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For any level q, 0 < q < 1, and on the basis of a sample (X1, . . . , Xn) of either independent, identically
distributed or possibly weakly dependent and stationary random variables from an unknown model F
with a heavy right-tail function, the value-at-risk at the level q, denoted by VaRq, the size of the loss
that occurred with a small probability q, is estimated by a recent semi-parametric procedure based on a
partially reduced-bias extreme value index (EVI) class of estimators, a generalization of the classical Hill
EVI-estimator, related to the mean-of-order-p of an adequate set of statistics. Such an estimator depends
on two tuning parameters p and k, with p ≥ 0 and 1 ≤ k < n the number of top order statistics involved in
the semi-parametric estimation, and outperforms previous estimation procedures. The adequate choice of
k and p can be done through the use of either a computer-intensive double-bootstrap method or through
reliable heuristic procedures. An application in the field of finance is also provided.

Keywords: extreme value theory; semi-parametric estimation; statistics of extremes; value-at-risk.

1 Introduction and scope of the article

Let (X1, . . . , Xn) be a sample of independent, identically distributed or possibly weakly dependent and
stationary random variables (RVs), from an underlying cumulative distribution function (CDF) F . Let us
denote by (X1:n ≤ · · · ≤ Xn:n) the sample of associated ascending order statistics. If there exist sequences
of real numbers, (an, bn), with an > 0 and bn ∈ R, such that the sequence of linearly normalized maxima,
{(Xn:n − bn)/an}n≥1, converges to a non-degenerate RV, then (Gnedenko, 1943) such a RV is of the type of
a general extreme value (EV) CDF,

EVξ(x) =
{

exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0,
exp(− exp(−x)), x > 0, if ξ = 0.

(1)

We then say that F is in the max-domain of attraction of EVξ, use the notation F ∈ DM(EVξ), (an, bn) are
the so-called attraction coefficients of F to the limiting law EVξ, and the parameter ξ is the extreme value
index (EVI), one of the most relevant parameters in the field of statistics of extremes.

We shall here consider heavy right tails, i.e. ξ > 0 in (1), and we are interested in dealing with the
semi-parametric estimation of the value-at-risk (VaRq) at the level q, the size of the loss that occurs with a
small probability q. We are thus dealing with the high quantile

χ1−q ≡ VaRq := F←(1− q),

of the unknown CDF F , with F←(y) = inf {x : F (x) ≥ y} denoting the generalized inverse function of F . As
usual, let us denote by U(t) the tail quantile function (TQF), i.e. U(t) := F←(1−1/t), t ≥ 1, the generalized



inverse function of 1/(1 − F ). For small q, we thus want to estimate the parameter VaRq = U (1/q) , q =
qn → 0, nqn ≤ 1, extrapolating beyond the sample, possibly working in the whole DM(EVξ>0) =: D+

M,
assuming thus that U(t) ∼ Ctξ, as t → ∞, where the notation a(t) ∼ b(t) means that a(t)/b(t) → 1, as
t→∞.

Weissman (1978) proposed the semi-parametric VaRq-estimator,

Q(q)

ξ̂
(k) := Xn−k:n (k/(nq))ξ̂ , (2)

where ξ̂ can be any consistent estimator for ξ and Q stands for quantile. For ξ > 0, the classical EVI-
estimator, usually the one which is used in (2), for a semi-parametric quantile estimation, is the Hill estimator
ξ̂ = ξ̂(k) =: H(k) (Hill, 1975),

H(k) :=
1
k

k∑
i=1

Vik, Vik = ln
Xn−i+1:n

Xn−k:n
, 1 ≤ i ≤ k. (3)

If we plug in (2) the Hill estimator, H(k), we get the so-called Weissman-Hill quantile or VaRq-estimator,
with the obvious notation, Q(q)

H
(k).

Noticing that we can write

H(k) =
k∑
i=1

ln
(
Xn−i+1:n

Xn−k:n

)1/k

= ln

(
k∏
i=1

Xn−i+1:n

Xn−k:n

)1/k

, 1 ≤ i ≤ k < n,

the Hill estimator is thus the logarithm of the geometric mean (or mean-of-order-0) of

U := {Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n} . (4)

More generally, Brilhante et al. (2013) considered as basic statistics the mean-of-order-p (MOP) of U, in (4),
with p ≥ 0, and the associated class of EVI-estimators,

Hp(k) :=


1
p

(
1−

(
1
k

k∑
i=1

Upik

)−1
)
, if p > 0,

H(k), if p = 0,

(5)

with H0(k) ≡ H(k), given in (3). The class of MOP EVI-estimators in (5) depends now on this tuning
parameter p ≥ 0, and was shown to be valid for 0 ≤ p < 1/ξ, whenever k = kn is an intermediate sequence,
i.e. a sequence of integers k = kn, 1 ≤ k < n, such that k = kn → ∞ and kn = o(n), as n → ∞. If we
plug in (2) the MOP EVI-estimator, Hp(k), we get the so-called MOP quantile or VaRq-estimator, with the
obvious notation, Q(q)

Hp
(k), studied asymptotically and for finite samples in Gomes et al. (2015b).

The MOP EVI-estimators in (5) can often have a high asymptotic bias, and bias reduction has re-
cently been a vivid topic of research in the area of statistics of extremes. Working just for technical
simplicity in the particular class of Hall-Welsh models in (Hall and Welsh, 1986), with a TQF U(t) =
Ctξ (1 + ξβtρ/ρ+ o(tρ)) , as t→∞, dependent on a vector (β, ρ) of unknown second-order parameters, the
asymptotic distributional representation of the Hill EVI-estimator, given in (3), or equivalently, of Hp(k),
given in (5), for p = 0, led Caeiro et al. (2005) to directly remove the dominant component of the bias of the
Hill EVI-estimator, given by ξβ(n/k)ρ/(1− ρ), considering the corrected-Hill (CH) EVI-estimators,

CH(k) ≡ CHβ̂,ρ̂(k) := H(k)
(

1− β̂

1− ρ̂

(n
k

)ρ̂ )
, (6)

a minimum-variance reduced-bias (MVRB) class of EVI-estimators for suitable second-order parameter esti-
mators, (β̂, ρ̂). Estimators of ρ can be found in a large variety of articles, including Fraga Alves et al. (2003).
Regarding the β-estimation, we refer to Gomes and Martins (2002), also among others. Gomes and Pestana



(2007) have used the EVI-estimator in (6) to build classes of MVRB VaRq-estimators, that we obviously
denote by Q(q)

CH
(k). Recent overviews including the topic of reduced-bias estimation can be seen in Beirlant

et al. (2012) and Gomes and Guillou (2014).
Working with values of p such that the asymptotic normality of the estimators in (5) holds, i.e. more

specifically with 0 ≤ p < 1/(2ξ), Brilhante et al. (2014) noticed that there is an optimal value p ≡ p
M

= ϕρ/ξ,
with

ϕρ = 1− ρ/2−
√

(1− ρ/2)2 − 1/2, (7)

which maximises the asymptotic efficiency of the class of estimators in (5). Then, they considered the optimal
RV HpM

(k), with Hp(k) given in (5), deriving its asymptotic behaviour. Such a behaviour has led Gomes et
al. (2015a) to introduce a partially reduced-bias (PRB) class of MOP EVI-estimators based on Hp(k), in (5),
with the functional expression

PRBp(k; β̂, ρ̂) := Hp(k)
(

1− β̂(1− ϕρ̂)
1− ρ̂− ϕρ̂

(n
k

)ρ̂ )
, (8)

still dependent on a tuning parameter p and with ϕρ defined in (7). It is thus sensible to use the class of
EVI-estimators given in (8), and to consider the associated VaRq-estimators, that we obviously denote by
Q(q)

PRBp
(k).

In this article, apart from the description of a small-scale Monte-Carlo simulation, in Section 2, to
illustrate the comparative behavior of the different VaR-estimators under consideration, an application in
the field of finance is provided in Section 3. Finally, Section 4 sketches some conclusions of this study.

2 A Monte-Carlo illustration

We have implemented multi-sample Monte-Carlo simulation experiments of size, 5000 × 20, essentially for
the class of VaR-estimators, Q(q)

PRBp
(k), and for a few values of n and p, in comparison with the H and CH

VaR-estimators. Further details on multi-sample simulation can be found in Gomes and Oliveira (2001).
In Figure 1 an illustration of the obtained results is given for the VaR-estimators under consideration

and for an EV0.1 parent. In this figure, we show, for n = 1000, q = 1/n, and on the basis of the first
N = 5000 runs, the simulated patterns of mean value, EQ[·], and root mean squared error, RMSEQ[·], of
the standardized PRB MOP VaR-estimators, for p = p` = `/(8ξ), ` = 1(1)7, representing only the best two
among the considered `-values, the classical H VaR-estimators and the MVRB VaR-estimators.

 
0

0.5

1

1.5

2

0 200 400 600

0

0.5

1

0 200 400 600

 ! = 2

 ! = 1
 ! = 2

 

H

CH

 

H

CH

 

k

 ! = 1

 

RMSE[.]

 

E[.]

Figure 1: Mean values of Q(1/n)
• (k)/VaRq (left) and RMSE of Q(1/n)

• (k)/VaRq (right), for underlying EV
parent with ξ = 0.1, for a sample size n = 1000

We have further computed the Weissman-Hill VaR-estimator Q(q)
H (k) at the simulated value of

k
(q)
0|H := arg mink RMSE

(
Q(q)

H (k)
)
, the simulated optimal k in the sense of minimum RMSE. Such a value is



not highly relevant in practice, but provides an indication of the best possible performance of the Weissman-
Hill VaR-estimator. Such an estimator is denoted by Q00 := QH|0. We have also computed Q0p := QPRBp|0
at simulated optimal levels, for a few values of p, and the simulated indicators,

REFF0|p := RMSE (Q00)/RMSE (Qp0).

A similar REFF-indicator, REFFCH|0 has also been computed for the MVRB VaR-estimator. For a visuali-
sation of the obtained results, we represent Figure 2, again related to an EV0.1 parent CDF.
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Figure 2: Normalized mean values (left) and REFF-indicators (right) of the VaRq-estimators under study,
at optimal levels, for q = 1/n, EV0.1 parents and 100 ≤ n ≤ 5000

3 A case-study in the field of finance

We shall here consider the performance of the above mentioned estimators in the analysis of Euro-UK Pound
daily exchange rates from January 4, 1999 till December 14, 2004, the data already analyzed in Gomes and
Pestana (2007). We have worked with the n0 = 725 positive log-returns:
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Figure 3: Euro-UK Pound daily exchange rates from January 4, 1999 till December 14, 2004 (left)
and associated log-returns (right)



The sample paths of the VaR–estimators under study, for q = 0.001, are pictured in Figure 4, where
PRB∗ represents the PRBp VaR-estimator associated with an heuristic choice of p, performed in the lines of
Gomes et al. (2013) and Neves et al. (2015).
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Figure 4: VaRq-estimates provided through the different classes of VaR-estimators, for the Daily Log-Returns
on the Euro-UK Pound and q = 0.001

For q = 0.001, any of the usual stability criterion for moderate values of k led us to the choice of the
estimator QPRB∗ and to the estimate 2.915 for VaR0.001.

4 Concluding remarks

• It is clear that Weissman-Hill VaR-estimation leads to a strong over-estimation of VaR and the RB
MOP, or even the MOP methodology can provide a more adequate VaR-estimation, being even able
to beat the MVRB VaR-estimators in Gomes and Pestana (2007) in a large variety of situations.

• The obtained results lead us to strongly advise the use of the quantile estimator QPRBp
(k), for a

suitable choice of the tuning parameters p and k, provided by an algorithm like for instance the
bootstrap algorithm of the type devised for an RB EVI-estimation in Gomes et al. (2012), among
others, or heuristic algorithms of the type of the ones in Gomes et al. (2013) and Neves et al. (2015).

• For small values of |ρ| the use of QPRBp
, with a suitable value of p, always enables a reduction in RMSE

regarding the Weissman-Hill estimator and even the CH VaRq-estimator. Moreover, the bias is also
reduced comparatively with the bias of the Weissman-Hill VaR-estimator, resulting in estimates closer
to the target value VaRq, for small values of q comparatively to n.
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