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Abstract 

 

The use of aromatase inhibitors (AI’s) is one of the therapeutic approaches for 

estrogen-receptor positive (ER+) breast cancer, being Exemestane (Exe) the third-

generation steroidal AI used in clinic. Besides its therapeutic success, acquired 

resistance may develop causing tumor relapse. Thus, it is important to search for new 

strategies to surpass Exe-acquired resistance. It was already reported that autophagy 

may be implicated in Exe-acquired resistance. Moreover, PI3K/AKT is considered a 

major pathway in endocrine resistance. Therefore, using an AI-resistant breast cancer 

cell line (LTEDaro) it was investigated the roles of autophagy and of the PI3K/AKT 

survival pathway in Exe-resistance process. In that way, the effects of two different 

pan-PI3K inhibitors, Wortmannin (WT) and LY294002 (LY), and of one autophagic 

inhibitor, Spautin-1 (SP), in Exe-treated LTEDaro cells were studied. Our results 

demonstrate that the combination of Exemestane with LY, WT or SP induced a 

reduction in LTEDaro cell viability. Moreover, in Exe-treated LTEDaro cells, WT, LY 

and SP caused cell cycle arrest in different cell cycle phases. Furthermore, all the 

compounds in combination with Exe induced apoptosis through different pathways in a 

ROS-independent manner. LY activates apoptosis through the mitochondrial pathway, 

while SP caused apoptosis recruiting extrinsic pathway players. Curiously, WT induced 

apoptosis through the cross talk between the intrinsic and the extrinsic pathway. In 

addition, all the inhibitors reduced Exe-induced autophagy, as well as, the activation of 

the survival pathway, PI3K/AKT. Thus, by modulating the survival pathways and 

autophagy it may be possible to sensitize acquired-resistant breast cancer cells to Exe 

therapy. This work provides new insights in breast cancer therapy by elucidating the 

mechanisms and targets involved in Exe-acquired resistance. 

 

Keywords: breast cancer, aromatase inhibitors, Exemestane, endocrine resistance 
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Resumo 

 

 O uso de inibidores da aromatase (AI’s) é uma das abordagens terapêuticas 

para o cancro da mama recetor de estrogénio positivo (ER+), sendo o Exemestano 

(Exe) o AI esteroide da terceira geração usado na clínica. Apesar do seu sucesso 

terapêutico, ocorrem situações de resistência causando reincidência do tumor. Assim, 

é importante procurar novas estratégias para ultrapassar a resistência adquirida ao 

Exe. Foi previamente descrito o envolvimento da autofagia na resistência adquirida ao 

Exe. Para além disto, a via PI3K/AKT é considerada uma das principais na resistência 

endócrina. Assim, foi investigado o papel da autofagia e da via de sobrevivência 

PI3K/AKT no processo de resistência ao Exe usando uma linha celular de cancro da 

mama resistente aos AI’s (LTEDaro). Foram estudados os efeitos de dois inibidores 

pan-PI3K, a Wortmanina (WT) e o LY294002 (LY), e de um inibidor autofágico, a 

Spautina-1 (SP), nas células LTEDaro tratadas com Exe. Os resultados demonstraram 

que a combinação de Exe com LY, WT ou SP induz uma redução da viabilidade 

celular das células LTEDaro. Para além disso, em células LTEDaro tratadas com Exe, 

a WT, o LY e a SP causaram uma retenção do ciclo celular em diferentes fases do 

ciclo. Todos os compostos induziram apoptose através de diferentes vias de uma 

forma independente de ROS. O LY induziu apoptose pela via mitocondrial, enquanto 

que a SP causou apoptose ao recrutar elementos da via extrínseca. Curiosamente, a 

WT induziu apoptose através de um cross talk entre a via intrínseca e extrínseca. 

Todos os inibidores reduziram a autofagia induzida pelo Exe, bem como, a ativação da 

via de sobrevivência, PI3K/AKT. Assim, ao modular as vias de sobrevivência e a 

autofagia, pode ser possível sensibilizar células de cancro da mama resistentes à 

terapia com Exe. Este trabalho traz novos conhecimentos à terapia de cancro da 

mama ao elucidar os mecanismos e alvos envolvidos na resistência adquirida ao 

Exemestano. 

 

Palavras-Chave: cancro da mama, inibidores da aromatase, exemestano, resistência 

endócrina 
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1. Breast cancer 

 

Breast cancer is the most common cancer in women worldwide (Fig. 1) and the 

second cause of cancer death in females [1]. The breast is composed by lobes which 

contain lobules, and ducts. The lobules end in several tiny bulbs that can produce milk.  

Lobes, lobules and bulbs are linked by thin tubes called ducts. Usually, breast tumors 

either begin in the cells of lobules or of ducts. Less commonly, breast cancer can begin 

in the stromal tissues, which include the adipose and fibrous connective tissues of 

breast. The most common type of breast cancer is ductal carcinoma.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 - The incidence of new diagnoses per 100,000 women per year (adapted from [2]). 

 

 Breast cancer is not a single disease, but it represents a heterogeneous 

disease classified into several subtypes [3]. It is well established that these subtypes 

have unique prognosis and differ in their responsiveness to chemoprevention and 

chemotherapy [4]. Approximately 60% of premenopausal and 75% of postmenopausal 

breast cancer patients have estrogen receptor positive carcinomas, ER+. These 

carcinomas are estrogen dependent, which means that they rely on the mitogenic 

effects of estrogen to drive carcinogenesis [5, 6]. Collectively, the ER+ tumors are 

designated luminal cancers. These are sub-classified into luminal A, [ER+, PR+, HER2-

], and luminal B, [ER+, PR+, HER2+], subtypes based on their human epidermal growth 

factor receptor 2 (HER2) status and proliferation rates [3]. Among the ER+ breast 

cancers, the luminal B tumors are associated with a significantly worse prognosis than 
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luminal A subtype [7]. The difference in the outcome between these two subtypes is 

due to variations in the response to anti-estrogen therapy [8]. 

The ER- breast cancers are sub-classified as human epidermal growth factor 

receptor 2 positive, [ER-, PR-, HER2+], and basal-like (triple negative) [3]. In 15% to 

20% of breast cancers the HER2 is overexpressed and has been associated with poor 

prognosis [9].The triple negative breast cancers, [ER-, PR-, HER2-], constitute 10% of 

breast cancers. With a poor clinical outcome, this subtype does not have an approved 

targeted therapy [3, 10, 11]. The receptors expression, or lack of it, is a determining 

factor for tumor growth and tumor recurrence, since these factors vary among the 

different types of breast cancer. 

 

1.1 Risk Factors and Treatments 

 

 As breast cancer is more frequently found in postmenopausal women, the age 

of the patient is considered one of the majors risk factors [2]. In fact, around 75% of 

breast cancer cases are present in postmenopausal women [2]. However, the risk 

factor more associated with breast cancer is inheritance of an inactivating mutation in 

one of the breast cancer genes: Breast Cancer 1, early onset (BRCA1), Breast Cancer 

2, early onset (BRCA2), Checkpoint kinase 2 (CHEK2), p53 and Ataxia Telangiectasia 

Mutated (ATM). Mutations in these genes contribute to around 5% of breast cancer 

cases [2]. Other factors that are associated to an increased risk of breast cancer are: 

dietary habits, which may lead to obesity, occurring more frequently in the developed 

countries; high levels of endogenous estrogens, absence of lactation, late menopause, 

hormonal replacement therapy, oral contraception and high circulating levels of insulin-

like growth factor-1 (IGF-1). Exercise is thought to reduce this risk [2].   

 Different types of treatment are available for patients with breast cancer. The 

standard therapies are: surgery, radiation therapy, chemotherapy, endocrine therapy 

and the targeted therapy [12]. Amongst the standard treatment the surgery is the most 

common. Chemotherapy uses drugs to limit the growth of tumors, either by killing the 

cancer cells or by stopping them from dividing. Chemotherapy may be given before the 

surgery, as neoadjuvant therapy, to reduce the tumor, or after the surgery, as adjuvant 

therapy to kill the remaining cancer cells, and therefore, lower the risk of cancer 

recurrence [12]. Radiation therapy uses high energy x-rays or other types of radiation 

to kill, or at least prevent the growth of tumors. The way the radiation therapy is given 

depends on the type and stage of the cancer. Hormone therapy is a treatment that 

prevents, or blocks, the action of hormones involved in cancer growth, and can be 
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performed by ovarian function ablation, to stop the production of estrogens, or 

administration of drugs, like Tamoxifen or Aromatase Inhibitors (AI’s). Nevertheless, 

Tamoxifen’s treatment may increase the chance of developing endometrial cancer. 

Aromatase Inhibitors are given to postmenopausal patients, as well as in pre-

menopausal women whose ovarian function is suppressed. Other targeted therapy 

uses substances like the monoclonal antibody, Trastuzumab (blockade of ligand 

binding to HER2), tyrosine-kinase inhibitors, like Lapatinib (blocks the transduction of 

HER2 signals), and cyclin-dependent kinases inhibitors like Palbociclib (blocks the 

activity of the cyclin-dependent kinases) that are used in postmenopausal women’s 

whose cancer was not treated with AI’s [13].  

 

2.  Estrogen biosynthesis  

 

 Estrogens are essential for the normal physiology and normal woman 

reproduction. The leading role of estrogens is the maturation and growth of the sexual 

organs, being also responsible for the secondary sex characteristics during puberty. 

Estrogens act in the mammary gland promoting the mammary development through 

stimulation of stroma and ductal growth and accumulation of adipose tissue. Besides 

the reproductive system, estrogens also have pivotal roles in the musculoskeletal 

system, cardiovascular system and brain.  

 Estrogens like every steroidal hormone are cholesterol-derived (Fig. 2). The 

estrogens in women are Estrone (E1), Estradiol (E2) and Estriol (E3). E2 is the main 

estrogen in women at fertile age. In contrast, E1 is the principal estrogen in 

postmenopausal women, while E3 is the main estrogen during pregnancy. 

 Estrogens are derived from androstenedione, which is either converted directly 

to estrogens, namely, E1 or E2, or to Testosterone and then to E2. Reduction of 

Androstenedione to Testosterone requires 17β-Hydroxysteroid Dehydrogenase type 2 

(17β-HSD). Androstenedione can also undergo a three-step A-ring aromatization to E1 

catalyzed by aromatase, that belongs to the cytochrome P450 family’s 

monooxygenases [14]. This enzyme also converts Testosterone into Estradiol (17β-

Estradiol). Interconversion of E2 and E1 requires other Hydroxysteroid 

Dehydrogenases [12, 15, 16]. This interconversion is necessary since the E1, contrary 

to E2, does not activate the ER [17].  
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Fig. 2 - The estrogen biosynthetic pathway. 

 

 Ovaries are the main organ for estrogen synthesis in premenopausal women.  

When women reach menopause ovarian biosynthesis ceases. In postmenopausal 

women the plasma estrogens levels are present in low concentration and are derived 

from the androgens produced by the adrenal glands. These molecules are then 

converted to estrogens in other organs and tissues, like liver, muscle, connective tissue 

and skin [14, 17]. 

 In the 70’s the first indications of extraglandular aromatase activity in both men 

and women were discovered, countering the dogma that  steroid hormones were only 

synthesized in endocrine glands such as ovaries, testis and adrenal [14]. Although the 

circulating androgens, in postmenopausal women, are from adrenal origin, the ovary 

seems to provide a minor contribution to circulating testosterone levels [15].   

 

2.1 Aromatase 

 

 Human aromatase is an enzyme of the cytochrome P450 family and is the 

product of the CYP19A1 gene on chromosome 15q21.1. It consists of a heme group 

and a polypeptide chain of 503 amino-acid residues (58 kDa) [18]. Aromatase structure 

was only determined in 2009 by Gosh, being its structure composed by twelve α-helix 

and ten β-sheets (Fig. 3) [19]. The catalytic complex of human aromatase is a 

heterodimer constituted by aromatase and by a flavoprotein, the NADPH-cytochrome 
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Pregnenolone

Progesterone
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P450 reductase (CPR). The catalytic portion of aromatase contains the heme group 

and the binding site for steroids, like androstenedione [18]. 

 Aromatase is the only enzyme in vertebrates known to catalyze the biosynthesis 

of estrogens from their androgenic precursors [20]. This enzyme uses with high 

specificity androstenedione, testosterone, and 16α-hydroxytestosterone, all with the 

same androgen backbone, converting them to Estrone (E1), 17β-Estradiol (E2), and 

Estriol (E3), respectively, though it has higher affinity to androstenedione. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 - General structure of Aromatase. Ribbon diagram showing the overall structure. The N terminus, starting at 

residue 45 (dark blue) and the C terminus ending at residue 496 (red). The α-helices are labeled from A to L and β-

strands are numbered from 1 to 10. The heme group, the bound Androstenedione molecule at the active site and its 

polar interactions are shown. (adapted from [18]). 

 

 The conversion of androgens to estrogens, by the aromatization of the A-ring 

(Fig. 4), is a three-step process, each requiring one molecule of O2 and NADPH, 

coupling with its redox partner CPR for the transfer of electrons. The last step is 

exclusively catalyzed by aromatase (CYP19) [20].  
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Fig. 4 - Biosynthesis of estrogens by aromatase. Aromatization mechanism of the A-ring. 

 

3.  Estrogen receptor signaling pathways 

 

Estrogen receptors (ER) are nuclear receptors that act as transcription factors 

involved in the regulation of many physiological processes in humans [21]. The ER has 

two isoforms, ERα and ERβ, with a 56% homology [22]. ERα is expressed in ovary, 

uterus and mammary gland and is located in chromosome 6, while the ERβ is mainly 

expressed in the ovary and in the reproductive system of males, and is located in the 

chromosome 14 [23]. Estrogens exert their activity through binding to the estrogen 

receptors (ER), ERα and ERβ.  

ERα has been recently connected to the promotion of proliferation and survival 

of breast cancer cells, consequently, it is considered the subtype necessary to the 

majority of estrogenic responses, while ERβ presents growth inhibitory properties [24, 

25]. ERα is capable to form a heterodimer with ERβ, which has a similar binding affinity 

to DNA as the ERα homodimer, but a lower level of transcriptional activity [26]. When 

the two subtypes are co-expressed in the cell, ERβ can antagonize ERα-dependent 

transcription, since its expression alters the recruitment patterns of transcription factors 

involved in the genomic ERα-dependent responses. Moreover, expression of ERβ 

increases the proteolytic degradation of ERα [27]. 

Both ERs contain a DNA-binding domain (DBD), a dimerization region (DR), a 

ligand-binding domain (LBD), and two transactivation domains, one located near the N-

terminus, Activation Function-1 (AF-1), and other near the C-terminus, Activation 

Function-2 (AF-2). Despite the high sequence homology in the DBD they are not 
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redundant genes, since they have different expression patterns and functions (Fig. 5) 

[24].  

 

 

 

Fig. 5 – Structure of ERα and ERβ. Both receptors have four functional domains, harboring a DNA-binding domain 

(DBD), a ligand-binding domain (LBD) and two transactivation domains (AF-1 and AF-2) and a dimerization domain 

(DR). The location of the phosphorylation sites at AF-1 are indicated.  AKT, serine/threonine specific-protein kinase 

family encoded by the AKT genes; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase. 

 

 ER is mainly functional in the nucleus, where it activates transcription of ER-

regulated genes. This transcription is dependent on binding of E2 that helps to stabilize 

the ER binding to DNA. Within the cytosol, ER is bound, through LBD (AF-2) to 

chaperone proteins such as Heat Shock Protein 90 (HSP90) and HSP70 [24, 28, 29]. 

Upon binding of E2 to the LBD of ER, the receptor undergoes conformational changes 

like dissociation from the HSP, ER dimerization, translocation into the nucleus and 

formation of a hydrophobic domain, exposing the AFs to which co-activators (Co-A), 

such as steroid receptor co-activator (SRC-1, 2 or 3), or co-repressors (Co-R), such as 

nuclear receptor co-repressor 2 (SMRT), bind [21, 29, 30].  

 ER can act either by the genomic pathway or the non-genomic pathway. In the 

genomic pathway, ER forms a dimer upon binding of E2 (Fig. 6). Then the dimer 

translocates into the nucleus and binds the estrogen responsive element (ERE) in the 

promoter region to initiate the “classical” transcriptional activation or repression. The 

ER can also interact with other transcription factors such as activator protein 1 (AP-1) 

and specificity protein 1 (SP-1) to bind DNA indirectly, leading to activation or 

repression of target genes located at alternative responsive elements. This process is 

known as “non-classic” or “ERE-independent” genomic action. In addition to these two 

different genomic pathways, a third genomic mechanism exists. This involves ligand-

independent ER activation by phosphorylation, via stress related kinases (p38 mitogen-
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activated protein kinase (MAPK), Extracellular signal-regulated kinase 1/2 (Erk 1/2) 

MAPK, Phosphoinositide 3-kinase (PI3K) /Protein kinase B (AKT)), at the AF-1 domain. 

ER and its co-activators can be phosphorylated, whether the E2 is bound to the ER or 

not, through the genomic or non-genomic mechanism, which may lead to endocrine 

resistance [30-34].  

 

 

 

Fig. 6 - Mechanisms involved in estrogen signaling. Estradiol (E2) binding to estrogen receptors (ER) induces the 

dissociation of the receptor from Heat Shock Proteins (Hsp), the dimerization, and translocation to the nucleus. Nuclear 

E2-ER complexes bind directly to Estrogen Response Elements (ERE) (classical) or interact with other transcription 

factors (TF) in target gene promoters (non-classical). Growth factors (GF) and E2, through GPR30 or ER variants-ERα/β 

dimers, activate protein-kinase cascades. These active kinases can indirectly lead to phosphorylation (P) and activation 

of nuclear ERs at EREs, even in the absence of E2, or lead to non-genomic events directly. 

 

In addition to the well-established transcriptional effects of E2 mediated by ER, 

there are rapid effects that do not rely on transcriptional activity and are triggered by E2 

binding to growth factor receptors and other membrane receptors, like G protein-

coupled estrogen receptor 30 (GPR30) [35] and ER variants [36, 37]. These pathways 

are known as non-genomic. The ER variants, such as 36 kDa and 46 kDa ER, 

localized at lipid rafts, are important in this non-genomic pathway [24]. They can 

dimerize with ERα and ERβ activating various kinase signaling pathways like 

E2E2

E2
E2

E2

HSP

HSP

HSP

PI3K/Akt or MAPK

GF

PP

Non-genomic effects

HSP

HSP

HSP

E2

Classical 

E2

T

F

Non-classicalLigand-independent

Genomic effects

Nucleus

Citoplasm

Extracellular

GPR30 GFR ER36/46-ERα/β

ER

ER

ERER

ER

ER

ERER
ERER

ERER

ERER



10 
 

Phospholipase C (PLC)/Protein Kinase C (PKC), Ras/Raf/MAPK and cyclic adenosine 

monophosphate (cAMP)/Protein kinase A (PKA) [38]. GPR 30 functions as an ER, 

since it senses E2, and can activate EGFR [39]. These signal transduction pathways 

may connect non-genomic actions of estrogens to genomic responses. This is due to 

the fact that many transcription factors are regulated by protein-kinase 

phosphorylations. The AF-2 of the ER is only activated by ligand binding of E2, 

however the AF-1 site is activated by phosphorylation at several residues like S167 

that is phosphorylated by PI3K/AKT [32] and S118 that is phosphorylated by the Ras-

MAPK [33] signaling cascade. These two residues are crucial for the activation of ER 

and mediate ER binding to co-activators. Nevertheless, S118 phosphorylation 

increases hypersensibility to E2, leading to ligand-independent activation of ER, a 

process that may result in the development of AI resistance [33, 40, 41].   

 

4.  ER
+
 breast cancer endocrine therapy 

 

 Endocrine therapy is complementary to surgery in the majority of patients, since 

approximately 65% of breast cancer patients are ER+. This therapy has become the 

standard adjuvant treatment for ER+ breast cancer patients since the 1970. There are 

many approaches: ovarian function suppression; selective estrogen receptor 

modulators (SERMs); selective estrogen receptors down-regulators (SERDs); 

aromatase inhibitors (AI’s) or a combination of two or more treatments, that have the 

purpose to reduce, as much as possible, the serum and tissue levels of estrogen [1].  

 Ovarian function suppression consists mainly in the surgical oophorectomy 

(ovarian ablation) ceasing the estrogen production in ovaries in pre-menopausal 

women. Ovarian function can also be suppressed by administration of gonadatropin-

releasing hormone agonists (GnRHa), simultaneously to chemotherapy. GnRHa have 

reversible action and could have the potential to preserve ovarian function. Therefore, 

ovarian function suppression treatment in addition with AI’s could be a valid alternative 

option for pre-menopausal women with high risk of recurrence [1, 42, 43]. 
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4.1 SERMs and SERDs 

 

 As referred before, estrogen and their receptors are key regulators in hormone-

dependent breast cancer progression. Therefore, drugs that target selectively the ER, 

like Fulvestrant (SERD) and Tamoxifen (SERM) are important to achieve the blockade 

of the ER signaling pathways (Fig. 7). Tamoxifen is a non-steroidal molecule that 

modulates the activation of ER since it can act both as a partial agonist, in the liver, 

uterus and bone, and as an antagonist in the breast and brain [32]. In breast cancer 

cells, Tamoxifen, via its metabolites 4-hydroxiTamoxifen (4-OHT) and endoxifen, binds 

competitively to ER and recruits co-repressors, blocking ER-related gene transcription 

[1, 44]. Although the reduction in mortality and reduced risk of recurrence, Tamoxifen 

presents some age-related side effects, such as increased risk of thromboembolic 

disease and  a 3-fold increased risk of endometrial cancer [1, 45, 46]. Moreover, some 

patients can develop resistance to Tamoxifen.  

 Due to the adverse effects of Tamoxifen, other SERMs, like Raloxifene and 

Toremifene have been developed. Toremifene is similar to Tamoxifen in terms of 

tolerability and efficacy and also exhibits less vascular and endometrial side effects. 

However, is cross-resistant with Tamoxifen and has less benefit action in the bone. On 

other hand, Raloxifene is less toxic and less effective than Tamoxifen, being currently 

used in the prevention of osteoporosis in post-menopausal women [1, 47]. 

 Selective estrogen down-regulators, like Fulvestrant, are capable of causing 

down-regulation and degradation of the ER preventing proliferation of estrogen-

dependent breast cancer cells. Fulvestrant, or ICI 182,780, is a pure ER antagonist that 

blocks and degrades ER. It has a hundred-fold higher affinity to ER than Tamoxifen. 

Contrary to Tamoxifen,  Fulvestrant exhibits only anti-estrogen effects and lacks 

endometrial adverse effects [1, 48].  It is used as a second-line therapy, in patients 

where the tumor has developed resistance to SERMs and AI’s [49, 50]. 
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Fig. 7– Chemical structures of: (A) Tamoxifen, (B) Fulvestrant. 

 

4.2 Aromatase Inhibitors (AI’s) 

 

 Other effective treatment is based on the inhibition of the last step of estrogen 

biosynthesis, by blocking the aromatase enzyme. Aromatase inhibitors (AI’s) are 

molecules that block aromatase activity, reducing the levels of circulating estrogens 

and are mainly used in post-menopausal women. In pre-menopausal women, where 

estrogen is produced in the ovaries, this therapy results in transient reduction of 

estrogens that will activate the hypothalamus and pituitary axis. This induces an 

increase in gonadotropin secretion and, consequently, stimulation of ovaries with 

increased estrogen production [51].  

 AI’s are typically described as first-, second-, or third-generation according to 

their development order. Current AI’s can be classified into two subtypes, namely 

steroidal (Type I) and non-steroidal (Type II). Steroidal AI’s mimics the structure of the 

aromatase substrate, androstenedione, therefore binding to the substrate-binding 

pocket of the enzyme. Its reactive intermediate then binds covalently to the enzyme, 

resulting in an irreversible inactivation of aromatase. These AI’s are also known as 

suicidal inhibitors because the enzyme is inactivated and ultimately lead to aromatase 

degradation. In contrast, type II AI’s bind non-covalently to the heme moiety of 

aromatase and saturate the binding site. Unlike the Type I inhibition, type II inhibition is 

reversible by competitive inhibition of androgens [14, 51]. Remarkably, these two 

classes for aromatase inhibitors are not totally cross-resistant, and patients failing to 

respond to one class, still have 25% chance of achieving clinical benefit from the other 

class [52]  

A B
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AI’s have demonstrated to be superior to other hormonal agents, like 

Tamoxifen, and, consequently, are now established as first-line treatments in endocrine 

therapy [26, 51]. Aromatase inhibitors are associated with decreased risk of 

endometrium cancer remission, vaginal bleeding and thromboembolic events than 

Tamoxifen. Nevertheless, AI’s decrease circulating estrogen levels, resulting in 

accelerated bone loss and increased risk of fractures. Although Exemestane (Exe) 

does not protect bone like Tamoxifen, it does not accelerate postmenopausal bone loss 

due to its androgenic effect. On other hand, AI’s also present other side effects like 

musculoskeletal disorders, arthralgia and myalgia. Thus, it is necessary a careful look 

on patients subjected to this type of therapy given the long-term effects of these 

inhibitors in the bones and cardiovascular system [52-54]. 

 The first-generation AI, Aminogluthetimide (AG) (Fig. 8), was initially used as an 

anti-epileptic drug, however, it was first directed for the treatment of breast cancer in 

late 1970s. Although the AG, a non-steroidal (Type II) AI, showed aromatase inhibition 

and therapeutic benefits, it lacked specificity and potency, which often produced side 

effects, like the inhibition of various cytochrome P450 enzymes. More specifically, the 

inhibition of CYP11, an enzyme responsible for the conversion of cholesterol to 

pregnolone, led to cortisol supplementation in combination with AG [26, 51, 52].  

Subsequently, second-generation specific AI’s were developed during the 

1980s and 1990s (Fig. 8). This generation includes the non-steroidal imidazole 

derivate, Fadrozole, and the first steroidal (Type I) AI, Formestane, also known as 4-

hidroxyandrostenedione (4-OH-A). Fadrozole is more selective and potent than AG, but 

has inhibitory effects in the cytochrome P450 enzymes involved in aldosterone, 

progesterone, and corticosterone biosynthesis. On the other hand, Formestane was 

the first effective and well tolerated AI used in clinic. However, its intramuscular 

administration confined its use [54].  

Third-generation AI’s were developed in the beginning of 1990s and are more 

effective than the previous generations. It includes two non-steroidal AI’s derived from 

triazole, namely Anastrozole and Letrozole, and a steroidal AI, Exe (Fig. 8). These are 

largely used as first-line drugs in breast cancer hormone-dependent treatment in post-

menopausal women, since they act specifically in aromatase without suppressing 

adrenal function [52].  
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4.2.1 Non-steroidal third-generation AI’s (Letrozole and Anastrozole) 

 

Anastrozole and Letrozole act as competitive inhibitors. Both are potent AI’s in 

vivo, showing aromatase suppression superior to 97% at clinical doses [26, 55]. In fact, 

Anastrozole decreases estrogen levels by 80% in patients [56]. This reduction occurs 

without detectable changes in other steroid hormones. Although Anastrozole shows 

high aromatase suppression, Letrozole has higher inhibitiory activity [57]. Anastrozole 

also shows a high antitumor activity in patients with breast cancer and is a good 

chemoprotective agent [51, 52]. Clinically, Letrozole causes tumor remission in women 

with breast cancer resistant to other endocrine therapies and chemotherapy [52]. 

Currently, in ER+ postmenopausal women, Anastrozole is used as first- and second-

line treatment of advanced breast cancer and, along with Letrozole, as adjuvant 

treatment for early breast cancer.  

 

4.2.2. Steroidal third-generation AI (Exemestane) 

 

Exe, also known as Aromasin®, is the only steroidal AI currently used in clinic. 

Its structure is derived from aromatase natural substrate, androstenedione. Exe is a 

suicide inhibitor causing aromatase proteasome-mediated degradation and blocking 

estrogen biosynthesis until the de novo synthesis of aromatase, leading to a persistent 

inhibitory effect even after clearance. With this unique mechanism, Exe reduces 

aromatase half-life in 50% [58] and presents a total body aromatase inhibition around 

98% [59, 60]. Exe’s metabolism occurs through CYP3A4, being the main Exe 

metabolite the 17β-hydroxy-6-methylenandrosta-1,4-dien-3-one (17-βHE) [61]. This AI 

reveals maximum decrease in estrogen plasma levels, without affecting the plasma 

levels of other steroidal hormones [57], after 3 to 7 days upon administration. Due to its 

highly specific mechanism, Exe is highly selective and does not affect other enzymes in 

the steroids biosynthetic pathway [57, 62]. Exe is considerably more effective than 

Tamoxifen in preventing breast cancer remission [53, 63]. 
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Fig. 8 - Chemical structures of the AI’s used in clinic: first-generation (A), second-generation (B) and third-generation 

(C). 

 

5.  Breast cancer acquired-resistance to AI’s 

 

 Since it was first observed that tumors can regress following oophorectomy, 

estrogen deprivation has been an important treatment for estrogen-dependent (ER+) 

breast cancers [64]. Therefore, all endocrine therapies are centered on the disruption 

of the estrogen signaling pathway, either by interfering with the receptor itself or by 

depleting its ligand. However, despite the potency of AI’s therapy, over 20% of patients 

with early-stage disease suffer a relapse.  Metastatic breast cancer continues to be an 

incurable disease, thus, the goal of the treatment is to convert this disease into a 

chronic condition that can be controlled with well-tolerated therapies. Although the vast 

majority of patients with metastatic breast cancer experience initial benefit from the 

endocrine therapy, subsequent disease progression often occurs [65].  

 Resistance to aromatase inhibitors can be divided into two main types, namely: 

de novo or intrinsic resistance and acquired resistance. In de novo resistance the 

primary ER+ breast cancer cells never respond adequately to endocrine therapy. While, 

in acquired-resistance it develops after a long period of exposure to the endocrine 

therapy. Once the patients develop acquired-resistance to AI’s, the response to 

Aminogluthetimide Fadrozole Formestane

Anastrozole Letrozole Exemestane

A B

C
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endocrine therapy is ceased and chemotherapy is necessary [66]. Still, the clinical 

distinction between the two types of resistance is not well determined, however, the 

mechanisms underlying these two types are likely to overlap [65]. 

 

5.1 Intrinsic Resistance 

 

 In intrinsic resistance, where there is an initial lack of efficacy of AI’s in primary 

tumors, there is a Ki67 continued expression despite the AI treatment. This indicates 

an estrogen-independent proliferation in the majority of cases, possibly through several 

polymorphisms in the aromatase gene CYP19 [67-69], which are associated with an 

increased risk of disease recurrence and death [65]. Recently, p53 accumulation is 

being described as a biomarker associated with AI’s-resistance [70]. Furthermore, 

intrinsic resistance to AI’s may not be due to defects in aromatase nor in ER, as shown 

in studies conducted in two cell lines that mimic intrinsic resistance: HER2-aro and 

AKT-aro cells [71]. These express decreased levels of a proliferation marker and ER-

regulated genes with AI treatment, but, the overall cellular response remained 

unaffected, as previously reported by Miller et al [72]. Thus, altered expression of co-

regulators may also help to explain the phenotypes in some resistant cells [73]. 

Furthermore, overexpression of HER2 or AKT in ER+ breast cancer cells results in 

resistance to AI treatment [24]. In fact, several randomized trials reported beneficial 

effects on the combination of Trastuzumab (HER2 inhibitor) or lapatinib (HER2 and 

EGFR inhibitor) with AI’s (Letrozole or Anastrozole) [74-77]. 

  Very recently, the role of miRNAs in endocrine resistance started being studied 

[78]. It was reported that  overexpression of microRNA (miR)-125b and silencing of 

miR-424 is sufficient to confer resistance to Letrozole and Anastrozole by activation of 

the PI3K/AKT/mTor pathway [79]. Nevertheless, other study demonstrated that a high-

baseline miR-155 is correlated with poor response to Anastrozole [80]. However, little 

is yet known about this type of resistance to AI’s. It is, although, a major field of 

research interest, since it may be able to help early identification of poor responders to 

endocrine therapy. 
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5.2 Acquired resistance 

 

 Acquired-resistance is seen in ER-expressing breast cancers, which initially 

respond to endocrine therapy, indicating that the loss of ER expression is not the main 

mechanism for acquired-resistance and that ER may still play a role in resistance to 

endocrine therapy. Thus, mutations in the ESR1 gene (encodes ERα), more 

specifically in the ligand-binding domain (LBD), have been described as a mechanism 

of acquired-resistance since the early 1990s [81]. Mutations in this gene are rare in 

primary tumors treatment-naïve [82, 83]. However, they appear with high frequency in 

metastatic tumors, especially in those tumors that have progressed despite AI 

treatment [84-86]. ESR1 mutations allow estrogen-independent ERα activation and cell 

proliferation [65, 84-88]. ESR1 chromosomal translocations is another proposed 

mechanism. Several in-frame fusion genes that preserve the first exons, including the 

DBD domain, are spliced in-frame into the C-terminus of other genes that are capable 

of inducing estradiol-independent growth and ER-regulated gene transcription, 

reducing endocrine sensibility [86, 89, 90] ESR1 amplification, and thus, ER 

overexpression is also a documented mechanism of resistance. However, in this case, 

exposure to estrogen leads to apoptosis through a mechanism that remains under 

investigation [91]. On the other hand, the role of ERβ in resistance remains unclear 

and, therefore, it will not be taken into account on this chapter, being ERα simply 

designed as ER. 

 

5.2.1 Growth factors receptors expression and aberrant activation 

 

 In the past decade, several studies have described multiple aberrant pathways 

and adaptive changes that are deregulated due to the prolonged estrogen deprivation 

and ER signaling disruption [66] (Fig. 9). The aberrant activation of growth factors 

receptors, such as fibroblast growth factor receptor 1 (FGFR1) [92, 93], insulin-like 

growth factor 1 receptor (IGF1R) [94, 95] and human epidermal growth factor receptor 

2 (HER2) [96, 97], and their associated downstream signaling components, including 

MAPKs [98, 99] and PI3K pathways [100, 101], have been associated with acquired-

resistance mechanisms because they allow breast cancer cells to bypass estrogen 

deprivation. Several studies have shown that HER2 overexpression modulates ER 

expression and activity, through a MAPK-dependent phosphorylation of ER in S118 

[96, 97]. In these cases, resistance could be overcome with the treatment with 

Fulvestrant [102, 103]. However, a sustained overexpression of HER2 may lead to loss 
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of ER expression, as a mechanism of resistance, bypassing, in these cases, the 

beneficial effects of Fulvestrant and rendering these cells ligand- and ER-independent 

[104, 105]. Similar observations were described regarding ER expression and PI3K 

pathway activation. The AKT downstream effector, p70S6K, was the responsible for 

the ER phosphorylation on S167 and activation of ER [30, 32, 106], and consequently 

loss of ER expression [107]. The latter can be through prevention of nuclear 

localization of the transcription factor forkhead box O3A (FOXO3A), and, thus, of 

binding to the ESR1 promoter. Thus, inhibition of PI3K induces ER expression through 

FOXO3A binding to ESR1 [108-110].  

 Components of the PI3K-AKT-mTOR pathway are often altered in breast cancer 

and mutation in the α-catalytic subunit of PI3KCA, which encodes p110α, is the most 

frequent genetic abnormality in luminal-type breast cancer [111-114]. Nevertheless, 

loss of phosphatase and tensin homolog (PTEN) expression is also associated with a 

continuous activation of PI3K pathway [114-116]. Activation of the PI3K pathway has 

been shown to regulate ER expression, and vice-versa. ER has the ability to bind to the 

regulatory subunit of PI3K, p85, activating the catalytic subunit, p110, and, thus, 

activating the pathway [117]. The NOTCH pathway was also found to be overactive in 

endocrine resistant cells. The transcription factor Pre-B-Cell Leukemia Homeobox 1 

(PBX1), target gene of the NOTCH pathway, is required for growth in the endocrine 

therapy-resistant cells [118]. Therefore, targeting growth factor receptors may seem a 

reasonable approach to delay resistance to AI’s. For example, co-targeting HER2 and 

ER signaling in an ER+ breast cancer cell model resistant to Letrozole, LTLT-Ca, has 

proved to be very effective [119]. Moreover, inhibition of mammalian target of 

rapamycin (mTOR), by everolimus, appears to be very effective in ER+ patients with 

advanced disease that progress during, or relapse after, non-steroidal AI therapy, as 

shown in the large BOLERO-2 trial [120]. Nevertheless, some details have to be taken 

into account in the BOLERO-2 trial, since there is a lack of statistically significant 

survival benefit from the combination of everolimus and Exe [121]. A negative feedback 

loop downstream of PI3K/AKT/mTOR pathway may limit mTOR inhibitors effectiveness 

[122-124]. When mTOR is activated it phosphorylates and activates ribosomal protein 

S6 kinase beta-1 (S6K1), a kinase that phosphorylates and destabilizes Insulin 

Receptor Substrate 1 (IRS-1) and Insulin Receptor Substrate 2 (IRS-2), disrupting 

IGF1R signaling. When mTOR inhibiton is accomplished there is a reduction in S6K1 

activity. This allows IRS-1 and IRS-2 expression that leads to an enhanced activation 

of IGF1R-dependent AKT activity, counteracting the anti-tumor effectiveness of mTOR 

blockade. In addition, a positive feedback loop involving the mTORC2 complex exists 

and leads to an increased AKT signaling [125], that, consequently, results in ER 
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phosphorylation on Ser 167 preventing the effects of the combination therapy. The 

BKM120 (buparlisib), a PI3K inhibitor, was shown to have an anti-tumor efficacy in 

combination with Letrozole [126]. Other inhibitors are also currently being tested in 

phase I and II clinical trials, more specifically AKT (AZD5363) and dual AKT/mTOR 

inhibitors (XL765).  

 

5.2.2 Androgen receptor involvement 

 

 Despite the importance of GFR and downstream kinase pathways, a receptor 

has recently come to the spotlight regarding acquired-resistance to AI’s. The androgen 

receptor (AR) is a steroid receptor similar to ER. Although, AR and ER have opposite 

effects in AI-sensitive breast cancer cells [127], AR plays a different role in AI’s-

resistant cells fate. AR overexpression, induced by a decreased ER activity, enhances 

ER transcriptional activity through a cooperation between AR and ER, via PI3K 

pathway [128-130]. Moreover, an androgen-metabolite with androgenic and estrogenic 

activities can also activate ER in androgen abundant conditions [131]. 

 

5.2.3 Cell-cycle related mechanisms 

 

 Cell-cycle-regulators have been associated with acquired-resistance to AI’s. It 

has already been documented that the cyclin D1 encoding gene, CCND1, is commonly 

amplified in breast cancer [132]. Cyclin D1 is a promoter of G1-to-S progression by 

forming a complex with cyclin-dependent kinase 4/6 (CDK4/6), thus, inactivating the 

retinoblastoma protein. In a study conducted by Lundgren, it was found that patients 

with CCND1 amplification have an increased risk of tumor recurrence in response to 

Anastrozole [133]. Very recently, it was approved by U.S Food and Drug Administration 

(FDA) the combination of palbociclib, a CDK 4/6 inhibitor, with Letrozole in ER+ 

postmenopausal women due to its high efficacy [134-136]. Moreover, the involvement 

of aurora kinases in resistance to third-generation AI’s was recently described, 

especially for Exe resistance [137]. Aurora kinases are Ser/Thr kinases involved in cell 

proliferation through the control of chromatin segregation, thus, promoting cell cycle 

progression through mitosis.  
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5.2.4 Autophagy-related mechanisms  

 

 Recently, it has been reported the occurrence of autophagy in breast cancer 

hormone-dependent resistance. Autophagy is a cellular degradation process initiated in 

response to stress or nutrient deprivation, which attempts to restore metabolic 

homeostasis through the catabolic lysis of aggregated proteins, unfolded/misfolfed 

proteins or damaged cellular organelles. In mammalian cells, autophagosome 

degradation is driven by p62/sequestosome-1 (SQSTM1), which binds directly to 

ubiquitinated proteins and microtubule-associated protein-1 light chain 3 (LC3), linking 

ubiquitinated proteins to the autophagic machinery. Formation of the autophagosome 

double membrane requires the actions of vacuolar protein sorting 34 (Vps34), p150, 

autophagy-related 4 (Atg4) and beclin-1. Binding of Bcl-2 to beclin-1 inhibits the binding 

and activation of Vps34, decreases Vps34 mediated activation of PI3K class III and 

prevents autophagosome formation. Autophagy is also directly regulated by the PI3K 

class I pathway, since mTOR activation inhibits autophagy initiation [138]. This 

correlation is important, especially where it is commonly observed alterations/mutations 

in the PI3KI pathway in a wide range of cancers [3].  

 In cancer, autophagy can act either as tumor suppressor or as tumor promoter. 

Studies in vitro have shown that blocking autophagosome formation via 3-

methyladenine (3-MA) or beclin-1 ribonucleic acid interference (RNAi) enchanced cell 

death, when combined with a Tamoxifen metabolite or with Exe, suggesting a pro-

survival role of autophagy in anti-estrogen therapies [139, 140]. In fact, Inhibition of 

autophagy through beclin-1 small hairpin RNA (shRNA) or 3-MA treatment partially 

restores anti-estrogen therapy effectiveness in models of Fulvestrant-resistance and 

Tamoxifen-cross resistance cancer cells [3]. Moreover, this increased responsiveness 

of resistant breast cancer cells requires the inhibition of both Bcl-2 and beclin-1, 

highlighting that inhibition of autophagy pathway, coupled with Bcl-2 inactivation, is 

more detrimental to anti-estrogen resistant breast cancer cells survival than the 

inhibition of either pathway alone [3]. 

 Despite these approaches, several others strategies are being currently studied 

in clinic and began to show some promise, like the use of Histone Deacetylase (HDAC) 

inhibitors [119, 141-143], among others [144-147].  
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Fig. 9 - Summary of pivotal players and treatments in AI’s-acquired resistance. AKT, protein kinase B; AR, Androgen 

Receptor; ER, Estrogen Receptor; ERE, Estrogen Responsive Element; GFR, Growth Factor Receptor; HDAC, Histone 

Deacetylase; mTORC1, mammalian Target Of Rapamycin Complex 1; PI3K, Phosphoinositide 3-kinase.  

 

5.3 Exemestane-acquired resistance 

 

 Several mechanisms for Exe-acquired resistance have been described (Table 

1). Contrary to non-steroidal AI resistant cells, in Exe-acquired resistance, the cancer 

cells are hormone-dependent [5, 144]. It has been suggested that Exe resistance 

results from its weak estrogen-like activity, this is, its capacity to activate the ER, since 

it is seen a high level of amphiregulin (AREG) expression [145]. AREG expression is 

up-regulated by estrogens [148, 149], thus, it was suggested that Exe may induce 

AREG up-regulation in a similar way to estrogens, through an ER-dependent manner 

[145]. AREG is an epidermal growth factor (EGF)-like growth factor that binds to and 

activates EGFR, which, ultimately, leads to tumor proliferation through  MAPK pathway 

[144, 145]. MAPK inhibition led to a suppression of tumor proliferation in Exe-resistant 

cancer cell lines. Moreover, aurora kinase A and B have also been associated with 
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Exe-resistance as they were found to be up-regulated in Exe-resistant cancer cells 

[137]. Besides, in the BOLERO-2 clinical trial, the combination of everolimus and Exe 

seem to reverse Exe-resistance [120]. Panobinostat, a HDAC inhibitor, also prevents 

Exe-resistant cancer cells proliferation, through cell cycle arrest and apoptosis [142]. 

This study also suggested an involvement of the transcription factor Nuclear Factor-

kappa B (NF-kB), since evidences indicated its over-expression in AI’s-resistant cells. 

Similarly, the use of the HDAC inhibitor, entinostat, shows equally promising results 

[143].  

 Autophagy is another potential mechanism associated with Exe resistance, 

described previously by this group. In this case autophagy appears to act as a pro-

survival mechanism and the combination of the autophagic inhibitor, 3-methyladenine 

(3-MA), with Exe resensitized resistant breast cancer cells [150]. Moreover, other 

recent work described a role of the complex INrf2 (Keap1):Nrf2 in Exe-resistant cell 

lines. This complex induces the expression of cytoprotective genes when activated by 

reactive oxygen species (ROS). It was reported a down-regulation of the INfr2 that, 

consequently, led to an up-regulation of Nfr2, reducing Exe efficacy and, eventually, 

development of resistance. [144]. Inhibition of Nrf2 was able to resensitize Exe 

resistant cells [146]. 

 

Table 1 - Mechanisms of Exemestane-acquired resistance. 

Alteration Mechanism of resistance References 

AREG overexpression Increased MAPK pathway activity [145] 

PI3K/AKT/mTOR 
overexpression 

Decrease expression and Ligand-independent 
activation of ER 

[120] 

Aurora kinase A/B 
up-regulation 

Promotion of cell cycle progression [137] 

HDAC aberrant activity NF-kB expression [142, 143] 

Pro-survival autophagy Increase cell resistence [150] 

INfr2 down-regulation Expression of cytoprotective genes [144, 146] 

 

 In conclusion, the understanding of ER+ breast cancers biology has allowed 

new approaches to treatment, some of which have now entered clinical practice with 

the objective to overcome acquired-resistance to AI’s. The ultimate goal will be an 

accurate molecular profiling of patients with ER+ breast cancer, which would allow 

personalized and refined treatment strategies, though it still remains in a far future. 
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6. Aims 

 

 Despite the therapeutic success of aromatase inhibitors used in clinic, acquired 

resistance may develop causing tumor relapse. Thus, it emerges the need to search for 

new targets and strategies to surpass AI’s-acquired resistance. Previous results from 

the research group where this project is being developed have demonstrated that pro-

survival autophagy occurs in Exemestane-treated LTEDaro cells, and that, the PI3K 

inhibitor, 3-MA, sensitized these cells to Exemestane. 

 The main objective of this Master Thesis is to contribute to the elucidation of the 

role of autophagy in Exemestane-acquired resistance. To do this, the effects of two 

pan-PI3K inhibitors and of a specific autophagic inhibitor in cell fate, autophagic flow 

and in the phosphorylation state of the main survival pathways will be studied in the 

LTEDaro cell line, a cell line that mimics the late stage of AI’s acquired-resistance. 

 This work may provide new insights on the mechanisms underlying Exe-

acquired resistance and help to discover new possible therapeutic targets. 
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CHAPTER II - Materials and methods 
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1. Materials 

 

Eagle’s minimum essential medium (MEM), fetal bovine serum (FBS), L-glutamine, 

antibiotic-antiycotic (10 000 units/mL penicillin G sodium, 10 000 mg/mL streptomycin 

sulphate and 25 mg/ml amphotericin B), Geneticin (G418), sodium pyruvate and trypsin 

were supplied by Gibco Invitrogen Co. (PAI’sley, Scotland, UK). Testosterone (T), 

trypan blue, ethylenediaminetetraacetic acid (EDTA), dimethylsulfoxide (DMSO), 

tetrazolium salt [3-(4,5-dimethylthiazol-2-yl)-2,5-difenyltetrazolium (MTT)], propidium 

iodide (PI), Triton X-100, DNase-free RNase A, staurosporine (STS), activated 

charcoal, dextran, 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA), phorbol 12-

myristate 13-acetate (PMA), acridine orange (AO), LY294002 (LY),  Wortmannin (WT), 

Spautin-1 (SP) and the protease inhibitor cocktail were from Sigma-Aldrich Co. (Saint 

Louis, USA). Z-VAD-FMK was from BD Biosciences Pharmingen (San Diego, CA, 

USA). Exemestane (Exe) was from Sequoia Research Products Ltd (Pangbourne, UK). 

Cyto-Tox 96 nonradioactive cytotoxicity assay kit, Caspase-Glo® 9, Caspase-Glo® 8 

and Caspase-Glo® 3/7 luminometric assays were from Promega Corporation 

(Madison, WI, USA). Bradford assay reagent was from Bio-Rad (Laboratories Melville, 

NY, USA). Chemiluminescent substrate Super Signal West Pico was from Pierce 

(Rockford, USA). Rabbit polyclonal β-tubulin, rabbit polyclonal p-AKT 1/2/3 (Ser 473), 

rabbit polyclonal AKT 1/2/3, rabbit polyclonal p-mTOR (Ser 2448), rabbit polyclonal 

mTOR, rabbit anti-goat IgG, goat anti-rabbit IgG and broad range molecular weight 

markers were from Santa Cruz Biothecnology (CA, USA). Rabbit monoclonal PI3K 

p85α was from Abcam (Cambridge, UK). Rabbit polyclonal LC3 I/II was from Cell 

Signaling (Danvers, MA, USA).  

 

2.  Cell culture 

 

 The hormone-dependent ER+ aromatase-overexpressing AI’s-sensitive human 

breast cancer cell line, MCF-7aro, was obtained by stable transfection with human 

placental aromatase gene and Geneticin selection [151], and kindly provided by Dr. 

Shiuan Chen (Beckman Research Institute, City of Hope, Duarte, CA, USA). Cells were 

maintained in Eagle’s minimum essential medium (MEM) with phenol-red 

supplemented with Earle’s salts, 1 mmol/L sodium pyruvate, 1% penicillin–

streptomycin-amphotericin B, 700 ng/ml Geneticin (G418) and 10% heat-inactivated 
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FBS. Three days before the experiment MCF-7aro cells were cultured in complete 

MEM without phenol-red and with 5% pre-treated charcoal heat-inactivated fetal bovine 

serum (CFBS) to avoid estrogenic interferences from phenol-red and FBS [152]. For 

the experiments, in the control, and in the different treatments, MCF-7aro cells were 

incubated with 1 nM of Testosterone (T), which is an aromatase substrate and a 

proliferation inducing agent.  

 The hormone-independent ER+ aromatase-overexpressing AI’s-resistant human 

breast cancer cell line, LTEDaro (Long-Term Estrogen Deprivation), was obtained by 

prolonged culture (six months) of the parental cells, MCF-7aro, in steroid-free medium 

[6, 144], and was also kindly provided by Dr. Shiuan Chen. Cells were maintained in 

MEM without phenol-red, with 10% of CFBS, 1% of sodium pyruvate (1 mmol/L), 1% 

penicillin-streptomycin-amphotericin B and 700 ng/ml Geneticin (G418). Assays were 

performed in the same medium, and cells without treatment were considered as 

control. These cells mimic the late-stage of AI’s-acquired resistance [153]. 

 Cells were incubated in 5% CO2 at 37ºC and after reaching a 70-80% 

confluence, were successively sub-cultured to new culture flasks. For this, cells were 

detached using 2.5% trypsin/ 1 mM EDTA for 2 minutes, collected to centrifuge tubes 

containing culture medium with FBS/CFBS to inactivate trypsin/EDTA action and 

centrifuged at 260 x g for 5 minutes at 4ºC. Supernatant was rejected and the pellet 

was resuspended in culture medium. After trypan blue staining, cells were counted in 

Neubauer chambers, and seeded. Culture medium and treatments were refreshed 

every three days. 

 

3.  Charcoal heat-inactivated fetal bovine serum 

preparation 

 

 The FBS was inactivated for 1 hour at 56ºC. In order to remove steroids from 

the medium, FBS was incubated with activated charcoal for 24 hours at room 

temperature. After incubation, a series of successive centrifugations were performed 

during 15 minutes at 4000 x g. In-between centrifugations, supernatant was filtered to 

eliminate charcoal particles. Centrifugations were performed until CFBS was clear from 

charcoal. After the final centrifugation, supernatant was filtered by a vacuum filter 

system of 0.22 µm pore, aliquoted and kept at -20ºC. 
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4.  Cell viability analysis 

 

 In order to evaluate the effects of the different treatments in MCF-7aro and 

LTEDaro cell viability, tetrazolium salt MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] and Lactate dehydrogenase (LDH) release assays were 

performed.  

 The MTT colorimetric assay relies on the metabolic activity of mitochondria, 

since the tetrazolium salt (yellow dye) is reduced by mitochondrial reductases into a 

blue precipitate, formazan (blue dye), in viable cells. MCF-7aro and LTEDaro cells 

were cultured in 96-well plates with a cell density of 2 x 104 cells/mL, for 3 days 

experiments, and 1 x 104 cells/mL, for 6 days experiments, in MEM without phenol-red 

containing 5% CFBS and 1nM of T (MCF-7aro), or in MEM without phenol-red 

containing 10% CFBS, respectively. After 24 hours, cells were treated with the different 

combinations of the inhibitors, 1-15 μM LY, 0.01-2.5 μM WT, 0.1-10 μM SP, with or 

without 1-15 μM of Exe. After treatment, cells were incubated with MTT (0.5 mg/mL 

added to each well) for 2.5 hours at 37ºC in 5% CO2. Then, DMSO:isopropanol mixture 

(3:1) was added to stop the reaction and cells were left for 15 minutes under agitation, 

to dissolve the formazan crystals. After this, formazan was spectrophotometrically 

quantified at 540 nm. 

 In order to evaluate the cytotoxic effects of the compounds, LDH release assay 

was performed in LTEDaro cells. LDH is a commonly used biomarker for cytolysis, 

since it is a cytosolic enzyme that is release into the culture medium after membrane 

disruption. This assay relies on the catalytic activity of LDH to convert a tetrazolium salt 

to a red formazan product. LDH activity was performed through the use of Cyto-Tox 96 

nonradioactive cytotoxicity assay kit, according to manufacturer’s protocol. Absorbance 

was read at 450 nm in BioTek Power Wave XS. 

 All the assays were performed in triplicate in three independent experiments 

and results were expressed as relative percentage (for MTT) or as absolute value (for 

LDH) of the untreated control cells.  
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5.  Cell cycle analysis 

 

 To study the anti-proliferative effects of the compounds, cell cycle analysis was 

performed in LTEDaro cells by flow cytometry. Cells were cultured in 6-well plates at a 

cellular density of 7 x 105 cells/mL (3 days) or 3.5 x 105 cells/mL (6 days) in MEM 

without phenol-red containing 10% CFBS. After 24 hours, cells were treated with the 

different combinations of the inhibitors, 5 μM LY, 0.1 μM WT or 0.5 μM SP, with or 

without 10 μM of Exe. Untreated cells were considered as controls. After the 

treatments, non-adherent and adherent cells harvested by 2.5% trypsin/ 1mM EDTA 

treatment were transferred to centrifuge tubes containing 1mL of culture medium with 

10% CFBS. Cells were then centrifuged at 260 x g for 5 minutes at 4ºC. Supernatant 

was rejected and cells were fixed in 0.1 % PBS and in 70% cold ethanol and stored at 

4ºC for 24 hours. Fixed cells were centrifuged as referred, washed two times with PBS 

and stained with 0.4 mL of a DNA staining solution (5 µg/mL propidium iodide (PI), 

0.1% Triton X-100 and 200 µg/ml DNase-free RNase A in PBS), overnight at 4ºC. 

Triton-X100 permeates the fixed cells membrane allowing PI to reach the nucleus; PI is 

a fluorescent dye that intercalates nucleic acids, enabling DNA content determination. 

DNase-free RNase A degrades RNA present in the samples to avoid its interference 

with the analysis. Flow cytometric analysis was performed based on the acquisition of 

40 000 events/cells in BD Accuri™ C6 cytometer (San Jose, CA, U.S.A), equipped with 

BD Accuri™ C6 analysis software. The forward scatter (FSC) and side scatter (SSC) 

detectors and the three fluorescence channels (FL-1 (green), FL-2 and FL-3 (red)) 

were set on a linear scale. Debris, cell doublets and aggregates were gated out using a 

two parameter plot of FL-2-Area versus FL-2-Width of PI fluorescence. The results 

were indicated by the percentage of cells in the different cell cycle phases. The anti-

proliferative effects of each treatment were indicated by the percentage of cells in 

G0/G1, S and G2/M phases of the cell cycle. All assays were performed in triplicate and 

in three independent experiments. 

 

6.  Apoptosis analysis  

 

 In order to study apoptosis, a type of programmed cell death, it was evaluated 

the activities of caspase-7, -8 and -9 as well as reactive oxygen species (ROS) 

formation. Caspases are proteases enzymes involved in apoptosis promotion. 
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Caspase-7 is an executioner caspase, while caspase-8 and -9 are initiator caspases 

with the capacity of activate caspase-7.  

 Caspases activities were measured in treated LTEDaro cells after 3 days by a 

luminescent assay kit. These assays rely on the use of a caspase-specific substrate, 

which is cleaved, releasing a substrate for luciferase. Cells were cultured in white-

walled 96-well plates with a cellular density of 2 x 104 cells/mL. After 24 hours, cells 

were treated with the different inhibitors, 5 μM LY, 0.1 μM WT or 0.5 μM SP, with or 

without 10 μM of Exe. After the incubation period, Caspase-Glo® 9, Caspase-Glo® 8 

or Caspase-Glo® 3/7 luminescence kits were used according to manufacturer’s 

instructions. Untreated cells were used as control. As positive controls, cells were 

treated with staurosporin (STS) at 10 μM and as negative control cells were treated 

with Exe plus LY and then incubated with Z-VAD-FMK (50 μM), a pan-caspase 

inhibitor, for 3 hours. Luminescence, presented as relative light units (RLU), was 

measured in a 96-well microplate luminometer (Synergy HT, BioTek, USA) after 1 hour 

and 30 minutes of incubation. It is noteworthy that MCF-7aro, the parental cells of 

LTEDaro, are caspase-3 deficient [154], therefore, in LTEDaro cells the Caspase-Glo® 

3/7 will only evaluate caspase-7 activity.  

 ROS formation occurs after mitochondrial damage and may be associated to 

apoptosis. In order to evaluate the levels of intracellular ROS it was used the 2´,7´-

dichlorodihydrofluorescein diacetate (DCFH2-DA) method. DCFH2-DA is a lipophilic 

non-fluorescent compound that cross cell membrane and is oxidized, by ROS, giving 

rise to the fluorescent compound 2´,7´-dichlorofluorescein (DCF) [155]. LTEDaro cells 

were cultured in black-walled 96-well plates with a cellular density of 2 x 104 cells/mL.  

Cells were treated with the different inhibitors, 5 μM LY, 0.1 μM WT or 0.5 μM SP, with 

or without 10 μM of Exe and after 24 hours of treatment, cells were incubated with 

DCFH2-DA (50 μM), for 1 hour, at 37ºC. As positive controls, cells were treated with 

phorbol 12-myristate 13-acetate (PMA) at 25 ng/mL during 3 hours, prior to the addition 

of DCFH2-DA. Untreated cell were considered as controls. Fluorescence, present as 

mean fluorescence intensity (MFI), was measured using an excitation wavelength of 

480 nm and an emission filter at 530 nm, in a 96-well microplate luminometer (Synergy 

HT, BioTek, USA). All the assays were performed in triplicate in three independent 

experiments. 
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7.  Detection of acidic vesicular organelles  

 

 Acidic vesicular organelles (AVOs) are suggestive of autophagy. Acridine 

orange (AO) was used to evaluate and quantify the formation of AVOs, by flow 

cytometry and fluorescent microscopy. AO is an acidotropic fluorescent dye that stains 

DNA and cytoplasm bright green (AO-), while, in the presence of acidic compartments, 

such as lysosomes and autolysosomes, stains bright red (AO+).  

 For flow cytometry, LTEDaro cells were cultured in 6-well plates with a cellular 

density of 3.5 x 105 cells/mL. After 24 hours, cells were treated with the different 

inhibitors, 5 μM LY, 0.1 μM WT or 0.5 μM SP, with or without 10 μM of Exe. After 6 

days, adherent and non-adherent cells were harvested by 2.5% trypsin/ 1mM EDTA 

treatment and transferred to separate centrifuge tubes containing 1mL of culture 

medium with 10% CFBS. Cells were then centrifuged at 260 x g for 5 minutes at 4ºC. 

Supernatant was rejected and the pellet was resuspended in PBS, centrifuged and 

incubated with AO (0.5 μg/mL) for 15 minutes, at 37ºC. Then, cells were centrifuged, 

washed with PBS between centrifugations. Cells treated with H2O2 (0.1 mM) during 16 

hours, prior to the end of the experiment, were considered as positive controls and 

untreated cells were considered as controls. Flow cytometric analysis was performed 

based on the acquisition of 40 000 events/cells in BD Accuri™ C6 cytometer (San 

Jose, CA, U.S.A), equipped with BD Accuri™ C6 analysis software. Green (510-530 

nm) and red (>650 nm) fluorescence emission with blue (488 nm) excitation light was 

measured with detectors for fluorescence channels FL-1 and FL-3. The FSC and SSC 

detectors as well as FL-1 and FL-3 channels were set on a linear scale. Debris, cell 

doublets, aggregates and negatively stained cells were gated out using a two 

parameter plot of FL-1 versus FL-3 and FSC versus SSC.  The results were indicated 

by the percentage of AO- (FL-1 positive/FL-3 negative) and AO+ cells (FL-1 positive/FL-

3 positive). All assays were performed in triplicate and in three independent 

experiments. 

 For fluorescence microscopy, LTEDaro cells were cultured in 24-well plates with 

coverslips at a cellular density of 1 x 105 cells/mL, for 6 days. After 24 hours, cells were 

treated with the different inhibitors, 5 μM LY, 0.1 μM WT or 0.5 μM SP, with or without 

10 μM of Exe. After the incubation time cells were stained with AO (0.1 μg/mL) during 

15 minutes and the coverslips were mounted with PBS and observed under a 

fluorescent microscope (Eclipse Ci, Nikon, Japan) equipped with a 490 nm band-pass 

blue excitation filters and a 515 nm long-pass barrier filter. Images were processed by 

Nikon NIS Elements image software. 
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8. Western blot analysis 

 

 In order to quantify PI3K expression, AKT phosphorylation, mTOR 

phosphorylation and LC3 turnover, LTEDaro cells were cultured in 6-well plates at a 

cellular density of 7 x 105, for 3 days, and of 3.5 x 105, for 6 days. After 24 hours, cells 

were treated with the different inhibitors, with or without 10 μM of Exe. After the 

incubation, the culture medium was removed and the cells were lysed with cold TNTE 

lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 0.3% Triton X-100 and 5 mM EDTA), pH 

7.4, containing 1% of protease inhibitors cocktail. Then, cells were collected, and the 

cell lysates were centrifuged at 18 800 x g for 10 minutes at 4ºC. The protein 

concentrations in the supernatant were assessed by Bradford assay. A total of 50 μg of 

protein per sample was subjected to 4-20% (for LC3 samples) or 10% SDS 

polyacrylamide gels and transferred to nitrocellulose membranes in 25 mM Tris-HCl, 

250 mM glycine and 20% methanol. The membranes were blocked for 1 hour, with 5% 

non-fat milk in TBS/Tween® 20, and incubated with the different primary antibodies, 

rabbit polyclonal p-AKT 1/2/3 (1:200), rabbit polyclonal p-mTOR (1:200), rabbit 

monoclonal PI3K p85α (1:1000) and rabbit polyclonal LC3 I/II (1:200) in blocking 

solution overnight at 4ºC. Secondary antibodies were then incubated for 1 hour, after 

previous washes with TBS/Tween® 20. Membranes were exposed to chemiluminescent 

substrate Super Signal West Pico and immunoreactive bands were visualized by 

ChemiDocTM Touch Imaging System (BioRad, Laboratories Melville, NY, USA). 

Membranes were further stripped and incubated with rabbit polyclonal β-tubulin 

(1:500), rabbit polyclonal AKT 1/2/3 (1:200) or rabbit polyclonal mTOR (1:200) followed 

by incubation with the respective secondary antibodies (1:2000), to control loading 

variations. Untreated cells were used as control. All assays were performed in triplicate 

in three independent experiments.  

 

9. Statistical analysis 

 

 Statistical analysis of data was performed using analysis of variance (ANOVA) 

test followed by Bonferroni test for multiple comparisons in Graphpad Prism 7 software. 

Values of p < 0.05 were considered statistically significant. The data presented were 

expressed as mean ± SEM (standard error of the mean).  
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1.  Cell viability in ER
+
 sensitive and resistant    

breast cancer cells 

 

It has been described that autophagy may be involved in resistance to AI’s. Thus, 

inhibition of autophagy may contribute to re-sensitize resistant cells to AI’s therapy. In 

order to validate this hypothesis, the effects of two PI3K inhibitors, LY294002 (LY) and 

Wortmannin (WT), and of a specific autophagic inhibitor, Spautin-1 (SP), in cell 

viability, were evaluated, in MCF-7aro cells, an hormone-dependent ER+ sensitive 

breast cancer cell line, and in LTEDaro cells, an hormone-independent ER+ resistant 

breast cancer cell line, by MTT assays. To select suitable concentrations for the 

following studies and based on the concentration ranges described in the literature, 

MCF-7aro and LTEDaro cells were cultured, respectively, with or without testosterone 

and with the inhibitors at different concentrations (1 – 15 μM for LY, 0.01 – 2.5 μM for 

WT and 0.1 – 10 μM for SP) during different times of incubation (3 and 6 days). MCF-

7aro cells treated only with testosterone (T) or untreated LTEDaro cells were 

considered as controls and represent 100% of cell viability. 

 The results allowed the selection of concentrations that did not exhibit 

statistically significant differences comparing to control at the two different incubation 

times (3 and 6 days). For LY was 1 μM in MCF-7aro cells and 5 μM in LTEDaro cells; 

for WT the selected concentrations were 1 μM in MCF-7aro and 0.1 μM in LTEDaro 

and for SP it was 0.5 μM for both cell lines (Fig.10).  
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Fig. 10 - Effects of the PI3K and autophagic inhibitors on cell viability. (A) Comparison of the effects of the different 

inhibitors in MCF-7aro cells. (B) Comparison of the effects of the different inhibitors in LTEDaro cells. MCF-7aro cells 

cultured with testosterone (T) were considered as control at 3 or 6 days of incubation. LTEDaro cells were treated with 

different concentrations of compounds during 3 or 6 days. Untreated LTEDaro cells were considered as control. Results 

are the mean ± SEM of three independent experiments, performed in triplicate. Significant differences between the 

inhibitors and control are denoted by * (p < 0.05), ** (p < 0.01) and *** (p < 0.001). 
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 In order to explore the signaling pathways that may be involved in Exe-acquired 

resistance it was evaluated the effects of the inhibitors in combination with the AI, 

Exemestane (Exe), in the sensitive and resistant cell lines, for 3 and 6 days. 

 In relation to the PI3K inhibitor, LY, in MCF-7-aro cells and when combined with 

Exe, it was observed a significant decrease, in cell viability when compared to Exe 

alone after 3 days of incubation (Fig. 11). However, at 6 days, there were no 

statistically significant differences between Exe and LY in combination with Exe. In 

LTEDaro cells LY with Exe at higher concentrations than 10 μM induced a significant 

(p<0.001) decrease in cell viability, when compared to Exe. On the other hand, WT had 

no significant effects in Exe-treated MCF-7aro cells, while it decreased significantly the 

viability of Exe-treated LTEDaro cells after 6 days of treatment. The SP had an 

apparent protective role in the Exe-treated sensitive cell line, since in these cells it 

prevents the reduction of cell viability induced by Exe alone. On the contrary, SP 

significantly decreased the viability of Exe-treated resistant cells in a dose and time-

dependent manner. 

 Overall, all the inhibitors sensitize LTEDaro cells to Exe in a time-dependent 

manner. 
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Fig. 11 - Effects of the combination of Exemestane with PI3K and autophagic inhibitors on the viability of MCF-7aro and 

LTEDaro, evaluated by MTT assay. (A) Effects of the combination of LY with Exemestane. (B) Effects of the 

combination of WT and Exemestane. (C) Effects of the combination of SP with Exemestane. MCF-7aro and LTEDaro 

cells were treated with different concentrations of inhibitors during 3 or 6 days. MCF-7aro cells cultured with 

testosterone (T) were considered as control. Untreated LTEDaro cells were considered as control. Results are the mean 

± SEM of three independent experiments, performed in triplicate. Significant differences between Exemestane alone 

and in combination with the inhibitors are denoted by * (p < 0.05), ** (p < 0.01) and *** (p < 0.001). 
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2. LDH activity assay in LTEDaro 
 

 Through the determination of LDH activity in the cell culture medium, it was 

possible to evaluate if the decrease in LTEDaro cell viability, induced by the different 

treatments, was due to cytotoxicity caused by cell membrane lysis. Untreated LTEDaro 

cells were considered as control and represent the basal value of LDH release. As 

shown in the figure 12, in the resistant cell line, only LY in combination with the highest 

dose of Exe induced alterations in cell membrane permeability (p<0.01). For this 

reason, in the subsequent studies only Exe at 10 μM was used in combination with the 

inhibitors.  

 

 

 

Fig. 12 - Effects of Exemestane alone or in combination with LY (A), WT (B) or SP (C) in LTEDaro cells, evaluated by 

LDH release assay. LTEDaro cells were treated with different concentrations of compounds during 3 days. Untreated 

LTEDaro cells were considered as control. Results are the mean ± SEM of three independent experiments, performed 

in triplicate. Significant differences between control and the treatments are denoted by ** (p < 0.01). 
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3. Cell proliferation studies 
 

 In order to better understand if the reduction in LTEDaro cell viability, observed 

by MTT assay, was due to anti-proliferative effects, it was studied by flow cytometry 

analysis the cell cycle progression. Cell cycle analysis was performed after Propidium 

Iodide (PI) staining, both for 3 and 6 days of incubation. PI is a fluorescent dye that 

intercalates DNA, allowing the determination of its content within cells. 

 Results have demonstrated that Exe, after 3 and 6 days, does not affect cell 

cycle by itself, since no significant differences were observed between Exe and control. 

However, the combination of Exe with the pan-PI3K inhibitors disturbs cell cycle 

progression in a similar way, after 3 days of treatment. As observed in table 2 and 

figure 13, in Exe-treated LTEDaro cells, LY and WT promoted an increase of 5.84% 

(p<0.001) and 6.10% (p<0.001), respectively, in G0/G1 phase, accompanied by a 

decrease of 3.54% (p<0.01) and 3.78% (p<0.01), respectively, in G2/M phase, when 

compared to Exe. Curiously, both PI3K inhibitors caused no significant difference in S 

phase when compared to Exe alone. Strikingly, and on the contrary, the combination of 

SP with Exe induced a decrease of 2.92% in G0/G1 phase, accompanied by an 

increase of 4.81% (p<0.001) in the G2/M phase, when compared to Exe alone, without 

causing, as well as the other inhibitors, significant differences in the S phase. 

 

Table 2 - Effects of the different treatments on cell cycle distribution in LTEDaro cells for 3 days of incubation. 

 

Cell cycle G0/G1 S G2/M 

Control 74.33 ± 1.11 7.99 ± 0.51 17.70 ± 0.79 

Exemestane 10 µM 77.48 ± 0.46 5.47 ± 0.65 16.72 ± 0.52 

LY 5 µM 77.23 ± 0.80 6.08 ± 0.58 16.14 ± 0.73 

Exe + LY 5 µM 83.32  ± 0.97 *** ### 2.81 ± 0.18 * 13.18 ± 0.76 * ## 

WT 0.1 µM 75.03 ± 0.58 6.36 ± 0.41 17.40 ± 0.29 

Exe + WT 0.1 µM 83.58 ± 0.83 *** ### 2.80 ± 0.34 * 12.94 ± 0.76 *** ## 

SP 0.5 µM 76.86 ± 0.77 5.51 ± 0.76 16.35 ± 0.75 

Exe + SP 0.5 µM 74.56 ± 0.77 # 3.55 ± 0.15 21.53 ± 0.76 *** ### 

Cells were treated with different concentrations of compounds during 3 days and analysed by flow cytometry after PI 

staining. Cells without treatment, or treated only with the inhibitors, were considered as control. The data represents the 

mean ± SEM of three independent experiments, performed in triplicate. Significant differences between the controls and 

treated cells are denoted by * (p < 0.05) and *** (p < 0.001). Significant differences between Exemestane alone and in 

combination with the inhibitors are denoted by # (p < 0.05), ## (p < 0.01) and ### (p < 0.001). 
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Fig. 13 – A representative histogram of the effects of Exemestane alone and in combination with each inhibitor on cell 

cycle progression in LTEDaro cells after 3 days of incubation. To study cell cycle progression, cells were analysed by 

flow cytometry after PI staining. Untreated cells were considered as control. The histograms of cell cycle are 

representative of one independent assay, being M8 gate the corresponding to G0/G1 phase, M9 gate to S phase and 

M10 gate to G2/M phase. 

 

 However, after 6 days of incubation, LY and WT did not induce a G0/G1 phase 

arrest in Exe-treated cells, as seen in table 3 and figure 14. Only WT caused a 

significant increase of 3.29% (p<0.05) in G2/M phase, in relation to Exe alone. SP 

induced similar effects on the deregulation of cell cycle when combined with Exe, 

through a significant decrease in G0/G1 phase, 8.24% (p<0.001), and a more 

accentuated increase in the G2/M phase, 10.71% (p<0.001) when compared to Exe 

alone. 

 

 

 

 

 

 

 

 

Control Exemestane 10 µM

Exe 10 µM + LY 5 µM Exe 10 µM + WT 0.1 µM Exe 10 µM + SP 0.5 µM
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Table 3 - Effects of the different treatments on cell cycle distribution in LTEDaro cells for 6 days of incubation. 

Cell cycle G0/G1 S G2/M 

Control 78.93 ± 1.08 7.37 ± 0.47 14.71 ± 0.77 

Exemestane 10 µM 78.77 ± 0.79 4.69 ± 0.20 15.81 ± 0.84 

LY 5 µM 78.26 ± 0.87 5.92 ± 0.50 16.32 ± 0.47 

Exe + LY 5 µM 80.07  ± 0.25 2.85 ± 0.26 *  17.80 ± 0.53 

WT 0.1 µM 77.56 ± 0.36 5.71 ± 0.39 17.02 ± 0.51 

Exe + WT 0.1 µM 78.36 ± 1.41 3.11 ± 0.18 19.10 ± 1.51 # 

SP 0.5 µM 77.71 ± 0.76 5.88 ± 0.17 17.53 ± 0.95 

Exe + SP 0.5 µM 70.53 ± 1.19 *** ### 3.26 ± 0.23 26.52 ± 1.04 *** ### 

Cells were treated with different concentrations of compounds during 6 days and analysed by flow cytometry after PI 

staining. Cells without treatment, or treated only with the inhibitors, were considered as control. The data represents the 

mean ± SEM of three independent experiments, performed in triplicate. Significant differences between the controls and 

treated cells are denoted by * (p < 0.05) and *** (p < 0.001). Significant differences between Exemestane alone and in 

combination with the inhibitors are denoted by # (p < 0.05) and ### (p < 0.001). 

 

 

Fig. 14 - A representative histogram of the effects of Exemestane alone and in combination with each inhibitor on cell 

cycle progression in LTEDaro cells after 6 days of incubation. To study cell cycle progression, cells were analysed by 

flow cytometry after PI staining. Untreated cells were considered as control. The histograms of cell cycle are 

representative of one independent assay, being M8 gate the corresponding to G0/G1 phase, M9 gate to S phase and 

M10 gate to G2/M phase. 

 

Control Exemestane 10 µM

Exe 10 µM + WT 0.1 µMExe 10 µM + WT 0.1 µM Exe 10 µM + SP 0.5 µMExe 10 µM + LY 5 µM
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4. Cell death mechanisms 
 

 Several types of cell death mechanisms can be associated to the decrease in 

LTEDaro cell viability induced by the treatments. In order to study the involvement of 

apoptosis, it was evaluated the activity of caspases -7, -8 and -9. Caspases are 

enzymes involved in cellular processes such as programmed cell death. Caspase-7 is 

an executioner caspase of apoptosis, while caspase-8 and -9 are initiator caspases 

with the function to activate executioner caspases, through the extrinsic and intrinsic 

pathway, respectively.  

LTEDaro cells were cultured and exposed to the different treatments for 3 days 

(Fig. 15). As expected, Exe did not cause any caspase activation, since these cells are 

AI-resistant. On the contrary, all the inhibitors, in combination with Exe, induced an 

increase in caspase-7 activity, suggesting an apoptotic process of cell death. However, 

while LY caused an increase in caspase-9 activity, WT induced an increase in 

caspase-9 and -8 activities and SP only caused an increment in caspase-8 activity, 

when compared to Exe. The increase of caspase-7 activity for LY in combination with 

Exe was 23.4% (p<0.01); for WT in combination with Exe was 25.2% (p<0.001) while 

for SP plus Exe it was 13.9% (p<0.05), when compared to Exe alone. The increment of 

caspase-9 activity for Exe in combination with LY was 38.3% (p<0.001), and with WT 

was 53.8% (p<0.001). Lastly, WT and SP in combination with Exe increased caspase-8 

activity by 87.0% (p<0.001) and 31.5% (p<0.01), respectively, in comparison with Exe.  

As reactive oxygen species (ROS) may be produced by damaged mitochondria 

and lead to apoptosis. ROS formation was also studied. It was observed that none of 

the different treatments promoted an increase in intracellular ROS when compared to 

Exe (Fig. 15).  
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Fig. 15 - Effects of the different treatments in caspases-7 (A), -9 (B) and -8 (C) activation and ROS production (D). 

LTEDaro cells were treated with the different combinations for 3 days. Untreated cells, or treated only with the inhibitors, 

were considered as control. Cells treated with staurosporin were considered as positive controls and with Z-VAD-FMK 

as negative control, for caspases activation. Cells treated with PMA were considered as positive control for ROS 

formation. The results are presented as relative luminescence units (RLU), for caspases activation, and as mean 

fluorescence intensity (MFI), for ROS generation. Results represent the mean ± SEM of three independent experiments, 

performed in triplicate. Significant differences between the controls and treated cells are denoted by * (p < 0.05), ** (p < 

0.01) and *** (p < 0.001). Significant differences between Exemestane alone and in combination with the inhibitors are 

denoted by # (p < 0.05), ## (p < 0.01) and ### (p < 0.001).  

 

5.  Autophagic studies 
 

 Acidic vesicular organelles (AVOs) are suggestive of autophagy occurrence. 

These vesicles are detected by an acidotropic dye, the acridine orange (AO) 

fluorescent dye. This stain marks DNA and cytoplasm bright green (AO-), while, in 

acidic compartments, such as lysosomes and autolysosomes, AO is protonated and 

accumulates, forming aggregates that fluorescence bright yellow/orange/red (AO+). 

 Acidic vesicular organelles formation was firstly studied by fluorescence 

microscopy (Fig. 16). LTEDaro cells were treated with the different combinations of 

compounds during 6 days. The results showed that cells treated with Exe exhibit more 
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yellow/orange/red fluorescence than the control. On the other hand, the combination of 

Exe with LY or WT appears to slightly reduce AVO-related fluorescence. Nevertheless, 

it was observed that each inhibitor by itself seems to induce the presence of 

yellow/orange/red fluorescence, suggesting AVOs formation. To confirm these results, 

the levels of AVOs were quantified by flow cytometry, after AO staining, in the same 

conditions. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 - Effects of Exemestane and inhibitors, both alone or in combination, on AVOs formation in LTEDaro cells, 

analyzed by fluorescence microscopy, after 6 days of treatment. The presence of AVOs was detected by acridine 

orange staining and are stained with yellow to orange/red fluorescence (Original magnification x 400).  
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By flow cytometry analysis, it was observed that Exe significantly increases AO+ 

population (p<0.001), by itself, which confirms that Exe increases AVOs production 

(table 4 and fig. 17). Moreover, the combination of LY and Exe significantly (p<0.05) 

increased total AO+ marked cells, when compared to Exe alone. Nevertheless, 

comparing the ratio between Exe + LY/ LY (2.12) and Exe/ Control (5.21), it was 

verified a decrease in the Exe-induced AVOs formation. On the contrary, the 

combination of Exe with WT or with SP decreased significantly the total AO+ marked 

cells. In fact, the comparison of the ratios between Exe + WT/ WT (2.12) or Exe + SP/ 

SP (1.81) and Exe/ Control (5.21) demonstrated a reduction in the Exe-induced AVOs 

formation. In the figure 17, increments on AO+-marked cells are represented by a 

displacement of the labeled cells to right in the FL-3 fluorescence channel (FL-3 

positive). 

 

Table 4 - Effects of the different treatments on AVOs formation in LTEDaro cells for 6 days of incubation. 

AVOs formation AO- AO+ 

Control 93.41 ± 0.47 6.78 ± 0.46  

Exemestane 10 µM 65.09 ± 1.23 *** 35.33 ± 0.83 *** (5.21) 

LY 5 µM 81.00 ± 1.96 19.60 ± 1.95 

Exe + LY 5 µM 59.75 ± 2.51 *** 41.57 ± 2.70 *** # (2.12) 

WT 0.1 µM 89.48 ± 1.37 10.89 ± 1.41 

Exe + WT 0.1 µM 74.78 ± 1.40 *** ### 23.14 ± 1.52 *** ### (2.12) 

SP 0.5 µM 84.80 ± 1.42 15.50 ± 1.31 

Exe + SP 0.5 µM 72.59 ± 1.06 *** # 28.07 ± 1.04 *** # (1.81) 

H2O2 50 µM 74.49 ± 2.35 *** 26.25 ± 2.41 *** 

Cells were treated with different concentrations of compounds during 6 days and analysed by flow cytometry after AO 

staining. Cells without treatment, or treated only with the inhibitors, were considered as control. The data represents the 

mean ± SEM of three independent experiments, performed in triplicate. Significant differences between the controls and 

treated cells are denoted by *** (p < 0.001). Significant differences between Exemestane alone and in combination with 

the inhibitors are denoted by # (p < 0.05) and ### (p < 0.001). 
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Fig. 17 - A representative histogram of the effects of Exemestane, of each inhibitor alone and of the combination of 

exemestane with inhibitors on AVOs formation, in LTEDaro cells, after 6 days of incubation. To study AVOs formation, 

cells were analysed by flow cytometry after AO staining. Untreated cells or treated only with the inhibitors were 

considered as control. The histograms of AO staining are representative of one independent assay. L Control (black), 

Exemestane 10 µM (red), LY 5 µM (dark blue), Exe 10 µM + LY 5 µM (light blue), WT 0.1 µM (dark green), Exe 10 µM + 

WT 0.1 µM (light green), SP 0.5 µM (brown), Exe 10 µM + SP 0.5 µM (orange). 

 

 Furthermore, it was also evaluated by Western Blot the conversion of LC3-I to 

LC3-II (Fig. 18), a biomarker of the autophagic process. Preliminary results suggest an 

increase in LC3 turnover (LC3 II/I ratio) on LTEDaro cells treated with Exe alone after 3 

days. Moreover, a decrease in LC3 turnover for the combination of WT and SP with 

Exe, when compared to Exe alone, was also apparent, suggesting a decrease in 

autophagy. 

 

 

Fig. 18 - Effects of the different treatments on LC3 turnover (LC3 II/I ratio) by WB and densitometry analysis. LTEDaro 

cells were treated with different combinations during 3 days. Cells without treatment were considered as control. 
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6. Survival pathways analysis 
 

 In order to understand the underlying signaling pathways that led to the 

previous results, it was evaluated, by western blot, the activation of the PI3K-AKT-

mTOR pathway, which is implicated in the regulation of autophagy, through expression 

of PI3K and phosphorylation of AKT and mTOR. By densitometric analysis (Fig. 19) it 

was verified that Exe did not significantly interfere with PI3K expression. However, the 

Exe combinations with all the inhibitors decreased, in a significant manner, the PI3K 

expression when compared to Exe alone, after 3 and 6 days of incubation. 

 

Fig. 19 - Effects of the different treatments on the PI3K/AKT pathway. (A) Effects on the PI3K expression and (B) on 

AKT phosphorylation, after 3 or 6 days. Untreated cells were considered as control. Results are the mean ± SEM of 

three independent experiments. Significant differences between the controls and treated cells are denoted by * (p < 

0.05), ** (p < 0.01) and *** (p < 0.001). Significant differences between Exemestane alone and in combination with the 

inhibitors are denoted by # (p < 0.05), ## (p < 0.01) and ### (p < 0.001). 
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As expected, Exe alone did not decrease AKT phosphorylation (Fig. 19). 

However, a significant (p<0.05; p<0.01; p<0.001) decrease in AKT phosphorylation 

was observed for Exe in combination with all the inhibitors when compared to Exe 

alone.  

In order to verify if the alterations in phosphorylated AKT would reflect in mTOR 

activity, a downstream kinase of PI3K/AKT pathway and a known regulator of 

autophagy, the mTOR phosphorylation was addressed by WB and densitometric 

analysis (Fig. 20). The preliminary results suggest that there is no alteration in mTOR 

phosphorylation, after 3 days of incubation, despite the decrease in AKT 

phosphorylation.   

 

 

Fig. 20 - Effects of the different treatments on mTOR phosphorylation. LTEDaro cells were treated with different 

combinations during 3 days. Cells without treatment were considered as control. 
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 Exemestane (Exe) is the third-generation steroidal AI used in clinic to treat ER+ 

breast cancer. Despite, the therapeutic success of Exe, AI’s-acquired resistance may 

develop causing tumor re-growth. In that way, it is important to understand the 

mechanisms underlying AI’s-acquired resistance in order to search for new strategies 

to surpass AI’s-acquired-resistance.  

 The aim of this work was understand of the role of autophagy in AI’s-acquired 

resistance as it was previously demonstrated by our group that autophagic inhibition 

sensitized AI’s-resistant cancer cells [150]. Thus, and to explain the underlying 

pathways that may be involved in Exe-resistance, two pan-PI3K inhibitors, LY294002 

(LY) and Wortmannin (WT), and a specific autophagic inhibitor, Spautin-1 (SP), were 

used in combination with Exe. LY and WT have been described as autophagic 

inhibitors [156-158] due to inhibition of PI3K class III, an autophagic promoter, despite 

their effects on PI3K class I. The latter is involved in PI3K/AKT/mTOR pathway that 

regulates autophagy [159]. Moreover, SP was also studied due to its role on 

autophagic inhibition through promotion of beclin-1 degradation [160, 161]. 

 The results showed that the combination of all the inhibitors with Exe is capable 

of re-sensitize the resistant LTEDaro cells to the AI. Thus, in order to unravel the 

reasons behind the decrease in cell viability, cell cycle progression and cell death 

analysis were performed. 

  It was verified that all the inhibitors have anti-proliferative properties since in 

Exe-treated LTEDaro cells they disrupted the cell cycle progression. At 3 days of 

incubation, the combination of Exe with LY and WT induced G0/G1 cell cycle arrest, 

while, the combination with SP induced a G2/M arrest, when compared to Exe alone. 

However, for longer periods of treatment, there was a shift of behavior for the PI3K 

inhibitors, since the combination with LY did not affect cell cycle progression, while the 

combination with WT induced a G2/M arrest, in comparison to Exe. On the other hand, 

the combination with SP accentuated its effect on G2/M arrest. This arrest in the G2/M 

cell cycle phase has been associated with increased apoptosis and cytotoxicity [162].  

 To understand if the reduction in LTEDaro cell viability is also a consequence of 

an apoptotic mechanism, it was studied caspase activities. It was observed that all the 

inhibitors combined with Exe increased caspase-7 activity in comparison with Exe, 

confirming the occurrence of apoptosis.  Moreover, LY and WT in combination with Exe 

induced an increase in caspase-9 activity, while WT, as well as the combination of SP 

with Exe, also induced an increment in caspase-8 activity. These findings suggest that, 

in Exe-treated LTEDaro cells, LY induced apoptosis through the intrinsic pathway, 

while, SP induced apoptosis through the extrinsic pathway. Curiously, the induction of 

apoptosis with the combination of Exe plus WT involved a cross talk between the 
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intrinsic and extrinsic apoptotic pathways. In addition, it was also observed that none of 

the treatments increased intracellular ROS production, suggesting that the activation of 

apoptosis is ROS-independent. 

 To verify the effects of the different treatments on autophagy, it was performed 

a fluorescence microscopy analysis and flow cytometry studies to determine the 

formation of AVOs. Firstly, the effects on autophagy were studied qualitatively through 

fluorescence microscopy after AO staining, and it was demonstrated that none of the 

combinations completely inhibited autophagy. Moreover, Exe effectively promoted 

autophagy since Exe-treated LTEDaro cells presented orange/red fluorescence 

associated with AVOs formation. Through flow cytometry, it was further quantified the 

levels of AVOs formation and results have shown that the combination of Exe with LY, 

WT or with SP effectively decreased the Exe-induced autophagy. Exe increased AVOs 

formation by a 5.21 fold, however when combined with the PI3K inhibitors or with SP, 

Exe only increased AVOs production by 2.12 and 1.81 fold, respectively. These results 

demonstrated that the induction of autophagy by Exe was inhibited by the combination 

with the different inhibitors. To confirm these findings, it was also studied the 

expression of the main biomarker of autophagy, the LC3-II. As described earlier, LC3-I 

is converted to LC3-II when autophagy is stimulated, therefore, by comparing the ratios 

of LC3-II/I among the different treatments it was possible to validate the previous 

results. Although, it is a preliminary result, it was verified that Exe alone increased LC3-

II/I ratio, which corroborates the induction of autophagy by this AI. On the other hand, a 

decrease in LC3-II/I ratio was observed for the combination of Exe with LY, WT, or with 

SP, which indicates a decrease in autophagy. These findings were similar to the ones 

observed by flow cytometry and confirms that the combination of Exe with the inhibitors 

reduces AVOs production and LC3 turnover, suggesting that they have autophagic 

inhibition properties.  

The effects of these combinations on PI3K/AKT cell survival pathway were also 

evaluated, since LY and WT are PI3K inhibitors and this pathway, not only regulates 

autophagy, is also overexpressed in AI’s-acquired resistance [98-101]. 

In fact, PI3K expression and AKT phosphorylation were not altered for Exe but 

were diminished for Exe in combination with the different inhibitors, confirming the 

already described inhibition of PI3K pathway by LY and WT and revealing a non-

expected role for SP. However, preliminary results suggested that mTORC1 

phosphorylation, at 3 days, was not altered by the different treatments, as it would be 

expected from AKT decreased phosphorylation. mTORC1 is a down-stream effector of 

AKT, and a described regulator of autophagy, that integrates multiple signals of several 

different signaling pathways. However, our findings regarding mTORC1 
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phosphorylation may be explained through various feedback mechanisms [122, 124, 

125]. Therefore, in order to understand the regulation of autophagy by mTOR, since 

the different treatments decreased PI3K/AKT pathway activation and also inhibited 

autophagy, further studies must be performed. 

 Despite, the PI3K inhibitors re-sensitize LTEDaro cells to Exe and act on the 

same target, their effects appear to be induced by different mechanisms. The PI3K 

inhibitors effectively inhibit autophagy, apparently not through a decrease in mTOR 

activity, that could be associated with the PI3K class I inhibition, but through a direct 

effect on PI3K class III. LY re-sentitized Exe-resistant cells through inhibition of Exe-

induced autophagy, while maintaining autophagy levels elevated, possibly by 

promoting a switch in autophagy role from pro-survival to apoptosis [163, 164]; and/or 

through  inhibition of the survival pathway, PI3K/AKT, without affecting mTOR activity. 

On the other hand, WT re-sensitized Exe-treated LTEDaro cells through a decrease in 

Exe-induced autophagy by inhibiting autophagy levels and/or, as LY, through survival 

pathways inhibition. These mechanisms promote different caspases recruitment. Both 

LY and WT induced caspase-9, and consequently, caspase-7 activation, which can be 

explained by the decrease on AKT activation, a kinase that inhibits the loss of 

mitochondrial potential, trough Bad and caspase-9 phosphorylation [165, 166]. As 

noted before, contrary to LY, WT increased caspase-8 activity. This difference may be 

a consequence of the only divergent point on the evaluated mechanisms of 

sensitization, since, between the two inhibitors, the general autophagy levels are 

different as WT effectively inhibit autophagy while LY maintains autophagy levels 

elevated. In fact, it has been reported, and also observed for Exe in sensitive cells 

[140], that in cytoprotective autophagy, active caspase-8 is sequestered in 

autophagosomes and degraded by lysosomes [167]. On the other hand, as WT caused 

a more pronounced inhibition of AKT than LY, the activation of caspase-8 by WT may 

be due to the decrease in a FOXO transcription factor AKT-mediated phosphorylation, 

promoting the expression of Fas-ligand, which culminates in caspase-8 activation [108, 

168]. Nevertheless, caspase-8 can also induce caspase-9 activation and vice-versa, by 

mechanisms not fully understood [169]. In fact, it was already described that both 

inhibitors induced apoptosis through activation of caspase-9 and/or caspase-8, 

depending on the cell model used [170, 171]. The results also indicate that the 

increase in caspase-9 activity is not due to intracellular ROS production. Furthermore, 

the different behaviors between these two inhibitors at the cell cycle progression may 

be explained by AKT activity. AKT is a regulator of cell cycle, through phosphorylation 

of p21 or p27. At 3 days of incubation, LY-mediated inhibition of AKT may be sufficient 

to inhibit p21 or p27 phosphorylation, leading to the G0/G1 arrest mechanisms already 
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described [172, 173]. However, as LY is a reversible PI3K inhibitor, for longer periods 

of incubation, its effects on AKT phosphorylation may not be sufficient and 

consequently, the effects on the cell cycle are not evident. On the other hand, WT 

initially promoted a G0/G1 arrest, possibly through the same mechanisms as LY, but at 

6 days of incubation, it shifts to G2/M arrest, which has been associated with apoptosis 

as mentioned earlier. This change of behavior may, therefore, be due to an over-

activation of apoptosis, since the inhibition of autophagy may induce the activation of 

apoptosis. 

 Lastly, SP sensitized LTEDaro cells to Exe through inhibition of autophagy 

and/or through its inhibitory effects on the survival pathway, PI3K/AKT. SP induced 

caspase-7 and caspase-8 activation, strengthening the relation between autophagy 

inhibition and the latter, and between decreased AKT phosphorylation and caspase-8 

activation. In addition, there was an arrest in G2/M cell cycle phase that is also related 

to apoptosis. As SP is not described as a PI3K/AKT inhibitor, the inhibition of these 

pathways could be a non-reported direct effect or a consequence of an unknown 

mechanism, and so more studies need to be performed. 

The results obtained in this work suggest that the decrease in the Exe-induced 

autophagy and/or in the survival pathways activation were important for LTEDaro 

sensitization. The most potent inhibitor was WT. In fact, the combination of WT with the 

non-steroidal AI, Anastrozole, has already been reported to have beneficial effects in a 

cell model of AI-resistance similar to the LTEDaro [174]. Thus, by modulating 

PI3K/AKT pathway and autophagy it may be possible to re-sensitize acquired-resistant 

breast cancer cells to Exe therapy. Nevertheless, more studies need to be performed in 

order to clarify the role of the pro-survival autophagy in Exe-acquired-resistance. 

Studies regarding MAPK pathways should also be performed, since Erk 1/2 

overexpression was already described in Exe-acquired resistance [145].  

This work provides new insights in the mechanisms involved in Exe-acquired 

resistance and, consequently, new targets that together with aromatase inhibition 

through Exe may improve breast cancer therapy, overcoming acquired-resistance.  
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