldots,k\}$, $0<|\alpha_i-\alpha_j|< k$, and consequently, $2(\alpha_i-\alpha_j)\equiv 0 \mod k$ if and only if $2|\alpha_i-\alpha_j|=k$, or equivalently, if and only if $|\alpha_i-\alpha_j|=m$. That is, when $\alpha_i<\alpha_j$, this means $\alpha_j=\alpha_i+m$, and when $\alpha_i>\alpha_j$, this means $\alpha_i=\alpha_j+m$. Thus, if k=2m, and if whenever ω^{α_i} is in $\sigma(R)$, $\omega^{\alpha_i+m}=-\omega^{\alpha_i}\notin\sigma(R)$, then B must be a direct sum of Hermitian matrices.

The interesting case is when k=2m and for at least one i, $\{\omega^{\alpha_i}, -\omega^{\alpha_i}\}\subseteq \sigma(R)$. In this case, the diagonal blocks of B are all Hermitian, and for B_{ij} where $\alpha_j \equiv \alpha_i + m \mod k$, $B_{ji} = \omega^{\alpha_j - \alpha_i} (B_{ij})^* = \omega^m (B_{ij})^* = -(B_{ij})^*$. Apparently, in this case, there will be some nontrivial off-diagonal blocks, which are connected by a skew-Hermitian relationship to other off-diagonal blocks.

The preceding arguments lead to the main result of this section.

Theorem 3. Suppose n, k are positive integers, and $A, R \in \mathbb{C}^{n \times n}$ where R is normal and k-involutory, with k minimal with respect to $R^k = I_n$. Let $S, D \in \mathbb{C}^{n \times n}$ be the unitary and diagonal matrices, respectively, given in Lemma 2 such that $R = SDS^*$. Then, $AR = RA^*$ holds if and only if $BD = DB^*$ where $B = S^*AS$. Further,

- 1. When k is odd, $BD = DB^*$ if and only if $B = \bigoplus_{j=1}^p B_{jj}$ where each B_{jj} is an arbitrary $n_i \times n_j$ Hermitian matrix.
- 2. When k = 2m for some positive integer m, partition B into blocks using the natural partition of D. The following are equivalent:
 - (a) $BD = DB^*$
 - (b) For $1 \leq j \leq p$, B_{jj} is an arbitrary $n_j \times n_j$ Hermitian matrix. $B_{ij} = 0_{n_i \times n_j}$ whenever $|\alpha_i \alpha_j| \neq m$. If $\alpha_j = \alpha_i \pm m$ (equivalently, $\omega^{\alpha_j} = -\omega^{\alpha_i}$) for some α_i with $1 \leq \alpha_i \leq m$ and some α_j , then B_{ij} is an arbitrary $n_i \times n_j$ complex matrix such that $B_{ji} = -(B_{ij})^*$.

Corollary 4. Suppose $A, R \in \mathbb{C}^{n \times n}$, $R = R^*$, and $R^k = I_n$ for some minimal positive integer k. Then $k \in \{1,2\}$. If $R = \pm I_n$, then $AR = RA^*$ if and only if $A = A^*$. If $R \neq \pm I_n$, then $\sigma(R) = \{-1,1\}$, k = 2, and there exists a unitary $S \in \mathbb{C}^{n \times n}$ such that $R = S(I_{n_1} \oplus (-1)I_{n_2})S^*$ where $n_1 > 0$ is the multiplicity of 1 in $\sigma(R)$ and $n_2 > 0$ is the multiplicity of -1 in $\sigma(R)$. Let $B = S^*AS$. Then $AR = RA^*$ if and only if

$$B = \begin{bmatrix} B_{11} & B_{12} \\ -(B_{12})^* & B_{22} \end{bmatrix}$$

where $B_{11} \in \mathbb{C}^{n_1 \times n_1}$ and $B_{22} \in \mathbb{C}^{n_2 \times n_2}$ are Hermitian, and $B_{12} \in \mathbb{C}^{n_1 \times n_2}$ is arbitrary.

Proof. If $R = R^*$, then $\sigma(R)$ must be real, so $\sigma(R) \subseteq \{-1,1\}$, and hence, $k \in \{1,2\}$ by the minimality condition. If $\sigma(R) = \{1\}$, then k = 1 and $R = I_n$. If $\sigma(R) = \{-1\}$, then k = 2 and $R = -I_n$. If $\sigma(R) = \{-1,1\}$, then use the preceding theorem with k = 2 and p = 2.

The next corollary follows by using a similar argument.

Corollary 5. Suppose $A, R \in \mathbb{C}^{n \times n}, R^* = -R$, and $R^k = I_n$ for some minimal positive integer k. Then k = 4. If $R = \pm iI_n$, then $AR = RA^*$ if and only if $A = A^*$. If $R \neq \pm iI_n$, then $\sigma(R) = \{-i, i\}$ and there exists a unitary $S \in \mathbb{C}^{n \times n}$ such that $R = S(iI_{n_1} \oplus (-i)I_{n_2})S^*$ where $n_1 > 0$ is the multiplicity of i in $\sigma(R)$ and $n_2 > 0$ is the multiplicity of -i in $\sigma(R)$. Let $B = S^*AS$. Then $AR = RA^*$ if and only if

$$B = \begin{bmatrix} B_{11} & O \\ O & B_{22} \end{bmatrix}$$

where $B_{11} \in \mathbb{C}^{n_1 \times n_1}$ and $B_{22} \in \mathbb{C}^{n_2 \times n_2}$ are Hermitian.

The following example illustrates the second case in Theorem 3.

Example 6. Suppose that k=4 and $\sigma(R)=\{i,-1,-i\}$. Here $\omega=i$, $\alpha_1=1$, $\alpha_2=2$, $\alpha_3=3$, $n_1=4$ and $n_2=n_3=1$. Then k=2m where m=2; ω^{α_1} and $\omega^{\alpha_3}=-\omega^{\alpha_1}$ are in $\sigma(R)$; and ω^{α_2} is in $\sigma(R)$ but $\omega^{\alpha_2+m}=-\omega^{\alpha_2}$ is not. Suppose that $S=I_6$ so R=D. If $A\in\mathbb{C}^{6\times 6}$ satisfies $AR=RA^*$, then A_{11} , A_{22} and A_{33} must be arbitrary Hermitian matrices; A_{12} , A_{21} , A_{23} and A_{32} must be zero matrices; A_{13} must be arbitrary, and $A_{31}=-(A_{13})^*$. That is, $AR=RA^*$ holds if and only if A satisfies

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} & 0 & a_{16} \\ a_{12}^* & a_{22} & a_{23} & a_{24} & 0 & a_{26} \\ a_{13}^* & a_{23}^* & a_{33} & a_{34} & 0 & a_{36} \\ a_{14}^* & a_{24}^* & a_{34}^* & a_{44} & 0 & a_{46} \\ 0 & 0 & 0 & 0 & a_{55} & 0 \\ -a_{16}^* & -a_{26}^* & -a_{36}^* & -a_{46}^* & 0 & a_{66} \end{bmatrix}$$

where each diagonal entry of A is real.

3 Characterizations of $\{R, s+1, k, *\}$ -potent matrices

For a matrix $A \in \mathbb{C}^{n \times n}$, the *group inverse*, if it exists, is the unique matrix $A^{\#}$ satisfying the matrix equations $AA^{\#}A = A$, $A^{\#}AA^{\#} = A^{\#}$, and $AA^{\#} = A^{\#}A$; it is well known that $A^{\#}$ exists if and only if rank $A^{2} = \operatorname{rank} A$ [5].

Throughout this section, we assume that s, k are integers with $s \ge 1$ and $k \ge 2$. First, we list some properties of $\{R, s+1, k, *\}$ -potent matrices.

Lemma 7. Suppose that $A \in \mathcal{P}_{R,s,k,*}$. Then the following statements hold.

- a. $A^{\#}$ exists.
- b. $A^{\#} \in \mathcal{P}_{R,s,k,*}$.
- c. $AA^{\#} \in \mathcal{P}_{R,s,k,*}$.

$$d. \ \sigma(A) \subseteq \{0\} \cup \left\{ \exp\left(\frac{2\pi t}{s+2}i\right), \ t \in \{0, 1, \dots, s+1\} \right\}.$$

Proof. (a) Since $s \ge 1$, rank $(A) = \operatorname{rank}(A^*) = \operatorname{rank}(R^{-1}A^{s+1}R) = \operatorname{rank}(A^{s+1}) \le \operatorname{rank}(A^2) \le \operatorname{rank}(A)$. Thus, rank $(A^2) = \operatorname{rank}(A)$.

- (b) Using the relation $(A^*)^\# = (A^\#)^*$, we obtain $(A^*)^\# = (R^{-1}A^{s+1}R)^\# = R^{-1}(A^{s+1})^\#R = R^{-1}(A^\#)^{s+1}R = (A^\#)^*$.
- (c) Since $A, A^{\#} \in \mathcal{P}_{R,s,k,*}, (AA^{\#})^{s+1} = A^{s+1}(A^{\#})^{s+1} = RA^*R^{-1}R(A^{\#})^*R^{-1} = RA^*(A^{\#})^*R^{-1} = R(A^{\#}A)^*R^{-1} = R(AA^{\#})^*R^{-1}.$
- (d) From $RA^*R^{-1} = A^{s+1}$, we have $[\sigma(A)]^{s+1} = \sigma(A^{s+1}) = \sigma(RA^*R^{-1}) = \sigma(A^*) = \sigma(A)$, where $\sigma(A)$ means the set of the conjugate of the eigenvalues of A. Thus, $\lambda \in \sigma(A)$ if and only if $\lambda^{s+1} = \overline{\lambda}$, which becomes $r^{s+1} \exp((s+1)i\theta) = r \exp(-i\theta)$ where we assume that $\lambda = r \exp(i\theta)$. Now, taking modulus the two possibilities are r = 0 which implies $\lambda = 0$, or $\lambda = \exp\left(\frac{2\pi t}{s+2}i\right)$, $t \in \{0,1,\ldots,s+1\}$.

Some results related to Lemma 7 were given in [16].

The next result presents a characterization of matrices in $\mathcal{P}_{R,s,k,*}$.

Theorem 8. Let $A, R \in \mathbb{C}^{n \times n}$ be such that $R^k = I_n$ and $r = \operatorname{rank}(A)$. Then A is an $\{R, s+1, k, *\}$ -potent matrix if and only if there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ such that

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1} \qquad and \qquad R = P \begin{bmatrix} X & O \\ O & T \end{bmatrix} P^*, \tag{4}$$

for $X \in \mathbb{C}^{r \times r}$ satisfying $XC^* = C^{s+1}X$ with X nonsingular and for any nonsingular $T \in \mathbb{C}^{(n-r) \times (n-r)}$.

 ${\it Proof.}$ By Lemma 7, A has index at most 1. So, the core-nilpotent representation gives

$$A = P \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] P^{-1}$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$. Substituting in $A^{s+1} = RA^*R^{-1}$ we get

$$P^{-1}R(P^{-1})^* \left[\begin{array}{cc} C^* & O \\ O & O \end{array} \right] P^*R^{-1}P = \left[\begin{array}{cc} C^{s+1} & O \\ O & O \end{array} \right].$$

Denoting $Z = P^{-1}R(P^{-1})^*$ and partitioning Z as

$$Z = \left[\begin{array}{cc} X & Y \\ V & T \end{array} \right]$$

of adequate sizes, we arrive at

$$\left[\begin{array}{cc} X & Y \\ V & T \end{array}\right] \left[\begin{array}{cc} C^* & O \\ O & O \end{array}\right] = \left[\begin{array}{cc} C^{s+1} & O \\ O & O \end{array}\right] \left[\begin{array}{cc} X & Y \\ V & T \end{array}\right],$$

from where we obtain $XC^* = C^{s+1}X$, Y = O, and V = O. Since R is nonsingular, X and T are nonsingular as well. Substituting in the expression $R = PZP^*$, we get the representation (4).

From Theorem 8, it follows that if A is an $\{R, s+1, k, *\}$ -potent matrix with A as in (4) then

$$A^{\#} = P \begin{bmatrix} C^{-1} & O \\ O & O \end{bmatrix} P^{-1}.$$

Observe that in Theorem 8 we obtain the condition $XC^* = C^{s+1}X$ but, in general, we cannot conclude that C is an $\{X, s+1, k, *\}$ -potent matrix. Moreover, while A is similar to a block diagonal matrix via the matrix P, the corresponding relation for R using the same P is a congruence to a block diagonal matrix. The concept of EP matrices allows us to improve the form in (4) by giving (unitary) similarity in R as well.

Recall that a matrix $A \in \mathbb{C}^{n \times n}$ is called EP if $AA^{\dagger} = A^{\dagger}A$ [7], or equivalently, if there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$ such that

$$A = U \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] U^*.$$

Theorem 9. Let $A, R \in \mathbb{C}^{n \times n}$ be such that $R^k = I_n$ and r = rank(A). Consider the following three conditions:

- a. A is an EP matrix.
- b. A is an $\{R, s+1, k, *\}$ -potent matrix.
- c. There exist a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$ such that

$$A = U \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] U^* \qquad and \qquad R = U \left[\begin{array}{cc} X & O \\ O & T \end{array} \right] U^*$$

where C is a $\{X, s+1, k, *\}$ -potent matrix for $X \in \mathbb{C}^{r \times r}$ and any $T \in \mathbb{C}^{(n-r) \times (n-r)}$ satisfying $T^k = I_{n-r}$.

Then any two of these conditions (a)-(c) imply the third one.

Proof. $(a) + (b) \Longrightarrow (c)$: Assume that

$$A = U \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] U^*$$

for some unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$. Now, a similar proof as that of Theorem 8 gives (c). $(a) + (c) \Longrightarrow (b)$: This can be directly derived from Theorem 8. $(b) + (c) \Longrightarrow (a)$: This direction is trivial. \square

The findings in the next result relate to some facts about the diagonalization of a matrix in $\mathcal{P}_{R,s,k,*}$.

Theorem 10. Let $A, R \in \mathbb{C}^{n \times n}$ be such that $R^k = I_n$ and A is an $\{R, s + 1, k, *\}$ -potent matrix. Then

- a. $A^{(s+1)^{2j}} = (R(R^{-1})^*)^j A(R^*R^{-1})^j, \quad j = 1, \dots, k.$
- b. If R is normal, then $A^{(s+1)^{2k}} = A$. In this case, $A^{\#} = A^{(s+1)^{2k}-2}$.
- c. If R is Hermitian, then $A^{(s+1)^2} = A$. In this case, $A^\# = A^{(s+1)^2-2}$.
- d. If R is normal, then A is diagonalizable.

Proof. (a) The definition $A^{s+1} = RA^*R^{-1}$ implies $A^{(s+1)^2} = (A^{s+1})^{s+1} = R(A^{s+1})^*R^{-1} = R(R^{-1})^*AR^*R^{-1}$. Similarly,

$$A^{(s+1)^3} = (A^{(s+1)^2})^{s+1} = R(R^{-1})^* R A^* R^{-1} R^* R^{-1}$$

and $A^{(s+1)^4} = (R(R^{-1})^*)^2 A^* (R^{-1}R^*)^2$. The result follows by induction. (b) If R is normal, then $(R^*)^{-1}R = R(R^*)^{-1}$ and inductively,

$$(R(R^{-1})^*)^k = R^k((R^{-1})^*)^k = R^k((R^k)^*)^{-1} = I_n$$

and

$$(R^*R^{-1})^k = (R^*)^k (R^{-1})^k = (R^k)^* (R^k)^{-1} = I_n,$$

since $R^k = I_n$. Now, the result follows from (a). (c) If $R^* = R$ and $R^k = I_n$, then $R^2 = I_n$ because R is (unitarily) diagonalizable and

$$\sigma(R) \subseteq \mathbb{R} \cap \left\{ \exp\left(\frac{2\pi q}{k}i\right), q \in \{0,1,\dots,q-1\} \right\} \subseteq \{-1,1\}.$$

Hence, $R^{-1}=R=R^*$. Now, again the result follows from (a). (d) This follows from (b) and by taking into account that all the roots of the polynomial $p(z)=z^{(s+1)^{2k}}-z$ are simple. In order to compute the group inverses of A in parts (b) and (c) the following general fact is used: $A^{\#}=A^{\ell}$ if and only if $A^{\ell+2}=A$ for some given integer $\ell\geq 1$.

While in [8] it was proved that an $\{R, s+1, k\}$ -potent matrix is always diagonalizable, this property is not always true for matrices in $\mathcal{P}_{R,s,k,*}$. The next example illustrates this fact.

Example 11. Let ω be a primitive root of unity of order 2m,

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad and \quad R_{\omega} = \begin{bmatrix} 0 & \sqrt{s+1} & 0 \\ \frac{1}{\sqrt{s+1}} & 0 & 0 \\ 0 & 0 & \omega \end{bmatrix}.$$

Then $R_{\omega}^{2m} = I_3$ and the matrix

$$X = \left[\begin{array}{cc} 0 & \sqrt{s+1} \\ \frac{1}{\sqrt{s+1}} & 0 \end{array} \right]$$

satisfies $XC^* = C^{s+1}X$ and $X^2 = I_2$ where $C = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Hence, A is a $\{R_{\omega}, s+1, 2m, *\}$ -potent matrix. It is clear that A is not diagonalizable.

Recall that for a pair of matrices $A, B \in \mathbb{C}^{n \times n}$, the *commutator* [A, B] is defined as [A, B] = AB - BA.

Lemma 12. Let $R \in \mathbb{C}^{n \times n}$ be such that $R^k = I_n$. The set

$$G = \{ A \in \mathcal{P}_{R,s,k,*} : [A,B] = O, \forall B \in \mathcal{P}_{R,s,k,*} \}$$

is a semigroup under matrix multiplication.

Proof. Let $A_1, A_2 \in G$. Then, $A_1, A_2 \in \mathcal{P}_{R,s,k,*}$, and for i = 1, 2 we have $A_iB = BA_i$ for all $B \in \mathcal{P}_{R,s,k,*}$. In particular, $A_1A_2 = A_2A_1$. Since $RA_i^*R^{-1} = A_i^{s+1}$ for i = 1, 2, we get

$$(A_1A_2)^{s+1} = A_1^{s+1}A_2^{s+1} = RA_1^*A_2^*R^{-1} = R(A_2A_1)^*R^{-1} = R(A_1A_2)^*R^{-1},$$

that is $A_1A_2 \in \mathcal{P}_{R,s,k,*}$. Moreover, $(A_1A_2)B = A_1BA_2 = B(A_1A_2)$ for all $B \in \mathcal{P}_{R,s,k,*}$. Hence, $A_1A_2 \in G$.

Remark 13. If $A, B \in \mathcal{P}_{R,s,k,*}$ satisfy AB = BA, then $AB \in \mathcal{P}_{R,s,k,*}$.

4 Relationship between $\mathcal{P}_{R,s,k,*}$ and other classes of matrices

First, we present a general result whose proof will be useful in this section.

Lemma 14. Let $A \in \mathbb{C}^{n \times n}$ be a matrix of index 1 and rank(A) = r > 0. Then A is a normal matrix if and only if there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ be such that

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1} \qquad and \qquad P^*P = \begin{bmatrix} M & O \\ O & N \end{bmatrix}$$

where $M \in \mathbb{C}^{r \times r}$ and $N \in \mathbb{C}^{(n-r) \times (n-r)}$ are both positive definite matrices and C^* commutes with MCM^{-1} .

Proof. It is well known that any matrix of index 1 has the form

$$A = P \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] P^{-1}$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$. Substituting in $AA^* = A^*A$ and reordering factors yield

$$P^*P \begin{bmatrix} C & O \\ O & O \end{bmatrix} (P^*P)^{-1} \begin{bmatrix} C^* & O \\ O & O \end{bmatrix} P^*P = \begin{bmatrix} C^* & O \\ O & O \end{bmatrix} P^*P \begin{bmatrix} C & O \\ O & O \end{bmatrix}. \tag{5}$$

Partitioning P^*P with adequate sizes to the partition considered for A we obtain

$$P^*P = \left[\begin{array}{cc} M & Q \\ Q^* & N \end{array} \right],$$

with M and N Hermitian. Since P is nonsingular, by using the positive definiteness of P^*P it is easy to see that M and N are positive definite. The inversion formula of Banachiewicz-Schur ensures the nonsingularity of the Schur complement $W = (P^*P)/M = N - Q^*M^{-1}Q$ and gives

$$(P^*P)^{-1} = \left[\begin{array}{cc} M^{-1} + M^{-1}QW^{-1}Q^*M^{-1} & -M^{-1}QW^{-1} \\ -W^{-1}Q^*M^{-1} & W^{-1} \end{array} \right].$$

Substituting in (5) and making the block products we get

$$\left[\begin{array}{cc} MLM & MLQ \\ Q^*LM & Q^*LQ \end{array}\right] = \left[\begin{array}{cc} C^*MC & O \\ O & O \end{array}\right]$$

where $L=C(M^{-1}+M^{-1}QW^{-1}Q^*M^{-1})C^*$. Thus, $MLM=C^*MC$, MLQ=O, $Q^*LM=O$, and $Q^*LQ=O$. By the nonsingularity of M and N we get LQ=O and $Q^*L=O$, that is

$$O = C(M^{-1} + M^{-1}QW^{-1}Q^*M^{-1})C^*Q = CM^{-1}(I_r + QW^{-1}Q^*M^{-1})C^*Q.$$

This last expression gives $(I_r + QW^{-1}Q^*M^{-1})C^*Q = O$. Similarly, from $O = Q^*L = Q^*C(I_r + M^{-1}QW^{-1}Q^*)M^{-1}C^*$ we get $Q^*(I_r + M^{-1}QW^{-1}Q^*) = O$. Now, substituting the expression of L in $MLM = C^*MC$ we arrive at $MCM^{-1}(I_r + QW^{-1}Q^*M^{-1})C^*M = C^*MC$ which implies

$$O = MCM^{-1}(I_r + QW^{-1}Q^*M^{-1})C^*Q = C^*MCM^{-1}Q,$$

from where Q = O due to the nonsingularity of C and M. Hence,

$$P^*P = \left[\begin{array}{cc} M & O \\ O & N \end{array} \right],$$

with $MCM^{-1}C^* = C^*MCM^{-1}$ since $L = CM^{-1}C^*$. The converse is evident.

In Lemma 7 we proved that the projector $AA^{\#} \in \mathcal{P}_{R,s,k,*}$ provided that $A \in \mathcal{P}_{R,s,k,*}$. The next result characterizes all projectors that belong to $\mathcal{P}_{R,s,k,*}$.

Theorem 15. Let $A \in \mathbb{C}^{n \times n}$ be a projector, i.e., $A^2 = A$. Then the following conditions are equivalent:

- a. A is $\{R, s + 1, k, *\}$ -potent.
- b. $AR = RA^*$.
- c. There exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that

$$A = P \left[\begin{array}{cc} I_r & O \\ O & O \end{array} \right] P^{-1} \qquad and \qquad R = P \left[\begin{array}{cc} X & O \\ O & T \end{array} \right] P^*$$

where $X \in \mathbb{C}^{r \times r}$ and $T \in \mathbb{C}^{(n-r) \times (n-r)}$ are nonsingular matrices.

Proof. Since $A^2 = A$, we get $A^{s+1} = A$ for all s and

$$A = P \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} P^{-1}. \tag{6}$$

(a) \iff (b) This follows directly from the definitions. (b) \iff (c) The form of R can be found by substituting (6) into $AR = RA^*$ and partitioning

$$P^{-1}R(P^{-1})^* = \left[\begin{array}{cc} X & Y \\ Z & T \end{array} \right].$$

Remark 16. Note that in the above theorem the value used for s was not relevant.

In Theorem 9 we have characterized all $\{R, s+1, k, *\}$ -potent matrices that are EP. Next, we characterize $\{R, s+1, k, *\}$ -potent matrices that are normal.

Theorem 17. Let $A \in \mathbb{C}^{n \times n}$ be a nonzero $\{R, s+1, k, *\}$ -potent matrix. Then A is normal if and only if there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ such that

$$A = P \left[egin{array}{cc} C & O \\ O & O \end{array}
ight] P^{-1} \qquad and \qquad R = P \left[egin{array}{cc} XM & O \\ O & TN \end{array}
ight] P^{-1}$$

where $M \in \mathbb{C}^{r \times r}$ and $N \in \mathbb{C}^{(n-r) \times (n-r)}$ are both positive definite matrices and $X \in \mathbb{C}^{r \times r}$ and $T \in \mathbb{C}^{(n-r) \times (n-r)}$ are nonsingular matrices such that $XC^* = C^{s+1}X$.

Proof. By Theorem 8 there exist nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ such that

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1}$$
 and $R = P \begin{bmatrix} X & O \\ O & T \end{bmatrix} P^*,$

for $X \in \mathbb{C}^{r \times r}$ satisfying $XC^* = C^{s+1}X$ with X nonsingular and for any non-singular $T \in \mathbb{C}^{(n-r)\times (n-r)}$. Assume that A is normal. Then, a similar proof to that of Lemma 14 yields

$$P^* = \left[\begin{array}{cc} M & O \\ O & N \end{array} \right] P^{-1}$$

where $M \in \mathbb{C}^{r \times r}$ and $N \in \mathbb{C}^{(n-r) \times (n-r)}$ are both positive definite matrices. Thus, we can deduce that

$$R = P \left[\begin{array}{cc} XM & O \\ O & TN \end{array} \right] P^{-1}.$$

The converse is evident.

In [12], Groß and Trenkler defined generalized projectors as matrices $A \in \mathbb{C}^{n \times n}$ that satisfy $A^2 = A^*$ and denoted this class of matrices by GP. In [6], Benítez and Thome introduced $\{s+1\}$ -generalized projectors (for $s \geq 1$) and for ease we call these matrices $\{s+1\}$ -GP matrices [19]. A matrix $A \in \mathbb{C}^{n \times n}$ is called an $\{s+1\}$ -GP matrix if $A^* = A^{s+1}$; we denote the set of all $n \times n$ $\{s+1\}$ -GP matrices by GP_{s+1} . The matrices in GP_{s+1} are characterized as follows [6]:

 $A \in GP_{s+1} \iff A$ is normal and $\sigma(A) \subseteq \{0\} \cap \Omega_{s+2} \iff A$ is normal and $A^{s+3} = A$ where Ω_{s+2} denotes the roots of unity of order s+2. We next give another characterization.

Lemma 18. Let $A \in \mathbb{C}^{n \times n}$. Then A is a $\{s+1\}$ -GP matrix if and only if there exist a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D = [d_{ij}] \in \mathbb{C}^{r \times r}$ such that

$$A = U \left[\begin{array}{cc} D & O \\ O & O \end{array} \right] U^*,$$

with $d_{jj} \in \Omega_{s+2}$.

Proof. This is a straightforward extension of [6, Corollary 2.2].

Now, we characterize $\{R, s+1, k, *\}$ -potent matrices that are in GP_{s+1} .

Theorem 19. Let $A \in \mathbb{C}^{n \times n}$ be an $\{R, s+1, k, *\}$ -potent matrix. Then, the following statements are equivalent:

- a. A is a $\{s+1\}$ -GP.
- b. $A^*R = RA^*$.
- c. There exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D = [d_{ij}] \in \mathbb{C}^{r \times r}$ such that

$$A = U \begin{bmatrix} D & O \\ O & O \end{bmatrix} U^*$$
 and $R = U \begin{bmatrix} R_1 & O \\ O & R_2 \end{bmatrix} U^*$

where $d_{jj} \in \Omega_{s+2}$ with $R_1 \in \mathbb{C}^{r \times r}$ satisfying $R_1^*D = DR_1$ and $R_2 \in \mathbb{C}^{(n-r) \times (n-r)}$.

Proof. From the definition $A^{s+1} = RA^*R^{-1}$, it is easy to see that $A^{s+1} = A^*$ and $A^*R = RA^*$ are equivalent; thus $(a) \iff (b)$. Now, suppose that A is a $\{s+1\}$ -GP matrix. By Lemma 18

$$A = U \left[\begin{array}{cc} D & O \\ O & O \end{array} \right] U^*,$$

under the conditions indicated there. Consider the partition

$$U^*RU = \left[\begin{array}{cc} R_1 & R_3 \\ R_4 & R_2 \end{array} \right],$$

according to the sizes of the partition of U^*AU . Equating blocks, we obtain that the expression $A^*R = RA^*$ is equivalent to $D^*R_1 = R_1D^*$, $R_3 = O$, and $R_4 = O$, since D is nonsingular; thus $(a) \iff (c)$.

Now, we relate the class of $\{R, s+1, k, *\}$ -potent matrices to the class of $\{s+1\}$ -HGP matrices. In [12], Groß and Trenkler defined hypergeneralized projectors as matrices $A \in \mathbb{C}^{n \times n}$ that satisfy $A^2 = A^{\dagger}$ and denoted this class of matrices by HGP. We call a matrix $A \in \mathbb{C}^{n \times n}$ an $\{s+1\}$ -hypergeneralized potent (or $\{s+1\}$ -HGP) matrix if $A^{s+1} = A^{\dagger}$ and we denote the set of all $n \times n$ $\{s+1\}$ -HGP matrices by HGP_{s+1} . The matrices in HGP_{s+1} are characterized as follows:

$$A \in HGP_{s+1} \iff A \text{ is } EP \text{ and } A^{s+3} = A.$$

Theorem 20. Let $A \in \mathbb{C}^{n \times n}$ be an $\{R, s+1, k, *\}$ -potent matrix. Then, the following statements are equivalent:

- a. A is an $\{s+1\}$ -HGP matrix.
- b. $A^{\dagger}R = RA^*$.
- c. There exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$ such that

$$A = U \left[egin{array}{cc} C & O \\ O & O \end{array}
ight] U^* \qquad and \qquad R = U \left[egin{array}{cc} R_1 & O \\ O & R_2 \end{array}
ight] U^*$$

where $C^{-1}R_1 = R_1C^*$ with $R_1 \in \mathbb{C}^{r \times r}$ and $R_2 \in \mathbb{C}^{(n-r) \times (n-r)}$ satisfying $R_1^k = I_r$ and $R_2^k = I_{n-r}$.

Proof. The equivalence (a) \iff (b) follows directly from the definitions. Suppose that A is a $\{s+1\}$ -HGP. Then A is EP, so there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ and a nonsingular matrix $C \in \mathbb{C}^{r \times r}$ such that

$$A = U \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] U^*.$$

It is clear that

$$A^{\dagger} = U \left[\begin{array}{cc} C^{-1} & O \\ O & O \end{array} \right] U^*.$$

Figure 1: Relation between $\{R, s+1, k+*\}$ -potent matrices and other classes

Now we consider the partition

$$U^*RU = \left[\begin{array}{cc} R_1 & R_3 \\ R_4 & R_2 \end{array} \right],$$

according to the sizes of the partition of U^*AU . Substituting in $RA^* = A^{\dagger}R$ and equating blocks we obtain $R_1C^* = C^{-1}R_1$, $R_3 = O$, and $R_4 = O$. Thus, the conditions on R have been obtained. Observe that $R^k = I_n$ implies $R_1^k = I_r$ and $R_2^k = I_{n-r}$. Hence (a) \Longrightarrow (c). Finally, (c) \Longrightarrow (b) is straightforward. \square

We summarize all the information studied in this section in Figure 1.

A matrix $A \in \mathbb{C}^{m \times n}$ is a partial isometry if $A^{\dagger} = A^*$, or equivalently, $AA^*A = A$ [22]. The relation between $\mathcal{P}_{R,s,k,*}$ and partial isometries is presented in the next result.

Theorem 21. Let $A \in \mathbb{C}^{n \times n}$ be a matrix in $\mathcal{P}_{R,s,k,*}$. As in Theorem 8, let

$$A = P \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] P^{-1} \qquad and \qquad R = P \left[\begin{array}{cc} X & O \\ O & T \end{array} \right] P^*,$$

and partition P^*P as

$$P^*P = \left[\begin{array}{cc} M & L \\ L^* & N \end{array} \right].$$

Then A is a partial isometry if and only if $I_r + L(N - L^*M^{-1}L)^{-1}L^*M^{-1} = MC^{-1}M^{-1}(C^{-1})^*$.

Proof. The result is obtained by substituting in $AA^*A = A$ the expression of A given in the statement and by using the Banachiewicz-Schur formula for the inverse of P^*P .

Finally, we present the relationship between $\mathcal{P}_{R,s,k,*}$ and $\{\alpha_1,\alpha_2,\ldots,\alpha_\ell\}$ -potent matrices. The latter is an extension of the $\{\alpha_1,\alpha_2\}$ -quadratic matrices [23].

Definition 22. A matrix $A \in \mathbb{C}^{n \times n}$ is called an $\{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$ -potent matrix if

$$(A - \alpha_1 I_n)(A - \alpha_2 I_n) \dots (A - \alpha_\ell I_n) = 0$$

where $\alpha_1, \alpha_2, \ldots, \alpha_\ell \in \mathbb{C}$ are pairwise distinct.

The set of all $\{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$ -potent matrices will be denoted by $\mathcal{N}\{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$.

If $\ell = 2$, matrices in $\mathcal{N}\{\alpha_1, \alpha_2\}$ are called $\{\alpha_1, \alpha_2\}$ -quadratic [1, 11]. Allowing equalities between $\alpha_1, \alpha_2, \ldots, \alpha_\ell$, the choice $\alpha_1 = \alpha_2 = \cdots = \alpha_\ell = 0$ leads to nilpotent matrices.

Lemma 23. A nonzero $\{R, s+1, k, *\}$ -potent matrix is not nilpotent.

Proof. Suppose that $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k, *\}$ -potent matrix that is not the zero matrix. By Theorem 8,

$$A = P \left[\begin{array}{cc} C & O \\ O & O \end{array} \right] P^{-1}$$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$. If we assume that $A^m = O$ for some positive integer m then $C^m = O$, which is impossible.

Theorem 24. Let $A \in \mathcal{P}_{R,s,k,*}$, and let $\alpha_1, \alpha_2, \ldots, \alpha_\ell \in \mathbb{C}$ be pairwise distinct. Then $A \in \mathcal{N}\{\alpha_1, \alpha_2, \ldots, \alpha_\ell\}$ if and only if $\alpha_1 = 0$,

$$A = L \begin{bmatrix} D & O \\ O & O \end{bmatrix} L^{-1}$$
 and $R = L \begin{bmatrix} Y & O \\ O & T \end{bmatrix} L^*$

for some nonsingular matrix $L \in \mathbb{C}^{n \times n}$ and a diagonal matrix $D = [d_{ij}] \in \mathbb{C}^{r \times r}$ where $d_{jj} \in \{\alpha_2, \dots, \alpha_\ell\} \cap \left\{ \exp\left(\frac{2\pi t}{s+2}i\right), t \in \{0, 1, \dots, s+1\} \right\}$ for $j = 1, 2, \dots, r$ and some nonsingular matrices $Y \in \mathbb{C}^{r \times r}$, $T \in \mathbb{C}^{(n-r) \times (n-r)}$ such that $YD^* = D^{s+1}Y$.

Proof. Since $A \in \mathcal{P}_{R,s,k,*}$, by Theorem 8 we have

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1}$$
 and $R = P \begin{bmatrix} X & O \\ O & T \end{bmatrix} P^*$

for some nonsingular matrices $P \in \mathbb{C}^{n \times n}$, $X \in \mathbb{C}^{r \times r}$, and $T \in \mathbb{C}^{(n-r) \times (n-r)}$ such that $XC^* = C^{s+1}X$. Suppose that $(A - \alpha_1 I_n)(A - \alpha_2 I_n) \dots (A - \alpha_\ell I_n) = 0$ where $\alpha_1, \alpha_2, \dots, \alpha_\ell \in \mathbb{C}$ are pairwise distinct. Then

$$P\left[\begin{array}{cc} \Pi_{j=1}^{\ell}(C-\alpha_{j}I_{r}) & O \\ O & (-1)^{\ell}\Pi_{j=1}^{\ell}\alpha_{j}I_{n-r} \end{array}\right]P^{-1} = O.$$

So, $\Pi_{j=1}^{\ell}(C-\alpha_{j}I_{r})=O$ and $\Pi_{j=1}^{\ell}\alpha_{j}=0$. It is clear that there is at least one $j\in\{1,2,\ldots,\ell\}$ such that $\alpha_{j}=0$ (since $\alpha_{i}\neq\alpha_{q}$ if $i\neq q$). Without loss of generality, we can assume that $\alpha_{1}=0$ (consequently, $\alpha_{j}\neq0$ for all $j\in\{2,\ldots,\ell\}$). Now, $\Pi_{j=2}^{\ell}(C-\alpha_{j}I_{r})=O$ because C is nonsingular, and $p(x)=(x-\alpha_{2})(x-\alpha_{3})\ldots(x-\alpha_{\ell})$ is a (monic) annihilator polinomial of C with all its factors linear. Since all $\alpha_{j}\in\mathbb{C}$ and \mathbb{C} is algebraically closed, C must be diagonalizable. Let $C=QDQ^{-1}$ with D diagonal. Then

$$A = P \begin{bmatrix} QDQ^{-1} & O \\ O & O \end{bmatrix} P^{-1} = L \begin{bmatrix} D & O \\ O & O \end{bmatrix} L^{-1}$$

where $L=P\left[\begin{array}{cc}Q&O\\O&I_{n-r}\end{array}\right]$. Hence, A is diagonalizable. Substituting now, $C=QDQ^{-1}$ in $\Pi_{j=2}^{\ell}(C-\alpha_{j}I_{r})=O$ we get $\Pi_{j=2}^{\ell}(D-\alpha_{j}I_{r})=O$, that is for every $i=1,2,\ldots,\ell,\ \Pi_{j=2}^{\ell}(d_{jj}-\alpha_{j})=0$, thus, $d_{jj}\in\{\alpha_{2},\ldots,\alpha_{\ell}\}$ for all $j=1,2,\ldots,r$. From Lemma 7, $d_{jj}\in\{\exp\left(\frac{2\pi t}{s+2}i\right),\ t\in\{0,1,\ldots,s+1\}\}$ for all $j\in\{1,2,\ldots,r\}$. By using $XC^{*}=C^{s+1}X$ and $C=QDQ^{-1}$, we can denote $Y=Q^{-1}X(Q^{*})^{-1}$ to arrive at

$$R = P \left[\begin{array}{cc} X & O \\ O & T \end{array} \right] P^* = L \left[\begin{array}{cc} Y & O \\ O & T \end{array} \right] L^*,$$

with $YD^* = D^{s+1}Y$ and Y nonsingular.

Remark 25. Notice that, if either $\alpha_j \neq 0$ for all $j \in \{1, 2, ..., \ell\}$ or if $\alpha_j \notin \left\{\exp\left(\frac{2\pi t}{s+2}i\right), t \in \{0, 1, ..., s+1\}\right\}$ for some $j \in \{2, ..., \ell\}$ then $\mathcal{N}\{\alpha_1, \alpha_2, ..., \alpha_\ell\} \cap \mathcal{P}_{R,s,k,*} = \emptyset$.

Acknowledgements

The second and fourth authors have been partially supported by Ministerio de Economía y Competitividad of Spain (Grant MTM2013-43678-P).

References

- [1] M. Aleksiejczyk, A. Smoktunowicz. On properties of quadratic matrices, *Mathematica Pannonica*, 11, 239–248, 2000.
- [2] O.M. Baksalary, Revisitation of generalized and hypergeneralized projectors, in: B. Schipp, W. Krämer(eds), Statistical Inference, Econometric Analysis and Matrix Algebra–Festschrift in Honour of Götz Trenkler, Springer, Heidelberg, 317-324, 2008.
- [3] J.K. Baksalary, O.M. Baksalary, J. Groß. On some linear combinations of hypergeneralized projectors, *Linear Algebra and its Applications*, 413, 264–273, 2006.

- [4] J.K. Baksalary, O.M. Baksalary, X. Liu, G. Trenkler. Further results on generalized and hypergeneralized projectors, *Linear Algebra and its Appli*cations, 429, 1038–1050, 2008.
- [5] A. Ben-Israel, T. Greville. Generalized Inverses: Theory and Applications, John Wiley & Sons, 2nd Edition, 2003.
- [6] J. Benítez, N. Thome. Characterizations and linear combinations of kgeneralized projectors, *Linear Algebra and its Applications*, 410, 150–159, 2005.
- [7] S.L. Campbell, C.D. Meyer Jr. Generalized Inverse of Linear Transformations. Dover, New York, Second Edition, 1991.
- [8] M. Catral, L. Lebtahi, J. Stuart, N. Thome. On a matrix group constructed from an $\{R, s+1, k\}$ -potent matrix, *Linear Algebra and its Applications*, 461, 200–201, 2014.
- [9] D. Doković. Unitary similarity of projectors, Aequationes Mathematicae, 42, 220–224, 1991.
- [10] D. Doković, F. Szechtman, K. Zhao. An algorithm that carries a square matrix into its transpose by an involutory congruence transformation, *Electronic Journal of Linear Algebra*, 10, 320–340, 2003.
- [11] R.W. Farebrother, G. Trenkler. On generalized quadratic matrices, *Linear Algebra and its Applications*, 410, 244–253, 2005.
- [12] J. Groß, G. Trenkler. Generalized and hypergeneralized projectors, *Linear Algebra and its Applications*, 264, 463–474, 1997.
- [13] R.D. Hill, S.R. Waters. On κ -Real and κ -Hermitian Matrices, Linear Algebra and its Applications, 169, 17–29, 1992.
- [14] R. Horn, C. Johnson. Matrix Analysis, Cambridge U. P., New York, Second Edition, 2013.
- [15] R.A. Horn, V.V. Sergeichuk. Congruences of a square matrix and its transpose, *Linear Algebra and its Applications*, 389, 347–353, 2004.
- [16] L. Lebtahi, P. Patrício, N. Thome. Special elements in a ring related to Drazin inverses, *Linear and Multilinear Algebra*, 61, 1017–1027, 2013.
- [17] L. Lebtahi, J. Stuart, N. Thome, J.R. Weaver. Matrices A such that $RA = A^{s+1}R$ when $R^k = I$, Linear Algebra and its Applications, 439, 1017–1023, 2013.
- [18] L. Lebtahi, O. Romero, N. Thome. Characterizations of $\{K, s+1\}$ -potent matrices and applications, *Linear Algebra and its Applications*, 436, 293–306, 2012.

- [19] L. Lebtahi, O. Romero, N. Thome. Relations between $\{K, s+1\}$ -potent matrices and different classes of complex matrices, *Linear Algebra and its Applications*, 438, 1517–1531, 2013.
- [20] L. Lebtahi, O. Romero, N. Thome. Algorithms for $\{K, s+1\}$ -potent matrix constructions, Journal of Computational and Applied Mathematics, 249, 157–162, 2013.
- [21] D. Mošić, D. Djordjević. Moore-Penrose-invertible normal and Hermitian elements in rings, *Linear Algebra and its Applications*, 431, 732–745, 2009.
- [22] D. Mošić, D. Djordjević. Partial isometries and EP elements in rings with involution, *Electronic Journal of Linear Algebra*, 18, 761–772, 2009.
- [23] T. Petik, M. Uç, H. Özdemir. Generalized quadraticity of linear combination of two generalized quadratic matrices, *Linear and Multilinear Algebra*, 63, 12, 2430–2439, 2015.
- [24] I. S. Pressman. Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, *Linear Algebra and its Ap*plications, 284, 239–258, 1998.
- [25] J. Stuart, J. Weaver. Matrices that commute with a permutation matrix, Linear Algebra and its Applications, 150, 255–265, 1991.
- [26] G.W. Stewart. A note on generalized and hypergeneralized projectors, *Linear Algebra and its Applications*, 412, 408–411, 2006.
- [27] F. De Terán, F. M. Dopico, N. Guillery, D. Montealegre, N. Reyes. The solution of the equation $AX + X^*B = 0$, Linear Algebra and its Applications, 438, 2817–2860, 2013.
- [28] M. Tošić, D. S. Cvetković-Ilić. The invertibility of the difference and the sum of commuting generalized and hypergeneralized projectors, *Linear and Multilinear Algebra*, 61, 4, 482–493, 2013.
- [29] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries, *Linear Algebra and its Applications*, 429, 2278–2290, 2008.
- [30] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra and its Applications, 432, 2782–2797, 2010.
- [31] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues and eigenvectors, *American Mathematical Monthly*, 2, 10, 711–717, 1985.
- [32] M. Yasuda. Some properties of commuting and anti-commuting minvolutions. *Acta Mathematica Scientia*, 32B(2), 631–644, 2012.