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XI 
 

Characterization and evaluation of Portuguese Opuntia 

spp. germplasm  

 

Abstract 
 

The main objectives of this thesis were to characterize and evaluate Portuguese Opuntia 

spp. ecotypes for biomass production and the cladodes nutritional quality for fodder, and 

for fruit yield and quality. In addition, the genetic diversity was assessed with nuclear 

microsatellite (nuSSR) markers. The plant vigour and biomass production were evaluated 

in germplasm of O. ficus-indica by non-destructive methods, 3 years following planting. 

Among ecotypes, significant differences were found in the studied biomass-related 

parameters and several homogeneous groups were established. In the case of the cladodes 

nutritional profile significant, differences were found in the crude protein and the ash 

content, and different groups were unfolded. In general, O. ficus-indica has a low dry matter 

content, crude protein, and neutral detergent fiber, and high content in non-fiber 

carbohydrates and metabolizable energy. Fruit production was evaluated in the second and 

third years after plantation. Significant differences were found among O. ficus-indica 

ecotypes, and different groups were established. The Italian cultivars “Gialla” and “Bianca” 

had highest fruit yield than Portuguese ecotypes. Besides, the morphology, bioactive 

compounds and antioxidant properties of fruits were studied in twenty ecotypes belonging 

to the species O. ficus-indica, O. robusta, O. dillenii and O. elata. The fruits displayed 

variability in morphological and bioactive characteristics. The analysis of genetic diversity 

using nuSSR markers within a set of 19 ecotypes, belonging to the four previously-

mentioned species, was undertaken. The hierarchical clustering analysis revealed four 

major groups that clearly disentangled the Opuntia spp. species. Two subclusters were 

found considering the O. ficus-indica ecotypes. The results revealed a low level of genetic 

diversity among the ecotypes of O. ficus-indica.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIII 
 

Caracterização e avaliação de germoplasma Português  de 

Opuntia spp.  

 

Resumo 
 

A presente tese teve como principais objetivos a caracterização e avaliação de ecótipos 

Portugueses de Opuntia spp. no que se refere à produção de biomassa, qualidade 

nutricional dos cladódios como forragem e produção e qualidade do fruto. Adicionalmente, 

foi avaliada a sua diversidade genética por microssatélites nucleares. A produção de 

biomassa em ecótipos de O. ficus-indica foi avaliada por métodos não destrutivos nos 

primeiros três anos após a plantação. Foram encontradas diferenças significativas nos 

parâmetros relacionados com a produção de biomassa e vários grupos homogéneos foram 

estabelecidos. No caso do perfil nutricional dos cladódios, foram encontradas diferenças 

significativas para a proteína bruta e teor de cinzas. Em geral, O. ficus-indica tem baixo 

teor de matéria seca, proteína bruta e fibra em detergente neutro e alto teor de hidratos de 

carbono não fibrosos e energia metabolizável. A produção de fruto em O. ficus-indica foi 

avaliada no segundo e terceiro anos após a plantação. Diferenças significativas foram 

encontradas entre ecótipos e diferentes grupos foram estabelecidos. As cultivares italianas 

“Gialla” e “Bianca” apresentaram maior produção de fruto comparativamente aos ecótipos 

portugueses. Em 20 ecótipos pertencentes às espécies O. ficus-indica, O. robusta, O. 

dillenii e O. elata, foi estudada a morfologia do fruto, a composição em ácido ascórbico, 

betalaínas e fenóis totais, bem como a atividade antioxidante. Os frutos mostraram 

variabilidade nas várias características estudadas. Foi realizada a análise da diversidade 

genética, em 19 ecótipos pertencentes às quatro espécies anteriormente mencionadas, 

com utilização de microssatélites nucleares. A análise de agrupamento hierárquico revelou 

quatro grandes grupos que separaram claramente as quatro espécies de Opuntia spp. 

Entre os ecótipos de O. ficus-indica dois subgrupos foram constituídos. Os resultados 

revelaram um baixo nível de diversidade genética entre ecótipos de O. ficus-indica.  
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“Flor de cacto”  

 

Flor de cacto, flor que se arrancou 

À secura do chão. 

Era aí o deserto, a pedra dura, 

A sede e a solidão. 

Sobre a palma de espinhos, triunfante, 

Flor, ou coração? 

 
José Saramago 
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1.1 Origin, uses, and geographic distribution 

 

In the Cactaceae family, the Opuntia spp. is a major recognized genus of the Opuntioideae 

subfamily, and the Opuntia ficus-indica (L.) Miller is the cactus species with the highest 

economic importance worldwide. The center of domestication for this species is localized in 

central Mexico (Griffith, 2004).  

Several authors refered that cactus pear cacti were brought to the Iberian Peninsula by the 

first Spanish conquerors, between the end of the 15th century and the beginning of the 16th 

century (Barbera, et al., 1992; Casas and Barbera, 2002), and, afterwards, spread all over 

the Mediterranean Basin (Le Houérou, 1996). 

Today, these plants grow wild or are cultivated in the Southern Iberian Peninsula and 

around the Mediterranean region, in France, Greece, Israel, Italy and Turkey. The Arabs 

took them from Southern Spain to Northern Africa, where the species can be found in 

Algeria, Egypt, Eritrea, Ethiopia, Libya, Morocco and Tunisia. Opuntia spp. plants are widely 

distributed throughout the Americas from Canada to Chile: the Southern United States; all 

Central American and Caribbean countries; and the South American countries of Argentina, 

Bolivia, Brazil, Colombia, Peru and Venezuela. Wild and cultivated species of Opuntia spp. 

also grow in Angola, Australia, India and South Africa (Sáenz, 2013).  

The most striking characteristics of Opuntia spp. are the anatomy and the morphology, 

which have enabled its adaptation to many highly stressful growing conditions, meaning 

that the plant is a viable option in regions where other plants will not survive (Sáenz, 2013), 

particularly in global change scenario. In addition, the species has a multiplicity of uses in 

agro-industry.  

Opuntia ficus-indica (OFI) is grown for its large sweet fruits, which are interesting sources 

of functional compounds (Angulo-Bejarano et al., 2014). The plant represents an interesting 

crop for cattle and sheep feeding by providing energy, water, and minerals during periods 

when food and water are scarce (Andrade-Montemayor et al., 2011). The Opuntia ficus-

indica is also used to produce young cactus pads consumed as a green vegetable, called 

“nopalitos” in Mexico (Sáenz, 2000), cochineal dye (Anderson, 2001) and as a medicinal 

plant (Kaur, 2012; Lim, 2012). The fruit's betalains could be used as natural colourants in 

food products (Gengatharan et al., 2015); the oil from the seed could be used in the food, 

pharmaceutical and cosmetic industries (Ramadan and Mörsel, 2003; De Wit et al., 2016); 

and the cladodes' physicochemical characteristics are suitable for biogas production (Jigar 

et al., 2011). Cacti can also play a key role in erosion control and land rehabilitation, 

particularly in arid and semi-arid zones, and as a shelter, refuge and feed resource for 

wildlife (Le Houérou, 1996). Additionally, the cactus pear could be considered an option as 
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a carbon sink, absorbing and holding excess CO2 in areas where the plant can be 

established, where nothing else can grow (Nobel and Bobich, 2002).  

Although the species is widely dispersed, there are few official statistics, and information on 

planted areas and their use (e.g., fruit, vegetable, forage and cochineal breeding) is either 

not available or tends to be unreliable (Sáenz, 2013).  

Concerning fruit production, available data indicate that the main producing country is 

Mexico, with a production of over 509 500 Mg fresh mass year-1 on approximately 74 500 ha 

of specialized plantations (Flores-Valdez, 2010). Other countries that extensively cultivate 

the fruits include Italy, Chile, South Africa, Argentina, and Israel. In Europe, Italy has the 

most specialized cactus pear industry for fruit production. In this country, the cactus pear 

production is concentrated in Sicily, where cactus pear accounts for over 96.0% of the total 

Italian harvest with a surface area near 7 800 ha yielding approximately 80 000 Mg annually 

(ISTAT, mean data for the period 2009 - 2014).  

In northern Africa, a cultivated area of 300 000 ha is estimated in Tunisia (Le Houérou 

1996), 50 000 ha in Morocco (Arba et al., 2002) including a large number of defensive 

hedges and non-specialized or semi-natural groves, 3 550 ha in Algeria (Inglese et al., 

1995), and 2 000 ha of semi-specialized plantations in Egypt (Bastawros, 1994). 

Mexico is, essentially, the only country with O. ficus-indica commercial vegetable 

production, with “nopalitos” grown on approximately 13 500 ha (Flores-Valdez, 2010).  

In terms of land area use, the greatest cultivation of O. ficus-indica is for forage or fodder, 

especially in Tunisia (500 000 ha), Brazil, and Mexico (Nefzaoui and Ben Salem, 2001). 

Worldwide, approximately 900 000 ha of cactus are cultivated for forage production 

(Reynolds and Arias, 2001). 

In Portugal, several Opuntia species have become naturalized (O. ficus-indica (L.) Miller, 

O. dillenii (Ker-Gawler) Haw., O. robusta H.L. Wendl ex Pfeiffer and O. elata Link and Otto 

ex Salm-Dick), with O. ficus-indica the most widespread and economically relevant. This 

last has two forms, the typical inermis form, O. ficus-indica f. ficus-indica (L.) Milller, and the 

rewilded spiny one, O. ficus-indica f. amyclaea (Ten.) Schelle (Kiesling, 1998) (Fig. 1.1).  

In some countries, such as Australia and South Africa, species from the Opuntia genus are 

considered invasive (Julien, 2006; Paterson et al., 2011). In the Iberian Peninsula, O. dillenii 

is the only truly invasive species, even invading areas with very restrictive characteristics 

(Blasco et al., 2015). On the other hand, O. ficus-indica f. amyclaea can be considered a 

species with a weak invasive potential in environments with very specific characteristics. 

Finally, O. ficus-indica has no invasive power, therefore is not dangerous to the Iberian 

environment or its flora, and it should be considered a naturalized species yet non-invasive 

(Blasco et al., 2015). 
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Figure 1.1  Opuntia ficus-indica, the inermis form, O. ficus-indica f. ficus-indica (A), and the rewilded 
spiny one, O. ficus-indica f. amyclaea (B). 

 

1.2 Morphology 

 

The morphological features that characterize members of Cactaceae are the presence of 

short shoots modified into areoles, and in nearly all cacti, inferior ovaries covered by bracts 

or areoles (Gibson and Nobel, 1986).  

The Opuntioideae subfamily differs from all other cacti in having glochids (small, barbed, 

and deciduous spines) and seeds that are completely enwrapped by a funicular stalk, which 

becomes hard and bony (Rebman and Pinkava, 2001).  

In Opuntia spp., the flattened, succulent and articulated shoots are the cladodes (commonly 

referred to as paddles), and they act as leaves with photosynthetic function. Each cladode 

in its first year only produces axillary buds called areoles with subtending conic leaves (Fig 

1.2A). The areoles produce two kinds of modified into spines leaves: permanent spines with 

their bases embedded in cork and small, barbed, easily dislodged glochids. The base of the 

glochid has an abscission layer, easily broken by contact. Areoles can produce long shoots, 

roots, and flowers (Boke, 1980).  

The flowers are large, actinomorphic, sessile, hermaphrodite and solitary and commonly 

are borne near the apex of the cladodes (Gibson and Nobel 1986). The ovary of the flower 

is completely embedded within a modified stem termed the receptacle (Fig. 1.2B). The 

ovary is formed by the fusion of several carpels and consists of a single internal chamber, 

the locule, where a relatively high number of ovules occur in a parietal location along 

the ventral wall of the ovary (Boke, 1980) (Fig 1.2B). Cactus flowers have veins from the 

surrounding stem that enter at the top and sides of the ovary, split and extend upward into 

the style and downward towards the ovules of the ovary (Rebman and Pinkava, 2001).  
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Figure 1.2  Opuntia ficus-indica small conic deciduous leaves and areolas from a young stem (A), 
and a detail of a flower where it is possible to observe the receptacle and the high number of ovules 
(B). 

 

The stamens are indefinite, spirally arranged and have thigmotropic sensitivity (Rosas 

and Pimienta 1986). Generally, in the far northern hemisphere, anthesis occurs between 

May and July, while in the southern one, it occurs between February and August. 

Autogamic and xenogamic pollination happen in O. ficus-indica (Nerd and Mizrahi, 1995). 

The degree to which the stigmatic area contacts with the anthers influences the probability 

of selfing. Pollen grains related to self-pollination are found at the stigma base, whereas 

pollen from other plants is deposited over the stigma (Rosas and Pimienta, 1986). 

The Opuntia spp. fruits are unilocular and polyspermic (Reyes-Agüero et al., 2006). The 

fruit is an acrosarcum, a kind of berry derived from an inferior ovary. The fruit is simple and 

indehiscent, with pericarp undifferentiated (lacking a stony endocarp), surrounded by a 

fleshy and accrescent exocarp derived from the receptacle (hyphantium) (Stuppy, 2004). 

The Opuntia spp. have several adaptations that allow them to cope with the lack of available 

water. Among them are the presence of a shallow, widespread root system and the capacity 

to quickly produce tiny “rain roots,” which efficiently absorb water after rain but quickly die 

when water is no longer available. The retention of water within the cactus is enhanced by 

lowering transpiration rates via 1) having leaves reduced to spines which lowers surface 

area, 2) having a heavy wax coating (cuticle) on surfaces impeding direct water loss to the 

atmosphere, 3) having daytime stomata closure, and 4) being succulent (the water adheres 

to complex carbohydrates called mucilage) (Rebman and Pinkava, 2001). 

In Opuntia spp., both sexual reproduction and asexual reproduction by seeds and vegetative 

parts occurs in regions of origin (Pimienta-Barrios and Del Castillo, 2002). However, in the 

Mediterranean region, the naturalized populations of Opuntia facing the difficulties linked to 

the reproductive process, such as cleistogamy and polyembryony, along with the lack of 
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rain during summer and decreasing temperatures in autumn, have, essentially, stopped the 

plants production from seed and limited the extent of new genetic variability (Chessa and 

Nieddu, 2002). 

 

1.3 Systematics and taxonomy 

 

The Cactaceae family is assigned to the order o f  Caryophyllales (Wallace and Gibson, 

2002) and is one of the most popular, easily recognizable, and morphologically distinct 

families of plants. The cacti are famous for their beautiful flowers and many bizarre 

vegetative features but infamous for their formidable nomenclatural and systematic 

problems (Gibson et al., 1986).  

There is no consensus on the number of species and genera to be considered in the 

Cactaceae family, which is explained by the inadequate knowledge of the existing 

biodiversity and the difficulties in classifying the highly variable species complexes (Nyffeler 

and Eggli, 2010). The most recent synoptic family treatments recognize either 1896 species 

in 127 genera (Anderson, 2001), 1438 species in 124 genera (Hunt, 2006) or 1850 species 

in 130 genera (Nyffeler and Eggli, 2010).  

Traditionally, this diverse family species have been classified into three subfamilies: 

Cactoideae, Opuntioideae, and Pereskioideae (e.g., Barthlott and Hunt, 1993). Cactoideae 

encompasses by far the largest share of species and includes the diversity of globular and 

columnar cacti; Opuntioideae includes the cactus pear (O. ficus-indica) and relatives, all 

characterized by the presence of barbed spines, glochids and seeds enclosed by a bony 

aril; and, finally, Pereskioideae includes two species-poor genera, Maihuenia and Pereskia 

(Nyffeler and Eggli, 2010).  

The genus Maihuenia has been typically considered a member of Pereskioideae. Recently, 

its placement in a monogeneric subfamily has been suggested based on its unique 

ecological and morphological attributes (Anderson, 2001) and molecular phylogenetic 

analyses (Wallace, 1995a; Wallace, 1995b). However, this new subfamily has not attained 

consensus, and according to Edwards et al. (2005) and Bárcenas et al. (2011), a strictly 

monophyletic classification of the cacti informed by the most recent higher-level analysis 

would not recognize Maihuenioideae at the same rank as the Cactoideae or Opuntioideae, 

suggesting that subfamilial rank was assigned prematurely. Phylogeneticists working with 

cacti, with respect to subfamilial classification and generic delimitation, argue that additional 

genes and further sampling are necessary before any reclassification of the cacti (Edwards 

et al., 2005; Griffith and Porter, 2009; Bárcenas et al., 2011).  
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Nevertheless, in the most recent consensus on generic and species limits for the 

Cactaceae, Hunt (2006) recognizes four subfamilies, Cactoideae, Opuntioideae, 

Pereskioideae, and Maihuenioideae. Cactoideae is the largest subfamily, representing 

seven tribes: Cacteae (25 genera), Cereeae (15), Echinocereeae (25), Hylocereeae (six), 

Notocacteae (seven), Rhipsalideae (four), and Trichocereeae (23). Opuntioideae is the next 

largest subfamily with two tribes, Opuntieae and Cylindropuntieae, encompassing ten and 

seven genera, respectively, and 192 species. The two other subfamilies, Pereskioideae and 

Maihuenioideae, each consist of a single genus. 

Nyffeler and Eggli (2010) reviewed the available molecular-based phylogenetic evidence 

for characterizing major monophyletic groups and suggested a revised classification of the 

cactus family into four subfamilies (of which one is paraphyletic), eight tribes (two for 

Opuntioideae, six for Cactoideae), and six subtribes (for Cactoideae). 
The Opuntioideae and Cactoideae subfamilies have long been recognized as monophyletic 

based on the morphological and molecular data (Barthlott and Hunt, 1993; Nyffeler, 2002; 

Griffith and Porter, 2009). Opuntioideae members share many structural synapomorphies, 

such as areoles with glochids, polyporate pollen grains with peculiar exine structures, and 

seeds surrounded by a funicular cover (Barthlott and Voit, 1979). In addition, studies based 

on molecular data show that Opuntioideae is characterized by a deletion in the chloroplast 

genome accD region (Wallace, 1995b; Griffith and Porter, 2009).  

Tribe Opuntieae consists of seven currently recognized genera, Brasiliopuntia A. Berger, 

Consolea Lem., Miqueliopuntia Frič ex F. Ritter, Opuntia Mill., Salmiopuntia Frič, Tacinga 

Britton & Rose, and Tunilla D.R. Hunt & Iliff (Majure and Puente, 2014). 

The Opuntia clade (i.e., Opuntia sensu stricto) most likely originated in southern South 

America during the late Miocene (Arakaki et al., 2011) and from there expanded north into 

Peru and Ecuador and then into North America, where it became most diverse (Majure and 

Puente, 2014). Species originating from hybridization and polyploidy account for a large 

part of the species diversity in Opuntia spp. and Opuntieae in general (Majure and Puente, 

2014). 

Species delimitation within Opuntieae (especially Opuntia) is notoriously problematic 

taxonomically. The number of species in Opuntia spp. has been estimated at 250 (Britton 

and Rose 1919), 160 (Gibson and Nobel, 1986), 181 (Anderson, 2001), and recently 75 

(Hunt, 2006). The main reasons for this taxonomical confusion are the diagnostic 

morphological characters paucity, the high level of phenotypic plasticity, an alleged recent 

diversification and the prevalent occurrence of hybridization and introgression between 

sympatric and allopatric species (Wallace and Gibson, 2002; Griffith, 2004; Caruso et al., 

2010). 
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Polyploidy is a common phenomenon throughout tribe Opuntieae, which has been well 

studied cytologically. In fact, diploids (2n = 2x = 22) are relatively rare in the tribe, making 

up only 26.2% of the 164 species with reported chromosome counts. Polyploid taxa within 

Opuntia spp. range from triploid (2n = 3x = 33) to octoploid (2n = 8x = 88), and many species 

have multiple ploidy levels (Pinkaya, 2002; Majure et al., 2012).  

In Mexico, edible fruits come from wild plants of Opuntia lindheimeri Engel., O. 

streptacantha Lem., O. megacantha Salm-Dyck, and O. joconostle Web. Both O. 

amyclaea Ten., and O. ficus-indica are cultivated for fruit production in specialized 

plantations (Pimienta-Barrios 1990). Natural hybrids are common in both cultivated and 

wild populations of Opuntia spp. (Pimienta-Barrios and Munoz-Urias, 1995). In South 

America, the United States, Africa, and the Mediterranean Basin, O. ficus-indica is the 

only cultivated species for fruit production. Spontaneous forms have a diploid (2n = 2x = 

22) or tetraploid (2n = 4x = 44) chromosome number, whereas cultivated varieties have a 

polyploid (2n = 6x = 66 or 2n = 8x = 88) chromosome number (Pimienta-Barrios and Munoz-

Urias, 1995). According to various sources cited in the Chromosome Counts Database 

(CCDB), the number of chromosomes in O. ficus-indica varies from the diploid (2n = 2x = 

22) to the octoploid (2n = 8x = 88), passing through the various intermediate polyploid 

numbers (Rice et al., 2015). 

 

1.4 Ecophysiology 

 

The Opuntia ecological success and agricultural usefulness in large measure result from 

the stomatal opening daily pattern. The Opuntia ficus-indica plants have nocturnal stomatal 

opening, with the net CO2 uptake and water loss occurring during the cooler part of the 24-

hour daily cycle. This gas exchange pattern is referred to as Crassulacean acid metabolism 

(CAM) (Nobel, 1988). The net CO2 uptake occurs primarily through the stems at night in the 

Crassulacean acid metabolism (CAM). The CO2 taken up is incorporated into an organic 

acid such as malate using the enzyme phosphoenol pyruvate carboxylase (PEPCase), and 

the accumulating acids are sequestered into the large vacuoles of chlorenchyma cells 

(Kluge and Ting, 1984). Thus, the chlorenchyma becomes progressively more acidic during 

the night for CAM plants, and its osmotic pressure also increases (Lüttge and Nobel, 1984). 

During the day, the acids accumulated the previous night are decarboxylated, and the CO2 

released within the plant is refixed in the stems using 1,5-ribulose bisphosphate 

carboxylase/oxygenase (Rubisco) via the C3 pathway. The importance of nocturnal 

stomatal opening and the accompanying net CO2 uptake regarding the ecological or 

agronomic success of cacti relates less to the improved CO2 acquisition than to reduced 
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water loss. In particular, air and stem temperatures are lower at night, which leads to a lower 

concentration of water vapour in the stem and hence less water loss for a given degree of 

stomatal opening; this is important in arid regions (less than 250 mm annual rainfall) and 

semiarid regions (250 to 450 mm annual rainfall) (Nobel and Bobich, 2002). 

In CAM plants, the water use efficiency (the ratio of CO2 fixed to water loss from 

transpiration) is about three times higher than it is for highly efficient C4 species such as 

Zea mays and Saccharum officinarum and five times higher than for highly efficient C3 

species such as Medicago sativa and Triticum aestivum (Nobel, 1991). Because tissue 

temperatures in the field tend to average approximately 10°C lower at night than during the 

daytime, CAM plants tend to lose only 20 to 35% as much water as do C3 or C4 plants for 

the same degree of stomatal opening during the principal period of net CO2 uptake (Nobel 

and Bobich, 2002). 

Because of its high drought resistance and high water-use efficiency, cactus pear is frequently 

cultivated without irrigation. The absolute minimum requirement for rainfed cultivation is ca. 

200 mm mean annual precipitation, provided that the soil is sandy and deep enough. On 

silty and loamy soils, the minimum requisite is 300 to 400 mm mean annual precipitation 

(Inglese, et al., 2009). However, in areas with no summer rain, such as the Mediterranean 

basin, the plants require supplementary irrigation and thinning to get adequate yield and good 

fruit quality, i.e., 120 g fresh weight (Gugliuzza et al. 2002a). 

The Opuntia ficus-indica, like most cacti, is very sensitive to anoxia in the root zone and 

therefore cannot withstand any prolonged water logging (Inglese et al., 2009), and it is also 

affected by salinity stress (Gersani et al., 1993). 

Extreme temperatures often determine where plant species occur naturally and where they 

can be cultivated successfully. Freezing temperatures can lead to the formation of 

extracellular ice crystals, which can disrupt metabolism by cellular dehydration; additionally, 

intracellular ice crystals can puncture the cell membrane, leading to cell death. High 

temperatures denature proteins and disrupt membrane integrity (Nobel, 1988). Tolerance 

of low temperature can be enhanced if the ambient day/night temperature gradually 

decreases over a period of days, and likewise high temperature tolerance can be increased 

if the ambient temperature gradually increases; such ‘acclimation’ or ‘hardening’ allowing 

plants to adjust to seasonal changes in air temperature (Levitt, 1980). 

Depending somewhat on time of year and particular accessions, mature cladodes can be 

damaged by air temperatures below -6°C (Goldstein and Nobel, 1994; Nobel, et al., 1995), 

which severely limits the areas for cultivation of O. ficus-indica. On the other hand, mature 

cladodes of O. ficus-indica on properly acclimated plants can survive 60 min at 
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temperatures exceeding 65°C (Nobel et al., 1986; Nobel, 1988), whereas fruits and roots 

can be damaged by 60 min below -7°C or above 55°C (Nobel and De La Barrera, 2003). 

Opuntia ficus-indica is absent in regions with less than 350 mm rainfall and daily summer 

maximum temperature greater than 42°C, with few exceptions (Inglese et al. 2009). The 

optimal day/night temperature regime for nocturnal CO2 uptake by O. ficus-indica is 

25/15°C. Higher or lower day/night temperatures result in a sharp decrease of carbon 

assimilation, leading to poor plant growth and production (Nobel, 1994). 

High temperatures are one of the major constraints on the production of high quality fruit in 

areas with hot and dry summers. High temperature (> 30°C) during the fruit development 

period shortens the third stage of fruit growth, when most of the growth of edible flesh 

occurs, leading to advanced and early ripening, with small fruits, low firmness and low sugar 

content. High temperature during fruit development enhances fruit sensitivity to low (< 8°C) 

temperature during post-harvest storage, reducing the fruit's post-harvest storage period 

and shelf-life (Inglese et al., 2002). Still, daily temperatures below 15°C delay fruit ripening 

time and result in thicker fruit peel and lower soluble solid content and peel colour (Inglese 

et al., 1995; Liguori et al., 2006). 

 

1.5  Germplasm characterization  

 

Knowledge of the existing genetic diversity is extremely important in the conservation, 

management and efficient utilization of genetic resources. The improvement of crop genetic 

resources depends on continuous infusions of wild relatives, traditional varieties and the 

use of modern breeding techniques. These processes all require an assessment of the 

genetic diversity to select resistant and highly productive varieties (Mondini et al., 2009). 

The assessment of genetic diversity within and between populations could be achieved 

using morphological, biochemical (allozymes), and molecular-based markers.  

Morphological characterization does not imply complex technology; however, considerable 

physical space is required, and phenotypic plasticity is usually verified by environmental 

influence. Another disadvantage is that the number of morphological markers is sometimes 

limited. However, it allows comparison of the agronomic behaviour of different populations 

subjected to the same environmental pressure (Mondini et al., 2009). To standardize and 

assist in characterization, the International Plant Genetic Resources Institute (IPGRI) has 

published lists of descriptors for different species, namely, Opuntia spp., which are based 

on the variation of phenotypes such as the characteristics of cladodes, flowers, and fruits 

(Chessa and Nieddu, 1997). 
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Allozymes (isozymes) are allelic variants of enzymes encoded by structural genes. Despite 

the simplicity of their analysis, its main weakness is their relatively low abundance and low 

level of polymorphism. Moreover, proteins with identical electrophoretic mobility (co-

migration) but from distantly related germplasm may not be homologous, and allozymes 

may be affected by environmental conditions (Kumar et al., 2009). 

A molecular marker could be defined as a segment of DNA representative of the differences 

at the genome level. Molecular markers offer numerous advantages over conventional 

phenotype-based alternatives, as they are stable and detectable in all tissues regardless of 

growth, differentiation, development, or the defence status of the cell. Additionally, they are 

not confounded by environmental, pleiotropic or epistatic effects (Agarwal et al., 2008).  

Molecular markers can be classified into two categories: i) hybridization-based techniques 

(e.g., restriction fragment length polymorphism, RFLP) and ii) PCR-based techniques (e.g., 

random amplification of polymorphic DNA, RAPD; amplified fragment length polymorphism, 

AFLP; inter simple sequence repeats, ISSRs; microsatellites, also known as simple 

sequence repeats, SSRs, or short tandem repeats, STRs). The molecular techniques differ 

from each other with respect to important features such as genomic abundance, level of 

polymorphism detected, locus specificity, reproducibility, technical requirements and cost. 

There are several publications that explain in detail the characteristics, advantages and 

disadvantages of the different molecular markers (e.g., Agarwal et al., 2008; Kumar et al., 

2009; Mondini et al., 2009; Guichoux et al., 2011). 

Among the different molecular markers, microsatellite sequences are especially suited to 

distinguishing closely related genotypes because of their high degree of variability. 

Microsatellites are monotonous repetitions of very short (one to five) nucleotide motifs, 

which occur as interspersed repetitive elements in all eukaryotic genomes (Tautz and Renz, 

1984). Because of their elevated mutation rates, SSRs are typically highly polymorphic, and 

different individuals exhibit variation manifested as repeat number differences (Guichoux et 

al., 2011).  

Microsatellites have been used to evaluate crop germplasm and genetic diversity in several 

species, namely, rye (Targońska, et al., 2016) grape (Muccillo et al., 2014), sugarcane (Lu 

et al., 2015), rice (Ahmad et al., 2015) and olive (Doveri et al., 2008).   

Recently, molecular markers have been used in the characterization and evaluation of 

genetic diversity in populations of Opuntia spp. and to clarify some issues of taxonomic 

nature. In the past two decades, some studies have been conducted to characterize the 

genetic variability of germplasm collections, identify cultivars, and detect the presence of 

duplicates using random molecular markers that originate from multiple arbitrary amplicon 

profiling (Wang et al., 1998; Mondragón-Jacobo, 2003; Luna-Paez et al., 2007; Zoghlami et 
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al., 2007; García-Zambrano et al., 2009; Nagaty and Rifaat, 2012; Valadez-Moctezuma, et 

al., 2015). 

Labra et al. (2003) documented the usefulness of molecular markers such as AFLP and 

cpSSR in Opuntia species characterization. They found a lack of genetic differentiation 

between O. ficus-indica and O. megacantha populations and suggested that O. ficus-indica 

should be considered a domesticated form of the spiny O. megacantha.  

Griffith (2004) used information from the amplification of the internal transcribed spacer 

region of nuclear ribosomal DNA (nrITS). They considered the species O. ficus-indica to be 

a group of different clones, selected for their low number of spines and their fleshy fruits 

that were derived from different parents, most likely from other arborescent opuntias from 

central and southern Mexico.  

Until now, few studies have been conducted to identify genomic microsatellites and to 

develop markers in Opuntia spp; Helsen et al. (2007) developed 16 SSR markers from O. 

echios, and Erre et al. (2011) obtained ten SSR markers from O. ficus-indica. Moreover, 

two expressed sequence tags were reported by Caruso et al. (2010).  

Helsen et al. (2009) used the previously developed SSR markers (Helsen et al., 2007) to 

discriminate between two morphologically distinct O. echios botanical varieties (echios and 

gigantea) native to the Galapagos Islands. However, the current taxonomic differentiation 

between these taxa was not supported by the molecular data. 

Caruso et al. (2010) investigated the level of intraspecific genetic diversity among cultivated 

O. ficus-indica varieties and some related species from the Mediterranean region and 

Mexico by studying 16 SSR (Helsen et al., 2007) and 3 EST-SSR polymorphic loci. The 

clusters identified by their distance and model-based analyses clearly separated the wild 

opuntias from the cultivated ones. However, the O. ficus-indica accessions did not cluster 

separately from other arborescent cactus pear species such as O. amyclaea, O. 

megacantha, O. streptacantha, O. fusicaulis, and O. albicarpa. They also verified that in 

general, the genotypes cultivated in Mexico showed high levels of diversity, whereas most 

of the spineless accessions collected in other countries had a very narrow genetic base. 

Samah et al. (2016) used 13 SSR markers (Helsen et al., 2007; Erre et al., 2011) to study 

the genetic diversity of Mexican Opuntia germplasm of agronomic and economic 

importance. The accessions were grouped into five clusters, thus confirming the incorrect 

delimitation of the species in this genus. The species Opuntia ficus-indica, Opuntia 

albicarpa, Opuntia megacantha, Opuntia streptacantha, Opuntia lasiacantha, and Opuntia 

hyptiacantha had no clear boundaries. However, Opuntia robusta was separated from the 

rest of the species. Opuntia joconostle and Opuntia matudae, which produce acidic fruit, 

tended to differ from the others.  
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Most of these reported DNA-based studies have revealed discrepancies between molecular 

characterization and classical taxonomical classification based on morphological 

characteristics. 

 

1.6  Germplasm evaluation  

 

Evaluation for biomass production and cladode nutri tional value  

Opuntia ficus-indica is an important forage crop for livestock feeding in some regions of the 

world, mainly due to its drought resistance, high biomass yield, high palatability, and 

adaptability to various soil types (Ben Salem et al., 1996).  

This species is particularly attractive as feed due to its efficiency at converting water to dry 

matter (DM) and thus to digestible energy. The most notable Opuntia spp. characteristic is 

its enormous potential to produce large amounts of green succulent fodder, even under 

relatively unfavourable conditions (Nobel and Bobich, 2002). Opuntia spp. can provide a 

continuous valuable supply of fresh fodder during the dry season given its succulent non-

deciduous vegetative structure, a feature rarely found in other forage species (Mondragón-

Jacobo and Pérez-González, 2001).  

Opuntia ficus-indica dry matter productivity under optimal conditions may reach 45-50 Mg 

ha-1 yr-1 (García de Cortázar and Nobel, 1992). Light interception, temperature, soil 

nutrients, cladode orientation, plant structure, and stem area index are important 

components that determine cactus productivity (Dubeux et al., 2015). In the semiarid region 

located in northeast Brazil, in small farms with intensive production systems, it is common 

to observe dense populations (> 40 000 plants ha-1) of Opuntia ficus-indica and Nopalea 

cochenillifera for forage production. In these systems, for well-managed crops DM 

productivity ranges from 10 to 25 Mg ha-1 yr-1, although at research sites productivity up to 

30 Mg ha-1 yr-1 has been registered (Dubeux et al., 2013). In years with severe drought, 

which often occurs in semiarid regions, maize productivity is close to zero. In this same 

environment, cactus produces 20-30 Mg ha-1 yr-1 of dry matter, not to mention 180 Mg ha-1 

yr-1 of stored water in cactus cladodes (Dubeux et al., 2015).  

Opuntia species are clonally propagated by placing an unrooted cladode in the soil, which 

then roots and establishes a new plant. For maximum production in “cut and carry” systems, 

close spacing of approximately 1.2 x 1.2 m is useful, but where direct grazing is desirable, 

in-row spacing ranging from 1.0 to 1.5 m and between-row spacing of 3 to 5 m are desirable 

(Felker et al., 2006). The cladodes of O. ficus-indica can be fed to livestock as fresh forage 

or stored as silage for later feeding. 
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The nutrient content of Opuntia spp. cladodes depends on the genetic characteristics of the 

species or clone, the cladode's age, the cladode sampling location, the pad harvesting 

season and the growing conditions, such as soil fertility and climate (Nefzaoui and Ben 

Salem, 2001; Gugliuzza et al., 2002b; Andrade-Montemayor et al., 2011).  

Opuntia ficus-indica offers considerable palatability as well as high mucilage and moisture 

content, which can serve as a source of potable water for animals (Nefzaoui and Ben Salem, 

2001). In normal forage contexts, the high-water content would be a serious disadvantage 

due to the high cost of transporting such forage. However, during droughts in arid regions, 

the high moisture content of cactus is an asset because it greatly reduces animal drinking 

water requirements (Felker et al., 2006).  

In general, Opuntia cladodes have low levels of dry matter (10–15%), crude protein (4–6%) 

and neutral detergent fibre (20-31%) (Azócar, 2001; Nefzaoui and Ben Salem, 2001; Costa 

et al., 2012). Besides, it is an excellent energy source, rich in non-fibre carbohydrates 

(61.7%), and presents a high dry matter digestibility coefficient (Wanderley et al., 2002). 

The mineral composition is very low in Na, low in P, moderate in Mg, but high in both K and 

Ca (Retamal et al., 1987; Galizzi et al., 2004).  

According Dubeux et al. (2015), the nutritive value of O. ficus-indica usually is within the 

range of 40-70 g kg-1 for crude protein (CP), 250-300 g kg-1 for neutral detergent fibre (NDF), 

180-200 g kg-1 for acid detergent fibre (ADF), 650-700 g kg-1 for total digestible nutrients 

(TDN), and 500-550 g kg-1 for non-fibre carbohydrates (NFC). These values may vary 

outside of this range depending on the environment and management factors previously 

mentioned. 

Given that the cladodes have low levels of crude protein, fibre, phosphorus, and sodium, they 

should be combined with other feedstuffs to complete the daily diet (Nefzaoui and Ben 

Salem, 2001). In the specific case of CP, N fertilization can increase its level up 10%, a 

level that is normally felt to be necessary for a lactating beef cow (Gonzalez, 1989). 

Animals fed exclusively with cactus pear may present weight loss, decreased milk fat and 

digestive disturbances such as diarrhoea and distended tympanic abdomen (Tegegne, et 

al., 2007). Cactus pear associated with other fibre sources increases DM levels in the diet 

and maintains normal conditions in the rumen, thus preventing such undesired effects. 

According to previous authors, cactus pear could optimally substitute for pasture hay up to 

60%, and its inclusion makes a substantial contribution to satisfying the water requirement 

of sheep. 

Cactus pear may substitute for corn meal in the diet of lactating goats without affecting milk 

production negatively, and it may be an important resource for reducing water intake in dairy 

goats (Costa et al., 2009). 
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In synthesis, considering the information obtained on Opuntia spp. chemical composition 

we can conclude that i) cactus pear cannot be fed alone, ii) it must be supplemented with 

CP and fibre in a mixed diet and iii) it is rich in soluble carbohydrates; thus, adding molasses 

should be avoided and the amount of grain or other sugar/starch sources in the diet should 

be limited (Dubeux et al., 2015). 

Opuntia ficus-indica plants are pruned annually in plantations for fruit production. Pruning 

can regulate resource allocation among the various canopy sinks and can maximize light 

availability within the canopy to support cladode growth, flower bud formation, and fruit 

growth. Moreover, pruning facilitates pest control, fruit thinning, and fruit harvest 

(Inglese et al., 2002). This pruned material instead of being discarded as waste can 

alternatively be used as a valuable feed source for livestock.  

As referred before, the nutrient content of Opuntia spp. cladodes depends on the genetic 

characteristics of the species or clone among other factors. Therefore, it seems important 

to study the nutritive characteristics of the cladodes from Portuguese ecotypes with special 

emphasis on the spineless plants. 

 

Evaluation for fruit yield and bioactive compounds 

Many species in the Cactaceae family produce edible fruit, and among them the genus 

Opuntia spp. has the most relevant role in agriculture. The Opuntia ficus-indica produces, 

in particular, delicious juicy fruits containing a large number of hard seeds, and usually they 

are eaten raw after being peeled.  

Cactus pear is commonly propagated via cuttings, and both single and multiple cladode 

cuttings are utilized. Single cuttings can be 1 to 2-years-old, and their surface area and dry 

mass have a significant influence on rooting success and subsequent budding in the field. 

In Italy, plant spacing ranges from 4 x 6 m (416 plants ha-1) to 5 x 7 m (290 plants ha-1) 

(Inglese et al., 2002). Plants begin to yield 2 to 3 years after planting, reach their maximum 

potential 6 to 8 years after planting, and bear for 25 to 30 years or even longer depending 

on pruning and overall orchard management.  

Fruit productivity depends on the orchard design, cultural practices, environmental 

conditions (including soil type) and cultivar (Inglese et al., 2002). Yields of 20 Mg ha-1 (Nerd 

et al., 1991), 12-30 Mg ha-1 (Barbera et al., 1992), and 17 Mg ha-1 (Coetzer and Fouche, 

2015) were reported in Israel, Italy and South Africa, respectively.  

Average fruit fresh weight and seed weight per fruit vary with cultivar, from 100 to 240 g 

(Inglese et al., 2002) and from 2.0 to 7.0 g (Parish and Felker, 1997), respectively.  

The percentage of flesh is less variable than fruit size. It ranges from 60 to 65% for the 

Italian cultivars “Gialla”, “Bianca”, and “Rossa” (Inglese et al., 1994). Low temperature 
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during fruit development promotes an increase in peel thickness and a reduction of flesh 

growth, resulting in a low flesh/peel ratio (Nerd et al., 1991). Fruit quality varies with cultivar 

and depends on several management, environmental, and physiological factors. Pruning, 

fruit thinning, and irrigation are the most powerful tools for maximizing fruit size. 

Cultivars for fruit production can be differentiated by the colour of the fruit peel and pulp, 

which can be purple-red, yellow-orange, white-cream or greenish. Red, yellow and white 

fruits are present in all the cultivated areas, whilst green fruits with white-greenish flesh can 

be found in Chile and Peru (Mondragón-Jacobo and Pimienta Barrios, 1995). White-flesh 

fruits are very sensitive to postharvest handling and to specific pests such as the 

Mediterranean fruit fly (Ceratitis capitate) (Inglese et al., 2002). 

The most appreciated fruits in the international markets, e.g. cv. “Gialla”, have yellow-

orange flesh, however, consumers unfamiliar with this fruit are highly stimulated by red 

fruits, which they buy first because of their intense colour (Liguori and Inglese, 2015). 

The colour of the fruit is due to the presence of water-soluble nitrogenous pigments 

(betalains) such as betacyanins (purple-red) and betaxanthines (yellow-orange) (Stintzing 

et al., 2003), which can be isolated and used as natural food colourants (Saénz, et al., 

2009). 

The export size fruit must exceed 120 g, the percentage of flesh should not be lower than 

55% and harvest sugar values should be at least 13% (Inglese et al., 2002; Felker et al., 

2005). 

The composition of the fruit varies with ripening. However, as the fruits are non-climacteric, 

it is important to collect them at the optimal ripeness stage for processing, marketing, or 

consumption. When the peel colouration is halfway towards that of the fully ripened fruit, 

the TSS is 12–15 percent depending on the cultivar. At this stage, the fruit is at its best 

quality for consumption or storage. The sugar, TSS, and vitamin C content increase 

considerably during the ripening process, while firmness and acidity fall (Sáenz, 2013). 

The fruit should be harvested when its peel colour changes, at a time when the umbilical 

crown is still slightly green. The concentration of reducing sugars should not be less 

than 13%, and pulp firmness should not be less than 8 kg cm-2 (Barbera et al., 1992; 

Inglese et al., 2002). 

Several authors have conducted studies on the chemical composition and antioxidant 

proprieties of the fruits from Opuntia spp., and differences were found both among different 

Opuntia species and among cultivars and ecotypes of O. ficus-indica (Kuti, 2004; Medina 

et al., 2007; Castellanos-Santiago and Yahia, 2008; Chavez-Santoscoy et al., 2009; 

Guzmán-Maldonado et al., 2010; Cayupán et al., 2011; Dehbi et al., 2013; Nadia et al., 

2013; Albano et al., 2015).  
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In the cactus pear fruit, the acidity is low (0.02%) and the pH high (5.3-6.7) if compared with 

values found in other common fruit juices. The ascorbic acid content usually varies between 

220–260 mg L-1 juice, and soluble solids range from 11 to 15°Bx (Stintzing et al., 2003). In 

fruits of O. ficus-indica plants from Argentina, ascorbic acid contents range from 0.26 to 

0.48 mg g-1 fresh weight. Total phenolic compound content can range between 0.41 and 

0.93 mg of gallic acid g-1 (Cayupán et al., 2011). Among the transition metals, high 

manganese content (1.7–2.9 ppm) and good amounts of iron (0.6–1.2 ppm) and zinc (0.3–

0.4 ppm) have been found (Gurrieri et al., 2000).   

The fruit is a good source of minerals, such as potassium (217 mg 100 g-1), and low in 

sodium (0.6–1.19 mg 100 g-1), it is also rich in calcium and phosphorus, with levels of 15.4–

32.8 mg (100 g-1) and 12.8–27.6 mg (100 g-1), respectively (Sawaya et al., 1983; Sepúlveda 

and Sáenz, 1990). 

Cactus pear (Opuntia spp.) fruit has recently gained attention for its nutritional and potential 

technological values (Piga, 2004). The sweet and juicy cactus pear pulp has interesting 

health-promoting properties attributed to the presence of certain bioactive compounds. The 

nutraceutical benefits of Opuntia spp. fruits are believed to stem from their alleged 

antioxidant properties related to ascorbic acid, phenolics including flavonoids, and a mixture 

of yellow betaxanthin and red betacyanin pigments (Gurrieri et al., 2000;  Galati et al., 2003; 

Tesoriere, et al., 2004; Yahia and Mondragón-Jacobo, 2011; Abdel-Hameed, et al., 2014; 

El-Mostafa et al., 2014).  

 

1.7 Aims of the study 

 

We live in a changing world in both climatic and economic terms. The Mediterranean region, 

including mainland Portugal, is a climate change hotspot, and in the latter decades of the 

21st century, the Mediterranean is expected to experience the greatest drying among 26 

regions across the globe (Giorgi, 2006; Guiot and Cramer, 2016). Global and regional model 

simulations project a warming scenario with dramatic impacts in the Portuguese region. The 

near surface temperature increases in Portugal under those scenarios are far higher than 

the predicted changes in global mean temperature, and translate into dramatic changes of 

all temperature-related climate indices. Impacts are higher in summer and autumn and in 

the interior of the country. Concerning precipitation, models project a drier climate, with a 

shorter and wetter rainy season followed by a long dry summer. The projected reduction in 

mean precipitation is likely to affect the southern regions of the country more, which already 

experience a shortage of water and large interannual variability (Miranda et al., 2002). 
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Given the expected climate changes, there is a growing need to explore the potential of 

neglected species for future food, fodder, industrial, medicinal, and soil preservation plant 

resource, suitable for the more affected regions. These neglected species may tolerate 

stresses such as extreme temperatures, salinity, and drought better than the conventional 

crops of today. Among these neglected species are members of the Cactaceae family, 

namely, Opuntia ficus-indica, also known as the “prickly pear” or the “cactus pear”. Opuntia 

spp. have perfectly adapted to arid zones characterized by droughty conditions, erratic 

rainfall and poor soils subject to erosion. They thus contribute in periods of drought, serving 

as lifesaving crops for both humans and animals (Mondragón-Jacobo and Pérez-González, 

2001).  

In Portugal, O. ficus-indica is traditionally cultivated in non-irrigated conditions for edible 

fresh fruit production and hedge establishment. Recently, some farmers have been focusing 

on drip-irrigated OFI orchards for fresh fruit production with plant layout and spacing design. 

These orchards have been carried with both Portuguese ecotypes and improved varieties 

imported from Italy. However, the Portuguese ecotypes have not yet been characterized, 

hampering research and breeding efforts directed at the development of improved varieties.  

 

The present study was focused on the following main objectives:  

 

i. To collect and establish Portuguese ecotypes of Opuntia spp. in a common garden;  

ii. To establish a non-destructive method to estimate the O. ficus-indica ecotypes 

biomass production;  

iii. To estimate the plant vigour and biomass production variability among and within 

ecotypes;  

iv. To find populations with biomass production at least like the improved varieties 

established in the common garden for comparison purposes; 

v. To evaluate the nutritional profile of the cladodes from the different Portuguese O. 

ficus-indica spineless ecotypes in comparison with the cultivar “Gialla”, and evaluate 

its potential use as feed for ruminants; 

vi. To evaluate the potential of the Portuguese ecotypes for fruit production, in the first 

years after plantation, in comparison with the Italian cultivars “Bianca” and “Gialla”;  

vii. To characterize the morphology, the bioactive compounds and the antioxidant 

properties of Opuntia spp. fruits; 

viii. To classify different species and ecotypes into distinct groups according to their 

morphology and fruit chemical characteristics using a multivariate analysis 

approach;  
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ix. To improve methods of DNA extraction from Opuntia spp. cladodes; 

x. To understand the overall pattern of genetic diversity and relationships among 

germplasm accessions using molecular markers. 
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2.1 Summary 

 

In marginal lands Opuntia ficus-indica could be used as an alternative fruit and forage crop. 

The plant vigour and the biomass production were evaluated in Portuguese germplasm (15 

individuals from 16 ecotypes) by non-destructive methods, 2 years following planting in a 

marginal soil and dryland conditions. Two Italian cultivars (“Gialla” and “Bianca”) were 

included in the study for comparison purposes. The biomass production and the plant vigour 

were estimated by measuring the cladodes number and area, and the fresh (FW) and dry 

weight (DW) per plant. We selected linear models by using the biometric data from 60 

cladodes to predict the cladode area, the FW and the DW per plant. Among ecotypes, 

significant differences were found in the studied biomass-related parameters and several 

homogeneous groups were established. Four Portuguese ecotypes had higher biomass 

production than the others, 3.20 Mg ha−1 on average, a value not significantly different to 

the improved “Gialla” cultivar, which averaged 3.87 Mg ha−1. Those ecotypes could be used 

to start a breeding program and to deploy material for animal feeding and fruit production. 
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2.2 Introduction 

 

The cactus pear (Opuntia ficus-indica (L.) Mill.) (OFI) is a sustainable crop with low input 

demand and both the cladodes and the fruits can potentially be used as food for humans 

and animals, particularly in the world’s arid and semiarid regions. The OFI ecological and 

agricultural success is largely due to its Crassulacean acid metabolism (CAM). This 

photosynthetic pathway is characterized by nocturnal stomata opening with CO2 uptake 

primarily occurring from dusk to dawn, while during the day the stomata are closed. This 

pattern provides higher water use efficiency and annual dry matter productivity than many 

C3 and C4 cultivated plants (Nobel, 1988). 

The Central Mexico is the OFI domestication centre and the species’ taxonomic concept 

may include clones derived from multiple lineages and, therefore, be polyphyletic (Griffith, 

2004). The species introduction in the Iberian Peninsula probably occurred at the beginning 

of the 16th century, after the discovery of America, spreading afterwards throughout the 

Mediterranean basin (Anderson, 2001). 

The Mediterranean region, particularly inland areas, has been suffering from severe drought 

during extensive summers, and global change is expected to deeply affect this area in the 

near future. Indeed, global and regional model simulations project a warming scenario with 

dramatic impacts in this region. The precipitation models anticipate a drier climate with a 

shorter and wetter rainy season, followed by a long dry summer (Schröter et al., 2005). The 

cactus pear morpho-physiological characteristics and multiple economic uses represent an 

alternative crop in this region. The fruit has nutritional and economical value and also 

represents an interesting crop for small ruminants feeding, by providing energy, water and 

minerals during periods when food and water are scarce (Andrade-Montemayor et al., 2011; 

Rodrigues et al., 2016). Additionally, OFI is used to produce natural dyes (Anderson, 2001), 

as a medicinal plant (Lim, 2012) and the cladodes physicochemical characteristics are 

suitable for biogas production (Jigar et al., 2011). 

In the Mediterranean area, such as Portugal, the OFI is found on roadsides and paths due 

to its typical ruderal behaviour, and both species forms, Opuntia ficus-indica f. ficus-indica 

and Opuntia ficus-indica f. amyclaea (Ten.) Schelle, can be found. In Portugal, cactus pear 

is a naturalized species (Inglese et al., 2009) and it is cultivated for edible fruit production 

and hedges establishment. The local ecotypes have variability in the plant vigour, the shape 

of the cladodes, the presence or absence of spines, the spine length, the corolla colour, the 

pulp colour and the fruit ripening time (unpublished results). 

The large stems (cladodes) are the main photosynthetic organs in OFI. The light 

interception, the CO2 uptake and, ultimately, the OFI productivity depend on the stem area 
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index (both sides of the cladode surface per ground area), which is the equivalent to the 

leaf area index (Nobel, 1988). The genotypes with faster photosynthetic area growth have 

higher light interception capacity and, therefore, higher potential and earlier capacity for fruit 

production (Caloggero and Parera, 2004). Some authors computed the photosynthetic area 

by establishing a linear relationship between the cladode area and the maximum length and 

width (Caloggero and Parera, 2004; Sáiz and Fernandez, 1990; Tiznado-Hernandez et al., 

2010). The cladode fresh weight (FW) was estimated using the linear relationship between 

the FW and the product of the cladode maximum length by its width and mean thickness 

(Pinto et al., 2002).  

To the best of our knowledge, few studies to estimate the biomass production by 

nondestructive methods have been reported to date on this species for the Mediterranean 

region. To estimate the dry weight (DW) two studies obtained linear regression models that 

relate the cladode DW with the product of the cladode maximum length by its width and 

diameter of the neck (Curt et al., 2011; Sáiz and Fernández, 1990) for this crop in Spain. 

The morphology and potential biomass production of the Portuguese Opuntia germplasm 

is unknown. Using 16 OFI Portuguese ecotypes established in a common garden situated 

in inland Portugal, the objectives of the study were: (1) to establish a non-destructive 

method to estimate biomass production, (2) to estimate the plant vigour and the biomass 

production variability among and within populationsn and (3) to find populations with 

biomass production at least similar to the improved varieties established in the common 

garden for comparison purposes. 

 

2.3 Materials and Methods 

 

Plant material and experimental design  

A mission to collect Portuguese OFI germplasm took place in the early spring of 2012. The 

cladodes were sampled from 15 individuals in 16 different ecotypes/populations, 

encompassing various altitudinal levels (Table 2.1). They were located in the Central and 

Southern regions of inland Portugal, and one in the Madeira Island (Table 2.1). Two 

improved Italian cultivars (cv.), “Bianca” and “Gialla”, were included for comparison 

purposes, OFI-06B and OFI-07G respectively. The mature cladodes were single-planted 

during May 2012 at the School of Agriculture in Castelo Branco, Portugal (39º49’17”N; 

7º27’41”W, elevation 365 m). The plant spacing was 1.5 × 2.5 m (2667 plants ha−1). The 

experimental design was a randomized complete block design for the 18 populations, with 

three replicates and five plants each replicate – the elementary plot, 2.5 × 1.5 × 5 = 18.75 

m2. In the experiment borders rows were planted to eliminate side effects.  
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Table 2.1  Identification and origin of the studied O. ficus-indica populations. 

Population Origin Altitude (m) 
Geographic coordinates 

Latitude Longitude 

OFI-01 Alcochete 25  38°43'32.14"N   8°57'58.22"W 
OFI-03 Cascais, Guincho 185  38°45'23.18"N   9°27'38.48"W 
OFI-04 Portalegre 372  39°16'22.45"N   7°26'13.12"W 
OFI-05 Arronches 293  39° 5'21.06"N   7°12'7.05"W 
OFI-06 (B) Italy -- -- -- 
OFI-07 (G) Italy -- -- -- 
OFI-08 Melides 29  38° 8'28.91"N   8°44'14.28"W 
OFI-09 Santo André 25  38° 4'38.13"N   8°46'38.08"W 
OFI-11 Albufeira 61  37° 5'23.33"N   8°17'27.03"W 
OFI-12 Cacela-a-Velha 20  37° 9'22.50"N   7°32'47.98"W 
OFI-13 Monforte da Beira 260  39°45'8.34"N   7°16'54.83"W 
OFI-14 Idanha-a-Velha 275  39°59'57.30"N   7° 9'3.51"W 
OFI-15 Ponte de Sor 125  39°16'15.45"N   8° 0'44.72"W 
OFI-16 Biscainho, Coruche 76  38°54'40.93"N   8°37'17.00"W 
OFI-17 Castelo Branco 402  39°48'58.84"N   7°29'37.85"W 
OFI-18 Reguengos Monsaraz 223  38°27'27.04"N   7°39'21.77"W 
OFI-19 Concavada, Alvega 105  39°27'15.96"N   8° 3'51.88"W 
OFI-20 Madeira 116  32°38'54.18"N  16°57'46.38"W 

B – cv. “Bianca”; G – cv. “Gialla”. 

 

The provenance trial was planted in a granitic soil, with pH 5.9 and low organic matter 

content; a marginal soil with reduced overall soil profile depth and low water holding 

capacity. Fertilizers with nitrogen, phosphorus and potassium were applied, 40 kg ha−1 each 

element, to reduce possible differences in soil fertility, but no irrigation or tillage was used. 

The weeds were controlled by mechanical mowing. The Köppen–Geiger climate 

classification for Castelo Branco is Csa. The average annual temperature was 15.4 °C (Fig. 

2.1) during the period of the experiment (2012–2014). The driest and hottest months were 

July and August with average temperatures above 24 ºC and absolute values reaching 41 

ºC. The coldest months were December, January and February, with average temperatures 

below 10 ºC. The mean number of days with temperature equal or below 0 °C was 19, 

ranging between 0 °C and −5.2 ºC. In winter the rainfall was much higher than in summer 

– typical for Mediterranean climate – with the highest precipitation in October and November 

(Fig. 2.1). The vegetative growth of OFI occurred during the time of the year when the 

precipitation was lower. 

 

Model construction and evaluation  

In March 2014, 60 cladodes (ca. three per population) aged from 1- to 2-years-old, were 

sampled in plants from all the 18 populations established in the experimental field. Besides 

the cladodes scanned images, the area (A, cm2), the FW (g) and the DW (g) were recorded.  
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Figure 2.1  Average temperatures (A) and accumulated precipitation (B), in the region of Castelo 
Branco, for the 3-years period, 2012-2014. 

 

The following biometric parameters were measured in each cladode: the length (L, cm), the 

width (W, cm), the mean thickness (T, cm) and the diameter of the neck (D, cm). The length 

and the width were measured using a graduated ruler. The average thickness per cladode 

was computed using three measurements of the cladode thickness, at the apex and on both 

sides at the maximum width point, using a digital caliper (T1, T2 and T3 in Fig. 2.2). The 

neck diameter (D) was also determined with a digital caliper (Fig. 2.2). The cladode area 

(CA, cm2) was quantified using two methods, the image analysis based on the software 

Image J v.1.49b (Rasband, U. S. National Institutes of Health, Bethesda, Maryland, USA), 

and the cladode weight paper silhouettes, according to Garcia de Cortázar and Nobel 
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(1992). The FW was measured with a precision scale. Afterwards, each one of the 60 

cladodes was fragmented and dried (65 ºC for 72 h) to obtain the respective DW. 

 

 

Figure 2.2   Biometric parameters measured in the O. ficus-indica cladodes. L - Length; W - Width; 
T - Mean thickness (obtained from the arithmetic mean of points T1, T2 and T3); D - Diameter of the 
neck. 

 

The relationship among the cladode area (CA, cm2), the FW (g), the DW (g) and the 

potential regressor variables, ‘X’ as D, L, T and W, were analysed both graphically and 

statistically in order to develop predictive models for the biomass production estimation by 

means of non-destructive methods. We tested 5, 18 and 7 candidate models, for each of 

the response variable ‘Y’, CA, FW and DW, respectively (detailed in Table S2.1, Appendix 

1). The linear regression model assumptions were verified, including linear relationship 

between the variables Y and X, homoscedasticity (equal error variances), normality and 

independence of errors. The first three assumptions were both graphically and statistically 

validated. The Durbin–Watson test for autocorrelation was selected to validate the fourth 

assumption, the errors independence, by assuming a first-order autoregressive error model, 

which is consistent to the time series dataset. The model selection and validation was based 

on the fitting and the prediction ability of those candidate models by using the coefficient of 

determination (R2) and the root mean square error (RMSE) to assess the criteria quality and 

the estimates precision, respectively (Montgomery et al., 2012). 

 

Germplasm evaluation  

In April 2013 (330 days after plantation, DAP) and March 2014 (660 DAP) the cladode 

number per plant (CNp) was recorded in the 15 individuals from each one of the 18 

populations (16 ecotypes plus the cultivars “Gialla” and “Bianca”). The length, the maximum 

width, the mean thickness and the neck diameter were measured in all the cladodes of the 

15 individuals per population, according the procedures outlined in the previous section. 



Chapter 2   

36    Carlos Gaspar Reis 

For the biomass production assessment, the Cladodes Area (CAp, m2), the FWp (kg) and 

the DWp (kg), were estimated using regression models. 

The selected linear models were used to estimate the studied ecotypes’ biomass. After 

fitting the models, the Shapiro–Wilk test for normality and the Levene’s test of equality of 

variances were applied. The data were subsequently analysed using the one-way ANOVA, 

followed by pairwise comparisons using either the Tukey or the Games-Howell (in the 

absence of homoscedasticity) post hoc tests. With an absence of normality of the 

distributions, the non-parametric Kruskal–Wallis test was used to compare the means, 

followed by pairwise comparisons using Dunn’s procedure with a Bonferroni correction for 

multiple comparisons. The statistical significance was accepted with a probability of type I 

error of 5%, for both the omnibus test and the multiple comparisons. The statistical analyses 

were performed using the IBM SPSS Statistics software v.21 (IBM Corp., NY.). 

 

2.4 Results 

 

Characterization of the supporting database and mod el selection  

The summary statistics of the 60 cladodes used to develop the linear models and to 

estimate the cladode area and the FW are shown in Table 2.2 Since no significant 

differences were found between the two methods used to estimate the area of the cladodes, 

the image analysis and the weight of the cladodes paper silhouette, t (118 df) = 0.076, p = 

0.94, we have chosen the former, because it is easier and faster to use than the paper 

silhouette method. 

 

Table 2.2  Summary characteristics recorded in the O. ficus-indica cladodes used to develop the 
linear models (n = 60 obs.). 

Statistic 
Length 
(L, cm) 

Width  
(W, cm) 

Mean 
thickness 
(T, cm) 

Cladode 
area  

(CA, cm2) 

Fresh 
weight 
(FW, g) 

Dry weight 
(DW, g) 

Dry matter 
(%) 

Mean 38.61 18.70 1.86 586.71 893.93 66.28 7.49 

SD 4.69 2.48 0.28 86.70 173.01 11.80 0.77 

Min 30.00 13.00 1.42 440.68 583.14 45.44 5.75 

Max 48.00 24.50 2.53 845.75 1267.60 99.55 10.60 

CV (%) 12.14 13.25 15.13 14.78 19.35 17.80 10.28 

SD – standard deviation; CV (%) – coefficient of variation; Min – minimum; Max – maximum. 
 

The three models for each dependent variable (CA, FW and DW, in Table 2.3) were 

selected from the candidate models (described in Table S2.1, Appendix 1) based on the 

evaluation statistics for the quality of the fit and the predictive performance detailed in the 

Material and Methods section. 
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Table 2.3  List of the selected equations to predict the CA, FW and DW in O. ficus-indica. Coefficients, 
standard errors and root mean square errors (RMSE) of linear regression models. 

Equation Mathematical model n Model* a b R2 RMSE 

(1) CA = 48.13+0.75 (L × W) 60 2 48.13 (22.92) 0.75 (0.03) 0.91 26.68 

(2) FW = 36.91+0.64 (L × W × T) 60 10 36.91 (35.97) 0.64 (0.03) 0.91 52.26 

(3) DW = 8.49+0.49 (W × T × D) 58 28 8.49 (4.79) 0.49 (0.04) 0.72 6.05 

CA - area of the cladode, one face (cm2); FW – cladode fresh weight (g); DW – cladode dry weight (g); D – 
diameter of the neck (cm);  L - cladode length (cm); T – cladode average thickness (cm) and W – cladode 
maximum width (cm). * Model numbering in the S2.1 table. 

 

 

The graphical and the statistical analyses of the response variables and the available 

potential regressors (interactions between the X’s variables and transformations of the 

original variables) indicated that the interaction variables L × W and L × W × T were good 

predictors of the cladode area (Fig. 2.3A) and the FW (Fig. 2.3B), respectively. The 

assumptions of linearity, independence of errors, homoscedasticity, outliers and normality 

of the residuals were met. The linear regression established that the product L × W could 

predict the cladode area (CA, one face, cm2), F (1 df, 58 df) = 565.03, p < 0.05, and the 

product L × W × T could predict the cladode FW (g), F (1 df, 58 df) = 588.52, p < 0.05. The 

highest R2 was 0.91 for both the CA and FW estimation models (Table 2.3, equations 1 and 

2, respectively), meaning that 91% of CA and FW observed variation was explained by the 

models. Also, both models displayed the lowest RMSE values (26.68 and 52.26, 

respectively) compared to the other assayed models’ values (Table S2.1, Appendix 1).  

In the case of the DW, the product W × T × D could predict the cladode DW (g), F (1 df, 56 

df) = 146.12, p < 0.05 (Fig. 2.3C). Considering the DW estimation model, the highest 

coefficient of determination was 0.72, the RMSE value 6.05 and 72.3% of the observed 

variation was explained by equation 3 (Table 2.3). 

 

Biomass production assessment  

The number of cladodes per plant was recorded 330 and 660 DAP (year 1 and year 2, 

respectively), and the non-destructive biomass quantification of 18 populations was 

estimated using the selected equations (Table 2.3). The population with the highest number 

of cladodes per plant was cv. “Gialla” with 5.1 and 25.9 cladodes in year 1 and 2, 

respectively, and the ecotype OFI-18 had the lowest value, i.e. 1.9 and 6.2 cladodes in year 

1 and 2 respectively (Fig. 2.4A).  
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Figure 2.3  Scatter plots and lines of the three chosen allometric equations to estimate: (A) the 
cladode area CA = 48.13 + 0.75 (L × W), (B) the fresh weight FW = 36.91 + 0.64 (L × W × T), and 
(C) the dry weight DW = 8.49 + 0.49 (W × T × D). The length (L), width (W) thickness (T) of the 
cladode and diameter of the neck (D) were the predictor variables used. 
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Figure 2.4  Average number of cladodes per plant (CNp) (A) and average cladode area per plant 
(CAp) (B) in the 18 populations of O. ficus-indica studied, 330 and 660 days after plantation (n=15 
plants per population). The CAp values were estimated from the allometric equation: CA = 48.13 + 
0.75 (L × W).  

  

 

Considering all the 18 populations, the mean was 3.5 cladodes per plant in year 1 and this 

value increased more than 3.5-fold in year 2 (mean 13.5 cladodes per plant). The number 

of cladodes per plant was not normality distributed (all populations) according to the 
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Shapiro–Wilk test, hence the nonparametric Kruskal–Wallis test was used to test for 

differences among populations. This test showed significant differences in the number of 

cladodes per plant among the 18 OFI populations in year 1 (χ2 (17) = 89.85, p < 0.05, n = 

270) and in year 2 (χ2 (17) = 148.09, p < 0.05, n = 270). The pairwise comparisons revealed 

five and four homogeneous groups in year 1 and 2, respectively. Thus, statistically 

significant differences in the number of cladodes among some of the populations can be 

inferred, e.g. OFI-7 from OFI-18 (Fig. S2.1, Appendix 2). 

Considering the CA per plant, both faces, the highest values were 0.46 m2 in the ecotype 

OFI-12 (year 1) and 1.90 m2 in the cv. “Gialla” (year 2). The lowest value was observed in 

the ecotype OFI-18, with 0.12m2 and 0.40m2 in year 1 and 2 respectively (Fig. 2.4B). The 

mean value for the area of cladodes per plant increased ca. 3.5-fold from year 1 (0.29 m2) 

to year 2 (1.03 m2). 

The “Gialla” cultivar also displayed the highest FW per plant in both years (3.94 kg and 

14.16 kg, year 1 and 2, respectively) and the lowest values were found again in the OFI-18 

ecotype (1.16 to 4.19 kg, year 1 and 2, respectively) (Fig. 2.5A). The mean FWp values for 

all the populations increased ca. 3.5-fold from year 1 (2.56 kg) to year 2 (8.84 kg). 

The highest DW values per plant were found in OFI-12 (0.33 kg) in year 1 and in cv. “Gialla” 

(1.45 kg) in year 2. The lowest DW values per plant were observed in ecotype OFI-18 (0.11 

kg and 0.43 kg, year 1 and year 2, respectively) (Fig. 2.5B). The mean DWp values also 

increased around 4-fold from year 1 (0.22 kg) to year 2 (0.86 kg). 

The normality tests, the standardized skewness and the Shapiro–Wilk test, for variables 

cladode area, FW and DW per plant indicated that the data were normally distributed. The 

Levene’s F test revealed lack of homogeneity of variances (p < 0.05), thus the Welch’s F 

test was used. The one-way ANOVA revealed the existence of significant differences 

among the 18 populations for the three variables (CAp, FWp and DWp) (Table 2.4).  The 

Games–Howell post hoc test showed significant differences among the OFI populations, 

and the group including the cv. “Gialla” plus the OFI-05, OFI-12, OFI-13 and OFI-14 

ecotypes produced higher photosynthetic area than the remaining populations (Table S2.2, 

Appendix 3). In the case of both the fresh and DW per plant, the Games–Howell post hoc 

tests revealed significant differences among the OFI populations and it could be concluded 

that the group constituted by the two improved cultivars. (“Gialla” and “Bianca”), and the 

ecotypes OFI-04, OFI-05, OFI-12, OFI-13 and OFI-14 outperformed the remaining 

populations concerning the fresh and DW per plant (Tables S2.3 and S2.4, Appendices 4 

and 5, respectively). From year 1 to 2, the number of cladodes per plant, the photosynthetic 

area, the FW and the DW per plant increased, on average, in a ratio superior to 3.5. 
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Figure 2.5  Average fresh weight per plant (FWp) (A) and average dry weight per plant (DWp) (B) in 
the 18 populations of O. ficus-indica studied, 330 and 660 days after plantation (n=15 plants per 
population). FWp and DWp were estimated from the allometric equations: FW = 36.91 + 
0.64 (L × W × T) and DW = 8.49 + 0.49 (W × T × D), respectively.  
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Table 2.4  Welch’s ANOVA statistic for the area of cladodes (CAp, m2), fresh weight (FWp, kg) and 
dry weight (DWp, kg) per plant. Sig.=significance.  

Biomass parameters Year Welch’s 
statistic 

df1 df2 Sig. 

Area of cladodes per plant (CAp) 
Year 1 17.73 17 93.66 p < 0.05 

Year 2 25.69 17 93.60 p < 0.05 

Fresh weigh per plant (FWp) 
Year 1 14.36 17 93.61 p < 0.05 

Year 2 16.79 17 93.71 p < 0.05 

Dry weight per plant (DWp) 
Year 1 13.55 17 93.52 p < 0.05 

Year 2 16.88 17 93.69 p < 0.05 

 

 

Table 2.5  ANOVA results (α = 0.05) for the 10 populations of O. ficus-indica with the higher biomass 
production 660 days after plantation (year 2) (n=15 plants per population). 

Biomass Parameter Sum of 
squares 

Degrees of 
freedom (df) Mean square F Sig. 

Number of cladodes per plant (CNp) 2371.76 9 263.53 9.65 0.00 

Area of cladodes per plant (CAp) 14.68 9 1.63 9.32 0.00 

Fresh weight per plant (FWp) 403.18 9 44.80 3.46 0.00 

Dry weight per plant (DWp) 5.61 9 0.62 5.13 0.00 
 

 

A one-way ANOVA was made for the 10 populations with higher biomass production in year 

2 (OFI-03, OFI-04, OFI-05, OFI-08, OFI-12, OFI-13, OFI-14, OFI-15, cv. “Bianca” and cv. 

“Gialla”), and significant differences were found for the variables CNp, CAp, FWp, DWp 

(Table 2.5). The Tukey’s multiple comparisons of means produced six, eight, three and five 

homogeneous groups for the number of cladodes, area of cladodes, FW and DW per plant 

respectively (Table 2.6). The ecotype OFI-05 did not differ from the cv. “Gialla” with respect 

to the number of cladodes per plant. The ecotypes OFI-05, OFI-12 OFI-13 and OFI-14 were 

not significantly different from the cv. “Gialla” for the variables CAp, FWp and DWp. Those 

four ecotypes have few spines, the cladode shape is ovate and the petal colour is yellow, 

similar to the cv. “Gialla”. 

 

2.5 Discussion 

 

Prediction models  

We developed linear models to estimate the cladode area, the FW and the DW in 

Portuguese OFI ecotypes established in a common garden under similar climate conditions, 

using non-destructive measurements. The variables (L, W, T and D) used in the models 

were also used in similar studies, but in other populations grown in different climatic 
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conditions (Caloggero and Parera, 2004; Curt et al., 2011; Pinto et al., 2002; Sáiz and 

Fernández, 1990). In the linear models reported herein, the variables L × W and L × W × T 

were good predictors of the cladode area and the FW, respectively. The regression and the 

correlation coefficients’ values obtained for the area of the cladode (respectively 0.75 and 

0.91) were similar to those reported by Caloggero and Parera (2004) in OFI populations in 

Argentina [CA = 6.31 + 0.8 (L × W), R2 = 0.93]. However, this comparative analysis should 

be done with caution due to the lack of some information namely the coefficients’ standard 

errors. A comparative analysis with other models previously published to predict the fresh 

and DW is not possible (Curt et al., 2011; Pinto et al., 2002; Sáiz and Fernández, 1990) as 

they lack the intercept (regression through the origin) and the R2 value does not have the 

same statistical significance (Montgomery et al., 2012). 

The linear model suggested by Sáiz and Fernández (1990) and Curt et al., 2011) for the 

DW estimation, using the empirical relationship between DW and the regressor, W × L × D, 

gave no satisfactory results with our data, explaining only 52.7% of the DW variability. In 

the case of the DW estimation, the interaction term W × T × D was considered the best 

regressor term amongst the set of potential variables, explaining 72.3% of the DW 

variability. 

 

 
Table 2.6 . Mean values and standard deviation for cladode number, area of cladodes, fresh weight 
and dry weight per plant in the group with 10 populations of O. ficus-indica with higher biomass 
production, in the 660 days after plantation (year 2) (n=15 plants per population). 

Population CNp CAp (m2) FWp (kg) DWp (kg) Spines Cladode 
shape 

Petal 
color 

OFI-03 12.8 (3.88)cd 1.03 (0.30)cde 9.52 (3.33)b 0.87 (0.32)bc Interm Ellip Scarl 

OFI-04 15.5 (5.49)bcd 1.23 (0.43)bcde 9.61 (3.63)b 0.97 (0.37) bc Few Ovate Yell 

OFI-05 20.3 (5.51)ab 1.60 (0.42)ab 11.95 (3.27)ab 1.20 (0.31)abc Few Ovate Yell 

OFI-06B 14.2 (4.33)bcd 1.14 (0.38)bcde 11.34 (4.01)ab 0.96 (0.31)bc Interm Ellip Scarl 

OFI-07G 25.9 (6.33)a 1.90 (0.45)a 14.16 (3.15)a 1.45 (0.33)a Few Ovate Yell 

OFI-08 12.9 (3.53)cd 0.94 (0.27)de 9.50 (2.78)b 0.90 (0.22)bc Interm Ellip Scarl 

OFI-12 18.8 (5.86)bc 1.59 (0.52)ab 12.30 (4.53)ab 1.24 (0.48)abc Few Ovate Yell 

OFI-13 16.9 (6.83)bcd 1.41 (0.58)abcd 11.14 (4.35)ab 1.09 (0.42)abc Few Ovate Yell 

OFI-14 17.5 (5.01)bcd 1.49 (0.40)abc 12.45 (3.29)ab 1.27 (0.35)ab Few Ovate Yell 

OFI-15 12.3 (4.50)d 0.89 (0.32)e 8.61 (3.22)b 0.84 (0.33)c Interm Ellip Scarl 

CNp – cladode number per plant; CAp – area of cladodes per plant (m2); DW – dry weight per plant (kg); 
FWp – fresh weight per plant (kg); B – cv. “Bianca”; G – cv. “Gialla”; Interm – intermediate; Ellip – elliptic; 
Scarl –scarlet; Yell - yellow.  Means followed by the same letter do not differ significantly (ANOVA and Tukey 
post hoc test, p = 0.05). 
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Biomass production assessment  

Considering the number of cladodes per plant, the photosynthetic area, the FW and the DW 

per plant, the cv. “Gialla” outperformed the other populations, which reflects its origin as 

improved material. Caloggero and Parera (2004) also reported the superior performance of 

this cultivar compared to the Argentinean ecotypes, considering as parameters the number 

of cladodes per plant and photosynthetic area. 

The number of cladodes per plant observed in cv. “Gialla” at 330 and 660 DAP (5.1 and 

25.9, respectively) are similar to those presented by Calogero and Parera (2004), who 

reported values 6.2 and 23.2 at 330 and 450 DAP, respectively. In the case of the area of 

cladodes per plant, the observed values in the cv. “Gialla” at 330 and 660 DAP (0.43 and 

1.90, respectively) are also similar to those reported by Calogero and Parera (2004), i.e. 

0.4 and 1.7 at 330 and 450 DAP, respectively. 

Without a model to predict the dry matter, the alternative is to use a destructive sample of 

cladodes, a time-consuming process. Besides, the dry matter needs to be evaluated several 

times, for this parameter varies during the year. Neder et al. (2013), using the path analysis, 

demonstrated that a correlation exists between fresh and dry matter production, thus an 

indirect selection for this trait based on the fresh matter production and the photosynthetic 

area is possible. Nevertheless, we have developed a linear model to estimate the cladode 

DW explaining 72.3% of its variability, using the interaction term between width and mean 

thickness of the cladode times the diameter of the neck (W × T × D). 

Considering the group of the 16 OFI Portuguese ecotypes, a significant genetic variability 

in plant growth rate was found, as revealed by biomass production. Four ecotypes (OFI-05, 

OFI-012, OFI-13 and OFI-14) out of the 16 Portuguese ecotypes evaluated for biomass 

production were not significantly different from the cv. “Gialla”. Furthermore, these results 

indicate that a clonal selection program should be started using clones to produce fodder 

and fruit. Additionally, the selected four ecotypes were identified as O. ficus-indica f. ficus-

indica and had few spines like the cv. “Gialla”. 

The studied ecotypes were collected in locations with different altitude, but no relationship 

between the biomass production and the geographic origin of the ecotypes was found. The 

only pattern detected is related to the cladode shape, since the ecotypes with ovate 

cladodes produced higher biomass compared to those with elliptical cladodes. 

A dry matter productivity of 3.9 Mg ha−1 for a density of 2667 plants ha−1 (0.27 plants m−2) 

in the 2nd year after planting was obtained in the cv. “Gialla”. The mean value for the dry 

matter productivity was 3.2 Mg ha−1 for the top Portuguese ecotypes group (OFI-05, OFI-

012, OFI-13 and OFI-14). Garcia de Cortázar and Nobel (1992) obtained a productivity of 

5.5 Mg DW ha–1 year–1 during the 2nd year after planting, under irrigation and density of 
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0.25 plants m–2. The observed differences are explained by the dryland conditions verified 

in our study, since the water availability plays a primary role in the OFI carbon gain. Herein, 

the vegetative growth of OFI occurred during the time of the year with low rainfall and in a 

soil with low water holding capacity. The cactus pear is extremely tolerant to high air 

temperatures, but cladodes can be damaged by air temperatures below −6°C, depending 

on particular genotypes (Goldstein and Nobel, 1994; Nobel and De la Barrera, 2003; 

Valdez-Cepeda et al., 2001). Such sensitivity to low temperatures severely limits the areas 

for OFI cultivation in temperate regions. Nevertheless, the probability of temperatures below 

−6 ºC is close to zero in Castelo Branco region, according to meteorological records from 

the last 30 years (AEMET, 2011), with the mean temperature values being within the OFI 

cultivation requests. 

Assuming a density of 5000 plants ha−1 in dryland farming conditions, we expect a FW 

biomass production of 60–70 Mg ha−1 (nearly 6–7 Mg ha−1 of dry matter for a dry matter 

content of about 10%) in the 2nd year after plantation. 

In the present study, due to logistic conditions, we used a single cladode per hole. In fact, 

the biomass production is affected by the number of cladodes per hole. In the establishment 

of an orchard it is advisable to plant two (or more) cladodes per hole, for this will increase 

the number of cladodes per plant and the photosynthetic area and, afterwards, the earlier 

fruiting potential after planting (Caloggero and Parera, 2004; Inglese et al., 2002). 

The lack of variance homogeneity in the four of the studied variables, NCp, CAp, FWp and 

DWp, was registered among some of the 18 OFI populations, which reflects the existence 

of inter-populations variability. The provenance test was installed using cuttings and the 

intra-population variability detected in the first two years after planting may be related to 

phenotypic variations in single cuttings before planting. Indeed, single cuttings can be one- 

to two-years-old, and their surface area, dry mass and environmental factors, such as soil 

fertility and water availability, have a significant influence on successful rooting and 

subsequent performance in the field (Inglese et al., 2002). The hypothesis that the observed 

variability is the result of somaclonal mutation does not seem very likely, as shown by 

Zoghlami et al. (2012), who observed the genetic stability of long-term micropropagated 

OFI plantlets. However, we should not to exclude that in some ecotypes, the intra-

population variability might be due to the existence of polyclonality. As stated by Griffith 

(2004), the actual taxonomic concept of OFI may include clones derived from multiple 

lineages and be polyphyletic. The origin of the observed intra-population variability should 

be clarified through the use of molecular markers. 

Climate change is expected to deeply affect the Mediterranean region, particularly inland 

areas in the near future. The OFI, by its morpho-physiological characteristics and multiple 
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economic uses, represent an alternative crop in the Mediterranean region. We have 

developed linear models to estimate the cladodes photosynthetic area, the fresh and dry 

matter production by a non-destructive method. Significant variability in biomass production 

among the studied populations of OFI was found in this study. Some ecotypes showed low 

vegetative vigour and have reduced interest as material for vegetative propagation. Thus, 

the proper choice of cultivars or ecotypes for clonal propagation in new plantations either 

for animal feed or fruit production is a key factor. Within the 16 evaluated Portuguese OFI 

ecotypes it was possible to select four ecotypes with similar biomass production to the 

“Gialla” cultivar. They constitute an interesting plant material to initiate a breeding program 

through clonal selection, either for fodder and/or fruit production. Further studies are 

ongoing to evaluate the flowering, fruiting and nutritional characterization of the Portuguese 

ecotypes, using qualitative and quantitative approaches. 
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3.1 Summary 
 

Fruit production, as an elementary chemical characteristic of the fruit, was evaluated in 16 

O. ficus-indica Portuguese ecotypes cultivated in a marginal soil without tillage, in the 

second and third years after plantation. The Opuntia ficus-indica ecotypes were compared 

with the Italian cultivars “Bianca” and “Gialla”. Significant differences were found among the 

O. ficus-indica ecotypes in biomass-related parameters and fruit yield, and different groups 

were established. Two spineless ecotypes (OFI-12 and OFI-13) had highest biomass 

production, with 9.9 Mg ha-1 dry matter on average. This was not significantly different from 

the “Gialla” cultivar, which averaged 11.9 Mg ha-1, for a density of 2667 plants ha-1, in the 

third year after plantation. Among Portuguese ecotypes, the fruit yields ranged from 2.4 to 

10.1 Mg ha-1 fresh weight. The cultivars “Gialla” and “Bianca” had the highest fruit yield (13.8 

and 13.6 Mg ha-1 fresh weight, respectively). The “Gialla” cultivar and the group of ecotypes 

with orange pulp produced fruits had a larger size and weight compared to the “Bianca” 

cultivar and the group of ecotypes with white pulp.  
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3.2 Introduction 
 

The cactus pear, Opuntia ficus-indica (L.) Miller (OFI), is a long-domesticated cactus crop 

that is important in agricultural economies throughout arid and semiarid parts of the world. 

It is a species of the Cactaceae family, and was originally domesticated in Mexico (Griffith 

2004). The OFI has particular morphological and physiological characteristics that allow 

high water use efficiency. The specialized photosynthetic system in cacti, the Crassulacean 

acid metabolism (CAM), enables greater water to dry matter conversion than C3 and C4 

photosynthetic pathways (Nobel 1988; Han and Felker 1997). 

Prickly-pear cacti were brought to Europe by the first Spanish conquerors between the end 

of the 15th century and the beginning of the 16th century (Barbera et al., 1992). This species 

is an alternative to that cultured in the inland areas of the Mediterranean peninsula, where 

climate change is predicted to have a higher impact (Schröter et al., 2005).  

Italy (mainly Sicily), with 7400 ha and 78 000 tons is the main cactus pear fruit producer in 

Europe (Albano et al., 2015). At least 4000 ha of specialized plantations produce 60 000 

tons of fruits (Inglese et al., 2010), which corresponds to an average production of 15 tons 

per hectare. In Portugal, OFI is traditionally cultivated in non-irrigated conditions for edible 

fresh fruit production and the establishment of hedges, but recently some farmers have 

begun focusing on drip irrigated OFI orchards for fresh fruit production, with a specific plant 

layout and spacing design. In 2016, the area occupied by specialized plantations was 

approximately 820 ha, with a likely increase in the near future. The OFI local ecotypes 

display variability in plant vigour and biomass production (Reis et al., 2018), and some 

producers have been using them in orchard plantations for fruit production.  

According to Inglese et al. (2002), OFI plants begin to yield 2 to 3 years after planting, 

reaching their maximum potential 6 to 8 years after planting, and bearing for 25 to 30 years 

or even longer, depending on pruning and overall orchard management.   

The fruits of Opuntia spp. have nutraceutical benefits that are believed to stem from their 

antioxidant properties, which are related to ascorbic acid; phenolic compounds, including 

flavonoids and betalains; and a mixture of yellow betaxanthin and red betacyanin pigments 

(Galati et al., 2003; Stintzing et al., 2005). 

Plant genetic resources play a significant role in the improvement of cultivated plants; 

however, germplasm utility depends on its evaluation. To our knowledge, there is no data 

available regarding the fruit production potential from the Portuguese OFI ecotypes. The 

main objectives of this study were to: (i) evaluate 16 Portuguese OFI ecotypes for their fruit 

production and the elemental characteristics of the fruit in the second and third years after 

plantation, in a marginal soil with no-tillage farming, (ii) evaluate the same OFI ecotypes for 



Chapter 3   

52  Carlos Gaspar Reis 

their biomass production in the third year after plantation and (iii) compare the results with 

two improved Italian cultivars, “Bianca” and “Gialla”.  

 

3.3 Material and methods 
 

Plant material and experimental design 

The OFI plants were planted in a provenance trial at the School of Agriculture of Castelo 

Branco, Portugal (39º49' N; 7º27' W, elev. 365 m a.s.l.) in May 2012. Sixteen Portuguese 

ecotypes of O. ficus-indica and two improved Italian cultivars “Bianca” and “Gialla”, which 

were included for comparison purposes, were studied (Table 3.1). The plant spacing was 

1.5 × 2.5 m (2667 plants ha-1). The experimental design was a randomized complete block 

design, with three replicates and five plants in each replicate (2.5 × 1.5 × 5 = 18.75 m2). The 

provenance trial was planted in a marginal soil, with a reduced overall soil profile depth and 

low water holding capacity. The soil was granitic, with pH 5.9 and a low organic matter 

content. Nitrogen (N), phosphorus (P) and potassium (K) (40 kg ha-1 each) fertilizers were 

applied annually to reduce possible differences in soil fertility. Irrigation was applied during 

the summer period (approximately 60 mm). No tillage was used, and weeds were controlled 

by mechanical mowing. Cladode pruning and flower thinning were conducted, resulting in 

no more than six fruits on each fruit-bearing cladode. 

 

Table 3.1  Identification, origin and morphological description of the Opuntia ficus-indica (OFI) 
populations. 

Population Origin Altitude 
(m) 

Cladode 
shape Spines Petal 

colour 
Fruit 

Shape Pulp colour 

OFI-01 Alcochete 25 Elliptic Many Scarlet Elliptic White 
OFI-03 Cascais 185 Elliptic Intermediate Scarlet Elliptic White 
OFI-04 Portalegre 372 Ovate Few Yellow Ovoid Pale Yellow 
OFI-05 Arronches 293 Ovate Few Yellow Ovoid Orange 
OFI-08 Melides 29 Elliptic Intermediate Scarlet Elliptic White 
OFI-09 Santo André 25 Elliptic Intermediate Scarlet Elliptic White 
OFI-11 Albufeira 61 Elliptic Intermediate Scarlet Elliptic White 
OFI-12 Cacela-a-Velha 20 Ovate Few Yellow Ovoid Orange 
OFI-13 Monforte da Beira 260 Ovate Few Yellow Ovoid Orange 
OFI-14 Idanha-a-Velha 275 Ovate Few Yellow Ovoid Orange 
OFI-15 Ponte de Sor 125 Elliptic Intermediate Scarlet Elliptic White 
OFI-16 Coruche 76 Elliptic Intermediate Scarlet Elliptic White 
OFI-17 Castelo Branco 402 Elliptic Intermediate Scarlet Elliptic White 
OFI-18 Reg. Monsaraz 223 Elliptic Intermediate Scarlet Elliptic White 
OFI-19 Alvega 105 Elliptic Intermediate Scarlet Elliptic White 
OFI-20 Madeira 116 Ovate Few Yellow Ovoid Orange 
OFI “Bianca” Italy -- Elliptic Intermediate Scarlet Elliptic White 
OFI “Gialla” Italy -- Ovate Few Yellow Ovoid Orange 
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The Köppen-Geiger climate classification of Castelo Branco is Csa. The average annual 

temperature in 2014 and 2015 was 15.8 and 16.2 °C, respectively. The driest and hottest 

months were July and August, with mean temperatures close to 24 ºC and absolute values 

reaching 40 ºC. The coldest months were January, February and December, each of which 

had average temperatures below 10 ºC. The mean number of days with a temperature equal 

or below to 0°C was 30, with a range between 0 and -5.4 ºC. The winter rainfall was much 

higher than in summer, which is typical for a Mediterranean climate, with the highest 

precipitation in October, November and December. The accumulated precipitation in 2014 

and 2015 was 433 and 910 mm, respectively. These values were significantly different from 

the average over the last 30-years of 735 mm. The Opuntia. ficus-indica vegetative growth 

occurred during the time of the year when the precipitation was lower. 

   

Determination of pH, acidity, total soluble solids and dry matter of the fruit 

Three replicates, including ten fruits of each ecotype, were sampled. The peel was manually 

removed and the pulp was briefly homogenized in a kitchen-type blender.  Afterward, the 

pulp was separated from the seeds, portioned, and stored at −80 °C until analysis. After 

defrosting, the juice was centrifuged at 14 000 rpm for 10 min and the supernatant was 

used for the determination of pH, acidity, and total soluble solids (TSS, %). Total acidity was 

determined using a pH meter (after the titration of 10 ml of seedless pulp-juice against 0.01 

N sodium hydroxide (NaOH) to the end point (pH 8.2), and the results were expressed as 

percentage citric acid. The total dry matter (DM, %) was determined in three replicates of 

five fruits according to AOAC (2000). Triplicate readings were taken for each sample. 

 

Morphological characterization 

A basic morphological characterization of the plants was made using the following 

qualitative descriptors: cladode shape, number of spines, petal colour, fruit shape and pulp 

colour (Chessa and Nieddu 1997).  

 

Evaluation of fruit and biomass production 

All of the fruits from the 15 plants in each population were collected and weighed at full 

maturity by the end of August and beginning of September in 2014 and 2015 (780 and 1 

140 days after plantation, DAP), respectively. The fruit production per plant (FPp, kg), the 

number of fruits per plant (FNp) and the distribution of fruits among two weight classes 

(FWc) were evaluated for each of the 18 populations (Fig. 3.1). 

In April 2015 (1 050 DAP) the cladode number per plant (CNp) was recorded in the 15 

individuals from each of the 18 populations. The length (L, cm), maximum width (W, cm), 
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mean thickness (T, cm), and the diameter of the neck (D, cm), were measured in all 

cladodes of the 15 individuals per population. The biomass production assessment was 

made by a determination of the cladode area (CAp, m2), fresh weight (FWp, kg) and dry 

weight per plant (DWp, kg) using the following regression models (Reis et al., 2018): 

 

1) CAp = 48.13 + 0.75 (L × W), (R2 = 0.91) 

2) FWp = 36.91 + 0.64 (L × W × T), (R2 = 0.91) 

3) DWp = 8.49 + 0.49 (W × T × D), (R2 = 0.72) 

 

 

 

Figure 3.1  General view of the provenance trial in the third year after plantation (A) and a detail of 
O. ficus-indica fruits at commercial maturity (B). 

 

Statistical analysis 

The data was analysed using a one-way analysis of variance (ANOVA) followed by pairwise 

comparisons using the Tukey or the Games-Howell (in the absence of homoscedasticity) 

post hoc tests. The statistical significance was accepted, with a probability of a type I error 

of 5%, for both the omnibus test and the multiple comparisons. The statistical analyses were 

performed using SPSS Statistics software v.21 (IBM Corp., Armonk, NY, USA). 

 

3.4 Results and discussion 
 

Morphological characterization 

With regard to the morphological characteristics of the ecotypes, the cladode shape was 

elliptic or ovate, the number of spines could be categorized into one of three classes (many, 

intermediate or few), the flowers had two types of petal colour (scarlet or yellow), the fruit 

was elliptic or ovoid and the pulp colour was white, pale yellow or orange (Table 3.1). The 

ecotype OFI-01 corresponds to the Opuntia ficus-indica f. amyclaea (Ten.) Schelle due to 
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the high number of spines, while all the remaining ecotypes belong to the O. ficus-indica f. 

ficus-indica (L.) Miller according to previously published criteria (Kiesling, 1995).  

The ecotype OFI-04 differs from the others in the pulp colour, and in other morphological 

and chemical characteristics of the fruit. Assuming the criteria that an Opuntia variety could 

be defined as one that was indistinguishable from other strains based on the internal or 

external appearance of the fruit or overall plant morphology (Felker et al., 2005), the ecotype 

OFI-04 could be considered a new variety. 

 

Elementary chemical characteristic of the fruit 

The OFI populations were significantly different with regard to the DM content of the fruits, 

F (17, 34.24) = 31.61, p < 0.05, which varied between 13.8% (OFI-20) and 17.9% (OFI-16) 

(Table 3.2). The DM of the fruits of the “Bianca” and “Gialla” cultivars were 15.6 and 16.1%, 

respectively. The average DM of the fruit in the OFI ecotypes of the provenance trial was 

15.7%. The TSS content of the cactus pear varied from 13.05% (OFI-20) to 15.63% (OFI-

03) (Table 3.2) and significant differences were found among ecotypes, F (17, 36) = 29.20, 

p < 0.05. The pH varied from 6.03 (OFI-13) to 6.47 (OFI-16), and the acidity values ranged 

between 0.05 and 0.07% citric acid (Table 3.2).  

 

Table 3.2  Fruit dry matter (DM %), acidity (% citric acid), pH and total soluble solids (TSS %) from 
the juice of the different cactus pear populations. Values are means ± standard deviation (n = 30, 
each sample was analysed in triplicate). 

Population Fruit DM (%) 
Juice 

pH Acidity 
(% citric acid) 

TSS (%) 

OFI-01 15.87 ± 1.02 6.30 ± 0.00 0.05 ± 0.00 14.25 ± 0.28 
OFI-03 16.31 ± 0.21 6.30 ± 0.00 0.05 ± 0.00 15.63 ± 0.15 
OFI-04 16.53 ± 0.39 6.10 ± 0.00 0.05 ± 0.00 15.10 ± 0.10 
OFI-05 16.17 ± 0.24 6.10 ± 0.00 0.06 ± 0.00 15.12 ± 0.28 
OFI-08 15.92 ± 0.34 6.20 ± 0.00 0.07 ± 0.00 13.70 ± 0.15 
OFI-09 14.96 ± 0.41 6.27 ± 0.06 0.06 ± 0.00 14.10 ± 0.41 
OFI-11 14.72 ± 0.55 6.20 ± 0.00 0.06 ± 0.00 13.55 ± 0.35 
OFI-12 16.46 ± 0.38 6.17 ± 0.06 0.05 ± 0.00 15.07 ± 0.31 
OFI-13 15.98 ± 0.09 6.03 ± 0.03 0.06 ± 0.00 15.05 ± 0.28 
OFI-14 16.16 ± 0.74 6.20 ± 0.00 0.06 ± 0.00 14.65 ± 0.09 
OFI-15 15.25 ± 0.37 6.27 ± 0.06 0.05 ± 0.00 13.47 ± 0.08 
OFI-16 17.90 ± 0.85 6.47 ± 0.06 0.05 ± 0.00 15.10 ± 0.26 
OFI-17 14.77 ± 0.55 6.33 ± 0.06 0.05 ± 0.00 14.35 ± 0.30 
OFI-18 15.00 ± 0.15 6.20 ± 0.00 0.06 ± 0.00 13.23 ± 0.12 
OFI-19 15.41 ± 0.40 6.30 ± 0.00 0.06 ± 0.00 14.37 ± 0.34 
OFI-20 13.81 ± 0.29 6.17 ± 0.06 0.06 ± 0.00 13.05 ± 0.13 
OFI, “Bianca” 15.63 ± 0.34 6.40 ± 0.00 0.07 ± 0.00 13.72 ± 0.20 
OFI, “Gialla” 16.06 ± 0.44 6.10 ± 0.00 0.06 ± 0.00 14.67 ± 0.19 
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The acidity values were determined by titration and the results are equivalent to citric acid. 

Among all the OFI populations, the average pH and acidity values were 6.23 and 0.06% 

citric acid, respectively. We can assume that the observed variations in the TSS and the 

other variables we studied reflected differences at the genotype level, because the ecotypes 

were grown in a similar soil and climate conditions and the fruits were harvested when in 

the same physiological state. The maturity indices for cactus pear include TSS values 

between 13 and 17%, pH between 6.0 and 6.5, and titratable acidity between 0.03 and 

0.12% (Inglese and Gugliuzza 2002; Inglese et al., 2002). All the ecotypes investigated in 

the current study had TSS values higher than 13%. The pH and acidity values were in 

agreement with those reported in previous studies (Albano et al., 2015; Medina et al., 2007). 

 

Biomass production  

The largest cladode area, CAp, was 4.34 m2 in both OFI-13 and the “Gialla” cultivar, and 

the lowest value of 1.27 m2 was observed in the ecotype OFI-18 (Fig. 3.2).  

The “Gialla” cultivar had the highest fresh weight per plant, FWp, (40.79 kg) followed by the 

ecotypes OFI-13 and OFI-12 (37.32 and 37.19 kg, respectively), and the lowest value was 

found in the ecotype OFI-18 (11.21 kg) (Fig. 3.2). The “Gialla” cultivar had the highest dry 

weight per plant, DWp (4.48 kg), followed by the ecotypes OFI-13 and OFI-12 (3.84 and 

3.62 kg, respectively), and the lowest value was observed again in ecotype OFI-18 (1.12 

kg) (Fig. 3.2). 

The one-way ANOVA revealed significant differences among the 18 ecotypes for the three 

variables (CAp, FWp and DWp) (Table 3.3). The Games–Howell post hoc test revealed 

significant differences among the OFI populations, with the group including the “Gialla” 

cultivar and the OFI-04, OFI-05, OFI-12, OFI-13 and OFI-14 ecotypes having a higher 

photosynthetic area compared to the other populations. For both the FWp and DWp, the 

Games–Howell post hoc tests revealed significant differences among the OFI populations, 

with the group constituted by the “Gialla” cultivar and the ecotypes OFI-12, OFI-13 and OFI-

14 outperforming the other populations.  

The dry weight had a significant correlation with the CAp (r2 = 0.984) and FWp (r2 = 0.993), 

while the FPp had a significant correlation with the FNp (r2 = 0.941).  

A DM productivity of 11.95 Mg ha-1, for a density of 2 667 plants ha-1 (0.27 plants m-2), in 

the third year after planting, was obtained in the “Gialla” cultivar, based on the biomass of 

the cladodes.  The ecotypes OFI-13 and OFI-12 did not differ significantly from the “Gialla” 

cultivar and a DM productivity of 10.24 and 9.65 Mg ha-1 was observed under the same 

conditions, respectively. Due to their spineless nature, they could be used to start a breeding 

program to deploy material for animal feeding or young cladode production. 
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Figure 3.2  Cladode area per plant (A) and fresh and dry weight per plant (B) in the 18 populations 
of Opuntia ficus-indica (OFI) studied, 1050 days after planting (year 3) (n = 15 plants per population). 
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Table 3.3  Welch’s analysis of variance (ANOVA) statistic for the area of cladodes (CAp, m2), fresh 
weight (FWp, kg) dry weight (DWp, kg), fruit number (FNp) and fruit production (FPp) per plant), in 
the third year after planting. 

Biomass and fruit production 
parameters 

Welch’s 
statistic 

df1 df2 Sig. 

Area of cladodes per plant (CAp) 31.98 17 92.85 p < 0.05 

Fresh weigh per plant (FWp) 40.63 17 92.84 p < 0.05 

Dry weight per plant (DWp) 29.23 17 92.82 p < 0.05 

Fruit number per plant (FNp) 35.26 17 13.29 p < 0.05 

Fruit production per plant (FPp) 28.54 17 13.38 p < 0.05 

 

 

Fruit production 

The number of fruits and fruit production per plant (kg) in the second and third years after 

plantation are shown in Fig. 3.3. There was a marked difference in the number of fruits and 

in the production of fruit per plant when comparing years 2 and 3. In year 2, the fruit 

production was almost irrelevant. 

The number of fruits per plant ranged from 0.5 (OFI-14) to 8.5 (“Bianca” cultivar), and from 

11 (OFI-14) to 68 (“Bianca” cultivar) in years 2 and 3, respectively (Fig. 3.3). Statistically 

significant differences were found among populations for the number of fruits per plant 

(Table 3.3). In the third year after planting, the Games–Howell post hoc test indicated 

significant differences among the OFI populations. The group including the “Gialla” and 

“Bianca” cultivars and the OFI-08. OFI-15 and OFI-19 ecotypes, had a higher number of 

fruits per plant than the remaining populations. 

The ‘Gialla’ and ‘Bianca’ cultivars had the highest production of fruit per plant, with 5.2 and 

5.1 kg produced in the third year after plantation, respectively (Fig. 3.3). In the group with 

the 16 OFI ecotypes, the lowest values of fruit production per plant were found in the OFI-

03 (0.9 kg plant-1) and OFI-14 (1.0 kg plant-1), and the highest values were found in the OFI-

08 (3.8 kg plant-1) and OFI-13 (2.9 kg plant-1). The one-way ANOVA revealed the existence 

of significant differences among the 18 populations for the production of fruit per plant 

(Table 3.3). The Games–Howell post hoc test showed significant differences among the 

OFI populations. The group constituted by the two improved cultivars (“Gialla” and “Bianca”) 

and the OFI-08 ecotype did not differ significantly and outperformed the remaining 

populations concerning the fruit production per plant. 

The distribution of the fruit across two size categories of fresh weight, in the third year after 

plantation, is displayed in Fig. 3.4. The populations with orange pulp fruits (OFI-5, OFI-12, 

OFI-13, OFI-14, OFI-20 and the “Gialla” cultivar) had larger fruits than the populations with 

white pulp fruits (OFI-01, OFI-03, OFI-8, OFI-09, OFI-11, OFI-15, OFI-16, OFI-17, OFI-18, 
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OFI-19 and the “Bianca” cultivar). In the latter group, more than 60% of fruits had a fresh 

weight lower than 80 g.  

 

 

 

 
Figure 3.3  Number of fruits per plant (A) and fruit production per plant (B) in the 18 populations of 
Opuntia ficus-indica (OFI) studied, in the second and third year after planting. 
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Figure 3.4  Distribution of fruits of Opuntia ficus-indica (OFI) populations across two weight 
categories, according to fresh weight, in the third year after planting. 

 

The Italian “Gialla” and “Bianca” cultivars had the highest fruit yields compared to the 

Portuguese ecotypes. A fruit production of 5.2 kg plant-1 (13.9 Mg ha-1 fresh fruit for a 

density of 2667 plants ha-1, 0.27 plants m2) in the third year after planting was obtained in 

the “Gialla” cultivar. The observed values were slightly higher than those previously reported 

by Caloggero and Parera (2004) who obtained a production of 3.7 kg plant-1 in the third 

year after plantation for the “Gialla” cultivar. A fresh weight/dry weight ratio of 6.2 was 

observed for the fruit in this cultivar, in the current experiment. With regard to the cladode 

biomass and fruit production, a total DM productivity of 16.13 Mg ha-1 was obtained.  The 

ecotype OFI-08 had a fruit production of 10.1 Mg ha-1 (3.8 kg plant-1), while the ecotype 

OFI-13 had the highest production among the ecotypes with orange pulp fruits of 7.73 Mg 

ha-1 (2.9 kg plant-1). 

This is the first report of fruit yield and quality measurements from a field trial of Portuguese 

ecotypes of O. ficus-indica. The OFI local ecotypes displayed variability in biomass and fruit 

production, as well as in the shape of the cladodes, the presence or absence of spines, the 

corolla colour and the pulp colour.  

The main aim of the current study was the evaluation of a group of ecotypes for fruit 

production in the first years after plantation and the plant density (2 667 plants ha-1) used 

was higher the one usually used in commercial orchards. In Italy, the plant spacing of the 

orchards for fruit production ranges from 4 × 6 m (416 plants ha-1) to 5 × 7 m (290 plants 

ha-1). Usually, the plants begin to yield fruits 2 to 3 years after planting and achieve their 

maximum production 6 to 8 years after planting (Inglese et al., 2002).  
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The OFI-08, a white pulp ecotype, had the highest fruit production among the studied 

ecotypes, however 77% of the total production had a small size and weight and was 

unsuitable for commercialization. White-flesh fruits are very sensitive to postharvest 

handling and to specific pests, such as Ceratitis capitate (Inglese et al., 2002).  

In Italy, the fruits are sorted according to their size and weight. There is a classification 

scheme, with extra-large fruits being over 160 g, first class being 120–160 g, second class 

being 80–100 g and third class being below 80 g (Barbera et al., 1992).  According to Inglese 

et al. (2002), the size of fruit to export must exceed 120 g and should have a minimum 13% 

sugar content. Under the experimental conditions in the current study, the “Gialla” cultivar 

and the group of ecotypes with orange pulp produced fruits had a larger size and weight, 

and in all of them the sugar content was above 13%. In this group, the ecotype OFI-13 was 

the most promising because the majority (87.4%) of its fruits achieved the minimum size 

and weight for commercialization. The best-appreciated fruits by international markets have 

a yellow-orange flesh, such as the “Gialla” cultivar. Fruits with white or greenish flesh are 

important only for regional or local markets, and their international trade is not relevant 

(Liguori and Inglese, 2015).  

The Opuntia ficus-indica is a multifunctional plant, even if cultivated for the main purpose of 

fruit production. The cladodes from pruning can be used as forage nutrition for ruminants 

and ultimately cactus pear plantations can contribute to the carbon stock in perennial 

structures. 

A ranking of Portuguese accessions of OFI was made according to the biomass and fruit 

production per plant. Three OFI ecotypes did not differ significantly from cv. “Gialla” in terms 

of biomass production.  In terms of fruit production, the cultivars “Gialla” and “Bianca” clearly 

outperformed the Portuguese ecotypes, reflecting their origin as improved plant material. 

Among the 16 Portuguese OFI populations, a variation in fruit yields and fruit distribution 

across the weight categories was found. The current study showed that OFI is a valid crop 

for marginal soils and could be cultivated in a non-tillage system, provided that high yield 

cultivars and appropriate agronomic practices, i.e. pruning, fruit thinning, fertilization and 

irrigation are used.  

The chemical composition as well sensory attributes are determinant in fruit quality. 

Information on the sensorial attributes of the cactus pear fruit should be further investigated. 

Therefore, the constitution, training, and validation of a panel selection should be carried 

out in order to build the sensory profile of the different cultivars and ecotypes. 
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4.  Nutritional value of Opuntia ficus-indica 
cladodes from Portuguese ecotypes 
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Opuntia ficus-indica cladodes from Portuguese ecotypes. Bulgarian Journal of 
Agricultural Science, 22(1), 40-45. http://www.agrojournal.org/22/01-07.pdf 
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4.1 Summary 
 

The use of Opuntia ficus-indica cladodes as forage for ruminants has been very important 

in the semi-arid and arid regions of the world. Opuntia ficus-indica cladodes can be fed to 

small ruminants especially during periods of the year characterized by low quality and 

quantity of pasture. In Mediterranean regions, such as South Portugal, quantity and quality 

of pasture are satisfactory during the rainy season. However, in critical times of the year, 

the shortage and low nutritive value of forage decreases ruminant milk and meat production. 

The aim of this study was to evaluate the nutritional profile of cladodes from five different 

spineless Portuguese ecotypes of O. ficus-indica compared with the “Gialla” cultivar and to 

evaluate their potential use as a feed for ruminants. Among populations’ significant 

differences were found in crude protein and ash content, and different groups were 

unfolded. In general, O. ficus-indica had low contents of dry matter (DM), crude protein (CP) 

and neutral detergent fibre (NDF) and high contents of non-fibre carbohydrates (NFC) and 

metabolizable energy (ME). Given the importance that DM, CP and NDF have for ruminant 

nutrition and feeding, we conclude that O. ficus-indica can be used to feed small ruminants 

provided that animals have access to dry forage and a feed source with a high CP content. 

Used as fodder, O. ficus-indica seems to be an interesting feed option for small ruminants 

in the driest period of the year. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Nutritional value of Opuntia ficus-indica cladodes 

Carlos Gaspar Reis  67 
 

4.2 Introduction 
 

Opuntia ficus-indica (L.) Miller is a species from the Cactaceae family with a centre of origin 

and domestication in Mexico. It is widely distributed in other regions of the world, such as 

Africa, Australia and the Mediterranean basin, where it grows in the most diverse ecological 

conditions (Sáenz et al., 2006).  

Introduction of this species into the Iberian Peninsula probably occurred at the end of the 

15th century, after the discovery of America, spreading throughout the Mediterranean basin 

(Le Houerou, 1996; Kiesling, 1998; Anderson, 2001). In Portugal, O. ficus-indica exhibits 

ruderal behaviour and is usually found at the edges of roads and paths. Cultivated for its 

edible fruits and as a hedge plant, this species is widely naturalized (Reis et al., 2014). 

The two forms of the species, O. ficus-indica f. inermis Weber and O. ficus-indica f. 

amyclaea (Ten.) Schelle, are found in Portugal, as well as intermediate types according to 

spine presence. In Portugal, as in other Mediterranean countries, inland areas are under 

severe drought, particularly during extensive summers, and global warming is expected to 

deeply affect these areas in the near future. Due to its morpho-physiological characteristics 

and multiple economic uses, O. ficus-indica represents an alternative crop for these regions 

The use of O. ficus-indica (OFI) cladodes as forage for ruminants has been very important 

in semi-arid and arid regions, where long drought periods are common with high summer 

and low winter temperatures. These factors cause both low forage production and 

availability. In Mediterranean regions, such as South Portugal, the quantity and quality of 

pasture is satisfactory during the rainy season. However, in critical times of the year, the 

shortage and low nutritive value of forage decreases ruminant milk and meat production 

The cactus pear can play a stabilizing role in agriculture, as it can prevent stock losses 

during droughts, save natural grasslands from overgrazing, increase farm income and 

alleviate poverty in rural areas. Although it has been considered to be poor in terms of crude 

fibre and crude protein, O. ficus-indica is considered to be rich in in-vitro digestibility and 

water content and is often the only source of green forage in the dry season (Silva and 

Santos, 2007). Additionally, the spineless O. ficus-indica plants have good palatability (Ben 

Salem and Ennouri, 2013). 

A common strategy used for improving ruminant performance in Mediterranean and 

semiarid regions is adequate feed management during periods of scarce forage. In some 

studies, cactus pears have been used as forage to feed sheep (Ben Salem and Smith, 

2008; Rekik et al., 2010; Costa et al., 2012), dairy goats (Costa et al., 2009; Andrade-

Montemayor et al., 2011) and dairy cows (Silva and Santos, 2007; Vilela et al., 2010). 
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Other authors have evaluated cactus pear supplementation and its contribution as a source 

of water for sheep (Tegegne et al., 2007) and dairy goats (Costa et al., 2009).  

There is a lack of information regarding the nutritional value of cladodes from different 

Portuguese ecotypes of O. ficus-indica. The aim of this study was to evaluate the nutritional 

profile of these cladodes compared with the “Gialla” cultivar (cv.) and to evaluate their 

potential use as a feed for ruminants. The results were compared among the studied 

populations and with previous studies. 

 

4.3 Materials and Methods 

 

Plant material and experimental design 

On April 2012, mature OFI cladodes were collected from fifteen individuals of five different 

ecotypes growing in the central and southern regions of Portugal (Table 4.1). The fifteen 

cladodes of each ecotype were single planted in May 2012 at the Scholl of Agriculture of 

Castelo Branco, Portugal (39º 49’ 17.00’’ N; 7º 27’ 41.00’’ W, elev. 365 m). The “Gialla” cv. 

was included for comparison. All of the plants were spineless cacti (O. ficus-indica).  

 

Table 4.1  Identification of the O. ficus-indica populations used in the study of the nutritional value of 
the cladodes. 

Ecotype/cultivar Origin Altitude (m) 

OFI-04 Portalegre 372 

OFI-05 Arronches 293 

OFI-12 Cacela-a-Velha 20 

OFI-13 Monforte da Beira 260 

OFI-14 Idanha-a-Velha 275 

OFI, cv.”Gialla” Italy ------ 

 

The experiment consisted of a randomized complete block design with three replicates, 

each replicate consisting of a row with 5 plants. The plant spacing was 1.5 x 2.5 m (2,667 

plants ha-1). The experiment was conducted in a granitic soil type, with pH 6.1 and a low 

organic matter content. Nitrogen, phosphorus and potassium fertilizers were applied at a 

rate of 40 kg ha-1 each to reduce possible differences in soil fertility. No irrigation and 

notillage were used. Weeds were controlled by mechanical mowing each three months. 
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The Köppen-Geiger climate classification for Castelo Branco is Csa. The average annual 

temperature in Castelo Branco is 15.9 °C. July and August are the driest and warmest 

months, with average temperatures above 24 ºC. The months of December, January and 

February are the coldest, with average temperatures below 10 ºC. Approximately 783 mm 

of precipitation fall annually. In winter, there is much more rainfall than in summer. Most 

precipitation occurs in December, with an average of 124 mm. 

 

Sampling and laboratory analyses 

One sample from each of the three replicates was collected in September 2013 (at the end 

of the dry season). Each sample was a composite of one-year-cladodes randomly 

harvested from five individuals of each ecotype. In the laboratory, cladodes were cut into 

25 cm2 pieces using a sharp knife. All of the cladode pieces were cut into halves to facilitate 

drying and were dried to constant mass in a force draught oven at 65 ºC (± 5 ºC) for 72 

hours. After determining moisture, cladode pieces were passed through a laboratory mill 

with a one millimetre sieve. The dried plant material was stored in tightly sealed plastic 

bottles until further chemical analysis. 

Each cladode sample was analysed for total dry matter (DM), total ash (Ash), crude protein 

(CP) and ether extract (EE) according to AOAC (2000), and for neutral detergent fibre 

(NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) according to the 

procedures described by Van Soest et al. (1991). The CP was calculated by multiplying 

the percent nitrogen by a factor of 6.25 (Ruddell et al., 2002). 

Hemicellulose was determined by subtracting NDF – ADF, and cellulose was determined 

by subtracting ADF – ADL. Non fibre carbohydrates (NFC) were calculated by difference 

whereby the sum of the percentages of CP, EE, Ash and NDF were subtracted from 1000 

[NFC (g kg-1 DM) = 1000 – (CP + EE + Ash + NDF)] (NRC, 2001). 

Total digestible nutrients (TDN) were calculated with the prediction equation described by 

Bath and Marble (1989) cited by Coppock (1997) [TDN% = 82.38 – (0.7515 × ADF%)]. 

Metabolizable energy (ME) for ruminants was calculated with the prediction equation 

proposed by NRC (2007) [ME (MJ kg-1 DM) = (TDN% × 3.6)/100 × 4.184]. Compared with 

the original equation, this formula includes a DM × 4.184 factor that accounts for the 

conversion of ME data from Mcal to MJ.  

 

Statistical analysis  

The data were subjected to analysis of variance (ANOVA) using the General Linear Model 

available in IBM SPSS version 21 (IBM Corp., Armonk, NY, USA), and the Tukey test was 

used to detect significant differences (P < 0.05) among treatment means.  
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4.4 Results and discussion 
 

The average nutritional value of the cladodes from the different O. ficus-indica populations 

studied is presented in Table 4.2. 

 

Table 4.2  Nutritional value on a dry matter basis of the Opuntia ficus-indica cladodes from the 
different populations studied. 

 Nutritional 
parameters 

Populations 

OFI-04 OFI-05 OFI-12 OFI-13 OFI-14 cv. “Gialla” Total 

DM (%) 
12.85 
±1.62 

14.58 
±1.14 

14.10 
±0.67 

13.03 
±0.86 

13.74 
±0.86 

14.17 
±1.43 

13.75ns 
±1.24 

ME (MJ kg-1 DM) 11.16 
±0.20 

11.26 
±0.42 

11.27 
±0.08 

11.17 
±0.15 

11.38 
±0.16 

11.24 
±0.13 

11.24ns 
±0.22 

TDN (%) 73.79 
±1.324 

74.41 
±2.78 

74.48 
±0.56 

73.83 
±1.01 

75.20 
±1.08 

74.31 
±0.83 

74.34ns 
±1.43 

CP (g kg-1 DM) 69.94b 
±1.13 

72.57ab 
±7.37 

82.52a 
±9.55 

78.44ab 
±7.74 

68.01b 
±5.11 

72.45ab 
±8.11 

73.99 
±8.26 

EE (g kg-1 DM) 15.71 
±1.24 

15.65 
±2.95 

14.43 
±1.01 

13.58 
±1.91 

14.10 
±1.51 

14.70 
±0.62 

14.70ns 
±1.77 

NDF (g kg-1 DM) 198.99 
±13.35 

183.85 
±37.66 

186.05 
±28.90 

198.05 
±31.75 

164.67 
±16.12 

179.30 
±13.23 

185.15ns 
±26.33 

Hem (g kg-1 DM) 84.65 
±18.94 

77.78 
±4.33 

80.97 
±24.50 

84.26 
±21.54 

69.19 
±17.89 

71.85 
±13.98 

78.12ns 
±17.76 

ADF (g kg-1 DM) 114.35 
±17.62 

106.06 
±36.97 

105.08 
±7.39 

113.79 
±13.43 

95.49 
±14.32 

107.45 
±11.00 

107.04ns 
±18.99 

Cel (g kg-1 DM) 
105.82 
±19.65 

96.83 
±32.06 

94.30 
±6.03 

105.54 
±12.04 

88.33 
±11.81 

98.33 
±9.83 

98.19ns 
±17.33 

ADL (g kg-1 DM) 
8.52 

±2.49 
9.24 

±5.13 
10.79 
±2.69 

8.25 
±1.89 

7.16 
±2.65 

9.12 
±2.09 

8.85ns 
±3.01 

NFC (g kg-1 DM) 
629.63 
±23.32 

641.77 
±42.32 

636.87 
±19.95 

612.38 
±50.98 

665.58 
±13.05 

641.70 
±15.55 

637.99ns 
±32.87 

Ash (g kg-1 DM) 
85.73ab 
±11.57 

86.17ab 
±5.86 

80.12b 
±4.98 

97.55a 
±11.48 

87.63ab 
±5.17 

91.85ab 
±8.25 

88.18 
±9.49 

a b – Means with different superscripts in the same line differ significantly (P<0.05); values are means ± standard 
deviation; ns –P>0.05; DM – dry matter; ME – metabolizable energy; TDN – total digestible nutrients; CP – 
crude protein; EE – ether extract; NDF – neutral detergent fibre; Hem – hemicellulose; ADF – acid detergent 
fibre; Cel – cellulose; ADL – acid detergent lignin; NFC – non fibre carbohydrates 

 

No statistically significant difference was found among the DM values of the different 

samples. Considering the DM values reported for cacti by NRC (2007) (26%) and Cordova-

Torres et al. (2009) (15.5 to 16.5%), the average DM content of the different OFI populations 

studied (13.75% ± 1.24) was low. The highest DM content (14.58% ± 1.14) was observed in 

the OFI-05 ecotype, and the lowest DM content was observed in the OFI-04 ecotype (12.85% 

± 1.62). However, our results were higher than those reported by Mciteka (2008) (9.13% DM), 

Fuentes-Rodriguez (1997) (11.3% DM), Rekik et al. (2010) (9.7% DM) and Tegegne et al. 

(2007) (12.2% DM) and were within the range of values reported by Andrade-Montemayor 

(2011) (8 to 15% DM), Silva and Santos (2007) (7.62 to 14.4% DM) and Costa et al. (2009) (10 

to 14% DM). The differences may be explained by variations in the age of the analysed 
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cladodes, the harvest time, and genotype-level variations. Dry matter content tends to 

increase with the age of the cladode (Tegegne, 2001). The high water content of Opuntia 

cladodes makes them a bulky feed and therefore difficult to transport over long distances. 

However, the high water content in cactus pears represents an important alternative to satisfy 

the water requirements of animals in arid and semi-arid regions, where water may be a 

limiting factor for animal production. The water intake of dairy goats was markedly reduced 

when cactus pears were part of their diet (Costa et al., 2009). Nefzaoui and Ben Salem 

(1998) showed that water intake from freely available water sources was zero when the daily 

cladode consumption by sheep was approximately 300 g of dry matter. 

There were no significant differences (P > 0.05) in ME and TDN contents among the different 

OFI ecotypes and the “Gialla” cv. (Table 4.2). The ME content varied between 11.16 MJ kg-1 

DM (± 0.20) (OFI-04 ecotype) and 11.38 MJ kg-1 DM (± 0.16) (OFI-14 ecotype), and the TDN 

content varied between 73.79% (± 1.324) (OFI-04 ecotype) and 75.20% (± 1.08) (OFI-14 

ecotype). Our results for ME were higher than those reported by NRC (2007) (9.62 MJ kg-1 

DM) and Costa et al. (2012) (9.2 MJ kg-1 DM); our results for TDN were also higher than the 

reported range of 60.8%-68.6% (NRC, 2007; Vilela et al., 2010; Costa et al., 2012). 

The OFI populations studied showed statistically significant differences in CP content (P < 

0.05), which varied between 68.01 g kg-1 DM (± 5.11) (OFI-14 ecotype) and 82.52 g kg-1 DM 

(± 9.55) (OFI-12 ecotype) (Table 4.2). 

The CP content of the “Gialla” cv. was 72.45 g kg-1 DM (± 8.11). The average CP content of 

the different OFI populations analysed (73.99 g kg-1 DM ± 8.26) was higher than that 

reported by Magalhães (2004) (51.4 g kg-1 DM), NRC (2007) (50.0 g kg-1 DM), Tegegne et 

al. (2007) (50.6 g kg-1 DM), Mciteka (2008) (55.4 g kg-1 DM), Villegas-Diaz et al. (2008) (59.0 

g kg-1 DM), Abidi et al. (2009) (38.0 g kg-1 DM), Rekik et al. (2010) (44.0 g kg-1 DM), and Vilela 

et al. (2010) (44.0 g kg-1 DM). These results may be due to the age of the cladodes used in 

our study (one year old cladodes) or to differences in soil nitrogen availability. Teles et al. 

(1997) reported a CP content of 110.3 g kg-1 DM, a much higher value than ours. According 

to Ben Salem and Smith (2008), increasing the CP content of OFI cladodes used to feed 

animals should be considered in breeding programs. Nitrogen fertilization is another 

strategy to reach the latter objective. 

The average EE content of the different OFI ecotypes and the “Gialla” cv. was 14.70 g kg-1 

DM (± 1.77), and it varied between 13.58 g kg-1 DM (±1.91) (OFI-13 ecotype) and 15.71 g kg-

1 DM (± 1.24) (OFI-04 ecotype). Several authors reported EE values between 21  g kg-1 DM 

and 23 g kg-1 DM (NRC, 2007; Mciteka, 2008; Vilela et al., 2010), which were higher than 

those determined by us and by Tegegne et al. (2007) (11.9 g kg-1 DM). 
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The NDF content varied from 164.67 g kg-1 DM (± 16.12) to 198.99 g kg-1 DM (± 13.35) for 

the ecotypes OFI-14 and OFI-04, respectively (Table 4.2). The average NDF content of the 

different OFI populations analysed (185.15 g kg-1 DM ± 26.33) was lower than that reported 

by NRC (2007) (290.0 g kg-1 DM), Tegegne et al. (2007) (238.8 g kg-1 DM), Vilela et al. (2010) 

(314.0 g kg-1 DM), Abidi et al. (2009) (251 g kg-1 DM), Rekik et al. (2010) (306 g kg-1 DM), 

Villegas-Diaz et al. (2008) (435 g kg-1 DM), Andrade-Montemayor et al. (2011) (460 g kg-1 

DM), and Costa et al. (2012) (312 g kg-1 DM). This difference may be related to the young 

age of the cladodes used in the present study, which have lower NDF contents in the cell wall. 

The ADF content of the different OFI cladodes varied between 95.49 g kg-1 DM (± 14.32) 

(OFI-14 ecotype) and 114.35 g kg-1 DM (± 17.62) (OFI-04 ecotype) (Table 4.2). Some authors 

reported higher ADF values of O. ficus-indica ranging between 136.6 g kg-1 DM and 287 g kg-

1 DM (Magalhães, 2004; NRC, 2007; Tegegne et al., 2007; Mciteka, 2008; Villegas-Diaz et 

al., 2008; Cordova-Torres et al., 2009; Vilela et al., 2010; Andrade-Montemayor et al., 2011; 

Costa et al., 2012). Both the NDF and ADF contents indicate that O. ficus-indica cladodes 

cannot be regarded as a sole roughage source. 

The average hemicellulose content in the present study was 78.12 g kg-1 DM (± 17.76) (Table 

4.2). The hemicellulose content varied from 69.19 g kg-1 DM (± 17.89) (ecotype OFI-14) to 

84.65 (± 18.94) (ecotype OFI-04). These results were lower than the value reported by Costa 

et al. (2012) (95 g kg-1 DM) and higher than the value reported by NRC (2007) (60.0 g kg-1 

DM). The average cellulose content (98.19 g kg-1 DM ± 17.33) was lower than 131.8 g kg-1 

DM (Tegegne et al., 2007) and 123 g kg-1 DM (Vilela et al., 2010). The cellulose content of 

the different OFI populations varied between 88.33 g kg-1 DM (± 11.81) (OFI-14 ecotype) and 

105.82 g kg-1 DM (± 19.65) (OFI-04 ecotype) (Table 4.2). 

The highest ADL content was recorded for the OFI-12 ecotype (10.79 g kg-1 DM ± 2.69) and 

the lowest for the OFI-14 ecotype (7.16 g kg-1 DM ± 2.65) (Table 4.2). Our results were lower 

than the values reported by Tegegne et al. (2007) (30.6 g kg-1 DM) and Vilela et al. (2010) 

(32 g kg-1 DM). 

The NFC content varied from 612.38 g kg-1 DM (± 50.98) (OFI-13 ecotype) to 665.58 g kg-1 

DM (± 13.05) (OFI-14 ecotype) (Table 4.2). These results were higher than the values 

reported in other studies, which varied between 469 g kg-1 DM and 530 g kg-1 DM 

(Magalhães, 2004; NRC, 2007; Tegegne et al., 2007; Vilela et al., 2010; Costa et al., 2012). 

There were significant differences (P < 0.05) in ash content among the different OFI 

populations (Table 4.2). The ash content varied between 80.12 g kg-1 DM (± 4.98) and 97.55 

g kg-1 DM (± 11.48). Several authors reported that the ash content of Opuntia cladodes may 

vary between 131 g kg-1 DM and 255 g kg-1 DM (Fuentes-Rodriguez, 1997; NRC, 2007; 

Tegegne et al., 2007; Mciteka, 2008; Andrade-Montemayor et al., 2011). 
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Analysing the obtained results we conclude that among the studied Portuguese populations 

of O. ficus-indica, the OFI-12 ecotype is the most suitable for feeding ruminants. The 

cladodes of this ecotype are spineless and have higher CP levels compared with the other 

Portuguese ecotypes as well as the “Gialla” cv. In general, O. ficus-indica had low contents 

of DM, CP and NDF and high contents of NFC and ME. Given the importance that DM, CP 

and NDF have for ruminant nutrition and feeding, we conclude that O. ficus-indica can be 

used to feed small ruminants provided that animals have access to dry forage and a feed 

source with a high CP content 

Used as fodder, O. ficus-indica seems to be an interesting feed option for small ruminants 

in the driest period of the year, when there is low quality and quantity of pasture. If the main 

purpose of cladode production is roughage for ruminant feeding, potential breeding 

programs should focus on the OFI-12 ecotype and its CP and NDF contents. For regions 

were the main purpose of cacti growth is fruit production, cactus forage may be an important 

by-product of pruning that can help feed livestock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4   

74  Carlos Gaspar Reis 

4.5 References 

 

Abidi, S., Ben Salem, H., Vasta, V. & Priolo, A. (2009). Supplementation with barley or 
spineless cactus (Opuntia ficus-indica f. inermis) cladodes on digestion, growth and 
intramuscular fatty acid composition in sheep and goats receiving oaten hay. Small 
Ruminant Research, 87, 9-16. 

Anderson, E.F. (2001). The cactus family. Timber Press, Portland, Oregon, USA. 

Andrade-Montemayor, H.M., Cordova-Torres, A.V., García-Gasca, T. & Kawas, J.R. 
(2011). Alternative feed for small ruminants in semiarid zones, the case of mesquite 
(Prosopis laevigata spp.) and nopal (Opuntia spp.). Small Ruminant Research, 98, 83-
92. 

AOAC, (2000). Official methods of analysis (17th ed.). Gaithersburg, Maryland, USA, 
Association of Official Analytical Chemists.  

Ben Salem, H. & Ennouri, K. (2013). Nutritive value and palatability of cladodes of spiny 
cactus (Opuntia amyclaea) or spineless cactus (Opuntia ficus-indica f. inermis) 
measured on adapted and non-adapted goats. Acta Horticulturae, 995, 325-329. 

Ben Salem, H. & Smith, T. (2008). Feeding strategies to increase small ruminant production 
in dry environments. Small Ruminant Research, 77, 174-194. 

Coppock, C.E. (1997). Adjusting rations to forage quality, and suggested criteria to use in 
buying forages. In Western dairy management conference, Las Vegas, Nevada, USA, 
13-15 March, pp. 137-143. 

Cordova-Torres, A., Gutierrez-Berroeta, L., Kawas, J.R., García-Gasca, T., Aguilera-
Barreiro, A., Malda, G. & Andrade-Montemayor, H.M. (2009). El nopal (Opuntia fícus-
indica) puede ser una alternativa de suplementación para caprinos en regiones 
semiáridas: efecto del tamaño o madurez de la penca en la digestibilidad in vivo y 
composición. In VI Congreso Latinoamericano de la Asociación de Especialistas en 
Pequeños Rumiantes y Camelidos Sudamericanos. XXIV Reunión de la AMPCA, 
Querétaro, México, pp. 143-151. 

Costa, R.G., Filho, E.M.B, Medeiros, A.N., Givisiez, P.E.N., Queiroga, R.C.R.E. & Melo, 
A.S.S. (2009). Effects of increasing levels of cactus pear (Opuntia ficus-indica L. Miller) 
in the diet of dairy goats its contribution as a source of water. Small Ruminant 
Research, 82, 62-65.  

Costa, R.G., Treviño, I.H., Medeiros, G.R., Pinto, T.F. & Oliveira, R.L. (2012). Effects of 
replacing corn with cactus pear (Opuntia ficus-indica Mill.) on the performance of Santa 
Inês lambs. Small Ruminant Research, 102, 13-17. 

Fuentes-Rodriguez, J. (1997). A comparison of the Nutritional Value of Opuntia and Agave 
Plants for Ruminants. Journal of the Professional Association for Cactus Development, 
2, 20-24. 

Kiesling, R. (1998). Origen, domesticación y distribución de Opuntia ficus-indica. Journal of 
the Professional Association for Cactus Development, 3, 50-59.  

Le Houérou, H.N. (1996). The role of cacti (Opuntia spp.) in erosion control, land 
reclamation, rehabilitation and agricultural development in the Mediterranean Basin. 
Journal of Arid Environments, 33, 135-159. 

Magalhães, M.C., Véras, A.S.C., Ferreira, M.A., Carvalho, F.F.R., Cecon, P.R., Melo, J.N., 
Melo, W.S. & Pereira, J. T. (2004). Inclusão de cama de frango em dietas à base de 
palma forrageira (Opuntia ficus-indica Mill) para vacas mestiças em lactação. 1. 
Consumo e produção. Revista Brasileira de Zootecnia, 33 (6), 1897-1908. 



Nutritional value of Opuntia ficus-indica cladodes 

Carlos Gaspar Reis  75 
 

Mciteka, H. (2008). Fermentation characteristics and nutritional value of Opuntia ficus-
indica var. fusicaulis cladode silage. Submitted in partial fulfillment of the requirements 
for the degree Magister Scientiae Agriculturae. Bloemfontein: University of the Free 
State. 

Nefzaoui, A. & Ben Salem, H. (1998). Spineless cacti: a strategic fodder for West Asia and 
North Africa arid zones. In Proc. Int. Symp. Cactus Pear and Nopalitos Processing and 
Use, Facultad de Ciencias Agrarias y Forestales, Santiago, Chile, pp. 58-76. 

NRC (2001). Nutrient requirements of dairy cattle (17th revised. ed.). Washington, DC, 
USA, National Academic Press. 

NRC (2007). Nutrient requirements of small ruminants – sheep, goats, cervids, and new 
world camelids. Washington, DC, USA, National Academic Press. 

Reis, C.M.G., Ribeiro, M.M. & Gazarini, L.C. (2014). Biometric characterization and 
evaluation of Portuguese populations of Opuntia ficus-indica (L.) Mill. Agroforum, 33, 
7-17. 

Rekik, M., Ben Salem, H., Lassoued, N., Chalouati, H. & Ben Salem, I. (2010). 
Supplementation of Barbarine ewes with spineless cactus (Opuntia ficus-indica f. 
inermis) cladodes during late gestation-early suckling: effects on mammary secretions, 
blood metabolites, lamb growth and postpartum ovarian activity. Small Ruminant 
Research, 90, 53-57. 

Ruddell, A., Filley; S. & Porath, M. (2002). Understanding your forage test results. Extension 
Service, Oregon State University, USA.  

Sáenz, C., Berger, H., Corrales-García, J., Galletti, L., Garcíade-Cortázar, V., Higuera, I., 
Mondragón-Jacobo, C., Rodríguez-Félix, A., Sepúlveda, E. & Varnero, M.T.  (2006). 
Utilización agroindustrial del nopal. Rome, Organización de las Naciones Unidas para 
la Agricultura y la Alimentación, Boletin de Servicios Agrícolas de la FAO, 162. 

Silva, C.C.F. & Santos, L.C. (2007). Palma forrageira (Opuntia ficus-indica Mill) como 
alternativa na alimentação de ruminantes. Revista Electrónica de Veterinaria, 8(5), 
1695-7504. 

Tegegne, F. (2001). Nutritional value of Opuntia ficus-indica as a ruminant feed in Ethiopia. 
In C. Mondragón and S. Gonzalez (Eds.), Cactus (Opuntia spp.) as forage. Rome, FAO 
Plant Production and Protection Paper, FAO, 169, 91-99. 

Tegegne, F., Kijora, C. & Peters, K. (2007). Study on the optimal level of cactus pear 
(Opuntia ficus-indica) supplementation to sheep and its contribution as source of water. 
Small Ruminant Research, 72, 157-164. 

Teles, F.F.F., Whiting, F.M., Price, R.L. & Borges, V.E.L. (1997). Protein and amino acids 
of Nopal (Opuntia ficus-indica (L.). Revista Ceres, 44 (252), 205-214. 

Van Soest, P.J., Robertson, J.B. & Lewis, B.A. (1991). Methods for dietary fiber, neutral 
detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal 
of Dairy Science, 74 (10), 3583-3597. 

Vilela, M.S., Ferreira, M.A, Azevedo, M., Modesto, E.C., Farias, I., Guimarães, A.V. & Bispo, 
S.V. (2010). Effect of processing and feeding strategy of the spineless cactus (Opuntia 
fícus-indica Mill.) for lactating cows: ingestive behavior. Applied Animal Behavior 
Science, 125, 1-8.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 

 

 

 

 

 

 

5. Bioactive compounds and morphology 
in Opuntia spp. fruits from Portuguese 
ecotypes 

 

 

 

 

 

 

 

 
This chapter is based on the following published paper: 

 

Reis, C.M.G ., Gouveia, C., Vitorino, M.C., Gazarini, L.C., Ribeiro, M.M. & Peres, F. (2017). 
Bioactive compounds and morphology in Opuntia spp. fruits from Portuguese ecotypes.  
Bulgarian Journal of Agricultural Science, 23(6), 929–938. 
http://www.agrojournal.org/23/06-06.pdf.  
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5.1 Summary 

 

The Opuntia spp. has minimal soil and water requirements, and the O. ficus-indica, in 

particular is sought to be an alternative for the Mediterranean region agricultural economy. 

The morphology, bioactive compounds and antioxidant properties of fruits were studied in 

twenty Portuguese ecotypes belonging to four Opuntia species (O. ficus-indica, O. robusta, 

O. dillenii and O. elata). The ecotypes were compared with the O. ficus-indica cultivars 

“Bianca”, “Gialla” and “Rossa”. The fruits from Opuntia spp. ecotypes displayed variability 

in morphological and bioactive characteristics. The O. dillenii ecotypes had the highest 

betalain content, total phenolic compounds, and antioxidant activity, while O. elata had the 

highest ascorbic acid content. Both O. dillenii and O. elata had the highest acidity values. 

The red pulp cv. “Rossa” had the highest betalain content among the O. ficus-indica 

populations, followed by the orange and white pulp ecotypes. The highest amount of total 

phenolic compounds was found in the white pulp O. ficus-indica ecotypes. The ecotype 

OFI-04 was distinguishable from the others due to the quantitative and qualitative 

characteristics of its fruit, and it could be considered a new variety. The Opuntia ficus-indica 

orange pulp fruits were larger, heavier and had a higher percentage of pulp as well as a 

lower percentage of seeds compared to the white pulp fruits. However, the weight of 100 

seeds was lower in the white pulp ecotypes. The hierarchical clustering analysis revealed 

that the ecotypes could be grouped into four major groups, and geographical origin was 

unrelated to the clustering pattern. This study provides original data on the morphology and 

bioactive compounds of Opuntia spp. fruits from Portuguese ecotypes. The Opuntia. spp. 

is an interesting source of phenolic compounds, betalains, and ascorbic acid, and the 

moderate consumption of prickly fresh fruit can provide important antioxidant intake. 
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5.2 Introduction 

 

The genus Opuntia (Cactaceae) is native to Central America and was likely introduced in 

the Iberian Peninsula after the discovery of the Americas between the end of the 15th and 

beginning of the 16th centuries, later spreading throughout the Mediterranean basin 

(Barbera et al., 1992; Anderson, 2001). The Mediterranean region, particularly inland areas, 

is currently suffering from severe drought during extensive summers, and global climate 

change is expected to deeply affect this area in the near future with climatic models 

predicting drier climates with shorter and wetter rainy seasons followed by long dry 

summers (Schröter et al., 2005). Opuntia spp. have minimal soil and water requirements, 

and Opuntia ficus-indica (OFI), in particular, is thought to be an alternative species for the 

agricultural economy of the Mediterranean region (Barbera et al., 1992).  

In Portugal, several Opuntia species were naturalized (O. ficus-indica (L.) Miller, O. dillenii 

(Ker-Gael) Haw., O. robusta Wendl and O. elata Salm-Dick), and the most widespread and 

economically relevant sp. is both forms of OFI, including the inermis typical form, Opuntia 

ficus-indica f. ficus-indica (L.) Miller, and the spiny form, Opuntia ficus-indica f. amyclaea 

(Ten.) Schelle (Kiesling, 1998). The OFI local ecotypes have variable plant vigour and 

biomass production (Reis et al., 2018) as well as differences in the shape of the cladodes, 

presence or absence of spines, spine length, corolla colour, pulp colour, and fruit ripening 

time (our unpublished results). Traditionally, OFI is cultivated for edible fresh fruit production 

and hedge establishment under non-irrigated conditions, but recently some farmers have 

been focusing on OFI orchards that are drip irrigated for fresh fruit production along with a 

plant layout and spacing design. Cactus pear fruit is a fleshy berry derived from an inferior 

ovary (acrosarcum) that varies in shape, size, and number of hard seeds, with high total 

soluble solids content (TSS) (12 to 17%), and low acidity content (0.03 to 0.12% citric acid) 

(Yahia and Mondragón-Jacobo, 2011). The O. dillenii fruits are a source of betacyanin 

pigments that can be used as a red-purple food colorant and an alternative to beetroot red 

(Cejudo-Bastante et al., 2015). The O. elata is cultivated as ornamental plant because the 

cladodes have few spines, the purple fruits are small, and they can be found growing sub-

spontaneously in some places in the centre and north inland regions of Portugal, especially 

the Douro valley region.  

Recently, significant attention has been given to the cactus pear due its nutritional and 

health benefits as well as its high bioactive antioxidant compound content, including 

betalains, phenolic compounds, ascorbic acid and carotenoids (Sumaya-Martínez et al., 

2011; Yahia and Mondragón-Jacobo, 2011; El-Mostafa et al., 2014; Albano et al., 2015). 

Additionally, health benefits, such as antioxidant, neuroprotective, anti-inflammatory, 
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hypoglycaemic and anticancer effects were reported (Tesoriere et al., 2004; Chavez-

Santoscoy et al., 2009; Serra et al., 2013; Jiménez-Aguilar et al., 2014).  

The information about bioactive antioxidant compounds in Portuguese ecotypes of OFI, O. 

robusta and O. dillenii is scarce, and to the best of our knowledge, there are no studies on 

the composition of O. elata fruit. The main objectives of this study were i) to characterize 

the morphology, bioactive compounds and antioxidant properties of Opuntia spp. fruits to 

determine their nutraceutical potential, ii) to classify different species and ecotypes into 

distinct groups according to their morphology and fruit chemical characteristics using a 

multivariate analysis approach. 

 

5.3 Materials and methods  

 

Plant material and provenance trial 

Cladodes from OFI, O. elata and O. robusta were planted in a provenance trial at the 

Castelo Branco School of Agriculture, Portugal (39°49'17”N; 7°27'41”W, elev. 365 m), in 

2012. Sixteen OFI Portuguese ecotypes and two improved Italian cultivars (cv.), “Bianca” 

and “Gialla”, which were included for comparison purposes, were studied. The O. robusta 

and O. elata were represented by only one ecotype (Table 5.1). The experimental design 

was a randomized complete block design with three replicates per ecotype, and each 

replicate had five plants in a row. The provenance trial was planted in a granitic soil with pH 

5.9 and low organic matter content, which is a marginal soil with a reduced overall soil profile 

depth and low water holding capacity. Fertilizers with nitrogen, phosphorus, and potassium 

were applied at 40 kg ha-1 for each element annually to reduce the possible differences in 

soil fertility. Irrigation (60 mm) was applied in the second and third year of cultivation. No 

tilling was used, and the weeds were controlled by mechanical mowing. Pruning was 

performed in spring to lighten the canopy. In the third year after planting, thinning was 

carried out after flowering to achieve a maximum of 6 fruits per cladode. Afterwards, three 

samples of 10 full mature fruits were collected from each replicate for each of the different 

Opuntia species established in the provenance trial (Table 5.1). Additionally, two ecotypes 

of O. dillenii were studied, and 30 fruits from each ecotype were collected in fifteen plants 

from local origin (Table 5.1). Commercially mature fruits from the OFI cv. “Rossa” were 

acquired from a local producer. In both cases, the fruits were divided into three samples of 

10 fruits each. 

 

 



Bioactive compounds and morphology in Opuntia spp. fruits 

Carlos Gaspar Reis  81 
 

Table 5.1  Identification, fruit shape, pulp colour and origin of the studied Opuntia spp. populations. 

Population 
Fruit 

Shape 
Pulp colour Origin 

Altitude 
(m) 

Geographic coordinates 

Latitude Longitude 
OFI-01 Ell White Alcochete 25 38°43'32.14"N 8°57'58.22"W 
OFI-03 Ell White Cascais 185 38°45'23.18"N 9°27'38.48"W 
OFI-04 Ovd Pale yellow Portalegre 372 39°16'22.45"N 7°26'13.12"W 
OFI-05 Ovd Orange Arronches 293 39°5'21.06"N 7°12'7.05"W 
OFI-08 Ell White Melides 29 38°8'28.91"N 8°44'14.28"W 
OFI-09 Ell White Santo André 25 38°4'38.13"N 8°46'38.08"W 
OFI-11 Ell White Albufeira 61 37°5'23.33"N 8°17'27.03"W 
OFI-12 Ovd Orange Cacela-a-Velha 20 37°9'22.50"N 7°32'47.98"W 
OFI-13 Ovd Orange Monforte da Beira 260 39°45'8.34"N 7°16'54.83"W 
OFI-14 Ovd Orange Idanha-a-Velha 275 39°59'57.30"N 7° 9'3.51"W 
OFI-15 Ell White Ponte de Sor 125 39°16'15.45"N 8° 0'44.72"W 
OFI-16 Ell White Coruche 76 38°54'40.93"N 8°37'17.00"W 
OFI-17 Ell White Castelo Branco 402 39°48'58.84"N 7°29'37.85"W 
OFI-18 Ell White Reg. Monsaraz 223 38°27'27.04"N 7°39'21.77"W 
OFI-19 Ell White Alvega 105 39°27'15.96"N 8° 3'51.88"W 
OFI-20 Ovd Orange Madeira 116 32°38'54.18"N 16°57'46.38"W 

OFI, cv. “Bianca” Ell White Italy -- -- -- 
OFI, cv. “Gialla” Ovd Orange Italy -- -- -- 
OFI, cv. “Rossa” Ell Red Italy -- -- -- 

O. robusta Rou Red Castelo Branco 365 39°49'17.00”N 7°27'41.00”W 
O. dillenii, OD-1 Ell Purple Lagos 48 37°8’42.24”N 8°40’33.42”W 
O. dillenii, OD-2 Ell Purple Cacela-a-Velha 20 37° 9'22.50"N 7°32'47.98"W 

O. elata Obl Purple S. J. Pesqueira 450 41°9’5.83”N 7°22’5.43”W 

OFI – Opuntia ficus-indica; OD – Opuntia dillenii. Ell – elliptic; Obl – oblong; Ovd – ovoid; Rou – round.  
 

 

Fruit morphological characterization 

The following morphological characteristics were evaluated in three replicates of 10 fruits 

each: weight (g), length (cm), diameter (cm), shape (measured by the ratio diameter/length), 

pulp weight (g) and pulp as fruit weight percentage. The seed weight per fruit (g), seed as 

pulp weight percentage and 100 seed weight (g) were measured in triplicate from pooled 

samples of ten fruits. 

 

Fruit sample preparation and chemical reagents 

The peel was manually separated from the pulp, followed by weighing the pulp and briefly 

homogenizing it in a kitchen-type blender. Afterwards, the pulp was separated from the 

seeds, portioned and stored at −80°C until analysis. For O. elata fruits, due to the low pulp 

yield, the whole fruit was used after seed removal. After defrosting, the juice was centrifuged 

at 14000 rpm for 10 min, and the supernatant was used for pH, acidity, and total soluble 

solid (TSS, %) determination. The remaining supernatant was filtered through Whatman® 

filter paper, Grade 42, and the filtrate was used to estimate the total phenolic compound 

(TPC), the ascorbic acid (AA) and the betalain content (betaxanthins and betacyanins). The 
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antioxidant activity was quantified after an additional filtration through a 45 μm syringe filter. 

The readings were collected in triplicate for each sample. All reagents were ACS grade and 

were purchased from Sigma-Aldrich Company. 

 

TSS, pH, acidity and colour determination 

The TSS concentration (%) was determined in the juice using a digital refractometer 

(Hanna, HI 96800). Total acidity was determined using a pH metre (Radiometer PHM 61) 

after titration of 10 mL of seedless pulp-juice against 0.01 N NaOH to the end point (pH 

8.2), and the results were expressed as a percentage of citric acid. The chromatic 

characteristics, which were defined by the colorimetric or chromaticity coordinates, the 

lightness (L*, ranging from 0, black, to 100, white), the a* (which takes positive values for 

reddish colours and negative values for greenish ones), and the b* (positive for yellowish 

colours and negative for bluish ones), were determined using a Minolta CR-300 colorimeter.  

 

Ascorbic acid determination 

The AA content was determined by UV/Vis spectrophotometry as described in previous 

studies (Dürüst et al., 1997). Briefly, 0.25 mL of the juice (a different dilution factor in acid 

oxalic at 0.4% was used from each sample) was added into 0.25 mL of acetate buffer, and 

2.0 mL of DCPI (2,6-dichloroindophenol sodium) was added. The absorbance of the mixture 

was measured immediately at 520 nm using a Biochrom Libra S21 single beam 

spectrophotometer. Ascorbic acid was used as a reference standard, and the results were 

expressed as mg ascorbic acid kg-1 fresh weight (FW). 

  

Betalain determination 

The aqueous pigment extracts were diluted in water to obtain absorption values of 0.9 < A 

< 1.0 at their respective maximum absorption. The betalain content (BC) was calculated by 

spectrophotometry as described in previous studies (Stintzing et al., 2005): BC (mg L-1) = 

(A � DF � MW � 1000)/( ε � 1), where A is the absorption value at the absorption maximum, 

DF is the dilution factor and 1 is the path length (1 cm) of the cuvette. For the quantification 

of betacyanins and betaxanthins, the molecular weights (MW) and the molar extinction 

coefficients (ε) of betanin (MW = 550 g mol-1; ε = 60 000 L mol-1 cm-1 in H2O; λ = 538 nm) 

and indicaxanthin (MW = 308 g mol-1; ε = 48 000 L mol-1 cm-1 in H2O; λ = 480 nm) were 

applied, respectively. The determination was performed using a Biochrom Libra S21 single 

beam spectrophotometer. 

 

 



Bioactive compounds and morphology in Opuntia spp. fruits 

Carlos Gaspar Reis  83 
 

Total phenolic compounds  

The TPC was determined using the Folin-Ciocalteau VIS spectrophotometric method 

(Singleton et al., 1999), and the absorbance measurement was performed in a Jasco 7800 

spectrophotometer. Gallic acid was used as a standard to produce the calibration curve, 

and TPC were estimated using three average readings and expressed in mg of Gallic acid 

equivalents (GAE), mg kg-1 FW. 

 

DPPH radical scavenging activity assay 

The antioxidant capacity of the filtered juices was tested using the DPPH (1,1-diphenyl-2-

picrylhyydrazyl) approach (Yen and Duh, 1994). The juice was centrifuged and filtered 

through a 45 μm syringe filter. A methanol DPPH solution (0.06 mM) was mixed with the 

juice at different concentrations and then solutions with different concentrations were made. 

The mixtures were vortexed, incubated for 30 min in the dark and placed in a UV/Vis 

spectrophotometer (Jasco 7800) where the absorbance was read at 517 nm. The inhibition 

of free radical DPPH (I %) was calculated as I% = [(A0−A1)/A0] × 100, where A0 and A1 are 

the absorbance values of the blank (all reagents except the test compounds) and the tested 

samples, respectively. The I% was plotted against the respective concentrations that were 

used. The linear equation of each graph was used to calculate IC50, which is the antioxidant 

concentration required to inhibit the DPPH absorbance by half. 

 

Data analysis 

The data was analysed using one-way ANOVA or, in absence of variance homogeneity, 

Welch ANOVA was performed, followed by pairwise comparisons using the Tukey or the 

Games-Howell post-hoc tests, respectively. Statistical significance was accepted with 5% 

as the probability of type I error for both the omnibus test and the multiple comparisons test. 

A principal component analysis (PCA) was conducted using morphological and chemical 

data, and a hierarchical cluster analysis was performed with standardized data (Z scores) 

using the Euclidean distances following the between-groups (average) linkage method. 

The decision about the number of clusters to retain was made by plotting the number of 

clusters on the x-axis against the distance at which objects or clusters were combined on 

the y-axis (Sarstedt and Moi, 2014). The statistical analyses were performed using IBM 

SPSS Statistics software v.21 (IBM Corp., NY.). 
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5.4 Results and discussion 

 

Fruit morphological characterization  

The shapes of the fruits were oblong (O. elata), elliptic (O. dillenii and in the white pulp fruits 

from OFI), ovoid (in orange pulp fruits from OFI) and round (O. robusta) (Fig. 5.1 and Table 

5.1).  

 

 

Figure 5.1  Cactus pear fruit from some populations studied. A – Opuntia ficus-indica (OFI) cv. 
“Gialla”; B – OFI cv. “Rossa”; C – O. robusta; D – O. elata; E – OFI-04; F – OFI-12; G – OFI-19; H – 
O. dillenii (OD-1). 

 

The fruit weight varied between 19.5 (O. elata) and 132.5 g (OFI-13) (Fig. 5.2A). In O. dillenii 

(the mean value of the two populations) and O. robusta, the mean weights of the fruit were 

50.1 and 124.9 g, respectively. The mean weights of the fruits were 90.6 g in the OFI 

populations with white pulp fruits and 121.4 g in the populations with orange pulp fruits, and 

significant differences were found, Welch's F (18, 203.9) = 165.2, p < 0.05. The width (R2 = 

0.91) and the pulp weight (R2 = 0.96) had the highest correlation coefficients with the weight 

of the fruit. The pulp yield varied between 22.6 (O. elata) and 67% (OFI cv. “Rossa”) (Fig. 

5.2A). The OFI mean pulp yield was 53.8 and 64.30% for the white and orange pulp fruits, 

respectively, Welch's F (18, 203.9) = 136.5, p < 0.05. O. elata had the smallest fruits, while 

in the OFI ecotypes the lengths varied from 7.0 (OFI-20) to 8.0 cm (OFI-08), and the 

diameters varied from 4.8 (OFI-03, OFI-09, OFI-11 and cv. “Rossa”) to 5.8 cm (OFI-13 and 

cv. “Gialla”) (Fig. 5.2B). The seed weight per fruit varied between 5.8 (O. robusta) and 1.1 g 

(O. elata) (Fig. 5.3A). The amount of seeds as a percentage of pulp weight ranged between 

22.8 (O. elata) and 3.7% (OFI-04), and the weight of 100 seeds varied between 0.8 (O. 

elata) and 3.1 g (O. dillenii) (Fig. 5.3A). In OFI ecotypes, the following average values were 
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found in the white pulp and orange pulp fruits: seed weights per fruit were 3.0 and 3.7 g, 

the amount of seeds as pulp weight percentage were 5.9 and 4.6%, and the weights of 100 

seeds were 1.7 and 2.1 g, respectively (Fig. 5.3B). The ecotype OFI-04 contrasted the other 

OFI ecotypes due to its pale yellow pulp, ovoid shape, and low seed weight per fruit as well 

as the amount of seeds as a percentage of pulp weight. The OFI orange pulp fruits were 

larger, heavier and had a higher percentage of pulp as well as a lower percentage of seeds 

compared to the white pulp fruits. However, the weight of 100 seeds was lower in the white 

pulp ecotypes.  

 

 

 

Figure 5.2  A - Fruit weight (g) and pulp yield (%); B - Fruit length (cm) and diameter (cm). Values 
are the means from the Opuntia spp. populations studied (n=30 fruits per population). 
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Figure 5.3 A - Seed as pulp weight percentage and seed weight per fruit (g); B – The 100 seed 
weight (g). Values are the means from the Opuntia spp. populations studied (n=30 fruits per 
population). 

 

The presence of seeds is a deterrent factor to those who consume the fruits of the cactus 

pear for the first time (Felker et al., 2002). All of the ecotypes in our study had hard seeds, 

but the percentage of seeds as pulp weight was variable in the OFI ecotypes. The fruit fresh 

weight (128 g), pulp yield (62.9%) and seed percentage (4.6%) values found in cv. “Gialla” 

were comparable to the measurements reported in studies made from Argentina (Felker et 

al., 2002) and in Sicily (Barbera et al., 1992) using the same cv.  
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Fruit pulp percentages of 50–60% and a minimum of 120 g of fruit fresh weight are required 

for the export market (Inglese and Gugliuzza, 2002). This minimum weight value was 

achieved only in a few ecotypes, which may be partially explained by both the low soil water 

retention capacity and the age of the plants (3 years old).  

 

Total soluble solids, pH, acidity and colour 

The cactus pear TSS content varied from 10.6 (O. dillenii, the mean value of the two 

populations was considered) to 15.6% (OFI-03) (Table 5.2). In the OFI, the values ranged 

from 12.2 (cv. “Rossa”) to 15.6% (OFI-03) and statistically significant differences were found 

among ecotypes, F (18, 48) = 39.6, p < 0.05. 

 

Table 5.2  Colorimetric coordinates (L*, a*, and b*), pH, acidity (% citric acid) and total soluble solids 
(TSS %) from the juice of the different cactus pear populations (n=30, each sample analysed in 
triplicate). 

Population L* a* b* pH 
Acidity 

(% citric ac.) TSS (%) 

OFI-01 27.44abc -1.07h 8.09c 6.30bcd 0.05d 14.25bcdef 

OFI-03 27.14abc -0.84h 7.29cde 6.30bcd 0.05d 15.63gh 

OFI-04 26.16bc -1.28h 9.24c 6.10fg 0.05d 15.10a 

OFI-05 23.02de 5.18ef 18.55a 6.10fg 0.06d 15.12a 

OFI-08 27.73abc -1.03h 8.19c 6.20def 0.07d 13.70defg 

OFI-09 28.41a -1.07h 6.87cde 6.27cde 0.06d 14.10cdef 

OFI-11 27.17abc -0.80h 5.86cdef 6.20def 0.06d 13.55efg 

OFI-12 23.10d 5.47de 19.45a 6.17ef 0.05d 15.07ab 

OFI-13 21.84de 8.03bc 16.57ab 6.03g 0.06d 15.05ab 

OFI-14 21.00e 7.49c 14.81b 6.20def 0.06d 14.65abc 

OFI-15 27.98ab -1.12h 8.06cd 6.27cde 0.05d 13.47fgh 

OFI-16 26.61abc -1.13h 8.32c 6.47a 0.05d 15.10a 

OFI-17 25.74c -0.89h 7.32cde 6.33bc 0.05d 14.35abcde 

OFI-18 26.40abc -0.93h 7.48cde 6.20def 0.06d 13.23gh 

OFI-19 27.11abc -0.97h 7.13cde 6.30bcd 0.06d 14.37abcde 

OFI-20 22.19 6.79cd 17.36ab 6.17ef 0.06d 13.05gh 

OFI, cv. “Bianca” 26.60abc -1.01h 7.06cde 6.40ab 0.07d 13.72defg 

OFI, cv. “Gialla” 22.43de 6.79cde 17.53ab 6.10fg 0.06d 14.67abc 

OFI, cv. “Rossa” 14.84f 9.78ab 4.60defg 5.90h 0.06d 12.22i 

O. robusta 13.42fg 5.45de 2.75fg 5.83h 0.07d 14.42abcd 

O. dillenii, OD-1 12.54g 3.20gf 2.07g 3.27j 0.62b 10.37j 

O. dillenii, OD-2 12.62g 2.47g 2.02g 3.22j 0.73a 10.75j 

O. elata 14.87f 11.66a 4.57efg 4.20i 0.36c 12.70hi 

OFI – Opuntia ficus-indica; OD – Opuntia dillenii. Means with different alphabetic superscripts in same line differ 
significantly (P<0.05). 
 

 

In the case of the cv. “Rossa”, the lowest value we obtained for the TSS could partially be 

explained by the fact that the fruits were harvested earlier (at commercial maturity) 

compared to the other ecotypes of OFI, which were harvested at physiological maturity. 

Indeed, TSS is a variable parameter that depends on the maturity stage and fruit 
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metabolism (Albano et al., 2015). Apart from that difference, we can assume that the 

observed variations in the different parameters reflected differences at the genotype level 

since the studied ecotypes were grown in the same soil and the climate conditions and the 

fruits were harvested at approximately the same physiological state. 

The pH values found in O. dillenii agreed with the values reported in previous studies 

(Medina et al., 2007). Considering the OFI populations, the pH varies from 5.90 (cv. 

“Rossa”) to 6.47 (OFI-16) (Table 5.2). In this species, the pH of the fruit usually increases 

from 5 to a range of approximately 5.5–6.5 during ripening (Albano et al., 2015). In our data, 

O. dillenii and O. elata showed the highest acidity values (0.68 and 0.36, respectively), while 

in OFI ecotypes, the acidity values ranged between 0.05 and 0.07% citric acid (Table 5.2). 

In the populations we studied, the pulp fruit colour varied from white to purple (Table 5.2). 

The highest L* values were observed in the white pulp populations. The populations with 

purple, red and orange coloured fruits had the highest a* values, while the populations with 

white pulp fruits had the lowest ones. The red and purple fruits had the lowest L* and b* 

values. 

 

Ascorbic acid 

The highest AA content was observed in O. elata followed by O. dillenii (Table 5.3). The AA 

content of OFI ecotypes ranged from 180 (OFI-20) to 344 mg kg-1 FW (OFI-16), and 

significant differences among the populations were found, F (18, 38) = 19.3, p < 0.05. The 

cv. “Bianca” had a higher AA content than the cvs. “Gialla” and “Rossa”. The values for the 

AA content that we found in the O. dillenii and the OFI ecotypes (Table 5.3) were higher 

than the content found in previous studies for both species (Medina et al., 2007). A similar 

value for AA content in the cv. “Gialla” and a higher value for a purple OFI cv. compared to 

the cv. “Rossa” were reported (Albano et al., 2015). The differences found among the OFI 

populations in AA content could be attributed to differences at the genotype level. In our 

study, an underestimation of the cv. “Rossa” AA content cannot to be excluded since the 

fruits were purchased from a local producer and a few days passed between harvest and 

the juice analysis. Indeed, the AA content has been shown to decline slightly a few days 

after harvesting in fresh cut summer fruits (Allegra et al., 2015). 

 

Total phenolic compounds 

O. dillenii had the highest values of TPC followed by O. elata (Table 5.3). In the OFI 

ecotypes, significant differences were found among ecotypes, F (18, 38) = 20.8, p < 0.05, 

and the TPC ranged from 617 (cv. “Gialla”) to 981 mg GAE kg-1 FW (OFI-19). The TPC in 

the cv. “Rossa” and in the cv. “Bianca” were 788 and 870 mg GAE kg-1 FW, respectively. 



Bioactive compounds and morphology in Opuntia spp. fruits 

Carlos Gaspar Reis  89 
 

The TPC found in the O. dillenii and the O. robusta ecotypes were higher than the values 

reported in previous studies for the same species (Medina et al., 2007; Serra et al., 2013). 

A moderate variation in TPC was found among the OFI ecotypes that we studied. 

Nevertheless, the TPC values were similar to the values previously reported by other 

authors (Stintzing et al., 2005; Saénz et al., 2009) in OFI fruits. The fruits from cv. “Rossa” 

were purchased at a local producer, and a decrease in TPC after harvest could explain the 

low TPC values that were obtained. As stated previously (Allegra et al., 2015), polyphenol 

content significantly decreases after 3 days of storage. In O. elata, the highest TPC values 

that were found may have resulted from whole fruit processing, since in Opuntia spp. fruits, 

the TPC is higher in the peel than in the pulp (Yeddes et al., 2013). Our results showed that 

the TPC was higher in O. dillenii and O. elata compared to the OFI ecotypes, and the 

differences in TPC values found in the OFI populations could be attributed to differences at 

the genotype level. A positive correlation was found between total phenols and ascorbic 

acid content (R2 = 0.81). In general, cultivars that contained the highest vitamin C levels had 

the highest phenol and β-carotene contents (Yahia and Mondragón-Jacobo, 2011). 

 

Table 5.3  Ascorbic acid (mg kg-1 FW), total phenolic compounds (mg GAE kg-1 FW), DPPH 
Antioxidant Scavenging Capacity (IC50, g L-1) and betalains content (mg L-1), from the juice of the 
different cactus pear populations studied (n=30, each sample analysed in triplicate). 

Population Ascorbic 
acid (mg 
kg-1 FW) 

Total Phenolic 
compounds (mg 
GAE  kg-1 FW) 

DPPH 
ASC IC50 

(g L-1) 

Betalains 
Betaxanthins 

(mg L-1) 
Betacyanins 

(mg L-1) 
OFI-01 204.2gh 827.0def 0.88fghi 5.83e 6.82d 

OFI-03 204.2gh 672.7def 0.88fghi 5.86e 6.86d 

OFI-04 242.7efgh 650.0def 1.04bcde 6.00e 6.48d 

OFI-05 201.8gh 630.7f 0.97defg 44.72de 9.87d 

OFI-08 198.8gh 863.3def 0.81i 5.14e 6.14d 

OFI-09 252.7efg 833.8def 1.04bcde 5.58e 6.54d 

OFI-11 224.3fgh 822.1def 0.98cdef 5.46e 6.50d 

OFI-12 206.3gh 633.9ef 0.65j 50.99de 8.27d 

OFI-13 201.6gh 641.9def 0.85hi 46.39de 6.63d 

OFI-14 241.8efgh 829.0def 1.09abc 63.25d 12.38d 

OFI-15 230.7fgh 890.9def 1.06bcd 6.11e 7.19d 

OFI-16 344.1d 886.9def 0.99cde 6.67e 7.82d 

OFI-17 247.9efg 795.7def 0.83hi 6.37e 7.35d 

OFI-18 278.3ef 850.4def 0.99cdef 6.26e 7.63d 

OFI-19 223.8fgh 981.0de 0.93efgh 5.50e 6.47d 

OFI-20 180.3h 734.4def 1.12ab 41.25de 5.06d 

OFI, cv. “Bianca” 299.9de 870.2def 0,78i 5.87e 6.77d 

OFI, cv. “Gialla” 219.5fgh 617.0f 0.87ghi 40.97de 9.79d 

OFI, cv. “Rossa” 206.9gh 785.6def 0.80i 51.05de 84.17d 

O. robusta 222.2fgh 982.8d 1.18a 211.25c 434.81c 

O. dillenii, OD-1 541.6a 3790.3a 0.06l 575.93b 1516.98b 

O. dillenii, OD-2 456.3c 3403.9b 0.07l 778.56a 1675.36a 

O. elata 896.9a 2879.3c 0.47k 35.51de 117.99d 

DPPH ASC IC50 – DPPH Antioxidant Scavenging Capacity IC50; FW – Fresh weight; GAE - Gallic acid 
equivalents; OFI – Opuntia ficus-indica; OD – Opuntia dillenii. Means with different alphabetic superscripts in 
same line differ significantly (P<0.05) 



Chapter 5   

90  Carlos Gaspar Reis 

Betalains 

Variations in BC were found among the different populations that were studied. O. dillenii 

ecotypes had the highest values of BC, followed by O. robusta, O. elata, and the lowest 

contents were found in the OFI populations with white pulp fruits (Table 5.3). Significant 

differences for yellow-orange betaxanthins and red-violet betacyanins contents were found 

among the OFI populations, F = (18, 38) = 105.74, p < 0.05 and F = (18, 38) = 173.79, p < 

0.05, respectively. In the OFI fruits with orange pulp, a higher content of betaxanthins was 

found compared to white pulp fruits, and the cv. “Rossa” had a higher betacyanin content 

compared to other ecotypes. In the three cultivars “Bianca”, “Gialla” and “Rossa”, the 

betaxanthin contents were 5.9, 40.9 and 51.1 mg L-1, and the betacyanin contents were 6.8, 

9.8, and 84.2 mg L-1, respectively. In the group of orange pulp fruits, the ecotype OFI-14 

had the highest BC content followed by the ecotype OFI-12. The sequence of BC content 

in decreasing order was O. dillenii, O. robusta, O. elata, cv. “Rossa”, orange pulp 

populations of OFI and, finally, white pulp populations of OFI. This ranking was similar to 

one published by Stintzing et al. (2005). The BC of O. robusta and orange pulp populations 

(mean value of 56.6 mg L-1), were lower than the values reported in previous studies for 

similar populations (Stintzing et al., 2005). Nevertheless, the BC of cv. “Rossa” was slightly 

higher than the value reported by the same authors for a red pulp clone. The betalain values 

found in O. dillenii populations were comparable to those reported for O. stricta (Castellar 

et al., 2012). The betalain content was affected by factors such as variety (Stintzing et al., 

2005), stage of maturity (Castellar et al., 2012), and climate or geographic site of production 

(Sumaya-Martínez et al., 2011). 

 

DPPH radical scavenging activity 

The antioxidant activity of Opuntia spp. juice extracts is shown in Table 5.3. The purple juice 

extract from O. dillenii had the highest antioxidant activity (lower value of IC50) followed by 

the extract from O. elata. In the OFI ecotypes, significant differences were found among 

populations, F = (18, 38) = 30.3, p < 0.05. The lowest value of IC50 was found in the OFI-12 

ecotype, and the highest value was found in the OFI-20 ecotype. Interestingly, the extract 

from the red juice of O. robusta had higher values of IC50 (lower antioxidant activity) 

compared to juice extracts from the OFI ecotypes.  

The antioxidant activity of the fruit extracts was stronger in the purple-skinned fruits (O. 

dillenii) compared to other populations. This result was consistent with the total phenol and 

betalain contents of purple-skinned fruits. Positive correlations between 1-IC50 and the TPC 

(R2 = 0.87), betacyanin (R2 = 0.81), betaxanthin (R2 = 0.78) and ascorbic acid (R2 = 0.64) 
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were found. Negative correlations between 1-IC50 and both the L* (R2 = -0.60) and a* (R2 = 

-0.54) colorimetric coordinates were found.  

 

Multivariate analysis 

The PCA correlation matrix showed that all variables had at least one correlation coefficient 

greater than 0.3. The overall Kaiser-Meyer-Olkin (KMO) measure was 0.83 with individual 

KMO measures all greater than 0.7 and classifications of 'middling' to 'meritorious' 

according to the Kaiser method (1974). Bartlett's test of sphericity was statistically 

significant (p < 0.05), which indicated that the data were likely factorable. The PCA revealed 

two components with eigenvalues greater than one, which explained 85.2% of the total 

variance. The screen plot indicated that two components should be retained, and Varimax 

orthogonal rotation was employed to help interpret these results. The first component 

explaining 67.8% of variation was represented by the betaxanthin and betacyanin contents, 

acidity, pH, TPC, DPPH ASC (IC50), TSS, and fruit length. The second component (with 

17.4% of the total variation) was explained by the diameter, weight of the fruit, pulp weight, 

seed weight, amount of seeds as pulp percentage and AA content.  

The hierarchical cluster analysis highlighted an overall pattern of genetic diversity and the 

relationship between germplasm accessions. The clustering analysis (Fig. 5.4) revealed 

that the 23 genotypes could be classified into four major groups. Cluster 1 comprised all 

OFI genotypes, cluster 2 comprised O. robusta, cluster 3 included the two populations from 

the species O. dillenii and finally the O. elata population was included in cluster 4. Four 

subgroups were found in cluster 1, which were the white pulp fruits (including cv. “Bianca”), 

the orange pulp fruits (including cv. “Gialla”), the cv. “Rossa”, and the ecotype OFI-04. The 

latter ecotype was distinguishable from the others due to the quantitative and qualitative 

characteristics of its fruit, and it could be considered a new variety. The distribution of 

genotypes in the dendrogram indicates that geographical origin was unrelated to the 

clustering pattern.  

The Mediterranean region is prone to global climate change, which is expected to deeply 

affect the area in the near future. OFI and related species, which are characterized by their 

minimal water requirements, rustic durability and adaptability to high temperatures, could 

play an important role in the land use in the marginal areas of this region. A considerable 

genetic variation in the concentration of bioactive compounds and morphological 

characteristics of the fruits was observed among different Opuntia spp. and among different 

OFI ecotypes. Opuntia. spp. are an interesting source of phenolic compounds, betalains, 

and ascorbic acid. Additionally, moderate consumption of cactus pear fresh fruit can provide 

important antioxidant intake. The Iberian Peninsula is likely a source of additional 
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morphological and genetic variability inside this genus, and further germplasm collection as 

well as harvest and subsequent characterization of ecotypes (particularly OFI) should be 

undertaken to better understand the Opuntia spp. in this area. 

 

 

Figure 5.4  Hierarchical clustering analysis for 20 Opuntia spp. Portuguese ecotypes and three O. 
ficus-indica cultivars (“Bianca”, “Gialla” and “Rossa”) based on fruit morphological and chemical 
characteristics pairwise Euclidian distances. 
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6.1 Summary 
 

The Opuntia spp. were introduced to the Iberian Peninsula most likely in the beginning of 

the 16th century, after the discovery of America, spreading afterwards throughout the 

Mediterranean basin. We analysed for the first time the genetic diversity in a set of 19 

Portuguese Opuntia spp. ecotypes from the species O. ficus-indica, O. elata, O. dillenii and 

O. robusta using nuclear microsatellite (nuSSR) markers. The Italian cultivars “Bianca”, 

“Gialla” and “Rossa” were included in the study for comparison purposes. The SSR 

amplifications produced from five to 16 alleles, with an average of 9.2 alleles per primer 

pair. The hierarchical clustering analysis revealed four major groups that clearly separated 

the four Opuntia species. Among the O. ficus-indica ecotypes, two sub-clusters were found, 

one including the white pulp fruits (with cv. “Bianca”) and the other with the orange pulp 

ones and including the cv. “Gialla”, the cv. “Rossa”, and one pale yellow pulp ecotype. No 

genetic differences were found between the inermis form, O. ficus-indica f. ficus-indica, and 

the rewilded spiny one, O. ficus-indica f. amyclaea. The dendrogram indicated that the 

clustering pattern was unrelated to geographical origin. The results revealed a low level of 

genetic diversity among the Portuguese ecotypes of O. ficus-indica.  
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6.2 Introduction 
 

The genus Opuntia is in the family Cactaceae (subfamily Opuntioideae, tribe Opuntieae). 

The most widespread and economically important species is Opuntia ficus-indica (L.) Miller 

(OFI), with the domestication centre localized in central Mexico (Griffith, 2004). 

Platyopuntias are the most widespread cacti out of their original range, with the 

dissemination by humans initiated after the conquest of the New World by Europeans 

(Casas and Barbera, 2002). In milder Mediterranean areas, the plants have found optimal 

environmental conditions, spreading and naturalizing, becoming typical in the 

Mediterranean landscape (Barbera et al., 1992).  

Portugal has the following Opuntia species: O. ficus-indica (L.) Miller, O. dillenii (Ker-

Gawler) Haw., O. robusta Wendl. ex Pfeiffer and O. elata Link & Otto ex Salm-Dick. Opuntia 

ficus-indica has two forms, the inermis, typical form, O. ficus-indica f. ficus-indica (L., Mill., 

1768), and the rewilded spiny one, O. ficus-indica f. amyclaea (Ten. Schell, 1907) (Kiesling, 

1998). 

Plant genetic resources play an important role in the improvement of wild and cultivated 

plants. Among the molecular markers, microsatellites are widely used for individual 

genotyping, germplasm evaluation, genetic diversity studies, genome mapping, and 

phylogenetic and evolutionary studies (Kalia et al., 2011). 

The Cactaceae present some peculiarities regarding molecular marker studies. First, the 

isolation of DNA from cacti is notoriously difficult because of high amounts of 

polysaccharides and secondary metabolites (De la Cruz et al., 1997; Mondragón-Jacobo et 

al., 2000). Additionally, these contaminants inhibit the action of restriction enzymes and Taq 

polymerases (Pandey et al., 1996). Second, polyploidy is a common phenomenon 

throughout the tribe Opuntieae, which presents some drawbacks in the analysis of 

codominant markers, such as microsatellites (SSR). Diploids (2n = 2x = 22) are relatively 

rare in this tribe composing only 26.2% of the 164 species with reported chromosome 

counts (Majure et al., 2012). Polyploid taxa within Opuntia spp. range from triploid (2n = 3x 

= 33) to octoploid (2n = 8x = 88), and many species have multiple ploidy levels (Pinkaya, 

2002; Majure, et al, 2012).  

Until now, few studies have been conducted to identify genomic microsatellites and to 

develop markers in Opuntia spp. Helsen et al. (2007) developed 16 SSR markers from O. 

echios, and Erre et al. (2011) obtained ten SSR markers from O. ficus-indica. Helsen et al. 

(2009) used the SSRs markers previously obtained to distinguish between two 

morphologically distinct O. echios botanical varieties (echios and gigantea) native to the 

Galapagos Islands. With the same set of primers, Caruso et al. (2010) investigated the level 
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of intraspecific genetic diversity among O. ficus-indica cultivated varieties and some related 

species from the Mediterranean region and Mexico. They stated that the genotypes 

cultivated in Mexico showed high levels of diversity, whereas most of the spineless 

accessions collected in other countries had a very narrow genetic base. Samah et al. (2016) 

used 13 SSR molecular markers previously developed (Helsen et al., 2007; Erre et al., 

2011) to study the genetic diversity of Mexican Opuntia germplasms with agronomic and 

economic importance.  

To our knowledge, no molecular-based studies have been conducted with Portuguese 

ecotypes of Opuntia spp., and therefore, the genetic relationships and population structure 

are unknown. Therefore, we were motivated by the lack of genetic studies on Portuguese 

Opuntia spp. ecotypes to investigate this genus aggregate at the population level using SSR 

markers. 

The objectives of this study were to (i) evaluate the genetic relationships among ecotypes 

of different Opuntia species, (ii) assess the molecular diversity of Portuguese O. ficus-indica 

ecotypes, and (iii) compare their relationships with three improved O. ficus-indica Italian 

cultivars. 

 

6.3 Materials and methods 

 

Plant material and DNA extraction  

The accessions studied were from four Opuntia species, O. ficus-indica, O. elata, O. dillenii, 

and O. robusta, collected from several places throughout Portugal and established in a 

provenance trial at the Escola Superior Agrária de Castelo Branco (ESACB) (Table 6.1). A 

total of 22 populations each containing 15 individuals were analysed. The Italian cultivars 

“Bianca”, “Gialla” and “Rossa” were used for comparison purposes. 

DNA was extracted from 100 mg of freshly sampled chlorenchyma tissue and was extracted 

from all fifteen individuals in each population. DNA was extracted with a DNeasy® Plant Mini 

Kit with slight modifications, primarily in the incubation time and in the centrifugation speed, 

duration, and intensity (our unpublished study).  

For samples with high content of mucilage (samples from O. elata and O. dillenii), a lysis 

process with CTAB and SDS and the combination of this improved lysis with a DNeasy® 

Plant Mini Kit were used. The lysis buffer supplied with the DNeasy® Plant Mini Kit was 

replaced with 700 µL of CTAB lysis buffer, 50 μL of 0.2 M SDS and 4 µL of RNase A. A step 

to remove proteins was performed by adding chloroform:isoamyl alcohol (24:1), with an 

extra centrifugation at 10,000 rpm for 10 min, conducted after the kit buffer was used for 

this purpose (Buffer AP2). Afterwards, the lysate was pipetted into a QIAshredder spin 
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column placed in a 2 mL collection tube, and the remaining steps of the standard protocol 

of the kit were followed. 

The extraction products were dissolved in 75 µL of TE buffer to maximize overall DNA yield. 

DNA yield was determined by spectrophotometry (mySPEC VWR®, Leuven, Belgium), 

whereas DNA purity was estimated according the A260/A280 ratio. DNA was also quantified 

by visual comparison with lambda DNA samples on GreenSafe premium (Nzytech, Lisbon, 

Portugal) stained agarose 0.8% gels, and documented with the Micro Doc gel 

documentation system (Cleaver Scientific, Warwickshire, United Kingdom). 

 

Table 6.1  Genotypes, pulp colour and geographic origin of the studied Opuntia spp. populations. 

Genotype code Pulp colour Origin Altitude 
(m) 

Geographic coordinates 

Latitude Longitude 

OFI-01a White Alcochete 25 38°43'32.14"N 8°57'58.22"W 
OFI-03 White Cascais 185 38°45'23.18"N 9°27'38.48"W 
OFI-04 Pale yellow Portalegre 372 39°16'22.45"N 7°26'13.12"W 
OFI-05 Orange Arronches 293 39° 5'21.06"N 7°12'7.05"W 
OFI-08 White Melides 29 38° 8'28.91"N 8°44'14.28"W 
OFI-09 White Santo André 25 38° 4'38.13"N 8°46'38.08"W 
OFI-11 White Albufeira 61 37° 5'23.33"N 8°17'27.03"W 
OFI-12 Orange Cacela-a-Velha 20 37° 9'22.50"N 7°32'47.98"W 
OFI-13 Orange Monforte da Beira 260 39°45'8.34"N 7°16'54.83"W 
OFI-14 Orange Idanha-a-Velha 275 39°59'57.30"N 7° 9'3.51"W 
OFI-15 White Ponte de Sor 125 39°16'15.45"N 8° 0'44.72"W 
OFI-16 White Coruche 76 38°54'40.93"N 8°37'17.00"W 
OFI-17 White Castelo Branco 402 39°48'58.84"N 7°29'37.85"W 
OFI-18 White Reg. Monsaraz 223 38°27'27.04"N 7°39'21.77"W 
OFI-19 White Alvega 105 39°27'15.96"N 8° 3'51.88"W 
OFI-20 Orange Madeira 116 32°38'54.18"N 16°57'46.38"W 

OFI, cv. “Bianca” White Italy -- -- -- 
OFI, cv. “Gialla” Orange Italy -- -- -- 
OFI, cv. “Rossa” Red Italy -- -- -- 

O. robusta Red Castelo Branco 365 39°49'17.00”N 7°27'41.00”W 
O. dillenii Purple Lagos 48 37° 8’42.24”N 8°40’33.42”W 
O. elata Purple S. J. Pesqueira 450 41° 9’5.83”N 7°22’5.43”W 

OFI – Opuntia ficus-indica; OFI-01a – Opuntia ficus-indica f. amyclaea; Ell – elliptic; Obl – oblong; Ovd – ovoid; 
Rou – round.  

 

Microsatellite genotyping 

The genomic DNA was amplified using fifteen nuclear microsatellite (nuSSR) markers 

selected from two primer sets, the OPUNTIA (Helsen et al., 2007) and the OPUFIC (Erre et 

al., 2011) developed for the species O. echios and O. ficus-indica, respectively, as 

previously referred (Table 6.2). To search for polymorphisms and understand the allelic 

patterns at each locus, the nuSSRs were tested in ten populations collected from the four-

studied species. 

The amplifications with the OPUNTIA set of primers were conducted in 10 µL of total 

reaction volume containing 5-15 ng of genomic DNA, 1 U Supreme NZYTaq 2x Colourless 



Chapter 6   

100  Carlos Gaspar Reis 

Master Mix® separate MgCl2 (Nzytech, Lisbon, Portugal), 2 mM MgCl2, and 0.2 μM of each 

primer (Table 6.2). The amplifications were performed on a UNO96 Gradient thermocycler 

(VWR®, Leuven; Belgium) programmed with an initial denaturation step of 10 min at 95 ºC, 

followed by 35 amplification cycles composed of denaturation (1 min at 95 ºC), annealing 

(1 min at optimal annealing temperature for each pair, see Table 2) and polymerizing (1 min 

at 72 ºC). After the amplification cycles, a final extension step was for 10 min at 72 ºC. 

 

Table 6.2  Marker code, primer sequences, repeat unit, size, and annealing temperature of the six 
OPUNTIA and the nine OPUFIC primers used in this study.   

Marker Primer sequences 5´- 3´ Repeat unit Size range 
(bp) 

Annealing 
temp. (ºC) 

OA3a 
F: GTG AGT GCC CAG ATG AAA CT 

(AG)19 232-312 56 
R: TCC TCA ACT TTA TTG TAG CAA GAG 

OA5a 
F: TAT GCA CAA AGC ACC ATG C 

(TA)5 198-380 57 
R: CCA ACC ATA CCA ACT GTA CTG AC 

OA9a 
F: CTA GGC TTC ATC CCA CAT TAG G 

(AG)15 144-174 56 
R: TCC AAA TTC ACC TCC TCT GC 

OA11a 
F: CCT ACA CCT GCT GCC AAT C (CT)13TT(CT)

2 102-111 56 
R: CGA GAC AAA CAT CAG AGG AG 

OA12a 
F: TAA TCT TAT TCT CAG GTC AGT TAC 

(TC)4C(TC)12 224-272 56 
R: GGT ATC TTG TTA TTC GTT CG 

OA13a 
F: CCA AAT ACC CAG CCC ATA C 

(AG)12 244-274 57 
R: CGA GAA CCT AAC TTC CGA TG 

OC1b 
F: TGG GTG AGA CAA TAT AGT AGA CCA AG 

(CT)16 147-178 52 
R: CTG CCG TGA AAT CTG AAT GG 

OC3b 
F: GCT TTG AAA TGT CTT GTG TGA ATG  

(TG)12 134-162 52 
R: AGT CCT GGG AAT CCT CAA CC 

OC4b 
F: TGC AGT CAG GTT TCT CAT TGT C 

(TG)12 196-218 52 
R: GCC CAA CTC TTA CCC TCT CC 

OC9b 
F: GGC AAT ACC CTG AGT TGA GC 

(AAG)16 182-236 57 
R: CCT GAG ACT ACA GCG TGA GGA  

OC10b 
F: GCT TCC TTC AAT AGC ATG ACC  

(GT)12 213-250 55 
R: TGA GGC TTT ACA TGG CAC AC 

OC13b 
F: GGG CTT TCA ACG ATG CTG 

(TC)12(AC)11 138-190 55 
R: AAG ACA TAG GTT GGA GAC TCA ATT C 

OC14b 
F: AAT TGA CCT CTT CAC GTT ATG C 

(CTT)7CTT)10 162-262 58 
R: GAG AAA GTG AGG CAG ACA ACG  

OC15b 
F: TTA AAC CTG CAC ACC ATT CG 

(CT)22 182-213 56 
R: GTG TGA GGC GAG GTT GCT C 

OC17b 
F: ATG GAT CGT CTT CGT CCT TG 

(AG)13 158-181 55 
R: GAT GTC ACC CCA TTC CAT TC 

aOPUNTIA set of primers according Helsen et al. (2007); bOPUFIC set of primers according Erre et al. (2011); 
F – primer forward; R – primer reverse. 
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The OPUFIC amplifications were conducted in a total reaction volume of 10 µL containing 

5-15 ng of genomic DNA, 0.8 U Supreme NZYTaq 2x Colourless Master Mix® separate 

MgCl2 (Nzytech, Lisbon, Portugal), 2 mM MgCl2, and 0.2 μM of each primer. The 

amplifications were performed in the same thermocycler programmed with an initial 

denaturation step for 10 min at 95 ºC, followed by 35 amplification cycles composed of 

denaturation (30 s at 95 ºC), annealing (30 s at optimal annealing temperature for each pair, 

see Table 6.2) and polymerizing (30 s at 72 ºC). After the amplification cycles, a final 

extension step was for 10 min at 72 ºC. 

The forward primers were 6-FAM fluorescently labelled, and amplifications were conducted 

separately for each primer pair. An aliquot of 1.0 µL of PCR product of each primer pair was 

mixed with 10 µL of formamide and 0.2 µL of ROX-500 size standard. Genotyping was 

performed with an ABI 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA), 

and the fragment analysis was performed using GENE-MARKER 1.5 software 

(SoftGenetics, LLC, State College, PA) and the data manually scored. 

 

Data analysis  

Despite the microsatellite codominance, we followed the approach used in polyploids 

(Caruso et al., 2010; López-Vinyallonga et al., 2015; Pfeiffer et al., 2011; Samah et al., 

2016), and the SSR peaks were scored as dominant loci to circumvent the polyploidy and 

to obtain the data for conventional population genetics analysis software. Hence, the pattern 

of SSR peaks observed at each locus was recorded as a qualitative character for the 

presence (1) or absence (0) and a binary matrix was created. Although scored as dominant 

markers, microsatellites were more informative than random markers, such as RAPD, 

because they are more reliable and more precise. Additionally, microsatellite fingerprinting 

of polyploid plants is a cost efficient and reliable alternative to dominant markers, such as 

AFLPs, and fewer loci are required than for diploids (Pfeiffer et al., 2011), provided that the 

microsatellite primers have been developed, which was the case for this study. 

The number of alleles and number of rare alleles (alleles with a frequency less than 5%) 

were calculated for each locus. The primer discriminatory power was evaluated by the 

polymorphic information content (PIC) and marker index (MI). The PIC was calculated 

according to Botstein et al. (1980): 

1 − (� ��	) − 
�

�
�
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�
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where Pi and Pj are the population frequency of the ith and jth allele, respectively. The marker 

index (MI) was calculated as �� = ��� ×  ���, and the effective multiplex ratio (EMR) was 

calculated as follows (Powell et al., 1996; Nagaraju et al., 2001):  

��� = �� ���
� � 

where np is the number of polymorphic loci, and n is the total loci number. 

A matrix to evaluate pairwise genetic similarity between accessions was calculated based 

on the Dice similarity coefficient, which is a band-sharing-based method, using the 

SIMQUAL NTSYS-pc Version 2.21q subprogram (Rohlf, 2002). The cluster analysis was 

performed using the unweighted pair group arithmetic mean method (UPGMA) in the SAHN 

NTSYSpc subprogram. The UPGMA tree topology was verified by comparing the original 

genetic distance matrix with the cophenetic matrixes obtained from the corresponding 

dendrograms using the Mantel matrix-correspondence test (Mantel, 1967) and bootstrap 

analysis with 1,000 permutations. 

The Nei’s genetic distance matrix obtained with the AFLP-SURV 1.0 software (Vekemans 

et al., 2002) was used to perform a Principal Coordinate Analysis (PCoA) using GenAlEx 

6.501 software (Peakall and Smouse, 2012), and the first two principal coordinates were 

plotted to indicate the multilateral genetic relationships between them. 

The grouping structure was further explored using a locus-by-locus Analysis of Molecular 

Variance (AMOVA) (Excoffier et al., 1992), conducted with Arlequin 3.5 software (Excoffier 

and Lischer, 2010). The groups were defined based on the PCoA clustering. Variance 

components and Φ statistics were estimated for each locus and then combined to produce 

a synthetic estimator of the among groups differentiation, the Φct statistic. The significance 

values were computed by a permutation test from 1,000 permuted matrices. 

 

6.4 Results 

 

Microsatellite genotyping 

Among the 15 SSR primer pairs initially tested on 10 populations, the 9 OPUFIC primer 

pairs were discarded, because the peak profiles produced were difficult to interpret or were 

redundant comparatively with those of the OPUNTIA primers and did not provide additional 

information. The six OPUNTIA primers gave reliable, readable, and reproducible profiles 

and therefore were used to study the genetic variability and to realize the DNA fingerprint 

of the 22 Opuntia spp. populations (Fig. 6.1). In each studied population, the 15 individuals 

genotyped had the same SSR profile for each of the six pairs of primers. 
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Figure 6.1  SSR electropherograms of OA5 amplicons obtained with DNA extracted from four 
Opuntia species. A – O. dillenii; B – O. robusta; C – O. elata; D – O. ficus-indica f. amyclaea (OFI-
01); E – O. ficus-indica f. ficus-indica (OFI -08, white pulp); F - O. ficus-indica f. ficus-indica (OFI-12, 
orange pulp). 
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A total of 55 alleles were detected among the 22 populations studied, ranging from 6 (OA3) 

to 16 (OA12), with a mean of 9.2 alleles per marker (Table 6.3). Twenty-four were rare 

alleles, representing 43.6% of the total full set of alleles.  

The average PIC values ranged from 0.495 (OA9) to 0.882 (OA12), with an average over 

loci of 0.711 (Table 6.3). The MI values ranged from 3.524 (OA11) to 14.106 (OA12), 

averaging 6.735 (Table 6.3). All the studied loci were informative because they showed an 

MI value greater than 3; however, only the OA12 loci generated more than 12 alleles per 

locus. 

 

Table 6.3  Number of alleles (Na), alleles per individual, number of rare alleles, polymorphic 
information content (PIC), and marker index (MI) values for the six SSR primer pairs studied. 

Marker Na Alleles per 
individual 

No. of rare 
alleles 

PIC  
(average) 

MI 

OA3 6 2 - 3 3 0.635 3.808 
OA5 8 2 - 4 4 0.738 5.903 
OA9 10 2 - 5 5 0.495 4.948 
OA11 5 2 - 5 1 0.705 3.524 
OA12 16 3 - 7 7 0.882 14.106 
OA13 10 2 - 5 4 0.812 8.120 

Number of rare alleles refers to alleles with a frequency lower than 5%. 
 

 
Genetic distances and clustering  

A genetic similarity matrix based on the Dice coefficient was obtained with the microsatellite 

data (Appendix 6, Table S6.1). This matrix was used to group all accessions using UPGMA. 

The tree topology tested with a Mantel test showed a very high correlation (r = 0.995; P < 

0.001). The estimated Dice coefficient among populations varied from 0.255 (the most 

distant accessions were O. elata and the set of white pulp OFI populations) to 1.0 (the 

various white pulp OFI populations were similar to one another, as were the orange pulp 

OFI populations), indicating high interspecific genetic diversity but low genetic diversity at 

the intraspecific level (Appendix 6, Table S6.1). These relationships were supported by the 

cluster analysis (Figure 6.2).  

The hierarchical clustering analysis revealed four major clusters, and the four Opuntia 

species were clearly separated from one another (Figure 6.2). Three branches included the 

accessions representing each of the species O. dillenii, O. elata and O. robusta. The fourth 

and larger group included the O. ficus-indica cultivars and ecotypes. Among the O. ficus-

indica ecotypes only two sub-clusters were found: one contained the white pulp fruits 

(including cv. “Bianca”) and the ecotype OFI-01 (which corresponded to the spinescent form 

amyclaea), and the other contained the orange pulp fruits (including cv. “Gialla”), the cv. 

“Rossa”, and one ecotype with pale yellow pulp (OFI-04) (Figure 6.2). The distribution of 
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genotypes in the dendrogram indicated that the clustering pattern was unrelated to 

geographical origin.  

 

 

Figure 6.2  Dendrogram of the 22 Opuntia spp. populations obtained from SSR markers based on 
Dice coefficient and using UPGMA as clustering method. 

 

In the two-dimensional PCoA plot, the Opuntia spp. populations were divided into five 

groups, similar to the UPGMA dendrogram pattern (Figure 6.3). The first and second 

principal axes explained 74.66% and 15.43% of the total molecular variation observed, 

respectively. The species O. elata and O. robusta were separated from the other species 

on axis 1, and O. dillenii was separated from the other species on axis 2 (Figure 6.3). The 

O. ficus-indica populations were distributed into two groups, which corresponded to the two 

sub-clusters obtained in the hierarchical clustering analysis 

With the AMOVA, we estimated the variance components and genetic variation among 

accessions within groups and among groups. In this test, three groups were defined based 

on the PCoA. The first (A) and second group (B) included the O. ficus-indica populations, 

and the third group (C) contained the three unique populations of the species O. dillenii, O. 

elata, and O. robusta (Figure 6.3). The AMOVA confirmed a significantly (P < 0.0001) high 

differentiation among groups (Φct = 0.87; Table 6.4). However, the variation was low among 

populations within groups, and no variation occurred within populations 
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Figure 6.3  Principal coordinates analysis (PCoA) based on Nei’s genetic distances between the 22 
Opuntia spp. populations. OFI – Opuntia ficus-indica. 

 

Table 6.4  Analysis of molecular variance (AMOVA) of the Opuntia spp. accessions, considering the 
whole data set clustered in three groups (A, B and C) according to the PCoA analysis. SS = sum of 
squared deviation, df = degrees of freedom and P = level of probability of obtaining a more extreme 
component estimate by chance alone. 

Source of variation df SS 
Variance 

components 
% of total 
variance 

P 

Among groups (Φct = 0.87) 2 1552.696 7.85732 86.72 <0.0001 

Among populations within groups 19 339.512 1.20363 13.28 <0.0001 

Within populations 304 0,000 0.00000 0 <0.0001 

Total 325 1892.208 9.06095    
 

 

6.5 Discussion 

 

The genetic diversity of 19 Portuguese Opuntia spp. ecotypes and three Italian cultivars 

was assessed using the six SSR markers designed from the Galapagos O. echios by 

Helsen et al. (2007) and tested by Caruso et al. (2010) in another Opuntia species. A unique 

microsatellite pattern was found for the different species studied, clearly differentiating at 

the species level. Among the O. ficus-indica ecotypes, two sub-clusters were identified, one 

including the white pulp fruits (with cv. “Bianca”) and the other with the orange pulp fruits, 

including the cv. “Gialla”, the cv. “Rossa”, and one pale yellow pulp ecotype. However, at 

the intrapopulation level, the microsatellite pattern over loci was the same, and the 
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individuals could not be distinguished, suggesting that they could be recent vegetative 

clones. The results revealed a low level of genetic diversity among the Portuguese ecotypes 

of O. ficus-indica and the Italian cultivars.  

The spinescent O. ficus-indica f. amyclaea (OFI-01) had the same microsatellite fingerprint 

as that of the O. ficus-indica f. ficus-indica spineless ecotypes, and the clustering did not 

reflect the spinescence character. Caruso et al. (2010) reached similar conclusions in a 

previous study of the level of intraspecific genetic diversity among O. ficus-indica cultivated 

varieties and some related species. These authors obtained results from a cluster analysis 

that clearly diverge from the current taxonomy, which classifies several Opuntia species 

based on morphological parameters such as the presence/absence of spines.   

We note that the markers used for this study are putatively neutral and they might not 

necessarily reflect morphological characteristics, which are influenced by the environment 

and are under selection because they are products of transcription or translation. Therefore, 

although these markers can provide invaluable insights into parameters such as genetic 

diversity within populations, genetic differentiation among populations, inbreeding, and 

demographic events, they provide limited insight into adaptive evolution and evolutionary 

potential (Kirk and Freeland, 2011).   

This study represents the first report on the population structure and genetic diversity of 

Portuguese Opuntia ecotypes accessed by SSR markers. The results obtained with the six 

SSR markers revealed a narrow genetic base of diversity among the O. ficus-indica 

accessions. Our results are consistent with previous studies (Caruso et al., 2010; Samah 

et al., 2016); generally, high levels of diversity are found among the Mexican cultivated 

genotypes, whereas most of the spineless accessions collected in other countries, primarily 

in the Mediterranean region, have a very narrow genetic base. Similarly, using 

microsatellites, lower genetic diversity was found in the Portuguese landrace of the species 

Eucalyptus globulus Labill., introduced during the 19th century, than that found in native 

species (Freeman et al., 2007). 

In the Mediterranean Basin, some Opuntia spp. (primarily O. ficus-indica Mill.) were 

introduced five centuries ago from their areas of origin (Casas and Barbera, 2002), and the 

cactus pear was so well-suited to the environmental conditions that they rapidly became 

naturalized. However, on the Iberian Peninsula, O. ficus-indica rarely expands by seed 

germination because of thermal and hygrometric conditions, which are seldom optimal for 

reproduction (Blasco et al., 2015; Nieddu and Chessa, 1997). Although the occurrence of 

apomixis is possible in O. ficus-indica (Mondragón-Jacobo, 2001), the absence of 

intrapopulation variability that we found supports the predominance of asexual propagation 

and the absence of natural multiplication by seed germination.  
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Opuntia ficus-indica areas of occurrence are related to human activity and its propagation 

is maintained by asexual reproduction (Blasco et al., 2015). Opuntia ficus-indica is found 

on roadsides and paths due to typical ruderal behaviour and is cultivated for edible fruit 

production and hedge establishment. In some areas, the cactus is abundant in places with 

steep slopes on which the cladodes break off and easily root, forming conspicuous patches 

(Erre et al., 2009). In the Mediterranean region, naturalized populations of Opuntia spp. 

show a lower genetic heterogeneity than that of the areas of origin. Difficulties linked to the 

reproductive process, such as cleistogamy and polyembryony, in addition to lack of rain 

during summer and decreasing temperatures in autumn, have essentially eliminated the 

production of plants from seed and as a result limited the extent of new genetic variability 

(Chessa and Nieddu, 2002). 

Nevertheless, although the genetic diversity among the studied accessions was low, the 

Portuguese ecotypes showed some phenotypic variability in plant vigour, cladode shape, 

presence or absence of spines, spine length, corolla colour, pulp colour and fruit ripening 

time (Reis et al., 2018). Variation at neutral loci is not influenced by natural selection but 

primarily by mutation and genetic drift (Kimura, 1983). Moreover, high migration rates may 

erase population divergence. The balance between mutation and selection and among 

different selective pressures shapes the variation of adaptive traits. Therefore, selection 

acts differently along the genome, whereas migration acts evenly. Neutral or nearly neutral 

molecular markers are unlikely to accurately predict patterns of variation in quantitative traits 

when selection and drift are the acting forces (Reed and Frankham, 2001).  

A good amplification of the microsatellites occurred in the studied species with the same 

set of primer pairs, which indicated their genetic proximity. Known primers are not likely to 

amplify the same locus across related taxa unless the flanking regions in which priming 

sites are located are highly conserved (Ellegren 1992), which typically occurs in closely 

related species (Kijas et al. 1995). Similarly, in the study by Samah et al. (2016), the 13 

primers developed for O. echios (Helsen et al., 2007) and O. ficus-indica (Caruso et al., 

2010; Erre et al., 2009) successfully amplified fragments of all genotypes, showing a high 

degree of cross-transferability among the analysed species of the genus Opuntia. 

Moreover, some of the primers used generated amplicons in three cacti included as out-

groups: Cylindropuntia, Pitahaya, and Pitaya. Other studies have also demonstrated the 

transferability of SSR markers among species and genera (Wang et al., 2008; Ekué et al., 

2009). 

Speciation in the genus Inga (Fabaceae) is recent and is considered a classic example of 

a recent radiation with evidence for many species arising within the last 10 million years, 

some of them as recently as 2 million years ago (Richardson et al., 2001). A similar rapid 
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and recent burst of diversification of extant species may have occurred in the genus 

Opuntia, resulting in a poorly resolved phylogeny.  

Additionally, the O. ficus-indica taxonomic concept may circumscribe a non-monophyletic 

group of convergent cultivars derived from different parental species selected for spineless 

cladodes and desirable fruits, artificially converging further upon these traits, and 

propagated clonally to the present day (Griffiths, 2004).   

Recent advances, such as next-generation sequencing, are expected to permit the 

development of non-neutral markers by targeting genetic regions that are directly influenced 

by natural selection (Kirk and Freeland, 2011). The large O. ficus-indica octoploid genome 

(4 Gbp) makes comprehensive and accurate de novo genome sequencing difficult. 

However, the diploid reference species O. cochenillifera genome is currently undergoing 

PacBio SMRT sequencing and most likely will help in the assembly of an existing data set 

from O. ficus-indica (Mayer et al., 2016). The knowledge generated on structural and 

functional genomics will allow systematic development of gene-targeted and functional 

markers, which are derived from polymorphic sites within genes (Andersen and 

Lübberstedt, 2003). Such techniques have the potential to generate phenotypically linked 

functional markers, particularly when fingerprints are generated from the transcribed or 

expressed region of the genome (Pozcai et al., 2013). 

The molecular characterization of ecotypes could assist plant breeders with a better 

understanding of the existing genetic variability. The collection and characterization of 

germplasm from native and naturalized populations, together with continued efforts at 

Opuntia breeding, are required to develop new cultivars both for fodder and fruit production. 

In this study, nuSSR markers revealed a low level of intraspecific genetic diversity 

among Portuguese O. ficus-indica ecotypes. However, genetic variability in plants is 

essential for genetic improvement by providing options for the breeders to develop new 

cultivars. Therefore, the introduction of germplasm and landraces from the centres of origin 

and domestication, in addition to selected spineless genotypes from other regions, are 

required to increase the genetic variability of the Portuguese O. ficus-indica populations. 
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7.1 Concluding remarks and future perspectives 

 

Climate change is expected to deeply affect the Mediterranean region, particularly inland 

areas, in the near future. The cactus pear by its morpho-physiological characteristics and 

multiple economic uses, represent an alternative crop in the Mediterranean region. 

The present work contributed to the characterization and evaluation of Portuguese Opuntia 

spp. germplasm established in a provenance trial at Escola Superior Agrária de Castelo 

Branco (ESACB), Portugal. The Opuntia spp. ecotypes were evaluated for biomass 

production and nutritional quality of the cladodes when used for fodder, and for fruit yield 

and quality. In addition, its genetic diversity was assessed by nuclear microsatellite (nuSSR) 

markers. 

We have developed linear models to estimate the Opuntia ficus-indica (OFI) cladodes 

photosynthetic area, the fresh and dry matter production by a non-destructive method. 

Significant variability in biomass production among the studied populations of OFI was 

found in this study. Within the set of evaluated Portuguese OFI ecotypes it was possible to 

select a smal group of spineless ecotypes (OFI-05, OFI-12 OFI-13 and OFI-14) with similar 

biomass production to the “Gialla” cultivar. Among the selected ecotypes, the population 

OFI-12 was the most suitable for feeding ruminants. The cladodes of this ecotype are 

spineless and have higher CP levels when compared to the other Portuguese ecotypes and 

cv. “Gialla”. The OFI can be used for feeding small ruminants provided that animals have 

access to dry forage and a feed source with high CP content. Used as fodder, O. ficus-

indica seems to be an interesting feed option for small ruminants in driest period of the year, 

when there is low quality and quantity of pasture. Therefore, further studies are need to 

evaluate the performance and nutrient digestibility of small ruminants fed with increasing 

levels of cactus pear. In regions were the main purpose of cactus is fruit production, cactus 

forage may be an important pruning by product, helping to feed the livestock, as a 

replacement of other forages, in inland areas of Portugal. 

Regarding he fruit production, the Italian cultivars “Gialla” and “Bianca” clearly outperformed 

the Portuguese ecotypes, in the second and the third years after plantation, reflecting their 

origin as improved plant material. Among the 16 Portuguese OFI populations, a variation in 

fruit yields and fruit distribution across two weight categories was found. The OFI is a valid 

crop for marginal soils and could be cultivated in a non-tillage system for fruit production, 

provided that high yield cultivars and appropriate agronomic practices, i.e. pruning, fruit 

thinning, fertilization and irrigation are used. The major factor limiting the horticultural 

potential of cactus pear is the poor economic value of its fruits, which, although appreciated 

in rural communities, still fail to appeal to the urban consumers (Inglese et al., 2002). 
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Marketing and promotion campaigns are needed, as well as consumer-education strategies 

at local and international level (Caplan, 1990). Furthermore, constrains to cactus pear 

consumption are the presence of glochids and hard seeds in the fruit. The obtention of 

glochid-free cultivars and the reduction of the seed content are challenges for plant breeding 

(Inglese et al., 2002). The main difficulties in cactus pear breeding are related with the long-

term juvenility and the biological complexity namely the polyploidy and the occurrence of 

apomixis (Mondragón-Jacobo and Chessa, 2017). 

The germplasm characterization and evaluation is important since plant genetic resources 

play an important role in the cultivated plants improvement as a source of genetic variability. 

However, in countries new to cactus cultivation, as is Portugal, it is recommended to 

introduce selected O. ficus-indica spineless genotypes, test them and propagate the best 

performers under local conditions before launching large-scale cultivation programmes 

(Mondragón-Jacobo and Chessa, 2017). 

A considerable genetic variation in the concentration of bioactive compounds and 

morphological characteristics of the fruits was observed among the different Opuntia 

species and among the different OFI ecotypes. The red pulp cv. “Rossa” had the highest 

betalain content among the O. ficus-indica populations, followed by the orange and the 

white pulp ecotypes. The highest amount of total phenolic compounds was found in the 

white pulp O. ficus-indica ecotypes. The Opuntia ficus-indica orange pulp fruits were larger, 

heavier and had a higher percentage of pulp as well as a lower percentage of seeds 

compared to the white pulp fruits. Besides, the spineless ecotypes that showed the highest 

biomass production, as previously mentioned, belong to the group of populations with 

orange pulp fruits. Therefore, they constitute an interesting source to initiate a breeding 

program through clonal selection, either for fodder and/or fruit production. The ecotype OFI-

04 was distinguishable from the others due to the quantitative and qualitative characteristics 

of its fruit, and it could be considered a new variety. The Opuntia. spp. are an interesting 

source of phenolic compounds, betalains, and ascorbic acid and the moderate consumption 

of cactus pear fresh fruit can provide important antioxidant intake.  

The genetic diversity of 19 Portuguese Opuntia spp. ecotypes, belonging to the species O. 

ficus-indica, O. elata, O. dillenii and O. robusta and three Italian cultivars was assessed 

using 6 nuSSR markers. Unique microsatellite pattern was found for the different studied 

species, O. ficus-indica, O. robusta, O. dillenii and O. elata, allowing a clearly differentiation 

at this level. However, at the intraspecific level, only two subclusters were differentiated 

among O. ficus-indica populations and no unique microsatellite pattern was found for each 

individual accessions, suggesting that some of them could be recent vegetative clones.  

One subcluster contained the white pulp fruits (including cv. “Bianca”) and the ecotype OFI-
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01 (which corresponds to the spinescent form amyclaea), and the other contained the 

orange pulp fruits (including cv. “Gialla”), the cv. “Rossa”, and one ecotype with pale yellow 

pulp (OFI-04). The spinescent O. ficus-indica f. amyclaea (OFI-01) did not differ from the O. 

ficus-indica f. ficus-indica spineless ecotypes and the clustering did not correspond to 

spinescence. Although some phenotypic variability was found, for example in differences in 

vegetative vigor, flower color, cladode form, and the number and presence or absence of 

spines, the nuSSR indicate a narrow genetic variability among the Portuguese O. ficus-

indica ecotypes. Recent advances, such as next-generation sequencing, will permit the 

development of non-neutral markers by targeting genetic regions that are directly influenced 

by natural selection (Kirk and Freeland, 2011). 

The large octoploid genome (4 Gbp) of O. ficus-indica makes comprehensive and accurate 

de novo genome sequencing difficult. Multiple ‘omics’ resources are in development for O. 

ficus-indica to enable the identification of key genetic determinantes for adaptations 

including CAM, tissue succulence, and epicuticular wax synthesis. The Opuntia 

cochenillifera diploid genome is currently undergoing PacBio SMRT sequencing and will 

increase the assembly of an existing data set from O. ficus-indica (Mayer et al., 2016). 

In the Mediterranean Basin, some Opuntia spp. (mainly Opuntia ficus-indica Mill.) were 

introduced five centuries ago from the areas of origin (Casas and Barbera, 2002) and cactus 

pear proved to be so well-suited to the environmental conditions that they quickly became 

naturalized. There is a conflict of interest between those who consider O. ficus-indica as an 

opportunity for agriculture, especially in the inland areas of Portugal, and those who 

consider it an invasive plant. Opuntia ficus-indica became invasive in areas with a wet 

season characterized by high temperatures, for example, in South Africa and Australia 

(Zimmermann et al., 2009). In Mediterranean climates, natural invasion is limited by the 

humidity and cold winter temperatures that contrast the warm, dry conditions of summer 

(Barbera, 1995). In the Iberian Peninsula O. ficus-indica is rarely expanded by seed 

germination due to thermal and hygrometric conditions, which are seldom optimal for 

reproduction (Nieddu and Chessa, 1997: Blasco et al., 2015). The Opuntia ficus-indica 

areas of occurrence are related to human activity and its propagation is maintained by 

asexual reproduction. However, in some areas, its abundant presence occurs in places with 

steep slopes where the cladodes break off, easily root and form conspicuous patches (Erre 

et al., 2009). Therefore, the OFI planting in these areas should be discouraged although in 

some situations OFI has an important role in the soil erosion mitigation (Louhaichi et al., 

2017). According to Blasco et al. (2015), the spineless cactus pear, O. ficus-indica f. ficus-

indica, never behaves as invasive species because it only forms isolated micro-populations, 

in the Iberian Peninsula. Additionally, it does not compete with native plants or cause 
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genetic contamination. The cactus pear could not be considered as potentially invasive 

plant because its distribution is restricted to cultivated land. The spinescent variety, O. ficus-

indica f. amyclaea, may give rise to little populational nuclei without continuity. 

Nevertheless, in other countries with Mediterranean climate (island principally), the spiny 

form could give rise to continuous populations. 

The Iberian Peninsula is likely a source of additional morphological and genetic variability 

inside this genus, and further germplasm collection as well as harvest and subsequent 

characterization of ecotypes (particularly Opuntia ficus-indica f. ficus-indica) should be 

undertaken to better understand the Opuntia spp. in this area. Neverthless, in recent years, 

the cochineal (Dactylopius coccus) has been rapidly destroying the O. ficus-indica 

naturalized populations in southern Spain (Cañas, 2017), which represents probably an 

important loss of genetic variability. Unfortunately, we anticipate the almost inevitable 

spread of this insect to Portugal, which should deserve the greater attention of the official 

entities and cactus pear producers to contain this plague.  

  



Chapter 7   

118  Carlos Gaspar Reis 

 

7.2 References 

 

Barbera, G. (1995). History, economic and agro−ecological importance. In G. Barbera, P. 
Inglese, & E. Pimienta Barrios (Eds.), Agro−ecology, cultivation and uses ofs of cactus 
pear. (pp. 1–11). FAO Plant Production and Protection Paper No. 132. Rome, FAO. 

Blasco, M., Angulo, M. J., Lloret-Salamanca, A., Lloret, P.G. & Moreno, E.  (2015). 
Difference in the invasive potential of Opuntia genus inhabiting the South of Iberian 
Peninsula. Acta Horticulture, 1067, 67–74. 

Cañas, J.A. (2017, January 28). Chumbera: la invasora amenazada. El País. Retrieved 
from https://elpais.com/elpais/2017/01/24/ciencia/1485271641_736556.html  

Caplan, K. (1990). Marketing strategies for cactus pear and cactus pear leaves for 1990´s. 
In P. Felker (Ed.) Proceedings of the First Annual Texas Prickly Pear Council, Texas 
A&M University, Kingsville, Texas, USA, pp.85-89. 

Casas, A., Barbera, G. (2002). Mesoamerican domestication and diffusion. In P.S. Nobel 
(Ed.), Cacti: biology and uses. (pp. 143–165). Berkeley, University of California Press. 

Erre, P., Chessa, I., Nieddu, G. & Jones, P.G. (2009). Diversity and spatial distribution of 
Opuntia spp. in the Mediterranean Basin. Journal of Arid Environments, 73, 1058-1066. 

Inglese, P., Basile, F. & Schirra, M. (2002). Cactus pear fruit production. In P.S. Nobel (Ed.), 
Cacti: biology and uses. (pp. 163–183), University of California Press, Berkeley. 

Kirk, H. & Freeland, J.R. (2011). Applications and implications of neutral versus non-neutral 
markers in molecular ecology. International Journal of MolecularSciences, 12, 3966-
3988. 

Louhaichi M., Nefzaouib, L.A. & Guevarac, J.C. (2017). Cactus ecosystem goods and 
services. In P. Inglese, C. Mondragón-Jacobo, A. Nefzaoui & C. Sáenz (Eds), Crop 
ecology, cultivation and uses of cactus pear. (pp. 159-169). Rome, FAO and ICARDA. 

Mayer, J.A., Yim, W.C., Wone, B.W.M., Paterson, A.H. & Cushman, J.C. (2016). Generating 
a robust genome and transcriptome for prickly pear cactus.  Plant and Animal Genome 
Conference XXIV, San Diego, CA, USA, 9-13 January.  

Mondragón-Jacobo & Chessa, I. (2017). Nopal (Opuntia spp.) genetic resources. In P. 
Inglese, C. Mondragón-Jacobo, A. Nefzaoui & C. Sáenz (Eds), Crop ecology, 
cultivation and uses of cactus pear. (pp. 43-49). Rome, FAO and ICARDA. 

Nieddu G. & Chessa, I. (1997). Distribution of phenotypic characters within a seedling 
population from Opuntia ficus-indica (cv. “Gialla”). Acta Hortiulturae, 438, 37-43. 

Zimmermann, H.G., Moran, V.C. & Hoffmann, J.H. (2009). Invasive cactus species 
(Cactaceae). In R. Muniappan, G.V.P. Reddy & A. Raman (Eds.), Biological control of 
tropical weeds using arthropods. (pp. 108–129). Cambridge, Cambridge University 
Press. 

 



 

119 

 

 

 

 

 

 

8. Appendices 
 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

I 

 

 

 

 

 

 

 

Appendix 1 – Table S2.1 
  



 

 

  



 Appendices 

III 
 

 

Table S2.1  List of the models to predict the variables CA, the FW and the DW. 

Model Mathematical model n  a (SE) b (SE) R2 RMSE 
1 �� =   + " (# + $) 60  -330.61 (78.52) 16.01 (1.37) 0.70 47.65 
2 �� =   + " (# × $) 60  48.13 (22.92) 0.75 (0.03) 0.91 26.68 
3 �� =   + " ( # + $)	 60  128.83 (38.98) 0.14 (0.01) 0.71 47.16 

4 �� =   + " %(# × $) 60  -507.78 (46.56) 40.95 (1.74) 0.90 26.89 

5 �� =   + " %(# +  $) 60  -1247.84 (158.16) 241.53 (20.89) 0.70 47.97 

6 &$ =   + " # 60  -161.80 (126.62) 27.35 (3.26) 0.55 117.22 
7 &$ =   + " (# + $) 60  -902.93 (163.28) 31.36 (2.84) 0.68 99.09 
8 &$ =   + " (# × $) 60  135.81 (111.03) 1.06 (0.15) 0.45 129.25 
9 &$ =   + " (# + $ + ') 60  -980.39 (156.67) 31.67 (2.64) 0.71 93.50 
10 &$ =   + " (# × $ ×  ') 60  36.91 (35.97) 0.64 (0.03) 0.91 52.27 
11 &$ =   + " (# × $ × () 60  289.62 (75.94) 0.25 (0.03) 0.53 119.32 
12 &$ =   + " (# × $ × ' × () 60  217.40 (29.26) 0.15 (0.01) 0.91 53.20 
13 &$ =   + " (# + $ + ' + () 60  -1036.98 (156.69) 30.88 (2.50) 0.73 91.54 
14 &$ =   + " #	 60  369.94 (64.52) 0.35 (0.04) 0.55 117.54 
15 &$ =   + " (#	 + $	) 60  153.45 (72.28) 0.40 (0.04) 0.65 102.95 
16 &$ =   + " (# + $)	 60  3.47 (82.41) 0.27 (0.03) 0.67 99.69 
17 &$ =   + " (#	 + $	 + '	) 60  152.45 (72.21) 0.40 (0.04) 0.653 102.80 
18 &$ =   + " √# 60  -1224.19 (252.76) 341.51 (40.68) 0.55 117.24 

19 &$ =   + " √' 60  -3140.93 (290.23) 2680.95 (192.70) 0.77 83.79 

20 &$ =   + " %(# × $) 60  -662.97 (222.05) 58.26 (8.29) 0.46 128.21 

21 &$ =   + " %(# + $) 60  -2711.54 (326.40) 476.65 (43.12) 0.68 98.99 

22 &$ =   + " %(# + $ + ') 60  -2863.59 (313.32) 488.85 (40.73) 0.71 93.49 

23 &$ =   + " %(# × $ × ') 60  -830.53 (71.07) 47.43 (1.95) 0.91 52.04 

24 ($ =   + " (# + $) 60  -22.77 (15.72) 1.55 (0.27) 0.36 9.54 
25 ($ =   + " (# × $) 60  18.18 (7.98) 0.07 (0.01) 0.39 9.29 
26 ($ =   + " (# × $ × () 59  25.64 (5.16) 0.02 (0.00) 0.53 8.02 
27 ($ =   + " (# + $ + ' + () 60  -29.43 (16.01) 1.53 (0.26) 0.38 9.35 
28 ($ =   + " ($ × ' × () 58  8.49 (4.79) 0.49 (0.04) 0.72 6.05 
29 ($ =   + " ($ × ' × ()	 58  37.07 (2.48) 0.00 (0.0) 0.73 6.03 

30 ($ =   + " %($ × ' × ( ) 58  -48.03 (9.58) 10.58 (0.89) 0.72 6.12 

CA – cladode area, one face (cm2); FW – cladode fresh weight (g); DW – cladode dry weight (g); L – cladode length (cm); W – cladode 
maximum width (cm); RMSE – root mean square error; SE – standard error. 
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Figure S2.1 . Cladode number per plant in year 1 (A, 330 DAP) and in year 2 (B, 660 DAP). 
Populations with the same letter do not differ according to the Kruskal-Wallis test, followed by multiple 
comparisons of mean orders for α = 0.05. The bold line represents the median, framed between the 
1st quartile (lower end of the box) and the 3rd quartile (upper end of the box). The upper and lower 
bars represent respectively the minimum and maximum. 
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Table S2.2  Games-Howell post hoc results for the area of cladodes per plant in year 2. 

  Mean Differences ( Xi - Xj ) 
Pop Mean 01 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 
OFI-01 0.63                  
OFI-03 1.03 0.39*                 
OFI-04 1.23 0.59* 0.20                
OFI-05 1.60 0.96* 0.57* 0.37               
OFI-06B 1.14 0.51* 0.12 0.08 0.45              
OFI-07G 1.90 1.26* 0.87* 0.67* 0.30 0.75*             
OFI-08 0.94 0.30 0.09 0.29 0.66* 0.21 0.96*            
OFI-09 0.78 0.14 0.25 0.45 0.81* 0.37 1.12* 0.16           
OFI-11 0.56 0.08 0.47* 0.67* 1.04* 0.59* 1.34* 0.38* 0.22*          
OFI-12 1.59 0.95* 0.56 0.36 0.01 0.44 0.31 0.65* 0.81* 1.03*         
OFI-13 1.41 0.77* 0.38 0.18 0.19 0.26 0.49 0.47 0.63 0.85* 0.18        
OFI-14 1.49 0.85* 0.46 0.26 0.11 0.34 0.41 0.55* 0.71* 0.93* 0.10 0.08       
OFI-15 0.89 0.25 0.14 0.34 0.71* 0.26 1,01* 0.05 0.11 0.33 0.70* 0.52 0.60*      
OFI-16 0.84 0.20 0.19 0.39 0.76* 0.30 1.06* 0.10 0.06 0.28* 0.75* 0.57 0.65* 0.05     
OFI-17 0.60 0.04 0.43* 0.63* 1.00* 0.55* 1.30* 0.34* 0.18 0.04 0.99* 0.81* 0.89* 0.29 0.24    
OFI-18 0.40 0.23* 0.63* 0.83* 1.19* 0.74* 1.50* 0.53* 0.38* 0.16 1.19* 1.01* 1.08* 0.48* 0.44* 0.19   
OFI-19 0.76 0.12 0.27 0.47 0.84* 0.38 1.14* 0.18 0.02 0.20* 0.83* 0.65* 0.73* 0.13 0.08 0.16 0.36*  
OFI-20 0.74 0.11 0.29 0.49 0.86* 0.40 1.16* 0.20 0.04 0.18 0.85* 0.67* 0.74* 0.15 0.10 0.15 0.34 0.02 
*p < 0.05; B – cv. “Bianca”; G – cv. “Gialla”; Pop – Population. 
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Appendices 

XV 
 

 

 

Table S2.3  Games-Howell post hoc results for fresh weight per plant in year 2 

  Mean Differences ( Xi - Xj ) 
Pop Mean 01 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 
OFI-01 5.54                  
OFI-03 9.52 3.97*                 
OFI-04 9.61 4.07* 0.10                
OFI-05 11.95 6.40* 2.43 2.33               
OFI-06B 11.34 5.79* 1.82 1.73 0.61              
OFI-07G 14.16 8.62* 4.65* 4.55 2.22 2.82             
OFI-08 9.50 3.95* 0.02 0.12 2.45 1.85 4.67*            
OFI-09 6.86 1.31 2.66 2.76 5.09* 4.48 7.30* 2.64           
OFI-11 5.02 0.52 4.49* 4.59* 6.92* 6.32* 9.14* 4.47* 1.83          
OFI-12 12.30 6.76* 2.79 2.69 0.36 0.96 1.86 2.81 5.45* 7.28*         
OFI-13 11.14 5.60* 1.62 1.53 0.81 0.20 3.02 1.65 4.28 6.12* 1.16        
OFI-14 12.45 6.90* 2.93 2.83 0.50 1.10 1.72 2.95 5.59* 7.42* 0.14 1.30       
OFI-15 8.61 3.07 0.91 1.00 3.33 2.73 5.55* 0.88 1.75 3.59 3.69 2.53 3.83      
OFI-16 7.83 2.28* 1.69 1.79 4.12* 3.51 6.33* 1.67 0.97 2.80* 4.48 3.31 4.62* 0.78     
OFI-17 6.01 0.46 3.51 3.61 5.94* 5.33* 8.16* 3.49 0.85 0.98 6.30* 5.13* 6.44* 2.60 1.82    
OFI-18 4.19 1.35 5.32* 5.42* 7.76* 7.15* 9.97* 5.30* 2.67 0.83 8.11* 6.95* 8.25* 4.42* 3.64* 1.81   
OFI-19 7.19 1.64 2.33 2.43 4.76* 4.16 6.98* 2.31 0.33 2.16 5.12 3.96 5.26* 1.43 0.64 1.18 2.99  
OFI-20 6.03 0.49 3.49 3.58 5.92* 5.31* 8.13* 3.46 0.83 1.01 6.27* 5.11* 6.41* 2.58 1.80 0.02 1.84 1.15 

*p <0.05; B – cv. “Bianca”; G – cv. “Gialla”; Pop - Population. 
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Appendix 5 – Table S2.4  
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Table S2.4  Games-Howell post hoc results for dry weight per plant in year 2. 

  Mean Differences ( X i - X j ) 
Pop M 01 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 
OFI-01 0.53                   
OFI-03 0.87 0.34                 
OFI-04 0.97 0.44* 0.10                
OFI-05 1.20  0.68* 0.34 0.23               
OFI-06B 0.96  0.43* 0.09 0.01 0.24              
OFI-07G 1.45  0.92* 0.58* 0.48 0.24 0.49*             
OFI-08 0.90  0.37 0.03 0.07 0.31 0.06 0.55*            
OFI-09 0.63  0.11 0.24 0.34 0.57* 0.33 0.81* 0.27           
OFI-11 0.48  0.04 0.39* 0.49* 0.72* 0.48* 0.96* 0.42* 0.15          
OFI-12 1.24  0.71* 0.37 0.27 0.04 0.28 0.21 0.34 0.61* 0.76*         
OFI-13 1.09  0.56* 0.22 0.12 0.11 0.13 0.36 0.19 0.46 0.61* 0.15        
OFI-14 1.27  0.74* 0.40 0.30 0.07 0.31 0.18 0.37 0.64* 0.79* 0.03 0.18       
OFI-15 0.84  0.31 0.03 0.13 0.37 0.12 0.61* 0.06 0.20 0.35 0.40 0.25 0.43      
OFI-16 0.72  0.19 0.15 0.25 0.48* 0.24 0.72* 0.18 0.09 0.24* 0.52 0.37 0.55* 0.12     
OFI-17 0.59  0.06 0.28 0.38 0.61* 0.37 0.86* 0.31 0.04 0.11 0.65* 0.50* 0.68* 0.25 0.13    
OFI-18 0.43  0.09 0.53* 0.53* 0.77* 0.52* 1.01* 0.46* 0.20 0.05 0.80* 0.65* 0.83* 0.40* 0.29* 0.15   
OFI-19 0.68  0.16 0.18 0.28 0.52* 0.27 0.76* 0.21 0.05 0.20 0.55 0.40 0.58* 0.15 0.04 0.10 0.25  
OFI-20 0.66  0.13 0.21 0.31 0.54* 0.30 0.78* 0.24 0.03 0.18 0.58* 0.43* 0.61* 0.18 0.06 0.07 0.23 0.02 
*p <0.05; B – cv. “Bianca”; G – cv. “Gialla”; Pop - Population. 
 

 



 

 

  



 

XXI 

 

 

 

 

 

 

 

Appendix 6 – Table S6.1 
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Table S6.1  Dice similarity coefficients 
 

OFI01 OFI03 OFI04 OFI05 Bianca Gialla OFI08 OFI09 O.dillenii OFI11 OFI12 OFI13 OFI14 OFI15 OFI16 OFI17 OFI18 OFI19 OFI20 O.elata Rossa O.robusta  

1.000                                           OFI01 

1.000 1.000                                         OFI03 

0.708 0.708 1.000                                       OFI04 

0.708 0.708 1.000 1.000                                     OFI05 

1.000 1.000 0.708 0.708 1.000                                   Bianca 

0.708 0.708 1.000 1.000 0.708 1.000                                 Gialla 

1.000 1.000 0.708 0.708 1.000 0.708 1.000                               OFI08 

1.000 1.000 0.708 0.708 1.000 0.708 1.000 1.000                             OFI09 

0.381 0.381 0.368 0.368 0.381 0.368 0.381 0.381 1.000                           O.dillenii 

1.000 1.000 0.708 0.708 1.000 0.708 0.708 1.000 0.381 1.000                         OFI11 

0.708 0.708 1.000 1.000 0.708 1.000 0.708 0.708 0.368 0.708 1.000                       OFI12 

0.708 0.708 1.000 1.000 0.708 1.000 0.708 0.708 0.368 0.708 1.000 1.000                     OFI13 

0.708 0.708 1.000 1.000 0.708 1.000 0.708 0.708 0.368 0.708 1.000 1.000 1.000                   OFI14 

1.000 1.000 0.708 0.708 1.000 0.708 1.000 1.000 0.381 1.000 0.708 0.708 0.708 1.000                 OFI15 

1.000 1.000 0.708 0.708 1.000 0.708 1.000 1.000 0.381 1.000 0.708 0.708 0.708 1.000 1.000               OFI16 

1.000 1.000 0.708 0.708 1.000 0.708 1.000 1.000 0.381 1.000 0.708 0.708 0.708 1.000 1.000 1.000             OFI17 

1.000 1.000 0.708 0.708 1.000 0.708 1.000 1.000 0.381 1.000 0.708 0.708 0.708 1.000 1.000 1.000 1.000           OFI18 

1.000 1.000 0.708 0.708 1.000 0.708 1.000 1.000 0.381 1.000 0.708 0.708 0.708 1.000 1.000 1.000 1.000 1.000         OFI19 

0.708 0.708 1.000 1.000 0.708 1.000 0.708 0.708 0.368 0.708 1.000 1.000 1.000 0.708 0.708 0.708 0.708 0.708 1.000       OFI20 

0.255 0.255 0.326 0.326 0.255 0.326 0.255 0.255 0.378 0.255 0.326 0.326 0.326 0.255 0.255 0.255 0.255 0.255 0.326 1.000     O.elata 

0.708 0.708 1.000 1.000 0.708 1.000 0.708 0.708 0.368 0.708 1.000 1.000 1.000 0.708 0.708 0.708 0.708 0.708 1.000 0.326 1.000   Rossa 

0.372 0.372 0.410 0.410 0.372 0.410 0.372 0.372 0.192 0.372 0.410 0.410 0.410 0.372 0.372 0.372 0.372 0.372 0.410 0.316 0.410 1.000 O.robusta 
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