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Resumo 

As doenças respiratórias como a asma e a rinite alérgica estão a aumentar 

mundialmente. O pólen, apesar do seu baixo potencial alergénico, é conhecido como 

um dos maiores elicitadores de reações inflamatórias nas vias respiratórias devido ao 

seu potencial proteolítico. Nas últimas décadas tem aumentado o interesse em 

identificar as proteínas do pólen de forma a perceber os mecanismos moleculares que 

estão na base da reação alérgica e desenvolver novas terapias com melhores 

resultados terapêuticos. Dentro dessa linha de pensamento, este projeto teve como 

objetivo explorar a imunogenicidade de uma proteína potencialmente alergénica do 

pólen de Acer negundo – a Calreticulina. Resultados preliminares revelaram que esta 

proteína pode induzir uma resposta alérgica típica mediada por imunoglobulinas E, no 

entanto, neste trabalho quisemos verificar se esta proteína poderia provocar o mesmo 

efeito através de outros mecanismos não mediados por estas imunoglobulinas e não 

dependentes de atividades proteolíticas do extrato de pólen dado a função da sua 

homóloga animal na resposta imune. 

Para testar esta hipótese foi produzida uma proteína recombinante parcial. 

Adicionalmente, o extrato proteico do pólen de A. negundo foi também caracterizado 

relativamente à sua potencial atividade proteolítica e, consequentemente, os seus 

efeitos imunogénicos. O potencial proteolítico e conteúdo proteico foram caracterizados 

através de zimografia, ensaios de proteólise específica de péptidos sintéticos e SDS-

PAGE, determinando que após hidratação o pólen de A. negundo liberta protéases de 

alto peso molecular pertencentes à família das metaloproteases e outras 

aminopeptidades dependentes de zinco.  

Os efeitos imunogénicos foram determinados em culturas de epitélio pulmonar da 

linhagem celular A549, tendo sido verificado que o destacamento celular se 

correlacionava com a concentração dos extratos polínicos e com os períodos de 

incubação. Foi também verificado que, contrariamente ao expectado, a Calreticulina 

recombinante por si só não afetou significativamente as culturas celulares. No entanto, 

esta aumentou os efeitos prejudiciais dos extratos polínicos nas culturas epiteliais, uma 

vez que foi verificado um aumento de citocinas libertadas e de destacamento celular em 

células expostas a extratos combinados comparativamente às células expostas a 

extratos polínicos isolados.  
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Os resultados obtidos neste trabalho indicam que a Calreticulina de A. negundo tem 

um papel adjuvante nas respostas pro-inflamatórias em contexto de dano epitelial, no 

entanto estudos adicionais devem ser realizados para confirmar se se trata de 

consequências de interações da proteína com recetores celulares e quais os recetores 

e mecanismos especificamente envolvidos. 
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Abstract 

Respiratory diseases such as asthma and allergic rhinitis are increasing worldwide. 

Despite their low allergenic potential, pollen grains are known to be one of the major 

elicitors of inflammatory reactions in the airway mainly due to their proteolytic potential. 

In the past decades, there has been an increasing interest in identifying potentially 

allergenic single proteins of pollen total protein extracts to better understand the 

molecular mechanisms behind an allergic reaction and develop new improved therapies 

that might have better outcomes. In that line of thought, this project proposed to explore 

the immunogenicity of a potential allergenic protein of Acer negundo's pollen grains - 

Calreticulin. Preliminary results revealed that calreticulin can induce an allergic response 

through IgE-mediated mechanisms; however, we wanted to explore if this protein could 

provoke an allergic reaction through non-IgE mediated, non-proteolytic mechanisms 

given the role of its mammalian homologue in the immune response.  

To test this hypothesis a partial recombinant protein was produced. Moreover, A. 

negundo's pollen protein extract was characterized relatively to its potential proteolytic 

activity and immunogenic effects. The proteolytic potential and protein content of A. 

negundo's pollen was characterized through zymography, peptide proteolysis assays 

and SDS-PAGE. It was determined that after being hydrated A. negundo's pollen 

releases high molecular weight proteases, particularly of the metalloprotease family and 

other zinc-dependent aminopeptidases.  

Immunogenic effects were assessed in the lung epithelial cell line A549, and we 

verified that cellular detachment correlated with pollen protein extract concentration and 

incubation periods. We also verified that, contrarily to what was expected, recombinant 

calreticulin by itself did not affect the epithelial cell culture significantly. However, it 

increased the damaging effects of pollen extracts in lung epithelial cells since an increase 

in cellular detachment and released cytokines in combined extracts was verified 

comparatively to isolated pollen extracts stimuli. 

The outcome of this project indicates that A. negundo’s calreticulin plays an adjuvant 

role in pro-inflammatory responses in context of epithelial damage; however further 

studies should be performed to confirm if it was a consequence of protein’s interactions 

with cell receptors and which receptors and mechanism are specifically involved.  
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The respiratory system 

▪ The respiratory apparatus 

The respiratory apparatus is composed by several organs mainly responsible for 

oxygen absorption and carbon dioxide elimination. It can be distinguished by lungs and 

respiratory airways, which are constituted by the nasal cavities, pharynx, larynx, trachea 

and bronchioles. The respiratory airway is subdivided in upper and lower respiratory tract 

that correspond to structures between the nose - larynx (upper) and larynx – visceral 

pleura (lower). The lower part is a branched system of airways that act as conductive 

(trachea and bronchial tree subdivided in bronchioles) or respiratory tracts (bronchi and 

alveolar ducts composed by alveolar sacs), depending if they conduct air or execute gas 

exchanges with circulating blood. The last of purely conductive airways are known as 

terminal bronchioles, beyond which are further branches of transitional bronchioles that 

can perform both functions. 

The inhaled air harbours several damaging agents such as irritants, infectious 

organisms and allergenic substances, which increase the damage susceptibility of the 

delicate respiratory epithelium. As one of the first barriers of defence against exogenous 

substances, the respiratory airway performs many functions other than gas conduction, 

e.g. humidification and elimination of injurious substances from circulating air; although, 

these functions are dependent on branching patterns, integrity and composition of 

structural components and interaction between them and neural and immunocompetent 

elements of the airways. The more distal respiratory area is protected from these agents 

by defence mechanisms that are a result of a coordinated response of the different 

constituents of the airway wall. The nervous elements produce nervous signals that 

result in bronchoconstriction and involuntary cough to eliminate secreted substances (i.e. 

mucus, lysozyme, lactoferrin and IgA) with the aid of ciliary activity. Additionally, epithelial 

cells can recruit and modulate immune cells activity through the release of chemotactic 

substance that consequently results in immune reactions, another defence mechanism 

of respiratory tracts (Canning et al., 2014; Ganesan et al., 2013; Georas and Rezaee, 

2014; Jones, 2012).  

▪ The airway wall and its components – epithelial elements 

The airway wall is generally composed by a coating mucosa of surface epithelium, 

basement membrane and supporting elastic lamina propria; a submucosa containing 

glands, muscle and cartilage; and a thin adventitial coat. Although, the composition of 
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the surface epithelium differs depending on the structure. The upper respiratory part has 

a pseudostratified epithelium constituted by ciliated, columnar cells and sporadic mucus-

secreting (Goblet) cells, except in the anterior nares which has stratified epithelium 

constituted by keratinising squamous cells. The lower portion is also pseudostratified 

composed by columnar ciliated cells as well, becoming simple cuboidal in peripheral 

airways. Contrarily, the larynx is composed by stratified squamous epithelium either 

keratinized or not (Jeffery, 1983). 

Despite the similar organization between upper and lower part of the airways, the 

epithelial cells that compose the epithelium vary. The epithelium of conducting airways 

can be composed by distinct epithelial cells with specific functions, i.e. basal, ciliated, 

mucous (Goblet), serous, Clara or neuroendocrine cells. The basal cells contribute to the 

pseudostratified appearance of epithelium in the large bronchi and trachea; however, 

some authors also considered them as major stem cells for mucous and ciliated cells, 

highlighting their proliferative and reparative role in the lung epithelium (Ayers and 

Jeffery, 1988). Mucous cells are responsible for mucus production and secretion with 

optimum viscoelastic profile to maintain the mucociliary clearance performed by ciliated 

cells (Saetta et al., 2000). The function of serous cells is yet to be fully defined, but 

previous studies performed suggested a key role in mucosal defences due to their 

secretion of anti-fungi and anti-bacterial compounds (Wine, 1999). It was also evidenced 

that these cells differentiate into mucous cells after damage (Jeffery and Reid, 1981). 

Clara cells are usually restricted to human’s terminal bronchioles and are considered as 

major stem cells of ciliated and mucous cells in small airways (Ayers and Jeffery, 1988). 

Additionally, it was suggested that Clara cells play a key role in the production of an 

hypophase component of surfactant and an antiprotease (De Water et al., 1986; Gil and 

Weibel, 1971). The neuroendocrine cells respond to stimuli of airway’s nervous 

elements, possibly contain biogenic peptides that could influence vascular and bronchial 

smooth muscle tone, mucus secretion and ciliary activity (Wharton et al., 1978). 

The epithelium of alveolar walls is mainly composed by other cells denominated as 

Type I or squamous cells and Type II or granular cells. Type I cells thinly cover the 

alveolar wall, thus preventing fluid loss while facilitating rapid gas exchange; however, 

they are extremely sensitive to injury. Type II cells are taller and twice as numerous as 

the Type I, despite only covering 7% of the alveolar surface due to their cuboidal shape 

(Crapo et al., 1982). These cells have an extremely significant role in pulmonary 

surfactant production and secretion, but also function as substitutes of damaged Type I 

cells after proliferation and differentiation (Evans et al., 1973). 
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▪ The airway wall and its components – epithelial barrier 

Besides the skin, the respiratory tract comprises the only tissue that is directly 

exposed to environmental factors. Given this, the lung epithelium is composed by multi-

layered physical-chemical barriers to prevent pathogen-crossing into the bloodstream. 

The barrier function of the respiratory epithelium is influenced by cell’s secreted products, 

ciliary movements and intercellular junctional complexes.  

As well as fluids and mucines, airway epithelial cells also secrete a series of 

antimicrobial substances and peptides – enzymes, protease inhibitors and oxidants 

(nitric oxide (NO) and hydrogen peroxide) – which are accumulated in the airway surface 

liquid (ASL) and help eliminate inhaled pathogens. The produced protease inhibitors, 

e.g. secretory leukoprotease inhibitor (SLP1), elastase inhibitor, α1-antiprotease and 

anti-chymotrypsin, reduce the effects of proteases expressed by pathogens and 

recruited innate immune cells maintaining the protease/anti-protease balance. This 

balance is crucial to prevent lung inflammation and preserve tissue homeostasis 

(Ganesan et al., 2013; Whitsett and Alenghat, 2015). While ASL holds and eliminates 

inhaled pathogens or particles, the ciliary activity is responsible for movement of retained 

substances from the lungs to the pharynx to be ingested or expelled by coughing. The 

efficiency of this process, which is crucial to ensure the airway’s clearance, depends on 

coordinated movements of cilia and ASL’s composition. The intercellular junctional 

complexes allow paracellular selective permeability to ions, macromolecules and water. 

Moreover, these complexes also promote differentiation of lung epithelial cells by 

separating basolateral surface’s proteins from apical surface’s ones (Ganesan et al., 

2013; Shin et al., 2006).  

Apical junctional complexes include tight (TJ) and adherens (AJ) junctions; although 

there are also basal junctional complexes composed by desmosomes, gap junctions and 

hemidesmosomes (Ganesan et al., 2013; Whitsett and Alenghat, 2015). Tight and 

adherens junctions are formed by homo- and heterotypic binding between several 

claudins expressed by lung epithelial cells and their cooperation is essential to maintain 

the paracellular permeability of the epithelium and tissue integrity (Ganesan et al., 2013; 

Pohl et al., 2009). While TJ function as barrier to molecule-diffusion from lumen to 

parenchyma and regulate the paracellular transport of molecules and ions, AJs mediate 

cell-to-cell adhesion and promote TJ formation (Hartsock and Nelson, 2008). Tight 

junctions are the most apical junctions of every junctional complex which possibly 

explains the consequent increase in epithelial permeability and airway inflammation after 

their disruption (Bhattacharya and Matthay, 2013; Georas and Rezaee, 2014; Grainge 
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and Davies, 2013; Koval, 2013a; Koval, 2013b; LaFemina et al., 2014). They are 

composed by several transmembrane and cytoplasmic scaffolding proteins – e.g. 

Occludin and Zonula Occludens-1 (ZO-1), respectively. The first are responsible for 

tightly connect adjacent cells while the others form protein networks between 

transmembrane proteins and cell’s actin cytoskeleton (Schneeberger and Lynch, 2004). 

Moreover, the transmembrane protein Occludin was previously indicated as essential for 

de novo assembly of TJs (Ganesan et al., 2013; Rao, 2009). Adherens junctions are 

more basal than tight junctions and are responsible for the initiation and maturation of 

intercellular contacts. Their main proteins are type I transmembrane glycoproteins, 

epithelial cadherin (E-cadherin), α- and β- catenin. The extracellular domains of E-

cadherin are responsible for the formation of homotypic, calcium-dependent adhesions 

between adjacent epithelial cells. Moreover, previous studies indicated the role of E-

cadherin in regulation of cell proliferation and differentiation by modulation of Epidermal 

Growth Factor Receptor (EGFR) and β- catenin activities (Casalino-Matsuda et al., 2006; 

Ganesan et al., 2013; Wendt et al., 2010). The remaining basal junctional complexes 

also have important roles in cell-to-cell communication and in cell-cell and cell-

extracellular matrix adhesion processes. 

▪ The airway wall and its components – nervous elements 

The afferent nerves innervating the respiratory airway that regulate reflexes such as 

bronchoconstriction and coughing have terminations largely infiltrated within the 

epithelial basement membrane, being surrounded by epithelial cells. Bronchopulmonary 

vagal afferent nerves are mostly unmyelinated C-fibers, which are sensitive to 

bradykinin, ion channels activators (e.g. capsaicin, protons, ozone, allyl isothiocyanate), 

inflammatory mediators (e.g. prostaglandin E2) and environmental irritants (e.g. ozone, 

nicotine) contrarily to other afferent nerves (Canning et al., 2014). There is also a set of 

mechanically sensitive myelinated vagal afferent nerves, known for decades as 

Widdicombe Cough Receptors. These Cough Receptors are exclusive to 

extrapulmonary airways with terminations between the smooth muscle layer and the 

epithelial layer of the mucosa. Finally, the afferent nerves of airways can also be Lung 

Stretch Receptors categorised according to their responses to sustained inflation – 

rapidly and slowly adapting receptors (RARs and SARs, respectively). Terminal 

structures of RARs are yet to be defined in the airway, but some functional studies 

indicate that possibly these nervous fibers terminate within or beneath the epithelium of 

intrapulmonary structures. The terminal location of SARs is believed to be primarily 
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associated to the peripheral intrapulmonary airways, although it was described at other 

locations in distinct species (Canning et al., 2014). 

▪ The airway wall and its components – lymphoid elements 

Due to the constant exposure to damaging agents, the respiratory tract should 

respond rapidly to return to a homeostatic state. Therefore, the airway is also composed 

by lymphoid elements, which include lymph nodes, bronchus-associated lymphoid tissue 

(BALTs), lymphoreticular aggregates and dispersed lymphocytes, dendritic cells, 

macrophages and mast cells. Mast cells present in airways are morphologically and 

functionally distinct from the ones present in deep connective tissues, but release several 

inflammatory mediators that affect epithelial and vascular permeability, smooth muscle 

function and other functional responses (Enerback, 1986). Lymphocytes may be either 

B or T cells, specifically T cells CD3+, CD4+ (T helper) and CD8+ (T cytotoxic); however, 

T-cell immunity is regulated by balancing signals of resident Ia+ dendritic cells and 

macrophages. Alveolar macrophages are mainly located in the alveoli and are avidly 

phagocytic (Brody et al., 1981). They also have the ability to interact with pulmonary 

lymphocytes to present antigens via surface immunoglobulins and complement 

receptors, highlighting their importance in eliciting immune responses against 

exogenous agents (Kaltreider, 1982). Although, lysosomal enzymes released during 

phagocytosis (e.g. elastases, collagenases) and other substances released 

independently of phagocytic activities (e.g. matrix metalloproteinases, interferon and 

fibroblast-stimulating factor) may damage the lung tissue if the normal anti-protease 

screen α1-antiprotease is compromised. 

▪ The airway wall and its regulation mechanisms 

Contrarily to what was initially thought, the respiratory epithelium is more than just a 

physical barrier to exogenous agents. The lung epithelial cells have a crucial role in 

tissue remodelling processes and in modulation of immune responses – either innate or 

adaptive (Grainge and Davies, 2013; Whitsett and Alenghat, 2015). The expression of 

several receptors (e.g. pattern recognition receptors (PRRs), Toll-like receptors (TLRs), 

retinoic acid-inducible gene I-like receptor (RIG-I-like receptor), C-type lectins and 

inflammasome components) on epithelial cell’s surface indicates that these cells 

contribute for early detection of pathogens or other damaging agents (Weitnauer et al., 

2016). Although, cell receptor’s interactions with molecules present in ASL or expressed 

during airway epithelium damage greatly contribute to the maintenance of the 
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hyporesponsive state of lung epithelium or to initiation of immune responses, thus 

highlighting the complexity of airway’s regulation mechanisms.  

The immune response can be regulated by epithelial cells in two distinct mechanisms: 

one responsible for maintaining pulmonary homeostatic state and other responsible for 

immune response initiation. These two processes are modulated by airway’s distinct 

components interactions and by expression of chemical mediators and other molecules. 

As previously referred, the airway epithelial tissue secretes a series of proteins to 

constitute ASL such as mucins, which are glycoproteins with high potential for post-

translational modifications. Besides forming a physical barrier between antigens and 

microbes and epithelial cells, mucins also have anti- oxidant/ proteolytic/ microbial 

activities that contribute to unspecific innate defences. Although, previous studies 

indicated that mucins also had immunoregulatory effects by inhibiting TLR signalling, 

possibly contributing to its actively suppression in airway’s and alveolar epithelial cells in 

homeostatic states (Weitnauer et al., 2016). On the alveolar level, the ASL is replaced 

by pulmonary surfactant constituted by surfactant proteins (SP) with immunoregulatory 

mechanisms as well. Previous studies highlighted the role of SP in limiting the contact 

between alveolar epithelial cells and pathogens or their pathogen-associated molecular 

patterns (PAMPs). It was verified that SP-A and SP-D and phosphatidyl glycerol-

containing surfactant vesicles directly bound to TLR2, TLR-4, MD2 and CD14 resulting 

in receptor’s blockage to PAMPs. Additionally, it was proved SP-C binds to LPS thus 

eliminating their damaging potential (Weitnauer et al., 2016). In parallel, the alteration of 

expressed mucins by airway epithelial cells and the suppression SP expression by 

alveolar epithelial cells caused by exogenous agents revealed to be crucial for initiation 

of inflammatory responses. Moreover, these alterations could be an immediate effect of 

pathogen’s activities or caused by perturbations in mucociliary elimination and 

incomplete clearance of airways. Additionally to epithelial surface’s protection by ASL or 

pulmonary surfactant, the intercellular tight junctions also play a crucial part in 

modulation of immune response - possibly due to the fact that some of the receptors are 

limited to the basolateral side off cells, which is inaccessible in healthy homeostatic 

epithelium. Although several studies indicated that TJ and AJ disruption induced the 

expression and secretion of cytokines and chemokines that elicited immune responses.  

When both biochemical and physical barriers of airway’s tissue are compromised, 

epithelial cells express chemotactic substances, cell-surface molecules and cytokines to 

recruit inflammatory cells to the injured site and modulate their activity (Mayer et al., 

2008). Several molecules and chemotactic factors (e.g. nitric oxide (NO), Leukotriene 

B4) are involved in activation of neutrophils, macrophages, eosinophils and lymphocytes 
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(Marcet et al., 2007); however, there are other molecules (e.g. Chemokine (C-C motif) 

ligand 20 – CCL20) capable of recruiting dendritic cells (DCs) into the epithelial tissue 

which consequently initiates more specific immune responses of B and T cells (Kato and 

Schleimer, 2007; Pichavant et al., 2005; Pichavant et al., 2006; Reibman et al., 2003). 

The released molecules could have pro- or anti-inflammatory effects in order to ensure 

that inflammatory reactions do not escalate to chronic inflammation of the tissue. 

Previous studies revealed the role of epithelial cells in negative regulation of 

inflammatory cells in certain context (Mayer et al., 2008; Weitnauer et al., 2016). For 

example, Mayer et al. (2008) indicated inhibition of lymphocyte proliferation and T-cell 

differentiation through synthesis of Transforming Growth Factor type β (TGF- β) by 

epithelial cells.  

After elimination of the damaging agent, the epithelial tissue must repair and 

regenerate its normal structure in order to return to homeostatic state. Tissue repair and 

remodelling mechanisms are also initiated by the expression of chemical mediators and 

cytokines. In coordination with basal fibroblasts, the epithelial cells strictly regulate the 

airway microenvironment in such processes. After injury, epithelial cells dedifferentiate 

and suffer epithelial-to-mesenchymal transition (EMT) to repair the injured area. To 

perform their reparative functions, epithelial cells migrate to cover the area and restore 

the affected barrier protection; however, these cells remain in their epithelial 

compartment without surpassing the basement membrane. It was previously evidenced 

that cell’s migration and proliferation is regulated by upregulation of epithelial growth 

factor receptor (EGFR) (Grainge and Davies, 2013). Simultaneously to epithelial cell’s 

migration, the underlying fibroblasts proliferate and differentiate to synthesize a 

temporary fibrotic matrix to support the migrating mesenchymal-like cells. Subsequently 

to barrier restorage, myofibroblasts suffer apoptosis to reinstate normal tissue structure 

and the basal epithelial cells differentiate into the different epithelial components of the 

airway wall. Although, the restored epithelium first differentiates in mucous cells followed 

by ciliated cells to re-establish the mucociliary escalator. Previous studies indicated that 

the airway can also initiate EMT and repair mechanisms (fibroblast proliferation and 

increased expression of fibronectin and type III and V collagen) in response to increased 

expression of TGF-β2 triggered by methacholine-induced bronchoconstriction (Grainge 

and Davies, 2013).  

The molecular basis of allergy 

The immune system is defined by several biological structures, i.e. cells and tissues, 

and mechanisms that protect an organism against disease or environmental 
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aggressions. The immune response is classified as innate or adaptive depending on the 

activated mechanisms. Innate immune response is defined as non-specific cellular and 

humoral mechanisms that culminate in inflammatory and phagocytic reactions to an 

unknown agent – this is the first response to a new damaging molecule. The adaptive 

immune response is defined by complex reactions – also cellular and humoral – that 

adapt specifically to a certain antigen to respond to subsequent exposures more quickly. 

However, the immune system also has the capacity of damaging an organism when its 

regulatory mechanisms are somehow affected. This is commonly known as 

hypersensitivity of the immune system. 

Currently, four types of hypersensitivity are defined, according to their origin and 

consequences. Respiratory allergy is classified as type 1 hypersensitivity and generally 

there is a genetic predisposition to such condition. It is a well-known inflammatory 

process which involves several immune cell types, molecules and signalling pathways. 

The allergic reaction is initiated by a sensitization process that occurs during the first 

exposure to an allergen which begins with allergen uptake by antigen- presenting cells 

(APC). Consequently, APCs migrate to lymph nodes while the allergen is digested in 

their lysosomes and fragments are loaded onto the major histocompatibility complex 

(MHC) class II. Once loaded, the MHC class II molecule migrates to the cell surface and 

is recognized by a specific T-cell subpopulation – the Type 2 helper T (TH2) cells. The 

activation of this TH2 subpopulation results in the expression of chemical mediators that 

are responsible for the class-switching process necessary for immunoglobulin E (IgE) 

production, i.e. interleukin 4 (IL-4); and for the activation and recruitment of other immune 

cells – eosinophils, mast cells, macrophages, B cells –, e.g. IL-4, IL-5, IL-9, IL-13. IgE 

synthesis and eosinophilia distinguish the allergic inflammation from other forms of 

inflammation and are important components of the allergic process (Bacharier and Geha, 

2000; Broide, 2001; Stone et al., 2010).  

In subsequent exposures, IgE-allergen specifically binds to granulocytes through the 

FCξR receptor. Consequently, the granulocyte degranulates releasing a series of pro-

inflammatory mediators involved in early- and late-phase symptoms of the allergic 

reaction. The early phase of allergy is characterized by dyspnea, edema, swelling and 

protein degradation caused by bronchiole’s smooth muscle contraction, blood vessels 

dilation and eosinophil’s activation. The late phase is characterized by an increased 

inflammation and aggravated symptoms of the early phase due to constant recruitment 

of immune cells, e.g. eosinophils, TH2 cells, basophils, neutrophils, mastocytes, etc.  

The common symptoms associated with this condition are sneezing, itchiness, 

rhinorrhea and nasal congestion in the upper respiratory apparatus and chronic 
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inflammation and bronchioles tightness in the lower respiratory apparatus, also known 

as allergic asthma (Calderon et al., 2015). Although, allergic symptoms could also be a 

consequence of cytokine production and tissue inflammation elicited by non-IgE 

mediated processes. Specifically, the pathological eosinophilia characteristic of asthma, 

rhinitis and other respiratory diseases could be elicited by non-IgE mediated stimuli such 

as the proteolytic and non-proteolytic effects of allergen extracts of inhaled 

environmental substances, e.g. pollen grains or dust mites (Atkinson and Strachan, 

2004; Pinto and Todo-Bom, 2009; Robinson et al., 2008; Runswick et al., 2007; Schleh 

and Hohlfeld, 2009; Tomee et al., 1998). Moreover, several studies performed to classify 

types of asthma indicated that there are asthmatic patients with atypical elevated levels 

of neutrophils instead of TH2 cells (Carr et al., 2017; Ray and Kolls, 2017). This asthmatic 

subtype, highlights a non-IgE mediated alternative mechanism that results in similar 

symptoms of the allergic asthma subtype. 

Pollen as an allergy elicitor 

Pollen-related allergic symptoms affect a wide amount of world’s population and tend 

to be aggravated in overdeveloped areas. Despite the well-recognized pollen 

allergenicity, the sensitization is often silent and only detected when a symptom develops 

in the affected individual (Calderon et al., 2015). Throughout the years several plant 

species were identified as producers of allergenic pollen, however the allergenic potential 

of pollen grains varies according to the geographical area and the environmental factors 

surrounding the studied population – e.g. air pollution, climate changes, etc (Asam et al., 

2015; Atkinson and Strachan, 2004; Chapman, 1986; Ribeiro et al., 2013; Ribeiro et al., 

2014; Robinson et al., 2008; Schleh and Hohlfeld, 2009; Silva et al., 2015; Sousa et al., 

2012).  

As previously referred, for antigen presentation to occur the antigen must cross the 

epithelial barrier to access immune cells and elicit an immune response. Several studies 

performed in the last decades revealed that the allergenic potential of air allergens, 

including pollen grains, was dependent of intercellular junctional complexes’ disruption 

with consequent lung epithelial damage caused by amplified inflammatory responses 

(Runswick et al., 2007; Tomee et al., 1998; Wan et al., 1999). These studies have proved 

the ability of certain enzymatically active proteins from air allergens – e.g., fungi allergens 

of Alternaria and Aspergillus and specifically Pen ch 13 (Penicillium chrysogenum); Der 

p1 (Dermatophagoides pteronyssinus); pollen proteases of four distinct plant species – 

to induce expression of cytokines and other mediators in epithelial cells, in vitro cell 

detachment and Occludin’s degradation with consequent increase of epithelial 
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permeability (Kauffman et al., 2000; McKenna et al., 2017; Runswick et al., 2007; Tai et 

al., 2006; Vinhas et al., 2011). 

Some authors defend a “protease hypothesis” where apical junctional complexes 

disruption is directly caused by proteolytic potential of pollen protein extracts (Hollbacher 

et al., 2017; McKenna et al., 2017; Runswick et al., 2007; Vinhas et al., 2011). Despite 

being difficult to predict bioactivity of pollen extracts based on biochemical properties, 

the proteolytic activity has in fact an adjuvant role in the development of allergic diseases 

since it is involved in the first step of allergen sensitization.   

Acer negundo as a potential allergenic tree  

The urban land-use planning of a certain area also has a significant impact in public 

health. Specifically in Porto (Portugal), a previous study performed by Ribeiro et al. 

(2009) revealed correlation between production peaks of potentially allergenic pollen and 

maximum hospital emergency admissions for asthma- or dyspnea-related respiratory 

diseases. One of the identified potential allergenic pollen was produced by A. negundo 

tree, which is an ornamental tree predominant on the streets of the city. Subsequent 

studies revealed that the exposure of these trees to urban pollutants can aggravate the 

pollen allergy on predisposed individuals and affect plant reproduction (Sousa et al., 

2012). 

A. negundo is commonly known as box-elder and it is a native species from North 

America that belongs to the Sapindaceae (Aceraceae) family.  It is identified has a 

potential allergenic tree, since it has been verified a hypersensitization to A. negundo’s 

pollen in the areas where it occurs. This maple tree was introduced in Europe in the 17th 

century as a park tree, but is now considered an invasive species in Central Europe. This 

tree is primarily wind pollinated and has subprolate or spheroidal pollen – depending on 

the hydration levels – which has a striated ornamentation and three elongated apertures 

(Pehlivan et al., 2003). Due to its short living period it is a fast-growing tree and, unlike 

other maple trees, A. negundo is dioecious. Its seeds have a winged structure that helps 

dissemination. 

To characterize the potentially allergenic proteins present in total protein content of 

A. negundo’s pollen grains, a two-dimensional polyacrylamide gel electrophoresis (2D-

PAGE) was performed followed by a Western Blot analysis using sera of patients with 

allergenic susceptibility to A. negundo’s pollen proteins. The immunoreactive proteins 

were identified by Mass Spectrometry (MS) analysis using matrix-assisted laser 

desorption/ionization (MALDI) and peptide mass fingerprinting (PMF) and one of the 

potential allergenic proteins identified was Calreticulin (CRT). 
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Calreticulin – a well-known unknown protein 

Calreticulin is a highly conserved multifunctional protein of 46-60 kDa involved in 

protein folding and Ca2+ homeostasis predominant in the endoplasmic reticulum (ER) of 

eukaryotic cells due to its ER retention sequence – K/HDEL (Jia et al., 2009; Michalak 

et al., 2009; Opas et al., 1996). Several studies on the animal CRT over the past decade 

suggested other subcellular localizations, e.g. nucleus, cytoplasm and extracellular 

membrane, as well as other CRT functions such as integrin’s regulation, cell to cell 

interactions and gene expression modulation in addition to molecular chaperoning and 

calcium sequestration, mobilization and signalling (Lenartowska et al., 2002; Li and 

Komatsu, 2000; Navazio et al., 1998). The significant structural similarity of the protein 

across eukaryotes, particularly in parts of the protein crucial for functionality, suggests 

important biological functions (Coppolino and Dedhar, 1998; Jia et al., 2009).  

The protein is subdivided into three distinct domains: the globular N- and the proline-

rich P- domains both responsible for the chaperone activity; and the C- domain with a 

wide range of acidic residues involved in calcium buffering. Also, it has a signal peptide 

sequence previous to the N-domain and an ER-retention signal (KDEL or HDEL in 

mammals or plants, respectively) at the C-terminus. Relatively to its three-dimensional 

structure CRT presents a globular shape composed by N- and C- domains with an 

extended arm-like hairpin (P- domain). The N-domain is extremely conserved and two 

signature motifs were identified in plant CRTs (KHEQKLDCGGGYVKLL and 

IMFGPDICG). This N-terminal domain also contains consensus sites for N-glycosylation 

through most plant species; however the glycosylation potential varies according to the 

protein isoform, which is a possible explanation for CRT redistribution in the cell 

described elsewhere (Thelin et al., 2011). The P- domain comprises two proline-rich 

motifs repeated three times – PxxIxDPKxxKKPExWDD (motif A) followed by 

GxWxAxxIxNPxYK (motif B) – subsequent to a putative nuclear targeting sequence 

(PPKxIKDPx). In animal CRTs, the P-domain contains repeated motifs which are also 

noted as letters A and B. Despite the similarity with plant CRT segments, these repeated 

motifs correspond to different amino-acidic sequences – PxxIxDPDAxKPEDWDE (motif 

A) and GxWxxPxIxNPxYK (motif B). Repeats A and B are essential for the lectin-like 

activity of CRT but are also responsible for the high-affinity Ca2+ binding capacity of the 

P-domain. This domain also contains 4 amino-acid residues crucial for chaperone 

interaction: Glu, Asp, Glu and Trp. The C-domain is highly acidic and negatively charged 

to bind high concentrations of Ca2+ despite having low calcium affinity. The calcium 

binding function is mainly associated to the C-terminal domain, regardless of the high 
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affinity of the P-domain which binds low concentrations of Ca2+. The C-domain is the 

least conserved domain of this protein and contains several putative phosphorylation 

sites, which some authors defend as extremely important for regulation of CRT’s role in 

signal transduction in various cellular processes (Droillard et al., 1997; Li and Komatsu, 

2000; Thelin et al., 2011). 

The increasing studies on plant CRTs revealed that there is at least 3 isoforms 

functional divergent (Christensen et al., 2010; Jia et al., 2009; Thelin et al., 2011). 

However, there are only two groups distinguished: CRT1/ CRT2 - also referred as 

CRT1a/ CRT1b respectively - and CRT3. Phylogenetic studies using plant CRTs showed 

that CRT1a and CRT1b have higher sequence homology between them than with CRT3, 

subsequently confirmed by expression studies (Jia et al., 2009; Persson et al., 2003). 

CRT3 isoform is pointed out as the most divergent isoform; although according to some 

works it is the ancestral isoform, despite having very specific functions in plants as 

previously described (Persson et al., 2003).   

Phylogenetic analyses based on coding sequences and deduced amino-acidic 

sequences of animal CRT using as out-group Arabidopsis thaliana suggested purifying 

selection over the protein’s primary structure with periodic positive selection which 

resulted in fixated polymorphisms (Bakiu, 2014). The found polymorphisms might be 

responsible for some specific functions of CRT found in both animal and plant cells, as 

well as the conserved primary structure being responsible for shared functions between 

them. Consequently, some mammalian CRT functions were transposed to its plants 

homologues since there is no complete functional characterization of plants CRTs. 

However, there is increasing proof that CRT has acquired special functions in plants 

throughout evolution. In plants, it has been suggested CRT participation in several 

reproductive processes due to detection of enhanced expression levels in specific 

reproductive structures, e.g. whole ovaries of barley, sperm cells of maize and in tobacco 

anthers and pollen tubes (Chen et al., 1994; Chen et al., 2016; Jia et al., 2009; Nardi et 

al., 2006; Navazio et al., 1998; Williams et al., 1997). Jin et al. (2009) reported that CRT3 

is crucial and exclusive for retention of misfolded brassinosteroid receptor in the ER. 

Other studies revealed that this isoform was also responsible for the correct folding of a 

specific receptor, which has a key role in plant immunity since it recognizes Pathogen 

Associated Molecular Patterns (PAMPs) – the elf18 responsive EF-Tu receptor (EFR) – 

and was not capable to balance the phenotype resulting from double mutant organisms 

lacking the other two isoforms (CRT1a/1b) (Christensen et al., 2010; Thelin et al., 2011). 
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▪ Calreticulin as a cell adhesiveness modulator 

As previously noted, calreticulin is an ER protein with well characterized main 

functions. However, throughout the years emerging evidences suggested unexpected 

functions for this protein. A previously published work reviewed the interactions and 

pathways where animal calreticulin is involved (Michalak et al., 2009). The crucial role of 

this protein in cell differentiation and in several processes of the embryonic development 

was highlighted, e.g. cardiac and central nervous system development. Moreover, in the 

same review it was noted the importance of this protein in other processes essential to 

maintain tissue integrity, i.e. the role of CRT in wound healing (Michalak et al., 2009).  

Previous studies proved that the re-epithelialization of a wounded tissue was 

accelerated by CRT protein since it chemoattracted and stimulated the proliferation of 

epithelial cells (keratinocytes and fibroblasts), both in vivo and in vitro (Gold et al., 2010; 

Michalak et al., 2009). Additionally, there are evidences that CRTs also plays important 

roles in cellular adhesiveness, mobility and proliferation by regulating the expression of 

specific growth factors or certain proteins crucial for adhesive structures formation and 

maintenance commonly known as extracellular matrix (ECM) proteins (e.g. vinculin, 

fibronectin, collagen α1, N-cadherin) (Bedard et al., 2005; Fadel et al., 1999; Fadel et al., 

2001; Papp et al., 2007; Villagomez et al., 2009). These effects are opposite depending 

on protein’s location. For example, the overexpression of intracellular CRT was 

correlated with augmented cell adhesiveness; however cell-surfaced or extracellular 

CRT activated signalling cascades (PI3 kinase, ERK and Gi-protein systems) that led to 

focal contact disassembly and consequently decreased cell adhesiveness (Goicoechea 

et al., 2002; Villagomez et al., 2009).  

The regulation of ECM proteins occurs consequently to intracellular signalling 

cascades that may be modulated by CRT expression levels (Bedard et al., 2005; Fadel 

et al., 1999; Fadel et al., 2001; Papp et al., 2007; Villagomez et al., 2009); or by CRT 

interaction with transmembrane proteins, e.g. integrins, lipoprotein receptor- related 

protein (LRP1, also known as CD91 receptor) (Coppolino and Dedhar, 1998, 1999; 

Coppolino et al., 1997; Raghavan et al., 2013). Specifically, in mammalian systems a 

correlation between increased secreted calreticulin and detachment of cancer cells 

during initiation of metastasis was suggested, which indicates interactions between 

secreted CRT and cell-membrane receptors that are involved in adhesion processes 

(Chiang et al., 2013; Shi et al., 2014). Regardless of the accumulating evidences in the 

past years that corroborate the potential role of CRT as a cell-adhesion modulator, the 

intrinsic mechanisms are still to be fully understood and described. 
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▪ Calreticulin as an immune system activator 

It was previously reviewed elsewhere (Wiersma et al., 2015) that the immune system 

can be activated by ER chaperones through interactions with LRP1 receptor, even 

though the mechanisms behind that activation are still to be fully understood. In fact, 

some studies proved that ER chaperones are autoimmunity targets since their 

displacement to the extracellular environment is more likely to occur in dying cells or 

cells exposed to stressing stimuli (Eggleton et al., 2000). Consequently, ER chaperones 

can act as Damage-associated molecular patterns (DAMPs) and activate the immune 

system through a series of cascade reactions that can lead to immune-complex 

clearance, anti-tumour immunologic response or even autoimmunity (Wiersma et al., 

2015).  

Given the fact that ER chaperones are proteins naturally located in the ER due to the 

presence of specific retention motifs, they can suffer post-translational modifications or 

interact with other proteins that relocate them to unexpected locations. For instance, in 

joints of patients suffering from rheumatoid arthritis there is higher prevalence of a post-

translationally modified CRT isoform that potentiates the activating signals of innate 

immune cells (Ling et al., 2013; Wiersma et al., 2015). There is also evidence for LRP1 

involvement in immunogenicity regulation of some ER chaperones (calreticulin, gp96, 

HSP90 and HSP70), since the non-transmembrane CRT binds to the LRP1 receptor and 

is relocated to the cell surface (Basu et al., 2001; Wiersma et al., 2015). This relocation 

can occur in apoptotic cells and acts as an “eat-me” signal by competing with the 

inhibitory signal provided by CD47 (Gardai et al., 2005), confirming the important role of 

this protein in phagocytosis. Furthermore, it was previously evidenced that membrane 

exposure of calreticulin – either by stimulation with anthracycline treatment or by 

exogenous supplementation of recombinant CRT after mitomycin C treatment – lead to 

tumour cells phagocytosis and immunogenic cell death (Chaput et al., 2007).  It was also 

proven in the past few years that surface CRT interacts with proteins (e.g. collectins) that 

are involved in the initiation and modulation of several immune processes (phagocytosis, 

inflammatory or immunogenic responses). As stated by Gardai et al. (2003), lung 

collectins behave like a bifunctional sensor in order to enhance or repress inflammatory 

response depending on their collagenous tail domain orientation, which alters according 

to certain ligands, e.g. Pathogen-associated molecular patterns (PAMPs), apoptotic cells 

or cell debris. In the presence of those ligands, the collagenous tails of collectins suffer 

reorientation and interact with surface CRT/LRP1 – characteristic of apoptotic cells – 

stimulating the expression of proinflammatory mediators.   
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Additionally, extracellular CRT is known to have a significant role in the progression 

of autoimmune diseases, since it affects immune complex clearance. This occurs due to 

the inhibition of the C1q-dependent antibody hemolysis caused by the C1q-binding 

competition between extracellular CRT and antibodies (Schwab, 2008). 

Project’s Goals: 

A recent review stated that identified allergenic proteins are most likely to maintain 

their allergenicity since they are proteins under purifying selection due to their biologically 

important roles (Chen et al., 2016). Given this, it is important not only to characterize the 

identified proteins but to understand the effects on the exposed epithelial cells to 

describe the inflammatory response that consequently develops. Knowing the processes 

and molecules involved helps to better understand the allergic reaction and 

consequently, to discover potential unknown targets that can alleviate the uncomfortable 

symptoms of an allergic reaction.    

Since there are evidences in the current literature of immunogenic effects specifically 

addressed to CRT isolated from parasites (Kasper et al., 2001), and there is proof of its 

involvement in several cell processes that in specific conditions develop an inflammatory 

or an immune response (Gardai et al., 2005; Martins et al., 2010; Trautmann et al., 2005), 

we raised the hypothesis that plant CRTs – being structurally and functionally similar to 

mammalian calreticulin and capable of restoring some of its main functions – could have 

similar immunogenic effects and induce the expression of proinflammatory molecules 

resulting in an inflammatory response; or interact as the secreted mammalian protein, 

compromise cell adhesion resulting in epithelium detachment and consequently induce 

an inflammatory response due to tissue damaging. Given this, we also raised the 

question if the allergenic potential of Acer negundo’s calreticulin (AnCRT) could be a 

consequence of specific interactions with cell-membrane receptors, as evidenced by 

several studies that highlighted the immunostimulatory effects of extracellular CRT – e.g. 

LRP1 in phagocytes, Toll-like receptor 4 (TLR-4) in dendritic cells (DC), Scavenger 

receptor A (SRA) in macrophages (Chaput et al., 2007; Gardai et al., 2005; Gold et al., 

2010; Martins et al., 2010; Obeid et al., 2007; Raghavan et al., 2013; Schwab, 2008; 

Wiersma et al., 2015); or a cumulative effect of the inflammatory reaction initiated from 

the pollen- epithelium contact that results in production of CRT-specific IgE.  
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RNA Extraction from pollen samples 

Pollen of Acer negundo (100 mg) was frozen in liquid nitrogen and homogenized “in 

tube” with a pestle. Total RNA was extracted using Trizol® reagent (Invitrogen) according 

to the manufacturer’s protocol with some modifications relatively to isopropanol 

precipitation and ethanol washing steps. RNA molecules were precipitated by incubation 

with ice-cold isopropanol at -20ºC for 30 minutes. The resulting pellet was washed with 

ethanol (80%), air-dried on ice and eluted in nuclease-free water.  

RNA retrieval from enzymatic treatments 

Treated RNA was retrieved with Trizol® reagent (Invitrogen) with modifications on 

manufacturer’s protocol in accordance to mixture volumes. Trizol® reagent was added 

to reaction mixture (1:1). After centrifugation at 10000 g for 5 minutes, the upper phase 

was transferred to a sterile nuclease-free tube and phase separation was repeated with 

addition of chlorophorm (1:1). The upper phase was again transferred to a sterile 

nuclease-free tube and RNA precipitation was performed as previously described. 

Subsequently, the mixture was centrifuged at 4ºC in maximum speed for 20 minutes 

(Eppendorf 5427 R). Pellet was washed with ethanol (80%), air-dried on ice and eluted 

in nuclease-free water. 

Determination of RNA quality and yield 

Total and treated RNA molecules were quantified using µDrop™ plate (Thermo Fisher 

Scientific). RNA concentration was determined by the following equation: 

𝟏) 𝐑𝐍𝐀 𝐜𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 = 𝐑𝐍𝐀 𝐄𝐱𝐭𝐢𝐧𝐜𝐭𝐢𝐨𝐧 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 ×  𝐎𝐃𝟐𝟔𝟎 ×  𝐝𝐢𝐥𝐮𝐭𝐢𝐨𝐧 𝐟𝐚𝐜𝐭𝐨𝐫 

Where RNA Extinction coefficient is pre-determined as 40 µg RNA/mL when OD260=1. 

Since samples were not diluted prior to quantification, the dilution factor corresponds to 

the path length (10/0.51 mm) of the µDrop™ plate (Thermo Fisher Scientific). RNA 

quality was evaluated by OD260/OD230 and OD260/OD280 ratio as indicated in µDrop™ 

plate (Thermo Fisher Scientific) User Manual and by visual analysis of agarose gels. 

Agarose gel electrophoresis  

RNA molecules were analysed in a 1% (w/v) agarose gel prepared with 1x Sodium 

Borate (SB) buffer [50 mM Sodium Hydroxide, 40 mM Boric acid] supplemented with 1% 
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(v/v) bleach as described by Aranda et al. (2012) and pre-stained with 0.5 µg/mL 

ethidium bromide.  

DNA molecules resulting from RLM-RACE reactions were analysed in a 1% (w/v) 

agarose gel prepared with 1x SB buffer and pre-stained with 0.5 µg/mL ethidium 

bromide. DNA molecules resulting from SemiNested Polymerase Chain Reaction (PCR) 

and Minipreps were analysed in a 0.8% (w/v) agarose gel prepared as described. All 

electrophoreses were performed at 200 V in 1x SB buffer using DNA Ladder Mix 

GeneRuler (Fermentas) as molecular weight marker. RNA and DNA bands were 

visualized in a UV transilluminator (302-365 nm) and gels were photographed with 

compatible systems. 

RNA Ligase-Mediated – Rapid Amplification of cDNA ends 

(RLM-RACE) 

The following methods were based on previously described protocols used to 

increase the probability of retrieving full transcripts from a total RNA pool (Suzuki et al., 

1997). 

▪ RNA Enzymatic treatments  

Total RNA extracted was submitted to enzymatic treatments as previously described 

(Suzuki et al., 1997) (Figure 1). The total RNA was treated with 2U of Calf Intestine 

Alkaline Phosphatase (CIAP – Thermo Fisher Scientific) at 37ºC for 1 hour. To prevent 

RNA degradation, the reaction mixture was supplemented with Ribolock (1.08 U/µL). 

The reaction was terminated with ammonium acetate (100 mM) and the treated RNA 

was retrieved as previously described in RNA retrieval from enzymatic treatments. 

Subsequently, the CIAP-treated RNA was treated with 25U of RNA- 

Pyrophosphohydrolase (RppH - NEB) at 37ºC for 1 hour to remove the CAP structure of 

full transcripts. To prevent RNA degradation, the reaction mixture was supplemented 

with Ribolock (1.08 U/µL). The reaction was terminated with addition of EDTA (10 mM) 

and incubation at 65ºC for 5 minutes.  
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Figure 1 – Schematic representation of RNA enzymatic treatment prior to 5’ Rapid Amplification of cDNA ends. 
Uncapped, i.e. 5’ monophosphate, RNA was converted to non-ligatable 5’ hydroxyl (HO) RNA by Calf Intestine Alkaline 
Phosphatase. Cap structure of complete mRNA molecules was removed by RNA 5’ Pyrophosphohydrolase resulting in a 
5’ monophosphate end capable of binding to a free 3’ HO end. Subsequently, resulting RNA was ligated by T4 RNA 
Ligase to an oligonucleotide adaptor (SMARTIIa) with free 3’ HO end. 

▪ 5’ Rapid Amplification of cDNA ends (5’ RACE)  

The uncapped RNA was bound to the SMARTIIa 5’ – oligonucleotide adaptor (Figure 

2 - 30 pmol; custom order, 5’ - AAG CAG TGG TAT CAA CGC AGA GTA CGC GGG - 3’) 

recurring to a ligation reaction performed with 7.5 U of T4 RNA ligase (TaKaRa) 

according to manufacturer’s protocol specified for intermolecular ligations. To prevent 

RNA degradation, the reaction mixture was supplemented with Ribolock (1.08 U/µL).  

 

Figure 2 – Schematic representation of 5’ Rapid Amplification of cDNA ends (5’RACE). Subsequently to reverse 
transcription of total and enzymatically-treated RNA, cDNA molecules were submitted to 5’ RACE using as primer forward 
an oligonucleotide (PrimerIIa) that annealed in a specific region of the oligonucleotide adaptor (SMARTIIa) and a gene-
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specific inner primer (CRT_R2 or QCRT_R) as primer reverse. Afterwards, the RACE products were amplified in a Semi-
Nested PCR in order to increase the number of desired cDNA molecules using the same primer forward and another, or 
the same, gene-specific inner primer as in RACE reaction. 

Subsequently, the adaptor-ligated RNA was reverse transcribed for cDNA synthesis 

recurring to Super Script IV VILO Master Mix (Invitrogen) according to manufacturer’s 

protocol. As control reaction, untreated RNA was also used for cDNA synthesis using 

Super Script IV VILO Master Mix (Invitrogen). In this reaction, SMARTIIa 5’ 

oligonucleotide adaptor (20 pmol) was added to the cDNA synthesis reaction. First-

strand cDNA products were used as template for 5’- end amplification (5’ RACE) with 

proofreading Pfu DNA polymerase (Thermo Scientific) and specific primers, according 

to the intended reaction (Table 1). 

Table 1 – Specifications of used primers in all amplification reactions performed. Melting temperatures and 
respective primer sequence are indicated. 

Primer Melting temperature (ºC) Sequence (5’  3’) 

CRT_F 59.3 ATK TGG TGG TGA TAC CCT TAC 

CRT_R2 60.3 CAG GAT CTG CTA TCT CCT TTG G 

QCRT_F 55.3 CTA CCT ACA GCA TCC TTA TC 

QCRT_R 51.2 TTC TTT GTC ATC CCA ATC TT 

A_ACT_F 59.0 GAT TCT GGT GAT GGT GTG TCT C 

A_ACT_R 57.9 ACG GAC AAT TTC CCG TTC 

PrimerIIa 60.6 AAG CAG TGG TAT CAA CGC AGA GT 

M13 (-20) Forward 59.0 GTA AAA CGA CGG CCA G 

M13 Reverse 58.0 CAG GAA ACA GCT ATG AC 

To assess genomic DNA contamination, PCR reactions were performed in the same 

conditions with untreated RNA not submitted to reverse transcription reaction as 

template (Table 2 – Reaction 5: Non- RT untreated RNA). Actin primers were also used 

to assess cDNA quality. Moreover, PCR components were tested for heterologous 

contamination through amplification reaction using nuclease-free water as template.
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Table 2 - Templates and primers used for 5’ Rapid Amplification of cDNA ends (5’ RACE) reactions and respective 
positive and negative controls. RACE reactions (A and C) are highlighted with a light-grey background. Their 
correspondent control reactions (B and D, white background) were performed with gene-specific inner primers chosen 
depending on the reverse primer selected for RACE reaction to assess the presence of the desired transcript and to 
determine the ideal template volume. Actin primers (A_ACT_F and A_ACT_R) were used to assess complementary DNA 
(cDNA) quality. Non-reverse transcribed untreated RNA was used as template to assess genomic DNA contamination in 
each reaction and nuclease-free water was used to check cross-contamination of PCR components. 

   Template 

 Primer forward Primer reverse 
cDNA from 

treated 
RNA 1 

cDNA from 
treated 
RNA 2 

cDNA from 
treated 
RNA 3 

cDNA from 
untreated 

RNA 

Non-RT 
untreated 

RNA 
Water 

PrimerIIa 

CRT_R2 

A1 A2 A3 A4 A5 C- (A) 

CRT_F B1 B2 B3 B4 B5 C- (B) 

PrimerIIa 

QCRT_R 

C1 C2 C3 C4 C5 C- (C) 

QCRT_F D1 D2 D3 D4 D5 C- (D) 

A_ACT_F A_ACT_R E1 E2 E3 E4 E5 C- (E) 

All amplifications were performed in a MJ Mini Thermal Cycler (Bio-Rad) using 

Touchdown PCR program (Korbie and Mattick, 2008) and analysed by agarose gel 

electrophoresis as previously specified. Annealing temperature of each amplification 

reaction had variations according to used primer-pairs melting temperatures specified in 

Table 1. Primer binding sites in known sequence of AnCRT coding sequence are also 

schematized in Figure 3. 

 

Figure 3 – Graphical representation of used primers binding sites. The limits of each primer binding site are also 
indicated but correspond to a specific position in the sequenced region. The unknown region is also represented bound 
to the SMARTIIa oligonucleotide adaptor used. 

SemiNested Polymerase Chain Reaction (PCR)  

The PCR products obtained from 5’ RACE were diluted and used as template for 

SemiNested PCR with Pfu DNA Polymerase (Thermo Fisher Scientific) and specific 

primers, according to the intended reaction (Table 3). The PCR primers used are 

specified in Table 1 and amplifications were performed as previously specified in 5’ Rapid 

Amplification of cDNA ends (5’ RACE). SemiNested PCR products were analysed by 

agarose gel electrophoresis as previously specified. 
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Table 3 - Templates and primers used for SemiNested PCR reactions and respective positive and negative 
controls. SemiNested PCR reactions are represented by letters A and C according to the RACE products used as 
template and highlighted with a light-grey background. Intern gene-specific primers (QCRT_F and QCRT_R) were used 
to assess the presence of the desired transcript and to determine the ideal template volume. Nuclease-free water was 
used as template to assess cross-contamination of PCR components in each reaction. All SemiNested PCR reactions 
were performed in triplicates. 

  Template 

Primer forward Primer reverse 
RACE 

products 
from A1/C1 

RACE 
products 

from A2/C2 

RACE 
products 

from A3/C3 

RACE 
products 

from A4/C4 
Water 

PrimerIIa 

QCRT_R 

A1/C1 A2/C2 A3/C3 A4/C4 C- 

QCRT_F A1/C1* A2/C2* A3/C3* A4/C4* C-* 

PCR products purification   

After agarose gel electrophoresis analysis, SemiNested PCR products with estimated 

size higher than 900 base pairs (bps) were selected and purified from gel using PCR & 

Gel Purification kit (Grisp) according to manufacturer’s protocol. The purified molecules 

were quantified with both µDrop™ plate (Thermo Fisher Scientific) and “in-gel” 

comparison to the used DNA ruler. 

Insert: Vector Ligation Reaction   

Purified products were ligated to pCR®-Blunt vector (Thermo Scientific) in a 10 :1 

(insert: vector) proportion with Anza T4 DNA ligase (Invitrogen) according to 

manufacturer’s protocol. A no-insert ligation was also performed to confirm the possibility 

of vector religation. It was used 2µL of each ligation product for transformation protocols. 

Preparing electrocompetent E. coli cells  

A glycerol-stock of Escherichia coli DH5α strain was pre-cultured in 5 mL of 

Luria-Bertani broth (LB broth) and incubated overnight at 37ºC with constant agitation 

(160 rpm). Subsequently, the pre-culture was used to inoculate 50 mL of LB broth and 

the primary culture was incubated at 37ºC with constant agitation (160 rpm) until it 

reached the desired optical density (OD600 = 0.6-0.8). The cell culture was collected by 

centrifugation at 6000 g (Eppendorf 5427 R) for 15 minutes at 4ºC. Subsequently, 

pelleted cells were resuspended in ice-cold milliQ water. Centrifugation and 

resuspension steps were repeated three times. Electrocompetent cells were stored at -

80ºC until use after addition of 10% (v/v) sterile ice-cold glycerol and freezing in liquid 

nitrogen. 
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Transformation of E. coli DH5α by Electroporation 

Ligation products were incubated on ice with a 50 µL aliquot of electrocompetent cells. 

After homogenization, the mixture was transferred to a 0.1 cm-gap Electroporation 

Cuvette (Bio-Rad) and incubated at room temperature for 5 minutes before applying the 

electric pulse in Micropulser™ (Bio-Rad). Cells were gently resuspended in 250 µL of LB 

broth and removed from the cuvette for regeneration. The regeneration step was 

performed by incubating the cells at 37ºC for 1 hour without agitation. Subsequently, the 

mixture was plated in a LB – 1.5% (w/v) agar plate supplemented with 50 µg/mL 

kanamycin. Plates were incubated at 37ºC overnight. 

Colony PCR 

Potential positive clones were selected and inoculated in 2 mL of LB broth 

supplemented with 50 µg/mL kanamycin (LB+Kan). The inoculums were incubated at 

37ºC for 1h-2h with constant agitation (180 rpm). Subsequently, a 200 µL aliquot was 

collected and centrifuged at maximum velocity for 30 seconds (Eppendorf Minispin®) for 

media removal. The pellet was resuspended in 100 µL of water and 2 µL were used as 

template for Colony PCR.  

The amplification reactions were performed with Taq DNA Polymerase (Fermentas) 

according to manufacturer’s protocol and using gene-specific inner primers QCRT_F and 

QCRT_R, as previously described. Control reactions were prepared in the same 

conditions with different templates. As positive control, it was used a E. coli DH5α cell 

culture harbouring the partial coding sequence of Calreticulin. To assess possible 

contaminations a negative reaction was performed using nuclease-free water as 

template. Amplified products were analysed by agarose gel electrophoresis in a 2% (w/v) 

agarose gel prepared as previously specified. 

Miniprep & Endonuclease Restriction Mapping reactions 

Plasmid DNA of positive clones was extracted with GeneJET Plasmid Miniprep Kit 

(Thermo Fisher Scientific) according to manufacturer’s protocol. Subsequently, the 

extracted plasmid DNA was submitted to endonuclease digestions using Anza EcoRI 

(Invitrogen), EcoRI Fast Digest (Thermo Fisher Scientific) and Speedy EcoRI (Nzytech) 

according to each manufacturer’s protocol. All digested products were analysed by 

agarose gel electrophoresis as previously specified. 
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Ligation PCR for ligation reaction analysis 

Ligation reaction products were diluted (1:10) in nuclease-free water. The diluted 

products were used as template for amplification with M13F (-20) and M13R universal 

primers using illustra™ PuReTaq Ready-To-Go PCR beads (GE Healthcare) according 

to manufacturer’s protocol. As control reaction PCR reactions were performed using “re-

ligated” and linear pCR®-Blunt vector as template. The amplified products were 

analysed by agarose gel electrophoresis as previously described. 

Recombinant Protein Expression studies 

A glycerol-stock of Escherichia coli BL21 (DE3) strain harbouring the recombinant 

plasmid pET-30a (+)::partial form Calreticulin (PfCRT) was pre-cultured in 10 mL LB + 

Kan and incubated overnight at 37ºC with constant agitation (160 rpm). Subsequently, 

the pre-culture was used to inoculate 50 mL LB + Kan and the primary culture was 

incubated at 37ºC with constant agitation (160 rpm) until it reached the desired optical 

density (OD600= 0.6-0.8). An aliquot of the primary culture was collected for subsequent 

procedures. The primary culture was subdivided previously to induction with 300 µM 

(IPTG) and incubated in different temperature conditions: 1) Room temperature; 2) 28ºC; 

3) 37ºC. The subdivided cultures were induced overnight with constant agitation (160 

rpm). In parallel, a glycerol-stock of E. coli BL21 (DE3) without pET-30a (+) plasmid was 

grown in LB media and induced in the same conditions as cell growth control. 

Cell cultures were collected by centrifugation at 6000 g (Eppendorf 5810 R) for 15 

minutes at 4ºC. Pelleted cells were either stored at -20ºC until protein extraction (frozen) 

or immediately processed for protein extraction (fresh). Pelleted cells were resuspended 

in phosphate- buffered saline buffer (PBS – 1x: 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4, pH 7.4) and lysed by sonication – 5 pulses of 30 seconds 

with 30 seconds rest. After incubation on ice for 30 minutes, lysates were centrifuged at 

14 000 g (Eppendorf 5810 R) for 15 minutes at 4ºC. The supernatant was collected and 

pellet was resuspended in the same volume of PBS (1x) that was used to resuspend 

pelleted cells. The resulting products were denominated as soluble fraction and insoluble 

fraction, respectively. Both fractions were analysed by SDS-PAGE.  

Recombinant Protein Purification  

E. coli BL21 (DE3) cultures were induced for protein expression and their total protein 

content was obtained as previously specified. Soluble fractions from frozen and fresh 
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cell pellets were diluted in Binding buffer (50 mM Tris, 300 mM NaCl, 5 mM Imidazole, 

pH 8.0) and incubated with Profinity™ IMAC Resin, Ni-charged (Bio-Rad) for 2 hours at 

room temperature with constant agitation. The resin was loaded on an Econo-Pac® 

Chromatography column (Bio-Rad) and the unbound fraction was collected. Resin 

incubated with soluble fractions obtained from frozen pellets was washed with 5 bed 

volumes of Washing buffer 1 (50 mM Tris, 300 mM NaCl, 100 mM Imidazole, pH 8.0). 

The washing step was repeated with Washing buffer 2 (50 mM Tris, 300 mM NaCl, 200 

mM Imidazole, pH 8.0). Purified protein was eluted with 5 bed volumes of Elution buffer 

(50 mM Tris, 300 mM NaCl, 500 mM Imidazole, pH 8.0).  Resin incubated with soluble 

fractions obtained from fresh cell pellets was washed with 5 bed volumes of Washing 

buffer 1 (50 mM Tris, 300 mM NaCl, 20 mM Imidazole, pH 8.0) followed by additional 

washes with Washing buffer 2 (50 mM Tris, 300 mM NaCl, 60 mM Imidazole, pH 8.0). 

Purified protein was eluted with 5 bed volumes of Elution buffer (50 mM Tris, 300 mM 

NaCl, 300 mM Imidazole, pH 8.0). Washing flow throughs were collected for further 

analysis by SDS-PAGE, as well as the unbound fraction.  

Protein Extraction from pollen samples   

Pollen protein content was obtained by pollen hydration suspended in 5% (w/v) PBS 

(1x) and incubated at 4ºC for 4 hours with constant stirring. Subsequently, the pollen 

suspension was centrifuged at 12250 g (Avanti J-20 XP – JA 25.50 rotor) for 20 minutes 

at 4ºC. The supernatant was filtered through a 0.45 µm filter (Millipore) and dialysed 

against ultra-pure water overnight at 4ºC. Dialysed supernatant was analysed by 

SDS-PAGE as subsequently indicated. 

Concentration of protein extracts    

Pollen protein and purified recombinant protein samples were filtered through a 

Centricon (Millipore) with a 10 kDa and 30 kDa cut-off respectively, in order to 

concentrate the total protein content in smaller volumes. Samples were centrifuged three 

times at 2500 g for 10 minutes (Eppendorf 5810 – swing-bucket rotor), resuspending the 

samples between centrifugations. Both concentrated protein samples and flow-through 

were stored at -20ºC for subsequent assays and for SDS-PAGE analysis. 

Protein quantification   

Total protein content from bacterial cultures was quantified with Qubit® Fluorometer 

(Thermo Fisher Scientific) according to manufacturer’s protocol.  
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Total protein content from pollen samples and purified recombinant AnCRT were 

quantified with Protein Assay kit (Bio-Rad), according to manufacturer’s protocol for 

Standard Procedure for Microtiter Plates. Bovine Serum Albumin (BSA) was used as a 

protein standard at variable concentrations ranging from 25 µg/mL to 750 µg/mL. After 

the indicated time of incubation, absorbance values of standards and samples were read 

at 595 nm in a Spectra SLT spectrophotometer. 

Zymography   

To determine enzymatic activity of pollen extracts, total protein samples were 

electrophoretically separated in a 12.5% polyacrylamide gel copolymerized with 1 mg/mL 

gelatine. Protein extracts were incubated for 10 minutes at room temperature with 

gelatine’s zymography Loading buffer [2x,125 mM Tris-HCl (pH 8.8), 4% (v/v) SDS, 20% 

(v/v) glycerol] in a 1:1 proportion. Samples were prepared under non-denaturing 

conditions to preserve their enzymatic activity. The proteins were separated 

electrophoretically in Electrophoresis buffer [25 mM Tris,192 mM Glycine, 10% (v/v) 

SDS] at constant voltage of 120 V for 100 minutes in a Mini Protean II system (Bio-Rad) 

covered with ice packs. Subsequently, to remove SDS and renature the retained proteins 

the gel was incubated twice in Renaturation buffer [0.25% (v/v) Triton X-100 in PBS] for 

30 minutes with constant agitation at room temperature and overnight with fresh 

Renaturation buffer without Triton X-100 at 37ºC to increase sensitivity.  

To detect gelatine’s degradation by proteases existent in pollen protein extracts, 

polyacrylamide gels were stained with a Coomassie solution [0.2 % (w/v) Coomassie 

Brilliant Blue R-250, 1 V absolute ethanol, 1 V acetic acid, 5 V water] for 3 hours to 

overnight incubation at room temperature. The excess staining was removed by multiple 

washes with Destaining solution [1 V absolute ethanol, 1 V acetic acid, 5 V water]. 

Peptide proteolysis assay    

To characterize proteolytic activity of pollen extracts, total pollen protein extracts (200 

µL) were briefly incubated with 99 µM synthetic single- amino-acids/ peptides bound to 

an amine-containing fluorophore, the 7-amino-4-methylcoumarin (AMC). This 

experiment had three independent replicas, i.e. three independently prepared pollen 

extracts, with triplicates for each tested condition. The selected synthetic single- amino-

acids/ peptides are represented on Table 4. After incubation with pollen extracts, the 

fluorescent peptides were hydrolysed resulting in the release of the AMC group. 

Consequently, the mixture’s fluorescence increased due to the accumulation of the 
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released fluorescent molecule (λexcitation = 380 nm, λemission=460 nm). The fluorescence 

of the mixture was monitored for a 10- minute period divided in 20-second reads at 37ºC, 

using a SpectreMax-GeminiEM fluorimeter. The released AMC was graphically 

represented by relative fluorescence units (RFU) along the indicated 10-minute period. 

Subsequently, variation of RFU (ΔRFU) was calculated using two random points within 

the linear part of the reaction curve. To eliminate protein concentration variability of each 

pollen extract and subsequent statistical analysis, the ΔRFU values were normalized to 

ΔRFU per µg of protein.  

Table 4 – Fluorescent AMC substrates used in enzymatic assays. 

Substrate 

L-LYS-AMC 

L-ARG-AMC 

L-MET-AMC 

L-PHE-AMC 

L-ALA-AMC 

BENZOYL (BZ)-ARG 

GLY-PRO-AMC 

ALA-PRO-ALA-AMC 

LEU-LEU-VAL-THE-AMC 

BUTYLOXYCARBONYL 
(BOC)-PHE-SER-ARG-AMC 

BOC-VAL-PRO-ARG-AMC 

BOC-ALA-GLY-PRO-AMC 

Peptide proteolysis assay after incubation with inhibitors   

To classify proteases present in pollen extracts, peptide proteolysis assays were 

performed after incubation with class-specific protease inhibitors. Total pollen protein 

extracts (200 µL) were briefly incubated with 99 µM synthetic single- amino-acid bound 

to an amine-containing fluorophore, the 7-amino-4-methylcoumarin (AMC) – L-Phe-AMC 

– after incubation with class-specific protease inhibitors for 5 minutes at 37ºC (Table 5). 

Subsequently, fluorescence of the mixture was monitored for a 10- minute period divided 

in 20-second reads at 37ºC, using a SpectreMax-GeminiEM fluorimeter. This experiment 

also had three independent replicas, i.e. three independently prepared pollen extracts, 

with triplicates for each tested condition. Results were treated as previously described in 

“Peptide proteolysis assay”. 
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Table 5 – Protease inhibitors used and correspondent effective concentration. It is also indicated the class of 
proteases that are inhibited and the reversibility of the inhibitory effects.. 

Inhibitor 
Effective 

concentration (mM) 
Targeted Protease 

Class 
Reversibility of 

inhibition 

Pefabloc 0.1 Serine x 

TLCK 0.1 Serine trypsin-like x 

TPCK 0.1 
Serine chymotrypsin-like 

and some cysteine 
x 

Pepstatin a 0.001 Aspartic ✓  

Bestatin 0.01 Aminopeptidases ✓  

Leupeptin 0.01 Serine and cysteine ✓  

EDTA 1 Metalloproteases ✓  

CaCl2 0.1 Metalloproteases  

ZnCl2 0.1 Metalloproteases  

MgCl2 0.1 Metalloproteases  

MnCl2 0.1 Metalloproteases  

Cell culture   

As experimental model, we selected a carcinogenic lung epithelial cell line obtained 

from the American Type Culture Collection – A549 (ATCC® CCL-185™). Cells were 

cultured in Eagle’s Minimum Essential Medium (MEM – Sigma) supplemented with 

0.22% (w/v) sodium bicarbonate, 10% (v/v) fetal bovine serum (FBS) heat-inactivated 

for 30 minutes at 56ºC and 5% PenStrep (Gibco). Cultures were maintained in 75 cm2 

flasks in a humidified atmosphere with 5% CO2 at 37ºC. After reaching confluence, the 

cell culture was diluted 1:6 or 1:8 twice a week. In order to perform culture dilution, the 

cells were detached from the flask after incubation at 37ºC for 5-10 minutes with a 

Trypsin solution [0.25% (w/v) trypsin (Gibco), 1 mM EDTA in a saline solution with 130 

mM NaCl, 3 mM KCl, 1 mM Na2PO4, 30 mM Hepes, 10 mM glucose; pH 7.3]. The 

experiments were performed between passages 18 and 34.  

Stimuli application   

After reaching confluence, cell cultures were washed with serum-free medium and 

the different stimuli were applied. Subsequently, cells were incubated for 6 and 24 hours 

or 24 hours only at 37ºC in a humidified atmosphere with 5% CO2.  

The stimuli consisted of concentrated protein extracts. To inhibit proteolytic activity of 

pollen extracts, concentrated protein samples were denatured for 20 minutes in boiling 

water and applied to cell cultures. Recombinant CRT was also denatured to alter its 
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conformational structure and annul potential interactions of the protein with cell 

receptors. 

Pollen extracts were diluted in serum-free medium to reach a final concentration of 

400 µg and 800 µg of total protein content per mL, except in indicated assays where only 

higher or lower protein concentration was tested. Recombinant protein was diluted in 

serum-free medium to reach a final concentration of 40 µg per mL. A mixture of pollen 

extract and purified recombinant protein was also diluted in serum-free medium to reach 

a final concentration of 400 µg per mL and 40 µg per mL, respectively. In Figure 4 it is 

represented the main test conditions. 

 

Figure 4 – Main conditions tested in cell cultures of A549 lineage. Cells were exposed to two distinct concentrations 
of pollen extracts diluted in serum-free media – 400 µg per mL and 800 µg per mL – and to the produced recombinant 
protein – 40 µg per mL. Cells were also exposed to a mixture of pollen and recombinant protein extracts – 400 µg per mL 
and 40 µg per mL, respectively. Extracts were heat-inactivated to eliminate any potential activity. 

As control conditions, cell cultures were incubated with serum-free medium (C0), 

medium supplemented with FBS (C-) and serum-free medium diluted with 0.25% Trypsin 

solution (1:1) (Ct).  

Quantification of cellular detachment    

Cellular detachment was quantified using methylene blue method (Hassim et al., 

1998). Cells were cultured in 48-multiwell plates in a cellular density of 1x105 cells/ cm2. 

When confluence was reached, the culture was washed with MEM medium without FBS 

supplementation and incubated with the respective stimuli, as previously described. After 

the incubation period, culture media was removed or collected for further analysis and 

cells were washed twice with phosphate saline buffer (PBS – Sigma) and fixated for 20 

minutes at room temperature with a paraformaldehyde solution (PFA - 4% (w/v) 
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paraformaldehyde, 4% sucrose dissolved in PBS). Subsequently to fixation, cultures 

were washed twice with 10 mM borate buffer (pH 8.4) and stained for 10 minutes at room 

temperature with 1% (w/v) methylene blue solution (in 10 mM borate buffer). Cells were 

washed with 10 mM borate buffer until excess dye was removed and allowed to air-dry 

overnight at room temperature or 3 hours at 37ºC. The formed precipitate was dissolved 

with 200 µL of 100% (v/v) ethanol – 100 mM Tris-HCl mixture (1:1) in constant agitation 

for 25 minutes at room temperature and transferred to a 96-multiwell plate. Absorbance 

values were read in Spectra SLT spectrophotometer with a 620-nm wavelength. 

Adherent cells (%) were relatively calculated by comparison with absorbance values of 

cells of the control condition, previously referred as C0. Cellular detachment was 

determined in percentage using the following formula: 

𝐂𝐞𝐥𝐥𝐮𝐥𝐚𝐫 𝐝𝐞𝐭𝐚𝐜𝐡𝐦𝐞𝐧𝐭 (%) = 𝟏𝟎𝟎 − 𝐀𝐝𝐡𝐞𝐫𝐞𝐧𝐭 𝐜𝐞𝐥𝐥𝐬 (%) 

This experiment had three independent replicas with triplicates for each condition 

tested. 

Viability of detached cells     

Viability of detached cells was evaluated by culture observation in an inverted light 

microscope 24, 48 and 72 hours after reculturing collected detached cells. Cells were 

cultured in 48-multiwell plates in a cellular density of 1x105 cells per cm2. When 

confluence was reached, the culture was washed with MEM medium without FBS 

supplementation and incubated with the respective stimuli, as previously described. After 

24-hour incubation period, culture media was collected and centrifuged at 6000 g 

(Eppendorf 5714 R) for 5 minutes at 4ºC. The supernatant was collected and stored at -

80ºC for further analysis and the cell pellet was washed with medium supplemented with 

FBS. Subsequently cell pellet was resuspended also in medium supplemented with FBS 

(300 µL) and plated in a 96-multiwell plate (100 µL/ well). To assess cell viability, the 

culture ability to re-adhere to the substrate and to proliferate was evaluated. This 

experiment had three independent replicas with triplicates for each condition tested. 

Quantification of released cytokines  

To proceed for released cytokines quantification cells were cultured in 48-multiwell 

plates in a cellular density of 1x105 cells per cm2. When confluence was reached, the 

culture was washed with MEM medium without FBS supplementation and incubated with 

the respective stimuli, as previously described. After 24-hour incubation period, culture 
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media was collected and centrifuged at 6000 g (Eppendorf 5417 R) for 5 minutes at 4ºC. 

The supernatant was collected and stored immediately at -80ºC until sample preparation 

for quantification. Released cytokines were quantified recurring to Cytometric Bead Array 

(CBA) assay using the FlowCytomix™ Multiple Analyte Detection Human Basic kit 

(discontinued – eBioscience® - Bender MedSystem GmbH) according to the 

manufacturer’s instruction. This kit is composed by a bead mixture with different bead-

sizes coated with capture antibodies that bind specifically to a set of cytokines – IL-6, IL-

8, IFN-γ, IL-10, IL-5, TNF-α. After incubation of the bead mixture with an aliquot of 

collected supernatant containing the soluble cytokines, a biotin-conjugated secondary 

antibody was added to bind to the captured antibody. Subsequently, unbound antibodies 

were removed with several washes and a streptavidin-phycoerythrin substrate was 

added. Finally, the bead suspension was analysed in a FACSCalibur flow cytometer (BD 

Biosciences, San Jose, CA) to identify cytokines by bead size and correspondent 

fluorescence. Quantification of released cytokines was possible through the 

measurement of phycoerythrin fluorescence and comparison to standards of known 

concentrations. The obtained results were analysed with FlowCytomix™ Pro 2.4 

Software (eBioscience® - Bender MedSystem GmbH) and expressed in picogram per 

millilitre (pg/mL). This experiment had three independent replicas with triplicates for each 

condition tested. 

Cell extracts for immunodetection of proteins     

To evaluate the integrity of proteins from intercellular junctional complexes, cell 

extracts were prepared after stimuli application in the specified conditions. Cells were 

cultured in 6-multiwell plates at in a cellular density of 8.5 x104 cells/ cm2. When 

confluence was reached, the culture was washed with MEM medium without FBS 

supplementation and incubated with the respective stimuli, as previously described.  

After incubation period, culture media was removed and cells were washed with 

ice-cold phosphate saline buffer (PBS – Sigma) supplemented with protease inhibitors – 

1 µg/mL CLAP (Chymostatin, Leupeptin, Antipain and Pepstatin), 1 mM dithiothreitol 

(DTT) and 0.1 mM phenylmethanesulfonyl fluoride (PMSF). 300 µL of ice-cold PBS 

supplemented with protease inhibitors was added and adherent cells were scraped from 

the bottom of the well and transferred to Eppendorf tubes. Subsequently, the collected 

cells were centrifuged at 13000 rpm for 6 minutes and cell pellet was resuspended in 

boiled denaturing solution [2x, 100 mM Tris-Bicine or 100 mM Tris-HCl, 4% (v/v) sodium 

dodecyl sulphate (SDS), 6M Urea, 4% (w/v) β-mercaptoethanol, 0.001% (w/v) 
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Coomassie Brilliant Blue G-250]. Cells were incubated on ice for 20 minutes previously 

to cell lysis by sonication - 3 pulses of 5 seconds with 30 seconds rest between pulses. 

Samples were centrifuged at 13000 g for 6 minutes (Eppendorf 5417 R) at 4ºC and 

stored at -20ºC until needed. This experiment had three independent replicas with 

triplicates for each condition tested. 

SDS-PAGE 

Protein extracts were separated by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) in 12.5% polyacrylamide gels under denaturing conditions 

in Electrophoresis buffer in a Mini Protean Tetra Cell system (Bio-Rad). Pollen and 

bacterial samples were denatured at 95ºC for 10 minutes. Cell extracts were denatured 

at 80ºC for 10 minutes. Pollen protein samples and cell extracts were denatured in 2x 

Denaturing solution [100 mM Tris-Bicine or 100 mM Tris-HCl, 4% (v/v) sodium dodecyl 

sulphate (SDS), 6M Urea, 4% (w/v) β-mercaptoethanol, 0.001% (w/v) Coomassie 

Brilliant Blue G-250]. Bacterial lysates were denatured in 1x Protein sample buffer [40 

mM Tris, 1% (v/v) SDS, 5% (v/v) Glycerol, 0.0003% (v/v) Bromophenol blue, pH = 6.8]. 

To determine the molecular weight of protein bands an unstained protein standard 

(Precision Plus Protein ™ Standards - Bio-Rad) or a stained protein standard 

(PageRuler™ Plus Prestained Protein Ladder - ThermoScientific), both with known 

molecular masses ranging 10-250 kDa, respectively, were also applied in gels.  

To detect proteins, polyacrylamide gels were stained with a Coomassie solution [0.2 

% (w/v) Coomassie Brilliant Blue R-250, 1 V absolute ethanol, 1 V acetic acid, 5 V water] 

for 1 hour to overnight incubation at room temperature. The excess staining was 

removed by multiple washes with Destaining solution [1 V absolute ethanol, 1 V acetic 

acid, 5 V water]. 

Immunodetection of proteins     

For immunodetection of proteins, the cell extracts prepared as previously described 

were denatured at 80 ºC for 10 minutes. Bacterial extracts were denatured at 95ºC for 5 

minutes. Subsequently, samples were electrophoretically separated in a 12.5% SDS-

PAGE gel as previously specified. After electrophoresis, proteins were transferred to a 

PVDF membrane after its activation in absolute ethanol for 30 minutes. The 

electrotransference was performed in Transfer buffer [25 mM Tris, 192 mM Glycine, 20% 

(v/v) absolute ethanol] supplemented with 1.5 mL of 10% (w/v) SDS per membrane, with 
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constant agitation in a Mini Protean II system (Bio-Rad) covered with ice-packs for 2 

hours under a constant voltage of 100V.  

Subsequently, the PVDF membranes were incubated in Blocking solution [5% (w/v) 

milk diluted in TBS-T (20 mM Tris-HCl; 137 mM NaCl; 0.1% Tween 20)] for 1 hour at 

37ºC or overnight at 4ºC. After removing the excess of Blocking solution with TBS-T 

washes, membranes were incubated with primary antibody diluted in Blocking solution 

or in 0.1% Blocking solution with 0.2% Sodium Azide for 1 hour at room temperature or 

overnight at 4ºC. The membranes were then incubated with the respective secondary 

antibody conjugated with alkaline phosphatase. Primary and secondary antibodies 

varied accordingly to the detected protein, however their information and specific 

conditions are specified in Table 6. Immunodetection of β-actin was performed to assess 

the quality of loaded samples and to serve as reference protein between tested 

conditions. 

Table 6 – Primary and secondary antibodies used in Immunoblotting techniques. 

Antibody 
Detected 
protein 

Secondary 
antibody 

Conjugated 
with 

Revealed with 
Detected 

with 

Anti- 
Calreticulin 

Calreticulin 
Anti- rabbit IgG 

(1:10000 – 
invitrogen®) 

Alkaline 
Phosphatase 

(AP) 

Novex™ AP 
Chromogenic 

substrate (Thermo 
Fisher Scientific) 

Chemidoc 

Anti- E-
cadherin 

E-cadherin 

Anti- mouse IgG 
(1:10000 – 

SIGMA) 

Alkaline 
Phosphatase 

(AP) 

ECF substrate (GE 
Healthcare) 

STORM 

Anti- Occludin Occludin 

Anti- ZO- 1 
Zonula 

occludens -1 

Anti- β- actin β- actin 

Membranes were revealed using a Novex™ AP Chromogenic substrate (BCIP-NBT, 

Thermo Fisher Scientific) or ECF substrate (GE Healthcare) according to manufacturer’s 

protocol, and photographed in a Chemidoc system (Bio-Rad) or in a STORM scanner 

respectively. After revelation, membranes were stored at 4ºC protected from light in order 

to proceed for membrane reprobing. Resulting bands were analysed and quantified using 

Image Lab (Bio-Rad) or Image Studio Lite (Li-cor). Relative quantity of each 

immunodetected protein was calculated after comparison to the reference protein β-actin 

of each sample.  
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Reprobing membranes 

Membranes were prepared for reprobing after re-activation in absolute ethanol. 

Subsequently, membranes were equilibrated in TBS buffer (20 mM Tris-HCl; 137 mM 

NaCl). Bound antibodies were removed after washing membranes for 10-15 minutes with 

Stripping Buffer (0.2 M NaOH). After removing the excess of Stripping buffer with TBS-T 

washes, membranes were reprobed as specified in “Immunodetection of proteins” 

procedure after incubation with Blocking solution. 

Datasets constructed for in silico analysis 

Two datasets were used for in silico analysis: one containing CRT’s coding sequences 

of Arabidopsis thaliana, Brassica oleracea var. oleracea and Chlamydomonas reinhardtii 

(dataset A – Table 7); and other containing CRT’s coding sequences of A. negundo’s 

partial CRT and isoforms CRT1a and CRT1b from A. thaliana (dataset B). For dataset A 

construction nucleotide sequences of the different CRT isoforms of A. thaliana 

(AtCRT1a, AtCRT1b and AtCRT3 – table 7) were obtained from GenBank databases via 

NCBI (http://www.ncbi.nlm.nih.gov). All sequences were used as query against the 

nucleotide collection database to obtain corresponding sequences of CRTs in B. 

oleracea var. oleracea by BLASTN analysis at NCBI. In order to obtain an out-group 

sequence previously used in other studies (Persson et al., 2003), it was performed a 

BLASTX analysis at NCBI using the same A. thaliana CRT sequences as query against 

the non-redundant protein sequences database limited to C. reinhardtii and a CRT 

nucleotide sequence of C. reinhardtii was retrieved from the analysis (Table 7). In regard 

of dataset B the same nucleotide sequence retrieved for dataset A were used. All 

sequences were translated into protein sequences using a translator tool from ExPASy 

portal (http://web.expasy.org/translate/) (Artimo et al., 2012).

http://web.expasy.org/translate/
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Table 7 – Accession number, nomenclature given to the sequences retrieved from BLASTN and BLASTX analysis 
at NCBI for dataset A construction. 

Accession no. Calreticulin isoform Source Organism 

gi|186491349 AtCRT1a 

Arabidopsis thaliana gi|145335312 AtCRT1b 

gi|186478267 AtCRT3 

gi|922566245 BoCRT1a 

Brassica oleracea var. Oleracea gi|922544374 BoCRT2 (1b)* 

gi|922552756 BoCRT3 

gi| 159462861 CrCRT Chlamydomonas reinhardtii 

*specified in this work as BoCRT1b 

Sequence alignments and Phylogenetic analysis 

Multiple alignments of nucleotide sequences and respective protein-translated 

sequences from each dataset were performed using ClustalW (Thompson et al., 1994) 

and Muscle (Edgar, 2004) algorithms of the MEGA 7.0.26 software package (Tamura et 

al., 2013). The ClustalW alignment was carried out using the IUB DNA Weight matrix, 

with an open gap penalty of 15 and an extend gap penalty of 6.6. The Muscle alignment 

was carried out using a UPGMB clustering method with an open gap penalty of -400 and 

an extend gap penalty of 0. Although, only dataset A was used for phylogenetic analysis. 

 Two phylogenetic methods were used to infer the presented trees: neighbour-joining 

[NJ; (Saitou and Nei, 1987)] and maximum-likelihood [MLH; (Felsenstein, 1981)] 

methods under the default parameters – NJ with Tajima-Nei model as Substitution model 

for nucleotide sequences, Poisson model for protein sequences and Pairwise deletion in 

both analysis; MHL with Tamura-Nei model as Substitution model for nucleotide 

sequences, Jones-Taylor-Thornton model for protein sequences and partial deletion of 

missing data (site coverage cut-off : 95%) and Nearest-Neighbour- Interchange heuristic 

method for tree inference in both analysis –, both conducted in MEGA 7.0.26 software 

package (Tamura et al., 2013). The consensus trees presented were constructed and 

drawn with MEGA 7.0.26 tree display tools. The topology of the trees was evaluated by 

bootstrap analysis based on 1000 resamplings. 

The alignments of dataset B were uploaded into Jalview software (Waterhouse et al., 

2009) to analyse conservation values within the selected amino-acidic sequences.
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In silico characterization of isolated AnCRT sequence 

The partial recombinant protein AnCRT was characterized using several software and 

databases available online.  Protein’s theoretical isoelectric point and molecular weight 

were predicted recurring to ExPASy’s “Compute pI/MW” tool 

(http://web.expasy.org/compute_pi/) (Artimo et al., 2012; Gasteiger et al., 2005). The 

respective hydropathicity was calculated by ProtParam web-tool 

(http://web.expasy.org/protparam/) (Artimo et al., 2012; Gasteiger et al., 2005). To 

evaluate recombinant protein predicted functionality we used several web-tools to 

assess distinct parameters. The isolated sequence was used as query in ScanProSite 

(http://prosite.expasy.org/scanprosite/) which retrieves functional domains of the 

submitted sequence (Artimo et al., 2012; de Castro et al., 2006). AnCRT secondary and 

tertiary structures were predicted and analysed by Phyre2 online software  

(http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index) (Kelley et al., 2015). At 

last, ligand binding sites were predicted with 3DLigand site web-tool 

(http://www.sbg.bio.ic.ac.uk/3dligandsite/) (Wass et al., 2010). 

Prediction of post-translational modifications 

Post-translational modifications, namely N- glycosylation and phosphorylation, were 

predicted recurring to a free online software. The glycosylation profile of the protein 

sequences previously translated – AnCRT, AtCRT1a and AtCRT1b –  was constructed 

using NetNGlyc 1.0 Server (http://www.cbs.dtu.dk/services/NetNGlyc/) – described 

elsewhere (Gupta et al., 2004). Phosphorylation profile of such sequences was 

determined using NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/) (Blom 

et al., 1999). To assess the quality of prediction, A. thaliana sequences were submitted 

as query in PhosPhAt 4.0 web-tool (http://phosphat.uni-hohenheim.de) (Durek et al., 

2010).  
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Statistical analysis 

Results of this work were submitted into GraphPad Prism® 6 software to proceed for 

statistical treatment. Results are represented as mean ± standard error of the mean 

(SEM) of every independent experiment and correspondent replicas. Subsequently, 

results from each experiment were analysed by one- or two-way ANOVA followed by 

Dunnet’s or Sidak’s multiple comparisons test. Statistical differences were considered 

significant for p-values inferior to 0.05 (p<0.05). 
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In previous works of our laboratory, complementary DNA (cDNA) coding for Acer 

negundo’s Calreticulin (AnCRT) was isolated, cloned and recombinantly produced for 

preliminary immunoreactive assays. Although, BLASTN analysis of the obtained 

sequence revealed that it corresponded to an incomplete sequence.  

The obtained sequence was aligned with both nucleotide and protein sequences of 

several calreticulin isoforms from Arabidopsis thaliana and Brassica oleracea var. 

oleracea in order to determine which isoform was close-related to the partial AnCRT 

isolated. As indicated in Figure 5, the distinct CRT isoforms grouped according to protein 

isoform and not according to the respective species.  

Phylogenetic analysis revealed that the provided AnCRT sequence was more 

close-related to isoforms CRT1a and CRT1b of A. thaliana and B. oleracea var. oleracea 

than to isoform CRT3 – which is supported by high bootstrap values (> 95%). However, 

it was not possible to verify which isoform was most similar to the isolated sequence 

giving that the evolutionary tree represents AnCRT on an isolated branch. This could 

represent high variability of the sequence when compared to the node that included 

AtCRT1a/1b isoforms or insufficient information given by the provided sequence – since 

the AnCRT sequence had less nucleotides than the remaining sequences of the dataset. 

 

Figure 5 - Evolutionary relationships between Arabidopsis thaliana’s and Brassica oleracea var. oleracea’s CRT 
isoforms and provided CRT sequence of Acer negundo’s Calreticulin (Dataset B). The evolutionary history was 
inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree 
with the highest log likelihood (-6075,1678) is shown. The percentage of trees in which the associated taxa clustered 
together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying 
Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite 
Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, 
with branch lengths measured in the number of substitutions per site (next to the branches). The analysis involved 8 
nucleotide sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All positions with less than 95% site 
coverage were eliminated. That is, fewer than 5% alignment gaps, missing data, and ambiguous bases were allowed at 
any position. There was a total of 1119 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 
(Tamura et al., 2013). 

Due to inconclusive results of the phylogenetic analysis performed, the obtained 

partial sequence was aligned with CRT1a/1b protein sequences from A. thaliana. As 

expected, the alignment revealed high conservation throughout the protein sequence 
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(Figure 6). The least conserved region of the alignment corresponds to a portion of the 

C-terminal domain. Additionally, there is a gap of 9 amino-acids in the AnCRT sequence 

in the specified region. The initial region cannot be taken in consideration since it was 

lacking information on AnCRT sequence.  

 

Figure 6 – Comparison of protein sequences of Arabidopsis thaliana isoforms and isolated partial CRT sequence 
of Acer negundo. Protein sequences of A. thaliana CRT1a and CRT1b were retrieved from GenBank (accession no. 
gi|186491349 and gi|145335312, respectively) and aligned with the obtained AnCRT sequence. The aligned sequences 
were uploaded in Jalview software (Waterhouse et al., 2009) and conservation values are represented in a scale of 0 to 
10 with corresponding colour-code. The putative domain limits (N-, P- and C-domain) and ER-retention signal (ER-RS) 
are also indicated. The asterisks indicate amino-acidic differences between AtCRT1a and AtCRT1b isoforms in the N-
terminal portion of the protein. The figure was adapted from Christensen et al. (2008). 
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Generating complete cDNA molecules of Acer negundo’s 

Calreticulin     

As previously presented, the partial cDNA lacks the 5’ end that potentially 

corresponds to 48 amino-acids of the N-terminal domain. Given that one of the goals of 

this project was to obtain the complete coding sequence of AnCRT it was implemented 

an optimized 5’ – Rapid Amplification of cDNA Ends (RACE) technique – RNA Ligase 

Mediated RACE (RLM-RACE) (Suzuki et al., 1997). After reverse transcription of a 

selected pool of full transcripts, molecules harbouring the SMARTIIa adaptor were 

amplified recurring to an inner gene-specific primer (CRT_R2 or QCRT_R) and to a 

SMARTIIa complementary primer.  

Gel electrophoresis of RLM-RACE amplification products revealed unspecific patterns 

and smears perchance due to molecule variability. However, template quality and gDNA 

contamination was assessed through control reactions – positive: α-actin gene 

amplification; negative: reactions with non-reverse transcribed RNA as template. 

Positive control reactions retrieved products with expected size (200 base-pairs - bps), 

despite having variable band intensity indicating variations in template concentration. 

Also, there was no gDNA contamination since negative control did not produce any band 

(Figure 7). 

 

Figure 7 – Evaluation of template quality and assessment of gDNA contamination. Template quality was evaluated 
through amplification of α-actin gene and revealed amplification products with expected size (~200 bp – lanes E1-E4). 
The produced cDNA pool was not contaminated as confirmed by the absence of amplification products when used 
non-reverse transcribed RNA as template for PCR reactions [lanes C- (A-E)]. 

To increase the number of desired molecules, i.e. transcripts that suffered CAP 

replacement and possibly could encode the lacking sequence of AnCRT, RLM-RACE 

products were reamplified in a SemiNested PCR using the inner gene-specific QCRT_R 

primer and the SMARTIIa complementary primer. Amplification products revealed a 
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specific band pattern in most reactions with bands ranging between 200 and 1500 bps 

in templates submitted to enzyme treatment prior to cDNA production (Figure 8 – top).  

Templates that were reverse transcribed directly after RNA extraction revealed a specific 

band pattern with lengths also comprised between 200 and 1500 bps, even though 

bands above 600 bps were not as visible as previously enzyme-treated cDNA 

amplification products. The noted differences between both templates indicated that the 

enzyme treatment performed prior to cDNA production increased the probability of 

isolating the missing portion of AnCRT sequence. Only well-defined bands with a size 

superior to 900 bps were purified from gel since the reverse primer used annealed in a 

region comprised between bp number 544–563 of the known sequence. Moreover, 

according to the previously presented alignment it was still missing at least 144 bps until 

the 5’- end of the coding sequence. 

Control reactions were also performed using inner gene-specific primers to assess 

template quality. All control reactions amplified products with expected size (~130 bps) 

except the ones that used RLM-RACE products originated from cDNA sample number 2 

(Figure 8 – bottom).  

After PCR product purification, the retrieved molecules were quantified in order to 

proceed for ligation reactions with pCR®-Blunt plasmid. Samples that did not provide 

positive A260/A280 ratios due to possible ethanol contamination were quantified “in gel” by 

comparison with DNA GeneRuller. Although it should be noted that the ladder indicated 

concentration values may not correspond giving that the buffer used in gel 

electrophoresis was different from the indicated in DNA GeneRuller product information. 

After insert-vector ligation, the recombinant molecules were transformed in competent 

E. coli DH5α cells. DH5α E. coli cells were also transformed with linear pCR®-Blunt  

submitted to ligation reaction with and without T4 DNA Ligase to verify possible vector 

religation. 
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Figure 8 – SemiNested amplification products. SemiNested PCR reactions were performed to increase the desired molecules possibly harbouring the missing part of Acer negundo’s Calreticulin 
(AnCRT) coding sequence. These reactions were performed in triplicates and with different templates – RLM-RACE products resulting from enzyme-treated RNA (A1-A3 and C1-C3) and products 
resulting from untreated RNA (A4 and C4).  
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Cells possibly harbouring the recombinant plasmid were selected recurring to 

selective media since the selected plasmid has a kanamycin resistant gene. A few 

colonies were selected to perform ColonyPCR using inner gene-specific primers 

(QCRT_F and QCRT_R). Electrophoretic analysis of ColonyPCR products revealed that 

some of the selected colonies used as template produced a band with the expected size 

of 130 bp (data not shown). Subsequently, the colonies that had positive results in 

ColonyPCR were selected for plasmid extraction in order to confirm insert presence and 

orientation by restriction reaction. The results of restriction reaction were inconclusive, 

since it was produced a single band of approximately 3500 bps, which correspond to the 

vector size (3519 bp, vector map in Supplemental Figure 1). However, the restriction 

reaction’s positive control produced two fragments as expected since the plasmid used 

had three EcoRI restriction sites (data not shown). 

Given the questionable results of the restriction reactions with the recombinant vector, 

it was performed a Ligation PCR as previously specified. Electrophoretic analysis of 

Ligation PCR products revealed two bands with ~3500 and ~200 bp, which corresponded 

to the size of the vector and to the distance between the universal primers used in the 

reaction (Figure 9). It was confirmed that the ligation reaction did not produce the desired 

recombinant molecule, i.e. insert-vector, and that potentially positive colonies grew 

selectively due to a vector-vector recombinant molecule formed. 

 

Figure 9 – Ligation PCR amplification products. Every amplification reaction produced a product with a size of 
approximately 200 bp, which corresponds to the distance between universal M13 primers used when there is not an insert 
flanking the region. Although only control reactions - with “religated” (C+) and linear (C-) pCR®-Blunt vector – produced 
single bands. When Ligation products (L1- L10) were used as templates, amplification products resulted in two bands – 
one additional band of approximately 3500 bp that corresponds to the size of the vector without insert.  
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Producing recombinant Acer negundo’s partial Calreticulin     

Due to lack of time it was not possible to repeat the cDNA library construction to 

complete the partial form (Pf) of AnCRT. Although, the incomplete recombinant protein 

was produced to accomplish the remaining goals of the project since there were previous 

indications of its immunoreactivity. 

To proceed for protein production, BL21 (DE3) cells harbouring a pET-30a (+)::PfCRT 

were induced for protein expression and subdivided as previously indicated in Materials 

and methods chapter (pET-30a (+) vector map in Supplemental Figure 2). Three 

temperatures were tested – room temperature, 28ºC and 37ºC – to perceive which one 

was more indicated for this specific protein. Total soluble protein content of BL21 (DE3) 

E. coli cells with and without the recombinant plasmid exposed to the different 

temperatures after induction were evaluated through SDS-PAGE and Western Blot for 

immunodetection of recombinant protein (Figure 10). It was clear that at 37ºC occurred 

recombinant protein aggregation, retaining the protein in the insoluble fraction, since 

there is no signal of recombinant CRT in the soluble protein content of that culture – 

neither on SDS-PAGE nor on Western Blot. Although, in cultures submitted to room 

temperature and to 28ºC the expression of the recombinant protein was clear. By 

analysing the SDS-PAGE profile it was possible to verify that recombinant protein was 

produced with relatively high yields in both conditions taking into consideration that gels 

were loaded with 20 µg/mL of total protein content and that the heterologous protein 

produced a prominent band comparatively to other E. coli proteins. Although, for protein 

purification it was selected induction at 28ºC since room temperature had uncontrollable 

temperature variations. 
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Figure 10 – (A) SDS-PAGE of total soluble proteins and (B) Immunodetection of recombinant Calreticulin in total 
soluble protein content of E. coli expression strain BL21 (DE3) without plasmid and with pET-30a (+)::PfCRT 
recombinant plasmid. It is represented the total protein content before induction with IPTG (300 µM) (lanes 1 and 2) and 
after induction post- overnight incubation at: room temperature (lanes 3 and 4); 28ºC (lanes 5 and 6); and 37ºC (lanes 7 
and 8). As control sample, it was also separated the total soluble protein of Acer negundo’s pollen extracts (lane 9). Total 
protein content of BL21 (DE3) harbouring the recombinant pET-30a (+) plasmid correspond to lanes 2, 4, 6 and 8. The 
same amount of protein was loaded (20 µg/µL). It is possible to distinguish an intense band in lanes 4 and 6 that represents 
the produced recombinant protein. Western Blot with anti-calreticulin rabbit IgG (1:10000) revealed the presence of the 
recombinant protein in total soluble protein content of induced E. coli BL21 (DE3) with approximately 50 kDa. The 
anti-calreticulin rabbit IgG also detected native Calreticulin in pollen protein extracts with approximately 55 kDa and 250 
kDa. 

Protein expression was scaled up for protein purification through IMAC. Subsequently 

to bacterial cell lysis, samples were centrifuged to collect supernatant containing soluble 

proteins. The supernatant was diluted with Binding Buffer to reduce binding of proteins 

with some nickel-affinity due to its histidine content. The lysate was loaded on the IMAC 
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column and washed with Wash Buffers with intermediate Imidazole concentration (Wash 

1 with 20 or 100 mM Imidazole; Wash 2 with 60 or 200 mM Imidazole) to elute weakly 

bound contaminants without compromising the final yield of recombinant protein 

purification. Finally, recombinant protein was eluted from IMAC column with Elution 

Buffer containing higher Imidazole concentration (300 or 500 mM Imidazole). 

It was necessary to adjust Imidazole concentration in Wash and Elution Buffers during 

purification procedure due to variation in protein expression yields of independently 

induced BL21(DE3) cultures. All collected fractions were analysed by SDS-PAGE, as 

previously referred. Consequently, fractions with no detectable contaminants were mixed 

and concentrated using a concentrator with a 30 kDa cut-off membrane. We detected 

two bands with ~50 kDa and ~100kDa in the concentrated extract, corresponding to 

rCRT and oligomerized rCRT respectively (Figure 11). The oligomerization of rCRT 

produced in prokaryotic systems was described in other works (Hong et al., 2010; Huang 

et al., 2013) and it is inevitable due to one of its main functions – i.e. binding of misfolded/ 

denatured proteins. 

 

Figure 11 - Analysis by SDS-PAGE of processing steps of recombinant PfCRT produced by E. coli expression 
strain BL21 (DE3) harbouring pET30a::PfCRT recombinant plasmid. It is presented pre- and post- dialysis samples 
(lanes 1 and 2, respectively); post-concentration sample (lane 3) and its correspondent flow-through (lane 4). The same 
volume (25 µL) was loaded in each well without protein quantification. It is possible to distinguish an intense band with 
approximately 50 kDa in concentrated samples that possibly represents the produced recombinant protein. It is also 
noticeable the presence of a less intense band with approximately 100 kDa also in concentrated samples that possibly 
represents recombinant protein oligomerization. The pre- and post- dialysis samples did not reveal any bands, as well as 
flow-through fraction. 
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Characterizing recombinant Acer negundo’s partial 

Calreticulin 

The recombinant CRT partial protein had a theoretical isoelectric point and molecular 

weight of 4.34 and 42055 Da, respectively. Relatively to its hydropathicity, the web-tool 

used suggested that the produced protein was hydrophilic with a grand average of 

hydropathicity (GRAVY) value corresponding to -1.121. 

The partial protein sequence was submitted in another web-tool to analyse functional 

domains. The ScanProSite tool identified 5 hits from 4 distinct domain patterns: two 

calreticulin family signature between residues 53-68, and 85-93, that correspond to two 

signature motifs in plants CRT N-domain previously specified (KHEQKLDCGGGYVKLL 

and IMFGPDICG); two calreticulin family repeated motif signatures between position 

163-175 and 198-210, that possibly correspond to the two proline-rich motifs A and B 

previously described, despite one of the signature motifs had a low confidence level; and 

the endoplasmic reticulum targeting sequence between residues 365-368, the HDEL tag. 

Given the importance of protein structure to protein functions and interactions, the 

secondary and three-dimensional structure of the recombinant AnCRT was predicted as 

previously described. The Phyre2 web-server retrieved a three-dimensional structure 

modelled based on a similar (55% identity) known calreticulin (ID no. 3RG0 – Protein 

Data Bank - PDB) with 81% coverage of the submitted AnCRT sequence. It is possible 

to distinguish a globular domain and an arm-like structure, characteristic of this protein 

family (Figure 12 – top). Moreover, this web-tool also indicated the protein’s secondary 

structure. The predicted AnCRT secondary structure (Figure 12 - bottom) was mainly 

composed by disordered structures (30%), followed by beta-sheets (24%) and alpha-

helices (16%). Relatively to the confidence values of predicted structures it was noted 

that disordered structures had lower confidence values except on the C-terminal region 

where it reaches the highest values. The remaining secondary structures had high 

confidence levels in comparison to disordered structures.  
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Figure 12 – Predicted tertiary (top) and secondary (bottom) structure of Acer negundo’s CRT predicted by Phyre2 
tool. Tertiary structure was modelled based on the most similar and with higher coverage homologue protein (id no. 
3RG0, PDB) to the submitted partial AnCRT coding sequence. The modelled structure revealed a globular structure with 
an arm-like protuberance as described for Calreticulin protein family. Relatively to secondary structure, the software 
predicted that the secondary structure of the protein is mostly composed by disordered regions (30% -  represented by 
(?) on the bottom image); followed by β-sheets (24% - represented by blue arrows); and α- helices (16% - represented by 
green helices). Confidence values of the secondary structure are represented by colour-code: high values correspond to 
red and low values correspond to purple. 
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Phyre2 web-server also allows a more in-depth analysis of the modelled protein based 

on the most similar entry through the Phyre2 Investigator web-tool. It was possible to 

evaluate other parameters that enriched the analysis, i.e. pocket detection to assess 

protein active sites, relative conservation of predicted binding site and mutational 

sensitivity throughout the sequence. One large pocket was identified in the N-domain 

(Figure 13 – A) region which possible corresponds to the lectin binding site with high 

mutational sensitivity comparatively to the remaining domains (Figure 13 – B). The 

mutational sensitivity of the identified region was also supported by the relative 

conservation values – high conservation values on the predicted binding site (Figure 13 

– C). As expected, the lowest conservation value was identified on the C-terminal region 

of the protein corresponding to the C-terminal domain. 

 

Figure 13 – Phyre2 Investigator results of isolated partial AnCRT sequence. The web-tool predicted possible active 
sites within the protein through detection of molecular pockets (A - red). It also indicates the mutational sensitivity of the 
protein (B), which is relatively high in the potential active site and lower in the C-terminal portion of the protein. 
Conservation values (C) are also in accordance with the mutational sensitivity predicted. The results obtained indicate 
higher conservation values in the predicted pocket region that decrease on its peripherical region, reaching the lowest 
values on the C-terminal region. Both mutational sensitivity and conservation values range through low - high values and 
are represented by colour-code. Red indicates higher values and blue indicates lower values.  

Given the results on pocket detection which indicated a potentially active site, the 

partial AnCRT sequence was submitted to another web-tool to predict possible binding 

sites and ligand clusters. 3D LigandSite predicts amino-acidic residues that form part of 

the binding site based on homologues identified by Phyre2 software for protein modelling. 

We identified eleven ligand clusters with average mammoth scores ranging 8.7 – 24.4. 

The cluster with more predicted ligands, metallic and non-metallic, was associated to 

Asparagine (Asp)115 residue. Although the cluster with higher average mammoth score 

was composed by a unique non-metallic ligand associated to Phenylalanine (Phe)264 and 

Proline (Pro)265 residues. 
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Besides protein’s structure, post-translational modifications also modulate protein’s 

function and IgE reactivity (Himly et al., 2003; Petersen et al., 1998). Therefore, the 

retrieved sequence was submitted as query in web-tools that predict most common 

post-translational modifications, i.e. phosphorylation and N-linked glycosylation. To 

validate the predicted post-translational modifications, it was also submitted as query 

protein sequences of AtCRT isoforms most closely-related to AnCRT protein – AtCRT1a 

and AtCRT1b. Predicted phosphosites from A. thaliana’s sequences were compared to 

PhosPhAt 4.0 results. Referenced phospho-sites of A. thaliana isoforms were also 

retrieved from PhosPhAt 4.0 web-tool. 

Relatively to N- glycosylation, the AnCRT sequence retrieved a unique glycosylation 

site with a relatively high score (>0.75 – Threshold = 0.5) – Asp6 residue. The AtCRT1a 

sequence retrieved three potentially glycosylated sites, although only two were above 

threshold – Asp59 and Asp154 residue. As for the AtCRT1b sequence the server also 

predicted a unique glycosylation site above the selected threshold –  Asp59. Regarding 

to phosphorylation, several sites were predicted by the server; however, only predicted 

sites with confidence scores >0.75 were considered since the selected threshold (0.5) 

reflected low confidence predictions. Analysis of the AnCRT sequence indicated 18 

phosphorylation sites – The28, Tyr32, Ser45, The86, Ser100, The101, The109, Tyr196, Tyr232, 

The237, Tyr267, Tyr274, Tyr299, The326, Ser331, Ser338 The352 and Ser357. As for AtCRT1a and 

AtCRT1b sequences the server predicted 22 and 27 phospho-sites, respectively. 

Although, in Table 8 only A. thaliana phospho-sites in common with PhosPhAt 4.0 results 

and referenced sites are indicated. 
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Table 8 – Predicted phosphorylation sites of A. thaliana’s CRT isoforms. The table indicates in bold predicted 
phospho-sites by NetPhos 3.1 server in common with the ones predicted by PhosPhAt 4.0 webtool. Underlined amino-
acidic residues indicates an unpredicted phospho-site previously referenced in the literature.  

 

 

 

AtCRT1a AtCRT1b 

Amino-

acidic 

residues 

Experimentally 

confirmed 

First Referenced 

in 

Amino-

acidic 

residues 

Experimentally 

confirmed 

First 

Referenced in 

The152 - - Ser61 - - 

The234 - - Tyr227 - - 

Tyr239 - - Ser229 - - 

Tyr310 - - Tyr239 - - 

Tyr317 - - The249 - - 

Tyr342 - - Ser251 - - 

Ser374 Yes 
(Reiland et al., 

2009) 
Ser117 Yes Wu et al. (2013) 

Ser381 Yes 
(Reiland et al., 

2009) 
Tyr275 - - 

Ser397 Yes 
(Reiland et al., 

2009) 
Tyr289 - - 

Ser401 Yes 
(Reiland et al., 

2009) 
Tyr310 - - 

Ser403 Yes 
(Reiland et al., 

2009) 
Tyr317 - - 

The406 Yes 
(Reiland et al., 

2009) 
Ser374 Yes 

(Reiland et al., 

2009) 

The412 - - Ser381 Yes 
(Reiland et al., 

2009) 

The418 Yes 
Roitinger et al. 

(2015) 
Ser396 Yes 

(Reiland et al., 

2009) 

   Ser398 Yes 
(Reiland et al., 

2009) 

   Ser400 Yes 
(Reiland et al., 

2009) 

   The405 Yes 
Nakagami et al. 

(2010) 

   Ser407 Yes 
Wang et al. 

(2013) 

   Ser410 Yes 
Wang et al. 

(2013) 

   The413 - - 

   Ser414 - - 
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Characterizing A. negundo’s pollen protein extract and its 

potential proteolytic activity 

To respond to the raised question, it was necessary to characterize A. negundo’s 

pollen protein extract and to assess its potential proteolytic activity. Pollen grains were 

hydrated overnight at 4ºC with PBS (50 mg/mL) to promote the release of proteins, as it 

occurs in the respiratory airway. Subsequently, the pollen protein extracts were dialysed 

against pure water and concentrated using a concentrator with a molecular cut-off of 10 

kDa. A. negundo’s pollen revealed to be slightly hydrophobic with an average of 0.27 

mg/mL of total released proteins, which was as expected giving the fact that they are 

medium-sized pollen (PalDat.org - https://www.paldat.org/pub/Acer_negundo/301248). 

Protein content decreased about 28% post-dialysis (data not shown). This difference 

could be overestimated due to presence of components that affect the absorbance of 

the mixture extract - quantification reagent. In fact, it was noticed that post-dialysis the 

pollen extracts were lighter than the pre-dialysis samples. We decided to maintain the 

dialysis as a step of sample processing because PBS affected results in subsequent 

assays. The pollen extracts – post-dialysis and post-concentration – were separated by 

SDS-PAGE to obtain their protein profile in terms of molecular mass. The concentration 

resulting flow-through was also analysed by SDS-PAGE. Total protein content was 

constituted by proteins ranging between 20 and 150 kDa, although it was clear the 

predominance of high molecular weight proteins (<100 kDa – Figure 14 – left).  

The increasing evidence regarding pollen’s proteolytic activity contribution on the 

initiation of an allergic process raised the need to characterize the proteolytic activity of 

pollen extracts from distinct species. The presence of proteases in pollen extracts was 

determined by gelatine zymography. This technique allows to combine electrophoretic 

separation and identification of proteolytic activity, since pollen samples were loaded in 

a SDS-PAGE gel enriched with gelatine. Given the fact that gelatine derives from 

collagen, it functions as proteases substrate and detects a wide range of them. To 

preserve enzymatic activity, pollen extracts were prepared in non-denaturing conditions. 

After electrophoretical separation, SDS detergent was removed using Triton X-100 and 

stained with Coomassie Brilliant Blue. Following gel staining, it was possible to detect 

areas where gelatine was enzymatically digested.  Due to substrate degradation, the 

digested area appears uncoloured (Figure 14 – right).  
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Figure 14 – Acer negundo’s pollen protein and proteolytic profile. It is presented the protein content of pollen samples 
post-dialysis (lane 1), post-concentration (lane 2) and its correspondent flow-through (lane 3) in an SDS- PAGE gel (left) 
and its correspondent proteolytic profile in a Zymography (right). The same volume of each sample was loaded, dependent 
of maximum well capacity (25 µL). 

The zymogram revealed a diffuse proteolytic activity in dialysed extracts; however 

concentrated extracts revealed a better-defined band pattern suggesting proteolytic 

activity associated to high molecular proteins ranging 50 and 150 kDa. Lanes 

corresponding to flow-through also present slight gelatine degradation on top of the gel, 

possibly due to flow-through’s cross-contamination or in-gel protease diffusion. 

▪ Specific proteolytic activity 

Dialysed extracts of pollen were incubated with synthetic single- amino-acids/ 

peptides bound to an amine- containing fluorophore, i.e. 7-amino-4-methylcoumarin 

(AMC), to determine substrate specificity of native proteases. Consequently, protease-

hydrolysed substrates released the AMC group and cumulatively increased mixture’s 

fluorescence. Fluorescence was monitored in 20 seconds intervals during 10 minutes at 

37ºC. Results were expressed in variation of relative fluorescent units (ΔRFU) per µg of 

protein which correlates with the velocity of the proteolytic reaction.  

Proteolytic activity against almost every tested substrate was verified as presented in 

Figure 15. It was noticeable highest ΔRFU/µg values with L-Phe-AMC (Phe) substrate; 

however, L-Leu-AMC (Leu) and L-Met-AMC (Met) also had high proteolytic rates (Figure 

15 – left graph). It appears to also exist substrate specificity towards L-Lys-AMC (Lys),  

L-Arg-AMC (Arg), L-Ala-AMC (Ala), Benzoyl-Arg-AMC (BzArg), Gly-Pro-Arg-AMC 
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(GlyProArg), Butyloxycarbonyl (BOC)- Phe-Ser-Arg-AMC (BocPheSerArg), 

BOC-Val-Ser-Arg-AMC (BocValSerArg) and BOC-Ala-Gly-Pro-Arg-AMC 

(BocAlaGlyProArg) substrates (Figure 15 – right). However, the proteolytic activity 

occurred more slowly resulting in lower enzymatic rates. The obtained results possibly 

indicate that A. negundo’s pollen proteases have higher proteolytic activity towards some 

substrates (Phe, Leu, Met) than others, which might indicate higher prevalence of 

aminopeptidases in pollen extracts (Cortes et al., 2006).  

 

Figure 15 - Substrate specificity of proteases present in A. negundo’ s pollen protein extract.  It was tested several 
synthetic amino-acids and peptides bound to the 7-amino-4-methylcoumarin (AMC) fluorescent molecule. There was 
proteolytic activity against every substrate tested; however, it was verified higher proteolytic rates (>10 ΔRFU/µg) with 
L-Phe-AMC (Phe), L-Leu-AMC (Leu) and L-Met-AMC (Met) substrates. The remaining substrates were degraded more 
slowly, revealing inferior proteolytic rates (<10 ΔRFU/µg; right). The graphs indicate proteolytic rates per µg of protein 
present in A. negundo’ s extracts. The used measure unit represents the velocity of enzymatic reaction which correlates 
with substrate specificity. 

Presented results correspond to peptide proteolysis assay performed with initial 

pollen extracts, previously to protein concentration. The assay was repeated with 

concentrated extracts revealing a similar activity pattern, although higher proteolytic 

rates (ΔRFU/µg) with every tested substrate comparatively to non-concentrated extracts 

(data not shown).  Since L-Phe-AMC had the highest proteolytic rate, this peptide was 

selected to perform peptide proteolysis assay after incubation with class-specific 

protease inhibitors. 

Pollen extracts were incubated with inhibitors for 5 minutes at 37ºC. Subsequently, 

the selected substrate was added to the mixture and its fluorescence was measured as 

previously referred. Results were compared to control condition – L-Phe-AMC incubated 

with pollen extracts without addition of inhibitor (Figure 16). 
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Figure 16 - Effects on proteolysis of Phenylalanine post incubation with class-specific proteases inhibitors. It was 
tested a wide range of inhibitors specific for certain classes of proteases. Only three of the tested inhibitors inhibited 
significantly proteolytic activity of A. negundo’s protein extracts – TLCK, EDTA and ZnCl². The graphs indicate proteolytic 
rates per µg of protein present in A. negundo’ s extracts. Results were statistically analysed using Dunnett’s multiple 
comparison test: **** P<0.0001 (n=3)   

Every tested inhibitor had inhibitory effects, since it decreased the proteolytic rate of 

L-Phe-AMC comparatively to control condition. However, inhibitors that most affected 

proteolysis of L-Phe-AMC were TLCK, EDTA and ZnCl2, revealing statistically significant 

differences to control condition (p value<0.0001). 

Proteases are usually classified by their catalytic type into seven groups: aspartic, 

cysteine, serine, metalloproteases, threonine, glutamic and asparagine- peptidase (Oda, 

2012). However, currently identified protease allergens belong mainly to the first five 

enzymatic classes enounced (McKenna et al., 2017). The results from enzymatic assays 

with and without inhibitors indicated that proteases present in A. negundo’ s pollen grains 

have preferential zinc-dependent metalloproteinase and aminopeptidase activity, since 

EDTA – a metalloprotease and aminopeptidase inhibitor – reduced significantly the 

proteolytic activity of the extract towards L-Phe-AMC (Cortes et al., 2006). Moreover, 

metal ions were used at inhibitory concentrations to define protease-type within 

metalloprotease class. Only ZnCl2 revealed highly significant inhibitory effects, similar to 

results obtained with EDTA. 
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A. negundo’s pollen proteases also have significant serine trypsin-like activity, since 

one inhibitor with significant inhibitory effects was TLCK, which is an irreversible serine 

trypsin-like inhibitor (Cortes et al., 2006). However, the inhibitory effects were not as 

effective as the ones obtained with EDTA and ZnCl2.  

It should be noted that not all inhibitors used had irreversible inhibition effects. 

Reversible inhibitors could affect the proteolytic activity of the protein extract without 

reflecting significantly on the enzymatic rates of L-Phe-AMC proteolysis. This could 

explain the fact that it was not detected cysteine nor aspartic protease activity in 

proteolysis assay after incubation with class-specific inhibitors. Even though it was 

verified proteolytic activity towards Arg-AMC and Boc-Ala-Gly-Pro-Arg-AMC, which are 

substrates mainly hydrolysed by cysteine proteases according to their respective 

datasheets. It should be also taken in consideration that we evaluated an extract that is 

composed by a mixture of enzymatically active proteins with different affinities. Proteases 

of different classes might compete for the same substrate and inhibition of the activity of 

a specific class might potentiate the effects of others with affinity towards the same 

substrate. For example, the addition of a cysteine-blocking group, i.e. Bz, on the amino-

terminal of Arg-AMC, which is also hydrolysed by serine proteases, increased peptide 

proteolysis. This increment was probably due to inhibition of cysteine activity, 

consequently eliminating eventual competition for the substrate between serine and 

cysteine proteases (Cortes et al., 2006). 
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Determining the cellular effects 

The physical and mechanical properties of an organ are directly regulated by the 

extracellular matrix and its proteins, since matrix proteins regulate cell phenotypes and 

cell organisation in a tissue. Specifically in the lung, matrix protein’s organisation is 

crucial and unique to facilitate gas exchange. However, integrity of a tissue can also be 

altered if intercellular junctions are affected somehow due to their importance in cell 

adhesion and communication processes (Georas and Rezaee, 2014; Grainge and 

Davies, 2013). 

Given this, the effects of isolated and combined protein extracts on cell integrity were 

determined using A549 (ATCC® CCL-185™) cell line, which is a cell line resultant of 

carcinogenic human lung epithelial cells. After cell culture and reaching confluent state, 

A549 cells were exposed to: pollen extracts – with distinct final concentration values: 

high concentration (HC = 800 µg per mL of medium) and low concentration (LC = 400 

µg per mL of medium); to purified recombinant protein (40 µg per mL of medium); to a 

mixture of both pollen extracts (LC) and purified recombinant CRT; and to denatured 

extracts of each condition. We decided to perform extract heat-denaturation to eliminate 

the verified effects since protease-specific inhibitors had injurious effects on cell cultures 

(data not shown). LC pollen extracts were selected in this condition to not compromise 

the detection of differences between isolated and combined extracts.  Cells were 

exposed to each condition for 6 and/or 24 hours. 

▪ Quantification of cellular detachment 

To determine the effects of isolated and combined extracts on epithelial permeability 

of cell cultures, the cell attachment was determined recurring to Methylene Blue method, 

which allows a relative quantification of attached cells after removing detached ones. 

Cell detachment was quantified as previously indicated and results were expressed as 

percentage of detached cells comparatively to a control condition. Since cell cultures are 

not static and progress over a natural cycle of cell-proliferation/cell-death, cell 

detachment was expected to occur in cultures incubated only with MEM medium. 

However, this was corrected for every replica of each independent assay, by assuming 

their average absorbance value as correspondent to a full adherent culture. 

Relatively to comparison of cellular detachment after exposure to HC vs LC pollen 

extracts for 6 and 24 hours, it was verified that cellular detachment correlated with protein 

concentration and incubation period. As verified in Figure 17, LC pollen extracts 
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exposure resulted in low rates of cellular detachment even in the maximum timepoint (24 

hours). Contrarily, HC pollen extracts had higher cellular detachment after 6 hours and 

significant cellular detachment at the maximum timepoint. Denatured extracts had 

variable results, possibly due to the fact that denaturation conditions were not sufficient 

to irreversibly denature proteins present in the pollen extracts or due to formation of cell-

distressing products after denaturation.  

 

Figure 17 - Effects of A. negundo’s pollen extracts of on substrate adhesion of epithelial cells. Cells were exposed 
for 6 and 24 hours to distinct concentrations of pollen diffusates – LC and HC: 400 and 800 µg per mL of media, 
respectively. Cells were also incubated with heat-denatured extracts prepared in the same conditions as non-denatured 
extracts. Results are expressed in percentage of detachment relatively to a control condition of adherent cells and were 
statistically analysed using Dunnett’s multiple comparison test: **** P<0.0001 (n=3). 

Relatively to rCRT in isolated vs combined extracts exposure for 24 hours, it was 

verified higher cell detachment rates in LC pollen comparatively to the previous 

described results even after extract heat-denaturation. Cells exposed to purified rCRT 

had a lower detachment rate compared to cells exposed to LC pollen extracts which was 

almost null after extract denaturation. Although, it was verified that cells exposed to 

combined extracts had significantly higher detachment percentages comparatively to 

cultures exposed to isolated extracts (Figure 18).  
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Figure 18 -  Effects of isolated recombinant protein and A. negundo’s pollen extracts versus combined extracts 
on substrate adhesion of epithelial cells. Cells were exposed for 24 hours to: 1) LC pollen diffusates – 400 µg per mL 
of media; 2) purified recombinant Calreticulin (rCRT) – 40 µg per mL of media; and 3) mixture of both. Cells were also 
incubated with heat-denatured extracts prepared in the same conditions as non-denatured extracts. Cell detachment was 
relatively quantified by comparison with control condition. Results were statistically analysed using Dunnett’s multiple 
comparison test for comparison of test and control conditions. Results were also analysed using Sidak’s multiple 
comparison test for comparison between test conditions: *** p<0.001; ** p<0.01; * p<0.05 (n=3).  

▪ Immunodetection of proteins involved in cell adhesion 

To determine the effects in intercellular complexes after exposure to isolated and 

combined extracts proteins crucial for maintenance of intercellular junctions were 

immunodetected, i.e. E-cadherin, Zonula occludens-1 (ZO-1) and Occludin, 

subsequently to total protein extraction of A549 cell cultures. E-cadherin is a 

transmembrane protein of adherent junctions, while Zonula occludens-1 and Occludin 

are tight junctions’ proteins. Occludin is also a transmembrane protein contrarily to ZO-

1 which is located in cytosolic complexes (Ganesan et al., 2013; Schneeberger and 

Lynch, 2004). Immunodetected proteins were relatively quantified comparatively to the 

reference protein β-actin, also immunodetected in each condition, rather than to control 

conditions since it was expected sample loss due to eventual detachment of cells.  

Analysis of E-cadherin’s protein levels in cells exposed to HC pollen extracts during 

6 and 24 hours was performed. It was possible to verify an increase in E-cadherin 

accumulation in cells exposed to HC pollen extracts, although after extract denaturation 
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protein’s levels decreased comparatively to both control conditions tested – medium with 

and without FBS (Control (-) and Control, respectively). The used antibodies detected 

products with smaller size that possibly corresponded to E-cadherin’s degradation. To 

relatively quantify the protein degradation, the most visible band was also quantified. We 

verified protein degradation in every tested condition, although denatured HC pollen 

extracts had lower percentage comparative to Control condition (Figure 19). 

Analysis of E-cadherin’s protein accumulation and degradation levels were also 

performed with other conditions (extracts of LC pollen, purified rCRT and combined 

extracts); however only samples from cells that were exposed for 24 hours were 

analysed since the conditions used in this analysis did not produce significant alterations 

after 6 hours incubations. Comparing HC pollen extracts to LC pollen extracts, it was 

verified that E-cadherin’s protein levels after exposition to HC extracts for 24 hours 

increased comparatively to control conditions contrarily to what was detected in cells 

exposed to LC extracts for 24 hours (Figure 19 and 20). It was observed that LC pollen 

extracts decreased E-cadherin’s protein levels comparatively to control conditions. LC 

pollen extracts denaturation did not reverse that effect, but it did affect protein’s 

degradation levels by lowering them comparatively to non-denatured extracts. It was also 

observed that purified rCRT provoked an increase in E-cadherin’s protein levels and did 

not affect significantly protein’s degradation comparatively to control conditions. 

Moreover, denaturation of purified rCRT affected E-cadherin’s accumulation reaching 

lower levels than its non-denatured homologue. The mixture had similar results to 

purified rCRT, i.e. increased E-cadherin’s levels, although its denaturation increased 

significantly protein’s accumulation but not its degradation (Figure 20). 
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Figure 19 - Effects of A. negundo’s pollen extract on proteins of junctional complexes – E-cadherin. Cells were 
exposed for 6 and 24 hours to HC pollen diffusates – 800 µg per mL of media. Cells were also incubated with heat-
denatured extracts prepared in the same conditions as non-denatured extracts. E-cadherin and degraded E-cadherin’s 
band intensity was relatively quantified by comparison with control protein β-actin. 
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Figure 20 - Effects of purified recombinant protein and A. negundo’s pollen extracts versus mixture of both on 
proteins of junctional complexes – E-cadherin. Cells were exposed for 24 hours to: 1) LC pollen diffusates – 400 µg 
per mL of media; 2) purified recombinant Calreticulin (rCRT) – 40 µg per mL of media; and 3) mixture of both. Cells were 
also incubated with heat-denatured extracts prepared in the same conditions as non-denatured extracts. E-cadherin and 
degraded E-cadherin’s band intensity was relatively quantified by comparison with control protein β-actin. 

As E-cadherin, Occludin’s protein levels of cells exposed to HC pollen extracts during 

6 and 24 hours was also analysed (Figure 21). Occludin’s dimers were also quantified 

since both forms co-occur and decreased dimerization was previously indicated as an 

effect of oxidative stress (Walter et al., 2009). It was not possible to assess Occludin’s 

degradation, possibly due to cleavage of epitopes recognized by antibodies or small-

sized degradation products. Cells exposed to HC extracts had a slight increase in protein 
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levels between 6 and 24 hours periods and a higher increase in protein’s dimerization. 

Variations in protein accumulation in cells exposed to denatured HC pollen extracts was 

not significant, but protein’s dimerization decreased after 24 hours incubation period.  

 

Figure 21 - Effects of A. negundo’s pollen extract on proteins of junctional complexes – Occludin. Cells were 
exposed for 6 and 24 hours to HC pollen diffusates – 800 µg per mL of media. Cells were also incubated with heat-
denatured extracts prepared in the same conditions as non-denatured extracts. Occludin and dimerized Occludin’s band 
intensity was relatively quantified by comparison with control protein β-actin. 

Regarding cells exposed to LC extracts, we observed that Occludin’s levels were 

higher comparatively to cells exposed to HC extracts – which could be an indicator of 

Occludin’s degradation in the last condition. Denaturation of LC extracts did not affect 

accumulation of Occludin but it slightly decreased levels of protein dimers. In contrast, 

combined extracts and isolated purified rCRT did decrease protein levels comparatively 
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to control condition, as well as protein’s dimerization levels – which could indicate 

Occludin’s degradation in these conditions or decreased Occludin’s expression as well. 

Denaturation of rCRT extract re-established protein’s accumulation levels and increased 

protein levels of its dimerized form. As verified with denatured HC pollen extracts, also 

denatured LC extracts had lower levels of dimerized Occludin (Figure 22). 

 

Figure 22 - Effects of purified recombinant protein and A. negundo’s pollen extracts versus mixture of both on 
proteins of junctional complexes – Occludin. Cells were exposed for 24 hours to: 1) LC pollen diffusates – 400 µg per 
mL of media; 2) purified recombinant Calreticulin (rCRT) – 40 µg per mL of media; and 3) mixture of both extracts. Cells 
were also incubated with heat-denatured extracts prepared in the same conditions as non-denatured extracts. Occludin 
and dimerized Occludin’s band intensity was relatively quantified by comparison with control protein β-actin. 
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Relatively to Zonula occludens -1, it was verified that protein levels decreased 

between the two timepoints tested in HC pollen extract condition; although the same was 

observed in control conditions (Figure 23). It was not detected degradation products from 

this protein. Cells exposed to LC pollen extracts had higher protein levels of ZO-1 than 

cells exposed to HC extracts (Figure 23 and 24). Comparatively to their respective 

control condition, it was verified a decrease in protein’s accumulation in cells exposed to 

LC extracts; however, extract denaturation resulted in protein levels higher than control 

conditions. Isolated purified rCRT did not affect cell’s ZO-1 accumulation, contrarily to 

what was observed in samples of cells exposed to combined extracts. Although, cells 

exposed to denatured mixture extracts had a slight increase in protein levels as verified 

in cells exposed to denatured LC pollen extracts (Figure 24). 

 

Figure 23 - Effects of A. negundo’s pollen extract on proteins of junctional complexes – Zonula occludens-1 
(ZO-1). Cells were exposed for 6 and 24 hours to HC pollen diffusates – 800 µg per mL of media. Cells were also incubated 
with heat-denatured extracts prepared in the same conditions as non-denatured extracts. ZO-1’s band intensity was 
relatively quantified by comparison with control protein β-actin. 



73 

 

 

 

FCUP 

The immunogenic effects of a potentially allergenic protein of Acer negundo 

 

Figure 24 - Effects of purified recombinant protein and A. negundo’s pollen extracts versus mixture of both on 
proteins of junctional complexes – Zonula occludens-1 (ZO-1). Cells were exposed for 24 hours to: 1) LC pollen 
diffusates – 400 µg per mL of media; 2) purified recombinant Calreticulin (rCRT) – 40 µg per mL of media; and 3) mixture 
of both extracts. Cells were also incubated with heat-denatured extracts prepared in the same conditions as non-
denatured extracts. ZO-1’s band intensity was relatively quantified by comparison with control protein β-actin. 

▪ Quantification of released cytokines 

Since several studies indicated cytokine release by alveolar epithelial cells after 

exposure to allergens extracts, the released cytokines were quantified recurring to CBA 

assay as previously specified. Despite detection of a set of cytokines only two were 

considered since they were detected in all samples of each condition tested with 

relatively low variability – IL-6 and IL-8. Relatively to IL-6, it was possible to verify that 

cells exposed to HC pollen extracts released considerable amounts of this cytokine. 

Although, highest concentration of detected IL-6 was obtained from cells exposed to HC 

denatured extracts possibly due to cell’s oxidative stress provoked by resulting products 

of HC extracts denaturation. Analysing the results obtained from cells exposed to LC 

pollen extracts, purified rCRT and combination of both extracts, it was verified that IL-6 

release increased in mixed extracts comparatively to LC pollen extract, despite the 

significantly lower concentration comparatively to results obtained from cells exposed to 

denatured HC extracts. Purified rCRT did not induce significant cytokine release to be 

detected (Figure 25).  
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Figure 25 - Effects of purified recombinant protein and A. negundo’s pollen extracts versus mixture of both on IL-6 release by epithelial cells. Cells were exposed for 24 hours to: 1) pollen 
diffusates – LC and HC: 400 and 800 µg per mL of media, respectively; 2) recombinant Calreticulin (rCRT) – 40 µg per mL of media; and 3) mixture of LC pollen extracts and purified rCRT. Cells were 
also incubated with heat-denatured extracts prepared in the same conditions as non-denatured extracts. 
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Conversely, it was verified that cells released significantly higher amounts of IL-8 

comparatively to IL-6 in every condition tested. Released IL-8 reached highest values in 

samples of cells exposed to HC pollen extracts. Similar to what was verified in IL-6 

quantification, cells exposed to denatured HC extracts also released significant more 

IL-8 than cells exposed to non-denatured extract (p-value < 0.01). Denaturation of LC 

pollen extracts also resulted in increased release of IL-8, although it was not possible to 

verify difference’s significance due to variability of obtained results. Regarding this 

cytokine, it was verified that purified rCRT induced its release and denaturation of the 

extract did not alter that effect. Moreover, combined extracts increased IL-8 release 

comparatively to both isolated extracts even after extract denaturation (Figure 26). 

 

Figure 26 - Effects of purified recombinant protein and A. negundo’s pollen extracts versus mixture of both on 
IL-8 release by epithelial cells. Cells were exposed for 24 hours to: 1) pollen diffusates – LC and HC: 400 and 800 µg 
per mL of media, respectively; 2) recombinant Calreticulin (rCRT) – 40 µg per mL of media; and 3) mixture of LC pollen 
extracts and purified rCRT. Cells were also incubated with heat-denatured extracts prepared in the same conditions as 
non-denatured extracts. Results were statistically analysed using Dunnett’s multiple comparison test for comparison of 
test and control conditions: ** p<0.01; (n=3). 
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The airway is constantly being exposed to damaging agents that trigger cellular 

responses to eliminate them. The protection mechanisms induced by these cells are 

important to rapidly return the respiratory system to its homeostatic state. However, 

sometimes the immune system has an exacerbated response to exogenous substances. 

This could be due to genetic predisposition, environmental conditions or other factors 

(e.g. age) that influence an individual to develop such reaction – the allergic reaction 

(Ober and Yao, 2011; Wang, 2005). Due to the complexity of the immune system and its 

functions, the culminant effects of an exacerbated immune response could be 

accomplished by several ways. Although, the allergic process is still commonly 

associated to specific IgE-mediated responses.  

The allergic process first occurs after a sensitization process to an allergen. However, 

for this process to occur it is necessary that the allergen overcomes the epithelial barrier 

to be processed by antigen-presenting cells (APCs) present in subeptihelial layers. The 

exact mechanisms behind allergen transposition of epithelial barriers are yet to be fully 

understood, thus explaining the interest of many research studies. Pollen grains are one 

of the main sources of air allergens and it has been suggested that their proteolytic 

activity is responsible for their major contribution as allergenic elicitors, either by direct 

activity in intercellular junctional complexes or by cell receptors’ activation – e.g. 

Protease-activated receptor – 2 (PAR-2) (Vinhas et al., 2011). A previous study by 

Runswick et al. (2007) indicated that proteolytic activity of pollen extracts did not 

correlate specifically with pollen’s allergenic potential. Although, it enhanced allergen 

distribution across epithelial barrier through disruption of tight junctions. 

Inhaled pollen grains can release high levels of soluble molecules in the respiratory 

tract (up to 50 mg/mL) depending on individual’s exposure intensity, geographic location 

and climacteric conditions (Vinhas et al., 2011). The released molecules include proteins 

with or without enzymatic activities, lipoproteins, polysaccharides, lipids and phenolic 

compounds. Given that, it seemed plausible to infer that any molecule capable of altering 

epithelial barrier integrity and/or permeability could influence allergen-crossing of 

epithelial layer. As previously referred, CRT was one of the previously identified 

immunoreactive proteins of A. negundo’s pollen protein extracts. Due to the functional 

and structural similarity between plants and mammalian CRT several questions aroused 

regarding the potential immunogenic effects of this protein besides the ones associated 

with IgE-mediated immune responses.   

The main goal of this project was to investigate the immunogenic potential of AnCRT. 

We wanted to explore the ability of this protein to elicit an inflammatory response through 
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inducing expression of proinflammatory molecules; and/or interacting with cell receptors 

as extracellular mammalian CRT, consequently compromising cell-adhesion processes.  

We also questioned if the presumable allergenicity of AnCRT derived from specific 

interactions with membrane receptors of lung’s epithelial cells activating alternative 

non-IgE mediated immunogenic responses; or if it was a consequence of the 

inflammatory reaction initiated from the pollen – epithelium contact that consequently 

initiates an allergic response and produce AnCRT-specific IgE antibodies that modulate 

immune responses as well. To respond to the main questions, it was necessary to 

achieve secondary milestones.  

A. negundo’s Calreticulin – recombinant protein production 

and in silico characterization 

We aimed to complete the partial AnCRT previously obtained since we were not 

certain if the lacking region affected the potential immunogenicity of the protein. Due to 

lack of time it was not possible to complete AnCRT CDS, although this part of the work 

will be further discussed. We decided to perform the designed experiences with partial 

AnCRT, since it was previously produced and used for preliminary immunoreactive 

assays. Besides, previous works were capable to prove immunostimulatory activities of 

a murine CRT also using partial recombinant proteins (Hong et al., 2010; Huang et al., 

2013). Preliminary immunoreactive assays with partial AnCRT were performed with sera 

of sensitized patients revealing AnCRT’s IgE-reactivity. The partial protein was 

extensively characterized using in silico web-tools to identify which CRT isoform was 

isolated, since it lacks information on plants CRTs comparatively to their mammalian 

homologues.  

To retrieve the missing region of the previously isolated partial AnCRT, we decided to 

implement an optimized 5’ RACE technique, i.e. RNA Ligase Mediated – RACE (RLM-

RACE) previously described (Kazuo and Sumio, 1994; Matsumoto et al., 2014; Suzuki 

et al., 1997). This technique involved CIAP treatment of extracted RNA that eliminated 

potential reverse transcription – inhibiting molecules (e.g. ribosomal RNA, fragmented 

mRNA, tRNA and contaminating genomic DNA) without affecting the full-length capped 

mRNAs. Subsequently, the pool of molecules was treated with RppH which removed the 

cap structure from full-length mRNA by hydrolysing the triphosphate bond that links a 

5’-7-methylguanosine to mRNA, leaving a 5’- monophosphate end capable of accepting 

a free 3’ – hydroxyl end. A synthetic single-stranded DNA (ssDNA) adapter was ligated 

to the accepting RNA molecules within the treated RNA population, i.e. full-length mRNA 
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molecules with free 5’- monophosphates, recurring to a T4 RNA ligase and reverse 

transcribed. After reverse transcription, the cDNA 5’ ends were amplified recurring to a 

gene-specific primer and to a ssDNA adapter – complementary oligonucleotide. Analysis 

of amplified products were not as informative as expected since no well-defined bands 

were visible. This result was probably due to molecule variability given that RNA 

molecules were not eliminated from the reaction. To increase the amount of desired 

molecules that resulted from RLM-RACE reaction, we performed SemiNested PCR using 

a gene-specific primer and the ssDNA adapter – complementary primer (Scotto-Lavino 

et al., 2007). The analysis of the resulting amplification products indicated that the 

applied RLM-RACE technique did in fact increased the probability of isolating the missing 

portion of AnCRT CDS, since previously enzyme-treated cDNA revealed more bands 

>600 bp comparatively to untreated cDNA.  

Posteriorly, we performed PCR product purification to proceed to pCR®-Blunt ligation 

and bacterial transformation to select recombinant plasmids possibly harbouring the 

region of interest. Potentially positive clones were selected for plasmid extraction and 

restriction reactions were performed to assess insert’s presence and orientation; 

however, results of restriction reactions were inconclusive leading us to use Ligation 

PCR as described by Chandra and Wikel (2005). This technique revealed to be highly 

informative and long term cost-effective since it indicated that ligation proceedings 

resulted in vector:vector molecules rather than the desired vector:insert recombinant 

molecule. Despite being the most versatile and easiest cloning method, blunt-end cloning 

is much less efficient than other existent methods (Honoré, 1996). Besides the reduced 

colonies, the probability of finding a desired recombinant molecule (i.e. insert:vector 

plasmid with insert in the right orientation) is substantially low, since this technique is 

based on transient ligation of free 5’ phosphate and 3’ hydroxyl groups by T4 DNA ligase 

(Honoré, 1996). It is possible to treat both vector and insert to increase probability of a 

successful blunt-end ligation, although a ligation method dependent on complementary 

overhangs – e.g. TOPO®-TA or “Sticky ends” Restriction Enzyme cloning – is suggested 

for further works (Holton and Graham, 1991; Honoré, 1996).  

   Given that we decided to perform subsequent experiments with the previously 

obtained partial AnCRT it was necessary to further characterize this protein and assess 

its behaviour during protein’s expression and purification methods. Several web-tools 

were used to characterize in silico the isolated partial protein. Prediction of structure and 

functional domains retrieved a typical conformation of a protein belonging to Calreticulin 

family, as expected given the known structure conservation of plants’ CRTs (Bakiu, 
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2014). Moreover, protein’s conservation values and mutational sensitivity throughout the 

sequence were in accordance with other works since previous studies highlighted the 

high conservation of N- and P- domains responsible for chaperone functions of CRT 

opposing the variability of the C-terminal domain – which is possibly responsible for 

variations in Ca2+ binding potential of existent CRT isoforms (Christensen et al., 2010; 

Persson et al., 2003; Thelin et al., 2011). Regarding post-translational modifications, we 

verified that predicted N-glycosites were in accordance with previous indications of 

Christensen et al. (2010) study – three putative N-glycosites in AtCRT1a isoform and 

one in AtCRT1b. Despite existing a referenced highly conserved consensus site for 

N-glycosylation in 32nd amino-acid (N-domain), it was not predicted by used web-tools in 

any of the used sequences (Opas et al., 1996). Taken in consideration molecular 

conservation of glycosites, our results possibly indicate higher similarity between AnCRT 

and AtCRT1b (Strasser, 2016). Only one glycosite was predicted in both sequences with 

high scores in corroboration with AtCRT1b N-glycosite referenced in the literature 

(Christensen et al., 2010). As for putative phosphorylation sites, the obtained results 

were compared to the ones retrieved using complete sequences of CRT isoforms of A. 

thaliana. We verified high variability of predicted sites depending on the web-tool used. 

Although, it was notable that most phosphosites predicted with high scores were located 

within the C-domain of the protein as previously stated by other studies which indicated 

higher prevalence of consensus phosphosites in C-terminus (Baldan et al., 1996; Mariani 

et al., 2003).  

Regarding production and purification of recombinant partial AnCRT we verified that 

cultures at 28ºC resulted in protein retrieval at high yields. At 37ºC no recombinant 

protein was detected in cultures’ soluble fractions probably due to protein precipitation 

(Structural Genomics et al., 2008). For purification it was necessary to adjust imidazole 

concentration in Wash and Elution buffers due to variability in protein yields of induced 

E. coli cultures since different clones of BL21(DE3) cells harbouring pET-30a (+)::PfCRT 

recombinant plasmid were used.  We decided to induce different clones of the same 

transformed strain to ensure that results obtained were consistent and independent of 

the use of a recombinant protein produced by the same culture. During purification step, 

soluble fractions of cultures that yielded higher amounts of recombinant protein needed 

to suffer an adjustment on Imidazole concentration of Wash and Elution buffer since the 

pre-defined buffer led to high loss of recombinant AnCRT during wash steps. This 

occurred probably due to large amounts of bacterial lysates loaded onto affinity columns 

which were slightly above resin’s biding capacity; although loss of recombinant protein 
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during purification steps is inevitable even if resin’s binding capacity is not reached 

(Structural Genomics et al., 2008). Moreover, the pET-30a vector adds a C-terminal His-

tag to the produced protein which might have variable accessibility depending on 

protein’s conformation structure (Bornhorst and Falke, 2000). As previously referred, the 

predicted structure retrieved a typical CRT protein with an exposed C-terminal portion 

where the K/HDEL ER retention motif is located, therefore the added His-tag is probably 

exposed as well. Although, given the oligomerization potential of rCRT, the structure of 

the oligomeric form could alter the accessibility of the His-tag thus decreasing the affinity 

towards nickel ions present in the IMAC column and facilitating protein elution at lower 

Imidazole concentrations.      

We observed the formation of recombinant AnCRT oligomers, which was expected 

since recombinant CRT oligomerization was previously described by Li et al. (2015) and 

Huang et al. (2013). This might occur due to CRT’s affinity towards misfolded or not fully 

processed proteins present in the collected protein extracts, since when protein samples 

are collected there are still recombinant proteins being produced by the bacterial culture. 

Moreover, levels of oligomerized proteins increased over-time if protein samples were 

not stored correctly at -20ºC thus suggesting that oligomerization is incremented by 

protein degradation. Regardless, purification of recombinant protein yielded high 

amounts of soluble recombinant partial AnCRT to proceed for subsequent experiments. 

The effects of A. negundo’s pollen proteolytic activity  

Another goal of this project was to further characterize protein content of A. negundo’s 

pollen, specifically its proteolytic activities given that proteolytic potential of pollen 

extracts has an important role in initiating inflammatory responses and facilitating the 

access of allergens to immune cells in subeptihelial layers. A. negundo’s proteolytic 

activity was assessed by zymography method and further characterized using peptide 

proteolysis assays with and without class-specific proteases’ inhibitors. The effects of 

pollen extracts on respiratory epithelium integrity were also verified to assess if they 

correlated with pollen extracts concentration variations. 

In vitro hydration of pollen grains was performed to mimic in vivo hydration that occurs 

in the airways. However, it should be noted that is not possible to replicate exactly in vivo 

conditions since there is not sufficient information regarding the amount of protein that 

reaches the lower part of the respiratory tract (Runswick et al., 2007). Soluble proteins’ 

concentration levels did not exceed 0.5 mg/mL, which raised the need to concentrate 

pollen extracts in order to proceed for certain experiments.  
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Proteolytic activity of pollen extracts was detected by zymography as previously 

referred. Gelatine was used as proteases’ substrate, which is a collagen derivate 

previously used for collagenase detection specifically. Although, given gelatine’s 

heterologous structure it can be used as substrate for several proteases besides 

collagenases. It was verified difuse proteolytic activity despite the relatively low release 

of proteins from A. negundo’s pollen extracts comparatively to other tree species. The 

observed proteolytic activity corresponded mainly to high molecular weight proteases 

ranging 50 - 100 kDa, as observed by Vinhas et al. (2011) in pollen extracts of Olea 

europaea, Dactylis glomerate, Cupressus sempervirens and Pinus sylvestris.  

As previously referred, currently identified protease allergens belong mainly to 

aspartic, cysteine, serine, metalloproteases and threonine enzymatic classes (McKenna 

et al., 2017). Given that, pollen proteolytic activity was further characterized to classify 

the present proteases and to determine potential substrate specificity. The highest 

proteolytic rate observed was towards Phe-AMC, although Met-AMC and Leu-AMC 

synthetic peptides also revealed high values. Proteolysis of others synthetic peptides 

was also observed at lower rates possibly due to the presence of a small amount of 

specific enzymes with affinity to such peptides, i.e. Arg-AMC and 

Boc-Ala-Gly-Pro-Arg-AMC which are cysteine specific. Results from peptide proteolysis 

assays post incubation with class-specific inhibitors revealed higher prevalence of 

metalloproteases and other zinc-dependent aminopeptidases. Serine trypsin-like activity 

and possibly cysteine activity was also observed, although the last should be confirmed 

using other inhibitors specific only for cysteine class (e.g. E-64 inhibitor). Moreover, 

additional enzymatic assays should be performed to thoroughly determine protease 

specificity (Bisswanger, 2014).  

The classification of proteases present in a pollen extract is of extreme importance 

since it differs accordingly to plant organisms. The variability of protease content could 

affect the way pollen proteolytic activity affects alveolar epithelial integrity. It could have 

direct effect on tight junctions by cleaving transmembrane domains of intercellular 

junctional proteins (Runswick et al., 2007; Vinhas et al., 2011); or induce tight junction 

disruption through cleavage and activation of PAR receptors by serine proteases as 

observed by Suzuki et al. (2005). Besides, there is also indication of activation of 

alternative pathways by exogenous proteases that result in TH2-mediated responses 

characteristic of allergic reactions which consequently damage the alveolar epithelial 

tissue as well (Kheradmand et al., 2002).  
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Epithelial barrier disruption has been suggested as crucial for development of 

respiratory diseases such as allergic conditions, asthma or dyspnea. A disrupted alveolar 

epithelium results in activation of innate mechanisms and cellular components, and in 

increased allergen paracellular movement recognized by adaptive immune components 

(Ganesan et al., 2013; Georas and Rezaee, 2014; Kauffman et al., 2000; Pichavant et 

al., 2005; Runswick et al., 2007; Vinhas et al., 2011).  Consequently, lung homeostasis 

is compromised and a chronic and more severe condition could be achieved if regulatory 

mechanisms are undermined. Regarding the diverse ways that proteolytic activity of 

pollen proteins could affect pulmonary epithelium integrity, the cellular effects of A. 

negundo’s pollen extracts were observed. We used a cell culture of A549 alveolar 

epithelial lineage, as previously indicated in Material and methods section.  Despite the 

selected cell lineage not being able to form fully functional tight junctions in vitro, it is the 

most frequently used alveolar epithelial model specifically in substance’s metabolism 

and cytotoxicity studies (Foster et al., 1998; Mao et al., 2015; Ren and Suresh, 2014).  

Barrier disruption was evaluated through detachment assays since other type of 

assays, i.e. transepithelial permeability, could be influenced by the characteristics of the 

selected cell culture (Winton et al., 1998). It should be noted that pollen proteases 

probably do not reach sufficient concentrations to elicit detachment of alveolar epithelial 

cells in vivo, but in vitro cell detachment is a strong indicator that barrier integrity could 

be affected (Runswick et al., 2007). The effects of A. negundo on cellular detachment 

correlated with protein concentration and incubation periods, reaching almost full 

detachment of cell culture after 24-hour incubation with HC pollen extracts. Heat-

denaturation of pollen extracts reduced detachment levels at 24 hours despite not 

eliminating such effect.  As previously indicated, proteolytic activities of A. negundo’s 

pollen are mainly attributed to metalloproteases and other zinc-dependent 

aminopeptidases with some serine trypsin-like and possibly cysteine activity. Several 

studies have already identified the damaging effects of serine and cysteine activity on 

epithelial integrity (Kheradmand et al., 2002; Runswick et al., 2007; Sun et al., 2001; 

Wan et al., 1999), although our results suggest that exogenous metalloproteases also 

play a part in epithelial barrier damage.  

Besides cellular detachment, the effects of epithelium exposure to pollen extracts on 

intercellular junctional proteins were assessed due to their role in cell adhesion 

processes. The integrity of a specific tissue is guaranteed by cell adhesion, which by 

definition, is the ability of a single cell to attach to other or to the extracellular matrix 

(ECM). Since cell adhesion is essential to cell communication and regulation processes, 
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a modification in this ability subsequent to a stressing stimulus reflects that tissue 

integrity was somehow compromised. Contrarily to Vinhas et al. (2011) study, we 

observed a decrease on cytoplasmic ZO-1 levels after 24-hour exposure to pollen 

extracts, despite undetected degradation products. We also observed an increase on 

both Occludin’s and E-cadherin’s protein levels post- 24 hours of applied stimulus, 

except when LC pollen extracts were heat-denatured. Dimerized Occludin’s 

accumulation levels increased as observed in monomeric forms, except in conditions 

that increased oxidative stress in cell cultures – i.e. cells cultures exposed to 

heat-denatured extracts. In a previous work, Walter et al. (2009) proved the vulnerability 

of Occludin’s oligomerization to redox-variations, which decreased in oxidative stress 

conditions. 

The increased protein levels observed could be a result of protein internalization in 

response to pollen’s proteolytic activity. Internalization of TJ and AJ proteins may occur 

via caveolae-mediated endocytosis or via clathrin-coated vesicles in response to pro-

inflammatory mediators – e.g. chemokine (C-C motif) ligand 2 (CCL2), vascular 

endothelial growth factor (VEGF), IFN-ϒ. –, or to variations in cytosolic-free Ca2+ levels 

(Bruewer et al., 2005; Hommelgaard et al., 2005; Ivanov et al., 2004; Stamatovic et al., 

2009). Moreover, degradation levels of E-cadherin did not alter comparatively to control 

conditions which possibly indicates that the observed degradation corresponded to 

protein’s turnover. The obtained results indicate that the observed cellular detachment 

was probably indirectly caused by proteolysis of surfaced cell receptors – e.g. activation 

of PARs –, rather than direct hydrolysis of transmembrane domains of intercellular 

proteins (Shpacovitch et al., 2008). Our results regarding immunodetected intercellular 

complex proteins go against what is described in the literature. Although, it should be 

noted that previous works analysed either the activity of different plant species with 

different proteolytic profiles due to variations in classes of proteases present in total 

protein extracts (Runswick et al., 2007; Vinhas et al., 2011); or the effects of isolated 

proteases, recombinantly produced or not, with possibly higher affinity towards 

transmembrane domains of intercellular proteins than cell-surfaced receptors (Cortes et 

al., 2006; Wan et al., 1999). Moreover, Sun et al. (2001) verified PAR-2 activation by 

interactions with isolated mite proteases Der p3 and Der p9, although in this work it was 

only verified the effects of PAR-2 activation on cytokine expression. 

The involvement of PARs in physiological responses to exogenous peptidases has 

been extensively described in literature (Kauffman et al., 2000; Oida et al., 2017; 

Pichavant et al., 2005; Shpacovitch et al., 2008).  These receptors are 7-transmembrane 
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proteins coupled to G proteins apically expressed on epithelial cells’ surface. Currently 

four PARs have been described – PAR-1, PAR-2, PAR-3 and PAR-4 – and each one 

modulates several physiological processes, e.g. expression of cytokines and chemical 

mediators, vasodilation, cellular proliferation, smooth muscle contraction or relaxation, 

etc. These receptors are self-activated by tethered ligands, which correspond to their 

new N-terminal domain post serine proteolysis of a specific site. Although, there is 

indication of PARs activation independent of proteolytic cleavage using residue peptides 

that correspond to tethered ligands (Asokananthan et al., 2002). PARs activation results 

in hydrolysis of inositol phospholipid and increased cytosolic-free Ca2+, thus activating 

cell’s signalling cascades leading to expression and release of pro-inflammatory 

cytokines; and indirect disruption of epithelial barrier through transactivation of epidermal 

growth factor receptor (Gandhi and Vliagoftis, 2015; Heijink et al., 2010). Given that 

cytokine expression also reflects PAR activation, it was performed quantification of 

released pro-inflammatory cytokines after exposing cells to pollen extracts using 

Cytometric Bead Array (CBA) assays.  

We observed that cells released higher amounts of IL-8 comparatively to IL-6. The 

release of both cytokines was concentration-dependent, since there was a substantial 

increase on released IL-6 and IL-8 from cells exposed to HC pollen extracts 

comparatively to the ones exposed to LC extracts. However, we observed higher 

amounts of released cytokines – specially IL-6 – in samples collected from cells exposed 

to heat-denatured extracts. It is possible that this could be an effect of cells’ exposure to 

pollen’s denaturation products which increased oxidative stress in cell cultures, as 

previously reflected by decreased dimerization levels of Occludin. Although, heat-

denatured extracts should be characterized regarding its proteolytic activities through the 

peptide proteolysis assays in the same conditions previously specified to confirm if heat-

denaturation completely eliminated proteolytic activities of pollen extracts. Our results 

are in accordance with previous studies that proved that exogenous proteases from air 

allergens (house dust mites, fungus and pollens) activated functional responses of innate 

and adaptive immune cells through induction of pro-inflammatory cytokines expression 

and release (including IL-6 and IL-8), either by disruption of epithelial integrity or by 

activation of cell-surfaced receptors (Asokananthan et al., 2002; Atkinson and Strachan, 

2004; Calderon et al., 2015; Runswick et al., 2007; Shpacovitch et al., 2008; Vinhas et 

al., 2011). Besides cytokine release, interactions between air allergens proteases and 

cells’ receptors also incite epithelial barrier disruption through loosening of tight junctions, 

IgE production amplification and eosinophils degranulation furtherly contributing to 
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increased inflammation (Reed and Kita, 2004). Additionally to proteins’ 

immunodetection, quantitative reverse transcription PCR (qRT-PCR) with TJ proteins 

(ZO-1 and Occludin) and AJ proteins (E-cadherin) genes as templates could provide 

more information relatively to cellular responses, i.e. alterations in gene expression, to 

the exogenous stimulus applied. Moreover, given that activated PARs increase cytosolic-

free Ca2+, applying Single-Cell Calcium Imaging would also provide further proof of what 

was suggested by the results obtained in our work.  

The immunogenic effects of AnCRT 

It is well known that respiratory diseases are increasing worldwide. Notwithstanding 

the high incidence, current therapeutics are mostly symptomatic and with limitable action 

in uncontrolled conditions that might evolve to chronic states, such as severe asthma 

and chronic obstructive pulmonary disease. Moreover, besides allergen-specific 

immunotherapy not being available to all individuals with diagnosed uncontrolled 

conditions this treatment is not effective in all patients. Allergens are generally associated 

as IgE-reactive molecules that induce a typical hypersensitive response in predisposed 

individuals; although, Schulten et al. (2013) indicated undescribed proteins that induced 

TH2-mediated responses without being recognized by IgE. In previous works of the same 

group, it was highlighted that not all individuals allergic to Timothy grass proteins reacted 

to IgE-reactive allergens (Oseroff et al., 2010). This could be an explanation why some 

patients do not respond as expected to allergen-specific immunotherapy, thus the need 

to understand how potentially allergenic proteins interact with immune system 

components to improve existent therapies or develop new ones.     

Previous studies highlighted the potent immunostimulatory activities of a recombinant 

murine CRT in macrophage, monocyte and B cells inducing cellular responses via 

TLR-4/CD14 pathway – e.g.  NO2 release, cytokine secretion and antibody production 

(Hong et al., 2010; Huang et al., 2013). Li et al. (2015) proved that the same murine 

rCRT activated bone marrow derived dendritic cells to secrete cytokines via the same 

TLR-4/CD14 pathway and induced DC maturation through PI3K/Akt signalling pathway. 

Moreover, Duo et al. (2014) also evidenced macrophage activation by oligomeric rCRT 

through Scavenger receptor A (SRA). Besides immune cells, TLR-4 receptors are also 

expressed in epithelial cells since these receptors have an important role in innate 

immunity. Given the extensive proof of heterologous interactions of rCRT with 

cell-receptors from immune cell components, our work aimed to assess if AnCRT was 

capable of inducing cellular responses that could lead to alterations on epithelial barrier 
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permeability or induce inflammatory reactions. The immunogenic effects of the AnCRT 

were evaluated by incubating A549 alveolar epithelial cells with purified recombinant 

AnCRT in isolated extracts and in combination with LC pollen extracts.  

Barrier disruption was evaluated once more through detachment assays. We 

observed some cell detachment in cultures exposed to isolated purified rCRT; although 

the observed effect was potentiated by the presence of total protein content from LC 

pollen extracts since detachment rates increased almost 60%. Our results suggest that 

rCRT affects cellular adhesion, although not in the same proportion as pollen extracts. 

Possibly, these effects could be a result of rCRT interactions with cell receptors that led 

to cell detachment. We propose that AnCRT interacts with TLR-4 receptors expressed 

in cells’ surface leading to activation of signalling pathways, as evidenced by previous 

works with other cell types, that induced slight cell detachment. Moreover, the expression 

of TLR-4 increases during barrier disruption (Wang et al., 2017), which could explain the 

verified increase in cellular responses, i.e. cell detachment, to combined extracts. The 

proteolytic activity of LC pollen extracts induced cell detachment – which mimic barrier 

disruption in vitro as previously discussed -, possibly increasing the expression of TLR-

4 receptors and consequently, increasing rCRT-TLR-4 interactions that resulted in higher 

detachment rates. Besides, during epithelial injury, thrombospondin 1 (TSP-1) 

expression increases and becomes soluble after serine proteases cleavage (Orr et al., 

2003). Soluble TSP-1 binds to the co-receptor CRT/LRP1 provoking focal disassembly 

and increasing even more barrier disruption (Gardai et al., 2003; Villagomez et al., 2009), 

which possibly also explains the verified increase on detachment rate of combined 

extracts. 

Additionally to cell detachment assays, alterations in intercellular junctional proteins 

were also analysed to further evaluate AnCRT effects on barrier disruption. We observed 

that both rCRT isolated and combined extracts increased E-cadherin’s protein levels 

contrarily to the decrease verified in cells exposed to LC pollen extracts. Regarding 

monomeric and dimeric Occludin’s protein levels we observed that both purified rCRT 

and combined extracts provoked a decrease in accumulated protein in both forms. In this 

case we did not verify that Occludin’s dimerization was affected by oxidative stress 

provoked by denaturation of extracts, except when cells were exposed to isolated heat-

denatured LC pollen extracts. In fact, it seems that rCRT provided some kind of oxidative 

stress protection to cells exposed to denatured mixture extract, since it was observed a 

slight increase on Dimerized Occludin’s protein levels. As for ZO-1 protein, we observed 

no significant differences in protein accumulation after incubation with isolated purified 
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rCRT. The lower protein levels in cells exposed to combined extracts are more likely to 

be a consequence of LC pollen extracts activity, since LC pollen extracts resulted in the 

same decrease on protein levels, which was eliminated when both LC pollen and 

combined extracts were denatured. Once again, our results indicate that observed 

effects were possibly due to rCRT ability to interact with cell-surfaced receptors. These 

interactions have been widely described throughout the literature and we propose a 

potential explanation for the results obtained during the analysis of intercellular complex 

proteins integrity.   

Ma and Hottiger (2016) reviewed the interferences between Wnt/β-catenin and 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling 

pathways, in which E-cadherin plays an important role. When epithelial barrier integrity 

is compromised, epithelial cells respond by increasing E-cadherin’s expression and 

internalization for recruitment of β-catenin to AJ to regulate overexpression of TLRs (Ma 

and Hottiger, 2016). The translocation of β-catenin from the nucleus to AJ results in 

NF-κB activation, which induce target-gene expression – e.g. expression of cytokines, 

chemokines and growth factors –, and activation of cell-surfaced receptors – e.g. IL-1 

receptor (IL-1R) and TLRs. Besides IL-6 and IL-8 expression after NF-κB activation, 

IL-1β is also expressed. In their work, Al-Sadi and Ma (2007) proved that this cytokine 

increased NF-κB activation while decreasing Occludin’s expression levels without 

affecting ZO-1 expression, as observed in our work regarding cells exposed to purified 

rCRT and combined extracts. Our results strongly suggest AnCRT involvement in TLR 

activation that resulted in the observed effects, since AJ and TJ protein levels differed in 

cells exposed to LC pollen extracts comparatively to extracts including the recombinant 

protein.  

On that line of thought, we proceeded for quantification of other pro-inflammatory 

cytokines as previously referred. Our results revealed no IL-6 release from cells exposed 

to isolated purified rCRT, despite the release of IL-8. However, the presence of rCRT in 

combined extracts increased both cytokines release provoked by LC pollen extracts 

activities. Cells exposed to isolated purified rCRT probably released IL-6 since both 

cytokines are expressed upon activation of the same pathways (NF-κB, IRF and MAPK) 

(Kawasaki and Kawai, 2014; Kimura et al., 2013). However, considering all tested 

conditions, the maximum of released IL-6 did not surpass 1000 ρg/mL contrarily to the 

much higher IL-8 maximum levels (>6000 ρg/mL). Probably IL-6 was not released in 

sufficient levels to be detected and quantified by CBA assays. Quantification of released 

IL-1β would further support what the obtained results suggest. Moreover, phenotypic 
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characterization of A549 regarding TLR-4 receptors by intracellular immunostaining 

techniques, previously described by Chougule et al. (2012), and flow cytometry would 

confirm TLR-4-expression variations in cells exposed to combined extracts. 
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In concordance with current literature, our work verified that the proteolytic activity of 

A. negundo’s pollen extracts –  mainly composed by metalloproteases and other 

zinc-dependent aminopeptidases, serine trypsin-like and probably cysteine proteases –   

contributes to destabilization of alveolar epithelial tissue. Conversely, our results strongly 

suggest that the observed effects of A. negundo’s pollen proteolytic activity was probably 

indirectly caused by proteolysis and activation of PARs rather than direct hydrolysis of 

transmembrane domains of intercellular proteins. Consequently, barrier disruption 

occurs increasing epithelial permeability to allergen crossing. Allergens are recognized 

by APCs which trigger adaptive immune responses, resulting in inflammation 

amplification. Although, additional enzymatic assays with synthetic substrates should be 

performed to thoroughly determine protease specificity (Bisswanger, 2014). Besides, 

PAR activation should be confirmed through the incubation of synthetic peptides 

correspondent to PARs N-terminal residues with pollen extracts, as described by Sun et 

al. (2001); or through Single-Cell Calcium Imaging to quantify cytosolic-free Ca2+ 

variations, as described by Asokananthan et al. (2002). 

Although, our main focus was regarding Calreticulin of A. negundo’s pollen and its 

potential immunogenic effects besides the ones associated to IgE-mediated responses. 

We verified that isolated recombinant AnCRT induced cellular responses probably 

through activation of TLR-4, since we observed slight effects on alveolar cell cultures’ 

integrity subsequently to purified rCRT exposition. Moreover, we also observed that 

adding rCRT to pollen extracts resulted in increased cellular detachment and cytokine 

release and alterations in TJ and AJ proteins’ accumulation. These results also suggest 

TLR-4 involvement – besides activated PAR by pollen proteolytic activity – in response 

to combined extracts exposure.  

Specifically addressing the raised questions in the beginning of this work, the isolated 

partial AnCRT protein is capable of inducing pro-inflammatory cytokines’ expression and 

impairment of epithelial barrier integrity, possibly through interactions with cell receptors 

thus compromising cell adhesion processes and inflammatory responses, including 

TH2-mediated immune responses characteristic of allergic states (Figure 27). We 

conclude that AnCRT has immunogenic potential besides IgE immunoreactivity, since 

its presence in a context of epithelial damage exponentiates the observed effects. 

However, isolated AnCRT does not provoke alarming effects on epithelial cells, which 

does not eliminate the hypothesis of provoking effects when framed in the airway where 

there are several cell types present that might induce inflammatory responses. 

 



97 

 

 

 

FCUP 

The immunogenic effects of a potentially allergenic protein of Acer negundo 

 

Figure 27 – Simplified model of innate immune activation by allergens exposure that activate adaptive immune 

responses mediated by TH2 cells. The induction of TH2-mediated responses involves several innate immune pathways. 

Allergens with proteolytic activity affect receptors sensitive to proteolysis (e.g. PARs) and directly disrupt intercellular 
junctional complexes, consequently inducing the release of DAMPs and compromising epithelial barrier integrity. 
Moreover, other allergens with no proteolytic activity associated can lead to activation of others PRRs (e.g. TLRs) which 
can also induce the release of DAMPs and activate signalling pathways that result in pro-inflammatory cytokines 
expression, such as IL-1β, IL-6 or IL-8. Released cytokines and chemokines recruit and activate other immune cells that 

induce TH2 differentiation and polarized responses, which includes inducing IgE secretion by B cells to allergens that 

crossed the injured epithelial barrier typical of allergic reactions. Image retrieved from: Sanchez-Borges et al. (2017) 

In subsequent works TLR-4 expression variations in cells exposed to combined 

extracts should be confirmed by intracellular immunostaining techniques, previously 

described by Chougule et al. (2012), and flow cytometry. Given the obtained results in 

immunodetection of intercellular complexes proteins, qRT-PCR using ZO-1, Occludin 

and E-cadherin’s genes as templates could provide additional information of alterations 

in gene expression in response to the exogenous stimuli applied. Moreover, rCRT-TLR-4 

interaction should be experimentally confirmed using a TLR blocking system, i.e. TLR 

antibodies that block binding to TLRs, and assess NF-κB activation in both situations as 

described by Uehori et al. (2003). 

Our work intended to highlight the complexity of immune responses, particularly those 

involved in allergic reactions. The importance of identifying potentially immunogenic 
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proteins in total protein extracts of allergy-elicitors and characterizing their effects has 

been extensively referred in the literature and in our work (Asam et al., 2015; Gandhi 

and Vliagoftis, 2015; Gutowska-Owsiak and Ogg, 2017; Schulten et al., 2013). In some 

cases, it leads to identification of new allergens with undetected interactions that 

exacerbate the allergic reaction by non IgE-mediated mechanisms. Consequently, new 

therapeutics might arise from the discovery of alternative routes that initiate or intensify 

allergic states with possible better outcomes for unresponsive patients to existent 

treatment.  
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Supplemental material 1 

 

Supplemental Figure 1 - Representation of pCR™-Blunt II- TOPO® plasmid map and corresponding cloning 
region. It is presented pCR™-Blunt II- TOPO® plasmid map with sequence landmarks. (Retrieved from: 
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/zeroblunttopo_man.pdf - accessed in November 2016) 
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Supplemental material 2 

Supplemental Table 1 – pET system host E. coli BL21(DE3) strain characteristics. It is presented the genotype of 
the selected expression strain with a brief description of possible applications. Retrieved from Novagen pET system 
manual. 
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Supplemental material 3 

 

 

Supplemental Figure 2 – Representation of pET-30a (+) plasmid map and corresponding cloning/expression 
region. It is presented pET-30a (+) plasmid map with sequence landmarks. PfCRT was previously cloned between NdeI 
and XhoI restriction sites in frame with the His-Tag. (Retrieved from: http://www.synthesisgene.com/vector/pET-30a.pdf - 
accessed in January 2017) 

 

 


