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Abstract 
In global scientific experiments with collaborative scenarios involving multinational teams there are 
big challenges related to data access, namely data movements are precluded to other regions or Clouds 
due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is 
processing local data sets using specialized algorithms and producing intermediate results that are 
helpful as inputs to applications running on remote sites. This paper shows how to model such 
collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow 
Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run 
the workflow activities on distributed data centers in different regions without the need of large data 
movements. The AWARD workflow activities are independently monitored and dynamically 
reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the 
computation results or by changing the workflow structure to support feedback dependencies where an 
activity receives feedback output from a successor activity. A real implementation of one practical 
scenario and its execution on multiple data centers of the Amazon Cloud is presented including 
experimental results with steering by multiple users. 
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1 Introduction 
Workflows models and tools have increasingly been used for developing scientific applications 

due to their transparent support for application decomposition into multiple activities and for modeling 
the control-flow and data-flow interactions between those activities. Workflows are also useful for 
allowing the design of long-running experiments with multiple, possibly infinite iterations, as is 
typically required to support the scientific experimental process. However, there is currently a lack of 
workflow models and tools that support a flexible composition of distributed and interactive tasks 
without relying on a centralized enactment engine. Most of the existing approaches are based on a 
centralized enactment engine, although they may still allow the composition of distributed services 
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(Plociennik et al., 2013), (Wolstencroft & et al, 2013) or the support for allocating tasks into the 
appropriate distributed resources according to the users requirements (Li et al., 2012). There is also a 
need for approaches supporting user steering where each user is responsible for executing, monitoring 
and dynamically reconfiguring specific tasks without the need to restart or change the activities by 
other users. The above functionalities should also support Big Data applications deployments that 
cannot rely on a centralized approach for data storage and processing, for instance relying on a unique 
Cloud provider (Armbrust et al., 2009), (Yaser Mansouri & Buyya, 2013), (Vahi et al., 2013). Instead, 
large amounts of data are usually spread in distributed storage repositories deployed in multiple data 
centers and distributed computations must access those data. Furthermore, data movement between 
data centers raises critical issues related to the communication costs, and to data ownership and 
privacy. This has motivated efforts on distributed task scheduling and optimization of the data 
transfers between sites. On the other hand it motivated the development of solutions for in-situ 
processing of local data sets, for instance by relying on the processing of local data sets in each site, 
and only passing small amounts of intermediate data between sites, as we illustrate in this paper. 

In previous work, we developed the AWARD model (Autonomic Workflow Activities, 
Reconfigurable and Dynamic)  (Assuncao et al., 2012), to address the above concerns, and illustrated 
its use in distinct application scenarios, such as cloud data analytics (Goncalves et al., 2012), and fault 
recovery in long-running workflows (Assuncao & Cunha, 2013). In this paper we further discuss our 
approach, showing the flexibility of the AWARD model, for implementing such long-running 
workflows with support for dynamic reconfigurations according to the application demands, e.g. by 
dynamically changing the activity tasks for improving the performance, or for extending 
the functionality of the application algorithms. We illustrate this in a common application scenario 
where a distributed multi-site scientific experiment involves multiple interactive users, which are 
allowed to perform independent and autonomous modification of multiple application components. 
Furthermore we show how the dynamic inclusion of feedback loops into the ongoing computations is 
also supported, without requiring to stop and restart the entire experiment from the beginning.  

In section 2 we give an overview of the AWARD framework. In section 3 we review the related 
work. In section 4 we describe the experimental evaluation scenarios as workflows and their execution 
results using the AWARD framework. In section 5 we present the conclusions.     

2 Overview of the AWARD Framework 
The AWARD framework supports workflow applications with each workflow activity executed as 

an autonomic process with independent control (named AWA) with a set of inputs and a set of 
outputs. Multiple AWAs can run in parallel on distributed infrastructures, e. g. on Clouds (Assuncao 
et al., 2012), (Goncalves et al., 2012), (Assuncao et al., 2014). The AWARD model of computation 
follows the Process Networks (PN) model (Kahn, 1974). The AWARD Space, based on a shared tuple 
space (Carriero & Gelernter, 1989), is used for the coordination of AWA interactions (data-flow 
and/or control-flow), where data-driven tokens produced by outputs of activities are stored until other 
activities consume these tokens in their inputs. For each AWA the application programmer develops 
the activity Task as a Java class that implements a generic interface. The AWARD model supports a 
total decoupling between Task development and the internal details of the AWA autonomic controller. 
The autonomic controller for each activity loads dynamically the specified Task class and passes the 
execution to the entry point of the Task with a list of arguments obtained from activity inputs and a list 
of activity parameters. AWARD supports a set of dynamic reconfiguration operators allowing 
structural and behavioral workflow changes. The currently implementation of the AWARD framework 
relies on a Java Virtual Machine (JVM) to support workflow activities, and Jess rules engine 
(Friedman-Hill, 2013) to support knowledge and decisions in each AWA autonomic controller. The 
AWARD Space can be mapped to different implementations, including centralized, as currently based 
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on the IBM TSpaces API (Lehman et al., 2001), or decentralized as based on Comet (Li & Parashar, 
2005). Additionally a set of AWARD Tools allows to: i) Manage the runtime configuration settings, 
for instance definition of working directories and the location of the AWARD Space; ii) Manage the 
startup of one or more AWAs, which can be launched all in the same computing node or in different 
ones using partitions according to application dependent heuristics. In order to establish 
synchronization points there are tools allowing starting the AWAs in a standby state and tools to start 
their execution later; iii) Monitor the workflow execution by allowing the observation of tuples in the 
AWARD Space, which is very useful to get log and execution information for debugging or fault 
detection and recovery (Assuncao & Cunha, 2013). AWARD workflows run on a diversity of 
infrastructures, such as standalone computers, local networks, clusters and clouds, with minimal 
runtime requirements. In fact any operating systems with a Java Virtual Machine (JVM) installed and 
supporting the execution of remote commands, e.g. through the Secure Shell (SSH) protocol or remote 
desktop, can be used to host the execution of AWARD workflows. Dynamic reconfigurations are 
allowed using a set of operators as presented in (Assuncao & Cunha, 2013), (Assuncao et al., 2014). 
The AWARD model is neutral regarding any global coordination involving multiple AWA activities. 
Then any required coordination must be provided externally, according to the application semantics. 
Depending on the application scenarios this can be achieved by tools enforcing the consistency of the 
reconfiguration, or explicitly achieved by user agreements. 

A more detailed discussion of the AWARD framework can be found in (Assuncao et al., 2012), 
(Assuncao & Cunha, 2013) and (Assuncao et al., 2014). 

3 Related Work 
In the past decade there have been multiple proposals to enable scientific collaboration by running 

experiments in distributed infrastructures, for example by relying on web sites or portals (Hacker 
et al., 2011), (Bauer et al., 2012) and/or supporting large scale workflows on distributed infrastructures 
for instance on Clouds (Li et al., 2012), (Deelman et al., 2005) and tackling issues of distributed task 
scheduling (Plociennik et al., 2013), (Li et al., 2012) and workflow provenance (Gil et al., 2011). 
However among the currently open issues (Sonntag et al., 2010), (Ramakrishnan & Plale, 2010), 
(Mattoso et al., 2013), (Lu & Zhang, 2009) there is insufficient support for user steering of the long-
running workflows, which is required to achieve a more effective collaboration life-cycle, where users 
should be allowed to continuously monitor the workflow activities, analyze intermediate data and 
perform dynamic changes in the workflow structure and behavior. In our previous work (Assuncao 
et al., 2012) we proposed the AWARD model and framework for supporting dynamic workflow 
reconfigurations, and we have shown its use for recovering from faulty Cloud services (Assuncao & 
Cunha, 2013) or for developing Cloud data analytics applications based on MapReduce (Goncalves 
et al., 2012). In this paper we illustrate the distinctive characteristics of the AWARD framework for 
supporting user steering of workflow activities and dynamic workflow reconfiguration in a distributed 
collaborative scenario. We show how AWARD allows multiple interactive users to separately launch, 
monitor and modify computations on local data sets, without requiring stopping and restarting the 
computation workflow from the beginning. Namely, we discuss how each user can change the task 
parameters or algorithms, and how under users agreement, they can dynamically change the workflow 
structure in order to include feedback loops. To the best of our knowledge these functionalities are not 
currently supported by some of the most widely used scientific workflow systems, including Kepler 
(Kepler project, 2013), Taverna (Wolstencroft & et al, 2013) or Pegasus (Deelman et al., 2005). Also, 
related approaches for dynamic workflow reconfigurations have less flexibility as they have been 
restricted to strategies for dynamic replacement of sub-workflows, which are predefined at design 
time, and used for instance for recovering from faults (Tolosana-Calasanz et al., 2010), (Chen & 
Deelman, 2012).  
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4 Evaluation Scenario 
A scenario of a multinational distributed scientific experiment can be modeled as a generic 

workflow template (Figure 1) with the following characteristics: i) On each site , , ,A B C D  different 
users manage large data sets, such that each user ,uA  ,uB  ,uC  uD knows about their data models and 
develops/uses software components with appropriate algorithms to process the local data sets; ii) Data 
cannot be moved between sites due to data ownership, privacy and communication costs; iii) Users 
establish a multi-site cooperation project to conduct multinational experiments, where sites A and B
continuously produce small data sets with the results obtained from their local experiments. Then site 
C  uses the information received from sites A and B as inputs to new algorithms, while site D  
receives the results from siteC . 

These continuous experiments generate long-running iterative computations with infinite 
iterations, which can be functionally defined as a pipeline function

( ( (), ()))i i i i ifexperiment f f f fD C A B=  where if x  represents the algorithm functionality at site 
{ }, , ,x A B C D∈  at iteration i . 
In order to improve the results, each user should be allowed to change independently their 

algorithms without the need to stop or restart the global experiment, thus provoking only side effects 
on the results supplied as inputs to the other sites along the experiment chain. For instance, at iteration 

n  a user should be able to dynamically reconfigure the local algorithm nf x  in order to enhance the 
results. Then on site C  at iterations i  and j  with i j<  it is possible that i jf fC C≠ meaning that the 
user ,uC  has changed the corresponding algorithm. Furthermore, as shown in Figure 2, at certain 
iteration the users in sites C and D  can agree to introduce enhancements on their algorithms, using 
feedback information meaning that the function in site C  shall be replaced to receive one more 
argument with the information from activity D . In this case and assuming this dynamic 
reconfiguration occurs at iteration k the functionality of the experiment at iteration 1k+ can be 

described as 1 1 1 1 1( ( (), (), ()))k k k k k kfexperiment f f f f fD C Dfeedback A B
+ + + + += where ()kf Dfeedback

represents the feedback information used on the enhancement of the algorithm of activityC . The 
discussion of global collaborative coordination in this scenario is out of scope of this paper, 
concerning how different users have achieved the agreement to apply the reconfiguration after 
iteration k  and what kind of feedback data is supplied.  

 

 

[ ]T =( (  ), )TaskA parameter listA tAΔ where tAΔ  is 

the elapsed execution time of activity A   

[ ]T =( (  ), )TaskB parameter listB tBΔ where tBΔ  is 

the elapsed execution time of activity B   
T =( ( , ), )[ ]TaskC T TC A B tC εΔ Δ where tCΔ is the 

elapsed execution time of activity C  and εΔ  

is the accumulated elapsed execution time, i.e.,
max( , )tA tB tCεΔ = Δ Δ +Δ  

Figure 1: An evaluation scenario 

The main characteristics of this scenario are: i) The large data sets remain on their local sites and 
there are not large amounts of data moving between sites. Only small amounts of intermediate data are 
moved, typically to enable the next activities on the experiment chain; ii) The local activities are 
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independently launched and monitored by different users; iii) The experiment is a long-running 
workflow with infinite iterations, where the activities can be executed at different paces; iv) Users 
should be able to steering local activities by dynamic changes on algorithms and their parameters. 

To demonstrate the execution of applications similar to the above scenario the activities A , B  and 
C  should be deployed and executed independently, for example at Amazon cloud infrastructure.  The 
activity D  should be executed on a scientist desktop machine in order to output the iteration results. 
The Tasks of activities A , B  and C  emit for each iteration respectively the tokens , ,T T TA B C  while 
TaskD receives the tokens TC  showing them through a graphical user interface component allowing a 
user to monitor the intermediate results. Furthermore different users on different computers should be 
able to monitor, change parameters and change algorithms on other activities. To illustrate the case of 
feedback dependencies we use four dynamic reconfiguration operations (Figure 2a) leading to the 
workflow depicted in Figure 2b.  

 
• CreateOutput FeedOut on activity D; 
• ChangeTask on activity D to produce tokens 

to output FeedOut ; 
• CreateInput FeedIn on activity C; 
• ChangeTask on activity C to receive one 

more argument. Then TaskC is changed to 
emit tokens 
T =( ( , , ), )[ ]TaskC FeedInToken T TC A B tC εΔ Δ
where FeedInToken may be the date and time 
of the computer where activity D runs. 

a) The reconfiguration operations b) The workflow after the reconfiguration 

Figure 2: The workflow after performing a dynamic reconfiguration to introduce feedback dependencies 

As a proof of concept we demonstrate how the above scenario requirements are met by the 
AWARD framework with the following mappings for executing the workflows of Figure 1 and Figure 
2: Activities A  and B  respectively with algorithms TaskA and TaskB were launched on Amazon EC2 
Linux virtual machines in US data centers; Activity C  on the Amazon EC2 Linux virtual machine in 
Ireland data center; Activity D  (output) is launched with a graphical  interface (GUI) on a local 
desktop computer allowing a user constantly monitoring the results. To experiment we developed the 
TaskA to emit periodically, on each 2000 milliseconds the token [ ]T =( (  ), )TaskA parameter listA tAΔ  and 
TaskB to emit periodically, on each 1000 milliseconds the token [ ]T =( (  ), )TaskB parameter listB tBΔ . In 
activity C with the algorithm TaskC reads tokens from its two inputs, imposes a delay of 4000 
milliseconds and then emits the token T =( ( , ), )[ ]TaskC T TC A B tC εΔ Δ converted as a string. Figure 3 
presents the graphical user interface of activity D (output) where we can see that after iteration 25 the 
user of activity B  changed the value b1 of TaskB parameter to a new value b1new. At iteration 30 the 
user of activity C  changed to a new task TaskCnew and at iteration 35 the user of activity A  changed 
the task to TaskAnew leading to a decreased elapsed execution time. Firstly the new task of activity C  
has decreased from 4000 milliseconds to 2000 milliseconds and secondly the task of activity A  has 
decreased from 2000 milliseconds to 1000 milliseconds, illustrating how algorithm enhancements can 
be achieved by dynamic reconfigurations. For these simple tasks we get small overheads, few tens of 
milliseconds, for loading and instantiating the new tasks. A discussion of overheads is out the scope of 
this paper.  
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Figure 3: The user interface of activity D (output), one iteration per line 

To evaluate the scenario of Figure 2, we submitted the reconfiguration (Figure 2a) at iteration 50. 
We assume an agreement between users on activities C  and D . Then at iteration 50 the activity D
emits a token with the current time on the new port FeedOut and as shown in Figure 4 the new task of 
C  (TaskCwithFeedback) at iteration 51 receives three arguments where the first one is the token 
(current date and time) sent by activity D . 

 

 
Figure 4: The user interface of activity D (output) showing the result after feedback reconfiguration 

Despite the apparent simplicity of these functionalities, the execution of this workflow enables the 
following main characteristics: i) The execution is distributed by different data centers; ii) Each 
activity is launched, monitored and dynamically reconfigured by different users. 

These experimental results clearly demonstrate the feasibility of executing global workflow 
experiments allowing users on different sites to dynamically reconfigure their activities e.g. changing 
tasks to new algorithms or the structure of the workflow to support feedback loops. 

5 Conclusions 
This paper discusses how the AWARD model and framework was used for the modeling and 

implementation of a common collaborative scenario where geographically distributed activities 
interact in a long-running computation towards achieving scientific results. We modeled this scenario 
as a distributed workflow such that each activity produces small intermediate data that is passed on to 
other sites. Furthermore in each site different users are able to independently develop and change the 
activities that consume those intermediate data as their inputs for their own computations. The 
feasibility of this approach was confirmed experimentally by running an AWARD workflow with 
distributed activities deployed on data centers in different countries of the Amazon Cloud, and by 
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discussing how this experiment enabled the different users on different sites to dynamically and 
independently reconfigure their activities. For example, users can dynamically change the task 
algorithms for instance to perform local optimizations, and the structure of the workflow can be 
reconfigured in order to include feedback dependencies between workflow activities without having to 
stop and restart the entire workflow from the beginning. These capabilities are innovative and to the 
best of our knowledge they are not currently supported by other workflow tools. From a practical 
perspective, the developed experiment is relevant because it can be instantiated to represent real 
application scenarios modeled as workflows with geographically distributed activities. 
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