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Abstract: The paper presents the design stages of a single-phase Silicon Carbide bidirectional1

DC-AC converter. This includes the LCL filter design responsible to meet grid connection2

requirements. A 3kW laboratory prototype of the power converter is built employing a low-cost3

phase locked loop and its results are presented. The design of the low-cost phase locked loop and4

its implementation are depicted in some detail.5
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1. Introduction7

Nowadays, society has a big interest in topics involving sustainability and energy efficiency8

mainly due to environmental concerns, [1]. This is observed on the increasing number of electric9

vehicles and their interaction with the grid, [1]. It is also seen in micro, medium and big scale10

renewable energy applications with and without energy storage systems, [2]. On a political level, this11

is shown with various funds and measures aimed at encouraging the investment in these themes.12

Most of these applications use electronic power converters, which has led to recent developments13

in the technology of semiconductor devices originating wide band gap semiconductors, [3]. The14

most promising devices from this group are Silicon Carbide (SiC) and Gallium Nitrite (GaN)15

devices. Compared to the traditional Silicon (Si) semiconductors, wide band gap devices support16

higher current densities, higher switching frequency and higher operation temperatures, [4,5]. This17

contributes to more compact and efficient power converters decreasing the size of passive devices18

such as inductors and capacitors, [6]. This paper presents a simple design approach for a SiC19

bidirectional DC-AC converter that permits the charge and discharge of a battery bank to the AC20

grid with unity power factor used for a grid connected Telecom Energy Storage application. Inductor21

design, AC filter design and the controller principles are also treated. A 3kW converter prototype is22

implemented in the laboratory and its results presented.23

2. SiC Bidirectional DC-AC Converter Control Principles24

The topology analyzed in this work is a non-isolated bidirectional DC-AC converter, with unity25

power factor, presented on Figure 1.26
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Figure 1. Proposed DC-AC Circuit topology

2.1. Output LCL Filter27

Grid connected power electronic converters have Power Quality requirements. This is translated28

into keeping the Total Harmonic Distortion (THD) lower than 5%, according to IEEE 519-199229

standard. This is accomplished using a filter between the switches and the grid.30

The filter has a big influence on the converter’s size, cost and performance. It’s possible to31

reduce its size using higher switching frequencies, which is one of the reasons why wide band gap32

semi-conductors contribute to smaller and more efficient power converters.33

On the other side, exploring the switches at their maximum frequency all the time will lead to34

excess switching losses. For this reason, variable switching frequency is used on this work. This is35

done by controlling the current on the inductor L1 within a hysteresis window, as seen on Figure 2.36

+IL1
∗(t)

−

IL1(t)

errorIL1(t) γi

Figure 2. Inverter control block diagram

THD is calculated by (1), where I50Hz is the pretended grid’s current and Inthsw is the nth harmonic
of the ripple current which is due to the current hysteresis control window. Although choosing a
very small hysteresis error window width would result in a low THD, it would require a very high
switching frequency or a very large filter inductor. So there’s a trade-off between to minimizing
the THD, keeping the switching frequency within feasible values to limit the switching losses and
maintaining the inductor with a compact size, [7].

THD =

√
∞
∑

n=1
I2
nthsw

I50Hz
(1)

To summarize, the semiconductor’s maximum switching frequency and the need to maintain37

THD low by keeping the current hysteresis window small obligates a certain inductance value for L1.38

Since this work is applied for telecom energy storage systems, and this usually happens at low39

DC voltages (typically 48V), a 3kVA single phase transformer is used for grid connection. This40

transformer has a short circuit inductance that combined with the grid’s inductance represents the41

second inductor on the LCL filter, L2.42

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2017                   doi:10.20944/preprints201704.0184.v1

http://dx.doi.org/10.20944/preprints201704.0184.v1


3 of 14

It’s then possible to obtain a 3rd order filter by adding a capacitor, with value C, between the43

inductors and the grid. LCL filter’s natural frequency, ω0, is given by (2). It’s important to maintain44

the filter’s natural frequency within a tenth of the minimum switching frequency and ten times higher45

than the grid’s frequency (50Hz). In order to be stable, this kind of filters need a damping resistance,46

usually connected in series with inductor, L2, or with the capacitor, C. Since the current passing to47

the grid is large in this application, the choice to use the resistance in series with the capacitor is48

made. The LCL filter transfer function with the capacitor series resistance is given by (3), where vi49

is the full bridge input pulsed voltage to the filter, i2 is the grid’s current on the low voltage side of50

the transformer, L1, L2, C and RC are the filter parameters shown on Figure 1. These parameters are51

calculated using (4), (5) and (6). L2 is measured, it is the short-circuit impedance of the transformer52

plus the line inductance seen from the low voltage side of the transformer. Table 1 presents the values53

used for these calculations during this research work.54

ω0 =

√
L1 + L2

L1 · L2 · C
(2)

i2
vi

=

sRCC+1
L1L2C

s
(

s2 + s RC(L1+L2)
L1L2

+ L1+L2
L1L2C

) (3)

L1 =
UDC

2 · ∆iL1 · fsw
(4)

C =
L1 + L2

L1L2ω02 (5)

RC = 2 · ζ ·ω0 ·
L1L2

L1 + L2
(6)

Table 1. Filter Parameters

Parameter Value
UDC 64V
∆iL1 6.8A
L1 48μH
L2 32μH
C 220μF

RC 0.45Ω
ω0 15386 rad/s

ζ
√

2
/

2

2.2. Inductor Design55

Inductors are of great impact on the size, cost and efficiency of a power converter[6][9]. With the56

improvements in the semiconductors devices, it’s of great importance the effects of higher frequency57

on the inductor losses. The higher the frequency, higher the inductor core and winding losses[10].58

Power inductors aren’t exactly off-the-shelf components, each system has its own needs. In this59

section, it’s presented the power inductor design procedure for a prototype application.60

The power inductor design starts with the choice of the core material. This should be addressed
carefully since there are several materials available and all have their pros and cons, the right choice
depends on the design priorities and specifications, [11]. Core suppliers for each specific core give the
inductance factor. The inductance is then calculated using (7), where N is the number of wire turns
and AL is the core inductance factor. It’s important to note that in cores with gaps, AL needs to be
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adjusted to include the gap effects, also it’s important to take into account the core saturation, which
leads to a lower value of inductance.

L = N2 · AL (7)

There are a number of methods to calculate inductor’s core loss, some extremely complex and61

only applicable for certain conditions, [9]. Core suppliers usually make available a set of curves for62

each material at specific frequencies, with straightforward formulas that can predict the core losses63

for applications similar to the one treated in this article.64

For power inductors, the high-frequency effects on the windings must be taken into account.65

These high-frequency effects result in extra losses and are due to the skin and proximity effects that66

are manifested by changing the current density inside the conductor’s section, [10,12].67

The total winding losses for the application treated in this work is given by (8), where R50Hz is
the wire resistance at 50Hz that is very close to the DC resistance, I50Hz is the pretended 50Hz current
on the inductor, Rnthsw is the wire resistance for the nth harmonic due to switching frequency, and
Inthsw is the nth current harmonic due to switching.

Pwinding = R50Hz I2
50Hz +

∞

∑
n=1

Rnthsw I2
nthsw (8)

2.3. Phase Locked Loop68

A Phase Locked Loop (PLL) is a control system that compares an input signal with a69

signal generated by a voltage controlled oscillator (VCO) to produce a multiplied, divided or a70

synchronous signal [8]. This circuit is typically used in frequency demodulators and its block diagram71

configuration is presented on Figure 4, as described in [8]. For this work, the PLL will be implemented72

in software in order to obtain a low-cost grid synchronization tool to allow the control of active power73

and an unity power factor.74

Phase Detector PLL filter VCO
u f

Frequency Divider

u1 ud u2

u′2

Figure 3. Typical PLL blocks diagram.

As a synchronization application, the frequency divider block isn’t applicable since the required75

input and the output frequencies are the same. This simplification allows Figure 4.76

The phase detector block is responsible for giving as output the signal, ud, which is proportional77

to the difference between the phases of the input signal, u1, and the feedback signal, u2. The PLL filter78

controls the PLL response. The filter’s output signal, U f , is integrated by the VCO block generating79

a ramp that symbolizes the grid’s phase angle. This output angle signal is also used to generate80

a sinusoid wave for feedback. This way it’s possible to know exactly the grid’s phase angle and81

produce the reference of current needed to control active and reactive power exchange with the grid.82

Phase Detector PLL filter VCO
u fu1 ud u2

−

Figure 4. Typical PLL blocks diagram for synchronization applications.
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During the PLL design it is necessary to make the assumption that the PLL is in locked mode,
this means that the frequencies of the input signal, ω1, and feedback signal, ω2 are the same. This
consideration facilitates the multiplication between the squared input signal, u1 , and the sinusoidal
feedback signal u2, given in ( 9), where θ1 is the input signal’s phase angle and θ2 is the feedback
signal’s phase angle.

ud =
2 ·U1 ·U2

π
(sin (θ1 − θ2) + harmonicterms) (9)

Ignoring the harmonics terms and considering the low difference between the angles, when the PLL83

is in locked mode, is possible to simplify the sin(θ1 − θ2) as θ1 − θ2 (10). This simplification is the84

linearized model of the phase detector where the inputs are the angles (input and feedback) and not85

the voltage signals, as shown in Figure 5 [13].86

From (10) it’s possible to obtain the phase detector block gain, kd , given by (11), [13], where U187

is the square wave amplitude, and U2 is the feedback wave amplitude.88

ud =
2 ·U1 ·U2

π
(θ1 − θ2) (10)

Kd =
2 ·U1 ·U2

π
(11)

For the filter block, a proportional–integral filter (PI) is chosen because of its pole on origin which89

improves angle response[13]. The filters block transfer function is given by (12), where τ1 and τ2 are90

the PI filter parameters. The VCO transfer function is given by (13), being K0 the VCO gain.91

U f (s)
Ud(s)

=
1 + s · τ2

τ1 · s
(12)

K0

s
(13)

The complete PLL block diagram is shown on Figure 5.92

Kd
1+s·τ2

τ1·s
K0
s

u fθ1 θe ud θ2

−

Figure 5. PLL block diagram for design

It’s possible to obtain the open loop, G(s), and the closed loop, θo(s)
θi(s)

, transfer functions, given93

respectively by (14) and (15).94

G(s) = Kd ·
1 + s · τ2

τ1 · s
· K0

s
=

Kd ·K0·τ2
τ1

· s + Kd ·K0
τ1

s2 (14)

θo(s)
θi(s)

=
G(s)

1 + G(s)
=

Kd ·K0·τ2
τ1

· s + Kd ·K0
τ1

s2 + Kd ·K0·τ2
τ1

· s + Kd ·K0
τ1

(15)

The closed loop transfer function is very similar to a well known equation on systems control95

theory given by (16), where ζ is the system damping coefficient and ωn its natural frequency.96

2 · ζ ·ωn · s + ω2
n

s2 + 2 · ζ ·ωn · s + ω2
n

(16)

Comparing the terms from (15) to (16) it’s possible to make the assumptions given by (17) and97

(18).98
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Kd · K0 · τ2

τ1
= 2 · ζ ·ωn (17)

Kd · K0

τ1
= ω2

n (18)

Using K0 = 100, ζ =
√

2
2 , ωn = 2·π·50

10 (10 AC grid cycles), it’s then calculated Kd, τ1 and τ2, see99

Table 2.100

Table 2. PLL design parameters

Parameter Value
ζ 0.707

ωn 31.415
U1 1
U2 1
K0 100
Kd 0.637
τ1 0.065
τ2 0.045

The simulation results obtained using MATLAB R© (The MathWorks Inc., Natick, MA, USA)101

simulation enviroment are presented on Figure 6.102
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Figure 6. PLL simulation results

The multiplier phase detector has a problem resultant from the multiplication of the two signals103

(input and feedback), this is the introduction of harmonics in the signal Ud, given in (9) [13]. In104

order to attenuate these harmonics, it’s typically used a complex or heavy computing algorithm as105

an orthogonal signal generator [14] or a notch filter [15]. The use of notch filter, in this case, is not106
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possible because a notch filter is a very tight band rejection filter, this would only reduce one harmonic107

component, leaving the others. In the case of an orthogonal signal generator, this option needs a very108

large floating point variables, and with a low-cost FPGA, the variable size and the number of nodes109

are limited. Because of this, the final implementation was a 2nd order low-pass filter, presented on110

Figure 7, implemented with two 1st order filters in cascade to reduce the coefficient variable sizes.111

This filter is applied to the sine wave generated for reference with a cutoff frequency of 50Hz to allow112

this frequency and block part of the 2nd harmonic (100Hz) and from there on. For convenience, it was113

implemented an input on the filter’s block, θ∗, to enable shifting the output sinusoidal wave, uPLL, in114

reference to the grid’s voltage.115

Phase Detector Filter VCO

Low-Pass Filter

u1 ud u2u f

−

θo

θ∗

uPLL

Figure 7. Laboratory implementation in time domain

Discretization116

Discretization is the process to transform a continuous transfer function into a discrete transfer117

function. There are a few discretization methods [16], in this work, the chosen was the trapezoidal118

integration, the mathematical formulation is given by (19). Applying this transformation the119

continuous transfer functions are converted into the discrete domain. The PI filter mathematical120

formulation in this domain is given in (20), where Ts is the sampling time and the b0,b1 and a1 the121

discrete filter coefficients.122

s→ 2
Ts
· z− 1

z + 1
(19)

U f (z)
Ud(z)

=
b0 + b1 · z−1

1 + a1 · z−1 =

(Ts+2·τ2)
2·τ1

+ (Ts−2·τ2)
2·τ1

· z−1

1 + (−1) · z−1 (20)

For the low-pass filter used to attenuate the unwanted harmonics, applying the same123

transformation, (21) becomes (22), where ωc is the filter cutoff frequency.124

FPB(s) =
ωc

s + ωc
(21)

FPB(z) =
b0 + b1 · z−1

1 + a1 · z−1 =

(Ts ·ωc)
2+Ts ·ωc

+ (Ts ·ωc)
2+Ts ·ωc

· z−1

1 + (−2+Ts ·ωc
2+Ts ·ωc

) · z−1
(22)

The simulation results obtained in the discrete domain are shown on Figure 8.125
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Figure 8. Results for a 50 Hz sinusoidal input waveform (the input voltage showed represents the
grid voltage, the PLL see an square waveform in the input)

3. Laboratory Implementation126

3.1. Laboratory Setup127

A 3kW experimental prototype of the topology proposed is built. This prototype uses 300A SiC128

MOSFETs capable of switching at 100kHz, which are a few times higher than the Si-IGBTs equivalent,129

due to lower switching losses, higher output current capability and significantly lower current130

de-rating at higher switching frequencies. The energy storage is made using Lithium Iron Phosphate131

(LiFePO4) batteries at 64V of nominal voltage. The objective is to control the power flow between132

the grid and the battery bank with unity power factor. Figure 10 shows the prototype’s power133

setup, while Figure 11 presents the control electronics setup that uses a low-cost Field Programmable134

Gate Array (FPGA), Spartan R© 3 (Xilinx Inc., San Jose, CA, USA). Table 3 presents the components135

specifications used in the prototype.136

Table 3. Devices Specifications

Component Brand Main Specs
SiC Mosfets Cree 300A, 1200V, 100kHz
Battery Bank Calb 64V, LiFePo4
Transformer n/a 32VRMS − 230VRMS, L2 = 32µH

Inductor Core from Magnetics Inc. 48µH
Capacitors CDE Cornell Dubilier 220µF
Resistors n/a 0.45Ω

Current Sensor LEM 200Apeak, DC 100kHz
FPGA Xilinx Spartan 3, 125MHz

According to (2) and Table 3, The filter’s natural frequency is 2450Hz and its Bode Diagram is137

given on Figure 9.138
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Figure 10. Single-phase SiC bidirectional DC-AC converter power circuit.
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Figure 11. Data acquisition, processing and output generation setup.

3.2. Phase Locked Loop Implementation139

For this research work, it’s was given importance to build a low-cost PLL to synchronize with140

the grid, but also it was taken into the possibility the use of this PLL to synchronize with different141

types of waveforms, such as the square and sinusoidal waveforms for future works. Therefore, the142

multiplier phase detector block was selected and it can be adapted to different waveforms just by143

adjusting the gains, [13]. Since the integrated circuit used as processor in this work is a FPGA, all144

the PLL components are implemented in software and just the AC grid voltage was converted into a145

square wave with the circuit shown on Figure 12. This way the FPGA receives a binary signal that is146

zero when the grids voltage is positive and one when grids voltage is negative. Note that this signal147

is isolated by an optocoupler to prevent damaging the FPGA and keep the circuit’s cost low. This148

signal after processing is transformed in signal u1 seen in Figure 7.149

Figure 12. Implemented circuit to detect positive grid voltage.

3.3. Laboratory Results150

The experimental results were taken at 2kW and 3kW charging the batteries, see Figures 13 and151

14, and then injecting energy on the grid, see Figures 15 and 16. On these experimental results, the152

current signal is given by channel 4, while the voltage grid is given by channel 1(at the secondary153

side of the transformer, 32VRMS). Although the current waveform at 2kW has a bigger THD than154

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 April 2017                   doi:10.20944/preprints201704.0184.v1

http://dx.doi.org/10.20944/preprints201704.0184.v1


11 of 14

operating at 3kW, that is expected because the current at grid frequency is lower, while the ripple155

stays the same, the THD still is less than 5% fulfilling the network requirements.156

Figure 13. Experimental results charging the batteries at 2kW on transformer secundary side (32VRMS

side). CH1: Grid Voltage (50V/div); CH4: Grid Current (50A/div).

Figure 14. Experimental results charging the batteries at 3kW on transformer secundary side (32VRMS

side). CH1: Grid Voltage (50V/div); CH4: Grid Current (50A/div).
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Figure 15. Experimental results injecting 2kW on transformer secundary side (32VRMS side). CH1:
Grid Voltage (50V/div); CH4: Grid Current (50A/div).

Figure 16. Experimental results injecting 3kW on transformer secundary side (32VRMS side). CH1:
Grid Voltage (50V/div); CH4: Grid Current (100A/div).
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4. Conclusions157

This paper presented the implementation and control of a DC-AC converter with unity power158

factor with a brief description of inductor design, LCL filter and phase locked loop theory for grid159

synchronization. It has been introduced the control principles for a variable switching frequency160

converter and the trade-offs that must be done between system efficiency, filter size and cost while still161

accomplish the THD limits imposed by legislation. A Converter prototype was built on laboratory,162

connected to the grid through a 32VRMS to 230VRMS transformer. Laboratory results have been163

obtained charging the batteries and injecting power on the grid at 2kW and 3kW which correspond164

to high currents due to the low voltage level. The measured currents presented THD below 5%,165

therefore meeting the standard requirement.166
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