
Micro HealthCare Service Platform - Uma
Solução Reativa Custo-Eficiente

HUGO ALEXANDRE FERNANDES DA SILVA TIGRE
Outubro de 2017

Micro HealthCare Service Platorm

A Cost Efeccve e eaccve Sollucon

Hlugo Alexandre Fernandes da Silva Tigre

Dissertação para obtenção do Gralu de Mestre em

Engenharia Informáccaa Área de Especialização em

Engenharia de Softare

Advisor: Professor Especialista António e ocha

Porto, Outubro 2017

ii

e eslumo
O mercado farmacêutco, nos últmo anos, tem vindo a sofrer um aumento signifcatvo de
complexidade na gestão e implementação dos seus processos, resultado de um contnuo
aparecimento de novos serviços e informatiação dos serviços existente, ambos os casos
impostos por legislação. Para agravar a situação, este mercado está a passar um período de
crise devido a cortes signifcatvos nas margens de lucro das farmácias, resultado de medidas
impostas pelo governo.

Este trabalho apresenta o desenvolvimento de uma plataforma digital de serviços que
pretende responder às necessidades de unifcação de serviços, e desta forma reduiir a
complexidade dos mesmos, e ao mesmo tempo manter a produção e manutenção da
plataforma a um baixo custo sem comprometer a efciência e utlidade da mesma.

Esta plataforma foi desenvolvida faiendo uso de tecnologias de livre uso comercial e com
resultados de efetvidade comprovados. A combinação destas tecnologias e a arquitetura das
suas implementações são o resultado da análise de requisitos funcionais e não funcionais e de
uma grande atenção aos custos.

As tecnologias principais podem-se resumir, mas não se limitam, à Play Framework e a Akka
Framework, estas duas são as principais responsáveis pela orientação reatva da plataforma.

A implementação desta plataforma foi testada tecnicamente, mas a sua pratcabilidade foi
avaliada através da perceção, sobre a mesma, dos seus stakeholders. Neste momento a
plataforma está implementada em formato piloto e apenas no primeiro trimestre de 2018 é
que será efetuada a transição para produção.

Palavras-chave: Plataforma Reatva, Micro-serviços, Saúde, Privacidade

iii

iv

Abstract
The pharmaceutcal market, in the last couple of years, has seen a high increase in complexity
of its processes, both business focused and legally mandatory ones, this also resulted in a
heterogeneous system, where fulflling a purpose means producing diferent solutons with
the same purpose. It’s also a tme of fnancial crisis in this market, a result of severe proft
margin cuts by the government.

This work presents a soluton to the technology problem while stll addressing the fnancial
one with the development of a unifying service platorm. The development main focus areas
are on the business requirements of the pharmaceutcal market to facilitate its day to day
needs and provide a safer environment, on the reactve manifesto principles to respond to
service availability requirements, cost efectve implementaton to beter adapt to the market
and simplicity to facilitate the contnuous maintenance and evoluton of the platorm.

Keytords: Reactve Platorm, Micro-services, eealthcare, Privacy

v

vi

Acknotledgements
Above all, my thanks to my teacher and advisor Prof. Dr. António Rocha who always tried to
directed me in the right path and to the educatonal insttuton in general for providing the
means to achieve this goal.

To my family, for all the support throughout the years and providing me with the resources I
needed to get where I am today, despite their sacrifces.

To my friends and dog, for just being there.

To all, my most sincere thank you.

vii

viii

Index
1. Introdluccon..21

1.1. Problem and Context...21

1.2. Objectves..22

1.3. Stakeholder Concerns..24

1.4. Value Added..25

1.5. Expected Results..26

 1.5.1. Minimum Viable Product..26

 1.5.2. Perceived Value..28

2. State of the Art...30

2.1. Business Opportunity...30

2.2. Principles and Methodologies..31

2.2.1. New Technologies...31

2.2.2. Reactve Manifesto...31
2.2.2.1. Responsive.. 32
2.2.2.2. Resilient.. 32
2.2.2.3. Elastc / Scalable... 32
2.2.2.4. Message Driven.. 33
2.2.2.5. Actor-based concurrency.. 33
2.2.2.6. Dealing with high number of requests..33

2.2.3. Reactve Programming and Reactve Systems..33
2.2.3.1. Backpressure.. 34
2.2.3.2. Service Discovery.. 35

2.2.4. Restrictons...35

2.3. Technology...35

2.3.1. Message Formats..36

2.3.2. REST Vs WebSockets...37
2.3.2.1. eTTP/2... 39

2.3.3. Frameworks..40
2.3.3.1. Concurrency model... 40
2.3.3.2. Play Framework.. 41
2.3.3.3. Akka and complementary technologies..42

2.3.4. Micro-Services..42
2.3.4.1. Monolith Vs Micro-services..43
2.3.4.2. Isolaton and Single Responsibility Principle...43
2.3.4.3. Scalable Persistence.. 43

ix

2.3.4.4. Monitoring.. 44

2.3.5. Security...46
2.3.5.1. Rate Limitng.. 47
2.3.5.2. Load shedding.. 49
2.3.5.3. IP Black Lists and White Lists..49

2.4. Deployment..49

2.4.1. Infrastructure Providers..50
2.4.1.1. Locaton... 50
2.4.1.2. Business Model.. 50
2.4.1.3. Reliability... 51
2.4.1.4. Cost.. 51
2.4.1.5. Ease of use... 52
2.4.1.6. Conclusion... 53

2.5. Quality..53

2.5.1. Stakeholders...55

2.6. User Data Protecton..56

2.7. Value Added Analysis...57

2.7.1. Value Propositon..57

2.7.2. Value Network...57

2.7.3. Perceived value...63

2.7.4. Canvas...65

2.7.5. Competton analysis...66
2.7.5.1. Price... 70
2.7.5.2. Complexity & Lightweight..71
2.7.5.3. Flexibility.. 73
2.7.5.4. Security & Privacy.. 74
2.7.5.5. Scalability... 75
2.7.5.6. Final result (AeP)... 77
2.7.5.7. Final thoughts.. 78

2.8. SWOT Analysis..78

3. Development and Implementacon..79

3.1. Developing model...79

3.1.1. Essental Dependencies..79

3.1.2. Events-First Domain-Driven Design..80

3.1.3. Stateless Web Tier..81

3.1.4. Non-Blocking..81
3.1.4.1. Non-Blocking SOAP calls...81
3.1.4.2. Future compositon... 82

3.1.5. Data-Access..83

x

3.1.6. 2-Way Reactve Model..84

3.2. Cross Cutting Concerns..84

3.2.1. Filters Vs Acton Compositon Vs External Acton...84

3.2.2. Logging...85

3.2.3. Monitoring..86

3.2.4. Metrics...86

3.3. Security..87

3.3.1. eTTPS..87

3.3.2. CORS, CSRF, XSS and SQL Injecton...89

3.3.3. Authentcaton and Authoriiaton..91

3.3.4. Firewalls..93

3.3.5. Data Protecton...93

3.3.6. End-to-End Encrypton..94

3.3.7. Abuse Protecton..96

3.4. Segregaton..97

3.5. Use Case Overview..98

3.6. MeP Conceptual Architecture..101

3.6.1. Client side...101

3.6.2. Service side...102

3.6.3. Data Side..102

3.7. Components Overview..102

3.8. Package Overview...104

3.9. Load Balancing...106

3.9.1. Perimeter Load Balancer..106

3.9.2. Akka Adaptve Load Balancers..107

3.10. Akka routers..109

3.10.1. Route Validaton...111

3.10.2. Rate Limiter and Request Validaton..111

3.10.3. Gateway and Reverse Proxy...113
3.10.3.1. API Gateway... 114
3.10.3.2. Reverse Proxy... 115

3.10.4. Router Dependencies...117

3.11. Authoriiaton Services...118

3.11.1. Authoriiaton Dependencies..118

3.11.2. Access to API Documentaton...119

3.12. Cluster and Main System Confguraton...123

3.13. Mult-Task Scheduler...124

xi

3.13.1. MTS Dependencies...126

3.14. Business Services...126

3.14.1. Dictonary Data...126

3.14.2. Medicaton Subsidies..126

3.14.3. Backpressure Strategy..128

3.14.3. Support for Legacy Architectures...129

3.15. Deployment...132

3.16. Performance Testng...134

4. Concllusions..137

4.1. Accomplished Objectves..137

4.2. Limitatons and Future Work..138

4.2.1. eL7 Support..138

4.2.2. eTTP/2..138

4.2.3. Apache Camel...139

4.2.4. JSON Coast-to-Coast Design...139

4.2.5. Security Concerns...140

4.2.6. Abuse Protecton..140

4.2.7. Akka Persistence...141

4.2.8. Akka Typed...141

4.2.9. Turn Router Into a Play Framework Module Or Library..141

4.2.10. Performance Testng..142

4.3. Final Thoughts...142

5. e eferences...143

6. Annexes...148

6.1. Perceived Value Ordinal Scale...148

6.2. Rate Limitng Confguraton Example..152

6.3. API Gateway Code...154

6.4. Reverse Proxy Code...157

6.5. Play and Akka Main Confguraton Files Example...160

6.6. Documentaton File Example..166

6.6. Logback Confguraton File Example...169

6.7. Cost of Development...172

xii

Figlure Index
Figure 1: Product Breakdown Structure..26

Figure 2: Perceived value scale..28

Figure 3: Reactve manifesto drivers (www.reactvemanifesto.org)...32

Figure 4: Blocking vs Non-Blocking Operatons (Bonér, 2017)...34

Figure 5: REST Vs WebSockets payload (Gupta 2014)...38

Figure 6: Thread-based executon model (Zhu et al., 2015)..41

Figure 7: Event-based executon model (Zhu et al., 2015)..41

Figure 8: Akka supervisor hierarchy (Lightbend, 2017c)..45

Figure 9: Quality categories (Lupo, 2015)..54

Figure 10: Stakeholder relatonships...55

Figure 11: Value Network 1...58

Figure 12: Value Network 2...58

Figure 13: Analytc eierarchy Process..67

Figure 14: Common use cases diagram...98

Figure 15: Business oriented use cases diagram...99

Figure 16: MeP Conceptual Architecture..101

Figure 17: MeP Components Diagram..103

Figure 18: MeP Package Diagram..104

Figure 19: MeP Package Development Workfow Diagram..106

Figure 20: DigitalOcean Load Balancer Confguraton...107

Figure 21: Akka load balancing..108

Figure 22: Router component actvity diagram...110

Figure 23: Rate Limiter actvity diagram..112

Figure 24: MeP documentaton portal - signIn...119

xiii

Figure 25: MeP documentaton portal Link to docs...120

Figure 26: MeP documentaton portal Authoriiaton docs header......................................120

Figure 27: MeP documentaton portal Authoriiaton docs model.......................................121

Figure 28: MeP documentaton portal Authoriiaton docs example....................................122

Figure 29: MeP documentaton portal Authoriiaton docs try out......................................122

Figure 30: MeP medicaton subsidies relatonal diagram...127

Figure 31: MeP legacy architecture soluton...130

Figure 32: MeP Deployment diagram...132

Figure 33: MeP network diagram..133

Figure 34: Performance testng with rate limitng...135

Figure 35: Performance testng without rate limitng...136

Figure 36: Ordinal scales sent to the stakeholders..150

Figure 37: Development investment 1..172

Figure 38: Development investment 2..173

Figure 39: Development investment 3..173

Figure 40: Development investment 4..174

Figure 41: Development investment 5..174

Figure 42: Development investment 6..175

xiv

Table Index
Table 1: eOCON Format..37

Table 2: Cloud providers list..50

Table 3: Price comparison between infrastructure providers...51

Table 4: Value Network Roles..59

Table 5: Value Network Tangible Deliverables..60

Table 6: Value Network intangible deliverables..62

Table 7: Value based drivers..63

Table 8: Canvas..66

Table 9: AeP Criteria pairwise comparison...68

Table 10: AeP Criteria soluton...69

Table 11: AeP Thomas Saaty’s table...69

Table 12: AeP Price per year (WSO2, 2017) (Redeat, 2017) (IBM, 2017a/b).........................71

Table 13: AeP Price pairwise comparison...71

Table 14: AeP Price soluton...71

Table 15: AeP Complexity & Lightweight pairwise comparison...73

Table 16: AeP Complexity & Lightweight soluton..73

Table 17: AeP Flexibility pairwise comparison...74

Table 18: AeP Flexibility soluton...74

Table 19: AeP Security & Privacy pairwise comparison..75

Table 20: AeP Security & Privacy Soluton..75

Table 21: AeP Scalability pairwise comparison..76

Table 22: AeP Scalability soluton...76

Table 23: AeP Criteria with alternatves pairwise comparison...77

Table 24: SWOT Internal Analysis..78

xv

Table 25: SWOT External Analysis...78

Table 26: Platorm essental dependencies...80

Table 27: Monitoring metrics..86

Table 28: Example commands to create and renew certfcates...88

Table 29: MeP Certfcaton Tool arguments...88

Table 30: MeP Certfcaton Tool dependencies..89

Table 31: Pros and cons of cookie based authentcaton...91

Table 32: Pros and Cons of JWT based authentcaton..92

Table 33: Encrypton protocol parameters..94

Table 34: Field siies non-encrypted vs encrypted (AES/CBC/PKCS5Padding)............................95

Table 35: MeP Components Elements..103

Table 36: MeP Package Elements...105

Table 37: Cluster Metrics (see footnote 70)..109

Table 38: Cluster Metrics Monitoring Example...109

Table 39: Router Filters...111

Table 40: Pros and Cons of using an API Gateway and Reverse Proxy.....................................114

Table 41: API Gateway code descripton...114

Table 42: API Gateway proxy code descripton...115

Table 43: Reverse Proxy code descripton...117

Table 44: Authoriiaton specifc dependencies...118

Table 45: Plays Framework with Akka cluster main confguraton fle parameters.................123

Table 46: MTS specifc dependencies..126

Table 47: Platorm Essental Dependencies...128

Table 48: Vegeta command line arguments..134

Table 49: Stakeholders response to the percepton study..150

Table 50: Rate limitng confguraton example..152

xvi

Acronyms List
ACSS Administração Central do Sistema de Saúde

AES Advanced Encrypton Standard

AFP Associação de Farmácias de Portugal

ANF Associação Nacional de Farmácias

Be MS Business Rules Management System

BPMN Business Process Model Notaton

BPEL Business Process Executon Language

CCF Centro Conferência de Faturas

CQe S Command Query Responsibility Segregaton

CNPD Comissão Nacional de Proteção de Dados

CSe F Cross Site Request Forgery

COe S Cross Origin Resource Sharing

DSL Domain Specifc Language

DDD Domain-Driven Design

ESB Enterprise Service Bus

EAI Enterprise Applicaton Integraton

FQN Full Qualifed Name

HOCON euman-Optmiied Confg Object Notaton

HTTP eypertext Transfer Protocol

HL7 eealth Level Seven Internatonal

HIV/AIDS euman immune defciency virus infecton and acquired immune
defciency syndrome

ISDN Integrated Service Digital Network

I/O Input and Output

jBPM Business Process Management

xvii

JSON JavaScript Object Notaton

JWT JSON Web Token

LE Large Enterprise

MHP Micro eealthcare Platorm

MVP Minimum Viable Product

MVC Model View Controller

ODE Orchestraton Director Engine

ODM Operatonal Decision Manager

OO Object Oriented

OOP Object Oriented Programming

OWASP Open Web Applicaton Security Project

PBS Product Breakdown Structure

e EST Representatonal State Transfer

SME Small Medium Enterprise

SOA Service-Oriented Architecture

SPMS Serviços Partlhados do Ministério da Saúde

SNS Serviço Nacional de Saúde

SNI Server Name Indicaton

SPA Single Page App

SBT Simple Build Tool

SCA Service Component Architecture

TAe V / HAAe T eighly Actve Antretroviral Therapy

TLS Transport Layer Security

TPA Terminal de Pagamento Automátco (Credit Card POS Terminal)

XSS Cross Site Scriptng

XOP XML-binary Optmiied Packaging

xviii

WSS Secure WebSockets

xix

20

1. Introdluccon

This chapter presents an introducton to this work context, problems, intended solutons as
well as the proposed value of this project.

1.1. Problem and Context

The health care industry has evolved in the last couple of years, although, not in a uniform
way, maybe because it’s dependency on government funds, high level of complexity, data
sensitvity and, specially, government partes that dictate changes without understanding all
its technical side efects, all this, resultng in premature systems update and scatered faws in
the fow/exchange of informaton. The result is a sector with several characteristc faws, like
several product order protocols1, all currently actve in the same market, with the exact same
purpose but, technologically, very diferent from one another.

The heterogeneous nature of existng systems from diferent platorms, business and
languages needs to be integrated in a more seamless way and communicate more reliably (LI
et al., 2012). There are high security concerns when user healthcare data is concern,
especially, when in the past, user data has been lost or stolen, some cases might even go
undetected which damaging efects are not always clear or measurable (Kang et al., 2016).

This proposes the need to create beter means to serve the healthcare market and all
partcipatng partes, so, is the objectve of this thesis to plan and develop a eealthcare
Enterprise Service Platorm (MeP), with main focus on simplicity, lightweight, replicability,
scalability and that follow the reactve manifesto principles2.

1 Currently actve order protocol include a protocol from 1994 that all pharmacies use and
several suppliers have their own protocols that are used by just their clients.

2 htps://www.reactvemanifesto.org

21

The healthcare market is a big market and involves a lot of diferent business and insttutons,
this project will focus more on the pharmaceutcal market and the needs of its more close
professional relatons, like suppliers (products and informaton), laboratories, clients and
pharmacy associatons.

The following is a list of issues this project addresses:

 Diversity and complexity in services provided;

 Diversity of relatonal enttes, sometmes with confictng interests, resultng in not
providing sufcient incentve in the share of informaton and knowledge;

 Entty siie diference, multnatonals, small local companies, with diferent
technologies and know-how, resultng in bad interoperability and loss of informaton;

 Need to beter protect sensitve data, regulated by a natonal data protecton
commitee agency (Comissão Nacional de Proteção de Dados)3;

 Obsolete communicaton technologies that can’t keep up with today’s needs:

◦ Ex: Pharmacies that make their orders with a protocol from 1994;

 Industry professionals needing access to data scatered from many sources;

 Non-existent practcal cost efectve platorm for business.

1.2. Objeccves

The tme for this project to be developed is now, a consequence of the state of the art in the
healthcare market, more precisely the pharmaceutcal market, the more this kind of work is
postponed the more complicated the market will become, this is shown by the constant
appearances of new services, all of them very inconsistently, technology wise, related to one
another4.

This project objectves are focused on the state of the art of its development but there is no
tme of life for it, so, this work development and implementaton, is thought in a way that
facilitates its evoluton and increased tme of life.

The main objectves of this work are as follows:

a) All enttes that communicate with this service(s) must be able to do it in a secure and
cost-efectve way:

3 www.cnpd.pt

4 As an example the recent program “abem” from Dignitude (www.dignitude.org/abem) has
an invoice program which uses SOAP technologies and a prescripton program that uses REST
services, both are related and provided by the same company GLINT (www.glint.com)

22

◦ Meaning that security is mandatory, thus it will not exists services without
security implemented, if the original services or protocol does not support
security features, then it must be created a top layer with security features;

◦ In this case, cost-efectve wise means that services usage has a cost but it is
always proportonal with the usage;

b) Mult-Protocol support (some need to be supported from the beginning to increase
this project inital value, including specifc industry protocols that are currently
essental to the industry):

◦ REST and WebSockets;

◦ Postal (Product Order from 1995), at the tme developed for ISDN (Integrated
Service Digital Network) networks;

◦ Via-Verde Medicaton (www.infarmed.pt): protocol to control specifc products
orders and sales;

◦ TARV (www.infarmed.pt): protocol to control specifc product (eIV) availability;

◦ New Orders and Products Informaton protocols, currently in development for this
work to replace the old previous protocols;

◦ Apostore (www.apostore.de), Technilab (www.tecnilab.com) and Consis
(www.willach-pharmacy-solutons.com): product dispenser robot’s protocols, this
projects will proxy requests for dispense requests and orders checking;

◦ Cashguard (www.cashguard.com): cash safe robot;

◦ Associate cards validaton: validaton of associate cards that provide monetary
cover for the medicaton cost. Initally there will be support for CGD (Caixa Geral
de Depósitos), SNQTB (Sindicato Nacional dos Quadros e Técnicos Bancários) and
SAVIDA from EDP (Energias de Portugal);

◦ Pharmacy reimbursement Invoicing: All invoices emited by the pharmacies to
social and commercial enttes that cover medicaton cost goes directly to the
MeP and are, then, relayed to it’s corresponding entty.

c) Data transformaton: in order to support multple protocols and serve has a technical
facilitator for everyone this project needs to dedicate a lot of eforts into transforming
data, for example, to accept a single request format for multple provider protocols;

d) End-to-End Encrypton (Enttes using the MeP must be able to keep their data a
secret form external and inside partes);

e) Uniform sharing of data: There’s a lot of data that is used by all interested partes,
which creates a need for a uniform sharing of this data, this is typically referred to has

23

a dictonary data. For example, several enttes use and share product informaton,
but even with a unique identfer for each product, the name is rarely the exact same,
this cases some problems, like in reportng;

f) Be agnostc of all enttes using the MeP: The MeP should not treat diferently, in any
way, enttes using the system, it’s only concern should be the data, there is data more
important than other, but all MeP clients should be treated as equals, meaning that
all clients should receive the same quality of service and security, for example, if a
client is abusing the systems resources, it’s connecton should not hinder other clients
requests;

g) Document archiving and management: All messages that traverse the MeP should be
saved for the longest tme possible, forever if possible. Clients should have access to
they messages/documents whenever they need to;

h) Scalable architecture: The MeP should be designed to scale, horiiontally or vertcally,
very easily, without the need for additonal development;

i) Create a soluton always with simplicity in mind:

◦ Independently of the requirements, the simplest soluton possible should also be
searched, even if this means that limitatons are put in place in some services. This
is to assure that this work lives on for the longest tme possible;

◦ If the architecture implementaton is simple then it will also adapt easily to
changes and it’s easier to bring new professionals into the project;

◦ Simplicity goes both ways, meaning technically and usability wise, usually,
however, the efort to make technology implementaton simple also helps in
making it easier to use.

1.3. Stakeholder Concerns

Service mediators or platorms like Enterprise Service Bus (ESB) become popular because they
enable fexible business collaboraton, facilitatng the intercommunicaton between business
and the development of new services, the lack of efcient collaboraton technologies has
proven to have a negatve impact on the exploitaton of new business opportunites. Today,
more and more, business are used to outsourcing for their technology needs, but the
complexity of business logic and difculty to adapt personnel to internal processes are usually
barriers difcult to overcome (Lukác et al., 2016).

24

For this work to be accepted by all stakeholders, it must abide to some critcal, less technical
aspects:

 Proprietary development:

◦ All main development will be done by the same company, but the technology and
architecture will be open and documented, so that in the eventuality of it’s
founding company can no longer supported it, it, can be picked up by another
company and/or developers;

 Consistency between services:

◦ The architecture must be adapted to its needs, i.e., to the corresponding service,
but must also respect the main architecture design, so has to maintain
consistency between all the services in the MeP;

 Cost of development:

◦ Inital development will have a higher cost, necessary to start up the project into
its inital producton phase, but this work should have in mind future work in the
sense that adding new services, or changing old ones should be an easier process,
ergo, less expensive one;

 Confdentality:

◦ There should be practces put in place that, not only are considered best practces
security wise, but also, that give a sense of security to whom is using the services.
The sense of security will facilitate this projects adopton.

1.4. Vallue Added

While defning the value of this work it’s important to frst understand the relatonships
between the stakeholders by creatng a Value Network (see chapter 2.7.2), afer which
defning the perceived value benefts and sacrifces between this work developed product, the
services it ofers and its relatonship with the stakeholders. This work proposes to fulfl some
missing requirements of this network, by providing a commercial platorm to uniform
communicaton and data between the stakeholders while also providing a low cost and secure
soluton.

25

1.5. Expected e eslults

The results of this work can be divided in two main categories, one being the Minimum Viable
Product (MVP) and the other being the Perceived Value from this project stakeholders.

 1.5.1. Minimlum Viable Prodluct

Regarding the MVP, a Product Breakdown Structure (PBS) is used to give a top clear picture of
what is intended (see Figure 10). PBS is a simplifed hierarchy representaton of this project
structure, it divides the overall project into sub-projects and serves to reduce complexity
giving a beter overall view of the project (eameri and Niter, 2000). The top level represents
the fnal product, while the rest are sub-components of the top component.

Figure 1: Product Breakdown Structure

26

1. Service Invocacon: Supported protocols for service invocaton are REST and
WebSockets, SOAP is not supported in this project. This does not mean that the MeP
does not communicate with SOAP services, it means that it does not respond to SOAP
based requests.

1.1. Load Balancer: All requests are load balanced to the requested service. The
balance is achieved by analyiing the resources of the available instances of the
backend service and redirectng the trafc to the one with the more resources
available;

1.2. Security Mechanisms: All request have to go through an authentcaton and
authoriiaton layer and only authoriied trafc can reach the requested service;

1.3. Router: The router is responsible for implementng the load-balancing and
proxying the request. Besides the load-balancing the router acts as a API
Gateway5 for all provided services and also a Reverse Proxy6 for supported web-
sites that are inside and provided by this platorm;

1.4. Abuse Protecton: Also implemented are Rate Limitng7 and Circuit Breaker8

techniques to avoid malicious users or bad scripts from overloading the system;

1.5. Protocol Uniformiiaton: To facilitate and promote this platorm usage, the same
will always provide a single service with the same business structure to interact
will all providers whenever possible;

1.6. Converter and Translator: this are the basic components for all service requests
(see chapter 2.2);

2. Service Provider: This includes all the services already mentoned in chapter 1.2 and
also to web-sites, giving them transparent eTTPS and load-balancing feature.

3. MTS: This component stands for Mult-Task Scheduler, its basically a multthreaded,
concurrent scheduler that is responsible for processing jobs, which can be of two
types, jobs that execute on-demand and jobs that are schedule to run at specifc tmes
or at specifc conditons;

3.1. Scheduler: responsible for controlling the schedule tmes of the jobs;

3.2. Rules: these are the jobs rules, which are supposed to be edited by non-technical
people, so it’s confguraton is not hard-coded;

5 htps://martnfowler.com/artcles/serverless.html
6 htps://www.nginx.com/blog/building-microservices-using-an-api-gateway/ (NGINX is a
popular Reverse Proxy sofware)
7 htps://www.sans.org/reading-room/whitepapers/detecton/denial-service-atacks-
mitgaton-techniques-real-tme-implementaton-detailed-analysi-33764 (pag.29)
8 htps://martnfowler.com/bliki/CircuitBreaker.html

27

3.3. Jobs: the actual jobs implementaton that this project supports;

4. Persistence: persistence is a major concern of the platorm because it can be a source
for performance degradaton and it’s usually more difcult to scale than the services.
Because of this, in some cases, the reads will be physically separated from the writes.

5. Monitoring and Slupervisor: The platorm is a system that needs to keep components
in communicaton with one another to control state. Monitoring implies that all
components are monitored for their state and if interventon is needed, like stopping
or restartng a service the Supervisors are responsible for actng upon their monitored
children.

6. Logging and Nocier: this component is responsible for logging all messages, both
service messages and debug messages, and notfying the developer team when errors
occurs.

 1.5.2. Perceived Vallue

The perceived value is not easy to measure, this is only possible afer measuring specifc
categories percepton for each stakeholder, i.e., for each stakeholder there are diferent
categories to measure. This is done using Tony Lupo’s approach as described in chapter 2.5.

To measure the perceived values for each category, an ordinal scale is used, so that all
categories can be linearly ordered regarding the perceived quality and because there is no
measure of distance between the choices (Flannelly et al., 2014) it makes this an easier scale
for it’s public, preventng random or incorrect values from lack of accuracy when flling in the
questonnaires. Ordinal scales are also normally used in healthcare for measuring disease
progression (Flannelly et al., 2014), which might make it more familiarly to some of this
projects stakeholders.

A fve choice scale, like the following fgure, is used to keep it simple for the stakeholder, this
way there is a beter change of accuracy when comparing diferent stakeholder’s opinions.

Figure 2: Perceived value scale

There is a scale, like the previous one, for each sub-category of each category identfed in the
quality categories diagram of chapter 2.5, these scales are distributed accordingly to every
stakeholder. Because this project is in its early stages, the means of distributons of the scales
are by email, followed by a phone contact if possible to increase the response rato. If it
doesn’t exist direct contact with the stakeholder then the means of distributon will be

28

through another stakeholder that has the means (for example: pharmacy patents need to be
contacted through the pharmacy).

29

2. State of the Art

This chapter intends to provide a general concept of the state of the art in this project
relevant technology and available solutons and/or approaches.

2.1. Blusiness Opportlunity

There’s a lot of technology diversity in this market, meaning higher levels of complexity and
informaton scatering. Simplifying technology integraton and unifying healthcare data can
provide beter quality for all enttes involved in this market.

Between mandatory services regulated by industry legislaton, enforced by enttes like
Serviços Partlhados do Ministério da Saúde9 (SPMS), Infarmed (Natonal Medicaton and
eealth Products Authority) and Administração Central do Sistema de Saúde (ACSS), services
required by pharmacy associatons, Associação Nacional das Farmácias10 (ANF) and
Associação de Farmácias de Portugal11 (AFP), and diferent implementatons by the industry IT
providers, including SPMS, the informaton fow is scatered between all these enttes in
diferent informaton collectons.

By providing a unifed platorm for all these services and communicaton mechanisms to
facilitate integraton with this platorm, value is added for anyone that needs or wants to use
these services, for example, IT companies will have fewer, more secure and more standard
protocols to implement, pharmacies will have beter stability, higher data consistency and
access to more services in its current business sofware applicatons and regulatory enttes
will have more adopton of its services and has an added facilitator, support request can be
directed to one central entty.

9 www. spms.min-saude.pt
10 www.anfonline.pt
11 www.portaldasfarmacias.com

30

2.2. Principles and Methodologies

From a conceptual point of view this work provides a central platorm that acts mainly as a
mediator and translator between consumers and providers. This is, also, typically provided by
an ESB, which underneath, is a service-oriented architecture (SOA), a distributed integraton
infrastructure which is message driven and provides routng and mediaton services to
interconnect senders and receivers (Li et al., 2012) and despite its business orientaton,
provides services to any number of clients, these can be suppliers, their clients, or any other
kind of intermediary, providing the following key features:

 1 Always available, service invocaton with a service repository and message routng and
storing, the clients only concern is to make a request (Ming-ihe, 2013). See “Router”
and Transistor” bellow;

 2 eeterogeneous system, the ESB has to provide message interacton between a
predetermined number of protocols, typically this is done with web-service (Ming-
ihe, 2013) (Lukác et al., 2016), but can be any other kind of message protocol. See
“Converter” and “Translator” bellow;

 3 Four essental functons: “Router” which transmits and routes messages according to
content, “Converter” which transforms a communicaton protocol into another,
“Translator” which transforms message format, dealing with business logic and
“Transistor” which deals with business events (synchronous and asynchronous) from
diferent services. Essentally “Converter” and “Translator” addresses service
heterogeneous issues, while “Router” and “Transistor” addresses service reuse (Ming-
ihe, 2013).

Many commercial and non-commercial products that exists today, claim to fulfl this
requirements, but none of them completely fulfls the needs of both LE (Large Enterprises)
and SME (Small Medium Enterprises). They need to be easy to understand and deploy, fexibly
enough to adapt to diferent business needs and cheap enough to be adopted by small
business (Lukác et al., 2016).

2.2.1. Net Technologies

It’s not necessary to innovate in new technologies to complete this project objectves /
requirements, there already exists proven, useful and stable technologies for this project
needs, however, there is more than one way to implement the same technology, and this is
where the design consideratons and decisions for this project take focus.

2.2.2. e eaccve Manifesto

The high demand in responsiveness in today’s systems requires a specifc architecture that
takes that into account, and steers the developer(s) into the right directon. This is where the
Reactve Manifesto (Bonér et al., 2014) comes in. The manifesto states the main aspects that

31

defne what a Reactve System should be, which we could resume to a highly scalable and
responsive system.

The Reactve Manifesto defnes that a reactve applicaton is based on four interrelated pillars:
responsive, resilient, elastc and message driven (Bonér et al., 2014) (see Figure 3). An
applicaton is reactve if it is event-driven, able to provide an excellent user experience, able to
beter utliie the potental of the machines, and tolerate the mistakes and failures.

Figure 3: Reactve manifesto drivers (www.reactvemanifesto.org)

2.2.2.1. Responsive

Consistent quality of service is key here, response should be quick and errors should be
handled efectvely. The end result should encourage further interacton from the user. A
responsive system is quick to respond to all requests in any situaton (even in difcult
situatons) to ensure a good experience for its users (Bonér et al., 2014).

“A message-driven architecture is very important to the responsiveness and provides an
asynchronous boundary which decouples the user in tme and space” (Mincer-
Dasikiewici, 2015).

2.2.2.2. Resilient

A resilient system, is one that remains responsive even when there is a failure, and it is
achieved by guaranteeing high-availability (achieved by replicatng when necessary),
containment and isolaton (if one component fails it should not compromise the system has a
whole) and delegaton (recovering of one component is done by another) (Bonér et al., 2014).

2.2.2.3. Elastc / Scalable

A scalable system in one that remains responsive under varying workload. Resiliency and
scalability go hand-in-hand when creatng consistently responsive applicatons. A scalable
system is easily upgraded on demand in order to ensure responsiveness under various load

32

conditons. The system should be able to scale as needed, for this, there should be no central
botleneck (Bonér et al., 2014).

2.2.2.4. Message Driven

A Message driven system is one that exchanges asynchronous messages between defned
boundaries, loosening coupling between components and helping with isolaton and locaton
transparency (Bonér et al., 2014). The main diference between messages and events is that
messages are directed while events happen. Messages have a clear destnaton while events
may be observed by iero or more (0-N) observers (ealter and Shepherd, 2012).

2.2.2.5. Actor-based concurrency

Actor-based concurrency is an extension of the message-passing architecture, where
messages are directed to a recipient, which happens to be an actor. Messages may cross
thread boundaries or be passed to another actor’s mailbox on a diferent physical server. This
enables elastcity, scaling out on demand, as actors can be distributed across the network, yet
stll communicate with each other as if they were all sharing the same JVM (ealter and
Shepherd, 2012).

2.2.2.6. Dealing with high number of requests

To beter accept and adapt to a high number of requests requires the understanding and
implementaton of all the reactve manifesto principles. Message Driven can be seen has the
means to achieve a reactve system, Elastc and Resilient has the form the system takes as it
grows and Responsive has the value to the consumer12.

2.2.3. e eaccve Programming and e eaccve Systems

When building micro-services, reactve programming plays a crucial role in working towards a
reactve system, i.e., an efcient, responsive and highly scalable system. Developing should
always mind the resources, keep the workfow asynchronous, minimiiing contenton and
don’t keep threads hostage. The following image serves has a clear picture of the efects in a
system in a blocking vs non-blocking operatons (Bonér 2017).

12 reactvemanifesto.org

33

Figure 4: Blocking vs Non-Blocking Operatons (Bonér, 2017)

As it’s possible to see in the picture, the non-blocking approach doesn’t block the thread
because it doesn’t block while waitng for the database to return the result, instead, it
assumes that a response may, or may not exist in the future.

2.2.3.1. Backpressure

Backpressure is the ability to control the pressure from requests, it can be applied in the front-
end or the back-end part of a service, in this platorm case the back-end is where it should be
controlled. This is important as to avoid the services for overloading from some requests thus
keeping the same from replying to other requests. The way this works, usually means that a

34

backchannel exists to send small pieces of data into the upstream signalling if the
communicaton fow should slow down and since both sides of the communicaton need to be
able to understand this, it’s important to have a standard which is being worked on right now
with JDK9 java.utl.concurrent.Flow13 (Bonér, 2017).

Also In synchronous protocols, like REST, it’s important to use back pressure, for example by
sending a “server busy” eTTP message (503 status code), the client requestng the service can
then interpret that it’s tme to slow down on the requests. This is usually accomplished with
rate-limitng (see chapter 2.3.5.1).

2.2.3.2. Service Discovery

Service discovery is very important feature in a micro-service environment, without this it’s
not possible to transparently scale horiiontally. Service addresses needs to be virtual in
nature, meaning that a virtual address can point to one or more physical addresses, but from
the point of view of confguraton and development there is only one address. If a server fails,
for example, the system needs to know this and send the message to one instance that is OK.
This also allows for load-balancing capabilites (Bonér, 2017).

To achieve service discovery without statc address a patern called Inversion of Control14 (IoC)
Is used, this basically means that each service reports informaton back to the system to
where it is and how it can be contacted. This informaton is saved and accessed using a Client-
Side or Server-Side Service Registry15 patern.

2.2.4. e estriccons

As stated in chapter 1.1 this work focus on the pharmaceutcal market and all its business
relatonships, which is just a component of the eealthcare market, however, the work being
done is capable of evolving and being adapted to other use cases and requirements inside and
outside the eealthcare market.

It’s also the intenton of this project to evolve past the objectves identfed in Chapter 1.2, but
this will not be considered untl all these objectves are deemed stable by the stakeholders.

2.3. Technology

While this work focuses on some technologies to achieve its goals, it’s important to be aware
of the alternatves and the main advantages and disadvantages of the technologies available
today.

13 htp://www.reactve-streams.org
14 htps://en.wikipedia.org/wiki/Inversion_of_control
15 htp://microservices.io/paterns/service-registry.html

35

2.3.1. Message Formats

• XML: The more common data sharing mechanisms, such has those based on
extensible markup language (XML) and simple object access protocol (SOAP), are a
very tme and processing consuming model which is directly proportonal to the siie
and level of recurrence of the data transfers (Man et al., 2012), this, of course,
compared to more lightweight protocols. There have been previously proposed
techniques, like transferring all XML data in binary (XOP) (Gudgin et al., 2005), but this
stll was not optmal.

Another major technology of this kind of system is the use of XSLT for the
transformaton of a message into another (Ming-ihe, 2013). XSLT processing is
normally done with Saxon and/or Xalan. If XML is not optmal, then a protocol based
on XML in which primary objectve is to transform XML, will, also, never be optmal.

 JSON: JSON is a more lightweight (Simec et al., 2014) messaging format that
accomplishes the same thing has XML, it doesn’t have a schema, but it also doesn’t
sufer from schema related problems when integratng the message format into a
platorm and/or library.

JSON is also a natve format for NoSQL databases, like MongoDB and CouchDB.

 HOCON: eOCON16 stand for euman-Optmiied Confg Object Notaton, and this
format was invented to facilitate human reading, it inherits its structure from JSON
format and in the background it converts to JSON for interpretaton and parsing, but
reading and editng by a human is more convenient by the following characteristcs:

◦ Less noisy syntax, for example keys don’t have to be encapsulated in quotes;

◦ Ability to refer to another part of the document: for example, using a variable for
repettve values or using environment variables;

◦ Its possible to concatenate diferent document fles, i.e., importng a document
into another;

◦ It’s possible to add comments to the document;

◦ The syntax of the fle can be more fat, like a Java system propertes fle;

◦ For example, the following 3 examples are interpreted the same17.

16 htps://github.com/typesafehub/confg/blob/master/eOCON.md
17 More examples at: htps://github.com/typesafehub/confg#examples-of-hocon

36

Table 1: eOCON Format

Example 1 Example 2 Example 3

service.auth.id = 2

service.auth.name = auth

service {

 auth {

 id = 2

 name = auth

 }

}

service.auth.id = 2

service {

 auth {

 name = auth

 }

}

 HL7: eL7 is not really a format but a standard, as a format, it supports both XML and
JSON message formats. eL718 was founded in 1987 as a non proft, and its mission is to
provide standards for dealing with electronic healthcare informaton thus unifying the
way the healthcare communicates and interoperates electronically (eL7, 2017).

eL7 has well defned standards specifcally for the healthcare market and it’s free to
use, supportng these standards by default could give more value to the platorm.
Implementng such support is not a simple task since the protocols can be quite
extended, however, there are existng libraries that can help in this process and can
be integrated in the platorm, like for example the free and open source library eAPI19.

2.3.2. e EST Vs WebSockets

A typical RESTful eTTP connecton is composed of the following steps:

1. Client creates a new TCP connecton to the server;

2. Client and server negotate using SSL handshake;

3. Client sends the request data, along with any headers;

4. Server sends response data to the client, along with any headers;

5. Client closes the connecton.

If low latency is required then startng and closing connecton for each request might not be
an optmal soluton because of the overhead of opening TCP connectons and sending the
same redundant header informaton multple tmes (Gupta, 2014).

Since a RESTful connecton has a strict order request and then response, and closes afer that,
the server is not able to push notfcaton to the client. There is a “eTTP Keep Alive”
optmiiaton the can be used, but with limitatons. The request and response order must be

18 htp://www.hl7.org/
19 htp://hl7api.sourceforge.net/

37

exact, meaning that multples request cannot be send because the response to the second
request might arrive earlier, also this does not reduce the header redundancy and has an
approximately max tmeout of 15 seconds, which from an API perspectve is not very useful.

WebSockets on the other hand, are ideal for low latency connecton, they can reuse the same
connecton to send multple request and responses at the same tme (full duplex), the tmeout
of the connecton can be confgured, there are headers in the connecton but they only need
to be sent one tme per connecton, the payload of each request is smaller (framed with 2
bytes) then the payload of a RESTful request (Gupta, 2014).

The next picture shows a comparison between a RESTful and a WebSocket connecton, of the
tme to process a fx payload and an increasing number of messages. The performance
increase of the WebSocket connecton is proportonal to the number of messages, this is
because with REST, with every connecton, a new TCP connecton is established and new
eeaders are sent with the connecton.

Figure 5: REST Vs WebSockets payload (Gupta 2014)

WebSockets can provide a big boost in performance in some cases, but there are stll reasons
to use REST architecture instead (Gupta, 2014):

 It’s a simpler implementaton than WebSockets since there is no need to worry about
multple concurrent connecton from the same client, it’s very well adopted by the
industry, some companies or clients can have some difcultes implementng
WebSockets on their side and some servers, for example proxy servers might stll have
some difcult dealing with WebSockets;

38

 It’s easier to document since the diferent kinds of requests follow a standard
protocol, there are libraries and tools that help automatng the documentaton
process (code frst), like Swagger20, there is no such functonality for WebSockets, this
is because WebSockets is a lower level protocol and only worries about how the
connecton and messages are delivered, the messaging protocols, rules and
methodologies of the messages are defned by the developer, for example, all the
creates, deletes and updates resources and status messages must be built on top of
the WebSockets implementaton;

 WebSockets is typically used as a stateful protocol while RESTful as a stateless one,
this makes REST easier to scale horiiontally.

2.3.2.1. eTTP/2

It’s also important to note that the current limitatons of RESTful communicatons might
change in the future with eTTP 2.0 (RFC 7540), the primary objectve of eTTP/2 is to enable
more efcient network connectons, reducing the transfer data siie and enabling multple
concurrent data transfers on the same connecton which is not possible with eTTP current
version (eTTP/1.1) (Belshe et al., 2015).

Some of the advantages eTTP/2 will bring can be summariied has follow (Belshe et al., 2015):

 Mlulcplexing: each eTTP request/response can be associated with its own stream
which are independent of each other, meaning one blocked request does not prevent
another's progress;

 Flot control and prioriczacon: this ensures that multplexing is efciently used. Flow
Control controls data transmited and helps to ensure that only that data can be
interpreted by the receiver that is transmitting. Prioritiaton helps in prioritiing the
most important data frst;

 Net interaccon mode: with eTTP/2 servers can push data to the clients, for example,
data the server knows that the client will need. For the server to be able to do this, it
frst needs to synthesiie a request to send a response to;

 Compression: frames that contain eTTP header felds are compressed reducing the
siie of transmited data;

 Conneccon Management: connectons are persistent and are not closed untl
determined that no further communicaton with a server is necessary, for example,
when a user navigates away from a web page or when the server closes the
connecton. This allows many request and responses to use the same connecton.

eTTP/2 is already being used by some major companies, like Google for example, but this will
take tme, so for now it stll is important to consider eTTP/1.1 frst.

20 htps://swagger.io/

39

Also, it’s just recently that libraries and frameworks are supportng eTTP/2 and even the ones
that support it are at the state of pilot testng and advice not to use it in producton, this is the
case of Play Framework with the lightweight Akka eTTP server, that, since version 2.6
supports eTTP/221.

eTTP/2 is not in the scope of this work, but it’s important to be aware and prepare for future
changes.

2.3.3. Frametorks

There are many frameworks, in diferent programming languages, that emerge to facilitate
sofware development in reactve paradigm: React and NodeJs for Javascript (nodejs.org);
Reactor, RxJava, Reactve Extensions for .NET, Rx.rb for Ruby, the Play Framework for Java and
Scala and many other initatves.

2.3.3.1. Concurrency model

There are two types of concurrency models, thread-based on a call stack and shared memory
and message-driven or event-driven concurrency. Many popular frameworks, like for example
Ruby on Rails, are thread-based, this includes features like, a thread per request and
concurrent access to mutable states are managed with locks and other complicated constructs
(Zhu et al., 2015).

Furthermore, managing thread pools, can be difcult, if the thread pool is too large it
consumes to much resources and it it’s too small it can run out of threads, for example in a
spontaneous increase in network trafc, also, a service latency can afect another’s and so
one, making thread pool optmiiaton very hard to handle (Brikman, 2013).

To solve the previous problem, this work is developed on the principals of message-driven
concurrency, meaning, in most cases, a single tread per CPU core, because of this, these
threads need to be non-blocking (all I/O should be asynchronous), so that they can process
other request untl a response for the request is ready at which tme it relays the response, for
this to be possible the requests are inserted into an event queue and each event is associated
with an event callback (Zhu et al., 2015).

Below are two pictures of each concurrency model for beter understanding.

21
htps://www.playframework.com/documentaton/2.6.x/AkkaetpServer#eTTP/2-support-
(experimental)

40

Figure 6: Thread-based executon model (Zhu et al., 2015)

Figure 7: Event-based executon model (Zhu et al., 2015)

Asynchronous message-driven designs are not all without their problems and complexites has
well, if they are built poorly, they can lead to hard to solve problems. Producing asynchronous
code, in general, it’s a litle more difcult than producing synchronous code, and the
developer should adapt and understand the diferences between the two. That’s why is
important to rely on proven stable frameworks and ecosystems to help develop this kind of
architecture, and this is where Play Framework comes in (Brikman, 2013). More detail on
developing asynchronously in chapter 3.1.4.

2.3.3.2. Play Framework

The Play framework is the chosen and main framework this project uses to achieve the
reactve characteristcs of the platorm.

41

The Play Framework is a full-stack web framework that was built with the reactve manifesto
in mind, it's libraries and structure helps the development of more scalable and responsive
web applicatons in the JVM space. Play currently supports the development in Scala or Java,
but because it was built mainly in Scala, some parts of the system need to be coded in Scala,
and overall Scala is beter supported, for example, the routes fle, which is the default request
routng mechanism uses a Scala Domain Specifc Language (DSL). It was also built on top of
technologies like Akka and Nety22 so to be fully asynchronous and work in a non-blocking I/O
when needed. This also facilitates the use of parallel I/O calls to improve the use of real-tme
technologies like WebSockets (Brikman, 2013).

2.3.3.3. Akka and complementary technologies

Akka is an actor-based toolkit and runtme, part of the Typesafe Reactve Platorm 23 for
building highly concurrent, distributed, and fault tolerant actor-based applicatons on the
JVM. Akka has a number of other incredible features for building Reactve applicatons, like
supervisor hierarchies for resilience and distributed workers for scalability. Akka helps in
separatng the business logic from the complex logic involving threads, locks and non-blocking
I/O, and helps the developer abstractng from the challenges of managing state and the
locaton of services.

Akka is also a major component is complementary technologies like for example SMACK
(Spark, Mesos, Akka and Kafa) which from a conceptual point of view are join together to
provide even more power and fexibility in building and maintaining high demand and
distributed systems. These technologies are not in the scope of this work, but it’s important to
have understanding of what is the state of the art with these technologies and how they
complement each other.

2.3.4. Micro-Services

Like mentoned before and one of the objectves of this work, an ESB is one possible approach
to implement a services mediator, ESBs has a whole, bring a lot of complexity to the
implementaton and confguraton of the services they intent to deliver, but it’s functonality
it’s stll useful. In this respect, and as a possible approach to this problem, it’s possible to
divide the ESB into smaller services, thus reducing the complexity of each individually service,
meaning that there can be a compromise between understanding completely one service
while having doubts about another.

From a developers point-of-view, a lot of lightweight micro-services put together can do the
same has a ESB SOA oriented architecture and it’s the directon where the industry is moving
to. Some say that ESBs are dying, while others say that the defniton of an ESB doesn’t
directly afect it’s implementaton architecture and that the defniton of an ESB is stll quite
useful (Staford and McKeniie, 2014), ergo, the technology has evolved.

22 Current version, 2.6.x, replaced Nety Server with Akka eTTP Server
23 htps://www.lightbend.com/products/reactve-platorm

42

2.3.4.1. Monolith Vs Micro-services

According to Randy Shoup, in a Q&A interview from the 2017 QCon sofware development
conference in New York, companies main focus should be on the business and not the
technology (Churchville, 2017), that being said, sofware has become a major tool from
companies in which most companies are also sofware companies (Callahan, 2017).

A monolith is not a pejoratve term, it’s stll an adequate soluton in many scenarios, that
being said, there are many examples were successful companies evolved from a monolith
architecture to a micro-services architecture, meaning that when scaling was a major concern,
the monolith architecture was not a good ft (Churchville, 2017).

“as I add more people to my team, everybody is stepping on each other's toes in the
monolith, and they're just slowing everybody down” (Randy Shoup, 2017)

Twiter is a good example where it started as a monolith and when it started having problems
with high load and scaling, it turns to micro-services has a soluton, breaking the monolith
architecture into smaller pieces (Churchville, 2017).

2.3.4.2. Isolaton and Single Responsibility Principle

When designing micro-services, isolaton is one of the most important aspects of it, afectng
not only the technical components but also the people, in their tasks, responsibilites and their
place in the organiiaton (Bonér, 2017).

“Any organiiaton that designs a system (defned broadly) will produce a design whose
structure is a copy of the organiiaton’s communicaton structure.” (Melvyn Conway
1967)

The Unix philosophy has always been to write programs that do one thing but do that thing
really well, programs should work well together24 (Doug McIloy), this later came to be known
in object-oriented programming has the Single Responsibility Principle (SRP)25.

It also makes it easier to adopt contnuous delivery and scale of the services since the
separaton of responsibilites facilitates the roll out and revert of changes incrementally.
Planing changes to a monolith, because of the tght coupling between components, requires a
lot more planing and testng, if something goes wrong with one components it can easily
afect another component (Bonér, 2017).

2.3.4.3. Scalable Persistence

The problem: Persistence could be a major botleneck in the platorm, traditonal database
persistence techniques do not scale well and are typically blocking IO, SQL databases and
CRUD operatons do an update-in-place when updatng data which means that the data is

24 htp://homepage.cs.uri.edu/tthenry/resources/unix_art/ch01s06.html
25 htp://www.labri.fr/perso/clement/enseignements/ao/SRP.pdf

43

replaced with the new one and during this tme the same data is locked. So, a strategy must
exist to beter deal with high data demands.

Possible sollucons: An alternatve to this is with the patern Event Sourcing26 which with every
triggered state changes the corresponding instructon is saved in an event log never locking
previous data, this log represents all the data at any specifc tme (Fowler 2005). This has a big
drawback which is complexity, packaging every change in an event is not something that
comes natural to all developers (see footnote 26).

Also, the CQRS patern which stands for Command Query Responsibility Segregaton, coined
by Greg Young, is used to alleviate the blocking IO. CQRS introduces a change in the
conceptual model, in that the reads and writes are separated, the reads are referred to as
Query, and the updates as Command. This is not without some disadvantages, implementng
CQRS can bring complexity to the platorm, which goes against one of its primary objectves of
staying simple, because of this, CQRS is used only if it’s clear that will beneft the platorm in
performance (Fowler, 2011).

A major beneft of using CQRS, is that the scaling can be done separately, if the reading part
needs more resources that it can be up-scaled without worrying about the writng
components (Fowler, 2011). This is specially useful when the reads and writes are very
disproportonately, which is the case for this platorm in that it will be dealing with more
writes than reads.

Combining Event Sourcing with CQRS could provide a viable soluton the to the blocking
problems but it has a drawback that is dealing with the full complexity of the system in the
very beginning of the development, it’s also important to understand other implicatons like
that consistency between the reads and writes will not always exists at all tme, the system
needs tme to propagate the new writes to the reads porton of the system (Bonér, 2017).

2.3.4.4. Monitoring

Micro-services aren’t without its disadvantages, and, in a distributed system, tracing a
problem can be a difcult process especially in a reactve system. The easiest way to deal with
this is using logging across the entre platorm, which can provide a detailed view of the
systems, but this alone may not be optmal. So, to help with this, the Akka framework already
provides mechanisms for improving monitoring capabilites, which are (Lightbend, 2017a):

 Akka slupervisors: Supervisors are the actors fathers. An actor that creates another
actor can become its supervisor and this allows the supervisor to monitor its children
state and even recover from failure if something wrong happens to its children, like
resume, restart, stop the actor or escalate the failure to the Akka top level actor
supervisor (also called “the one who walks the bubbles of space-tme”) (see fgure 8).
Reactng to actor failures can also be done with a delay with the BackofSupervisor
patern (see code 1), this is useful, for example, to give tme for the source of the

26 htps://martnfowler.com/eaaDev/EventSourcing.html

44

problem to be fxed before restartng the actor. Each actor can only have one
supervisor, but the supervisor can have any number of children, this encourages
sound design decisions and simplifes actor hierarchy. The supervisor is just like any
other actor but it’s best to keep the supervisors as simple as possible, because if a
supervisor fails, all it’s children fail has well. Another thing to keep in mind if that
there are two ways to supervise other actors, one-for-one strategy or all-for-one
strategy, the former meaning that the supervisor acts only on the children that throw
the excepton, and the later meaning that the supervisor acts on all children despite
only one of its children had a problem (Lightbend 2017c).

val supervisor = BackoffSupervisor.props(
 Backoff.onStop(
 routerActorProps,
 childName = "router",
 minBackoff = 3.seconds,
 maxBackoff = 30.seconds,
 randomFactor = 0.2 // adds 20% "noise" to vary the intervals
).withAutoReset(10.seconds)
 .withSupervisorStrategy(
 OneForOneStrategy(maxNrOfRetries = 10, withinTimeRange = 1 minute) {
 case _: ActorInitializationException => SupervisorStrategy.Stop
 case _: ActorKilledException => SupervisorStrategy.Stop
 case _: DeathPactException => SupervisorStrategy.Stop
 case _ => SupervisorStrategy.Restart
 }
)
)

Code 1 BackofSupervisor strategy (Lightbend, 2017c)

Figure 8: Akka supervisor hierarchy (Lightbend, 2017c)

45

 Akka monitoring: Lightbend also provides Intelligent monitoring features in it’s
enterprise suit, which is a commercial feature but also a comprehensive and advance
tool (Lightbend, 2017b) (Lightbend, 2017c);

 Akka telemetry: Telemetry is part of the monitoring features and is used to capture
events and metrics from the actor system. Telemetry is free to use in development
but not free to use in producton, for this, it requires a subscripton from Lightbend.
Telemetry events are a set of metrics that trigger when they reach a specifc threshold
and they can be confgured, for example, when the number of running actors exceed
a specifed amount. Some events and metrics that can be captured by the telemetry
are: Actor local and remote (running actors, mailbox siie, stash siie, processed
messages, sent messages, failures, dead leters, etc..), cluster (domain events,
member events, etc.) and dispatcher (ForkJoinPool, ThreadPool metrics, etc..). Akka
telemetry also allows the tracing across a distributed system in separated networks
and JVMs (Lightbend, 2017b).

In a large distributed system, the number of actve actors can easily go beyond 100 or 1000,
the lifespan of an actor can vary greatly and the actor system can even spread across a cluster
of networked nodes, so, monitoring is very important and should be taken seriously or
problems could escalate very quickly and control of the system lost.

2.3.5. Seclurity

Security in general is important, in this project however, is one of the most important factors
because the stakeholders involved, want to protect/keep their data confdentally from any
other element besides the one with whom they are communicatng. With these kind of
sensitve informaton, the damages can go from illegal manipulaton of informaton to life
threat damage (Kang et al., 2016).

There is more than on layer in security, but to keep things simple, it can be divided in
endpoint security (or end-to-end) and data privacy.

End-to-End security means that security is implemented exclusively on the endpoints of a
connecton, meaning the client or the server, client-server or client-client, and usually
contains the following components (e. Behringer, 2009):

 Identty: User authentcaton and authoriiaton;

 Protocols: For example, Transport Layer Security (TLS);

 Algorithms: For example, Advanced Encrypton Standard (AES);

 Secure implementaton: The sofware implementaton must be stable and free of
bugs, otherwise these can be exploited for security workarounds;

46

 Secure Operaton: Any operator of the system should understand security principles,
like detectng invalid certfcates.

Endpoint authentcaton and authoriiaton is provided by all ESBs referred in this document
(see chapter 2.7.5.4), so it’s a common thing, data privacy however is not, this is because
privacy is a very complicated thing and usually the company providing the services has access
to the data they are managing, but one of this project requirements is the protectng of data
from endpoint to endpoint, this means that the services relaying the messages cannot have
access to the data unencrypted content. Data privacy, sometmes referred to has end-to-end
encrypton, goes beyond endpoint security.

2.3.5.1. Rate Limitng

Rate limitng is the ability to restrict requests based on the number of requests per period of
tme, in its defniton it’s not a security feature, but it secures services with the ability to
prevent abuse from malice and from unintended consequences, like for example, from a
client with a bad developed script that’s making too much requests (Raghavan et al., 2007). Its
limits should vary based on the available resources and possible the importance of the
request, critcal requests should have priority over lower ones (Rao, 2011). They help
managing high volume trafc and their limits, by placing caps on the trafc. Confguraton
should be confgurable from outside the code to allow for ad hoc changes and/or dynamic
changes based on the current state of the system.

There can be several types of rate limiters but they all accomplish basically the same result
which is an intentonal denial of service. Some diferent types of rate limiters can be
(Raghavan et al., 2007):

 User/IP based rate limiters: rate limiters can be based on the source IP address or in
the user account making the requests;

 Request rate limiter: this are basically the previous descripton and are the most basic
form of a rate limiter, meaning they block requests when these surpass the allowed
amount in a period of tme;

 Concurrent request rate limiters: instead of limitng request based on a period of
tme, these rate limiters limit request based on the number of actve connecton from
the same source, IP or user. These are useful in controlling more resource intensive
consumpton requests, i.e., when even a smaller number of requests use too much
resources of the system.

A possible and popular approach in implementng rate limitng is to use the token bucket 27

algorithm, this approach requires that every request retrieves a token from a bucket, if there
aren’t any tokens available, then the request is denied, tokens are added to the bucket in

27 Possible token bucket alternatves: leaky bucket; hierarchical token bucket

47

defned intervals of tme dictatng how much requests can be made in a period of tme
(Raghavan et al., 2007).

Tokens should be added to the bucket in a roll-out / sliding window fashion, meaning that if
the intended limit is 20 requests per minute, tokens should be added through-out that minute
and not add 20 tokens per minute. Following the previous example, too keep an evenly roll-
out of tokens throughout 1 minute, the token (T), or requests, rate at which to add to the
bucketa can be calculated based on the defned tme period (in this case 60000ms) (M) and
the number of requests e that should be allowed for that same tme (see next formula).

T=(M /R) (1)

For example, to keep 20 requests per minute 60000/20=3000, which means that a token
should be added every 3 seconds. If the tokens are already at max capacity, 20, then no token
is added. This also means that it’s possible to make more than 20 requests per minute, but
that’s intentonal, because the idea is to prevent abuse and not service, the 20 requests per
minute is a guide line, meaning that if requests come two fast it will it that limit and service
will be denied, but if the requests arrive, for example, every 2 seconds, then the request will
be allowed to surpass the 20 limit requests per minute, if for example, the service being
requested is very CPU or memory intensive, then the limit could be increased and also the
rate at which the tokens are added. Important to note that this formula is useful in setting an
inital confguraton for an intended limit, but it’s also necessary to validate and test the limits
in a case by case basis, and if needed the limits can be changed accordingly based on the
results of the tests.

 Direct memory access Vs Redis

The fastest way to access a data store is with direct, local, memory access, but, with the
increase in trafc and complexity of the whole system it’s more optmal, to use a more
focused purpose in-memory key-value data structure store, like Redis28 29, which is one of the
most popular key-value store today and one of its typical use case is rate limitng (Amaion
AWS, 2017). Local memory access can degrade in performance when the data grows bigger,
depending on the local resources and on garbage collecton confguratons, Redis is design to
deal with these situatons specifcally, meaning that it can work with separate processes, run
on diferent nodes and implement high-availability.

Amaion AWS also provides ElastcSearch30 which can take Redis and turn it into a distributed,
fast and scalable soluton, prices start at 0.017€ per hour for 1 instance of a data-store with

28 htps://redis.io/
29 Possible Redis alternatves: MongoDb and Memcached
30 htps://aws.amaion.com/elastcache/

48

0.55Gb for a low to moderate performance, from there the price goes up depending on
number of instances, memory space and performance requirements.

 Rate limitng concerns

Despite its advantages, there are some concerns that need to be addressed, if something goes
wrong, when implementng rate limiters: there should exist functonality to deactvate them,
they should report back to the client with clear messages, so that the client knows why the
connecton are being dropped, if they use an external data-store, the requests should not be
compromised if the connecton to the data-store is lost and they may need constant tuning
depending on the request and/or trafc.

2.3.5.2. Load shedding

Load shedders, or load aware shedding, difers slightly from a rate limiter in that it makes it’s
decisions based on the whole system rather than just on a component or access source, their
purpose is to avoid excessive consumpton of available resources that could compromise the
entre system, instead, load shedders can be used to drop some trafc in favor of other, more
important, trafc. They are most useful in complex systems and on situatons of emergency
where critcal/core systems must be kept operatonal while the rest of the system might be
offline. Their implementaton, however, are non-trivial and more complex than implementng
rate limiters (Rivetti et al., 2016).

2.3.5.3. IP Black Lists and White Lists

While lists are typically used for two reasons, for just allowing trafc from its IPs or, for not
applying restrictons, like rate limitng, to its IPs. This is useful for defning limits and restricton
bypass, being this per-determined or on-demand confguraton.

Black lists serve only one purpose which is blocking access, typically this is used to block
access to problematc IP addresses.

2.4. Deployment

The infrastructure itself is not a constraint for the platorm, but it can make its deployment a
lot easier if its business model is in sync with the platorm, meaning that, it should be easy to
adapt to a micro-services architecture.

Another important issue is with storage, since the platorm deals with sensitve user data,
there are laws that mandate that, some data, stays inside the country.

The following data is all gathered from the ofcial websites with the excepton of Claranet
that only provides estmates following a commercial contact.

49

2.4.1. Infrastrluctlure Providers

Several providers were analysed in terms of locaton, business model, reliability, cost and ease
of use, among those, some proven to be more compatble with the platorm than others.

Table 2: Cloud providers list

Provider Descripcon

DigitalOcean

(digitalocean.com)
DigitalOcean is a cloud provider which focus on providing simple and
cost-efectve services. It allows control of all tasks online.

Aiure

(aiure.microsof.c
om/pt-pt)

Microsof cloud provider, it’s main focus is Microsof technologies. It
allows control of all tasks online.

AWS

(aws.amaion.com)

Amaions AWS provider, it’s one of the biggest providers for Large
Enterprises but it’s also more complicated to integrate with since the
number of optons and confguratons are many. It allows control of
all tasks online.

Claranet

(claranet.pt)

Claranet is a Portuguese provider, which also means that has
datacenter in Portugal, in fact, it’s the only on from the list with local
datacenters. It’s also planing to be an Aiure datacenter provider31. It
does not provide online control panels, it has some partal solutons,
but mainly it counts with client support to provide client
confguratons requirements.

2.4.1.1. Locaton

In terms of locaton most providers are internatonal with the excepton of Claranet. Locaton
is not a major concern in most cases, but it’s important to be aware of the data and the laws
that abide it. If in some case the law dictates that the data must be keep inside the country
them it could present a limitaton in choosing a provider.

2.4.1.2. Business Model

The business model of all providers is basically the same, they charge based on the resources
used, but there are some diferences. AWS and Aiure give high priority to the data and it’s
consumpton, meaning that the larger the data and/or trafc the bigger the cost, the idea is
the same, to provide smaller companies a more cost efectve entry point, this comes with a
disadvantages which is more complex optons in regards to the way they estmate the cost by
the kind of service provided.

DigitalOcean has a simpler business model, mostly all costs are determined by the virtual
machines used, CPU, memory and storage, trafc has some limitatons but it is usually not a

31 htps://www.computerworld.com.pt/2017/05/30/claranet-portugal-prepara-datacenter-
aiure/

50

concern since the higher the resources the higher the available trafc, contrary to AWS and
Aiure that provide containers to service, DigitalOcean only provides virtual machines called
Droplets that are basically Linux machines, windows is not supported, the drawback is that it’s
the client responsibility to keep services online but has the advantage of being a much easier
business model which also means that planing for expenses in the future is easier.

Claranet is a litle diferent, they don’t have an automated business model has the other
providers, they provide personaliied solutons to enterprises, this requires a contact with they
sales department, technical meetngs with their IT leaders and technicians and afer that they
construct a business propositon based on the client’s provided requirements and siie.
Support is a litle more hands-on than the other providers which might be a requirement in
some cases, but this also comes at a cost.

2.4.1.3. Reliability

There is no guarantes on availability by any provider, but all of them are in business for more
than fve years and with no loss of service reports. AWS and Aiure have the bigger porton of
market from which one could claim that they represent a higher reliability than the others
providers, but there is no data publicly available that undermine the other providers in this
respect.

2.4.1.4. Cost

To beter lodge micro-services, a scenario with more less powerful virtual machines is
preferred to less more powerful virtual machines, so it’s important to focus on the cost of the
cheapest virtual machine. As previous stated, all values of the table below were extracted
directly from the ofcial providers website with the excepton of Claranet.

Table 3: Price comparison between infrastructure providers

Provider Lot poter virtlual
machine

Monitoringa Backlupa Secluritya
Addiconal Storage and Load Balancing

VM Cost
p/month

DigitalOcean

(digitalocean.
com)

RAM: 512Mb

CPU: 1

Storage: 20Gb SSD

Transfer: 1Tb

Monitoring: 0€

Firewalls: 0€

Backups: 20% of the VM cost, so in this
scenario 1€ per VM.

Additonal Storage: 10€ for 100Gb

Load Balancer: 20€ p/month

5€

Azlure

(aiure.micros
of.com/pt-
pt)

RAM: 0,75 Gb

CPU: 1

Storage: 20Gb

Transfer: *

Monitoring: 0.009€ per 1 000 API calls
and then it charges for email reportng
1.687 € per 100 000 emails

Firewalls: 0€

Backup: t4.2€ for 50Gb or less.
Additonal Storage starts at 678 Gb for
t 233,40 €

t11,30€

51

Load Balancer: *

AWS

(aws.amaion.
com)

RAM: 0.5 Gb

CPU: 1

Storage: 20Gb

Transfer Out: 1Tb

Monitoring: 0€ for basic monitoring

Firewalls: 5€ p/month p/frewall plus 1€
p/rule plus 0.60€ p/million web
requests.

Backups: 0.0245 p/Gb (0.5€ p/20Gb)
Additonal Storage: 0.0245 p/Gb (0.5€
p/20Gb)

Load Balancer: 21.6€ p/month plus
0.008€ p/Gb of data processed

6.63€ +
90€ (1Tb
transfer
out)

Claranet

(claranet.pt)

RAM: 1Gb

CPU: 1

Storage: 20Gb

Transfer:
Unlimited

Monitoring: *

Firewalls: 0 €

Backups: *

Additonal Storage: Additonal storage
is sold by Tb => 300€ = 1Tb

Load Balancer: 250

t30 €

* These values were not possible to obtain. Claranet does not charge this has separate solutons, and
the others vary too much based on the type of service being used.

Aiure and AWS costs vary based on the locaton of the data and servers, the values of the
table above are for Europe. All values are true for the tme being (July 2017) and may change
in the future. Aiure and AWS have very complicate confguratons, the setup in the table
above was made simple so that a comparison between the diferent providers was possible
and just. Claranet is an enterprise focus datacenter and the price varies based on how much
you buy, this means that a VM can become cheaper if you have many, but this is always
subject to negotaton.

There are a lot more datacenter providers, these few were chosen based on what they ofer
for this project.

2.4.1.5. Ease of use

DigitalOcean is the easiest to use, since it has less optons than the others, it’s interface it’s
very straight forward and practcal, even for someone that never used it and it’s very easy to
start using its services and create a test environment. It has no free trial period, but it’s very
easy to fnd a promotonal code that lets one use this platorm for a month without having to
pay for it.

Aiure and AWS have trial periods, but they required a litle more efort into knowing the
platorm before startng to use it, it’s not has straight forward has DigitalOcean, mainly

52

because they ofer more services, and so, it requires a previous study of the platorm before
even startng testng it.

Claranet doesn’t have a platorm, i.e., they don’t provide a sofware interface to their
datacenter, this makes Claranet the more difcult to start with. eowever, if the client already
knows very well what it wants, he just needs to contact the sales department and ask for an
estmate, Claranet will charge for it, but will take care of the inital setup.

2.4.1.6. Conclusion

In the end, DigitalOcean was the chosen one for the VMs, services and persistence storage,
because it is the more compatble with the platorm. It’s super easy to use, the web based GUI
makes managing the virtual machines and its services a good and professional experience, it
doesn’t have datacenters in Portugal but has in Europe and it’s possible to choose in which
datacenter the VMs are created and all VMs have public IPs, frewall and monitoring services
for just 5€ a month.

For the backups of-site storage Amaion’s AWS was chosen, in the remote event of a
DigitalOcean catastrophe. Storing data in AWS is cheaper than DigitalOcean but it’s stll
necessary to consider transfer out costs since AWS has higher costs for download trafc the
for upload trafc, but since backups are only needed in case of an emergency or loss of data, it
can be assumed that these prices should not escalate.

Important to note, however, that it’s stll possible to use Docker32 with a virtual machine
soluton provider, like DigitalOcean, through Docker VM Drivers, Docker is a container and not
a VM (Coleman, 2016), but that’s not inside this project scope, mainly because Docker is a
container solutons and does not really solve the problems of this work and it would just had
complexity to the project, has the project grows Docker solutons might be considered.

2.5. Qluality

Quality in healthcare can be divided in 3 main domains (Lupo, 2015):

1. Management quality: includes procedures and methods and should apply efectve
resource management, to satsfy stakeholder needs and expectatons;

2. Professional quality: includes skills and equipment and is afected by personal
perspectve of the same;

3. Stakeholder perceived quality: includes the stakeholder percepton of service
provided quality.

The last one is considered the most important one because it tells us the satsfacton level of
our stakeholders.

32 www.docker.com

53

To divide and classify stakeholder satsfacton, Tony Lupo’s approach was used and adapted to
this project, which resulted in the following categories, seen in the following fgure (Lupo,
2015):

 eealthcare staf: eow can this project improve staf’s workk

 Responsiveness: Are the services provided by this project responsive enoughk

 Relatonships: Is there trust in the data and the in the privacy of the same by the
stakeholdersk Can useful informaton about work related variables be easily accessed,
like for example, product informatonk

 Support Services: Do the stakeholders have access to convenient support
infrastructures whenever they needk Is the support usefulk

 Accessibility: Is the services provided by the project always availablek Do they provide
important informaton about work procedures/processesk Is the informaton easy to
accessk

 Tangibles: Is the data produced by the services useful and trustworthyk

Figure 9: Quality categories (Lupo, 2015)

54

2.5.1. Stakeholders

To represent the stakeholders an Onion diagram was used (see fgure 10), this diagram
displays the stakeholders in a layered form, being the inside of the Onion the most closest to
this project and the outer layers the farthest or external relatonships to this project. It also
shows what stakeholders are connected to one another (Alexander, 2003). It’s a simpler,
more high-level approach, to the value networks in chapter 2.7.2.

The frst, inner, layer is usually referred to as the Product or Soluton layer, the second layer
can be seen has the business system that represent the stakeholders that interact directly
which the project/soluton, the third has the business itself, usually the managers, sales, etc.
that link the business system with the external enttes, and the fourth layer as the
Environment which represents the stakeholders that are external to the organiiaton. There
can be a ffh layer if needed that represents the stakeholders that don’t relate/map with any
other stakeholder. The arrows represent a connecton to another stakeholder (Alexander,
2003).

Figure 10: Stakeholder relatonships

55

2.6. User Data Proteccon

User data protecton, not only is an important feature to have, reassuring the stakeholders
that their data is safe, but it’s also mandatory, in some cases, by legislaton.

A new directve, RGPD (Regulamento Geral de Proteção de Dados), will enter in efect in May
25, 2018, which replaces the current one, and brings several changes that have a signifcant
impact on the lives of the organiiatons, depending of course of their nature. There are 10
main points that need to be addresses, which are has follow (CNPD, 2017):

 Informaton provided to the data owners or sources: At the moment there are no
specifcs, but more informaton and more concise informaton will need to be
provided to the users, with special care for children, this means, for example, that
privacy policies and forms to retrieve data will need to be reviewed and more likely
than not, changed;

 Guaranty the data owner’s rights: for example, users that request access to their data
should receive an answer in a defned period of tme, changes or deleton of the data
will also be regulated. Because this afects the rights of the citiens directly, there has
been several changes in this area and organiiatons should prepare for its adaptaton
and implementaton. All process must be well documented;

 Data owners consent: The method and circumstances that the owner’s consent is
acquired must be validated and proven, if this is not the case then a new consent is
required to keep or use the data. There are also special cases when dealing with
children;

 Sensitve data: Data must be validated in order to defne what can be considered
sensitve data and what can be subject to special conditons, for example, biometric
data is now part of the sensitve category that this directve extended;

 Documentaton and registry of data management actvites: All actvites related with
data treatment must be documented, the organiiaton must be able to prove that is
respectng all obligatons imposed by the RGPD. This measure is especially important,
because it allows the validaton of all that is being done and also what is needed to fx
or adapt. If this measure is not accomplished, the organiiaton might need to start
from the beginning in gathering the data;

 Outsourcing / Subcontractng: outsourcing contracts must be subject to the same
rules, it’s the responsibility of the subcontracted to verify that it has has all necessary
authoriiatons from the entty responsible for the data. All authoriiatons must be
squired before May 2018;

56

 Entty in charge of the date protecton: The must be someone designated has the
responsible for the data, i.e. responsible for its protecton, this person should be able
to report directly to the highest level of the organiiaton;

 Technical and organiiatonal measures: The organiiaton’s policies and practces must
be reviewed to assure that all RGPD regulaton are met. In this evaluaton the nature,
context and purpose of the data must be identfed, has well has the danger it
represents for the safety and liberty of the citiens. This measure also allows the
verifcaton that the data has all the necessary treatments and that is safe from
deleton, corrupton and confdentality loss;

 Data protecton since its concepton and impact validaton: In order to decide and
implement the best possible measures, data treatments must be rigorously validated
in an early stage, i.e., before data gathering;

 Security violaton notfcatons: Internal procedures must be adopted in order to
detect and report any kind of data violaton. Not all violaton must be reported to the
CNPD, but all should be documented.

2.7. Vallue Added Analysis

This secton provides an overview of the added value of this work by describing its key focus
points.

2.7.1. Vallue Proposicon

This work creates a unifed communicaton platorm that interconnects all healthcare enttes
promotng, unifying and facilitatng the fow of informaton, thus improving the quality of the
data.

2.7.2. Vallue Nettork

The following diagrams shows the exchange of roles and monetary value that intends to show
the specifc value this project can generate. In general, it shows (Allee, 2012):

 eow the work actually gets delivered;

 The kind of generated value;

 eow efciently this network converts resources into value;

 And in what points of the network could generate problems and/or inefciently.

For beter clarity the value network was divided in two diagrams.

57

Figure 11: Value Network 1

Figure 12: Value Network 2

58

Table 4: Value Network Roles

e ole Descripcon

MeP Services Represents this project provided services.

Pharmacies Pharmacies that interact with the MeP.

Patents Pharmacy clients.

Medicaton Suppliers Pharmacy medicaton suppliers.

Dictonary Suppliers
Enttes that supply useful and validated informaton, usually in the
form of a database. These enttes usually only work with IT related
companies.

Laboratories
Medicaton laboratories. They can supply medicaton suppliers
and/or pharmacies directly.

Regulatory Enttes
Enttes that enforce legislated rules and laws. These enttes collect
informaton regularly or on demand.

Investors Represents the investors of this project.

Pharmacy
Associatons

There are two pharmacies associatons ANF and AFP, both provide
basically the same services in return to a monthly fee from the
pharmacies. The main diferences between the two is that ANF also
provides fnancial services which are charged separately.

Financial Insttutons

These insttutons provide fnancial help to patents, each has
diferent rules and conditons. In practce the patents that have
access to this help, do not pay the entre price of the medicaton
they get from the pharmacy, these in return must keep track of this
and they charge the corresponding insttuton at the end of each
month. There are public insttutons like SNS and private
insttutons like EDP or CGD. The billing must go through the
pharmacy associaton (ANF or AFP) which acts has a fnancial
mediator between these two enttes.

59

Table 5: Value Network Tangible Deliverables

e oles Deliverable Descripcon

All Payment Payment for services provided.

Pharmacies /
MeP

Id validaton

The MeP provides patents id’s validatons to
pharmacies. These services add a guaranty to the
pharmacy that payment from the fnancial
insttutons will not be rejected.

Technology support
MeP services include technical support for all
provided services.

Dictonary

MeP provides important and always up to date
informaton, vital for the pharmacies, these
include, product informaton, prices, details, etc.,
legal informaton, medicaton alerts, etc. The
informaton is updated on a daily basis.

Sales / Orders Info

Pharmacies provide orders and sales informaton to
the MeP, this informaton is then relayed to
laboratories or associatons. Since this informaton
is sensitve to user data protecton laws, only data
that is specifed in contract between these enttes
is permited to be exchanged.

RFI Invoices
Communicaton of Invoices to the Responsible
Financial Insttutons.

Pharmacies /
Patents

Sale Sales of products and services to patents.

Pharmacies /
Pharmacy
Associaton

Informaton

Informaton is provided has a service to help the
pharmacies in any aspect related to their business,
like for example, legal informaton which is always
changing.

Pharmacy
Associatons /
MeP

RFI Invoices
Communicaton of Invoices to the Responsible
Financial Insttutons.

Pharmacy
Associatons /

RFI Invoices Communicaton of Invoices to the Responsible

60

Financial
Insttutons

Financial Insttutons.

Pharmacy /
Laboratories

Products
Laboratories can sell medicaton directly to
pharmacies.

Pharmacy /
Medicaton
Suppliers

Products
Sale of products to pharmacies. This include
emergency deliveries which are delivered on the
same day.

Laboratories
/ Medicaton
Suppliers

Products Laboratories sell products to suppliers.

Investors /
MeP

Investment Investment in this projects of interested partes.

Business know-how
Investors provide business know-how on how to
maximiie this work success commercially.

Dictonary
Suppliers /
MeP

Sponsor
Informaton gathering enttes sponsor the project
with the interest of making some searches favour
them.

Dictonary Provide products and related informaton updates.

Medicaton
Suppliers /
MeP

eistory / statstcs MeP provides history and statstcs on orders.

Laboratories
/ MeP

eistory / statstcs MeP provides history and statstcs on orders.

Sales Info
MeP provides sales informaton on specifc
laboratory products.

Relay Order

MeP relays the pharmacy orders to the
laboratories. Many of them don’t have the
technology in place to support typical pharmacy
order protocols and value this contributon.

61

Table 6: Value Network intangible deliverables

e oles Deliverable Descripcon

All Loyalty
Loyalty is gained when the services provided are
perceived has good or beter.

Financial
Insttutons /
MeP

Confdence
Confdence in that delivered of invoices and its
accuracy is guaranteed.

Id Validaton Provide validaton of associate cards.

Financial
Insttutons /
Patents

Incentves Money incentve is giving to guaranty loyalty.

Loyalty Loyalty is gained through the money incentves.

Pharmacies /
MeP

Orders
Pharmacy post orders directly to MeP that is then
relayed to the Suppliers.

Invoices
Order conference in the pharmacy is substantally
improved because they have access the invoices
electronically.

Regulatory
Enttes /
Pharmacies

Inspectons Regular non-schedule inspectons to pharmacies.

Investors

Opportunites
This project creates business opportunites to the
Investors.

Technical Know-
eow

Investors get access to technical know-how.

Laboratories /
MeP

Dependency
A dependency is created on the MeP due to the
lack of technology in the laboratory side.

Order
Confrmaton

Confrmaton of order delivery.

Invoices
Invoices are send to the MeP to be delivered in the
pharmacy.

Relay Order Pharmacy orders are relayed to the suppliers.

62

Medicaton
Suppliers / MeP

Dependency
The more the MeP services are used the more
dependency is created.

Compettve
Advantage

Services provided by the MeP are intended to be
beter with more informaton than its
predecessors, giving the suppliers are compettve
advantage over the suppliers that stll rely on the
old one. It’s client, the pharmacy, prefers to use the
new services because they have more control on
their orders and access to more informaton, like
out of stock products.

Invoices
Invoices are send to the MeP to be delivered in the
pharmacy.

2.7.3. Perceived vallue

eas already mentoned in chapter 1.5.2, perceived quality by the stakeholder can be the most
important metric when measuring the quality of a product and/or service, following, bellow, is
a list of value based drivers that can have a positve or a negatve impact on the stakeholders
percepton.

Table 7: Value based drivers

Domain/
Scope

Prodluct Service e elaconship

Beneft
Easy to interact solutons

Product quality

Responsiveness

Reliability

Technical competence

Image

Trust

Solidarity

Sacrifce
Product customiiaton

Price

Flexibility

Price

Time / Efort / Energy

Confict

In the previous table, the value drivers are placed in its corresponding secton, depending on
what they infuence and if they have a positve or negatve efect. It’s important to note, that
these drivers can be viewed diferently base on what phase of the product’s life-cycle the
customer is interactng.

63

 Prodluct

The product relates to the actual developed sofware has the following
characteristcs:

◦ Easy to interact sollucons: Since REST is very well integrated into most
frameworks, almost all services provided have a REST interface/adapter with the
excepton of a few stateful ones that work beter with WebSockets. Basically the
protocol is chosen based on whats best for the service provided and not for
what’s easier to implement. There is also technical documentaton of all services
on how to implement them and examples to beter help solving problems. This
will ensure that consumers that have less technical knowledge have an easier
interacton with the services provided;

◦ Prodluct qluality: All services are developed and tested following the best practces
in sofware engineering, key partners will use the service untl proven it’s
usefulness, stability and performance has acceptable between predetermine
parameters before it gets deployed to producton, thus ensuring the confdence of
the clients in the services provided. The services are also monitored constantly to
assure consistency and improvements over the life cycle of the same services;

◦ Prodluct clustomizacon: In this work customiiaton is considered second to the
correctness operaton of each provided product/service, meaning that
customiiaton capabilites may be, in some cases, hinder in favor of stability, ease
of use and maintenance or development;

◦ Price: Price is proportonally to product and services usages, meaning the more
the usage the more the revenue, also, clients can beter control its resources to
beter fts its needs. eowever, the development and maintenance efort dictates
the price of the services, this project favors quality over cost.

 Service

The service relates to the behavior of the product and has the following
characteristcs:

◦ e esponsiveness: Although the importance of performance varies between
services, some are more critcal than others, this project considers performance
vital for the success and long life of this work. The same is said for providing
answers and solutons to the stakeholders, always providing the best support
possible, by listening to all their requests.

◦ e eliability: The same as performance, all services need to be reliable to maintain
and/or improve the clients confdence, this includes all adjacent services like
billing.

64

◦ Technical competence: Technical competence is an important factor for this kind
of work, since the quality percepton of services provided will be, mainly,
determined on service availability, informaton accuracy, and response tmes, so
not only the services need to be well designed, but the data should also be
managed correctly and responsible.

◦ Flexibility: As a consequence of the previous value based driver, well designed
services also allow for beter adaptability to change and problem solving, resultng
in swifer answers to requests. eowever, like product customiiaton it stays
second to other, considered, more important drivers.

 e elaconship

The relatonship relates to the services provided percepton of the stakeholders.

◦ Image: Reputaton and credibility is directly connected to the image of his project.
It’s important to always give the feeling of confdence, control and dominance
over the subject mater, even when the soluton is saying no to something.

◦ Trlust: Like the Image value based driver, there needs to exist confdence between
the client and the supplier. The supplier should keep with his promises and all
informaton provided should be accurate, this being true with this project
suppliers and clients.

◦ Solidarity: Being able to receive help from suppliers and providing help to
customer when there is a problem. This is important has it also contributes to the
overall Image of the project.

◦ Time / Efort / Energy: Quality usually requires efort, so it’s implied that, at least
in the beginning, there needs to be more tme and efort dedicated to the project
to guaranty its success.

◦ Conflict: It’s understandable that confictng maters occur more in the beginning
of the project’s life cycle, but these must be resolved has soon has possible, the
more these are allowed to contnue the more they can hurt the project goals.

2.7.4. Canvas

The value networks shown in chapter 2.7.2 show a more detailed relatonship between the
stakeholders and the value to each of one, the table below intends to show a more general
perspectve overview into the MeP value propositon, infrastructure, customers and fnances.

65

Table 8: Canvas

Key Partners

Dictonary
providers

Pharmacy
suppliers

Pharmacies

Key Accvices

Sofware
development

Sofware
maintenance

Client support

Data monitoring

Vallue Proposicons

Unifcaton of
technical protocols

Unifcaton of data

Document archiving
and management

Provides access to
historic data and
statstcs

Protecton of data

Data agnostc

Clustomer
e elaconships

Support platorm

Technical support

Proactve
reportng

Clustomer
Segments

Pharmacies

Pharmacy
suppliers

Laboratories

Associatons

Key e esolurces

euman resources

Equipment

Sofware developed

Virtual servers

Channels

Internet

Associatons

Suppliers

Regulators

Cost Strluctlure

euman Resources: 1 developers, 1
Commercial, 2 support staf

IT Infrastructure: DigitalOcean / Amaion AWS

e evenlue Streams

Revenue comes from communicaton usage
and sponsorship;

Sponsorship is provided by laboratories and
suppliers and is intended audience is the
pharmacies;

Cost is not the same for all services, some are
free and others vary accordingly to data
consumpton.

2.7.5. Compeccon analysis

In order to compare diferent solutons, the Analytc eierarchy Process (AeP) was applied,
created by professor Thomas L. Saaty in early 1970, to validate both quanttatve and
qualitatve characteristcs. The mains focus, in this analysis, is to prove that, to this project
requirements, the best solutons is to create a platorm specifcally oriented to its needs
instead of using existng platorms solutons (Jakupovic et al., 2010).

66

All of these solutons ofer the ability to integrate systems and or APIs without writng code,
but by transforming messages, for example with XSLT33 or XQuery34. Of course, in any complex
system, writng some code will stll be necessary.

The following diagram shows a list of important criteria this system should have and a list of
alternatves, for simplicity sake, all criteria are evenly important so that it’s easy to compare
them.

Note that some, maybe obvious criteria, were not included in this analysis because, it’s not
the purpose of this work to thoroughly analyie all solutons, these include, performance,
stability, tools, technology aspects, analytcs, quality and vendor tme response. Also, platorm
aspects, like if the service runs in the cloud or what operatng systems are supported is also
ignored because this is not usually a concern when optng into a mult-service platorm
soluton, i.e., this is a systems concern.

Figure 13: Analytc eierarchy Process

 MuleSof: Exists since 2006 and ofers several solutons, manly integraton platorms
as a service (iPaaS), it’s also known for ofering “Mule ESB” which is an integraton
platorm for companies to eliminate point-to-point integraton development and
Anypoint Platorm which is a more general purpose platorm for integratng service

33 htps://www.w3schools.com/xml/xsl_intro.asp
34 htps://www.w3schools.com/xml/xml_xquery.asp

67

and can be used as a cloud or on-premises based soluton, it includes graphical
interfaces to help manage the platorm. Its solutons are not completely open-source.
MuleSof supports a community editon, but this editon is not considered here
because it lacks important features, like for example, high availability (MuleSof,
2017).

 WSO2 Integrator: This soluton incorporates other WSO2 products like, WSO2
Enterprise Service Bus (WSO2 ESB), WSO2 Message Broker (WSO2 MB), WSO2 Data
Services Server and WSO2 Business Process Server. So, it’s a complete enterprise
integraton services soluton. It’s 100% open source (WSO2, 2017). This soluton can
be deployed on-premises, free soluton, and on the cloud which is not free.

 Red eat Jboss Fuse: For enterprise integraton services Red eat recommends JBoss
Fuse. Like MuleSof, Jboss Fuse started in 2006, all functonalites are open-source but
the integraton stack is very large to comprehend. It must be deployed on the JBoss
Java EE web server (Redeat, 2014b).

 IBM Integraton Bus: IBM includes in its integraton package, B2B cloud services,
gateway and transformaton engines. It’s a proprietary and partly open-source
soluton and it provides on-premises and cloud solutons (IBM, 2017).

 MeP: Micro eealthcare Platorm is this work proposed soluton. Its main focus is not
a general purpose soluton, but more oriented to this work requirements.

Next, using pairwise comparisons, the weight of each criteria is matched, so that it’s clear
which ones are more important than others. The scale used goes from 1 to 9, 1 meaning
equal, 3 moderate, 5 strong, 7 very strong and 9 extreme, numbers in between are used for
balance and compromise (Jakupovic et al., 2010).

Table 9: AeP Criteria pairwise comparison

Price Compl. &
Light

Flexibility Seclurity &
Privacy

Scalability

Price 1 ½ ½ 1/6 ¼

Compl. &
Light

2 1 1 1/6 1

Flexibility 2 1 1 1/6 1

Seclurity &
Privacy

6 6 6 1 6

Scalability 4 1 1 1/6 1

68

To be able to get a ranking of priorites from the pairwise comparison or matrix, it’s frst
necessary to normaliie the matrix, squaring the same and then calculate the eigenvector (to 4
decimal places), summing all rows and normaliie the rows by dividing the row sum by the row
totals. This process is repeated untl the eigenvector is the same result has the previous
iteraton (through the process of experimentaton this usually takes around 4 iteratons).

The result is the following:

Table 10: AeP Criteria soluton

Criteria Score Preference
Consistency
(product of Score vs
Criteria)

Consistency divided
by Preference

Price 0.058 4 0.2992 5.1586
Compl. & Light 0.1097 3 0.566 5.1595
Flexibility 0.1097 3 0.566 5.1595
Security & Privacy 0.5906 1 3.0476 5.1602
Scalability 0.1321 2 0.682 5.1628

λmax (average) 5.1601

The previous (fnal) eigenvector gives us the score for each criteria, the bigger score the
beter. For this case Security & Privacy is the most important criteria.

To prove that the values are consistent, the Consistency Index (CI) must be calculated:

CI=(λmax – n)/ (n−1) (2)

CI = (5.1601 - 5) / (5-1) = 0.04

According to Thomas Saaty’s table, the Random Consistency Index is: RI(4) = 0.90

Table 11: AeP Thomas Saaty’s table

m 2 3 4 5 6 7 8 9 10

e I 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51

Finally, the Consistency Rato (CR) can be calculated:

CI=(λmax – n)/ (n−1) (3)

CR = 0.04 / 0.90 = 0.0444

Since the CR, 0.0444, is lower than 0.1, it can be assumed that the values of the weight of
each criteria and the eigenvector are consistent.

69

The previous process is repeated for all the alternatves under each criteria, resultng in an
eigenvector for each alternatve vs criteria.

In each of the following criteria is explained how the evaluaton was performed, and also,
when possible, it was also used third party evaluaton on the same solutons, like for example
Gartner’s sofware and service reviews (Gartner, 2017).

2.7.5.1. Price

In order to be easier to compare the alternatves the estmated price per year was considered
for each soluton. These prices must be viewed as an approximaton to the actual cost, since
they usually change ofen and can also vary depending on the commercial agreement
between the suppler and the customer.

WSO2 Integrator is the only free of the four platorms solutons, but charges for support
which is included in the other solutons commercial licenses. The support optons are many
and not simple for someone who is approaching this soluton a frst tme. The cloud version
however, is a pay soluton and the costs of this soluton is easier to control and scale, so
instead of considering the support costs, which would actually be more expensive, the cost
bellow corresponds to the cloud version (WSO2, 2017).

MuleSof has a community editon which is free, but because it’s limitatons it’s not
considered here. For MuleSof the only way to get a price evaluaton was to contact a sales
representatve.

IBM Integraton Bus and Redeat Fuse only have commercial licenses, but provide trial-periods
for development and testng purposes (IBM, 2017) (RedHat, 2017).

MeP does not have a direct cost associated since is developed in-house, but it has a cost of
development and maintenance, of course all the other solutons also have a cost of
integraton, learning curve and maintenance, so as an estmate, the cost of the MeP has been
determined to be a full-tme developer, the deployment costs are not considered because, in
comparison with the other solutons a cost p/core would be only 5€ like it’s possible to see in
chapter 2.4.1.4.

70

Table 12: AeP Price per year (WSO2, 2017) (Redeat, 2017) (IBM, 2017a/b)

Alternacves Score Preference
MuleSof 6 000 €

p/core
4

WSO2 Integrator
(WSO2, 2017)

3 576 €
p/core

3

Redeat Fuse (redhat,
2017)

2 718 €
p/core

2

IBM Integraton Bus
(IBM, 2017a/b)

14 208 €
(starter value) 5

MeP 1 500 € 1

Table 13: AeP Price pairwise comparison

MluleSof WSO2 Fluse IBM MHP

MluleSof 1 0.5 0.3334 2 0.25

WSO2
Integrator

2 1 0.6668 4 0.5

JBoss Fluse 3 1.4997 1 5.9988 0.7499

IBM
Integracon Blus

0.5 0.25 0.1667 1 0.125

MHP 4 2 1.336 8 1

Table 14: AeP Price soluton

Alternacves Score Preference
MluleSof 0.0952 4
WSO2 Integrator 0.1905 3
JBoss Fluse 0.2857 2
IBM Integracon Blus 0.0476 5
MHP 0.381 1

2.7.5.2. Complexity & Lightweight

Complexity is measure in terms of supported technology, confguraton and maintainability.
For each of the solutons presented here, the requirements for setting up a minimum viable
product were analyied following the ofcial documentaton of each soluton.

JBoss Fuse and MuleSof both use Drools www.drools.org) for its Business Rules Management
System (BRMS) and jBPM (www.jbpm.org) for its Business Process Management, although

71

JBoss Fuse supports newer versions of the protocols, 6.0 instead of 5.0 for BRMS and 6.0
instead of 4.4 for the jBPM, also in the case of jBPM it means that only Jboss Fuse supports
BPMN 2.0.

IBM has its proprietary solutons, it uses Operatonal Decision Manager (ODM) for its BRMS
and BPM (Jackson, 2016).

WSO2 Integrator is powered by the Actvity BPMN Engine and Apache Orchestraton Director
Engine (ODE) BPEL engine, meaning business process can be writen in BPMN 2.0 standard or
WS-BPEL 2.0 standard. (WSO2, 2017).

To organiie service integraton JBoss Fuse relies on the open standard Service Component
Architecture (SCA) (IBM, 2017) which supports components like Camel, business process
executon language (BPEL), BPMN and rules or events. MuleSof requires external proprietary
service assembly process.

All solutons, except for the MeP Platorm, support GUIs to facilitate basic confguraton, but
to support more complex requirements, it’s always necessary to dive into code and
confguraton fles, for this reason the GUIs are not considered to represent a major
diference, since almost all requirements of this work imply complex confguratons. Of
course, once all is set up, GUIs allow for a graphical visualiiaton of the system and this is not
without its value.

According to Gartner35, in the category of Ease of Development, the score in a scale of 5 is as
follows (Gartner, 2017):

 MuleSof: 4.3

 WSO2: 3

 Redeat Fuse: 3.8

 IBM: 3.6

The above analysis suggests that MuleSof Fuse in a beter choice when thinking in terms of
complexity and lightweight.

MeP soluton could be easily considered the easiest to work with in this scenario since this
work is its development, but it’s important to also considered when new developers need to
be integrated into the project, for this reason, the MeP soluton is considered on equal
grounds with MuleSof in this category.

35 htps://www.gartner.com/reviews/market/Full-Life-Cycle-API-Management

72

Table 15: AeP Complexity & Lightweight pairwise comparison

MluleSof WSO2 Fluse IBM MHP

MluleSof 1 4 2 3 1

WSO2 Integrator 0.25 1 0.5 0.75 0.25

JBoss Fluse 0.5 2 1 1.5 0.5

IBM Integracon
Blus

0.3333 1.3333 0.6667 1 0.3333

MHP 1 4 2 3 1

Table 16: AeP Complexity & Lightweight soluton

Alternacves Score Preference
MuleSof 0.3243 1
WSO2 Integrator 0.0711 4
Fuse ESB 0.1622 2
IBM Integraton
Bus

0.1081 3

Build Your Own 0.3243 1

2.7.5.3. Flexibility

Flexibility is measure in terms of adaptability, meaning that features like compatbility, license
fexibility, tme to develop and ease of integraton with external APIs are considered here.

JBoss license is in the form of a middleware subscripton meaning that it’s not limited to one
sofware product (redhat, 2017), WSO2 cloud subscripton is also unifed (WSO2, 2017),
MuleSof and IBM enterprise license is diferent for each product, adding less fexibility in the
license agreement (MuleSof, 2017).

MuleSof, WSO2, redhat and IBM solutons all support eL7 which is important since this work
is directed to the healthcare market.

MeP has the biggest advantage here since it can be whatever this project wants it to be.

According to Gartner, in the category of Integraton & Deployment, the score in a scale of 5 is
as follows (Gartner, 2017):

 MuleSof: 4.3

 WSO2: 3

73

 redhat Fuse: 3.8

 IBM: 3.5

Table 17: AeP Flexibility pairwise comparison

MluleSof WSO2 Fluse IBM MHP

MluleSof 1 4 2 3 0.5

WSO2
Integrator

0.25 1 0.5 0.75 0.125

JBoss Fluse 0.5 2 1 1.5 0.25

IBM Integracon
Blus

0.3333 1.3333 0.6667 1 0.1667

MHP 2 8 4 6 1

Table 18: AeP Flexibility soluton

Alternacves Score Preference
MluleSof 0.2449 2
WSO2 Integrator 0.0612 5
Fluse ESB 0.1225 3
IBM Integracon
Blus

0.0816 4

MHP 0.4898 1

2.7.5.4. Security & Privacy

In terms of security, all sofware products support basically the same solutons, all support
eTTPS, authoriiaton and authentcaton.

Privacy is another mater, all solutons support on-premises deployments, meaning, privacy is
more of a concern of the client implementng the soluton, if the cloud opton is preferred
then privacy is subject to how much trust is giving to the cloud provider since the data would
not be protected from the cloud provider.

Since the MeP soluton is the only with guarantes that data will not be viewed by any third
party it gains more points in this category.

74

Table 19: AeP Security & Privacy pairwise comparison

MluleSof WSO2 Fluse IBM MHP

MluleSof 1 1 1 1 ½

WSO2
Integrator

1 1 1 1 ½

JBoss Fluse 1 1 1 1 ½

IBM Integracon
Blus

1 1 1 1 ½

MHP 2 2 2 2 1

Table 20: AeP Security & Privacy Soluton

Alternacves Score Preference
MluleSof 0.1667 2
WSO2 Integrator 0.1667 2
Fluse ESB 0.1667 2
IBM Integracon
Blus

0.1667 2

MHP 0.3333 1

2.7.5.5. Scalability

Scalability is measure mainly in terms of horiiontal growth, only with horiiontal growth can a
soluton be quickly, easily and cost-efectve scaled.

The MeP soluton is only solutons with 100% horiiontal scaling, all other solutons support
some sort of enterprise high-availability but all with adjacent complexity and costs.

75

Table 21: AeP Scalability pairwise comparison

MluleSof WSO2 Fluse IBM MHP

MluleSof 1 1 1 1 ½

WSO2
Integrator

1 1 1 1 ½

JBoss Fluse 1 1 1 1 ½

IBM
Integracon
Blus

1 1 1 1 ½

MHP 2 2 2 2 1

Table 22: AeP Scalability soluton

Alternacves Score Preference
MluleSof 0.1667 2
WSO2 Integrator 0.1667 2
Fluse ESB 0.1667 2
IBM ESB 0.1667 2
MHP 0.3333 1

76

2.7.5.6. Final result (AeP)

For the fnal result, a matrix with the eigenvectors results from the previous step is squared
with the eigenvector from the criteria, the bigger value from the result is the best choice.

Table 23: AeP Criteria with alternatves pairwise comparison

Price Compl. &
Light

Flexibility Seclurity &
Privacy

Scalability

MluleSof 0.0952 0.3243 0.2449 0.1667 0.1667

WSO2
Integrator

0.1905 0.0811 0.0612 0.1667 0.1167

JBoss Fluse 0.2857 0.1622 0.1225 0.1667 0.1667

IBM Integracon
Blus

0.0476 0.1081 0.0816 0.1667 0.1667

MHP 0.381 0.3243 0.4898 0.3333 0.3333

Criteria
Eigenvector

0.058 0.1097 0.1097 0.5906 0.1321

Table 20: AeP Final Soluton

Alternacves Prodluct tith Criteria
eigenvector

Preference

MluleSof 0.1884 2
WSO2 Integrator 0.1471 4
Fluse ESB 0.1683 3
IBM ESB 0.144 5
MHP 0.3523 1

The fnal result proves that the MeP soluton if the preferred choice under these criteria and
alternatves.

77

2.7.5.7. Final thoughts

A platorm without documentaton would be prety difcult to maintain, so this was also
verifed in all solutons. Documentaton capabilites was verifed in two parts, documentaton
for the base platorm and documentaton for the develop integraton APIs. All solutons seem
to value documentaton and include documentaton for its platorm base functonalites, also,
they provide functonality to document all integraton APIs. The MeP soluton developed in
this work also addresses this (see chapter 3.11.2).

It’s also important to note that nothing substtutes real experience with each of these
platorms, meaning that it someone with, more or less three years experience, with any of
these platorms could probably had a diferent perspectve on this evaluaton.

2.8. SWOT Analysis

To identfy the main aspects that characteriie the market strategic positon, being externally
or internally, a SWOT analysis is used. It’s important to note, however, that this analysis is
valid for a specifc moment in tme and that strategic management should be a contnuous
process.

Table 24: SWOT Internal Analysis

Strengths Weaknesses

Technical Know-eow;

Technology used has already proven to be efcient
and stable;

No complexity in logistcs;

Technical team motvaton, since the development
of this project is done in emerging technologies;

Requirements are specifed and verifed by our
partners before reaching all the clients.

Large inital investment;

Commercially not very oriented;

In its inital stage.

Table 25: SWOT External Analysis

Opportlunices Threats

Lack of immediate competton;

eigh complexity of today’s services implementaton
generates need to simplify technology requirements;

Project openness can lead to
competton;

Regulatory mandates can mute or
limit project evoluton.

78

3. Development and Implementacon

This chapter describes this work development approach and its implementaton, from a high-
level perspectve as well has a more granular descripton when needed.

3.1. Developing model

This chapter gives an overview of the more relevant concepts, techniques and dependencies
that are used during the planning and the development stage of a micro-service architecture.

3.1.1. Essencal Dependencies

All services in this platorm where developer as a Play Framework instance, the framework, by
default, already incorporates the most basic dependencies, but because this is designed to be
a lightweight framework, it only comes with the essental, so, some dependencies that are
necessary for this platorm need to be added. The following table shows a list of the
dependencies that are essental to all services as well as its version. Since this project uses
SBT36 (Simple Build Tool) has the build tool, the dependencies shown here use the SBT syntax.

Specifc service dependencies are described in it’s appropriate secton in this document, not
including these dependencies.

36 htp://www.scala-sbt.org/

79

Table 26: Platorm essental dependencies

Dependency Descripcon

"org.scalatestplus.play" %%
"scalatestplus-play" % "3.1.1" % Test Testng framework for automated testng

"com.typesafe.play" %% "play-json" %
"2.6.5"

JSON library, for working with JSON messages

"com.typesafe.play" % "play-ahc-ws-
standalone_2.12" % "1.1.0",

 "com.typesafe.play" % "play-ws-
standalone-json_2.12" % "1.1.0"

Play Framework essentals for web services client
operatons and JSON support

"com.typesafe.play" %% "play-mailer" %
"6.0.1",

Email operatons, All services need to report
errors.

 "com.typesafe.akka" %% "akka-cluster"
% “2.5.4”,

 "com.typesafe.akka" %% "akka-cluster-
metrics" % “2.5.4”,

Akka additonal dependencies. Play already
comes with basic Akka support, but Cluster and
Metrics support must be manually added.

"org.abstractj.kalium" % "kalium" %
"0.7.0"

Encrypton library. All services need this because
the standard status messages that this platorm
uses needs to encrypt some info.

mhp-sys

This is a custom developed library, developed in
Scala for this project, and its purpose is to fulfl
cross cutting concerns across the platorm
diferent apps. At the moment its main functon
include encrypton functons, and more general
system data functons. This library is not added
through SBT but rather as a local library. Play
framework will include any library that is simply
added to the “lib” folder inside each Play app.

3.1.2. Events-First Domain-Driven Design

This concept is from Russ Miles, it helps developing distributed systems by creatng an
abstracton on the nouns (objects names) and verbs (the events) and the idea is to focus on
the things that happen in the system and only then worry about structure, this gives a
diferent approach from more traditonal object-oriented programming (OOP) and domain-

80

driven design (DDD). It helps understand how things fow in the system and by consequence
have a temporal perceptve on the system (Bonér, 2017).

Also by focusing on the events it helps in creatng Bounded Contexts37 which by themselves
help in separatng concerns and complexites of a secton of the system (Bonér, 2017).

3.1.3. Stateless Web Tier

A stateless architecture allows the scalability of components, if a component is scalable then
it's possible to replicate the same between diferent nodes, and access by the consumers can
be seamless distributed (eayes, 2011).

Since Scalability is a major concern all endpoints should be made stateless unless that a
stateful approach is essental, like for example in WebSockets connecton, but even in these
endpoints the load-balancing capabilites must be maintained.

3.1.4. Non-Blocking

Services and threads spend most of the tme idle, waitng for data from other services and
data stores, this is because I/O is very expensive. The Play's web service library 38 can be used
for making non-blocking calls, for example:

def someMethod() = Action.async {
 val future = ws.url("http://www.isep.ipp.pt.com").get

 future map {
 response => Ok(response.body))
 }
}

Code 2 Example code of non-blocking operaton

The ws.get() method returns a Future of a Response (Future[Response]) which is a Scala
Future that will eventually contain the Result.

3.1.4.1. Non-Blocking SOAP calls

SOAP requests are typically blocking I/O, this is because, internally, Java default
implementaton of JAX-WS uses blocking eTTP calls39.

The soluton is this case is to use another JAX-WS implementaton, in this case the Apache
Cxf40 library is used which can use non-blocking eTTP calls. To do this there are two
dependencies that need to be added, cxf-rt-frontend-jaxws and cxf-rt-transports-htp-hc, the

37 htps://martnfowler.com/bliki/BoundedContext.html
38 htps://www.playframework.com/documentaton/2.6.x/ScalaWS
39 htp://cxf.apache.org/docs/asynchronous-client-htp-transport.html
40 htp://cxf.apache.org/

81

frst one makes CXF the JAX-WS default implementaton, and the second allows CXF to make
non-blocking eTTP client calls.

To test that this is working Apache Benchmark41 (ab) tool can be used, for example:

ab -c 50 -n 1000 localhost:9000/async

Code 3 Example of Apache Benchmark tool

The previous command makes 1000 requests 50 at a tme, meaning 50 concurrent requests,
to an endpoint (localhost:9000/async). During the tests another tool like visualVM or
Netbeans Profler can be used to see the working threads.

3.1.4.2. Future compositon

Future compositon can be achieved very easily in Scala and in functonal programming in
general, it’s easy to accumulate the map functon concatenatng future’s on afer the other,
but to make things easier to read and maintain, Scala has the for comprehension with yield
patern42, and it’s also a way to avoid the callback hell43. With for-yield syntax futures can
follow other futures and use their outputs like in the following example:

try {
 for {
 // 1. Validate authentication
 authenticated <- function01()

 // 2. Relay message to backend service
 backend <- function02(authenticated)

 // 3. process the results
 } yield processResponse(authenticated, backend)

// 4. deal with exceptions
} catch {
 case e: Exception =>
 log.error("System error", e)
}

Code 4 Example code of future compositon with for-yield syntax

1. First a functon is called to authentcate the request, this functon returns a future
with the result, Future[Result], when the future completes it then call the second
functon;

41 htp://htpd.apache.org/docs/current/programs/ab.html
42 htps://docs.scala-lang.org/tour/sequence-comprehensions.html
43 htps://engineering.linkedin.com/play/play-framework-async-io-without-thread-pool-and-
callback-hell

82

2. The second future calls a functon which also returns a future and passes the previous
result;

3. Afer all futures are completed their return values can be processed in the yield
porton of the code;

4. Any excepton thrown can be catch in the fnal block of code.

Using this method, dealing with futures is easier and very readable and it’s possible to see
that even if the code grows it will stll maintain a readable structure.

It’s also important to note the following:

 This is all non-blocking code;

 The exceptons ca be caught for each future using the recover method afer each
future;

 The futures are called sequentally, but can also be called in parallel, for this all that is
needed is to defne the futures outside the for comprehension, like in the following
example.

val authenticated = function01()
val backend = function02()

for {
 result1 <- authenticated
 result2 <- backend
} yield processResponse(result1, result2)

Code 5 Example code of future compositon with for-yield syntax in parallel

3.1.5. Data-Access

Data access is typically a blocking operaton (see Figure 4), for example, methods in the JDBC
to access a database are all blocking, so to have a reactve applicaton this needs to be
addressed, fortunately the Play framework has mechanisms for this, for example:

def save(hash: String, fullUrl: String)(implicit ec: ExecutionContext):
Future[Unit] = Future {
 DB.withConnection { implicit c =>

 val sql = SQL("insert into shorturls (short, fullurl) value ({short},
{fullurl})").on("short" -> hash, "fullurl" -> fullUrl)

 sql.executeInsert()
}

Code 6 Example code of non-blocking data access

83

Although the example above is a working approach, it’s always beter, whenever possible, to
use a database model that is asynchronous from the start, this is the case of MongoDB for
which Play’s own team help develop a non-blocking driver called ReactveMongo44.

The library used for communicatng with the database also has an impact on the developing
model. Some libraries, like Slick45, are by design asynchronous, while other like Anorm46 are
not. If a library is not asynchronous by design it’s up to the developer to guaranty that calls to
the database are made asynchronous whenever needed, like in the previous example.

3.1.6. 2-Way e eaccve Model

Play's 2-way reactve model means that it doesn't acknowledges (ACK) the received transport
data untl it's ready to process it, for example, if a client sends some data and the same is
being relayed to another service, the message received from the client will only be
acknowledged when the server is ready to process more data, this way, Play facilitates the
way to achieve reactve in all intervened enttes.

This is a very important feature and one the typically is only achieved by applying
backpressure techniques, this is not to say that backpressure is implement by default, it stll
exists the need to control backpressure, for example, in streaming scenarios, but it helps
substantally the developer in already providing this kind of functonality.

3.2. Cross Clutng Concerns

Cross cutting concerns in this platorm can be resumed to logging, monitoring and metrics
gathering, there’s more than one approach to deal with these concerns as is explained in the
following sub-chapters.

3.2.1. Filters Vs Accon Composicon Vs External Accon

An Acton in the Play Framework is basically a functon that catches a request and produces a
response. Acton compositon in this context means that it’s possible to create a class that
extends the basic acton functonally and add the necessary functonality, this new class is
then used to catch the request (Lightbend, 2017).

Filters are another way to catch, and possible change, all requests, typically flters are used for
logging, collectng metrics, compression and security (Lightbend, 2017).

Basically, flters should be used when an acton is intended to be applied to all requests, and
acton compositon, when just some specifc requests should be afected (Lightbend, 2017).

44 htp://reactvemongo.org/
45 htps://www.playframework.com/documentaton/2.6.x/PlaySlick
46 htps://www.playframework.com/documentaton/2.6.x/ScalaAnorm

84

3.2.2. Logging

Logging in the Play Framework, by default uses the Logback47 framework. It natvely
implements the SLF4J API48 to facilitates the migraton, if needed, from Logback to another
logging framework. This platorm uses this framework to log all intended messages, from
debug to error messages, in the fle system. Each fle has the duraton of a day, afer which is
compressed, archived and saved for 30 days, note that these settings can be changed by
editng the logback.xml confguraton fle, but these are the settings that this platorm uses.

Typically, every logging message must be declared explicitly, but there are some cases where
it’s useful to automate the logging without needing to declare every message, such is the
case, for example, for all request that the platorm receives, in which is important and
intended to record all incoming and outgoing messages. To accomplish this a flter is used:

class LoggingFilter @Inject()(implicit val mat: Materializer,
 ec: ExecutionContext) extends Filter {

 val log = LoggerFactory.getLogger("LoggingFilter")

 def apply(nextFilter: RequestHeader => Future[Result])
 (requestHeader: RequestHeader): Future[Result] = {

 val startTime = System.currentTimeMillis

 nextFilter(requestHeader).map { result =>

 val endTime = System.currentTimeMillis

 val requestTime = endTime – startTime

 log.info(s"${requestHeader.method} ${requestHeader.uri} took $
{requestTime}ms and returned ${result.header.status}")

 result
 }
 }
}

Code 7 Filter to log all incoming and outgoing messages

The apply method in the previous code, which is a curried functon, as two parameters, the
frst one, nextFilter, is a functon that takes a request header and produces a result, the
second, requestHeader, is the actual request header. Inside this method the start tme is
saved, then the nextFilter functon is called, which calls the actual intended acton functon for
this request, when the request processing completes, the end tme is saved and compared to
the start tme to log how much tme each request took.

47 htps://logback.qos.ch/
48 h tps://www.slf4j.org/

85

An alternatve to this is to use a logging decorator, which, in this context, basically means an
Acton class that extends the basic Play Acton functonalites, to log just specifc requests, but
in this case the intended purpose is to log all requests without exceptons.

3.2.3. Monitoring

Monitoring can be achieved in several ways, ones beter than others, but usually the beter
ones have a commercial license cost. There are open source monitoring tools, like Kamon
(htp://kamon.io) that can be used to capture Akka metrics and can be integrated into the
play framework but these don’t include visual presentaton layers.

Since integratng a commercial license would increase the cost of the platorm and add a
commercial dependency it is not considered for this version of the platorm, other tools, like
Kamon, would add complexity to the platorm without an easy way to consume the results,
for these reasons, for this version of the platorm, monitoring is restricted to external systems
that monitor the main resources and to in-code monitoring by supervising the actors.

As for supervisor strategy, the platorm does not use “all-for-one strategy”, it only uses “one-
for-one strategy”, for simplicity reasons, its recommended by the Akka team and it’s easier to
maintain an architecture where the supervisor only reacts to the children that failed.

Monitoring main resources is obtained at the systems level and not at the sofware level,
meaning that there are services specifcally for this purpose and are setup as follows:

Table 27: Monitoring metrics

e ole Descripcon

Bandtidth - Inbolund Above 75 Mbps for 5 min

Bandtidth - Olutbolund Above 75 Mbps for 5 min

CPU Above 75 % for 5 min

Disk — e ead Above 75 Mb/s for 5 min

Disk — Write Above 75 Mb/s for 5 min

Disk Uclizacon Above 75 % for 5 min

Memory Uclizacon Above 75 % for 5 min

3.2.4. Metrics

Metrics can be obtained by monitoring the services externally and/or internally:

 External: metrics are created based on the response of the API calls, for example,
how many requests per second can be achieved a certain request and circumstance;

86

 Internal: metrics code is added together with business code so that it can record a
higher level of detail.

Although the internal method can obtain more detail, it also adds more complexity to the
code, for this reason this work uses the external approach has a means to obtain the more
essental metrics. The internal approach can stll be used in the future, for example, for some
more specifc metrics requirements, in this case, however, it’s advisable to use AOP (Aspect
Oriented Programming) instead of just mixing the business code with the metrics code, this
way the complexity of the metrics code can be abstracted from the business code.

3.3. Seclurity

Like previously stated, security is a major concern, this chapter addresses the measures
implemented to make the platorm a secure environment. Security is also a contnuous
concern, the next chapters describe the essental but should not be taken as complete
soluton.

3.3.1. HTTPS

All services use eTTPS, eTTP is disable by default, this is the only way to keep communicaton
private, for these certfcates are needed to ensure that not only a TLS connecton is
established but also that this platorm consumers can verify the identty of it’s provider as
trustworthy.

For certfcate issuing and renewing the initatve Let’s Encrypt49 is used, this gives this
platorm a free, public recogniied, certfcaton authority soluton and it also means that it’s
possible to automate the renewing of certfcates. It’s very important to automate this process
since all the certfcates issued have a 90 day expiraton period. There are already several tools
online that already integrate Let’s Encrypt50 with popular web servers, but they typically only
work in Linux environments and, at the moment, none cross-platorm tool exists to integrate
with Plays Framework.

So, to accomplish the automatc renew of certfcates a small Java tool was developed, this
tool has two functon modes, one to produce new certfcates and another to renew them.

49 htps://letsencrypt.org/
50 htps://letsencrypt.org/docs/client-optons/

87

For example, to emit and renew new certfcates the commands are:

Table 28: Example commands to create and renew certfcates

Create / e enet Command / Argluments

Create net
Cercicates

Java -jar mhpCertTool.jar domains=domain.com,app.domain.com
--operacon=create --staging=0 --coluntry=Portugal --local=Porto
--organizacon=LTS --organizaconalUnit=Project --luser=user1
--pass=p@ass

e enet
Cercicates

java -jar mhpCertTool.jar --domains= domain.com,app.domain.com
--operacon=renew --staging=0 --luser= user1 --pass=p@ass

The following table describes the commands of the MeP Certfcaton Tool:

Table 29: MeP Certfcaton Tool arguments

Arglument Descripcon

--domains The domains to create or renew, comma-separated.

--operaton create / renew. To create or to renew certfcates.

--staging 0 / 1. 0 = producton; 1 = testng.

--country Certfcate Country atribute tag.

--local Certfcate Local atribute tag.

--organiiaton Certfcate Organiiaton atribute tag.

--organiiatonalUnit Certfcate Organiiatonal Unit atribute tag.

--user The username (If the username does not exist it will be
automatcally created as a new user).

--pass The users password.

This tool has the following dependencies:

88

Table 30: MeP Certfcaton Tool dependencies

Dependency Descripcon

ACME4J51 For an easy integraton with the ACME protocol of Let’s Encrypt.

OpenSSL52 tool To create a PKCS1253 fle from the certfcates.

Java Keytool54 To create the Java Keystore from the PKCS12 fle.

When creatng certfcates, the tool will ask for a DNS entry confrmaton, which is the default
method of domain validaton, it’s hard-coded but can be changed if necessary, this is only
done one tme, afer that renewing is automatc, this tool also packages the certfcates in a
Java KeyStore which is the default Java way to access certfcates, and is also the way of Play
Framework. The only thing lef to do is to copy the fle to the Routers (see chapter 3.10)
components folders to keep the certfcates updated.

3.3.2. COe Sa CSe Fa XSS and SQL Injeccon

 CSRF

Cross Site Request Forgery (CSRF) (RFC 6749 chapter 10.12) is a security exploit where an
atacker tricks a victm’s web applicaton into making a request for him using the victms
session containing his session token which can be used for authentcaton, in other words the
victms web applicaton makes unwanted requests in its name (Lightbend, 2017) (OWASP
2017). Preventng CSRF atacks is not easy and there is not an easy, one-tme soluton, to
completely prevent all CSRF atacks, but this can be mitgated and the atack surface reduced
substantally (Shahriar et al., 2010).

Since it is not a priority of the platorm to host web-sites, CSRF atack on web-sites is not a
major concern, but, CSRF atacks can also target authoriiaton mechanisms and so it’s
important to include protecton against these atacks. In a recent, 2017, report by,
Sudhodanan et al., 132 top web sites were testes and the conclusion was that 72% of them
had vulnerabilites, including web sites from Microsof, Google and eBay, proving the previous
statement that securing against CSRF is not an easy task.

Play framework has integrated mechanism to help with CSRF atacks, it can be confgured by
setting cross-origin policies and, by default, it requires a CSRF check when a request is not
GET, eEAD or OPTIONS, the request has one or more Cookie or Authoriiaton headers
(otherwise no session based authoriiaton data is being sent) or the CORS flter is not
confgured to trust the request’s origin. CSRF is checked by Play by placing a CSRF token in the

51 htps://github.com/shred/acme4j
52 htps://www.openssl.org/
53 htps://www.ssl.com/how-to/create-a-pfx-p12-certfcate-fle-using-openssl/
54 htps://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

89

query string or body of the requests and in the user’s session, then it compares both to see if
they match, if they do not match, an access forbidden (403), error is thrown (Lightbend,
2017).

 CORS

Cross Origin Request Sharing (CORS) (RFC 6454), is the defniton to when a request is made to
a resource in a diferent domain, protocol or port from its own. This is a standard practce, for
example, when loading resources like images or other statc resources from external domains.
This standard, basically, works by letting the servers add new eTTP headers that specify the
origins that can access local resources.

In a micro-services environment, where, a request can involve several services to
communicate with each other, CORS needs to be addressed and set up in such a way that
each service can communicate with each other and stll maintain a high level of security.

In the case of this platorm, the router needs to be open to CORS requests since its primary
objectve is to flter and proxy requests from various clients, has for the other services they
CORS is confgured so that is restricted to requests from only the services that they need to
communicate with, for example, all services need to allow requests from all Router instances
and MTS instances, but they don’t, necessarily, need to communicate with other services.

 Cross Site Scriptng

Cross Site Scriptng55 (XSS) is a client-side vulnerability where an atacker can inject code into a
website. Plays template engine56, already provides integrated protecton against XSS atacks.

 SQL Injecton

SQL Injecton57 is an atack that consists in injectng unintended code into an SQL command,
this kind of atack can be prevented by curatng the dynamic code in SQL calls, like stored
procedure arguments. The Anorm58 library that is used in this project already provides the
mechanism that apply protecton for this kind of atack.

 More informaton

It’s not the purpose of this work to dive much deeper into the above security concerns, but
the OWASP Testng Guide59, currently at version 4, has many more valuable informaton and
it’s a helping guide on how to test and prevent these kind of atacks.

55 htps://www.owasp.org/index.php/Top_10_2013-A3
56 htps://www.playframework.com/documentaton/2.6.x/JavaTemplates
57 htps://www.owasp.org/index.php/SQL_Injecton
58 htps://playframework.com/documentaton/2.6.x/ScalaAnorm
59 htps://www.owasp.org/index.php/OWASP_Testng_Guide_v4_Table_of_Contents

90

3.3.3. Aluthenccacon and Aluthorization

Like previously stated, there isn’t allowed any unauthentcated request in the platorm, so
inside the eTTPS connectons every request must be validated. The method by which they are
validated varies if it’s a request to the business API of it it’s a request to the Web UI.

All internals API calls use JWT (RFC 7519) authentcaton and the Web UI uses Cookie
authentcaton, basically the only reason Cookie based authentcaton is used is because, at
the moment, it’s more compatble with browsers than JWT authentcaton, and since
authentcaton is mandatory, this afects the tme to market of the entre soluton.

The next two tables present some of the pros and cons of each authentcaton method.

Table 31: Pros and cons of cookie based authentcaton60

Pros Cons

Small network throughput on client side;

Very compatble with traditonal browsers;

Client fngerprintng;

Can be stateless or stateful;

Can use “remember me” functonality.

If stateless, has bigger network
throughput on client side;

If stateful, has bigger network
throughput on the server side;

It needs a backing store to be stateful;

Not has ideal as JWT for SPAs or mobile
apps;

If not protected, can be vulnerable to
CSRF atacks;

Not very compatble with CORS.

60 See htps://www.silhouete.rocks/v5.0/docs/authentcator and
htps://auth0.com/blog/cookies-vs-tokens-defnitve-guide/

91

Table 32: Pros and Cons of JWT based authentcaton

Pros Cons

Very compatble with SPAs and mobile
apps;

Can be stateless;

Not vulnerable against CSRF atacks (since
the browser doesn’t automatcally add the
header to your request);

Plays well with CORS;

Can transport arbitrary claims;

Can be used for “remember me”61

functonality.

Larger network throughput on client
side;

Larger network throughput on the
server side (if backing store is used);

Less than ideal for traditonal browser
based websites;

No client fngerprintng;

If stateless, the token cannot be
invalidated.

From these two tables is possible to see that the advantages of JWT really outweigh the
advantages of the cookie approach, and even the disadvantages of JWT are not a very big
concern for this platorm.

To unify the development of the authentcaton mechanisms and facilitate it’s contnuous
maintenance, a stable and purpose focused framework is used, Silhouete62 is a framework
developed specifcally for the Play Framework and Scala, although future versions will be able
to be used has an independent component, it supports several authentcaton methods and
allows for an easy switch between then without the need to change the business logic of the
code. Its fully asynchronous and follows the OWASP Authentcaton Cheat Sheet63. At the
moment this framework is used to implement JWT and Cookie based authentcaton.

Being a major concern and responsibility, authoriiaton and authentcaton is implemented in
its independent micro-service and persistence architecture (see chapter 3.11).

For simplicity reasons in the rest of this document, when referring to the
authentcaton/authoriiaton service it will simple be referred to has authoriiaton service
since the authoriiaton implies authentcaton and the other way around is not always true.

61 The same token can be used in several requests for a pre-determined period of tme.
62 htps://www.silhouete.rocks
63 htps://www.owasp.org/index.php/Authentcaton_Cheat_Sheet

92

3.3.4. Firetalls

It’s not only service that should be single focused in its responsibilites, this also applies to
Firewalls. By having each service protected by its own frewall protecton is assured both from
outside trafc and from inside trafc.

This also has the added bonus that confguring, managing and troubleshootng the frewalls
because an easier task since each frewall is a smaller component compared to a perimeter
frewall with all the rules in one place.

3.3.5. Data Proteccon

To beter prepare for the changes ahead (see chapter 2.6), this platorm implements the
necessary implementaton designs to beter protect the data both from access and/or
tampering.

Besides authentcaton and authoriiaton there are some steps that are taken to achieve this:

• Conigluracon Data: fles with sensitve informaton, like credentals, are not included
in version control. Sensitve informaton is saved in a safe environment, like a
password manager store (in this case KeePass64). During development, testng and
staging, separate fles uses just for development are used with test data, producton
fles are keep protected and the services are confgured so that they know when to
use one fle or the other. For example, during development a confguraton fle
“applicaton.conf” is used, when the service is started in producton the same fle is
loaded but another fle “applicaton.prod.conf” is also loaded overwritng the previous
fle. The producton fle only overwrites the same keys, meaning the producton fle
doesn’t need to have all confguratons, but just the ones that are meant to be
diferent in producton.

• Logging and Monitoring: All request to the platorm are recorded for possible
reviewing and all access validatons are recorded separately to normal request. This
means that all services are confgured to record access related data in a separate fles
and format. This has the advantage that access data can be beter protected than
normal service usage data and that reportng any access violatons also is separate
from normal usage reportng. Even inside the organiiaton diferent access can be
granted to diferent personnel, to the access data, making it more secure (example
confguratons on annex 6.6).

• User Data: Sensitve user data, like credentals, are saved in a database always with a
hashing algorithm (SeA-2 of 256 bits). To achieve this the library Kalium65 is used,
which is a Java library based on the popular open source library Libsodium66.

64 htps://keepass.info
65 htps://github.com/abstractj/kalium
66 htps://github.com/jedisct1/libsodium

93

Libsodium needs to be installed in the Operatng System where the service is running
in order for Kalium to fnd it, for this, there already exists pre-compiled binaries
available67.

3.3.6. End-to-End Encrypcon

End-to-end encrypton is achieved by sharing a Key and a Protocol between the consumers
and the providers, for example when a pharmacy requests product prices from a supplier, this
informaton should stay between the pharmacy and the supplier. Basically, the data is
encrypted on one side with the key and protocol, the platorm only sees the data in the
encrypted format, and then it’s send to its destnaton where it is decrypted with the
predetermined protocol and key.

Encrypton is optonal, and, for the moment, this platorm only provides the instructons and
procedures to implement the correct encrypton protocol in order to achieve end-to-end
encrypton. The platorm itself does not encrypt or decrypt the data.

Table 33: Encrypton protocol parameters

Parameter Vallue Descripcon

Password
hashing
algorithm

PBKDF2WithemacSeA1 . PBKDF2 stands for Password-based-Key-
Derivate-Functon, and is responsible for
hashing the password or key along with a salt
value. This process is repeated N number of
tmes and the resultng key can be later used as
a cryptographic key.

. eMAC stands for Keyed-eash Message
Authentcaton Code, and is responsible for
calculatng the message authentcaton code
(MAC). It uses a cryptographic hash functon
combined with the cryptographic key (created
by PBKDF2). The eMAC process mixes a secret
key with the message data, hashes the result
with the hash functon, mixes that hash value
with the secret key again, and then applies the
hash functon a second tme. The output hash is
160 bits in length. First the key is mixed with
the data, then the result is hashed, the hash is
then mixed with the secret key again and the
result hashed a second tme.

. SeA1 stands for Secure eash Algorithm, and
it’s used to hash a value.

67 htps://download.libsodium.org/libsodium/releases

94

. This produces a hash of 160 bits length.

Encrypton
Protocol

AES/CBC/PKCS5Padding

. AES stands for Advance Encrypton Standard,
it’s a general purpose block cipher standard
that uses the Rijndael cipher.

. CBC stands for Cipher Block Chaining. IT
determines the AES encrypton mode. This
needs a random and unique Initaliiaton vector
(IV) per encrypton request.

. PKCS5Padding. This is used for padding,
meaning that the siie of the encrypted data is
not always proportonal to the siie of the
unencrypted data. This is a protecton against
reverse-engineering.

Key Password value
This is the secret key used to feed the
encrypton algorithms. It needs to stay private
between the producer and the consumer.

IV Initaliiaton Vector
The initaliiaton vector must be random and
unique per request but does not need to be
kept private.

The encrypted data must follow the above specs, these should be supported in most
programming languages as all the standards have been around for many years.

It’s not the purpose of this work to dive much deeper into cryptography, but more
informaton on best practces and the above protocols can be found in the OWASP website68.

Since the encrypted data is saved in a relatonal database, the feld siies must be adapted to
the encrypton level, based on the protocol. For this and stability reasons, for now, there is
only one protocol supported which is AES / CBC / PKCS5Padding.

Table 34: Field siies non-encrypted vs encrypted (AES/CBC/PKCS5Padding)

Non-Encrypted Encrypted

1 <= x <= 15 24

16 <= x <= 31 44

32 <= x <= 47 64

48 <= x <= 63 88

64 <= x <= 79 108

68 htps://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

95

80 <= x <= 95 128

96 <= x <= 111 152

112 <= x <= 127 172

128 <= x <= 143 192

145 <= x <= 159 216

160 <= x <= 174 236

175 <= x <= 191 256

192 <= x <= 207 280

With the informaton provided in this chapter two sofware providers should be able to
implement this and be compatble, then they need to share a private key between them so
that this platorm doesn’t have any knowledge or capabilites of decryptng the data.

There are higher level protocols that could be used, but with higher level protocols the space,
memory and CPU resources used would also be higher, which could have a signifcantly
impact on the system, so at this phase it’s important to guaranty that the system will be able
to maintain a high level of service, in the future other protocols can be supported (more on
this subject see chapter).

3.3.7. Abluse Proteccon

To control abuse, several rate limiters were implemented, one for each service at the
perimeter side, in this case, rate limitng is implemented in the router component, the
implementaton uses the module Play2 Guard69 to facilitate it’s implementaton, it uses the
token bucket approach (see chapter 2.3.5.1) and allows for the creaton of IP and user based
delimiters and IPs Black/White lists. It also supports direct integraton with the platorms
authentcaton and authoriiaton library, silhouete, but since at the moment, the rate limiters
implement are only IP based, these feature is not used.

The buckets are stored in general purpose in-memory collectons, there are beter solutons
(see chapter), but this is an easy approach the meets the current requirements of the
platorm, it may be changed in the future if necessary. The buckets are stored and controlled
by an Akka actor, there is exactly one actor per bucket, controlling the buckets with actors
guarantes that the bucket can be used by concurrent requests and processes and relieves the
implementaton from race conditon problems.

To beter manage the memory resources occupied by the buckets, full buckets are removed,
for example, if a bucket if not being used for some tme, it doesn’t make sense to keep that

69 htps://github.com/sief/play-guard

96

bucket in memory, when a request arrives that’s associated with that bucket then a new full
bucket is created.

The rate limiters were injected in the platorm as flters of Play’s Framework, and they get it’s
settings from confguraton fles that can be changed on-demand (see chapter 3.10.2).

3.4. Segregacon

Like previously stated (see chapter 2.3.4.3) a possible soluton was to use Event-Sourcing with
CQRS, however this is a more complex and tme consuming soluton to implement and
because of this it was decided to implement a hybrid soluton.

“In partcular CQRS should only be used on specifc portons of a system (a Bounded
Context in DDD lingo) and not the system as a whole. In this way of thinking, each
Bounded Context needs its own decisions on how it should be modelled” (Martn
Fowler, 2011)

Every micro-service has its own database, service has a thread pool of connectons to it’s
database, meaning while there is threads available several SQL commands can run
simultaneous, unless there is blocking in the database, so to prevent this blocking the most
has possible each database is divided in two databases, one for reads and one for writes,
additonal scheduling the copy of the writes into the reads must also be done, the advantage
of the scheduling is that it can be done in low trafc hours. One last thing needed is to
separate the threads pools per database, Play’s Framework facilitates this confguraton by
allowing an easy confguraton of this separaton of thread pools (see code 8).

database_one {
 dispatcher {
 executor = "thread-pool-executor"
 throughput = 1
 thread-pool-executor {
 fixed-pool-size = 9
 }
 }
}

Code 8 Separatng thread pools per database

The code above specifes an executon context that can be then appended to the repositories
so that each access to the database uses this thread pool.

97

3.5. Use Case Overviet

Following are two overviews, the frst one represents the essental and common use cases this
platorm supports and the seconds represents the business oriented use cases.

Figure 14: Common use cases diagram

Conslumer: Represents an entty that consumes this platorm APIs.

Aluthenccacon and Aluthorizacon: Security is mandatory in this platorm so every request
must frst pass through authentcaton and authoriiaton.

Access to API doclumentacon: Consuming the API usually starts with requestng access and
consultng the documentaton.

98

Figure 15: Business oriented use cases diagram

Prodlucer: Represents a service provider.

Postal Orders: This a basic protocol that exists since 1995, it was designed specifcally for the
pharmacies and it allows them to order medicaton and other non-medicaton products from
the suppliers.

Via-Verde Orders and e eporcng: Via-Verde is a protocol developed by Infarmed, it as two
objectves, allow the order of specifc products and allow Infarmed to control the entre fow
chain of those same products. The medicaton included in Via-Verde protocol is considered
essental or vital in some cases, so Infarmed’s control is justfed so that it can beter guaranty
that those medicatons will be available to those who need it. For example, suppliers might,
sometmes, when stock is low, refuse service to some clients to guaranty that other,
considered beter clients to that supplier, get their orders fulfl. With this protocol, Infarmed
can check all orders from pharmacies to the suppliers and all orders from suppliers to the
laboratories, thus controlling the fow chain, stock and availability of those medicaton.

99

TAe V e eporcng: This protocol has the same objectves has the previous one but for diferent
medicaton, TARV or eAART stands for highly actve antretroviral therapy, and usually
includes antretroviral drugs to control eIV/AIDS infecton.

Order (Net Protocol): This a new developed protocol in this work, it supports the above
order protocols, Postal, Via-Verde and TARV, and it allows for much more informaton to be
exchanged in the order process, like campaign informaton or stock availability.

Pharmacy e obots: Not a lot of pharmacies have a dispenser robot, mainly because it takes a
lot of space and it’s very expensive, but those who do need their business sofware to
communicate with the robot, to request products from the atendance balcony and insert
received orders into the robot, the frst one means that the user doesn’t need to leave it’s
post because the requested medicaton is delivered next to him and the second means that
the robot can automatcally check all the medicaton that was received and report it back to
the pharmacies business sofware, which in turn can then compare that with the original
order.

Cashgluard: This is a protocol to communicate with an automatc money safe, which usually
it’s at the users side in the atendance balcony, this safe, controls all insertons and retrievals
of money, meaning that, with this protocol, the safe can be in contact with the business
sofware and control the exact amount of what needs to go in and out.

Associate Cards: This a protocol to control pharmacy customers associaton cards, that
typically give them medicaton discounts, for example if a card has lost it validity, this protocol
can consult the responsible entty and report back to the pharmacy if the card is valid.

e eimblursement Invoicing: This is also a new protocol that allows the pharmacies to send
invoices to the fnancial enttes responsible for reimbursing the pharmacies for medicaton
sold below its cost.

Docluments Archive: At any giving moment, all enttes that communicate with the MeP
platorm can request any document that belongs to them.

100

3.6. MHP Conceptlual Architectlure

From a general perspectve the following diagram gives a clear view of the platorm basic
architecture and how everything is connected.

Figure 16: MeP Conceptual Architecture

The diagram above shows the platorm divided in 3 layers, client side, service side and data
side. The client side itself is not a part of the platorm but it’s essental to understand how
everything is connected. The platorm itself is composed of the service side and the data side
which are independent of one another. Following is a descripton of each layer.

3.6.1. Client side

This layer demonstrates how the clients communicate with the platorm, communicaton is
made through eTTPS and/or WSS (Secure WebSockets), there are no unsecured
communicaton. If the client tries to communicate in an unsecured facton the load balancer
redirects it to a secure channel (eTTP to eTTPS and WS to WSS). Message format is always in

101

JSON format, no other format is supported, there may be other message formats in the
future, but there are no plans in supportng XML, mainly because it’s a more complex and
heavier format then the alternatves.

3.6.2. Service side

The service side is where the main components of this work are present. Technology wise, the
components are all Play Framework instances inside the same Akka system, each instance has
a predefned number of always running actors and can have any number of short lived actors
created dynamically.

All instances are part of the same Akka cluster which gives them the capability of always
knowing where the actors are, relieving the developer of such concerns. A couple of actors,
can be one or more, are confgured as Seed actors, these actors are then responsible to
control and report the state of the cluster and of the actors. Any Akka instance can be a Seed
actor.

This also allows for the horiiontal growth of the entre system. Any instance can just be
replicated and started in a diferent port than the existng instances, it will automatcally be a
part of the cluster.

3.6.3. Data Side

The data side of the platorm is composed of relatonal databases (SQL) and non-relatonal
(NoSQL) databases. Every service has its own database, but diferent business services can
access the same database, for example, for pooling common data.

In some cases, data can be separated in a reads database and a writes database for improved
performance and also higher complexity.

3.7. Components Overviet

The following diagram represents the top-level components of the platorm followed by a
descripton of each of them. It represents the diferent kinds of components developed for
this platorm.

102

Figure 17: MeP Components Diagram

The following tables describes elements of the previous diagram.

Table 35: MeP Components Elements

Metric Descripcon

Load Balancer
Infrastructure provided load balancer to which all request goes through.
This load balancer redirects the trafc to one of the mhp-router instances.

mhp-router
Interprets and validates all requests and load balances the same to the
appropriate backend service.

mhp-auth
Responsible for authentcaton and authoriiaton. The mhp-router uses this
component to authoriie all requests.

mhp-business Represents all business service of this platorm.

mhp-mts Mult-Task Scheduler is responsible for processing all cron jobs.

db-reads Relatonal database that supplies the mhp-business services with access to

103

data.

db-writes
Relatonal database that supplies the mhp-business services with data
storage.

db-auth
Non-Relaton database that supplies the mhp-auth service with user
persistence data (reads and writes).

3.8. Package Overviet

All MeP apps use the same basic architecture approach for structuring the code. The system
applies a basic MVC (Model View Controller) patern but extends the same to Services,
Repositories and Actors.

The following diagram represents the basic package structure of all MeP apps. Some services
might have additonal packages and complexity, but the fundamental of all apps is the same.

Figure 18: MeP Package Diagram

104

Table 36: MeP Package Elements

Metric Descripcon

Viets: Represents the presentaton layer. All instances have a basic UIs, but most of them
don’t extend this functonality.

User Interfaces Contains the Web UI.

Controllers: Contains all controller’s classes. Controllers are access right afer route
validaton. The Controllers make use of the Services to extend its functonality, abstract
complexity and decouple for service logic implementaton.

Rest Controllers Contains the controllers to service route RESTful requests.

WebSockets
Controllers

Contains the controllers to service route WebSockets requests.

Filters: All controllers Acton functons validate the request using the Filters.

Filters Contains platorm specifc Filters and custom Filters.

Models: Contains all business logic classes. The classes are used by the Services.

Business Models Contains the service related business logic classes.

Cluster Modes
Contains the business logic classes that are specifc to cluster related
needs, like, monitoring and reportng.

Persistence: Contains persistence related classes to access and persist data. The Persistence
layer is used by the Services.

DAO Contains the data access objects classes.

Repositories Contains the repositories which use the DAOs.

Services: Services are basically what join everything together and is where the most
complex logic is implemented, this Services can also extend other services depending on the
complexity of the app in queston.

Security Contains hashing and encrypton services.

RateLimitng /
BackofPressure

Contains abuse control services.

Utl
Basic, cross-cutting concern utlites. Can help alleviate the complexity
of the other Services.

Business Services Contains all business-related apps.

Actors: Actors are a mix of business classes with service classes. They have a special place in
the platorm because they are used for most concurrent code which has specifc
requirements, like keeping its assets private, this is because is the only way to protect
against racing conditons.

105

Actors Contains the actors

Common

Contains common resources that can be used for other actors in other
systems. For a class to be sent to another Actor in another system, the
class must exist in both systems and the FQN (Full Qualifed Name) of
that class must be a match.

Modlules: Modules is where it’s possible to extend Plays Functonality and where
Dependency Injecton confguraton is defned.

Modules
Contains one or more module classes that defnes all functonality that
can be extended though dependency injecton.

To make changes inside this architecture, it’s easier if there's a clear defned path from which
to approach and start producing code.

The following diagram gives a mental, ordered and systematc approach that a developer
should take to change or add business related functonality to a service/app.

Figure 19: MeP Package Development Workfow Diagram

3.9. Load Balancing

3.9.1. Perimeter Load Balancer

All trafc goes through the main load balancer which is then forwarder to the Akka router
components. The load balancer is set up to forward specifc trafc, which only includes eTTP.
eTTPS, WS and WSS, redirectng the non-secure connectons to secure ones. It uses a pass-
through TLS validaton meaning that the certfcate validaton is not the responsibility of the
load balancer but the Akka routers. It also uses TCP/IP but not through it’s forward
mechanisms, TCP/IP is only used to ping the Akka routers as to control its health state, if a
specifc instance is not considered healthy then it doesn't forward trafc to that instance.

The load balancer is not an Akka cluster member, and it’s a component provided by the
infrastructure provider. All major cloud infrastructure providers support load-balancing
capabilites, although it’s features might vary slightly. The features described here are
standard for all load balancers. The following fgure shows an example confguraton of this
load balancer in the provider DigitalOcean.

106

Figure 20: DigitalOcean Load Balancer Confguraton

Note the algorithm for load balancing, least connectons means that the trafc will be
forwarded to the instance with the least connecton, the only available alternatve, in this
case, is round-robin which send the trafc to the instances in a sequental order. Also in the
following rules is setup the TLS pass-through, the alternatve would be to add the certfcates
to the load balancer.

3.9.2. Akka Adapcve Load Balancers

Trafc is load balanced from the routers to the services through Akka actors, this uses light
weight TCP/IP communicaton. The load balancing paterns can take several formats, probably
the most common format is the Round-Robin router, which blindly sends trafc to one service
afer the other, this is not ideal because the number of requests sent to an instance does not
represent the resources status of that instance, for example, a request can be more CPU
intensive than another, take more tme to completon, etc., because of this, the platorm uses

107

an adaptve load balancer that takes advantage of the cluster metrics to know at each tme
which is the instance with the most resources available and sends the trafc to that instance
(see next fgure).

Figure 21: Akka load balancing

To implement this load balancer the following, simple, confguraton must be used:

akka {
 actor {
 provider = "cluster"
 deployment {
 ## Auth Router
 /routerActorSupervisor/router/authRouter {
 router = cluster-metrics-adaptive-group
 # metrics-selector = heap
 # metrics-selector = load
 # metrics-selector = cpu
 metrics-selector = mix

 routees.paths = ["/user/authWorker"]

 cluster {
 enabled = on
 use-role = auth
 allow-local-routees = off
 }
 }
 }
 }

Code 9 Example confguraton of a load balancing router

108

The router “cluster-metrics-adaptve-group” is the implementaton provided by Akka that uses
the cluster metrics to validate the instances resources, these instances are identfed by the
“routees.path”, which hold the actor designated name, and every instance that belongs to the
same cluster, has the role “use-role = auth” and has an actor with that specifc name will be
part of the load balancing. The cluster metrics70 this router uses are CPU, eeap and Load (see
Table 37), but can be confgured to use just one of them.

It’s possible to monitor the metrics inside an actor that subscribes to cluster metrics events,
this is done inside the WatcherActor which has the responsibility of monitoring the current
instance, each instance has a WatcherActor. The monitoring of the metrics can be disable by
confguraton, typically this is not needed in producton. The metrics logged can be as follow:

Table 37: Cluster Metrics (see footnote 70)

Metric Descripcon

eEAP Used and max JVM heap memory.

Load
System load average for the past 1 minute. This value can be found in Linux
systems and the more closest to the number of cpu/cores the bigger the
bigger the load. Weights based on: 1 - (load / processors).

CPU CPU utliiaton in percentage, sum of User + Sys + Nice + Wait.

Mix
Uses a combinaton of the previous three. It’s based on the mean of the
remaining the resources of al three metrics.

Table 38: Cluster Metrics Monitoring Example

Metric Example

CPU
Address: akka.tcp://msb@127.0.0.1:41001, Timestamp: 1507204507449,
SystemLoadAverage: 15%, CpuCombined: 10%, CpuStolen: 2%, Processors:
4

eEAP
Address: akka.tcp://msb@127.0.0.1:41001, Timestamp: 1507204507449,
Used: 205.2136058807373 Mb, Commited: 267386880, Max:
Some(477626368)

3.10. Akka roluters

Like the perimeter load balancer, all trafc must go through the Akka routers, these routers
also, functon as Load Balancers, API Gateway and Reverse Proxy. Since they are a part of the
Akka cluster they can be scaled horiiontally. The perimeter Load Balancer sends trafc to the

70 htps://doc.akka.io/docs/akka/2.5/scala/cluster-metrics.html

109

router instance that has the least actve connectons and the router itself also uses load
balancing to send trafc to the backend services, however, the router uses a smarted Load
balancer that sends trafc to the service instance that has the most resources available . The
following actvity diagram shows the steps that each request must go through.

Figure 22: Router component actvity diagram

110

3.10.1. e olute Validacon

If the route is not recogniied then the request / connecton is discarded, otherwise it’s goes
through the defned Play flters, which are (in order):

Table 39: Router Filters

Order Filter Descripcon

1 Logging Filter
This is the frst flter because it logs all requests to the
platorm.

2 Guard Filter

The second flter is the rate limiter validaton. This flter
only saves the rate limitng state because the rate limitng
impositon may be subject to other rules that can only be
enforced later (see below).

3 Allowed eosts Filter
This flter allows specifc hosts to bypass the next two
flters.

4 CSFR Filter This flter protects against CSFR atacks.

5 Security eeaders Filter
This flter validates that predefned mandatory security
headers are Ok. Currently this flter is not actve in the
router.

3.10.2. e ate Limiter and e eqluest Validacon

Rate limitng allows the routers to control abuse from clients. The rate limitng can be
confgured diferently for each service, this makes it necessary to only enforce the rate
limitng when the requests reaches its route Acton71. Every request must go through the
following rules:

71 Acton is the Play Framework approach to the functon that is called that corresponds to
the route requested.

111

Figure 23: Rate Limiter actvity diagram

Confguraton of the rate limits are in a confguraton fle so that it can be changed at any
moment, or even deactvated if needed, the confguraton is done in two parts, essental
confguraton that is part of the framework PlayGuard and this Platorm specifc confguraton.
This confguraton includes the global limits, for all services, and the limits for just specifc
services, in this example the authoriiaton service, it also shows another king of limit, that is
based on the number of eTTP errors, also per IP. An example of such confguraton can be
seen in Annex .

To add the rate limitng to a specifc acton the easiest way is to concatenate the rate limitng
acton to the routes Acton, like in the following example:

def proxy(service: String, resource: String, id: Option[String]) =
 (Action
 andThen rateLimitServ.getKeyRateFilter(service)
 andThen rateLimitService.getHttpErrorRateFilter(service)).async {
implicit req =>
…
…
}

Code 10 Example confguraton of a load balancing router

112

Notce the “andThen” afer the Acton, what happens is that the request goes through all
actons, each of them with its validatons and rules, the “rateLimitServ.getKeyRateFilter”
applies the general rate limits per IP and the “rateLimitServ.getHtpErrorRateFilter” applies
the rate limits per IP and eTTP errors. “rateLimitServ” it the service implementaton that
integrates the PlayGuard library with this platorm implementaton and confguraton.

If the request isn’t blocked by rate limitng, it’s validated for its destnaton, for this a request
to the load balancer is sent that returns the instance address (see chapter), afer that the
operaton is validated, if it’s a SignIn operaton than it goes directly to its destnaton service, if
not, then an “is authentcated” message is sent to the authoriiaton service and only then, if
it’s authentcated successfully, is it sent to its destnaton service.

The authoriiaton steps can involve two scenarios, if it’s a SignIn and if it’s successfully then it
creates and returns a valid JWT to be used in future requests, if it’s an “is authentcated”
operaton than it validates the received JWT for its authentcity and, if valid, it validates the
users authoriiaton to the service requested and returns its result. In each case the eTTP of
the request is sent to the authoriiaton services for validaton.

3.10.3. Gatetay and e everse Proxy

The user requests can be redirected to two router components, if the request is for a website
then the request goes through the Reverse Proxy and if the request is to a backend service API
then it goes through the API Gateway. The reason for this is that to proxy requests to websites
the router must be transparent to the user, meaning that all data that compose the user
request must be forwarded to the backend website transparently and in the case of an API
request, the router does not need to worry about every detail of the users data, because it
might not be relevant for the services API. This setup also means that the API Gateway can be
more lightweight than the Reverse Proxy.

The following table shows some advantages and disadvantages with this approach.

113

Table 40: Pros and Cons of using an API Gateway and Reverse Proxy

Pros Cons

Single entry point

Load Balancing between services

Limited surface atack

More control over all API requests

Can force only secure connectons for all
services

Compromising the router can
compromise the system

Services are more insecure from the
inside

Changes to the router can afect the
entre platorm

3.10.3.1. API Gateway

All API requests to backend services go through the APIGatewayCtrl controller which in turn
uses the ProxyService to proxy requests. This development takes advantages of the Play
Framework provided libraries to work with all related Requests and Responses concerns. The
following tables shows the necessary steps to implement this process and the code can be
seen in Annex . The frst table details the process of the APIGatewayCtrl, which us just a set of
validatons and decisions and the second table shows the actual proxy process of the
ProxyService.

Table 41: API Gateway code descripton

Step Descripcon

Take the standard
validatons

All requests go through the standard Filters.

Get service virtual
server if exists

Because a backend service can only accept eTTPS requests, the
proxy needs to take advantage of the SSL Certfcate functon
called SNI (Server Name Identfcaton) which takes efect by
adding a virtual server Identfcaton that basically identfes the
certfcate recogniied domain name. If a backend service is on
eTTP then the virtual server is ignored.

Find out if service use
eTTPS

These steps identfes the connecton type. If the service uses
both eTTPS and eTTP than eTTPS is preferred.

Validate
Authoriiaton

Go through the authoriiaton process.

Ask router for backend
address

There can be several instances of the backend service, so it’s
necessary to ask the router actor to which address to send the
request, since the router actor can take advantage of the load

114

balancing.

Proxy requests to
backend Sends the request to the backend.

Process Response
from backend and
Reply to client

Processes the response. This validates if the response is
acceptable or an error before returning the same to the client. If
it is an error than it validates the error and returns an appropriate
response.

In the next table is the actual Request structure that needs to be sent to the backend service.
The code can be seen in Annex .

Table 42: API Gateway proxy code descripton

Step Descripcon

Construct the URL Constructs the URL based on the inital request.

Add requests headers

All headers from the inital request are sent to the backend
service, with the exceptons of Content-Type and Content-Length
because this need to be added through the eTTP Entty72 and
should not go directly into the headers.

Adds the virtual
server

For certfcate validaton

Adds the query string
If the inital requests had query strings this are also added,
unchanged, to the request.

Add the body to the
request

The body is also added to the request.

Adds the eTTP
method

The same eTTP method has the inital request is also added only
if the method doesn’t come as a parameter, in this case the
method is changed

Send the Request
The requests are sent to the backend service, at this point, since
all communicaton is done asynchronously, the method returns to
the API Gateway controller that called this Service.

3.10.3.2. Reverse Proxy

The Reserve proxy is a litle more complicated than the API gateway, because of two things,
frst it needs to address more parts of the Requests and second because it’s basically unknown

72 htps://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html

115

what the trafc will be the best approach is to stream the results, contrary to downloading all
content and only afer process the response. The Play frameworks library in conjuncton with
Akka streams helps in implement this streams approach.

Requests that are not part of the of the API Requests are redirected to the Reverse Proxy
controller. The following example shows some route defnitons in Play’s Framework routes
fle, the frst few routes (Auth Routes) are redirected to the API Gateway and the second ones
to the Reverse Proxy.

Auth Routes (API Gateway Routes)
GET /api/auth controllers.APIGatewayCtrl.proxy(service: String ?= "auth",
resource: String ?= "", id: Option[String] ?= None)
GET /api/auth/*resource controllers.APIGatewayCtrl.proxy(service: String ?=
"auth", resource, id: Option[String] ?= None)
POST /api/auth/*resource controllers.APIGatewayCtrl.proxy(service: String ?=
"auth", resource, id: Option[String] ?= None)
PUT /api/auth/*resource controllers.APIGatewayCtrl.proxy(service: String ?=
"auth", resource, id: Option[String] ?= None)
DELETE /api/auth/*resource controllers.APIGatewayCtrl.proxy(service: String ?=
"auth", resource, id: Option[String] ?= None)

Reverse Proxy Routes
Note: this routes should be the last
GET / controllers.ReverseProxyCtrl.proxy(service: String ?= "", resource:
String ?= "")
GET /*resource controllers.ReverseProxyCtrl.proxy(service: String ?= "",
resource)
POST /*resource controllers.ReverseProxyCtrl.proxy(service: String ?= "",
resource)

Code 11 Router routes example

The routes fle is interpreted by Scala’s patern matching, because of this is important that all
API routes be defned frst to guaranty that only the ones that are not a match with the API
routes are redirected to the Reverse Proxy, for example, a POST to api/auth/signIn would
match the 3rd route, a GET to some_other_resource would match the 7th route, and a call to
www.some-site.com / would it the 6th route.

The reverse proxy if a more complicated process than the API Gateway code, so it’s divided in
two functons, proxy from the ReverseProxyCtrl and relayRequest from the ProxyService. The
frst functon does basically the same thing has the APIGatewayCtrl, it determines where to
send the request and processes the response, and the second functon prepares and sends
the request itself. The code can be seen in Annex .

116

The next table describes the steps of the code in the second functon.

Table 43: Reverse Proxy code descripton

Step Descripcon

Construct the URL
and add to request

Constructs the URL based on the inital request

Adds original request
method

Same method has the original request always.

Add virtual host For certfcate validaton
Add request headers Same headers as original request
Add request query
string

Same query string as original request

Add cookies Add all cookies from original request
Add body Add body of original request

Stream the response

If the response contains the Content-Length it’s possible to
stream the complete response, if not, the request must be must
be downloaded using the chunked transfer encoding, which is
only supported for eTTP 1.1 clients, if the client is an eTTP 1.0
client, a 505 error is returned. Chunked encoding73 allows the
server to send a response where the content length is not known,
or for potentally infnite streams, while stll allowing the
connecton to be kept alive and reused for the next request. The
response headers and cookies must be returned to the client.

3.10.4. e oluter Dependencies

Besides the essental dependencies the router only needs one additonal dependencies:

• "com.digitaltangible" %% "play-guard" % "2.1.0"

This dependency, Play Guard, is the library used for the Rate Limitng concerns (abuse
control).

73
h tps://github.com/playframework/playframework/blob/master/framework/src/play/src/mai
n/scala/play/api/mvc/Results.scala

117

3.11. Aluthorizacon Services

Authentcaton and authoriiaton concerns are an independent component in this platorm.
This has the advantage of separatng these concerns from the rest of the services that can
then focused more on its business requirements and if anything needs to change in the
authoriiaton process, only these components need to be updated.

3.11.1. Aluthorizacon Dependencies

Following is a list of all authoriiaton specifc dependencies:

Table 44: Authoriiaton specifc dependencies

Dependency Descripcon

"org.reactvemongo" % "play2-
reactvemongo_2.12" % "0.12.6-play26"

Reactve (asynchronous) MongoDB driver.

"com.mohiva" %% "play-silhouete" %
silhoueteVer,

"com.mohiva" %% "play-silhouete-
password-bcrypt" % silhoueteVer,

"com.mohiva" %% "play-silhouete-crypto-
jca" % silhoueteVer,

"com.mohiva" %% "play-silhouete-
persistence" % silhoueteVer,

"com.mohiva" %% "play-silhouete-testkit"
% silhoueteVer % "test",

"com.iheart" %% "fcus" % "1.4.1"

Silhouete libraries, to deal with
authentcaton and authoriiaton, based on
cookies and JWT. The fcus library if a special
confguraton library used by silhouete.

"org.webjars" % "requirejs" % "2.3.1",

"com.adrianhurt" %% "play-bootstrap" %
"1.2-P26-B3"

Libraries for needed for the web UI.

Swagger 2.0 Swagger is not added to the service through
SBT, but rather as a public resource. This is
because there need to be made some
changes to its library, like changing the
company logo, etc. And this is only possible
by changing the source code directly, and if it
was added through SBT it would be
overwriten every tme the app was
compiled. Swagger is needed for the

118

documentaton platorm.

3.11.2. Access to API Doclumentacon

Because this is a commercial project, the API documentaton of the business services can’t just
be open to everyone, so, to protect access to this resource while stll maintaining the API
documentaton online, an online Portal was created so that only authoriied personal can
access. The online portal uses the Swagger framework to display the documentaton, basically
the documentaton is specifed in YAML fles, that the Swagger framework can interpret and
display a page with the documentaton in a friendly and useful format.

Following are example of this implementaton showing the authoriiaton API. Confdental
informaton has a black square over it.

Figlure 24: MHP doclumentacon portal - signIn

Credentals need to be provided before users can access the documentaton. Afer the user
logs in it is redirected to a page with the documentaton available to him, meaning that some
users might have access to some documentaton that others don’t, this is controller through
the authoriiaton process.

119

Figlure 25: MHP doclumentacon portal – Link to docs

Figlure 26: MHP doclumentacon portal – Aluthorizacon docs header

All API documentaton have an informaton header that has basic, but important informaton
about the API, like in the example above, message coding, case formatting, link to a page with
the available error codes, etc. Note that the informaton above is in Portuguese because, for
now, the platorm is only available for the Portuguese market.

120

Figlure 27: MHP doclumentacon portal – Aluthorizacon docs model

Afer the header informaton is a list of all supported messages and the necessary informaton
to be able to make a successful request. In the fgure above, it’s possible to see the signIn
message model with each felds descripton and constraints.

On the fgure below, it’s the same secton but instead of showing the model, it shows an
example for easy viewing only, it is not real data, has it described in the documentaton
header (see Figure 26).

121

Figlure 28: MeP documentaton portal Authoriiaton docs example

The documentaton pages also allow the user to test the API calls, by clicking in the “Try it out”
buton It’s possible to edit the example and using a curl command, that’s flled out
automatcally, and pressing the “execute” buton it’s possible to send the message to the API
Gateway (see next fgure).

Figlure 29: MeP documentaton portal Authoriiaton docs try out

An example of a documentaton fle can be seen in Annex 6.6.

122

3.12. Clluster and Main System Conigluracon

Several important features of the platorm can be confgured or extended with confguraton
fles, this chapter demonstrates the most relevant features to work in coherence with an Akka
cluster.

The following table show the main confguraton parameters that are essental to the platorm
and a complete confguraton fle can be seen in Annex .

Table 45: Plays Framework with Akka cluster main confguraton fle parameters

Parameter Example Vallue Descripcon

play.htp.secret asoifxxxxx9658745q038dyhgqcas

This key must be kept secret has
it is used by the framework for
security reasons, like for example
to encrypt cookies.

play.server.htp.p
ort

disable Disables eTTP port.

play.server.htps.
port

50001 Specifes the eTTPS port.

play.ws.ssl.trustM
anager.stores

[{path:
$java.home}/lib/security/cacerts,
password: "changeit"}]

Specifes the Java trust stores, this
is needed of the services connects
to other eTTPS services.

play.flters.hosts.a
llowed

[“.”]

Inside the cluster, access should
be restricted to only the
necessary services, their IP
addresses can be confgured in
this setting.

akka.actor.deploy
ment

(see annex 6.5)
In this secton it’s possible to
confgure load balancing routers
among others.

akka.cluster.seed-
nodes

["akka.tcp://msb@127.0.0.1:41001
","akka.tcp://msb@127.0.0.1:4101
1"]

From within the cluster, one or
more micro-service must be
confgured as a seed. Seed nodes
are responsible from sharing
cluster member informaton
between other nodes.

akka.remote.net ${app.address} Identfes the node’s IP address.

123

y.port.hostname

akka.remote.net
y.port.port

${app.akka.port}

Identfes the node’s IP port. Note
that when a service is replicated
in the cluster, this value and the
previous one must be diferent so
not to have a confict between
the cluster.

3.13. Mlulc-Task Schedluler

The MTS service is basically responsible for two purposes, executng jobs on-demand and
scheduled jobs.

Jobs must be able to:

1. Be schedluled: they should be able to run at a specifc tme;

2. Be coniglured: job confguraton should be done via confguraton fles, i.e., no
development should be needed;

3. Be logged: job actvity should be registered (start, stop, tmestamps, errors, etc...);

4. Be execluted on command: some jobs are only useful if they can be executed on
demand and not scheduled;

5. Be cancelled: for example, long running jobs;

6. Be prioriczed: high priority jobs should have priority over low priority ones, but the
implementaton should not allow the low priority ones for never running;

7. Be palusable: not a main feature, but it can be useful to pause a running job and
resume it at a later tme;

8. Validate dependencies: some jobs have dependencies, can be other jobs or specifc
resource, and should not be executed when these are not available;

9. Be seclurely atare: jobs should be able to validate authentcaton and authoriiaton;

Most requirements can be met with available resources provided by the available
frameworks, with the excepton of the Cron jobs. Akka has functonality which they call a
scheduler, but it has limitaton, the Akka scheduler is an easy and simple way to run code at
specifc intervals, for example, running code every 5 minutes, but it’s no possible to schedule,
for example, to run everyday at 5:00pm. To overcome this limitaton the library akka-quartz-
scheduler74 is used. It also uses Akka actors, but it allows for more fexible defniton of Cron

74 htps://github.com/enragedginger/akka-quarti-scheduler

124

Jobs. The Cron specifcaton follows the Quarti Cron Expression75 Language that match the
standard Unix cron syntax.

Jobs are defned in a confguraton fle like the following example:

akka {
 quartz {
 defaultTimezone = "UTC"

 schedules {
 Every30Seconds {
 description = "A cron job that fires off every 30 seconds"
 expression = "*/30 * 19,8-18 ? * *"
 timezone = "Europe/Lisbon"
 calendar = "CronOnlyBusinessHours"
 }
 }

 calendars {
 CronOnlyBusinessHours {
 type = Cron
 excludeExpression = "* * 0-1,22-23 ? * *"
 timezone = "Europe/Lisbon"
 }
 }
 }
}

Code 12 Confguraton of a Cron job

The above example shows just a simple example, in the schedules secton it’s possible to
defne any number of schedules and on the calendars secton it’s possible to defne diferent
king of calendars that the schedules use. The expression setting can take any value compatble
with Quarti Cron Expression. For more examples see footnote 74 and 75.

The executon of the schedules is also easy, it just needs an actor and the instantaton of that
actor through the akka-quartz-scheduler library, for example:

val scheduler = QuartzSchedulerExtension(as)
val myActor = actorSystem.actorOf(MyActor.props)
scheduler.schedule(name="Every30Seconds", receiver=myActor, msg=“some message”)

Code 13 Connect an actor to a schedule

75 htp://www.quarti-scheduler.org/api/2.1.7/org/quarti/CronExpression.html

125

3.13.1. MTS Dependencies

Following is a list of all MTS specifc dependencies:

Table 46: MTS specifc dependencies

Dependency Descripcon

"com.typesafe.play" %% "anorm" % "2.5.3, Anorm library, for running commands in the
database

"org.postgresql" % "postgresql" % "42.1.4" Postgresql driver

"com.enragedginger" %% "akka-quarti-
scheduler" % "1.6.1-akka-2.5.x"

Quarti-Scheduler library for defning Cron
jobs.

3.14. Blusiness Services

Business Services are any instance that implements the business requirements of the
platorm. It’s not in the purpose of this work to detail every aspect of the business
architecture, so this chapter address the more relevant characteristcs and technology
concerns of the Business Services.

3.14.1. Dicconary Data

Dictonary data is all data that can and is shared between the stakeholders, for example,
product names, product metadata, etc., to the point that makes sense to uniform the same
data between the stakeholders. To accomplish this, a database to contain dictonary data was
created, which is a combinaton of informaton provided by Infarmed and custom added
informaton which is produced by keeping a close contact with the correct enttes which can
provide relevant data and keeping it daily updated. Updatng the database on a daily basis is
very important because this kind of data changes every day, and some data, like price
medicaton is crucial to some stakeholders, like the pharmacies.

The update of this data is the responsibility of the MTS component, and is a combinatons of
web-crawling to gather data and SQL scripts to update the database. There is also some
manual updates in some case, mainly fxing erogenous data and adding or changing data that
can only be obtained by interpretng legislaton or protocols.

3.14.2. Medicacon Slubsidies

When a patent has a prescripton from its doctor, part, or all, of the cost of the medicaton
can be subsided by the state or a private entty. The way this is calculated, is in real tme in the
pharmacy, meaning it’s the pharmacies responsibility to know how this works, of course, it

126

would be very difcult and impractcal to have the pharmacists calculate this by hand, so it’s
the pharmacy business sofware that provides this functonality. The problem here, is that
informaton must be always up to date and the rules to calculate the fees can be diferent for
each medicaton. Each entty has its own rules, that can change at any tme, these changes,
sometmes, imply not only updates to the data, but also to the sofware, and, because some
changes are only notfed afer they were published, it’s very difcult to keep up to date. This
creates a very complex system to manage and requires specialiied people that can interpret
the rules and regulaton that dictate the subsidised values.

This platorm helps with this process in two ways, by keeping update to date informaton on
these rules and regulaton, and for providing the calculatons for the subsidised values, for
this, a data structured specifcally designed for this purpose is necessary and the
mathematcal operatons or formulas must be implemented in code, the variables of these
operatons are infuenced by the data. The following diagram shows the main data structure
implementaton for this, additonal felds are removed from the diagram for clarity.

Figure 30: MeP medicaton subsidies relatonal diagram

• emb: This is the medicaton table, each medicaton has a unique id, some have a fxed
price, meaning it always has to be sold at that price and a reference price, which is
used in some subsidies calculaton, and a reference to the cpt_grp table (see below);

• cpt_org: This table has all the enttes that subsidise the medicaton;

• cpt_pla: This table represents the plan of the subsidies, it’s what points to the rules
and regulaton, one entty can have diferent plans;

127

• cpt_grp: This table allows each medicaton to belong to a group, this makes it possible
for the same medicaton to be subsided by diferent plans and rules;

• cpt_val: This table has the values that can be subsided, the type of value and the
noton of a diploma, which is part of a legislaton. For example, if an organiiaton has a
plan that subsides 20 of a medicaton, that 20, can be a percentage over the pvp, a
percentage over the pref, the exact value that is subsided or the exact value that the
client pays. This can all be changed if a diploma comes into the equaton, meaning
that a diploma can change the values of the same plan, this is typically the case, but
not exclusively, of severe diseases, like Aliheimer's, Cancer, etc., which, if the patent
has that disease, he can pay less for the medicaton or even have the medicaton for
free. This table also connects with cpt_grp so that it can have diferent values for
diferent groups of products.

• cpt_dplms: This table as the list of all diplomas;

• cpt_emb: This table is for special cases where it’s impossible to have rules, in some
cases they don’t exist, and the only way to know how to subside a medicaton is to
have it’ value directly defned. In this case the medicaton does not relate to the plans
by belonging to a group but rather directly to the plan.

This structure holds the data necessary to calculate the subsided values and it’s the startng
point to understand how the system works, but it stll depends on the formulas that are
implemented in code, which by itself is a very big subject and is not included in this work.

The biggest problem with this system is that many changes must be done manually, because
they are delivered in the form of legislaton and not in a compatble digital format that could
be interpreted by an algorithm, also, it’s impossible to predict the changes because each
entty can have its own rules.

3.14.3. Backpresslure Strategy

Backpressure strategies are applied where streaming occurs, in this platorm case this is
where WebSockets are implement, so, at the moment, backpressure strategy is on only
available for web-socket connecton. WebSockets are implement using the Akka framework
which provides the following strategies:

Table 47: Platorm Essental Dependencies

Strategy Descripcon

Backpressured When new connectons arrive it backpressures the upstream publisher
untl space becomes available. This means that the client connecton
might see the server connecton as slower or not responsive. Play’s
Framework also tries to indicate to the client that the connecton is
alive but busy (see chapter 3.1.6). This type of strategy might seem the

128

obvious choice, but it makes it more difcult to predict every client
behaviour.

Drop Bufer When new elements arrive, it drops the entre bufer to give space for
new elements.

Drop eead Drops the oldest element in the bufer to give space to the new
elements.

Drop Tail Drops the newest element in the bufer to give space for the arriving
element.

Drop New If the bufer is full then the new element is dropped.

Fail If the bufer is full it completes the stream with a failure.

This platorm uses the Drop New strategy, in favor of the Backpressured strategy, because it’s
an easier to control and predict client behavior, i.e., if there is no space for new requests than
this requests are simply dropped. In the future it might prove more efciently to turn to the
Backpressured strategy, but this will need signifcantly more testng.

3.14.3. Support for Legacy Architectures

In some cases, there is a need to integrate old sofware, like for example sofware that just
runs on Windows but at the same tme the same sofware is running on servers which clients
can access through remote access technologies like, terminal services, remote desktop, etc...

In this cases communicatng with local devices can be tricky, it possible to transfer data
through a remote desktop connecton but it’s nothing stable, it has diferent behaviors in
diferent version of the operatng system, and is very limited, some knows hacks include
passing keystrokes and catching mouse movement. So, to keep local devices connected to
remote, cloud based installatons this platorm implements the following architecture:

129

Figlure 31: MHP legacy architectlure sollucon

The previous diagram represents the following workfow:

1. Component 3 starts and connects to component 4. At this tme it registers with a
specifc id that can map the component with the client locaton;

1.1.Component 4 needs to save state of connected clients;

1.2.Component 3 needs to provide two important features:

1.2.1. Be always connected, for the server to be able to push notfcaton, for this
it uses WebSockets connecton;

1.2.2. Reconnect if connecton is lost.

2. Component 5 needs to communicate with component 1, so it sends a message to
component 4 which knows where component 1 is located because of the connecton
between component 3 and 4;

3. Component 4 relays the message to component 3 with component 2 ID;

4. Component 3, knows how to reach component 2, and relays the message to it;

5. Component 2 fnally sends the message to component 1;

6. Component 2 receives a response from component 1 and sends the message back
untl it reaches component 5.

130

Some practcal examples for this scenario:

1. Getting readings of card devices;

2. Communicatng with a TPA76;

3. Communicatng with a robot.

Because communicatng between A and B involves 5 components, it’s important to have
control over the logs so that troubleshootng is possible without having to access each
component one at the tme. This is accomplished by reportng the errors through email and
also by tagging an applicaton identfcaton in the status messages that identfy where it
originated, this tag is encrypted so that the applicaton identfcaton becomes private, like in
the following example:

{
 "status": {
 "i": 200,
 "s": "Ok",
 "v": "1.0.0",
 "ai":
"fe27e42dabbe531002ae1e75e6b5eabc5f482e7cc3e122a7ef717ccb20929fd6a64edbf00a2ae505
22578b49"
 }
}

Code 14 Status message example

76 Terminal de Pagamento Automátco (Credit Card POS Terminal)

131

3.15. Deployment

The platorms architecture allows for easy horiiontal growth, which in turn also facilitates the
deployment requirements. The following diagram shows the deployment of this platorm
components into the datacenter provider.

Figlure 32: MHP Deployment diagram

Following are the most important characteristcs of the previous diagram:

• All components are sent to Digital Oceans datacenter;

• All virtual machines have Ubunto 16.04 OS;

• The deployment of the router and apps is basically the same, every instance is
deployed to a diferent virtual machine;

132

• The same applies to the databases, which have diferent deployment procedures but,
basically, follow the same rules, which is one per virtual machine;

• The artefact libsodium is the only external artefact that needs to be installed in all
virtual machines that have an instance of an app.

The next diagram shows a more detailed networking view.

Figlure 33: MHP nettork diagram

From the previous diagram is important to note the following:

• Every virtual machine has an independent frewall, this is not installed in the OS, it’s a
separate component provided by DigitalOcean;

• Every service/app is deployed at least 2 tmes, some more, depending on the resource
requirements;

• Backups are saved in Amaion AWS;

• Outside load balancing is provided by DigitalOcean while inside load balancing if
provided by the router components;

• The public and private addresses have been removed for security reasons.

133

3.16. Performance Tescng

For performance testng purposes a eTTP load testng tool called Vegeta77 was used, this tool
was chosen among others78 because it allowed testng the framework in a useful and easy
way, by having a big range of features and reportng capabilites embedded into the tool.

The process can be resumed to the following:

1. Create a fle with the message body (ex: body.json)

2. Create a fle with the endpoints called (ex: targets.txt)

3. Execute the Vegeta tool:

Table 48: Vegeta command line arguments

Arglument Example Descripcon

-cpus 2 nº of CPUs

atack - Specifes the type of test (atack / report). Se
example below.

-rate 10 requests per second

-duraton 30s

-targets targets.txt Specifes the endpoint to test

-body body.json Specifes the body of the request. If there are
several diferent requests than the body can
be separated in the same fle by two carriage
returns.

-header “Content-Type:
applicaton/json”

Specifes the Content-Type

77 htps://github.com/tsenart/vegeta
78 For example, the tool Apache Benchmark (ab) doesn’t allow testng with certfcates that it
doesn't recogniie, which is a big limitaton in a testng tool.

134

These commands can be concatenated with the reportng features to run the tests and
produce the results, like in the following example:

vegeta.exe -cpus 2 attack -rate=50 -duration=30s -targets=targets.txt
-body=signin.json -header="Content-Type: application/json" | vegeta report
-reporter=plot -output=report.html

Code 15 Vegeta command line example with atack and reportng

The above command produces the following result:

Figlure 34: Performance tescng tith rate limicng

From this graph is possible to reach the following conclusions:

1. By doing 50 requests per second to the singIn resource, the rate limitng in the API
Gateway starts denying trafc at around 2 seconds;

2. The response comes back a lot faster since the request is not being processed;

3. The litle green dots, means that a request, occasionally, gets through, this is because
the rate limitng is gradual, and in this case new tokens are available one every 2
seconds (see chapter).

135

Now, it the same request is made without the rate-limitng the following graph is produced:

Figlure 35: Performance tescng titholut rate limicng

From the graph above the conclusions are:

1. Because there was no rate limitng the all requests were successfully;

2. The tme it took for each request increased signifcantly because the platorm could
not keep up with so many requests at a tme, and so, at least one request took 30
seconds to complete, which is not acceptable;

3. This shows not only the limitaton of the platorm, in terms of requests per second per
kind of request, but also, that without the rate limitng, one client can decrease
another client percepton value of the platorm.

In conclusion, despite the 429 eTTP error codes that the frst scenario produced, it is the best
scenario and the preferred approach.

136

4. Concllusions

Most choices of architecture and technologies where infuenced by a mix of personal
experience, documentaton, proven use-cases and testng, which gives a certain level of
assurance in that choices, however for the future evoluton of this platorm there must exist
more metrics and benchmarks of diferent solutons to assure even more that changes to the
platorm are the right ones.

4.1. Accomplished Objeccves

This work considers that the main objectves have been fulflled, leaving just a few needed
improvements for future work. Below is the appreciaton of this work objectves.

a) The proposed security concerns have been addressed, there are stll improvements to
be made, but overall, security is assured by the only allowing encrypted
communicatons, protectng resources with authentcaton and authoriiaton
mechanisms and allowing for the encrypton of sensitve data;

Clients only pay for what they really use and there are no entry fes, so small
companies can stll use the service without impactng too much on their fnancial
budget;

b) Protocol support is basically accomplished, not all proposed services were
implemented, only one of the pharmacy robots was implemented, mainly because,
business priorites changed during development, TPA support was added despite not
being in the inital objectves and all infrastructure requirements where implemented,
also, missing business requirements will inherit from the existng implementatons
and architecture, so the work is already laid out;

c) All the business services implemented act has a proxy for other services, so data
transformaton was added to each one;

137

d) End-to-End Encrypton is ofered in a form of technical specifcaton, the enttes using
the platorm stll need to implement it on their side. This process must be improved
signifcantly;

e) The dictonary database provides the unifcaton of business data, but it needs
contnuous atenton to keep the data up to date.

f) Abuse protecton keeps system resources available for all clients, maintaining equal
service quality for all;

g) At the moment all data is saved and not deleted, keeping a permanent history.
Depending on future resource consumpton and fnancial stability this requirement
should be reviewed;

h) The platorm components can scale horiiontally without the need for additonal
development, and although the persistence layer can also be scaled horiiontally it’s
not so easy has scaling the services, it requires changes in the service layer in the way
as communicaton is established, this needs to be improved in the future has the
platorm grows;

i) The simplicity of the platorm can be subjectve, but based on the requirements and
fnal soluton, this work concludes that this objectve has been accomplished, the
platorm can be maintained by a small number of people without deep technical
knowledge of the architecture and technology, changing requirements or adding new
services though, needs to be done by a developer with technical knowledge of both.
Stll, for this kind of soluton, the platorm has very few dependencies and a simple
architecture making it easier for bringing new people into the project.

4.2. Limitacons and Flutlure Work

Following is a general view of the most prominent improvements that can or should be made
to this work.

4.2.1. HL7 Slupport

The inclusion of these standards would also add complexity to the platorm and this, added to
the fact that very few services currently needed it, is why it was not considered essental to
complete the platorm. It could, however, be proven useful for integraton with some
organiiatons in the future, so it’s important to consider.

4.2.2. HTTP/2

Like already said in chapter 2.3.2.1 it’s very important, mainly because of performance issues,
to keep an eye on the adopton of eTTP/2 because this can increase signifcantly the
performance of the overall system, since eTTP and RESTful communicatons are core

138

functonalites of this platorm. Play Framework already supports eTTP/2 but it’s not yet ready
for a producton environment.

There can be two approaches when adoptng eTTP/2, one is to migrate the existng services
from eTTP/1.1 to eTTP/2 and the other is to support both protocols for a transitonal period
of tme, from a safe bet perspectve the second approach is the beter one, but this is subject
to additonal testng has the adoptons of eTTP/2 evolves in general and in the Play
Framework and Akka eTTP implementaton.

4.2.3. Apache Camel

Apache Camel79 is an open-source framework for integratng known Enterprise Integraton
Paterns80, based on the book Enterprise Integraton Paterns: Design, Building and Deploying
Messaging Soluton by Gregor eohpe and Bobby Woolf. Its engine is a rule-based routng and
mediaton and it’s message oriented, connectng diferent sources to diferent destnaton
while also transforming message formats. It focuses on making integraton easier and
provides DSLs to facilitate it’s use (Camel, 2017).

As an advantage, this could greatly improve the fexibility of the platorm, since there is no
way to know in advance all the services and message formats that it would need to support. It
supports, by default, Java and Scala which is convenient for this platorm.

As a disadvantage, for someone that never worked with Camel thou, it requires a steep
learning curve untl a satsfactory producton ready soluton is developed and it also adds
complexity to the platorm, also Akka already provides some of the features that Camel
provides, like routng and mediaton paterns, so at least for the start of the platorm, it makes
more sense to take advantage of the Akka framework that is already a core component of the
platorm then to add an additonal external one.

4.2.4. JSON Coast-to-Coast Design

This work is mainly developed with Scala with functonal programming in its core, but there
also a lot of object oriented programming, for example the models are designed from an
object oriented perspectve, so a typical request that sends data to the database can pass
through the following steps:

1. Get the request from the client and extracts the JSON message;

2. Converts the JSON to the objects model;

3. Do some work on the model objects;

4. Transform the objects model to the SQL insert/update scripts;

79 htp://camel.apache.org/
80 htp://www.enterpriseintegratonpaterns.com/paterns/messaging/toc.html

139

5. Send to database.

From these steps, it possible to see that the conventon from JSON to OO could be avoided in
most cases, by using databases with document structured data, like MongoDB. The JSON
messages could be sent directly to the database without frst transforming them to model
objects, so the steps would translate into (Lightbend, 2017):

1. Get the request from the client and extract the JSON message;

2. Transform JSON if needed;

3. Send JSON to Database.

This way, the fow can be treated in a fully asynchronous and non-blocking way and the
overhead of maintaining the model classes and transforming JSON into object and vice-versa
is eliminated (Lightbend, 2017).

Although this presents a clear advantage over the traditonal model, it also means that a
diferent design approach must be considered from the beginning, and since part of the
platorm consisted in integratng existng models, this approach was not a priority, but future
work should consider this approach for new services or even for the refactoring of existng
ones.

4.2.5. Seclurity Concerns

Security of the platorm should be a contnuous efort, has new services are supported and
new features are added, also the security checks and mechanisms should evolve. At its
current state, well known security threats were address and mechanisms where put in place
to secure the platorm, but this is not enough and more testng needs to be done to give the
shareholders more assurances that their data is protected.

Future work here can involve the use of external tools that help in detectng security
vulnerabilites and/or acquire the help of an external entty specialiied in such maters.

End-to-End-Encrypton needs to be improved signifcantly, its implementaton needs to be
more seamless for service consumers. This work is already in progress and the soluton is
based in the Dife-eellman Key Exchange, which is a mathematcal algorithm that allows two
endpoints to generate an identcal shared secret and uses private/public key crypto to achieve
this (Palmgren, 2006).

Regulaton demanded by CNPD (see chapter 2.6), although not mandatory at this tme, also
requires signifcant change, so it’s very important to start addressing its requirements

4.2.6. Abluse Proteccon

In the current state of this work the platorm already provides some basic, but none the less
essental, abuse protecton, but there are yet several improvements to be made here:

140

 User based request rate limiter: The currently rate limiter implementaton only
distnct sources based on its IP address. User based request limiter will give more
fexibility and, by consequence, beter protecton against abuse;

 Concurrent requests limiter;

 Worker utliiaton load shedder: A load shedder difers slightly from a rate limiter in
that it makes its decisions based on the whole system rather than just on a
component or access source, it’s useful in a situaton of emergency where critcal/core
systems must be kept operatonal while the rest of the system might be offline;

 Evolve to a distributed memory based storage, like Redis.

4.2.7. Akka Persistence

As the system grows, scaling the data side of the platorm becomes even more important,
Akka Persistence81 ofers a resilient, scalable actors based approach framework to implement
persistence solutons. Akka Persistence already has methods in place to help with Event-
Source with CQRS implementaton.

4.2.8. Akka Typed

Akka Typed82 can be viewed has the successor for regular Akka actors, and it basically means
the development of statc typed Akka actors. It makes sense to evolve the developing model
of the Akka actors to Akka typed, although currently, Akka typed in stll in its early stages and
Lightbend advises that it might be subject to change, for this reason it’s not the perfect tme
to adopt such technology, but it’s something to keep in mind for the future.

4.2.9. Tlurn e oluter Into a Play Frametork Modlule Or Library

There are a lot of popular modules that extend Play’s Framework functonality that exist
today, but currently there exists none that can transform Play into a Reverse Proxy and API
Gateway. Of course, there exists other solutons, and probably beter ones, for bigger designs,
like using NGINX as the Reverse Proxy, but this is always a more complex soluton and
probably more tme consuming because of the learning curve necessary to implement and
manage NGINX. eaving a Reverse Proxy and API Gateways as a Play module will allow to
rapidly implement this functonality in system that already uses the Play Framework. This
would also be an opportunity to contribute back to the community and hopefully have its
contribute in return.

This would involve some changes into the actual component, to make it more general
purpose, and tme, to dedicate to the project has it will certainly be needed to help anyone
who wants to use the module and to evolve the project, fx bugs, etc.

81 htps://doc.akka.io/docs/akka/current/scala/persistence.html
82 htps://doc.akka.io/docs/akka/current/scala/typed-actors.html

141

4.2.10. Performance Tescng

Future performance testng can be automated by integratng the Vegeta library into the
platorm, this will allow to incorporate the performance tests and reportng into the pipeline.

4.3. Final Tholughts

Although there exists platorms that could fulfll the needs of this work, developing the MeP
was the best ft. Financially its development was very afordable, because all technology used
is free for commercial use and it was all implemented by a single developer, maintaining it is
easy because of its simplicity and high-availability and all this wouldn’t be true, if not for a
couple of key frameworks, mainly the Play Framework and the Akka Framework, which
provided an abstracton layer between the developer and the more complex concerns and, at
the same tme, were very easy to confgure and set up and, worked has expected.

142

5. e eferences

(Alexander, 2003) Stakeholders - Who Is Your System For, March 2003, Ian Alexander,
htp://www.scenarioplus.org.uk/papers/stakeholders/stakeholders.html.

(Allee, 2012)
Value Network Analysis,” 2012, Allee, Verna,
htp://www.uio.no/studier/emner/matnat/if/INF5120/v12/undervisnings
materiale/ValueNetworks2012023.pdf.

(Amaion, 2017) AWS | Amaion ElastCache in-Memory Data Store and Cache, 2017,
Amaion AWS, htps://aws.amaion.com/elastcache/.

(Belshe et al., 2015)
RFC 7540 - eypertext Transfer Protocol Version 2 (eTTP/2), May 2015,
Belshe, M., BitGo, R. Peon, Google, Ed. M. Thomson, and Moiilla,
htps://tools.iet.org/html/rfc7540.

(Bonér et al., 2014)
The Reactve Manifesto V2.0, September 16, 2014, Jonas Bonér, Dave
Farley, Roland Kuhn, and Martn Thompson, Accessed February 2017,
htp://www.reactvemanifesto.org.

(Bonér, 2017)
Reactve Microsystems - The Evoluton of Microservices a Scale, 2017, Jonas
Bonér.

(Brikman, 2013)

Play Framework: Async I/O without the Thread Pool and Callback eell,
March 27, 2013, Yevgeniy Brikman,
htps://engineering.linkedin.com/play/play-framework-async-io-without-
thread-pool-and-callback-hell.

(Churchville, 2017)

The Reality of Microservices Adopton and the Limits of Your Monolith, July
2017, Fred Churchville,
htp://searchmicroservices.techtarget.com/feature/The-reality-of-
microservices-adopton-and-the-limits-of-your-monolithk
utm_medium=EM&asrc=EM_NLN_80572968&utm_campaign=20170728_T
he%20reality%20of%20microservices
%20adopton&utm_source=NLN&track=NL-1806&ad=915729&src=915729.

(Coleman, 2016) Containers are not VMs, 2016, Mike Coleman, Accessed July 23, 2017,
htps://blog.docker.com/2016/03/containers-are-not-vms/.

(CNPD, 2017) 10 Medidas Para Preparar RGPD CNPD, January 28, 2017, Comissão
Nacional de protecção de Dados,
htps://www.cnpd.pt/bin/rgpd/10_Medidas_para_preparar_RGPD_CNPD.

143

pdf.

(Flannelly et al.,
2014)

Fundamentals of Measurement in eealth Care Research.: Sistema de
Descoberta Para FCCN, 2014, FLANNELLY, LAURA T., KEVIN J. FLANNELLY,
and KATeERINE R. B. JANKOWSKI.

(Fowler, 2005) Event Sourcing,” 2005, Martn Fowler,
htps://martnfowler.com/eaaDev/EventSourcing.html.

(Fowler, 2011)
CQRS, July 14, 2011, Martn Fowler,
htps://martnfowler.com/bliki/CQRS.html.

(Fowler, 2014) BoundedContext,” 2014, Martn Fowler,
htps://martnfowler.com/bliki/BoundedContext.html.

(Gartner, 2017) Applicaton Platorms Reviews, 2017, Gartner,
htps://www.gartner.com/reviews/market/applicaton-platorms-reviews/

(Gudgin et al., 2005)
XML-Binary Optmiied Packaging, January 25, 2005, Gudgin, Martn, Noah
Noah, Mark Nottingham, and eervé Ruellan,
htps://www.w3.org/TR/2005/REC-xop10-20050125/#introducton.

(Gupta, 2014)
REST vs WebSocket Comparison and Benchmarks, February 24, 2014, Arun
Gupta, htp://blog.arungupta.me/rest-vs-websocket-comparison-
benchmarks/.

(ealter and
Shepherd, 2012)

Actor-Based Concurrency: Implementaton and Comparatve Analysis With
Shared Data and Locks, 2012, ealter, Alex, and Randy Shepherd,
htp://cs.nyu.edu/tlerner/spring12/Preso01-Actors.pdf.

(eameri and Niter,
2000)

Engineering data management through diferent
breakdown structures in a large-scale project, July 7, 2000, eameri, A.P.,
and P. Niter.

(eayes et al., 2011) Improving eTTP Performance Using ‘Stateless’ TCP, June 3, 2011, David A
eayes, Michael Welil, Grenville Armitage, and Mattia Rossi.

(e. Behringer, 2009)

End-to-End Security - The Internet Protocol Journal, Volume 12, No.3
Cisco, September 2009, e. Behringer, Michael.
htp://www.cisco.com/c/en/us/about/press/internet-protocol-
journal/back-issues/table-contents-45/123-security.html.

(eL7, 2017) eealth Level Seven Internatonal - eomepage, 2017, eL7,
htps://www.hl7.org/.

(IBM, 2017a)

IBM Passport Advantage Express, 2017, IBM. htps://www-
112.ibm.com/sofware/howtobuy/buyingtools/paexpress/Expressk
P0=E1&part_number=D58AKLL,D58AELL,D06UVLL,D04Q1LL,D04Q3LL,D0B
A1LL,D0B3eLL,D0B5eLL,D0B2XLL,D0GALLL,D0GB0LL&catalogLocale=en_US
&locale=en_US&country=USA&PT=html.

(IBM, 2017b)

IBM Passport Advantage Express. Accessed February 23, 2017, IBM,
htps://www-
112.ibm.com/sofware/howtobuy/buyingtools/paexpress/Expressk
P0=E1&part_number=D56P3LL,D56MWLL,D03S0LL,D03S4LL,D03S2LL,D06U
PLL,D0BLZLL,D0Ge4LL,D0Ge1LL,D0WE0LL,D0WG2LL,D0WG4LL,D0WG6LL&
catalogLocale=en_US&locale=en_US&country=USA&PT=html.

(IBM, 2017c)
IBM Knowledge Center - Service Component Architecture (SCA), 2017, IBM,
htps://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.i
bm.cics.ts.applicatonprogramming.doc/bundleinterface/sca.html.

144

(IBM, 2017d) Integraton Bus on Cloud - IBM Integraton, 2017, IBM,
htps://developer.ibm.com/integraton/docs/integraton-bus-on-cloud/.

(Jackson, 2016)

Create and Execute Business Rules in IBM Integraton Bus, November 22,
2016, Callum Jackson,
htps://www.ibm.com/developerworks/bpm/bpmjournal/1308_jackson/1
308_jackson.html.

(Jakupovic et al.,
2010)

Applicaton of Analytc eierarchy Process (AeP) to Measure the Complexity
of the Business Sector and Business Sofware, May 19, 2010, Jakupovic,
Alen, Mile Pavlic, and Sanja Candrlic.

(Kang et al., 2016)
The Design and Analysis of a Secure Personal eealthcare System Based on
Certfcates, November 14, 2016, Kang, Jungho, eague Chung, Jeongkyu
Lee, and Jong eyuk Park.

(Li et al., 2012) A Comparatve Study between Sof System Bus and Enterprise Service Bus,
2012, LI, Gang, Xiao Jian, Chun Li, Sen Li, and Jingde Cheng.

(Lightbend, 2017a)
Lightbend Telemetry v. 2.5.0, 2017, Lightbend,
htp://developer.lightbend.com/docs/cinnamon/latest/home.html.

(Lightbend, 2017b) Lightbend Tech eub / Documentaton, 2017, Lightbend,
htp://developer.lightbend.com/docs/.

(Lightbend, 2017c) Supervision and Monitoring - Akka Documentaton, 2017, Lightbend,
htp://doc.akka.io/docs/akka/snapshot/scala/general/supervision.html.

(Lightbend, 2017d)
ScalaJsonTransformers - 2.6.X, 2017, Lightbend,
htps://www.playframework.com/documentaton/2.6.x/ScalaJsonTransfor
mers.

(Lightbend, 2017e)
Cross-Site Request Forgery (CSRF) - OWASP, 2017, Lightbend,
htps://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF
%29.

(Lukác et al., 2016)
A Process-Oriented Service Infrastructure for Networked Enterprises,
November 20, 2016, Lukác, Gabriel, Tomáš Sabol, Martn Tomášek, and
Karol Furdík.

(Lupo, 2015)
A Fuiiy Framework to Evaluate Service Quality in the eealthcare Industry:
An Empirical Case of Public eospital Service Evaluaton in Sicily” December
18, 2015, Toni Lupo.

(Man et al., 2012)
Research on Bulk Data Transfer on OSS Enterprise Service Bus, June 19,
2012, MAN Yi, Wen ZeANG, Chen-hui DU, and Yang-fa PAN.

(Mincer-Dasikiewici,
2015)

Responsive, Resilient, Elastc and Message Driven System Solving Calability
Problems of Course Registratons, Accessed February 23, 2017, Mincer-
Dasikiewici, Janina,
htp://dspacecris.eurocris.org/bitstream/11366/464/1/EUNIS2015_submis
sion_29.pdf.

(Ming-ihe, 2013)
Design on Enterprise Service Bus Message Conversion Protocol Based on
XSLT, August 20, 2013, Ming-ihe, YU

(Mulesof, 2017) Download Mule ESB Enterprise | MuleSof, 2017, MuleSof,
htps://www.mulesof.com/platorm/soa/mule-esb-enterprise.

(OWASP, 2017)
Cross-Site Request Forgery (CSRF) - OWASP,” June 20, 2017, OWASP,
htps://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF
%29.

145

(Palmgren, 2006) Dife-eellman Key Exchange - A Non-Mathematcian’s Explanaton,
October 2006, Keith Palmgren.

(Raghavan et al.,
2007)

Timeseries.Eps - P337-Raghavan, August 2007, Barath Raghavan, Kashi
Vishwanath, Sriram Ramabhadran, Kenneth Yocum, and Alex C. Snoeren,
htp://delivery.acm.org/10.1145/1290000/1282419/p337-raghavan.pdfk
ip=193.136.62.5&id=1282419&acc=PUBLIC&key=2E5699D25B4FE09E
%2E6A9D8E1D9CC021F6%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35
&CFID=810325093&CFTOKEN=42832574&__acm__=1505664732_453b86b
4e760d943a3466b1a2fc066a7#URLTOKEN#.

(Rao, 2011)

Denial of Service Atacks and Mitgaton Techniques: Real Time
Implementaton with Detailed Analysis, 2011, Subramani Rao,
htps://www.sans.org/readingroom/whitepapers/detecton/denial-service-
atacks-mitgaton-techniques-real-tme-implementaton-detailed-analysi-
33764.

(Redeat, 2014)
Fuse Service Works Compared Mule Esb, April 2014, Redeat,
htps://www.redhat.com/en/fles/resources/en-rhjb-fuse-service-works-
compared-mule-esb-11851667.pdf.

(Redeat, 2015)
Fuse Compared with Ibm Websphere Enterprise Service Bus,” 2015,
Redeat, htps://www.redhat.com/en/fles/resources/en-rhjb-fuse-
compared-with-ibm-websphere-enterprise-service-bus-10570127.pdf.

(Rivetti, 2016)

Load-Aware Shedding in Stream Processing Systems,” 2016, Nicoló Rivetti,
Yann Busnel, and Leonardo Querioni,
htp://delivery.acm.org/10.1145/2940000/2933311/p61-rivetti.pdfk
ip=193.136.62.5&id=2933311&acc=ACTIVE
%20SERVICE&key=2E5699D25B4FE09E
%2E6A9D8E1D9CC021F6%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35
&CFID=985788164&CFTOKEN=70330353&__acm__=1505662111_ab28c99
2f1aaa0a964393d70403d29f1.

(Shahriar et al., 2010) Client-Side Detecton of Cross-Site Request Forgery Atacks, 2010, eossain
Shahriar and Mohammad Zulkernine.

(Simec, 2014) Comparison of JSON and XML Data Formats,” September 19, 2014, Alen
Simec and Magdalena Maglicic.

(Staford and
McKeniie, 2014)

Moving Away from ESBs to Microservices, 2014, Staford, Jan, and
Cameron McKeniie,
htp://searchmicroservices.techtarget.com/video/Moving-away-from-
ESBs-to-microservices.

(Sudhodanan, 2017)
Large-Scale Analysis & Detecton of Authentcaton Cross-Site Request
Forgeries, 2017, Avinash Sudhodanan, Roberto Carbone, Luca Compagna,
Nicolas Dolgin, Alessandro Armando, and Umberto Morelli.

(WSO2, 2017a)
WSO2 Enterprise Integrator Documentaton - Enterprise Integrator 6.1.1 -
WSO2 Documentaton, 2017, WSO2, htps://docs.wso2.com/display/EI611.

(WSO2, 2017b) Integraton - Cloud, 2017, WSO2,
htp://wso2.com/integraton/cloud/#pricing.

(WSO2, 2017c) Price List, August 1, 2017, WSO2.

(Zhu et al., 2015)

Microarchitectural Implicatons of Event-Driven Server-Side Web
Applicatons, 2015, Zhu, Yuhao, Daniel Richins, ealpern Mathew, and Vijay
Janapa Reddi, htp://ieeexplore.ieee.org/stamp/stamp.jspk
tp=&arnumber=7856643 .

146

147

6. Annexes

6.1. Perceived Vallue Ordinal Scale

The following ordinal scales were sent to the stakeholders in order to calculate the perceived
value of this platorm inital state. Only the external stakeholders were included In this study,
has the internal ones are biassed.

148

149

Figure 36: Ordinal scales sent to the stakeholders

According to the category diferent stakeholder were chosen, the only not all of them
responded, so the results shown here correspond to only the ones that responded. The
identty of the stakeholders are protected for privacy reasons, since this project is of a
commercial nature. The number of responses/scales corresponds to the total of scales that
had a response. The medium value p/category represents the median of each category, which
gives a closer appreciaton of each category. The median value is calculated based on the sum
of the value of the responses divided by the number of responses.

Table 49: Stakeholders response to the percepton study

Stakeholder Scales Nº of
e esponses/Scales

Median Vallue p/Category Median
Vallue

Investors 1, 6-8, 9-11 14 1:4, 6-8:4, 9-11:5 4.3

Laboratories 5, 6-8, 9-11,
12-13

26 5:5, 6-8:4, 9-11:4, 12-13:3 4

Medicacon
Sluppliers

1, 5, 6-8, 9-
11, 12-13

30 1:2, 5:4, 6-8:4, 9-11:3,
12-13:2

3

Dicconary
Sluppliers

9-11 3 9-11:4 4

Financial
Insctlucons

1, 6-8, 9-11 14 1:3, 6-8:5, 9-11:4 4

Pacents 5, 12-13 48 5:4, 12-13:4 4

Pharmacy
Associacons

1, 5, 6-8, 9-
11

8 1;4, 5:5, 6-8:5, 9-11:4 4.5

Pharmacies 1, 2-4, 5, 6- 52 1:2, 2-4:4, 5:4, 6-8:5, 9- 3.7

150

8, 9-11, 12-
13

11:3, 12-13: 4

e eglulatory
Encces

9-11, 12-13 - - -

Median: 3.94

Based on the results above, there are some important consideraton:

• The lower value of the Medicaton Suppliers if mostly due to the fact that at this
stage, reportng is very poor and because the encrypton method is not transparent it
requires that the supplier requires more technical knowledge which in some cases
might result in outsourcing which is not ideal in this cases.

• The lower value of the Pharmacies is due too the fact that they depend a lot of
reportng, and reportng was not a major priority of this platorm inital stage, also the
support staf was not all up to date with the new platorm, so, some support
questons might have taken a litle longer to respond, because they needed to
escalate inside the company, and pharmacies are a stakeholder which is used to a
higher level of atenton.

• Only one stakeholder from Pharmacy Associatons and Dictonary Suppliers
responded, so this justfes the lower number of responses. At this stage, Pharmacy
Associatons represent two enttes while the Dictonary Suppliers only represent one.

• At this stage there was no direct usage of the platorm from Regulatory Enttes
stakeholder.

• The fnal result is not the most optmum result, although at this stage and for several
non technical reasons, like tme to deliver, this was expected, the most critcal areas
where identfed, and this is where the next eforts should focus to improve the
stakeholder perceived value.

151

6.2. e ate Limicng Conigluracon Example

The following table shows a confguraton example of the rate limitng implementaton.

Table 50: Rate limitng confguraton example

Order Descripcon

PlayGluard
Speciic

playguard {
 clientipheader = "X-Forwarded-For"
 # required for the global GuardFilter
 filter {
 enabled = true
 global {
 bucket {
 size = 100
 rate = 100
 }
 }
 ip {
 whitelist = ["127.0.0.1"]
 blacklist = ["3.3.3.3", "4.4.4.4"]
 bucket {
 size = 50
 rate = 50
 }
 }
 }
}

Platorm
Speciic

app {
 playguard {
 ip {
 services {
 default {
 # nr of requests allowed
 nrOfRequests = 20
 # rate at which tokens are added to the bucket in seconds
 tokenRate = 3
 logPrefix = "default-ip-rate-limit"
 }
 auth {
 # nr of requests allowed
 nrOfRequests = 30
 # rate at which tokens are added to the bucket in seconds
 tokenRate = 2
 logPrefix = "auth-ip-rate-limit"
 }
 }
 }

 httpError {
 services {
 default {
 nrOfRequests = 20
 tokenRate = 3
 logPrefix = "default-http-rate-limit"
 }

152

 }
 }
 }
}

153

6.3. API Gatetay Code

The following code is the API Gateway implementaton.

def proxy(service: String, resource: String, id: Option[String]) =
 (Action
 andThen rateLimitServ.getKeyRateFilter(service)).async { implicit req =>
 andThen rateLimitServ.getHttpErrorRateFilter(service)).async { implicit req
=>

 try {
 // 1. Get service virtual server if exists
 val virtualServer = proxyServ.getVirtualServer(service)
 val virtualServerAuth = if (service.equals(this.authService)) virtualServer
else proxyServ.getVirtualServer(this.authService)

 // 2. Finding out if it uses HTTPS
 val https = proxyServ.usesHTTPS(service)
 val httpsAuth = if (service.equals(this.authService)) https else
proxyServ.usesHTTPS(this.authService)

 for {
 // 2. Validate authentication/authorization
 authenticated <- authServ.validate(service, virtualServerAuth, httpsAuth,
"isAuthenticated", req)

 // 3. Ask router for backend address (router uses load-balancing)
 backend <- proxyServ.getBackend(
 authenticated,
 service,
 if (id.isDefined) true else false,
 if (id.isDefined) id.get else null)

 // 4. Proxy requests to backend
 wsResponse <- backend match {
 case null =>
 val emptyResponse: WSResponse = null
 Future(emptyResponse)

 case _ =>
 proxyServ.relayRequest(backend, virtualServer, https, service,
resource, req)
 }

 // 5. Process Response from backend and Reply to original request
 } yield proxyServ.processResponse(service, authenticated, wsResponse)

 } catch {
 case e: UnknownHostException =>
 log.error(s"Couldn't determine auth url endpoint: $e")

Future.successful(ServiceUnavailable(StatusResult(MsgStatus.SERVICE_UNAVAILABLE).
toJson))
 case e: Exception =>
 log.error("System error", e)

Future.successful(InternalServerError(StatusResult(MsgStatus.INTERNAL_SERVER_ERRO
R).toJson))

154

 }
}

Code 16 API Gateway Code

The following code is the API Gateway implementaton.

def relayRequest(backend: String, virtualServer: String, https: Boolean, service:
String, resource: String,
 req: Request[AnyContent], includeQueryString: Boolean = true,
httpMethod: String = null
): Future[WSResponse] = {

 val url =
 if (resource == null || resource.isEmpty)
 s"${if (https) "https" else "http"}://${backend}/api/${service}"
 else
 s"${if (https) "https" else "http"}://${backend}/api/${service}/$
{resource}"

 log.debug(s"Relaying ${req.method} to $url")

 var wsr: WSRequest = ws.url(url)

 // Add origin request headers
 wsr = wsr.withHttpHeaders(
 req.headers.toSimpleMap.filterNot(x =>
 x._1.equals("Content-Type") || x._1.equals("Content-Length")
).toList: _*)

 // add virtual server for https validation
 if (virtualServer != null) {
 log.debug(s"adding virtual server $virtualServer")
 wsr = wsr.withVirtualHost(virtualServer)
 }

 // Add query strings from original request
 if (includeQueryString) {
 req.queryString.foreach { qs =>
 wsr = wsr.withQueryStringParameters((qs._1, qs._2.mkString(",")))
 }
 }

 // Add body
 if (req.hasBody) {
 req.headers.get("Content-Type") match {

 case Some("application/x-www-form-urlencoded") =>
 wsr = wsr.withBody(req.body.asFormUrlEncoded.get)

 case Some("application/json") =>
 wsr = wsr.withBody(req.body.asJson.get)

 case _ =>
 log.warn(s"application content not supported: ${req.headers.get("Content-
Type").getOrElse("NoneFound")}")
 wsr = wsr.withBody(req.body.asText.get)
 }
 }

155

 wsr = wsr
 // Add method
 .withMethod(if (httpMethod == null) req.method else httpMethod) // If
httpMethod is null then use same http method as from request

 // Send request
 log.info(s"Sending POST: ${wsr.uri} with Content-Type: $
{req.headers.get("Content-Type")}")
 wsr.execute
}

Code 17 API Gateway Proxy Code

156

6.4. e everse Proxy Code

The following code corresponds to the Reverse Proxy process.

def proxy(service: String, resource: String) = Action.async { implicit req =>

 try {
 val site = req.headers.get("Host").getOrElse("")
 log.debug(s"Request for site $site")

 // Identify backend from Host
 val backend = sitesServices.getAddress(site, defaultRoute)
 log.debug(s"Backend - $backend")

 for {
 // Proxy requests to backend
 result <- backend match {
 case "" =>
 Future(null: Result)

 case this.defaultRoute => // this condition is very important because it
avoids a cyclic redundancy
 relayRequest(backend, null, null)

 case _ =>
 relayRequest(backend, service, resource)
 }

 // Process Response from backend AND Reply to original request
 } yield (result) match {

 // if didn't received response from backend
 case response if response == null =>
 log.error(s"Service unavailable, didn't receive response from backend
$service")
 ServiceUnavailable(StatusResult(MsgStatus.SERVICE_UNAVAILABLE).toJson)

 // if received a Ok message from backend service
 case response if response.header.status == 200 =>
 response

 // if received a NOT Ok message from backend service
 case response if response.header.status != 200 =>
 response

 case x: Any =>
 log.error(s"Unsupported reply: ${x}")
 NotFound(StatusResult(MsgStatus.NOT_FOUND).toJson)
 }
 }

 catch {
 case e: UnknownHostException =>
 log.error(s"Couldn't determine auth url endpoint: ${e}")

Future.successful(ServiceUnavailable(StatusResult(MsgStatus.SERVICE_UNAVAILABLE).
toJson))

157

 case e: Exception =>
 log.error("System error", e)

Future.successful(InternalServerError(StatusResult(MsgStatus.INTERNAL_SERVER_ERRO
R).toJson))
 }
}

def relayRequest(backend: String, service: String, resource: String,
 includeCustomHeaders: Boolean = true, includeQueryString:
Boolean = true,
 httpMethod: String = null
)(implicit req: Request[AnyContent]): Future[Result] = {

 // Construct URL
 val url = s"${backend}" +
 (if (service == null || service.isEmpty) "" else s"/${service}") +
 (if (resource == null || resource.isEmpty) "" else s"/${resource}")

 log.debug(s"Relaying ${req.method} to $url")

 // Create the request to the upstream server
 var proxyRequest =
 ws
 // Add URL
 .url(url)

 // Add original request method
 .withMethod(req.method)

 // Add virtual Host
 .withVirtualHost(conf.getOptional[String]
(s"app.services.auth.virtualServer").getOrElse(null))

 // Add HTTP Headers
 .withHttpHeaders(req.headers.toSimpleMap.toList: _*)

 // add revere-se proxy header to tell the service who is requesting the
service
 .addHttpHeaders("X-Forwarded-For" -> req.remoteAddress)

 // Add Query String parameters
 .withQueryStringParameters(req.queryString.toSeq.map(qs => (qs._1,
qs._2.mkString(","))): _*)

 // Add Cookies
 .withCookies(
 req.cookies.toSeq.map(x =>
 new DefaultWSCookie(x.name, x.value, x.domain, Option(x.path),
 if (!x.maxAge.isDefined) None else Some(x.maxAge.get.toLong),
 x.secure, x.httpOnly)): _ *)

 // Add body
 if (req.hasBody) {
 req.headers.get("Content-Type") match {

 case Some("application/x-www-form-urlencoded") =>
 proxyRequest = proxyRequest.withBody(req.body.asFormUrlEncoded.get)

 case Some("application/json") =>
 proxyRequest = proxyRequest.withBody(req.body.asJson.get)

158

 case _ =>
 log.warn("application content not supported")
 proxyRequest = proxyRequest.withBody(req.body.asText.get)
 }
 }

 // Send Request and Stream Results
 proxyRequest.stream().map { resp =>
 log.warn("processing response")

 // Check that the response was successful.
 if (resp.status == 200) {

 // Get the content type.
 val contentType = resp.headers.get("Content-Type")
 .flatMap(_.headOption)
 .getOrElse("application/octet-stream")

 // Remove "Transfer-Encoding" header if present
 val headers = resp.headers.filterKeys(_ != "Transfer-Encoding")

 // If there's a content length, send that, otherwise return the body
chunked.
 resp.headers.get("Content-Length") match {
 case Some(Seq(length)) =>
 log.debug("Streamed response")

 Ok.sendEntity(HttpEntity.Streamed(resp.bodyAsSource,
Some(length.toLong), Some(contentType)))

 .withHeaders(headers.mapValues(_.mkString(",")).toSeq.filterNot(x =>
x._1.equals("Content-Type") || x._1.equals("Content-Length")): _*)

 .withCookies(resp.cookies.map(x =>
 Cookie(x.name, x.value,
 if (!x.maxAge.isDefined) None else Some(x.maxAge.get.toInt),
 x.path.getOrElse("/"), x.domain, x.secure, x.httpOnly)): _*)

 case _ =>
 log.debug("Chunked response")

 Ok.chunked(resp.bodyAsSource)

 .withHeaders(headers.mapValues(_.mkString(",")).toSeq.filterNot(x =>
x._1.equals("Content-Type") || x._1.equals("Content-Length")): _*)

 .withCookies(resp.cookies.map(x =>
 Cookie(x.name, x.value,
 if (!x.maxAge.isDefined) None else Some(x.maxAge.get.toInt),
 x.path.getOrElse("/"), x.domain, x.secure, x.httpOnly)): _*)

 .as(contentType)
 }
 } else {
 BadGateway
 }
 }
}

Code 18 Reverse Proxy Code

159

6.5. Play and Akka Main Conigluracon Files Example

The following example shows a standard Play Framework confguraton fle, there are a lot
more feature available but any feature not added to the fle gets it’s default value. More on
this can be seen in htps://www.playframework.com/documentaton/2.6.x/Confguraton.

Application ID
app {
 name = "msb-router"
 version = "1.0.0"
 address = "127.0.0.1"
 port = 50001
 akka.port = 41001
}

IDE
play.editor = "http://localhost:63342/api/file/?file=%s&line=%s"

Modules
play.modules {
 enabled += "modules.Module"
}

Play HTTP settings
play.http {
 # ErrorHandler
 errorHandler = "services.ErrorHandler"

 # filters.Filters
 filters = "filters.Filters"

 # Secret key
 secret {
 key = "changeme"
 }
}

Play server config
play.server {
 dir = ${?user.dir}

 provider = "play.core.server.AkkaHttpServerProvider"

 # HTTP configuration
 http {
 port = disabled
 # The HTTP port of the server. Use a value of "disabled" if the server
shouldn't bind an HTTP port.
 port = ${app.port}
 # The interface address to bind to.
 address = "0.0.0.0"
 # The idle timeout for an open connection after which it will be closed. Set
to null to disable the timeout
 idleTimeout = 60s
 }

 # HTTPS configuration
 https {
 port = 50001
 port = ${?https.port}

160

 # The interface address to bind to.
 address = "0.0.0.0"
 # The idle timeout for an open connection after which it will be closed. Set
to null to disable the timeout
 idleTimeout = ${play.server.http.idleTimeout}
 }

 # How long a request takes until it times out
 requestTimeout = 40s

 # The path to the process id file created by the server when it runs.
 pidfile.path = ${play.server.dir}/RUNNING_PID

 websocket {
 frame.maxLength = 64k
 }
}

WS (HTTP Client)
play.ws {
 ## WS SSL
 ssl {
 trustManager = {
 stores = [
 {type: "JKS", path: "./conf/mhp.jks", password: "xxx"}
 {path: ${java.home}/lib/security/cacerts, password: "changeit"} #
Fallback to default JSSE trust store
]
 }

 #loose.acceptAnyCertificate = true

 debug {
 # Turn on all debugging
 all = false
 # Turn on ssl debugging
 ssl = false
 # Turn certpath debugging on
 certpath = false
 # Turn ocsp debugging on
 ocsp = false
 # Enable per-record tracing
 record = false
 # hex dump of record plaintext, requires record to be true
 plaintext = false
 # print raw SSL/TLS packets, requires record to be true
 packet = false
 # Print each handshake message
 handshake = false
 # Print hex dump of each handshake message, requires handshake to be true
 data = false
 # Enable verbose handshake message printing, requires handshake to be true
 verbose = false
 # Print key generation data
 keygen = false
 # Print session activity
 session = false
 # Print default SSL initialization
 defaultctx = false
 # Print SSLContext tracing
 sslctx = false

161

 # Print session cache tracing
 sessioncache = false
 # Print key manager tracing
 keymanager = false
 # Print trust manager tracing
 trustmanager = false
 # Turn pluggability debugging on
 pluggability = false
 }
 }
}

filters.Filters
play.filters {

 ## CORS filter configuration
 # https://www.playframework.com/documentation/latest/CorsFilter
 cors {
 }

 ## CSRF Filter
 # https://www.playframework.com/documentation/latest/ScalaCsrf#Applying-a-
global-CSRF-filter
 csrf {
 }

 ## Security headers filter configuration
 headers {
 contentSecurityPolicy = "script-src 'self' 'unsafe-inline' clef.io
jquery.min.js cdnjs.cloudflare.com;"
 }

 ## Allowed hosts filter configuration
 hosts.allowed = ["."]
}

Mailer
#
play.mailer {
 # SMTP serveur, example : smtp.gmail.com
 host = smtp.gmail.com

 # Mail Port, example : 465, 587 or 25
 port = 587

 # Mail Auth User, example : user@gmail.com
 user = "xxx@gmail.com"

 # Mail Auth Password
 password = xxx

 # Mail SSL : true or false
 ssl = false
 tls = true

 # Will only log all the email properties instead of sending an email
 mock = false

 # Mail user from
 from = "PbDevStage <xxx@gmail.com>"

162

 reply = "No reply <noreply@gmail.com>"
}

play.assets {
 path = "/public"
 urlPrefix = "/assets"
}

include "application.akka.conf"
include "application.playguard.conf"

Code 19 Plays main confguraton fle example

The next example is from the confguraton fle of the Akka Cluster.

##
app {
 akka {
 router {
 auth.active = true
 ...
 }

 monitor {
 cluster-events = true
 cluster-metrics = false
 }
 }
}

Akka
play.akka.actor-system = "mhp"

$
akka {
 actor {
 provider = "cluster"
 deployment {
 # Auth Router
 /routerActorSupervisor/router/authRouter {
 #router = round-robin-group | adaptive-group
 # Router type provided by metrics extension.
 router = cluster-metrics-adaptive-group
 # metrics-selector = heap
 # metrics-selector = load
 # metrics-selector = cpu
 metrics-selector = mix

 routees.paths = ["/user/authWorker"]
 #max-total-nr-of-instances =
 cluster {
 enabled = on
 use-role = auth
 allow-local-routees = off
 }
 }

163

 }
 }

 cluster {
 #min-nr-of-members = 2

 seed-nodes = [
 "akka.tcp://msb@127.0.0.1:41001",
 "akka.tcp://msb@127.0.0.1:41011"]

 roles = [router]

 # how long to wait for one of the seed nodes to reply to initial join request
 seed-node-timeout = 10s
 # If a join request fails it will be retried after this period. Disable join
retry by specifying "off".
 retry-unsuccessful-join-after = 15s

 # disable in production
 auto-down-unreachable-after = 10s

 # disable legacy metrics in akka-cluster, since it is still enabled in akka-
cluster by default
 metrics {
 enabled = off
 native-library-extract-folder = ${user.dir}/target/native

 # Metrics collector actor.
 collector {
 # Enable or disable metrics collector for load-balancing nodes.
 enabled = on
 provider = ""
 # Try all 3 available collector providers, or else fail on the configured
custom collector provider.
 fallback = true
 # How often metrics are sampled on a node.
 sample-interval = 5s
 # How often a node publishes metrics information to the other nodes in
the cluster.
 # Shorter interval will publish the metrics gossip more often. (default
3s)
 gossip-interval = 5s
 # How quickly the exponential weighting of past data is decayed compared
to
 moving-average-half-life = 12s
 }
 }
 }

 extensions = ["akka.cluster.metrics.ClusterMetricsExtension"]

 remote {
 enabled-transports = ["akka.remote.netty.tcp"]
 netty.tcp {
 hostname = ${app.address}
 port = ${app.akka.port}
 }
 # After failed to establish an outbound connection, the remoting will mark
the
 # address as failed.
 retry-gate-closed-for = 10 s

164

 # Settings for the failure detector to monitor connections.
 transport-failure-detector {

 # FQCN of the failure detector implementation.
 implementation-class = "akka.remote.DeadlineFailureDetector"

 # How often keep-alive heartbeat messages should be sent to each
connection.
 heartbeat-interval = 4 s

 # Number of potentially lost/delayed heartbeats that will be
 # accepted before considering it to be an anomaly.
 acceptable-heartbeat-pause = 120 s
 }

 watch-failure-detector {
 # FQCN of the failure detector implementation.
 implementation-class = "akka.remote.PhiAccrualFailureDetector"

 # How often keep-alive heartbeat messages should be sent to each
connection.
 heartbeat-interval = 3 s

 # Defines the failure detector threshold.
 threshold = 10.0

 # Number of the samples of inter-heartbeat arrival times to adaptively
 # calculate the failure timeout for connections.
 max-sample-size = 200

 # Minimum standard deviation to use for the normal distribution in
 # AccrualFailureDetector.
 min-std-deviation = 100 ms

 # Number of potentially lost/delayed heartbeats that will be
 # accepted before considering it to be an anomaly.
 acceptable-heartbeat-pause = 10 s

 # How often to check for nodes marked as unreachable by the failure
detector
 unreachable-nodes-reaper-interval = 3s

 # After the heartbeat request has been sent the first failure detection
 # will start after this period, even though no heartbeat message has
 # been received.
 expected-response-after = 1 s
 }
 }
}

Code 20 Plays Akka confguraton fle example

165

6.6. Doclumentacon File Example

Confdental informaton was removed the fle.

swagger: '2.0'

info:

 description: |
 API documentation for the Authentication service

 Todas as mensagens são enviadas com codificação UTF-8.

 As mensagens são <i>case-sensitive</i> e todos os campos são construídos em
<i>Lower Camel Case</i>.

 Notas:
 * Os exemplos abaixo são meramente para efeitos de demonstração e não
correspondem a dados reais (não usar em testes)
 * Para mais informação consultar manual técnico.

 * General Error Codes: https://xxx.pt:50001/api/docs/error-codes

 title: Serviço de Autenticação/Autorização

 version: 1.0.0

 contact:
 name: LTS
 url: http://xxx.pt
 email: xxx@xxx.pt

 license:
 name: Comercial
 url: http://xxx.pt

host: 'xxx.pt:50001'

basePath: /api/auth

tags:
 - name: auth
 description: Documentação para o serviço de Autenticação
 externalDocs:
 description: Mais informações
 url: https://xxx.pt:50001/api/docs/auth

schemes:
 - https

paths:

 /signIn:
 post:
 tags:
 - auth
 summary: Autentica uma conta de utilizador
 description: 'As credenciais necessitam de ser requisitadas préviamente à

166

LTS'
 operationId: ''
 consumes:
 - application/json
 produces:
 - application/json
 parameters:
 - in: body
 name: body
 description: Objecto a adicionar ao pedido
 required: true
 schema:
 $ref: '#/definitions/signIn'
 responses:
 '200':
 description: 'Ok'
 schema:
 $ref: '#/definitions/status'
 '401':
 description: 'https://xxx.pt:50001/api/docs/error-codes'
 '405':
 description: 'https://xxx.pt:50001/api/docs/error-codes'
 '406':
 description: 'https://xxx.pt:50001/api/docs/error-codes'

securityDefinitions:
 bearer:
 type: apiKey
 name: x-auth-token
 in: header

definitions:

 signIn:
 type: object
 description: Objecto que identifica o tipo de mensagem.
 required:
 - email
 - password
 - rememberMe
 properties:
 email:
 description: O email to utilizador
 type: string
 example: john
 password:
 description: A password do utilizador
 type: string
 example: doe
 rememberMe:
 description: Se o sistema aceita o mesmo token por um periodo extendido de
tempo. Útil se forem realizados vários pedidos sequenciais.
 type: boolean
 example: false

 status:
 type: object
 description: Detalhe da mensagem de Estado
 required:
 - status
 properties:
 status:

167

 required:
 - i
 - s
 - v
 properties:
 i:
 description: (Id) Código da resposta
 type: string
 maxLength: 6
 example: 200
 s:
 description: (Status) Estado da mensagem enviada (ver Mensagens de
Retorno)
 type: string
 maxLength: 200
 example: Ok
 v:
 description: (Version) Versão do inicial do serviço a partil do qual a
mensagem de retorno foi implementada e/ou alterada.
 type: string
 maxLength: 20
 example: 1.0.0
 t:
 description: (Token) Identificador do pedido original, se aplicavel.
 type: string
 maxLength: 36
 example: XXX
 ai:
 description: Uso interno. Enviar juntamente com os pedidos de suporte.
 type: string
 maxLength: 200
 example: XXX

Code 21 Authoriiaton documentaton YAML fle

168

6.6. Logback Conigluracon File Example

<configuration>
 <property name="LOG_NAME" value="msb-auth"/>

 <!-- Setting context name helps distinguish between different applications. Can
be used in the patterns (%contextName) -->
 <contextName>${LOG_NAME}</contextName>

 <conversionRule conversionWord="coloredLevel"
converterClass="play.api.libs.logback.ColoredLevel"/>

 <!-- FILE -->
 <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${application.home:-.}/logs/${LOG_NAME}.log</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <!-- Daily rollover with compression -->
 <fileNamePattern>${application.home:-.}/logs/${LOG_NAME}-log-%d{yyyy-
MM-dd}.gz</fileNamePattern>
 <!-- keep 30 days worth of history -->
 <maxHistory>60</maxHistory>
 </rollingPolicy>
 <encoder>
 <pattern>%date{yyyy-MM-dd HH:mm:ss:SSS} %.-3level %message [%logger in
%thread] %n%xException</pattern>
 </encoder>
 </appender>

 <!-- ACCESS_FILE -->
 <appender name="ACCESS_FILE"
class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${application.home:-.}/logs/access/${LOG_NAME}-access.log</file>
 <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <!-- daily rollover with compression -->
 <fileNamePattern>${application.home:-.}/logs/${LOG_NAME}-access-log-
%d{yyyy-MM-dd}.gz</fileNamePattern>
 <!-- keep 1 week worth of history -->
 <maxHistory>15</maxHistory>
 </rollingPolicy>
 <encoder>
 <pattern>%date{yyyy-MM-dd HH:mm:ss ZZZZ} %message%n</pattern>
 </encoder>
 </appender>

 <!-- STDOUT -->
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%date{HH:mm:ss:SSS} %highlight(%.-3level) %message
[%cyan(%logger{50} in %thread])
 %n%xException{50}
 </pattern>
 </encoder>
 </appender>

 <!-- EMAIL -->
 <appender name="EMAIL" class="ch.qos.logback.classic.net.SMTPAppender">

169

 <smtpHost>smtp.gmail.com</smtpHost>
 <smtpPort>587</smtpPort>
 <STARTTLS>true</STARTTLS>
 <username>autobot@logitools.pt</username>
 <password>skrfwlppjbeutfss</password>
 <to>hugotigre@logitools.pt</to> <!-- additional destinations are possible
-->
 <from>autobot@logitools.pt</from>
 <subject>${LOG_NAME}: %logger{20} - %m</subject>
 <!--<layout class="ch.qos.logback.classic.PatternLayout">
 <pattern>%date %-5level %logger{35} - %message%n</pattern>
 </layout>-->
 <layout class="ch.qos.logback.classic.html.HTMLLayout">
 <pattern>%relative%thread%mdc%(%.-3level)%logger%msg</pattern>
 </layout>
 </appender>

 <!--
 Wrap the appender(s) in async appender(s)
 -->
 <appender name="ASYNCFILE" class="ch.qos.logback.classic.AsyncAppender">
 <queueSize>500</queueSize>
 <!--<discardingThreshold>0</discardingThreshold>-->
 <maxFlushTime>30000</maxFlushTime>
 <appender-ref ref="FILE"/>
 </appender>

 <!-- -->
 <appender name="ASYNCSTDOUT" class="ch.qos.logback.classic.AsyncAppender">
 <maxFlushTime>30000</maxFlushTime>
 <appender-ref ref="STDOUT"/>
 </appender>

 <appender name="ASYNCACCESSFILE" class="ch.qos.logback.classic.AsyncAppender">
 <maxFlushTime>30000</maxFlushTime>
 <appender-ref ref="ACCESS_FILE"/>
 </appender>

 <appender name="ASYNCEMAIL" class="ch.qos.logback.classic.AsyncAppender">
 <maxFlushTime>30000</maxFlushTime>
 <appender-ref ref="EMAIL"/>
 </appender>

 <!--
 Loggers
 -->
 <!-- basic play loggers -->
 <logger name="play.api" level="INFO"/>
 <logger name="application" level="INFO"/>
 <logger name="ch.qos.logback" level="WARN"/>
 <logger name="com.google.inject" level="WARN"/>
 <logger name="net.sf.ehcache" level="WARN"/>
 <logger name="org.asynchttpclient.netty" level="INFO"/>
 <logger name="io.netty" level="INFO"/>
 <logger name="org.jboss" level="INFO"/>

 <!-- akka loggers -->
 <logger name="akka" level="INFO"/>
 <!-- other loggers -->
 <logger name="javax" level="INFO"/>

170

 <logger name="sun.security" level="INFO"/>
 <!-- MongoDB -->
 <logger name="com.mohiva" level="DEBUG"/>
 <logger name="reactivemongo" level="WARN"/>

 <!-- additivity=false ensures access log data only goes to the access log -->
 <logger name="access" level="INFO" additivity="false">
 <appender-ref ref="ASYNCACCESSFILE"/>
 </logger>

 <!--
 Add appender(s) to root
 -->
 <root level="INFO">
 <appender-ref ref="ASYNCFILE"/>
 <!--<appender-ref ref="ASYNCSTDOUT"/>-->
 <appender-ref ref="ASYNCEMAIL"/>
 </root>

 <!-- Gracefully terminate logback when JVM terminates -->
 <shutdownHook class="ch.qos.logback.core.hook.DelayingShutdownHook"/>
</configuration>

Code 22 Logback confguraton fle example

171

6.7. Cost of Development

The following fgures give an overview of the main costs related to the development and
implementaton of the platorm.

Figure 37: Development investment 1

172

Figure 38: Development investment 2

Figure 39: Development investment 3

173

Figure 40: Development investment 4

Figure 41: Development investment 5

174

Figure 42: Development investment 6

175

