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ABSTRACT 

Sudden death (SD) is a term used to describe an unexpected and non-traumatic 

fatal event that occurred within 1 hour of the onset of new or worsening symptoms in 

an apparently healthy individual or, if unwitnessed, within 24 hours of last being seen in 

good health. If the SD of an infant aged below 1 year of age cannot be explained, even 

after a thorough investigation (which includes post-mortem examination, death scene 

investigation and review of the clinical history), then it is referred as sudden infant death 

syndrome (SIDS). 

SIDS is one of the leading causes of post-neonatal infant mortality in developed 

countries. The definitive mechanisms are still uncertain and, as such, SIDS remains a 

diagnosis of exclusion.  

Mutations in genes linked to inherited arrhythmia syndromes (e,g 

channelopathies causing electric disorders) and cardiomyopathies (structural heart 

abnormalities related to mutations in genes encoding various types of proteins, such as, 

sarcomeres, desmosomes, the cytoskeleton and the nuclear envelope) have been 

proposed as the substrate for an infant’s underlying vulnerability. 

In this review, we will summarize the most recent clinical and molecular 

observations regarding two of the most common channelopathies associated with SIDS, 

long QT syndrome (LQTS) and Brugada syndrome (BrS), and one of the most common 

cardiomyopathy linked to sudden death in the young, hypertrophic cardiomyopathy 

(HCM). The implications of genetic testing in SIDS cases and subsequent clinical and 

genetic testing in family members will also be discussed. 

 

Keywords: Sudden Infant Death Syndrome; Inherited Arrhythmia Syndromes; Long QT 

Syndrome; Brugada Syndrome; Structural Heart Abnormalities; Hypertrophic 

Cardiomyopathy; Molecular Autopsy 
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RESUMO  

Morte súbita (MS) é um termo que descreve um evento fatal súbito e não-

traumático que ocorre na primeira hora após o início ou o agravamento de sintomas em 

indivíduos aparentemente saudáveis ou, caso não seja testemunhado, dentro de 24 

horas depois do indivíduo ter sido visto em boa saúde. Se a MS envolver um lactente 

com idade inferior a 1 ano e não for possível obter uma explicação para este evento, 

mesmo após uma investigação exaustiva (que inclui exame post mortem, investigação 

do local da morte e revisão da história clínica), então referimo-nos a este evento como 

síndrome da morte súbita do lactente (SMSL). 

 A SMSL é uma das principais causas de mortalidade infantil neonatal nos países 

desenvolvidos. Os mecanismos definitivos que levam a este evento ainda não estão 

completamente esclarecidos e, como tal, a SMSL permanece um diagnóstico de 

exclusão. 

As mutações em genes associados a síndromes arritmogénicas hereditárias (por 

exemplo, canalopatias que causam alterações no sistema de condução eléctrico) e a 

cardiomiopatias (doenças estruturais cardíacas desencadeadas por mutações em genes 

que codificam vários tipos de proteínas, como, por exemplo, sarcómeros, desmossomas, 

o citoesqueleto e a membrana nuclear) foram propostas como sendo o substrato para 

a vulnerabilidade intrínseca dos lactentes vítimas de SMSL.  

 Nesta revisão iremos sumariar as mais recentes observações clínicas e 

moleculares acerca de duas das canalopatias mais associadas à SMSL, a síndrome do QT 

longo e a síndrome de Brugada, bem como uma das cardiomiopatias mais frequente 

ligadas à morte súbita nos jovens, a cardiomiopatia hipertrófica. As implicações de 

testes genéticos nos casos de SMSL e os testes clínicos e genéticos realizados 

subsequentemente aos membros familiares serão também alvo de discussão. 

 

Palavras-chave: Síndrome de Morte Súbita do Lactente; Síndromes Arritmogénicas 

Hereditárias; Síndrome do QT Longo; Síndrome de Brugada; Doenças Estruturais 

Cardíacas; Cardiomiopatia Hipertrófica; Autópsia Molecular 
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SUDDEN CARDIAC DEATH 

Sudden death (SD) is a term used to describe an unexpected and non-traumatic 

fatal event that occurred within 1 hour of the onset of new or worsening symptoms in 

an apparently healthy individual or, if unwitnessed, within 24 hours of last being seen in 

good health. When SD involves infants below 1 year of age, and an autopsy has not been 

performed, it’s referred as sudden unexpected infant death (SUID) [1]. 

Identifying the settings that might have led to the unexpected death of an 

individual not only provides the family with some understanding but might also allow to 

perceive if the risk of SD extends to family members. As such, it stands to reason that all 

unexplained SD victims should undertake an autopsy to investigate the causes that 

might have led to the unexpected death. If the SD of an infant aged below 1 year of age 

cannot be explained, even after a thorough investigation (which includes post-mortem 

examination-autopsy, death scene investigation and review of the clinical history and 

social history), then it is referred as sudden infant death syndrome (SIDS) [1]. 

Even though there have been advances in the understanding of the 

pathophysiology of SIDS, the definitive mechanisms are still uncertain and, as such, it 

remains a diagnosis of exclusion [2]. Several mechanisms have already been proposed 

to try to elucidate the mechanisms by which SIDS occurs, such as metabolic disorders 

and morphological changes in the brainstem, which may be the cause of respiratory 

dysfunction and cardiorespiratory instability due to immaturity of centers responsible 

for these functions [3]. 

More recently, there has been an increasing consciousness that cardiac 

hereditable syndromes, which includes cardiomyopathies and channelopathies, may be 

greatly associated with SIDS [4]. Infants with inherited arrhythmia syndromes could die 

from sudden cardiac arrest due to ventricular tachycardia and/or ventricular fibrillation. 

Normal autopsy procedures cannot detect these changes, since the heart is structurally 

normal. This would be the opposite of cardiomyopathies, where normal autopsy 

procedures are able to detect signs of disease. However it has been hypothesized that 

in some cardiomyopathies there may be a concealed arrhythmogenic phase before the 
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manifestation of structural defects, which wouldn’t be detected during the normal 

autopsy procedures [5, 6]. 

In this review, we will summarize the most recent clinical and molecular 

observations regarding two of the most common channelopathies associated with SIDS, 

long QT syndrome (LQTS) and Brugada syndrome (BrS), and one of the most common 

cardiomyopathy linked to sudden death in the young, hypertrophic cardiomyopathy 

(HCM). 

 

METHODS 

 The PubMed database was used to perform this review of the literature. using 

the key words “sudden infant death syndrome” with a date of publication between 

January of 2007 and December of 2017. After reading the abstracts the articles deemed 

relevant for this work were selected. Furthermore, the list of references of these articles 

were also analyzed. 

 

EPIDEMIOLOGY AND RISK FACTORS 

 In 2013, the United States (US) reported 3,422 deaths categorized as SUIDs, 

which comprised around 14,6% of total infant deaths. These included deaths from SIDS, 

asphyxiation during sleep and deaths in which there was insufficient information to 

categorize the cause. About 2,300 of these deaths were attributable to SIDS [7]. 

The greatest hallmark in the reduction of SIDS rates happened in the 1980s 

thanks to the discovery that the prone sleep position triples the likelihood of SIDS. This 

led to the implementation of public health campaigns entitled “Back to Sleep”, 

promoting a supine sleep position for infants. Studies carried out after the 

implementation of this campaign have shown that rates of prone sleep position 

decreased to 2-5% with a reduction of SIDS rates by 50-90% [8, 9]. Given the strength of 

this single factor in the decline of SIDS rates, the American Academy of Pediatrics is still 

promoting these recommendations (Table 1) [10]. 
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Table 1 – Summary of recommendations developed to reduce the risk of SIDS by 

strength of recommendation. (taken from [10]) 

A-level recommendations 

Back to sleep for every sleep 
Use a firm sleep surface 
Breastfeeding is recommended 
Room-sharing with the infant on a separate sleep surface is recommended 
Keep soft objects and loose bedding away from the infant’s sleep area 
Consider offering a pacifier at naptime and bedtime 
Avoid smoke exposure during pregnancy and after birth. 
Avoid alcohol and illicit drug use during pregnancy and after birth 
Avoid overheating 
Pregnant women should seek and obtain regular pre-natal care 
Infants should be immunized in accordance with AAP and CDC recommendations 
Do not use home cardiorespiratory monitors as a strategy to reduce the risk of SIDS 
Health care providers, staff in newborn nurseries and NICUs, and child care providers 

should endorse and model the SIDS risk-reduction recommendations from birth 
Media and manufacturers should follow safe sleep guidelines in their messaging and 

advertising 
Continue the “Safe to Sleep” campaign, focusing on ways to reduce the risk of all sleep-

related infant deaths, including SIDS, suffocation, and other unintentional 
deaths. Pediatricians and other primary care providers should actively 
participate in this campaign 

B-level recommendations 

Avoid the use of commercial devices that are inconsistent with safe sleep 
recommendations 

Supervised, awake tummy time is recommended to facilitate development and to 
minimize development of positional plagiocephaly 

C-level recommendations 

Continue research and surveillance on the risk factors, causes, and pathophysiologic 
mechanisms of SIDS and other sleep-related infant deaths, with the ultimate 
goal of eliminating these deaths entirely 

There is no evidence to recommend swaddling as a strategy to reduce the risk of SIDS 
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However, despite the significant decrease in the last decades, SIDS rates have 

remained stable since 2001, being one of the leading causes of post-neonatal infant 

death in developed countries (Figure 1) [11]. 

 

 
Figure 1 – Trends in sudden unexpected infant death by cause from 1990 to 2015. (taken 

from [11]) 

 

A multitude of risk factors for SIDS have already been identified (Table 2), such 

as environmental factors, maternal factors and neonatal factors (including genetic 

factors). Social inequalities remain a key factor in the epidemiology of SIDS since it 

occurs increasingly in situations of social deprivation. Racial and ethnic disparities in SIDS 

are also pronounced, which might reflect these socioeconomic inequalities. In the US, 

American Indian and non-Hispanic black infants were two times more likely to die from 

SIDS. Moreover, pre-natal and post-natal exposure to smoking, bed sharing, prone 

sleeping position and male gender also remain to be a significant risk (Table 2) [7, 12–

14]. 
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Table 2 – Etiology/risk factors of SIDS. (taken and adapted from [3, 13]) 

Biological 
Prematurity and low birth weight 

1:5 infants who died from SIDS were premature. Low birth weight has been 
linked to a delayed maturation regarding the ability to move the head from the 
face down position to face up position 

Apnea 
2-4% of infants who die from SIDS have a history of apnea which may be caused 
by regurgitation of gastric content that has an acidic pH, which leads to hypoxia 

Infection 
Gastroenteritis, otitis media and upper respiratory tract infection have been the 
major infectious conditions found at the time of death in infants. Particularly, 
the respiratory syncytial virus has been shown to cause episodes of apnea in 
children, which leads to hypoxia and possibly death 

Gender (males) 
Male infants who died from SIDS have been found to have a higher apoptosis 
rate in the brainstem which can lead to absence of touch and proprioception, 
limiting an infant when he tries to adopt a supine position from a prone position 

Familial 
Infants that are not breastfed 
Maternal age and education 

Mothers of infants who died from SIDS are more likely to be young 
Maternal smoking, maternal and paternal recreational drug usage 

Decreased lung capacity and changes in the arousal mechanism of infants have 
been linked to pre-natal exposure to nicotine. Other drugs, particularly cocaine, 
have also been implicated in SIDS rates, by causing maturational delay and 
respiratory instability 

Maternal history of hospitalization for psychiatric illness 
SIDS has been linked to mothers who have a history of depression, particularly 
with a diagnosis in the year previous to the birth or post-neonatal 

Parity and risk among siblings 
Epidemiological 

Sleeping position, bed environment and bed sharing 
Prone sleep position has been shown to greatly increase the risk of SIDS, 
especially in infants who sleep in a soft bed and/or share a bed with the parents. 

Pre-natal care 
Overheating 
Altitude 

Greater altitude has been linked to increased rates of SIDS 
Race and Ethnicity 

American Indian and non-Hispanic black infants have been shown to have an 
increased risk to die from SIDS 

*Topics that were not explained in detail have controversial data and as such no clear link has yet been 

established between these factors and the occurrence of SIDS 
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PATHOPHISIOLOGY 

TRIPLE RISK HYPOTHESIS 

 SIDS has always been considered to have a multifactorial pathway. In 1994, the 

triple risk hypothesis was postulated, which proposes that SIDS results from three 

overlapping factors: a vulnerable infant, a critical developmental period in homoeostatic 

control and an exogenous stressor (Figure 2). Since then, this has been the most widely 

accepted model. Based on it, SIDS only occurs when a vulnerable infant is exposed to an 

exogenous stressor and lacks the proper defense mechanism to deal with it. Therefore, 

all factors must be present for a death to occur [15]. 

 

 
Figure 2 – The triple-risk hypothesis for SIDS. (adapted and taken from [16]) 

  

In 1970, the first report of karyotype abnormalities in 10 infants was published, 

suggesting that SIDS might have a genetic background [17]. Since then, variants in genes 

associated with regulation of the central nervous system, immune system function and 

inherited cardiac conditions have been proposed as the underlying condition for an 

infant’s vulnerability to SIDS [18]. 

Critical Development 
Period

Infancy (<12 months old)

Exogenous 
Stressors

(Environment)

Infant 
Vulnerability

(Genetic Insults)

SIDS 
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 DEFECTIVE NEURONAL DEVELOPMENT AND RECEPTOR DEFICIENCY 

 Studies have shown that infants who died from SIDS displayed delayed 

development of the brain stem and a significant lower degree of myelination in certain 

regions of the brain. Further studies from these brain stems have shown abnormalities 

in muscarinic, kainite and lysergic acid receptors, particularly in the nuclei that is 

responsible for the control of cardiorespiratory response to stimuli. Moreover, genetic 

polymorphisms in the medullary serotonin system (5-HT), which is believed to have a 

major role in the regulation of the cardiorespiratory system through the autonomic 

nervous system, have also been identified in SIDS cases [19–22]. 

 

 IMMUNE SYSTEM DYSFUNCTION AND INFECTION 

 SIDS can occur any time before 1 year of age. However, it has a peak incidence 

between 2-4 months old, which corresponds to the time when the passive immunity 

from the mother decreases, leading to the activation of the infant’s immune system. 

During this time, not only can the infant be briefly vulnerable to lethal infections, but 

this immune system activation may also generate a confined immune response, 

specifically to irritating agents of the respiratory tract as well as infectious agents, which 

has the potential to create bronchospasm, pulmonary edema, and cytokine-mediated 

outcomes (eg. fever). Moreover, elevated concentrations of IgG, IgM, IgA and IL-6 have 

also been detected in SIDS cases [3]. 

 The pathogen most associated with SIDS is the respiratory syncytial virus. 

Therefore, it’s not surprising that during winter, especially during viral epidemics in a 

community, the incidence of SIDS increases [3]. 
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CARDIAC GENETIC SUSCEPTIBILITY 

 In the last few years, genetic studies have provided clues to the cause of death 

in some SIDS cases and they altogether suggest that 10-15% up to one third of these 

might be explained by inherited cardiac diseases not detectable during conventional 

forensic autopsy investigations (Table 3) [23–25].  The most investigated genes in SIDS 

correspond to primary electric disorders of the heart (channelopathies) and it has been 

shown that nearly 1 in every 5 SIDS cases carries a mutation in genes encoding cardiac 

ion channels, with the vast majority having a malignant phenotype [26]. Although they 

are less frequent, mutations in genes related to structural abnormalities in the heart 

(cardiomyopathies) have also been shown to play a role in SIDS, specifically, in those 

that encode sarcomeric proteins [6]. 

 

Table 3 – Genes with mutations associated with SIDS. (taken and adapted from [27]) 

Disease Gene Encoded Protein Frequency in SIDS (%) 

LQTS1 KCNQ1 KV7.1 potassium channel a-subunit 1,0 

LQTS2 KCNH2/HERG KV11.1 potassium channel a-subunit 0,5 

LQTS3/BrS1 SCN5A NaV1.5 sodium channel a-subunit 4,8 

LQTS6 KCNE2 MiRP1 potassium channel b-subunit 0,5 

LQTS9 CAV3 Caveolin 3  1,5 

LQTS10 SCN4B NaVb4 sodium channel b-subunit 0,3 

LQTS12 SNTA1 a1-syntrophin 1,0 

CPVT1 RYR2 Cardiac ryanodine receptor 1,5 

BrS2 GPD1-L 
Glycerol-3-phosphate dehydrogenase 
1-like sodium channel interacting 
protein 

0,9 

BrS7 SCN3B NaVb3 sodium channel b-subunit 0,7 

BrS8 
KCNJ8 Kir6.1 potassium channel a-subunit 0,7 

GJA1 Cx43 gap junction protein 0,3 

HCM MYBPC3 Cardiac myosin-binding protein C 0,6 

HCM TNNI3 Cardiac troponin I 0,3 
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INHERITED ARRHYTHMIA SYNDROMES 

In the heart, the relationship between sodium, calcium, and potassium ionic 

currents results in a heartbeat. In order for these ions to cross the myocardial 

membrane, they need to use specific ion channels. Therefore, mutations in genes that 

encode these specific channels or proteins associated with these channels may impair 

ionic conduction, leading to congenital cardiac channelopathies, which may culminate 

in life-threatening ventricular arrhythmias. These inherited arrhythmia syndromes are 

an important cause of SCD in the young and, in most cases, the autopsy is typically 

negative, since the heart is usually structurally normal with no signs of disease 

macroscopically. Recent genetic studies have identified mutations in genes associated 

with cardiac channelopathies, permitting diagnosis in the deceased using postmortem 

genetic testing [5, 28, 29]. 

The major cardiac channelopathies include long-QT syndrome (LQTS), short-QT 

syndrome (SQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic 

ventricular tachycardia (CPVT) [30]. However, this review will only focus on the long-QT 

syndrome and the Brugada syndrome. 

 

LONG-QT SYNDROME 

 LQTS comprehends a distinct group of cardiac channelopathies characterized by 

delayed repolarization of the myocardium and the presence of a prolonged QT interval 

on a 12-lead surface electrocardiogram (ECG), after secondary causes are excluded, such 

as QT-prolonging medications and electrolyte or metabolic abnormalities. Since the QT 

interval varies inversely with cardiac frequency, the measurement of the QT interval is 

usually corrected for heart rate (QTc) using various formulae (eg, the Bazett formula: 

QT/RR1/2). While in adolescence, the normal QTc range is 370–440 ms (being the same 

in males and females), in adulthood, the normal upper limit for the QTc is 450 ms in men 

and 470 ms in women [31]. Table 4 presents the normal, borderline, and prolonged QTc 

values calculated by the Bazett formula according other authors. 
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Table 4 – Evaluation of the QT interval. (taken and adapted from [32]) 

QT interval correction method (formulas) 

Bazett QT/RR1/2   
Fridericia QT/RR1/3   
Framingham QT + 0.154 (1000 – RR)   
Hodges QT + 105 (1/RR – 1)   

Normal, borderline, and prolonged QTc values calculated by the Bazett formula 

 Normal Borderline Prolonged 
1-15 years-old < 440 ms 440 – 460 ms > 460 ms 
Adult (male) < 430 ms 430 – 450 ms > 450 ms 
Adult (female) < 450 ms 450 – 470 ms > 470 ms 

 

The European Society of Cardiology (ESC) guidelines of 2015 suggested the 

criteria of a QTc ≥ 480 ms in an asymptomatic patient or a QTc ≥ 460 ms in the presence 

of unexplained syncope to be used as the diagnostic basis of LQTS [1]. However, some 

individuals with LQTS may not manifest QTc prolongation on the ECG. Since these 

patients are at risk of a polymorphic ventricular tachycardia called Torsade de Pointes, 

which can induce episodes of syncope and culminate in SCD, complete evaluation based 

on personal history, family history, and various electrocardiographic studies are 

warranted in order to properly establish this diagnosis [4]. 

Congenital LQTS is a genetically heterogeneous disorder usually inherited in an 

autosomal dominant mode that can be responsible for approximately 3,000–4,000 SCDs 

in childhood in the US, with an estimated prevalence of 1:2,500 persons [31]. At present, 

17 genetic variants have been associated with different types of LQTS (Table 5). 

However, 3 main genotypes account for over 90% of genetically confirmed LQTS cases: 

LQTS1 (comprises for approximately 55% of the cases), LQTS2 (responsible for nearly 

30% of the cases) and LQTS3 (which constitute around 5-10% of the cases). The 

additional minor LQTS genes cover less than 5% of LQTS cases [33]. 
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Table 5 – Congenital LQTS subtypes. (taken and adapted from [34, 35]) 

Name Gene Protein Current 
Effect on 
Function 

Frequency 

Autosomal dominant inheritance (Romano-Ward) 

LQTS1 KCNQ1 KV7.1 IKs (-) 40-55% 

LQTS2 KCNH2 KV11.1 IKr (-) 30-45% 

LQTS3 SCN5A NaV1.5 INa (+) 5-10% 

LQTS4 ANKB Anquirin-B 
↓ coordination of the exchanger  

NCX, ATPase Na+/K+ 
(-) Rare 

LQTS5 KCNE1 MinK IKs (-) Rare 

LQTS6 KCNE2 MiRP1 IKr (-) Rare 

LQTS7 KCNJ2 Kir2.1 IKl (-) Rare 

LQTS8 CACNA1C CaV1.2α1 ICaL (+) Rare 

LQTS9 CAV3 Caveolin-3 INa (+) Rare 

LQTS10 SCN4B NaVβ4 INa (+) Very Rare 

LQTS11 AKAP9 Yotiao IKs (-) Very Rare 

LQTS12 SNTA1 Syntrophine-α1 INa (+) Very Rare 

LQTS13 KCNJ5 Kir3.4 IK-Ach (-) Very Rare 

LQTS14 CALM1 Calmodulin 1 Signaling dysfunction Ca2+ ? Rare 

LQTS15 CALM2 Calmodulin 2 Signaling dysfunction Ca2+ ? Rare 

Autosomal recessive inheritance (Jervell and Lange-Nielsen) 

JLN1 KCNQ1 KV7.1 IKs (-) Rare 

JLN2 KCNE1* MinK IKs (-) Rare 

*: mutations in the KCNE1 gene can cause either the Roman-Ward syndrome (autosomal dominant; LQT5) 

or, if in homozygosity or composite heterozygosity, Jervell and Lange-Nielsen Syndrome (autosomal 

recessive); IKs: delayed rectifier component of the K+ IKs current ("delayed rectifier"); IKr: fast component 

of late rectification (internal rectification - K+ channels are open when a potential is negative and closed 

when potential is less negative or positive) of IKr (delayed rectifier) current; INa: Na+ current dependent on 

voltage; IKl: K+ input current, rectifier; ICaL: currents through voltage-dependent L-type calcium channels; 

IK-Ach: K+ current regulated by acetylcholine receptors; (-): loss-of-function; (+): gain-of-function 
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LQTS1 is caused by a loss-of-function mutation in KCNQ1-encoded KV7.1 channel 

subunit of the voltage-gated potassium channel that mediates the slow component of 

the delayed rectifier potassium current (IKs). These patients have a T-wave with a wide 

base in the ECG and typically have syncope or SCD during physical exercise. LQTS2 is 

related to a loss-of-function mutation in KCNH2-encoded KV11.1 channel subunit that 

disturbs the rapidly activating component of the delayed rectifying potassium current 

(IKr). Patients tend to have T-waves with diminished amplitude on the ECG and 

characteristically have syncope or SCD with unexpected auditory stimuli or strong 

emotions. Finally, LQTS3 has been linked to a gain-of-function mutation in SCN5A-

encoded NaV1.5 that affects the sodium influx current (INa) responsible for the 

depolarization of the myocardium as well as the spreading of the electrical signal 

through the cardiac musculature. Due to delayed opening of the sodium channel, LQTS3 

patients have late-peaked T-waves and long, flat ST segments on the ECG, as well as a 

tendency towards bradycardia and a higher incidence of SCD during sleep (Figure 3) [33]. 

 

 
Figure 3 – (A) Most frequent LQTS ECG patterns (QT intervals and morphology); (B) ECG 

pattern of Torsade de Pointes. (taken and adapted from [34]) 
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The association between ventricular tachyarrhythmia in infants and 

channelopathies has been studied for a very long time. In 1998 a study was published 

where the authors analyzed the ECGs of nearly 35,000 newborns and found that babies 

with prolonged QTc had a higher prevalence of SIDS. Further statistics have shown that 

this prolonged QTc interval was observed in 30-35% infants who died from SIDS during 

the 1st week of life. Since then, several studies have been performed in order to establish 

a connection between genetic mutations associated with LQTS and SIDS (Table 6) [3, 36–

49].  

One longitudinal study has shown that the QTc interval increases during the 2nd 

month of life, particularly in male infants with an odds ratio of 47:1, returning to basal 

levels found at birth by the 6th month. Therefore, in order to detect LQTS that might lead 

to SIDS, an ECG can be performed during the 2nd or 3rd week of life, since the risk of SIDS 

and of deceitful long QT intervals (false positives) is enormously reduced. Even though 

20-25% of the families meeting clinical diagnostic criteria for LQTS do not have 

demonstrable pathogenic variants in one of the above-mentioned genes, genetic studies 

are still warranted since the underlying genetic basis heavily influences the response to 

the standard LQTS pharmacotherapy, the β-blockers. These agents are extremely 

protective in LQTS1 patients, moderately protective in LQTS2, and offer no protective 

benefit in patients with LQTS3. The mechanism responsible for this benefit is considered 

to be a decline in sympathetic tone that prevents prolongation of the QT interval. 

Another efficient anti-adrenergic therapy is left cardiac sympathetic denervation. This 

therapy is particularly beneficial in patients where β-blockers are contraindicated or 

when symptoms have presented even with suitable β-blocker therapy. This procedure 

has also been used in infants who have exceptionally prolonged QT intervals and are at 

extreme risk of SCD [3, 4, 31, 50]. 
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Table 6 – Long QT syndrome as a causative factor of SIDS and implicated mutations 

(taken and adapted from [36]) 

Study/year Study type 
Total number 

of cases 

Number of SIDS 
cases with 

causative mutation 
Genes 

Wang et al./2014 [37] Case-control 141 19 (13,4%) 

SCN5A 

KCNQ1 

KCNH2 

KCNE2 

Glengarry et al./2014 [38] Case-control 102 4 (3,9%) 

SCN5A 

KCNH2 

KCNQ1 

Horigome et al./2010 [39] Case-control 58 12 near SIDS 
(20,6%) 

SCN5A 

KCNH2 

KCNQ1 

Millat et al./2009 [40] Case-control 32 5 (15,6%) 

SCN5A 

KCNH2 

KCNQ1 

KCNE1 

Otagiri et al./2008 [41] Case-control 42 4 (9,5%) 

SCN5A 

KCNH2 

KCNQ1 

Arnestad et al./2007 [42] Case-control 201 19 (9,4%) 

SCN5A 

KCNH2 

KCNQ1 

KCNE2 

CAV3 

Kato et al./2014 [43] Case-control 7 4 
SCN5A 

KCNH2 

Tan et al./2010 [44] Case-control 292 1 (0,3%) SCN4B 

Cheng et al./2009 [45] Case-control 292 3 (1%) SNTA1 

Cronk et al./2007 [46] Case-control 134 3 (2,2%) CAV3 

Plant et al./2006 [47] Case-control 133 7 (5,2%) SCN5A 

Lupoglazoff et al./2004 [48] Case-control 23 3 (13%) KCNH2 

Ackerman et al./2001 [49] Case-control 93 2 (2,1%) SCN5A 
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In conclusion, QTc interval prolongation may be an arrhythmogenic substrate 

that leads to lethal ventricular arrhythmias, particularly Torsade de Pointes. However, 

the presence of a trigger is usually required, specifically one that increases cardiac 

sympathetic stimulation, such as unexpected noise, sleep apnea or exposure to cold. 

This may be explained by variations in the development of the cardiac sympathetic 

innervation, which usually only finishes by the 6th month of life. In some cases, there 

may be a differential development of the right and left sympathetic nerves, which leads 

to a transitory neural unevenness, leaving the infants susceptible to sudden death when 

there is an abrupt increase in the sympathetic activity. Still, more studies are warranted 

in order to determine if the screening for increased QTc interval in the prevention of 

SIDS will be the best strategy [3]. 

 

BRUGADA SYNDROME 

 In the Brugada syndrome (BrS) patients usually present characteristic resting ECG 

abnormalities, namely ST-segment elevation in the three right precordial leads V1-V3 

(unrelated to ischemia, electrolyte abnormalities or structural heart disease), and often, 

but not always, an apparent right bundle branch block. This ECG pattern used to be 

classified into three different types. However, in 2012, a consensus report reviewed the 

ECG classification of BrS and nowadays it is classified only into two different types 

(Figure 4) [31, 51]. 

The Brugada pattern (BrP) type 1, also termed “coved”, shows ST-segment 

elevation ≥ 2 mm followed by an upward convexity and sudden descent to an inverted 

T wave, while the type 2, also termed “saddleback”, has a reduced degree of ST-segment 

elevation and settles into an upright or biphasic T wave [51]. 
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Figure 4 – Electrocardiographic Brugada patterns: spontaneous (A) and after challenge 

test with ajmaline (B). (taken and adapted from [52, 53]) 
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The ESC guidelines of 2015 suggested the criteria of a ST-segment elevation with 

type 1 morphology ≥ 2 mm in one or more leads among the right precordial leads V1 

and/or V2 positioned in the second, third, or fourth intercostal space, occurring either 

spontaneously or after provocative drug test with intravenous administration of sodium 

channel blockers as the diagnostic basis of BrS. However, the signature findings of BrS 

on the ECG can be transient, and subtle changes on the ECG similar to those of BrS can 

be found in patients without BrS. As such, BrS should be suspected in patients with a 

type 1 ECG pattern in more than one right precordial lead (V1-V3) if there is documented 

ventricular fibrillation (VF), polymorphic ventricular tachycardia and family history of 

sudden cardiac death. Since BrS patients are characterized by an increased risk of 

syncope, ventricular arrhythmias and SCD it is essential to establish the correct diagnosis 

[1, 54]. 

BrS is a cardiac genetic disorder usually transmitted in an autosomal dominant 

mode (Table 7). The penetrance and expressivity of the disorder are highly variable, 

ranging from absence of symptoms throughout a normal life span to SCD during the first 

year of life. The prevalence of this syndrome varies with the population studied, but it 

has been speculated to be as high as 1:2,000. Men are approximately nine times more 

frequently affected than women [4, 31, 55]. 

The BrS has been linked to loss-of-function mutations in genes responsible for 

the sodium channel (SCN5A; about 25% of the cases) and calcium channel (CACNA1C 

and CACNB2B; around 10% of the cases) (Table 7). These gene mutations lead to a 

reduction or loss of sodium or calcium current respectively, thereby reducing the action 

potential duration, which is further shortened by the fleeting outward Ito current. This 

results in marked heterogeneity of action potential durations across the layers of 

cardiomyocytes and within the ventricular epicardium, which is the electrical substrate 

that predisposes BrS patients to ventricular tachycardia and/or fibrillation [4, 55]. 
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Table 7 – Genes mutated in Brugada syndrome. (taken and adapted from [56–59]) 

Phenotype Gene Proteins Effect on Function Frequency (%) 

Sodium channels and associated proteins 

BrS1 SCN5A NaV1.5 (-) 11-28 

BrS18 SCN10A NaV1.8 (-) 5,0-16,7 

BrS5 SCN1B NaVβ1 (-) 1,1 

BrS17 SCN2B NaVβ2 (-) <1 

BrS7 SCN3B NaVβ3 (-) <1 

BrS2 GPD1L dehydrogenase like-1 of glycerol-3-
phosphate (-) <1 

BrS11 RANGRF MOG1 (-) <1 

BrS15 SLMAP Sarcolemma associated protein (-) <1 

BrS20 PKP2 Plakophilin-2 INa deficit <1 

BrS19 HEY2 NaV1.5 (-) <1 

Calcium channels 

BrS3 CACNA1C α1c subunit of the voltage-dependent 
L-type calcium channel (CaV1.2) (-) 6,6 

BrS4 CACNB2B Β2 subunit of the voltage-dependent 
L-type calcium channel (CaVβ2) (-) 4,8 

BrS10 CACNA2D1 Subunit α2/δ1 of the voltage-
dependent calcium channel (CaVα2δ1) (-) 1,8 

BrS16 TRPM4 “Transient receptor potential cation 
channel subfamily M member 4” (-) <1 

Potassium channels 

BrS13 KCND3 Potassium channel voltage 
dependent-subfamily D member 3 (+) <1 

BrS6 KCNE3 Potassium channel voltage 
dependent-subfamily E member 3 (+) <1 

BrS9 KCNJ8 Potassium channel inward rectifier 
8 ATP dependent (+) 2,0 

BrS14 HCN4 
“Potassium/sodium hyperpolarization-
activated cyclic nucleotide-gated 
channel 4” 

(+) <1 

BrS12 KCNE5 Voltage-dependent potassium channel 
subfamily E “regulatory β” subunity 5 (+) <1 

BrS8 KCNH2 KV11.1, IKr (+) 1-2 

BrS1 ABCC9 SUR2A (2A subunit of the 
sulfonylurea receptor), IK-ATP (+) 4-5 

(-): loss-of-function; (+): gain-of-function 
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Even though BrS usually presents in adulthood, targeted molecular autopsy has 

revealed that some mutations associated with BrS might be responsible for the 

development of SIDS [27]. One study from 2007 analyzed 228 SIDS cases and found three 

loss-of-function mutations in GPD1-L, that lead to disturbed channel trafficking, 

weakening the INa current [60]. Furthermore, a cohort study from 2010 evaluated 292 

SIDS cases and were able to identify three rare missense mutations (two in SCN3B and 

one in SCN4B) that lead to a significant loss-of-function with decreased peak INa and 

increased late INa [44]. Additional case reported also revealed mutations in SCN5A, 

SCN1B and CACNB2B in SIDS cases [61–64]. Ventricular arrhythmias in BrS typically 

happen while resting or sleeping in association with elevated vagal tone and fever, 

especially in children. Although the risk of ventricular arrhythmias is usually low in 

children, these settings might be especially relevant to SIDS [9, 65]. The results from a 

population based study, where 30 children (<16 years of age) affected by BrS where 

analyzed, revealed that fever was the most common triggering factor for arrhythmic 

cardiac events, including syncope and SCD [66]. 

Since BrS is transmitted in an autosomal dominant mode, first-degree relatives 

of patients with this syndrome should always be investigated with an evaluation of 

personal history and an ECG. Despite our advances in comprehending the genetics of 

BrS, the known susceptibility genes cannot fully explain the clinically diagnosed cases, 

since most patients (65-70%) do not have mutations in these genes. Therefore, the role 

of diagnostic genetic testing is currently relatively limited. Nevertheless, if a BrS 

mutation is identified, family screening is simplified and an implantable cardioverter 

defibrillator (ICD) placement is recommended for secondary prevention of SCD [31, 55]. 
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CARDIOMYOPATHIES 

Cardiomyopathies are disorders characterized by abnormal function and/or 

structure of the heart, which may lead to arrhythmias. Even though the origin of 

cardiomyopathies is thought to be multifactorial, it is believed that these diseases may 

be triggered by genetic mutations in genes that encode structural proteins, such as, 

desmosomes, sarcomeres, the cytoskeleton and the nucleus envelope [55]. 

Together with inherited arrhythmia syndromes, cardiomyopathies may be 

considered one of the major causes of SCD, since they often converge to heart failure. 

Even though these disorders are often found during the autopsy of a SIDS case, thereby 

identifying the cause of death and as such the diagnosis is changed to SUID, some cases 

with mutations in in structural proteins may have no evidence of structural defects but 

still possess a hidden arrhythmogenic phase thereby maintaining the original diagnosis 

of SIDS. This clearly highlights the importance of performing an autopsy with molecular 

evaluation in these cases [6, 67]. 

Early clinical investigations have documented hereditary transmission for several 

cardiomyopathies, which suggests a genetic basis of this disease. This hypothesis has 

now been widely confirmed by intensive research [55]. 

These disorders are usually categorized according to the morphological subtype, 

which include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), 

restrictive cardiomyopathy (RCM), arrhythmogenic right ventricular cardiomyopathy 

(ARVC), and left ventricular noncompaction (LVNC) [55]. However, in this review we will 

only focus on the hypertrophic cardiomyopathy, which has been the most associated 

cardiomyopathy with SUID and/or SIDS. 
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HYPERTROPHIC CARDIOMYOPATHY 

Hypertrophic cardiomyopathy (HCM) is characterized by a thickened, but not 

dilated, left ventricle in the absence of another cardiac or systemic condition, with 

myocyte disorder and intramyocardial scar. This definition applies to children and adults 

and makes no a priori assumptions about aetiology or myocardial pathology. The 

myocytes of both the interventricular septum and the left ventricle free wall exhibit 

peculiar shapes, although they usually maintain the intercellular connections with 

adjacent cells. Furthermore, the myofilaments are also usually chaotically organized. 

Autopsy of individuals with HCM has also demonstrated an increased intramural 

thickening of coronary arterioles, which leads to deformation and reduction of the 

lumen. It has been hypothesized that these factors contribute to localized silent 

myocardial ischemia which, in combination with dysfunction of the autonomic nervous 

system, leads to the genesis of ventricular tachycardia (VT) which may culminate in 

ventricular fibrillation (VF) and SCD. This theory has been proven by the demonstration 

of the presence of fibrosis in cardiac MRI, which is an arrhythmic substrate [68–70]. 

The diagnosis of HCM is mainly performed by resorting to imaging techniques. 

The 2014 ESC guidelines suggest different diagnostic criteria of HCM according to patient 

age. In adults, HCM is diagnosed by a wall thickness ≥ 15 mm in one or more left 

ventricular myocardial segments, regardless of the imaging technique used 

(echocardiogram, cardiac magnetic resonance (CMR) or computed tomography (CT)), 

that cannot be explained exclusively by loading conditions (Figure 5). Some disorders, 

both genetic and non-genetic, may present with a lesser extent of wall thickening (13-

14 mm) and in these cases, the diagnosis demands evaluation of family history, 

symptoms unrelated to the heart, ECG anomalies, laboratory tests and other imaging 

techniques. In children, HCM is also diagnosed by wall thickness, when its value is two 

times greater than the standard deviation of the predicted mean. Besides the typical 

increase in wall thickness, other morphologic abnormalities may also be found and 

should be considered, such as, myocardial fibrosis, structural irregularities in the mitral 

valve and altered coronary microcirculatory function [71]. 
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Figure 5 – Diverse patterns of LV hypertrophy encountered in HCM shown in CMR short-

axis images at end diastole: (A) anterolateral free wall (ALFW) hypertrophy; (B) 

moderate hypertrophy involving only anterior and posterior portions of ventricular 

septum (VS); (C) posterior ventricular septal hypertrophy (PVS) extending into 

contiguous anterior ventricular septum (AVS); (D) hypertrophy of the posterior portion 

of ventricular septum (PVS) (E) massive confined to anterolateral free wall (ALFW) but 

also involving cposterior free wall and anterior ventricular septum (AVS). (taken from 

[70]) 

HCM is one of the most common inherited cardiac structural diseases, with an 

estimated prevalence of 1:500 in the general population. Furthermore, it is also the most 

common cause of SCD in the young, especially in athletes. HCM is transmitted in an 

autosomal dominant mode with variable penetrance, and it has been linked to 

mutations in genes encoding cardiac sarcomeric proteins in 40-60% of the cases while 

other 5-10% are associated with other genetic disorders, inherited metabolic and 

neuromuscular diseases and chromosome abnormalities (Figure 6) [71–73]. 
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Figure 6 – Diverse aetiology of hypertrophic cardiomyopathy. (taken from [71]) 

 

Overall, 1,500 mutations in at least 11 genes have been implicated. However, the 

majority of the genotype-positive individuals with HCM have mutation in the β-myosin 

heavy chain (MYH7) or the myosin-binding protein C (MYBPC3) (Figure 5) [72, 73]. 

The muscle myosin is a hexameric protein, which contains two light chain, two 

heavy chain and two regulatory light chain subunits. The MYH7 gene encodes the β 

heavy chain subunit of cardiac myosin. Even though the precise mechanism by which 

mutations in this gene lead to HCM is still uncertain, most of the MYH7 mutations seem 

to result in amino acid substitutions in the globular head of myosin, which involves the 

binding sites of ATP, actin and the regulatory light chains. Therefore, these mutations 

have been associated with decreased shortening maximum velocity and decreased 

isometric force generation, which may lead to compensatory hypertrophy. On the other 

hand, MYBPC3 encodes the cardiac isoform of myosin-binding protein C, which does not 

contribute directly to force generation, but modulates the contractile performance of 
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cardiac muscle through interactions with myosin and titin. Most of the mutations in this 

gene are insertions and deletions, which lead to the generation of a premature 

termination codon, resulting in proteins that lack the myosin and/or titin binding sites. 

Studies have shown that cardiac muscle fibers from patients with HCM and positive for 

MYBPC3 mutations have increased calcium sensitivity which leads to reduced 

sarcomeric contractility [69, 74, 75]. 

Cardiomyopathies have also been studied in the setting of SIDS, although they 

are less frequent than inherited arrhythmia syndromes. Two studies from Brion et al. 

evaluated mutations in HCM-associated genes than encode sarcomeric proteins in SIDS 

cases [76, 77]. The most recent one analyzed 286 SIDS cases and found rare genetic 

mutations in ten cases, three of which were predicted to be functionally significant  and 

with no macroscopic signs of disease, suggesting that these genes could be associated 

with SIDS. However this study did not have enough linkage data in order to prove 

causality [77]. 

Even though genetic mutations have been well established in the pathogenesis 

of HCM, the diagnostic yield of sarcomere gene testing, which comprises up to nine 

genes, has been reported to be about 60%. This mainly depends on the selection of 

patients, since the yield usually decreases to nearly 30% when sporadic cases of HCM 

are being studied rather than familial cases [78]. Furthermore, it is uncertain whether 

or not single mutations are enough to cause SIDS. It is more likely that double or 

compound mutations with macroscopic signs of disease during the autopsy, such as 

structural abnormalities, are responsible for the early onset of disease, changing the 

diagnosis from SIDS to SUID [79]. 

Nevertheless, there is no doubt that cardiomyopathies play a major role in SIDS 

cases. Either morphologic changes are found during autopsy, thereby including these 

cases in SUID or, if no histological and/or immunohistochemical alterations are found in 

the post-mortem analysis, genetic investigations can be important to elucidate whether 

or not genetic mutations associated with cardiomyopathies could be the potential cause 

of death [80]. 
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MOLECULAR AUTOPSY 

 When a parent loses a child to SIDS, there is no doubt that it is a shattering event 

for not only them, but to the family and the community as well. The most stressful and 

disturbing characteristic of this experience is the lack of an identifying cause, which 

could offer these parents some relief. In the last few years, molecular genetic testing 

(i.e., molecular autopsy) has been one of the major contributors to elucidating the cause 

of death in these cases, since they have shown that both inherited primary arrhythmias 

and cardiomyopathies may play a role in these events. Furthermore, molecular autopsy 

may also reveal the impact on the clinical and genetic assessment of the surviving, and 

still at risk, family members [81]. 

 Most molecular studies are based on the Heart Rhythm Society/European Heart 

Rhythm Association (HRS/EHRA) guidelines, which recommend the use of molecular 

autopsy in SIDS cases if the evidence is leaning towards a clinical diagnosis of LQTS or 

CPVT, focusing on the 3 major LQTS-associated genes KCNQ1, KCNH2, SCN5A and the 

CPVT-associated gene RYR2. Furthermore, mutations in the SCN5A gene have also been 

associated with BrS, which is therefore being tested simultaneously. Even though this 

panel only focus on channelopathies, authors of independent studies have also 

suggested the inclusion of cardiomyopathy-associated genes in these analyses [25, 28]. 

Despite the initial reported detection rates, it has been shown that the diagnostic 

yield of molecular autopsy can range from 0-35%, being greatly affected by the type of 

DNA obtained (blood vs paraffin-embedded tissue), the definition of SIDS used, 

distinctive protocols regarding autopsy procedures and disparity in the interpretation of 

DNA variants in terms of pathogenicity [81]. 
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Even though the molecular autopsy has been limited to the 4 targeted genes of 

channelopathies, recent advances in next-generation sequencing (NGS) has expanded 

the identification of potentially pathogenic mutations using relatively smaller quantities 

of DNA at a reduced cost. This includes sequencing the protein coding exons of all 22, 

000 genes, i.e. whole-exome sequencing (WES), which allows not only genetic testing of 

all major disease-associated genes, but also less frequently involved or new genes and 

even discover other genomic regions of significance. Therefore, this technique could 

help investigating diverse pathogenic mechanisms of the genetically heterogeneous 

SIDS-associated pathologies, as an unbiased screening test [24, 25, 82]. 

Despite all the advantages that WES can bring, there are still some challenges 

inherent to the use of this technique. The most important one may possibly be the 

determination of which DNA alterations are more likely to be pathogenic and the fact 

that emerging multigenic models of disease point to the cumulative contribution of 

several mutation to disease rather than a single one. Therefore, the use of WES in the 

investigation SIDS needs to be performed with care, thoroughly evaluating the research 

settings in order to completely understand the association between the genetic variants 

found and their role in the pathogenesis of SIDS [81]. 
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MANAGEMENT OF THE SURVIVING FAMILY 

 Family management in the setting of SIDS is complex and should be performed 

by a multidisciplinary specialized approach. It has been shown that clinical evaluation of 

the family may help uncover the underlying cause in up to 50% of the families in this 

setting. Therefore, the clinical assessment of the family is of extreme importance, and 

should be extended to first-degree relatives, obligate carriers and symptomatic 

relatives. This assessment comprises two levels of evaluation. Firstly, a complete and 

comprehensive medical and family history should be performed, including physical 

examination, resting and exercising ECGs and an echocardiogram. Then, depending on 

the results founds, a further evaluation could be performed using more advanced 

imaging techniques, such as CMR, as well as a 24h ECG monitoring and pharmacological 

challenges, especially in patients where the clinical diagnosis points to BrS [28, 81]. 

The fact that most of the inherited cardiac genetic disorders (> 95%) are 

transmitted in an autosomal dominant mode shows that the offspring of parents with 

these diseases have 50% chance of inheriting the same mutation as the parents. 

Therefore, when a genetic diagnosis is made in a post mortem SIDS case, genetic testing 

should also be extended to the parents, in order to understand if this DNA variant is 

indeed inherited or arose de novo. If the mutation was indeed transmitted, then genetic 

testing should be further extended to asymptomatic, and still at-risk, family members, 

together with a complete medical history. Using the information provided from all these 

tests, if a diagnosis is established, the follow-up management is dependent on the 

disease in question. However, if no diagnosis is made, then the relatives of the SIDS case 

should be followed-up until age 40, since by this time, most of the genetic heart diseases 

should have a phenotypic expression. Apart from these procedures, family management 

should also include an ongoing psychological evaluation in order to care for the 

wellbeing of the families [81, 83]. 
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CONCLUSION 

 Numerous studies have shown an association between cardiac genetic mutations 

that might be associated to SIDS, which has led to an improved understanding of the 

pathophysiology of this disease. Most of these associations are related to inherited 

cardiac arrhythmias, as well as structural cardiac abnormalities that might predispose to 

an arrhythmia, despite the lack of structural changes. 

The molecular autopsy can sometimes diagnose disease in SIDS cases. However, 

the diagnostic yield of the detection of the DNA variants is still low, highlighting the 

importance of a complex and multifactorial approach to these cases. With the 

advancement of our technology and the availability of WES, the interpretation of genetic 

mutations associated with SIDS will require effort and will prove to be a huge challenge. 

 Currently, simultaneous genetic evaluation of the relatives might reveal the way 

to interpret the genetic variants discovered and their role for clinical use. Yet, more work 

is still required to advance our knowledge and help understand the genetic background 

of vulnerable infants, it order to prevent the disastrous event that is SIDS. 
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