

Enabling Global Experiments with Interactive
Reconfiguration and Steering by Multiple Users

Luis Assuncao1,2 and Jose C. Cunha2
1Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal

2CITI/DI Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa, Caparica, Portugal
lass@isel.ipl.pt, jcc@fct.unl.pt

Abstract
In global scientific experiments with collaborative scenarios involving multinational teams there are
big challenges related to data access, namely data movements are precluded to other regions or Clouds
due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is
processing local data sets using specialized algorithms and producing intermediate results that are
helpful as inputs to applications running on remote sites. This paper shows how to model such
collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow
Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run
the workflow activities on distributed data centers in different regions without the need of large data
movements. The AWARD workflow activities are independently monitored and dynamically
reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the
computation results or by changing the workflow structure to support feedback dependencies where an
activity receives feedback output from a successor activity. A real implementation of one practical
scenario and its execution on multiple data centers of the Amazon Cloud is presented including
experimental results with steering by multiple users.

Keywords: Scientific Workflows, Interactive Reconfigurations and Steering, Global Experiments on Cloud

1 Introduction
Workflows models and tools have increasingly been used for developing scientific applications

due to their transparent support for application decomposition into multiple activities and for modeling
the control-flow and data-flow interactions between those activities. Workflows are also useful for
allowing the design of long-running experiments with multiple, possibly infinite iterations, as is
typically required to support the scientific experimental process. However, there is currently a lack of
workflow models and tools that support a flexible composition of distributed and interactive tasks
without relying on a centralized enactment engine. Most of the existing approaches are based on a
centralized enactment engine, although they may still allow the composition of distributed services

Procedia Computer Science

Volume 29, 2014, Pages 2137–2144

ICCS 2014. 14th International Conference on Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

2137

doi: 10.1016/j.procs.2014.05.198

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.198&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.198&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.198&domain=pdf

(Plociennik et al., 2013), (Wolstencroft & et al, 2013) or the support for allocating tasks into the
appropriate distributed resources according to the users requirements (Li et al., 2012). There is also a
need for approaches supporting user steering where each user is responsible for executing, monitoring
and dynamically reconfiguring specific tasks without the need to restart or change the activities by
other users. The above functionalities should also support Big Data applications deployments that
cannot rely on a centralized approach for data storage and processing, for instance relying on a unique
Cloud provider (Armbrust et al., 2009), (Yaser Mansouri & Buyya, 2013), (Vahi et al., 2013). Instead,
large amounts of data are usually spread in distributed storage repositories deployed in multiple data
centers and distributed computations must access those data. Furthermore, data movement between
data centers raises critical issues related to the communication costs, and to data ownership and
privacy. This has motivated efforts on distributed task scheduling and optimization of the data
transfers between sites. On the other hand it motivated the development of solutions for in-situ
processing of local data sets, for instance by relying on the processing of local data sets in each site,
and only passing small amounts of intermediate data between sites, as we illustrate in this paper.

In previous work, we developed the AWARD model (Autonomic Workflow Activities,
Reconfigurable and Dynamic) (Assuncao et al., 2012), to address the above concerns, and illustrated
its use in distinct application scenarios, such as cloud data analytics (Goncalves et al., 2012), and fault
recovery in long-running workflows (Assuncao & Cunha, 2013). In this paper we further discuss our
approach, showing the flexibility of the AWARD model, for implementing such long-running
workflows with support for dynamic reconfigurations according to the application demands, e.g. by
dynamically changing the activity tasks for improving the performance, or for extending
the functionality of the application algorithms. We illustrate this in a common application scenario
where a distributed multi-site scientific experiment involves multiple interactive users, which are
allowed to perform independent and autonomous modification of multiple application components.
Furthermore we show how the dynamic inclusion of feedback loops into the ongoing computations is
also supported, without requiring to stop and restart the entire experiment from the beginning.

In section 2 we give an overview of the AWARD framework. In section 3 we review the related
work. In section 4 we describe the experimental evaluation scenarios as workflows and their execution
results using the AWARD framework. In section 5 we present the conclusions.

2 Overview of the AWARD Framework
The AWARD framework supports workflow applications with each workflow activity executed as

an autonomic process with independent control (named AWA) with a set of inputs and a set of
outputs. Multiple AWAs can run in parallel on distributed infrastructures, e. g. on Clouds (Assuncao
et al., 2012), (Goncalves et al., 2012), (Assuncao et al., 2014). The AWARD model of computation
follows the Process Networks (PN) model (Kahn, 1974). The AWARD Space, based on a shared tuple
space (Carriero & Gelernter, 1989), is used for the coordination of AWA interactions (data-flow
and/or control-flow), where data-driven tokens produced by outputs of activities are stored until other
activities consume these tokens in their inputs. For each AWA the application programmer develops
the activity Task as a Java class that implements a generic interface. The AWARD model supports a
total decoupling between Task development and the internal details of the AWA autonomic controller.
The autonomic controller for each activity loads dynamically the specified Task class and passes the
execution to the entry point of the Task with a list of arguments obtained from activity inputs and a list
of activity parameters. AWARD supports a set of dynamic reconfiguration operators allowing
structural and behavioral workflow changes. The currently implementation of the AWARD framework
relies on a Java Virtual Machine (JVM) to support workflow activities, and Jess rules engine
(Friedman-Hill, 2013) to support knowledge and decisions in each AWA autonomic controller. The
AWARD Space can be mapped to different implementations, including centralized, as currently based

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2138

on the IBM TSpaces API (Lehman et al., 2001), or decentralized as based on Comet (Li & Parashar,
2005). Additionally a set of AWARD Tools allows to: i) Manage the runtime configuration settings,
for instance definition of working directories and the location of the AWARD Space; ii) Manage the
startup of one or more AWAs, which can be launched all in the same computing node or in different
ones using partitions according to application dependent heuristics. In order to establish
synchronization points there are tools allowing starting the AWAs in a standby state and tools to start
their execution later; iii) Monitor the workflow execution by allowing the observation of tuples in the
AWARD Space, which is very useful to get log and execution information for debugging or fault
detection and recovery (Assuncao & Cunha, 2013). AWARD workflows run on a diversity of
infrastructures, such as standalone computers, local networks, clusters and clouds, with minimal
runtime requirements. In fact any operating systems with a Java Virtual Machine (JVM) installed and
supporting the execution of remote commands, e.g. through the Secure Shell (SSH) protocol or remote
desktop, can be used to host the execution of AWARD workflows. Dynamic reconfigurations are
allowed using a set of operators as presented in (Assuncao & Cunha, 2013), (Assuncao et al., 2014).
The AWARD model is neutral regarding any global coordination involving multiple AWA activities.
Then any required coordination must be provided externally, according to the application semantics.
Depending on the application scenarios this can be achieved by tools enforcing the consistency of the
reconfiguration, or explicitly achieved by user agreements.

A more detailed discussion of the AWARD framework can be found in (Assuncao et al., 2012),
(Assuncao & Cunha, 2013) and (Assuncao et al., 2014).

3 Related Work
In the past decade there have been multiple proposals to enable scientific collaboration by running

experiments in distributed infrastructures, for example by relying on web sites or portals (Hacker
et al., 2011), (Bauer et al., 2012) and/or supporting large scale workflows on distributed infrastructures
for instance on Clouds (Li et al., 2012), (Deelman et al., 2005) and tackling issues of distributed task
scheduling (Plociennik et al., 2013), (Li et al., 2012) and workflow provenance (Gil et al., 2011).
However among the currently open issues (Sonntag et al., 2010), (Ramakrishnan & Plale, 2010),
(Mattoso et al., 2013), (Lu & Zhang, 2009) there is insufficient support for user steering of the long-
running workflows, which is required to achieve a more effective collaboration life-cycle, where users
should be allowed to continuously monitor the workflow activities, analyze intermediate data and
perform dynamic changes in the workflow structure and behavior. In our previous work (Assuncao
et al., 2012) we proposed the AWARD model and framework for supporting dynamic workflow
reconfigurations, and we have shown its use for recovering from faulty Cloud services (Assuncao &
Cunha, 2013) or for developing Cloud data analytics applications based on MapReduce (Goncalves
et al., 2012). In this paper we illustrate the distinctive characteristics of the AWARD framework for
supporting user steering of workflow activities and dynamic workflow reconfiguration in a distributed
collaborative scenario. We show how AWARD allows multiple interactive users to separately launch,
monitor and modify computations on local data sets, without requiring stopping and restarting the
computation workflow from the beginning. Namely, we discuss how each user can change the task
parameters or algorithms, and how under users agreement, they can dynamically change the workflow
structure in order to include feedback loops. To the best of our knowledge these functionalities are not
currently supported by some of the most widely used scientific workflow systems, including Kepler
(Kepler project, 2013), Taverna (Wolstencroft & et al, 2013) or Pegasus (Deelman et al., 2005). Also,
related approaches for dynamic workflow reconfigurations have less flexibility as they have been
restricted to strategies for dynamic replacement of sub-workflows, which are predefined at design
time, and used for instance for recovering from faults (Tolosana-Calasanz et al., 2010), (Chen &
Deelman, 2012).

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2139

4 Evaluation Scenario
A scenario of a multinational distributed scientific experiment can be modeled as a generic

workflow template (Figure 1) with the following characteristics: i) On each site , , ,A B C D different
users manage large data sets, such that each user ,uA ,uB ,uC uD knows about their data models and
develops/uses software components with appropriate algorithms to process the local data sets; ii) Data
cannot be moved between sites due to data ownership, privacy and communication costs; iii) Users
establish a multi-site cooperation project to conduct multinational experiments, where sites A and B
continuously produce small data sets with the results obtained from their local experiments. Then site
C uses the information received from sites A and B as inputs to new algorithms, while site D
receives the results from siteC .

These continuous experiments generate long-running iterative computations with infinite
iterations, which can be functionally defined as a pipeline function

(((), ()))i i i i ifexperiment f f f fD C A B= where if x represents the algorithm functionality at site
{ }, , ,x A B C D∈ at iteration i .
In order to improve the results, each user should be allowed to change independently their

algorithms without the need to stop or restart the global experiment, thus provoking only side effects
on the results supplied as inputs to the other sites along the experiment chain. For instance, at iteration

n a user should be able to dynamically reconfigure the local algorithm nf x in order to enhance the
results. Then on site C at iterations i and j with i j< it is possible that i jf fC C≠ meaning that the
user ,uC has changed the corresponding algorithm. Furthermore, as shown in Figure 2, at certain
iteration the users in sites C and D can agree to introduce enhancements on their algorithms, using
feedback information meaning that the function in site C shall be replaced to receive one more
argument with the information from activity D . In this case and assuming this dynamic
reconfiguration occurs at iteration k the functionality of the experiment at iteration 1k+ can be

described as 1 1 1 1 1(((), (), ()))k k k k k kfexperiment f f f f fD C Dfeedback A B
+ + + + += where ()kf Dfeedback

represents the feedback information used on the enhancement of the algorithm of activityC . The
discussion of global collaborative coordination in this scenario is out of scope of this paper,
concerning how different users have achieved the agreement to apply the reconfiguration after
iteration k and what kind of feedback data is supplied.

[]T =((),)TaskA parameter listA tAΔ where tAΔ is

the elapsed execution time of activity A

[]T =((),)TaskB parameter listB tBΔ where tBΔ is

the elapsed execution time of activity B
T =((,),)[]TaskC T TC A B tC εΔ Δ where tCΔ is the

elapsed execution time of activity C and εΔ

is the accumulated elapsed execution time, i.e.,
max(,)tA tB tCεΔ = Δ Δ +Δ

Figure 1: An evaluation scenario

The main characteristics of this scenario are: i) The large data sets remain on their local sites and
there are not large amounts of data moving between sites. Only small amounts of intermediate data are
moved, typically to enable the next activities on the experiment chain; ii) The local activities are

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2140

independently launched and monitored by different users; iii) The experiment is a long-running
workflow with infinite iterations, where the activities can be executed at different paces; iv) Users
should be able to steering local activities by dynamic changes on algorithms and their parameters.

To demonstrate the execution of applications similar to the above scenario the activities A , B and
C should be deployed and executed independently, for example at Amazon cloud infrastructure. The
activity D should be executed on a scientist desktop machine in order to output the iteration results.
The Tasks of activities A , B and C emit for each iteration respectively the tokens , ,T T TA B C while
TaskD receives the tokens TC showing them through a graphical user interface component allowing a
user to monitor the intermediate results. Furthermore different users on different computers should be
able to monitor, change parameters and change algorithms on other activities. To illustrate the case of
feedback dependencies we use four dynamic reconfiguration operations (Figure 2a) leading to the
workflow depicted in Figure 2b.

• CreateOutput FeedOut on activity D;
• ChangeTask on activity D to produce tokens

to output FeedOut ;
• CreateInput FeedIn on activity C;
• ChangeTask on activity C to receive one

more argument. Then TaskC is changed to
emit tokens
T =((, ,),)[]TaskC FeedInToken T TC A B tC εΔ Δ
where FeedInToken may be the date and time
of the computer where activity D runs.

a) The reconfiguration operations b) The workflow after the reconfiguration

Figure 2: The workflow after performing a dynamic reconfiguration to introduce feedback dependencies

As a proof of concept we demonstrate how the above scenario requirements are met by the
AWARD framework with the following mappings for executing the workflows of Figure 1 and Figure
2: Activities A and B respectively with algorithms TaskA and TaskB were launched on Amazon EC2
Linux virtual machines in US data centers; Activity C on the Amazon EC2 Linux virtual machine in
Ireland data center; Activity D (output) is launched with a graphical interface (GUI) on a local
desktop computer allowing a user constantly monitoring the results. To experiment we developed the
TaskA to emit periodically, on each 2000 milliseconds the token []T =((),)TaskA parameter listA tAΔ and
TaskB to emit periodically, on each 1000 milliseconds the token []T =((),)TaskB parameter listB tBΔ . In
activity C with the algorithm TaskC reads tokens from its two inputs, imposes a delay of 4000
milliseconds and then emits the token T =((,),)[]TaskC T TC A B tC εΔ Δ converted as a string. Figure 3
presents the graphical user interface of activity D (output) where we can see that after iteration 25 the
user of activity B changed the value b1 of TaskB parameter to a new value b1new. At iteration 30 the
user of activity C changed to a new task TaskCnew and at iteration 35 the user of activity A changed
the task to TaskAnew leading to a decreased elapsed execution time. Firstly the new task of activity C
has decreased from 4000 milliseconds to 2000 milliseconds and secondly the task of activity A has
decreased from 2000 milliseconds to 1000 milliseconds, illustrating how algorithm enhancements can
be achieved by dynamic reconfigurations. For these simple tasks we get small overheads, few tens of
milliseconds, for loading and instantiating the new tasks. A discussion of overheads is out the scope of
this paper.

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2141

Figure 3: The user interface of activity D (output), one iteration per line

To evaluate the scenario of Figure 2, we submitted the reconfiguration (Figure 2a) at iteration 50.
We assume an agreement between users on activities C and D . Then at iteration 50 the activity D
emits a token with the current time on the new port FeedOut and as shown in Figure 4 the new task of
C (TaskCwithFeedback) at iteration 51 receives three arguments where the first one is the token
(current date and time) sent by activity D .

Figure 4: The user interface of activity D (output) showing the result after feedback reconfiguration

Despite the apparent simplicity of these functionalities, the execution of this workflow enables the
following main characteristics: i) The execution is distributed by different data centers; ii) Each
activity is launched, monitored and dynamically reconfigured by different users.

These experimental results clearly demonstrate the feasibility of executing global workflow
experiments allowing users on different sites to dynamically reconfigure their activities e.g. changing
tasks to new algorithms or the structure of the workflow to support feedback loops.

5 Conclusions
This paper discusses how the AWARD model and framework was used for the modeling and

implementation of a common collaborative scenario where geographically distributed activities
interact in a long-running computation towards achieving scientific results. We modeled this scenario
as a distributed workflow such that each activity produces small intermediate data that is passed on to
other sites. Furthermore in each site different users are able to independently develop and change the
activities that consume those intermediate data as their inputs for their own computations. The
feasibility of this approach was confirmed experimentally by running an AWARD workflow with
distributed activities deployed on data centers in different countries of the Amazon Cloud, and by

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2142

discussing how this experiment enabled the different users on different sites to dynamically and
independently reconfigure their activities. For example, users can dynamically change the task
algorithms for instance to perform local optimizations, and the structure of the workflow can be
reconfigured in order to include feedback dependencies between workflow activities without having to
stop and restart the entire workflow from the beginning. These capabilities are innovative and to the
best of our knowledge they are not currently supported by other workflow tools. From a practical
perspective, the developed experiment is relevant because it can be instantiated to represent real
application scenarios modeled as workflows with geographically distributed activities.

Acknowledgements

Thanks are due to PEst-OE/EEI/UI0527/2011, CITI/FCT/UNL-2011-2012 and to GIATSI-MIELE
project, ISEL/IPL.

References
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the Clouds: A Berkeley View of Cloud
Computing. Technical report.

Assuncao, L. & Cunha, J. C. (2013). Dynamic Workflow Reconfigurations for Recovering from
Faulty Cloud Services. In IEEE 5th International Conference on Cloud Computing Technology
and Science (CloudCom) (pp. 88–95).

Assuncao, L., Goncalves, C., & Cunha, J. C. (2012). Autonomic Activities in the Execution of
Scientific Workflows: Evaluation of the AWARD Framework. In 9th International Conference
on Autonomic Trusted Computing (ATC) (pp. 423–430).

Assuncao, L., Goncalves, C., & Cunha, J. C. (2014). Autonomic Workflow Activities: The
AWARD Framework. To appear in Int. Journal of Adaptive, Resilient, and Autonomic Systems,
5(2).

Bauer, M., McIntyre, S., Sherry, N., Qin, J., Maxwell, D., Liu, D., Matias, E., Fuller, M., Xie, Y.,
& Mola, O. (2012). Experimenters Portal: The Collection, Management and Analysis of
Scientific Data from Remote Sites. In 10th International Workshop on Middleware for Grids,
Clouds and e-Science (pp. 7:1–7:6).

Carriero, N. & Gelernter, D. (1989). Linda in Context. Communication of the ACM, 32(4).
Chen, W. & Deelman, E. (2012). Fault Tolerant Clustering in Scientific Workflows. In IEEE

World Congress on Services (pp. 9–16).
Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,

Berriman, G., Good, J., Laity, A., Jacob, J., & Katz, D. (2005). Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Scientific Prog., 13, 219–237.

Friedman-Hill, E. (2013). Jess: the Rule Engine for the Java Platform, Online:
http://www.jessrules.com/jess/.

Gil, Y., Ratnakar, V., Kim, J., Moody, J., Deelman, E., Calero, P., & Groth, P. (2011). Wings:
Intelligent Workflow-Based Design of Computational Experiments. Intellig. Syst., (pp. 62–72).

Goncalves, C., Assuncao, L., & Cunha, J. C. (2012). Data Analytics in the Cloud with Flexible
MapReduce Workflows. In IEEE 4th International Conference on Cloud Computing
Technology and Science (CloudCom) (pp. 427 –434).

Hacker, T., Eigenmann, R., Bagchi, S., Irfanoglu, A., Pujol, S., Catlin, A., & E., R. (2011). The
NEEShub Cyberinfrastructure for Earthquake Engineering. Computing in Science Engineering,
13(4), 67–78.

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2143

Kahn, G. (1974). The Semantics of a Simple Language for Parallel Programming. In Information
Processing (pp. 471–475).

Kepler project (2013). Kepler web site, Online: https://kepler-project.org/.
Lehman, T. J., Cozzi, A., Xiong, Y., Gottschalk, J., Vasudevan, V., Landis, S., Davis, P., Khavar,

B., & Bowman, P. (2001). Hitting the Distributed Computing Sweet Spot with TSpaces.
Computer Networks, 35(4), 457–472.

Li, X., Calheiros, R., Lu, S., Wang, L., Palit, H., Zheng, Q., & Buyya, R. (2012). Design and
Development of an Adaptive Workflow-Enabled Spatial-Temporal Analytics Framework. In
IEEE International Conference on Parallel and Distributed Systems (pp. 862–867).

Li, Z. & Parashar, M. (2005). Comet: A Scalable Coordination Space for Decentralized Distributed
Environments. In 2nd Int. Workshop on Hot Topics in Peer-to-Peer Systems (pp. 104–112).

Lu, S. & Zhang, J. (2009). Collaborative Scientific Workflows. In IEEE International Conference
on Web Services (pp. 527–534).

Mattoso, M., Ocana, K., Horta, F., Dias, J., Ogasawara, E., Silva, V., Oliveira, D., Costa, F., &
Igor, A. (2013). User-steering of HPC Workflows: State-of-the-art and Future Directions. In
2nd ACM Workshop on Scalable Workflow Execution Engines and Technologies (pp. 4:1–4:6).

Plociennik, M., Zok, T., & Altintas, I. (2013). Approaches to Distributed Execution of Scientific
Workflows in Kepler. Fundamenta Informaticae, 128, 281–302.

Ramakrishnan, L. & Plale, B. (2010). A Multi-dimensional Classification Model for Scientific
Workflow Characteristics. In 1st International Workshop on Workflow Approaches to New
Data-centric Science (pp. 4:1–4:12).

Sonntag, M., Karastoyanova, D., & Deelman, E. (2010). Bridging the Gap between Business and
Scientific Workflows: Humans in the Loop of Scientific Workflows. In IEEE Sixth
International Conference on e-Science (pp. 206–213).

Tolosana-Calasanz, R., Banares, J. A., Rana, O. F., Alvarez, P., Ezpeleta, J., & Hoheisel, A.
(2010). Adaptive exception handling for scientific workflows. Concurrency Computation:
Practice Experience, 22(5), 617–642.

Vahi, K., Rynge, M., Juve, G., Mayani, R., & Deelman, E. (2013). Rethinking Data Management
for Big Data Scientific Workflows. In IEEE International Conf. on Big Data (pp. 27–35).

Wolstencroft, K. & et al (2013). The Taverna Workflow Suite: Designing and Executing
Workflows of Web Services on the Desktop, Web or in the Cloud. Nucleic Acids Research,
Online: http://nar.oxfordjournals.org/content/early/2013/05/02/nar.gkt328.abstract.

Yaser Mansouri, A. N. T. & Buyya, R. (2013). Brokering Algorithms for Optimizing the
Availability and Cost of Cloud Storage Services. In IEEE 5th International Conference on
Cloud Computing Technology and Science (pp. 581–589).

Enabling Global Experiments with Interactive Reconfiguration ... L. Assuncao and J. Cunha

2144

