
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Automated Software Process
Performance Analysis and

Improvement Recommendation

Mushtaq Raza

MAP-i Doctoral Program in Computer Science

Supervisor: João Pascoal Faria

June 27, 2017

c©Mushtaq Raza, 2017

Automated Software Process Performance Analysis and
Improvement Recommendation

Mushtaq Raza

MAP-i Doctoral Program in Computer Science

Dissertation submitted to the Faculty of Engineering, University of Porto

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Approved by:

President: Dr. Eugénio da Costa Oliveira

Referee: Dr. António Manuel Ferreira Rito da Silva
Referee: Dr. Paulo Jorge dos Santos Gonçalves Ferreira

Referee: Dr. Fernando Manuel Pereira da Costa Brito e Abreu
Referee: Dr. Ademar Manuel Teixeira de Aguiar

Supervisor: Dr. João Pascoal Faria

June 27, 2017

Abstract

Software development processes can generate significant amounts of data that can be periodically
analyzed to identify performance problems, determine their root causes and devise improvement
actions. However, there is a lack of methods and tools for helping in that kind of analysis. Con-
ducting the analysis manually is challenging because of the potentially large amount of data to
analyze, the effort and expertise required and the lack of benchmarks for comparison.

Hence, the goal of this dissertation is to develop methods, models and tools for automating the
analysis of process performance data and identifying and ranking performance problems and their
root causes, reducing effort and errors and improving user satisfaction as compared to previous
approaches.

The main contributions of the dissertation are a novel method for process performance analysis
and improvement recommendation (the ProcessPAIR method), a support tool (the ProcessPAIR
tool), and a performance model for instantiating ProcessPAIR for the Personal Software Process
(the ProcessPAIR model for the PSP).

In the ProcessPAIR method, the analysis of the performance data of an individual process user
is based on a performance model that is defined by an expert in the process under consideration
and calibrated automatically from the performance data of many process users. To enable the
automatic identification of performance problems, the process expert has to define the relevant
(top-level) performance indicators (PIs); recommended performance ranges, needed for classify-
ing and ranking the values of PIs according to three semaphors (red, yellow or green), are derived
from calibration data sets. To enable the automatic identification of potential root causes, the pro-
cess expert has to indicate hierarchical cause-effect relationships between the top-level and more
detailed performance indicators. To rank the identified root causes, a novel ranking method is
proposed based on the computation of a ranking coefficient that represents a cost-benefit estimate
of improvement efforts; the needed data comes from the training data set (statistical distribution
of individual PIs and regression models between related PIs).

The support ProcessPAIR tool is able to automatically identify and rank performance problems
and their potential root causes, so that subsequent manual analysis for the identification of deeper
causes and improvement actions can be properly focused. Performance models for a process under
consideration are defined as tool extension and calibrated automatically based on the performance
data of many process users. The results of the analysis of the performance data of an individual
process user are shown in multiple views.

A performance model was developed to enable the application of ProcessPAIR for the Personal
Software Process (PSP). The model addresses time estimation accuracy, quality, and productivity
as top-level PIs. A PSP data set from the Carnegie Mellon Software Engineering Institute, refer-
ring to more than 30,000 projects, was used to validate and calibrate the model.

Two experiments were conducted to validate the approach. In a postmortem experiment in
which we compared the results of manual performance analysis (by 20 students from Instituto
Tecnológico de Monterrey in Mexico) and automatic performance analysis, ProcessPAIR was able

i

ii

to accurately identify performance problems in 96% of the cases (292 out of 302 cases), and root
causes or intermmediate causes in 74% of the cases (the other 26% cases were not conclusive).
A controlled experiment involving 61 software engineering master students also from Instituto
Tecnologico de Monterrey in Mexico, half of whom used ProcessPAIR in a PSP performance
analysis assignment, showed significant benefits in terms of students’ satisfaction (average score
of 4.78 in a 1-5 scale for ProcessPAIR users, against 3.81 for non-ProcessPAIR users), quality of
the analysis outcomes (average grades achieved of 88.1 in a 0-100 scale for ProcessPAIR users,
against 82.5 for non-ProcessPAIR users), and time required to do the analysis (average of 252
minutes for ProcessPAIR users, against 262 minutes for non-ProcessPAIR users, but with much
room for improvement).

Resumo

Os processos de desenvolvimento de software podem gerar quantidades significativas de dados
que podem ser periodicamente analisados para identificar problemas de desempenho, determinar
as suas causas raiz e planear ações de melhoria. No entanto, há uma falta de métodos e ferramentas
para ajudar nesse tipo de análise. Realizar a análise manualmente é um desafio por causa da
quantidade potencialmente grande de dados para analisar, do esforço e conhecimentos necessários
e da falta de benchmarks para comparação.

Assim, o objetivo desta dissertação é desenvolver métodos, modelos e ferramentas para autom-
atizar a análise de dados de desempenho de processos de desenvolvimento de software e identificar
e priorizar os problemas de desempenho e suas causas, reduzindo o esforço e erros e melhorando
a satisfação dos utilizadores em comparação com abordagens anteriores.

As principais contribuições da dissertação são um novo método para a análise de desempenho
e recomendação de melhorias em processos de desenvolvimento de software (o método Process-
PAIR), uma ferramenta de suporte (a ferramenta ProcessPAIR) e um modelo de desempenho para
instanciar ProcessPAIR para o Personal Software Process (o modelo ProcessPAIR para PSP).

No método ProcessPAIR, a análise dos dados de desempenho de um utilizador individual
de um processo de desenvolvimento de software é baseada num modelo de desempenho que é
definido por um especialista no processo em consideração e calibrado automaticamente a partir
dos dados de desempenho de muitos utilizadores do processo. Para permitir a identificação au-
tomática de problemas de desempenho, o especialista no processo tem de definir os indicadores
de desempenho relevantes (de nível de topo); os intervalos de desempenho necessários para clas-
sificar os valores de cada indicador de acordo com três semáforos (vermelho, amarelo ou verde)
são derivados de conjuntos de dados de calibração. Para permitir a identificação automática de
possíveis causas raiz, o perito no processo deve indicar relações de causa-efeito hierárquicas entre
os indicadores de desempenho de nível superior e mais detalhados. Para classificar as causas raiz
identificadas, um novo método de priorização é proposto com base no cálculo de um coeficiente
que representa uma estimativa de custo-benefício dos esforços de melhoria; os dados necessários
provêm do conjunto de dados de calibração (distribuição estatística de indicadores individuais e
modelos de regressão entre indicadores relacionados).

A ferramenta ProcessPAIR de suporte é capaz de identificar e priorizar automaticamente os
problemas de desempenho e as possíveis causas raiz, de modo que a análise manual subsequente
para a identificação de causas mais profundas e ações de melhoria pode ser devidamente focada.
Modelos de desempenho para um processo em consideração são definidos como extensões da fer-
ramenta e calibrados automaticamente com base nos dados de desempenho de muitos utilizadores
do processo. Os resultados da análise dos dados de desempenho de um utilizador individual são
apresentados em múltiplas vistas.

Um modelo de desempenho foi desenvolvido para permitir a aplicação de ProcessPAIR para o
Personal Software Process (PSP). O modelo aborda a precisão das estimativas de tempo, qualidade
e produtividade como indicadores de nível de topo. Um conjunto de dados de PSP do Carnegie

iii

iv

Mellon Software Engineering Institute, referindo-se a mais de 30.000 projetos, foi usado para
validar e calibrar o modelo.

Duas experiências foram conduzidas para validar a abordagem. Numa experiência post-mortem,
em que foram comparados os resultados da análise de desempenho manual (por 20 estudantes do
Instituto Tecnológico de Monterrey no México) e da análise automática, a ferramentas Process-
PAIR conseguiu identificar com precisão os problemas de desempenho em 96% dos casos (292
de 302 casos) e causas raiz ou causas intermediárias em 74% dos casos (os outros 26% casos não
foram conclusivos). Uma experiência controlada envolvendo 61 estudantes de mestrado em en-
genharia de software do Instituto Tecnológico de Monterrey no México, metade dos quais utilizou
o ProcessPAIR num trabalho de análise de desempenho PSP, mostrou benefícios significativos em
termos de satisfação dos alunos (valor médio de 4,78 numa escala de 1-5 para utilizadores de Pro-
cessPAIR e 3,81 para os outros utilizadores), qualidade dos resultados da análise (média de 88,1
numa escala de 0-100 para os utilizadores de ProcessPAIR, contra 82,5 para outros utilizadores)
e tempo necessário para fazer a análise (média de 252 minutos para utilizadores de ProcessPAIR,
contra 262 minutos para outros utilizadores, mas com muito espaço para melhoria).

Acknowledgments

For me this thesis is not only a representation of my academic work that I have performed at
the Department of Informatics Engineering but also a representation of five years spent away
from home in Porto. Producing this thesis wouldn’t have been possible without the help, support,
encouragement and love of many people both in professional and personal spheres.

First and foremost, I want to thank my supervisor and mentor Professor João Pascoal Faria
for believing in me, and for providing continuous guidance and support. His scholarly advice,
and scientific approach has been an inspiration and beacon of light for me throughout my work. I
have learnt a lot from the excellent example he has provided as a software engineer, manager, and
professor.

In addition, I want to thank Professor Gabriel David, who introduced me to the Department of
Informatics Engineering, FEUP and later helped me in selecting my supervisor that was the first
successful step in my PhD journey. I also want to thank Professor Raul Moreira Vidal for being
a constant support. I am deeply indebted to Mrs. Marisa Silva for her support in administrative
tasks, which made my work a lot easier.

I also want to thank all the technical and administrative staff members of Faculty of Engineer-
ing, University of Porto, for their kind help and co-operation throughout my study period, and for
making me feel at home.

I would like to acknowledge the funding and data sources that made my Ph.D. work possible.
SEI - Software Engineering Institute and Tecnológico de Monterrey for giving access to the data
for performing this study. FCT - Fundação para a Ciência e a Tecnologia for supporting this study
under research grant SFRH/BD/85174/2012 and as part of project UID/EEA/50014/2013. Abdul
Wali Khan University Mardan for their partial initial grant. Additionally, this research has been
partially supported by the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within
project POCI-01-0145-FEDER-006961, and North Portugal Regional Operational Programme
(ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF), in the scope of the BEST CASE program.

I would like to thank my family for their unconditional love and support over the past five
years. To my mother and father, for all they have given me and for making me the person I
am today. To my mother-in-law and father-in-law for their support. To my brothers and sister,
specifically, to Hassan Raza for keeping me informed about matters back home in Kokarai, Swat
Pakistan. To my uncle, Sanaullah, whose words of encouragement and motivation have kept me
going.

I would also like to thank my friends who were always by my side, for their encouragement
and motivation. To Muhammad Ali Khan, Bruno Lima, Arsalan, Muhammad Asif, Muhammad
Ajmal, Bilal, Saad Sultan, David, André Pilastri, Ali Awan, Niaz Ali Khan, Aftab Rashid, Alam,
Saqlain, Arif, Farhan, Muhammad Farooq, Zahid Iqbal, Asad, and Kashif Mushtaq for making

v

vi

this academic adventure more enjoyable. I genuinely hope your friendship will accompany me
much further in the future.

Last but not the least, I want to thank my wife Palwasha for her love, support and for making
me feel at home thousands of miles away from my family, and for taking care of our son, Muwahid
while I worked long hours.

Mushtaq Raza

“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research goals . 2
1.3 Research contributions . 3
1.4 Document structure . 6

2 State of the art 9
2.1 Performance measurement and analysis in CMMI 9

2.1.1 Overview . 9
2.1.2 CMMI practices related to process performance analysis 10

2.2 Performance measurement and analysis in PSP 12
2.2.1 Overview . 12
2.2.2 Process structure . 16
2.2.3 Measurement framework . 16
2.2.4 Final report assignment . 17
2.2.5 Tool support for PSP . 20

2.3 Performance measurement and analysis in other processes 22
2.4 Performance problem identification techniques 24

2.4.1 Control charts . 24
2.4.2 Benchmark based software evaluation 26

2.5 Root cause analysis techniques . 27
2.5.1 Fishbone diagrams . 27
2.5.2 Defect causal analysis . 28
2.5.3 Process performance models . 29
2.5.4 Regression models . 30
2.5.5 Sensitivity analysis . 31

3 Proposed performance analysis method 33
3.1 Overall approach . 33

3.1.1 Problem identification approach . 34
3.1.2 Root cause identification approach . 35
3.1.3 Ranking approach . 35

3.2 Performance model definition . 36
3.3 Performance model calibration . 36

3.3.1 Approximate cumulative distribution functions 36
3.3.2 Performance ranges . 38
3.3.3 Regression models and sensitivity coefficients 38
3.3.4 Data set filtering . 40

ix

x CONTENTS

3.4 Model-based performance analysis . 41
3.4.1 Project level information . 42
3.4.2 Subject level information . 44
3.4.3 Ranking calculations . 45

4 Performance model for the PSP 49
4.1 Model definition . 49

4.1.1 Performance indicators and dependencies 49
4.1.2 Predictability . 50
4.1.3 Quality . 51
4.1.4 Productivity . 51

4.2 Model validation and calibration . 52
4.2.1 Data set . 52
4.2.2 Model validation . 52
4.2.3 Model calibration . 53

4.3 Support data for the ranking method . 54
4.3.1 Introduction . 54
4.3.2 Support data for the sensitivity coefficient 55
4.3.3 Support data for the percentile coefficient 58
4.3.4 Ranking example . 59

5 The ProcessPAIR tool implementation 65
5.1 Architecture . 65
5.2 Model calibration user interface . 66
5.3 File selection user interface . 68
5.4 Analysis views . 68

5.4.1 Report view . 68
5.4.2 Table view . 70
5.4.3 Indicator view . 70
5.4.4 Cause-effect view . 71

5.5 Tool extension API . 72

6 Experimentation and validation 77
6.1 Postmortem experiment . 77

6.1.1 Research questions . 77
6.1.2 Input data . 79
6.1.3 Data analysis procedures . 79
6.1.4 Results . 79
6.1.5 Overall statistics . 82
6.1.6 Discussion . 83
6.1.7 Limitations and threats to validity . 84

6.2 Controlled experiment . 86
6.2.1 Context . 86
6.2.2 ProcessPAIR tuning . 86
6.2.3 Experiment design . 87
6.2.4 Results . 88
6.2.5 Discussion . 89
6.2.6 Threats to validity . 92

CONTENTS xi

7 Conclusions and future work 95
7.1 Summary of contributions . 95
7.2 Research questions revisited . 96
7.3 Future work . 97

A Tutorial on PSP Final Report guidelines with ProcessPAIR 99
A.1 Analysis of size estimating accuracy . 100
A.2 Analysis of time estimating accuracy . 107
A.3 Defect and yield analysis . 116
A.4 Quality analysis . 126

References 129

xii CONTENTS

List of Figures

2.1 CMMI process areas organized by categories and maturity levels. 10
2.2 CMMI process area decomposition. 11
2.3 PSP process evolution (Humphrey, 2005). 14
2.4 PSP process flow (Humphrey, 2000). 17
2.5 PSP process elements (Humphrey, 2000). 20
2.6 Examples of data analysis charts and reports from PSP student workbook. 24
2.7 Examples of data analysis charts from Process Dashboard tool. 25
2.8 Illustration of a control chart. 26
2.9 Illustration of deriving control limits and zones from the statistical distribution of

historical data, assuming normal distribution. 27
2.10 Process stability versus capability. 28
2.11 Fishbone diagram. 29

3.1 UML activity diagram (UML2.5, 2015) depicting the main activities and artifacts
in the ProcessPAIR approach. 34

3.2 UML class diagram depicting the main concepts involved in model definition and
calibration. 37

3.3 Illustration of the procedure for obtaining an approximate cumulative distribution
function of a PI (example with hybrid continuous-discrete distribution, and sam-
pling at 20% intervals). 38

3.4 Illustration of the procedure for determining the green (G), yellow (Y) and red (R)
ranges from the cumulative distribution function of a PI, in case the optimal value
lays in the middle of the scale. 39

3.5 UML class diagram depicting the main concepts involved in the analysis of subject
data. 42

3.6 Computation of sensitivity coefficients between indirectly related PIs. 45
3.7 Examples of solving indeterminacy in the calculation of the percentile coefficient

by using limits. 46
3.8 Example of solving indeterminacy in the calculation of the ranking coefficient by

using limits. 47
3.9 Example of selection and sorting rules . 48

4.1 Performance indicators and dependencies. 50
4.2 Evaluation of top-level and nested (shaded) PIs in the case study for projects 1 to 7. 55
4.3 Example of generated regression tree. 56
4.4 Graphical representation of part of a PM for the PSP. 57
4.5 Approximate cumulative distribution functions for all PIs in our model derived

from the PSP data set. 60

xiii

xiv LIST OF FIGURES

4.6 Computing the percentile coefficient for Code Productivity based on percentiles
extracted from the historical data. 61

5.1 UML package diagram depicting the logical architecture of the ProcessPAIR tool. 66
5.2 Model calibration window. 67
5.3 Summary of calibration results. 67
5.4 Dialog for providing a user profile. 68
5.5 Calibration results with filtering. 68
5.6 Entry window. 69
5.7 Report view example. 69
5.8 Table view example (partially expanded). 70
5.9 Indicator view example. 71
5.10 Indicator view with multiple PIs selection. 72
5.11 Cause-effect view showing only leaf causes. 72
5.12 Cause-effect view showing intermediate causes. 73
5.13 Cause-effect view showing numerical ranking labels. 73
5.14 Excerpt of PSP model code. 75

6.1 Example of automatic evaluation of top-level and nested PIs. 81
6.2 Average scores of the user satisfaction survey questions given by ProcessPAIR

(P) and Process Dashboard (D) users (Note: column ‘O’ shows average for all
questions). 89

6.3 Distribution and box plot of time spent (in minutes) by developers in both groups
in the PSP Final Report assignment. 90

6.4 Distribution and box plot of report size (in pages) by developers in both groups in
the PSP Final Report assignment. 90

6.5 Distribution and box plot of grades achieved by developers in both groups in the
PSP Final Report assignment. 91

List of Tables

2.1 CMMI practices in the scope of this work (highlighted) and their positioning in
the CMMI model. 13

2.2 PSP base and derived measures. 18
2.3 Example of questions to be addressed in the PSP Final Report assignment based

on AssignmentKit (2006). 19
2.4 PSP tool support. 23

4.1 Inconsistencies in the PSP data set. 53
4.2 Results of the correlation tests. 54
4.3 Ranking calculations for the factors that affect the overall productivity. 59
4.4 Performance indicators and ranges (with optimal values underlined). 62
4.5 Dependencies and sensitivity coefficients between related performance indicators. 63

6.1 Examples of questions that the subjects were requested to address and relevance
for this case study. 80

6.2 Cases of bad (red-R) or good (green-G) performance explicitly indicated by one
of the subjects in the case study. 80

6.3 Problem identification statistics for one of the selected subjects in the case study
(1 subject x 6 projects). 82

6.4 Problem identification statistics for all selected subjects in the case study (20 sub-
jects x 6 projects). 83

6.5 Frequency of categories and subcategories for RQ2. 84
6.6 Comparison of causes of identified performance problems for one subject in the

case study. 85
6.7 User satisfaction survey questions. 88
6.8 Some statistics in the control experiment. 91
6.9 Results of hypothesis tests. 92
6.10 Comments provided by ProcessPAIR users to the question “Please elaborate your

opinion about the overall usefulness and level of support for Performance Analysis
Purposes”. 93

6.11 Data regarding total time spent in producing final report, final report size in pages
and grades of individual users from both ProcessPAIR and Process Dashboard users. 94

xv

xvi LIST OF TABLES

xvii

xviii ABREVIATURAS E SÍMBOLOS

Abbreviations and Symbols

A/FR Appraisal to Failure Ratio
CAR Causal Analysis and Resolution
CMMI Capability Maturity Model Integration
CMU Carnegie Mellon University
COQ Cost of Quality
CR Code Review
DDC Defect Density in Compile
DDUT Defect Density in Unit Test
DI Defects Injected
DLDR Detailed-Level Design Review
DRL Defect Removal Leverage
DRR Defect Removal Rate
EO Extraneous Objects
LOC Line of Code
LPI Lower Prediction Interval
MA Measurement and Analysis
MO Missing Objects
OEA Objects Estimation Accuracy
OPM Organization Process Management
OPP Organization Process Performance
PEA Productivity Estimation Accuracy
PI Performance Indicator
PIP Process Improvement Proposal
PM Performance Model
PM Postmortem
PPB Process Performance Baseline
PPM Process Performance Model
PPS Project Plan Summary
PQI Process Quality Index
PROBE Proxy-based Estimating
PSP Personal Software Process
PY Process Yield
SEA Size Estimation Accuracy
SEI Software Engineering Institute
TEA Time Estimation Accuracy
TSP Team Software Process
UPI Upper Predication Interval
UT Unit Test
XML Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

According to Bohem (Boehm, 2011), the top two software engineering challenges are the increas-

ing emphasis on rapid development and adaptability, and the increasing software criticality and

need for assurance.

The need to ensure the quality of software products in a cost effective way drives companies

and organizations to seek to improve their software development process, as it is becoming more

and more accepted in industrial production in general and in the software industry in particular

that the quality of the process directly affects the quality of the product(Kenett and Baker, 1999)

“There is a very strong link between software quality and the processes used to develop it.” (Kenett

and Baker, 1999).

The Team Software Process (TSP) (Humphrey, 2005) and the accompanying Personal Soft-

ware Process (PSP) (Humphrey and Over, 2010) are examples of processes that can help individ-

uals and teams improve their performance and produce virtually defect free software on time and

budget (Rombach et al., 2008), addressing those challenges. One of the pillars of the TSP/PSP

is its measurement framework; based on four simple measures—effort, schedule, size, and de-

fects—it supports several quantitative methods for project and quality management and process

improvement (Humphrey, 2005).

“Measurements are key. If you cannot measure it, you cannot control it. If you cannot control

it, you cannot manage it. If you cannot manage it, you cannot improve it.”(Harrington et al., 1991)

Software process improvement and measurement go hand in hand: measures are the only way

to prove improvements in a process.

Software processes that make intensive use of metrics and quantitative methods, such as the

TSP/PSP, can generate large amounts of data that can be periodically analyzed to identify per-

formance problems, determine their root causes, and devise improvement actions (Daniel Burton,

2006).

The manual analysis of performance data for determining root causes of performance prob-

lems and devising improvement actions is challenging because of the potentially large amount of

1

2 Introduction

data to analyze (Daniel Burton, 2006), the effort and expert knowledge required, and the lack of

benchmarks for comparison.

Although several tools exist to automate data collection and produce performance charts and

reports for manual analysis of TSP/PSP data (Nasir and Yusof, 2005), practically, no tool support

exists for automating the performance analysis. There are also some studies that show cause–effect

relationships among performance indicators (PIs) (Kemerer and Paulk, 2009) (Shen et al., 2011),

but no automated root cause analysis is proposed.

1.2 Research goals

In this research work, we tackle the challenge of automating the analysis of performance data

produced in the context of software development processes for determining performance problems

and their root causes and devising improvement actions.

Our thesis statement is that, by taking advantage of performance models derived from the

performance data of many process users, it is possible to automatically analyze the performance

data of individual developers and identify and rank performance problems and their root causes,

reducing manual effort and errors in performance analysis, and improving user satisfaction.

The main goal is to develop methods and tools to answer the following research questions

(derived from the thesis statement):

RQ1. Is it possible to automatically identify performance problems of individual developers, by

taking advantage of performance models derived from the performance data of many pro-

cess users?

RQ2. Is it possible to automatically identify the root causes of the identified performance prob-

lems, by taking advantage of performance models derived from the performance data of

many process users?

RQ3. Is it possible to automatically rank the identified performance problems, by taking advan-

tage of performance models derived from the performance data of many process users?

RQ4. Is it possible to automatically rank the identified root causes, by taking advantage of per-

formance models derived from the performance data of many process users?

RQ5. By automating the performance analysis as described in RQ1 to RQ4, is it possible to reduce

effort and errors and improve user satisfaction as compared to manual analysis?

To achieve the main goal and prove the thesis, the following tasks are considered:

- to construct and validate one or more performance models (defining performance indicators,

cause-effect relationships between them, and recommended ranges or thresholds) that can

be used to automatically identify performance problems and their root causes in software

development organizations using medium to high-maturity processes such as, but not limited

1.3 Research contributions 3

to, the PSP/TSP; we take advantage of a partnership with the Software Engineering Institute

to have access to PSP/TSP data to calibrate the performance model;

- to develop and validate algorithms for automatically evaluating and ranking (prioritizing)

performance problems and their root causes;

- to design and develop a tool for automating the performance analysis and improvement

recommendation, flexible enough to accept multiple performance models and data sources;

- to conduct experiments in real world contexts, to validate the developed models and tool

and show the benefits of the approach.

1.3 Research contributions

The main contributions of the research work are:

- the ProcessPAIR method for automated performance analysis and improvement recommen-

dation in software development (described in chapter 3);

- the ProcessPAIR support tool (described in chapter 5 and publicly available in http://

blogs.fe.up.pt/processpair/);

- the performance models for PSP (described in chapter 4);

- the experimental results of both tool and model (described in chapter 6).

ProcessPAIR is a novel tool for automated performance analysis and improvement recommen-

dation in software development. Based on performance models defined by process experts and

calibrated automatically from the performance data of many developers, it automatically identifies

and ranks potential performance problems and their root causes of individual developers, so that

subsequent manual analysis for the identification of deeper causes and improvement actions can

be properly focused.

The PSP (Humphrey, 2005) is a software process, with a stepwise training strategy, designed

by the Software Engineering Institute (SEI) to help engineers improve their performance and pro-

duce defect-free software (Rong et al., 2016). The availability of a large PSP data set for model

calibration purposes, and the lack of adequate tools for helping PSP students analyzing their per-

formance data in the PSP Final Report assignment (see Appendix A), were the main drivers for

applying ProcessPAIR for the PSP.

A postmortem experiment in which we compared the results of manual and automated (with

ProcessPAIR) performance analysis (Raza et al., 2016), showed that ProcessPAIR is able to ac-

curately identify performance problems and their root causes of PSP developers.

http://blogs.fe.up.pt/processpair/
http://blogs.fe.up.pt/processpair/

4 Introduction

A controlled experiment showed that software engineering students were able to successfully

analyze their personal performance data with the help of ProcessPAIR. The results show signif-

icant benefits in terms of students’ satisfaction (average rating of 4.78 in a 1-5 scale for Proces-

sPAIR users, against 3.81 for non-ProcessPAIR users), quality of the analysis outcomes (aver-

age grades given by instructor of 88.1 in a 0-100 scale for ProcessPAIR users, against 82.5 for

non-ProcessPAIR users), and time required to do the analysis (average of 252 minutes for Pro-

cessPAIR users, against 262 minutes for non-ProcessPAIR users, but with significant room for

improvement).

Following is the list of articles published from this research work:

- RAZA, Mushtaq; FARIA, João Pascoal. ProcessPAIR: a tool for automated performance anal-

ysis and improvement recommendation in software development. In: Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering. ACM, 2016. p.

798-803.

This article is about the ProcessPAIR, a novel tool designed to help developers analyze their

performance data with less effort, by automatically identifying and ranking performance prob-

lems and their potential root causes, so that subsequent manual analysis for the identification

of deeper causes and improvement actions can be properly focused. Chapter 5 is based on this

article.

- RAZA, Mushtaq; FARIA, João Pascoal; SALAZAR, Rafael. Empirical Evaluation of the Pro-

cessPAIR Tool for Automated Performance Analysis. In The 28th International Conference on

Software Engineering and Knowledge Engineering, June 30-July 3, 2016.

This article is about the results of a postmortem experiment conducted in the context of PSP

training, to show that ProcessPAIR is able to accurately identify and rank performance problems

and their potential root causes of individual developers so that subsequent manual analysis for

the identification of deeper causes and improvement actions can be properly focused. Part of

chapter 6 is based on this article. One of the co-authors is Rafael Salazar, director of the Mexican

TSP Initiative at Tecnológico de Monterrey in Mexico.

- RAZA, Mushtaq.; FARIA, João Pascoal. A model for analyzing performance problems and

root causes in the personal software process. Journal of Software: Evolution and Process, 2015.

This article (extended version of ICSSP 14 article) is about the PSP performance model, ad-

dressing time estimation accuracy, quality, and productivity, to enable the automated (tool

based) analysis of performance data produced by PSP developers, namely, identify and rank

performance problems and their root causes. A PSP data set referring to more than 30 000

projects was used to validate and calibrate the model. Parts of chapter 3 and 4 are based on this

article.

- RAZA, Mushtaq; FARIA, João Pascoal. A Benchmark-based Approach for Ranking Root

Causes of Performance Problems in Software Development. In: International Conference on

1.3 Research contributions 5

Product-Focused Software Process Improvement. Springer International Publishing, 2014. p.

314-317.

This article presents an approach for automatically ranking the potential root causes identified

during performance analysis of individual process users, based on a cost-benefit estimate that

takes into account historical data. The approach was applied for the PSP, taking advantage of a

large data set from SEI. Part of chapter 3 of the thesis document is based on this article.

- RAZA, Mushtaq; FARIA, João Pascoal. A model for analyzing estimation, productivity, and

quality performance in the personal software process. In: Proceedings of the 2014 International

Conference on Software and System Process. ACM, 2014. p. 10-19.

This article presents a comprehensive performance model, addressing time estimation accu-

racy, quality and productivity, to enable the automated analysis of performance data produced

in the context of the PSP, namely, identify performance problems and their root causes, and

subsequently recommend improvement actions. Part of chapter 3 and 4 is based on this article.

- RAZA, Mushtaq; FARIA, João Pascoal. Factors Affecting Personal Software Development

Productivity: A Case Study with PSP Data. IASTED SE, 2014.

This article is about the analysis of factors (personal and non-personal) that affect the pro-

ductivity of software developers and may cause productivity variations among individuals and

projects.

- RAZA, Mushtaq; FARIA, João Pascoal; HENRIQUES, Pedro, NICHOLS, William. Factors

affecting productivity performance in PSP training. In: Annual Software Engineering Institute

(SEI) TSP Symposium. 2013. p. 35-45.

This article is an extended version of IASTED SE 2014 article. In this article, we analyzed

the personal and non-personal factors that affect productivity performance. Regarding non-

personal factors, we found both process changes and program complexity to be important factors

explaining productivity variations. Regarding personal factors, we found significant variations

among individuals that can be partially explained by personal experience and programming

language used. This article is co-authored by William Nichols, senior member of the technical

staff and PSP instructor and TSP coach with the Team Software Process Program at Software

Engineering Institute, CMU, and Pedro Henriques, CEO of Strongstep- Innovation in software

quality.

- DUARTE, César Barbosa; FARIA, João Pascoal; RAZA, Mushtaq. PSP PAIR: automated per-

sonal software process performance analysis and improvement recommendation. In: Quality

of Information and Communications Technology (QUATIC), 2012 Eighth International Confer-

ence on the. IEEE, 2012. p. 131-136.

6 Introduction

This article is about initial work on performance model (limited to the analysis of the time

estimation performance of PSP developers) and tool prototype to automate the analysis of per-

formance data produced in the context of the PSP, namely, identify performance problems and

their root causes, and recommend improvement actions.

- DUARTE, César Barbosa; FARIA, João Pascoal; RAZA, Mushtaq; HENRIQUES, Pedro. Model

and Tool for Analyzing Time Estimation Performance in PSP. In: Annual Software Engineering

Institute (SEI) TSP Symposium. 2012. p. 21-40.

This article (extended version of QUATIC 12) presents a performance model and a tool proto-

type (limited to the analysis of the time estimation performance of PSP developers) to automate

the analysis of performance data produced in the context of the PSP , namely, identify perfor-

mance problems and their root causes, and recommend improvement actions.

- RAZA, Mushtaq; FARIA, João Pascoal; SALAZAR, Rafael. Helping Software Engineering

Students Analyzing their Performance Data: Tool Support in an Educational Environment. In:

International Conference on Software Engineering (ICSE). May 20-28, 2017.

This article is about the results of a controlled experiment involving 61 software engineering

master students, half of whom used ProcessPAIR in a PSP performance analysis assignment.

Part of chapter 6 is based on this article. One of the co-authors is Rafael Salazar, director of the

Mexican TSP Initiative at Tecnológico de Monterrey in Mexico.

- RAZA, Mushtaq; FARIA, João Pascoal; AMARO, Luis; HENRIQUES, Pedro Castro. WebPro-

cessPAIR: Recommendation System for Software Process Improvement. In: International Con-

ference on Software and System Processes (ICSSP). July 5-7, 2017.

This article is about WebProcessPAIR, which extends ProcessPAIR with the ability to recom-

mend improvement actions to address the root causes identified, based on a crowdsourcing

approach.

1.4 Document structure

The rest of the thesis document is organized as follows.

Chapter 2 describes state of the art analysis and is organized as follows. Section 2.1 describes

performance measurement and analysis in CMMI, covering CMMI practices related to process

performance analysis. Section 2.2 describes performance measurement and analysis in PSP, cov-

ering process structure, measurement framework, final report assignment, and tool support for

PSP. Section 2.3 presents performance measurement and analysis in other process. Section 2.4

presents performance problem identification techniques, covering control charts and benchmark

based software evaluation. Section 2.5 explains root cause analysis techniques, covering fish-

bone diagrams, defect causal analysis, process performance and regression models, and sensitivity

analysis.

1.4 Document structure 7

Chapter 3 describes the proposed performance analysis method and is organized as follows.

Section 3.1 introduces the overall approach, covering problem and root causes identification and

ranking. Section 3.2 describes performance model definition. Section 3.3 describes the perfor-

mance model calibration, covering approximate cumulative distribution functions, performance

ranges, regression models and sensitivity coefficients, and data set filtering. Section 3.4 presents

model based performance analysis.

Chapter 4 covers the performance model for PSP and is organized as follows. Section 4.1

introduces model definition for PSP and covers performance indicators and dependencies for pre-

dictability, quality, and productivity. Section 4.2 describes model validation and calibration, cov-

ering available data set, model validation, and model calibration. In section 4.3, support data for

the ranking method is presented which covers sensitivity and percentile coefficients together with

ranking example.

Chapter 5 describes the ProcessPAIR tool implementation and is organized as follows. Section

5.1 presents the architecture of the tool. Sections 5.2 and 5.3 explain the model calibration, and

performance analysis user interfaces. Section 5.4 presents analysis views: report, table, indicator

and cause-effect. Finally, section 5.5 presents the tool extension API.

Chapter 6 describes the postmortem and the controlled experiments. Regarding the post-

mortem experiment, section 6.1.1 presents the research questions to be answered in the experi-

ment. Section 6.1.2 presents the input data collected for the analysis. Section 6.1.3 and 6.1.4

present the data analysis procedures and the results obtained. Section 6.1.5 and 6.1.6 present the

overall statistics and discussion. Finally, section 6.1.7 presents limitations and threats to validity.

Regarding the controlled experiment section 6.2.1 presents the context of the experiment, section

6.2.2 presents the ProcessPAIR tuning for this experiment, section 6.2.3 presents the experiment

design, section 6.2.4 and 6.2.5 present the experimental results and discussion, and section 6.2.6

presents threats to validity.

Chapter 7 presents the conclusions of this research work.

Appendix A presents a tutorial on the PSP Final Report with ProcessPAIR.

8 Introduction

Chapter 2

State of the art

Our approach draws a strong inspiration from process performance models (PPM) and perfor-

mance measurement and analysis in the context of CMMI and TSP/PSP.

A PPM in the context of CMMI is a description of the relationship among attributes of a

process or sub-process and its outcomes, developed from historical performance data, and cali-

brated using collected process and product measures (Chrissis et al., 2011). The purpose of using

measurement and analysis in the context of CMMI and TSP/PSP is to measure project progress,

product size or process performance in support of making decisions and taking corrective action.

This chapter is organized as follows. Section 2.1 describes performance measurement and

analysis in CMMI, covering CMMI practices related to process performance analysis. Section 2.2

describes performance measurement and analysis in PSP, covering process structure, measurement

framework, final report assignment, and tool support for PSP. Section 2.3 presents performance

measurement and analysis in other processes. Section 2.4 presents performance problem iden-

tification techniques, covering control charts and benchmark based software evaluation. Section

2.5 explains root cause analysis techniques, covering fishbone diagrams, defect causal analysis,

process performance and regression models, and sensitivity analysis.

2.1 Performance measurement and analysis in CMMI

Since the CMMI is a recognized model of software engineering best practices, it is relevant to look

at the best practices for performance analysis in software engineering embodied in the CMMI.

2.1.1 Overview

CMMI (Chrissis et al., 2011) stands for Capability Maturity Model Integration and was developed

by the Software Engineering Institute (SEI). It is a process improvement maturity model.

All CMMI models are produced from the CMMI Framework (a collection of all model com-

ponents, training material components, and appraisal components), containing 16 core process

areas. These process areas cover basic concepts that are fundamental to process improvement in

9

10 State of the art

any area of interest. Also these areas are shared among three groups: CMMI for Development

(CMMI-DEV), CMMI for Services (CMMI-SVC), and CMMI for Acquisition (CMMI-ACQ).

The CMMI-DEV model (Chrissis et al., 2011) provides guidance for applying CMMI best

practices in a development organization. These best practices focus on activities for developing

quality services and products to meet the needs of end users and customers. The CMMI-DEV

identifies 22 process areas given in Figure 2.1.

Each process area is described by a set of specific goals and practices, which describe activi-

ties that implement the process area. Generic goals and practices apply to all process areas, and

describe activities that institutionalize the process areas (see Figure 2.2).

Process
Management

Organization
Process Focus

Organization
Process Definition

Organization
Training

Organizational
Process

Performance

Organizational
Performance
Management

Project
Management

Project Planning

Project Monitoring
and Control

Requirements
Management

Supplier Agreement
Management

Risk Management

Integrated Project
Management

Quantitative Project
Management

Engineering

Requirements
Development

Technical Solution

Product
Integration

Verification

Validation

Support

Configuration
Management

Process and
Product Quality

Assurance

Measurement and
Analysis

Decision Analysis
and Resolution

Causal Analysis
and Resolution

2

3

4

5

Figure 2.1: CMMI process areas organized by categories and maturity levels.

2.1.2 CMMI practices related to process performance analysis

Table 2.1 shows the specific practices and their position in the CMMI model in the scope of this

research work.

This research work is first related to OPM SP 1.2, OPM SP 1.3, and CAR SP 1.2, because the

goal is to analyze process performance data (OPM SP 1.2) of a given subject (individual team or

organization) for the identification of performance problems (OPM SP 1.3) and root causes (CAR

SP 1.2).

In second place, it is related to OPP SP 1.3, OPP SP 1.4 and OPP SP 1.5, because, to achieve

the stated goals, we have to define the relevant performance measures (OPP SP 1.3), and per-

formance ranges taking advantage of historical data from many subjects (OPP SP 1.4), and also

establish relevant cause-effect relationships from that data (OPP SP 1.5).

2.1 Performance measurement and analysis in CMMI 11

Specific Goals

Purpose
Statement

Introductry
Note

Related
Process Area

SubpracticesTypical Work
Products

Specific
Practices

Generic Goals

Subpractices
Generic
Practice

Elaboration

Generic
Practices

Process Area

KEY: Required InformativeExpected

Figure 2.2: CMMI process area decomposition.

MA SP 1.2 and MA SP 2.2 are support practices needed to achieve the aforementioned prac-

tices, so this research work is also indirectly related with them.

The purpose of using Measurement and Analysis (MA) (Chrissis et al., 2011) is to measure

project progress, product size or process performance in support of making decisions and taking

corrective action. Basically, MA comprises the specification of measures, mechanisms for the

collection of data, analysis techniques for the collected data, data storage, reporting and feedback.

The goal of analysis is to provide objective results that can be used for decision making and taking

appropriate corrective action. The practices performed in MA are given in Table 2.1.

The purpose of Organizational Process Performance (OPP) (Chrissis et al., 2011) is to es-

tablish and maintain quantitative understanding of the performance of selected processes in the

organization’s set of standard processes in support of achieving quality and process performance

objectives, and to provide process performance data, baseline, and model to quantitatively manage

the organization’s projects. The practices performed in OPP are given in Table 2.1.

The OPP includes specific practices (see Table 2.1) to establish Process Performance Base-

lines (PPBs). PPBs are important for organizations because when the organization has enough

measures, data, and analytical techniques for critical process, product, and service characteristics,

it can be able to determine whether the processes are behaving consistently or not. It can identify:

• processes in which the performance is within natural bounds;

12 State of the art

• processes that show unusual behavior;

• processes or aspects of processes that can be improved in the organization.

The Organizational Performance Management (OPM) (Chrissis et al., 2011) process area en-

ables the organization to manage organizational performance by iteratively analyzing aggregated

project data, identifying gaps in performance against the business objectives, and selecting and de-

ploying improvements to close the gaps. Process performance baselines and process performance

models, developed using Organizational Process Performance processes, are used as part of the

analysis. The practices performed in OPM are given in Table 2.1.

The purpose of Causal Analysis and Resolution (CAR) (Chrissis et al., 2011) is to identify

causes of selected outcomes and take action to improve process performance. Causal analysis and

resolution improves quality and productivity by preventing the introduction of defects or problems

and by identifying and appropriately incorporating the causes of superior process performance.

The practices performed in CAR are given in Table 2.1.

The CMMI is a model of best practices that suggest practices to be implemented (the what),

but does not describe corresponding operational procedures (the how). In the next section, we

analyze a process that provides some of those operational procedures.

2.2 Performance measurement and analysis in PSP

The Personal Software Process (PSP), developed by Watt S. Humphrey and the Software Engineer-

ing Institute (SEI), Carnegie Mellon University, is a framework for improving the overall quality

of software development processes for individuals (Humphrey, 2005).

The PSP heavily relies on the collection and analysis of personal data in order to demonstrate

to software engineers’ the way they develop software, weaknesses and strengths.

The main measurements which are basically collected in the PSP include the size of the soft-

ware, development time, and number of defects. Next sections will explain in detail all these

measurements (base and derived) and their collection process.

2.2.1 Overview

The PSP is a self-improvement process that helps developers in improving, controlling and man-

aging their way of working. It is an organized process framework of procedures, guidelines and

forms for developing software.

Using PSP in an appropriate way leads to the data that developers need for making and meeting

commitments; furthermore, it makes the routine elements of developers’ job more efficient and

predictable.

The core purpose of the PSP is to guide developers in defining their own processes, planning

and tracking their own work and managing the quality of the products they produce. It also helps

developers to manage their work, assess their talents, and build their skills.

The PSP makes available for software engineers:

2.2 Performance measurement and analysis in PSP 13

Table 2.1: CMMI practices in the scope of this work (highlighted) and their positioning in the
CMMI model.

MA: Measurement and Analysis (ML 2)

SG 1 Align Measurement and Analysis Activities

SP 1.1 Establish Measurement Objectives
SP 1.2 Specify Measures
SP 1.3 Specify Data Collection and Storage Procedures
SP I.4 Specify Analysis Procedures

SG 2 Provide Measurement Results

SP 2.1 Obtain Measurement Data
SP 2.2 Analyze Measurement Data
SP 2.3 Store Data and Results
SP 2.4 Communicate Results

OPP: Organizational Process Performance (ML4)

SG 1 Establish Performance Baselines and Models

SP 1.1 Establish Quality and Process Performance Objectives
SP 1.2 Select Processes
SP 1.3 Establish Process Performance Measures
SP 1.4 Analyze Process Performance and Establish Process Performance Baselines
SP 1.5 Establish Process Performance Models

OPM: Organizational Performance Management (ML5)

SG 1 Manage Business Performance

SP 1.1 Maintain Business Objectives
SP 1.2 Analyze Process Performance Data
SP 1.3 Identify Potential Areas for Improvement

SG 2 Select Improvements

SG 3 Deploy Improvements

CAR: Causal Analysis and Resolution (ML5)

SG 1 Determine Causes of Selected Outcomes

SP 1.1 Select Outcomes for Analysis
SP 1.2 Analyze Causes

SG 2 Address Causes of Selected Outcomes

Note: SG: Specific Goal, SP: Specific practice, ML: Maturity Level

14 State of the art

• the data and analysis techniques they need for determining the technologies and methods

that work best for them;

• a framework for learning why they make errors and what is the best way of finding, fixing,

and preventing them.

This way, software engineers can easily determine the quality of their reviews, the defect types

they usually miss, and the quality approaches that are most effective for them (Humphrey, 2005).

The recommended approach for learning the PSP is by doing a sequence of small projects

guided by a PSP instructor, using increasingly refined and more complete processes (see Figure

2.3).

PSP 0
• Current process

• Basic measures

PSP 0.1
• Coding standard

• Process improvement

proposal

• Size measurement

PSP 1
• Size estimating

• Test report

PSP 1.1
• Task planning

• Schedule planning

PSP 2
• Code reviews

• Design reviews

PSP 2.1
• Design templates

Team Software

Process
• Team building

• Risk management

• Project planning and tracking

Introduces quality

management and

design

Introduces estimating

and planning

Introduces process discipline

and measurement

Figure 2.3: PSP process evolution (Humphrey, 2005).

PSP0 - The Baseline Personal Process (establish a measured performance baseline)

The first step in the PSP is to establish a baseline that includes some measurements (the time

spent per phase and the defects found per phase) and a reporting format (Humphrey, 1997) (Humphrey,

2005). The time spent per phase is a simple record of the clock time spent in each part of the PSP

process and a defect is counted every time one changes a program to fix a problem.

The objective of the baseline process (PSP0) is to provide engineers a framework that can

help them in gathering data and writing their first PSP program. The gathered data (time and

defects) helps developers in planning and managing their projects along the PSP training and also

2.2 Performance measurement and analysis in PSP 15

shows developers where more time is spend and where most defects are injected and fixed, which

ultimately provides a consistent base for measuring progress and defining a foundation on which

to improve.

After the first programming assignment, PSP0 is upgraded to PSP0.1 which introduces coding

standards, size estimation, and process improvement proposals (PIP).

The process improvement proposal is an approach to report and record process problems en-

countered, and suggest improvements. It is additionally a part of the process improvement process.

The main goal of PSP0.1 is to give engineers a comprehension of size estimation principles.

PSP1 - The Personal Planning Process (make size, resource and schedule plans)

PSP1, which adds planning steps to PSP0, introduces size and resource estimation and a test

report. In PSP1.1, schedule planning and status tracking are introduced. The goals of PSP1 and

PSP1.1 are to train developers for understanding the significance of the relationship between the

size and time of the programs they develop, to know the way of making commitments that they

can meet, to have an organized plan for doing their tasks and a framework for tracking their

status (Humphrey, 1997) (Humphrey, 2005).

PSP2 - Personal Quality Management (practice defect management and yield management)

The goal of PSP2 is to improve the developers’ capability to produce high quality programs.

This goal can be achieved by presenting to the developers technique for better defect detection and

prevention. This process will reduce the number of defects in compile and test phases. It is also

observed that in most cases defects are simple typos, oversights, or dumb mistakes. So this way

of measuring and tracking defects will teach developers how to deal with defects objectively to

reduce rapidly the number of defects they usually inject.

PSP2 usually reduces the defects production rate by adding design and code reviews to PSP1.

These added reviews help developers to identify defects earlier in their process and reduce the

extra cost for identifying them in later stages. For developers, it is important to know the number,

cost and main causes of the defects they produced.

In PSP 2.1 the design process is addressed. The main objective of PSP2.1 is to address the

criteria for design completion and not to teach the developers how to design. After finishing de-

sign, PSP2.1 demonstrates different design verification methods and design completeness criteria.

In this case, completeness criteria is established for design only, but similar criteria can be estab-

lished for other process phases (test development, documentation development and requirement

specification) (Humphrey, 1997) (Humphrey, 2005).

PSP3 - The Cyclic Personal Process (scale up PSP methods to larger projects)

The PSP up to this point has focused only on a linear process for building small programs.

For scaling PSP2 up to larger projects, the approach is to subdivide larger programs into PSP2-

sized pieces. These smaller programs are then separately developed and integrated into the larger

total program. PSP3 is a cyclic development process that follows the principles of Boehm’s spiral

model [Boehm 1988]. The first PSP3 build provides a base that is enhanced with each successive

cycle. In each iteration, a complete PSP2- like process is used, including design, code, compile,

and test. The test step, however, is typically a combination of unit test and integration. As long as

16 State of the art

each increment is of high quality, this testing strategy is practical. The PSP3 process is suitable for

programs of up to several thousand lines of code (KLOC). (Humphrey, 1997) (Humphrey, 2005).

The PSP3 objective is to introduce the engineers to the principles of process scaling. They

find that by assuring the quality of each successive development cycle, they can concentrate on

verifying the performance of the latest increment without interference from previously-introduced

defects. If a prior increment has many defects, however, testing will be much more complex and

the scale-up benefits will largely be lost. With high-quality increments, developer productivity

often increases with program size.

TSP- The Team Software Process

Developers can use PSP3 to build programs of several KLOC. The PSP provides a disciplined

foundation the developers can use to define an effective team process. While the PSP introduces

the concepts for relating individual PSPs to the team, it does not define team processes or provide

team exercises (Humphrey, 1997) (Humphrey, 2005). That is addressed by the Team Software

Process (TSP).

2.2.2 Process structure

The PSP process flow is show in Figure 2.4. The first step of the process is planning, having as

input the requirements. There is a script to guide the work and a plan summary to record the

data in this first step. The other steps also have scripts to guide the work and logs to record the

data. In the postmortem phase (PM), the data from the logs is summarized, the program size

is measured and all of this is then recorded into the plan summary form. The output of this

phase is the finished product and the completed plan summary form. It should be noted that

(contrarily to the more complex TSP) the PSP is designed for guiding the development of small

programs (or components of large programs) by individual engineers, which is why it neither

includes requirements gathering nor high-level (architectural) design.

As illustrated in Figure 2.3 the PSP has six process versions that are labeled from PSP0 to

PSP2.1. They all have a similar collection of scripts, forms, logs and standards. The scripts

instruct the software engineers, step by step, through each part of the process. To record data there

are templates (for the logs and forms) and the standards that help guide the work. The elements

described above are shown in Figure 2.5.

2.2.3 Measurement framework

In the PSP course, developers gather data regarding the size of the products they produce, the time

that they spend on each process phase (e.g., plan, design, design review etc.), and the quality of

these products, to monitor their work and to help them make better plans (i.e., improve predictabil-

ity) and produce high-quality products (i.e., improve product quality) in a cost-effective way (i.e.,

improve productivity).

Base data is gathered in three different artifacts:

2.2 Performance measurement and analysis in PSP 17

Planning

Test

Design

Code

Compile

Postmortem

Scripts

Plan

summary

Requirements

Finished Products

Time

Defects

Project and process data

summary report

Design review

Code review

Guide

Plan

Results
Logs

Figure 2.4: PSP process flow (Humphrey, 2000).

• Time log - used for recording actual time spent in each process phase (possibly with multiple

entries for the same phase, with different start and stop times);

• Defect log – used for recording defects, with description, defect type (according to a defect

standard), phase in which the defect was injected, phase in which the defect was removed,

and fix time;

• PROBE estimating template and plan summary – use for estimating size, time, number of

defects (in the beginning of the project) and for recording actual size (at the end of the

project).

From this data, several measures are defined as indicated in Table 2.2.

2.2.4 Final report assignment

At the end of the PSP training, students are usually asked to perform the “PSP Final Report” as-

signment (or “PSP Performance Analysis Report”) for better understanding their current software

development performance and highest-priority areas for improvement. In the assignment, stu-

dents are asked to analyze their personal performance data collected throughout several projects

they developed and document their findings and improvement proposals in a report. To guide their

analysis, students are asked to address several questions as indicated in Table 2.3.

18 State of the art

Table 2.2: PSP base and derived measures.

Measure Definition
Planned Time in Phase The estimated time to be spent in a phase for a project
Actual Time in Phase The sum of time spent (delta times in time log) for a phase of a project
Total Time The sum of planned or actual time for all phases of a project
Time in Phase to Date The sum of Actual Time in Phase for all completed projects
Total Time to Date The sum of Time to Date for all phases of all projects
Time in Phase to Date% 100 ∗ Time in Phase To Date for a phase divided by Total Time in Phase

To Date
Compile Time The time from the start of the first compile until the first clean compile
Test Time The time from the start of the initial test until test completion
Defect Any element of a program design or implementation that must be

changed to correct the program
Defect type Each defect is classified according to a defect type standard. It includes

10 defect types in a simple classification scheme designed to support de-
fect analysis.

Fix Time The time to find and fix a defect
LOC (Size) A logical line of code as defined in the engineers counting and coding

standard
LOC Type There are 7 LOC types, Base, Deleted, Modified, Added, Reused, Added

and Modified, Total LOC and Total New Reused
LOC / Hour (Productiv-
ity)

Total added and modified LOC developed divided by the total develop-
ment hours

Estimating Accuracy The degree to which the estimate matches the result. Calculated for time
and size %Error = 100∗(Actual-Estimate)/Estimate

Test Defects/KLOC The defects removed in the test phase per added and modified KLOC.
1000∗(Defects removed in Test)/(Actual Added and Modified LOC)

Compile Defects/KLOC The defects removed in compile per added and modified KLOC.
1000∗(Defects removed in Compile)/(Actual Added and Modified LOC)

Total Defects/KLOC The total defects removed per added and modified KLOC. 1000∗(Total
Defects removed)/(Actual Added and Modified LOC)

Yield The percent of defects injected before the first compile that are re-
moved before the first compile. 100∗(defects found before the first com-
pile)/(defects injected before the first compile)

Appraisal Time Time spent in design and code reviews
Failure Time Time spent in compile and test
Appraisal Cost of Quality
(COQ)

100∗(design review time + code review time)/(total development time)

Failure COQ 100∗(compile time + test time)/(total development time)
Total COQ Total Cost of Quality = Appraisal COQ + Failure COQ
COQ Appraisal/Failure
Ratio (A/FR)

A/FR = Appraisal Time/Failure Time

Review Rate Lines of code reviewed per hour. 60 ∗ (Added and Modified
LOC)/(review minutes)

2.2 Performance measurement and analysis in PSP 19

Table 2.3: Example of questions to be addressed in the PSP Final Report assignment based on
AssignmentKit (2006).

Analysis of size estimating accuracy
- What are the average, maximum, and minimum actual sizes of your programs in LOC to date?
- Excluding assignment 1, what percentage over or under the actual size was the estimated size for

each program (for example, if estimated/actual is in %, 85% is 15% under, 120% is 20% over)?
What are your average, maximum, and minimum values for these?

- How often was my actual program size within my 70% statistical prediction interval (when you
used methods A or B)?

- Do I have a tendency to add/miss entire objects?
- Do I have a tendency to misjudge the relative size of objects?
- Based on my historical size-estimating accuracy data, what is a realistic size-estimating goal for

me?
- How can I change my process to meet that goal?

Analysis of time estimating accuracy
- What are the average, maximum, and minimum times of your assignments to date?
- What percentage over or under the actual time was the estimated time for each program (for ex-

ample, if estimated/actual is in %, 85% is 15% under, 120% is 20% over)?
- What are your average, maximum, and minimum values for these?
- How often was my actual development time within my 70% statistical prediction interval (when

you used methods A or B)?
- What are the average, maximum, and minimum values for productivity per program to date in

LOC/hr.?
- Is my productivity stable? Why or why not?
- How can I stabilize my productivity?
- How much are my time estimates affected by the accuracy of my size estimates?
- Based on my historical time-estimating accuracy data, what is a realistic time-estimating goal for

me?
- How can I change my process to meet that goal?

Defect and yield analysis
- Which defect type accounts for the most time spent in compile?
- In test? In which phase was each type of defect injected most often?
- What type of defects do I inject during design and coding?
- What trends are apparent in defects per size unit (e.g., KLOC) found in reviews, compile, and test?

What trends are apparent in total defects per size unit?
- How do my defect removal rates (defects removed/hour) compare for design review, code review,

compile, and test?
- What are my review rates (size reviewed/hour) for design review and code review?
- What are my defect-removal leverages for design review, code review, and compile versus unit

test?
- Is there any relationship between yield and review rate (size reviewed/hour) for design and code

reviews?
- Is there a relationship between yield and A/FR?

Quality analysis
- How much did the quality of the programs entering unit test change? Why?
- Am I finding my defects in design and code reviews? Why or why not?
- Based on my historical data, what are some realistic quality goals for me?
- How can I change my process to meet those goals?

20 State of the art

PSP0

PSP0.1

PSP1

PSP1.1

PSP2

PSP2.1

PSP3

PSP

Script

families

PROBE estimating

Plan summaries

Review checklists

Design templates

PIP

PSP

forms

Issue tracking

Defects

Time

PSP

logs

LOC counting

PSP

standards

Defects

PSP

standards

Coding

PSP

standards

Figure 2.5: PSP process elements (Humphrey, 2000).

2.2.5 Tool support for PSP

A variety of tools have been developed over the years to tackle the problem of manual data gath-

ering by providing semi or fully automated data collection solutions. Several of these tools can be

downloaded and used for free. Some of these tools are reviewed below (also see Table 2.4 for the

comparison of these tools).

PSP Student Workbook (PSPWorkBook), is the official tool for PSP courses developed by

the SEI and is based on Microsoft Access. This tool can be used on Microsoft Windows or emu-

lated Microsoft Windows operating systems.

It provides good support for the learning of this methodology as it has a lot of supporting

materials, such as course materials, scripts, forms, and templates, etc. It provides a lot of so-called

analysis tools to help the student in the analysis of their personal performance data (see examples

in Figure 2.6). This tool basically transforms the data into graphs of the known performance

indicators (that require some calculations), such as Time Estimation Error, Size Estimation Error

and Productivity. The different forms available for users are described below:

• Project Plan Summary: is basically used for representing the overall information of the

development such as estimated development time, estimated program size, productivity,

defect density and cost-performance index.

• Time Recording Log: records details of the time spent in each development phase like Plan,

Design, Design Review, Code, Code Review, Compile, Unit Test and Postmortem.

2.2 Performance measurement and analysis in PSP 21

• Defect Recording Log: stores information of each defect such as its injection and removal

phases, type, and description.

• Test Report: summarizes the actual and expected test results as well as testing environments.

• Process Improvement Proposal: focuses on the proposals for process improvement based on

the user’s self-evaluation.

In addition to the lack of support for problem identification and their root cause analysis, there

are several other limitations of PSP Student Workbook. E.g., several important PSP elements

such as counting standard, coding standard, design review checklist, design templates, and code

review checklist are not supported by this tool. The users need to separately create and store these

documents which is really an overhead.

Furthermore, PSP Student Workbook might not be suitable for professional use since the Ac-

cess database can inevitably become unnecessarily large and this could cause serious performance

problems for the development environments.

Process Dashboard (Dashboard), is an open source tool, originally developed by the United

States Air Force in 1998. It supports all the standard functionalities which can be found in the PSP

Student Workbook. This tool supports the PROxy-Based Estimating method (PROBE), which is

the main feature of the PSP framework. It is developed in Java and can be run on Windows, Linux,

Unix, Macintosh, etc. Like other tools, Process Dashboard displays graphs and reports based on

the development data of developers (see examples in Figure 2.7).

Hackystat (Hackystat) is an example of an extensible sensor-base tool for automatic data col-

lection during software development (such as failed tests, code changes, etc.). Hackystat provides

a range of sensors to collect data from tools such as Eclipse, Ant, Checkstyle, Clover, FindBugs,

JUnit, and Visual Studio, and APIs for the creation of customized sensors. It also provides simple

forms and APIs for data access. One limitation of Hackystat is that it only collects data during de-

velopment (and not during planning, design, and postmortem); another limitation is the difficulty

to extract higher level information (e.g., defects) from the observed events (e.g., failed test cases).

Jasmine (Shin et al., 2007), is a sensor-based automated data collection tool which helps

developers in applying the PSP. In addition to sensor-based data collection like Hackystat, Jasmine

also provides support for activities such as planning, estimation, and tracking. Furthermore, it also

includes EPG (Electronic Process Guide) and ER (Experience Repository) to easily navigate the

PSP elements, and to share and sort additional process related information respectively. Jasmine

provides analysis of the performance data in the form of tables, graphs and charts.

PSP.NET (Nasir and Yusof, 2005), is a web-based application comprising two layers: ap-

plication and database. It is basically a PSP supporting tool which automatically collects the

primary data using electronic forms to reduce the time spend and overhead during recording data

in PSP courses. It provides support in PSP components such as templates, checklist, and log form.

PSP.NET can also print (according to the PSP level) the PSP forms after publishing in HTML

format. Furthermore, PSP.NET provides help in producing project plan summaries for analysis.

22 State of the art

PSPA (Sison, 2005), is a system of Web clients written in .Net languages. The main feature of

this tool is the automatic recording of compile defects from the programs written in C and JAVA

languages. The tool is mainly supported by Eclipse and is not a good option for programmer using

other integrated development environments. The tool also provides: automatic support for lines-

of-code (LOC) counting; daily schedule tracking; size and time estimation; preparing PSP reports

and graphs; editing PSP logs.

WBPS (Thisuk and Ramingwong, 2014), is implemented in PHP and MySQL, and provides

standard PSP functions which can be found in the official PSP Student Workbook such as time

logging, defect logging and process improvement proposal. In addition to the standard functions,

WBPS also offers several other features, such as management of design documents and standards,

integrated screens, review assistant and instructor assistant. It also proposes a multi-language

interface and online accessibility.

The tools discussed above mostly collect the data in automatic or semi-automatic way and

present them in the form of graphs, charts and summaries for further analysis but in practice there

is no automatic or semi-automatic support for the collected performance data to be analyzed for

problem and root causes identification and ranking.

In Figure 2.6 and Figure 2.7 are given examples of how PSP Student Workbook and Process

Dashboard tools provide support in the form of graphs, charts and reports for further manual

analysis.

By doing this analysis automatically, developers can save time for further in-depth analysis of

their performance data.

2.3 Performance measurement and analysis in other processes

Agile methods are the dominant paradigm in software engineering industry and education. An ex-

ample of metrics collection and analysis in agile project courses is described in (Alperowitz et al.,

2016). Some metrics are introduced to measure the success of three key workflows (merge man-

agement, continuous integration and continuous delivery), giving instructors and project leaders

a quick overview of the project status and problems which they can react upon. The main differ-

ences with respect to this research work are: in this research work the goal is to retrospectively

analyze completed projects; we try to identify and rank potential causes; for problem identifica-

tion, we use thresholds derived from large data sets. Nevertheless, the metrics introduced by the

authors could be adapted and explored in our approach. In principle, performance measures can

be defined for assessing the adherence to agile practices, such as the twelve XP practices (Beck,

2000). One of the challenges is the automatic collection of relevant process measures (e.g., to

assess the adherence to “sustainable pace”); the other challenge is the availability of large data

sets for model calibration.

2.3 Performance measurement and analysis in other processes 23

Table 2.4: PSP tool support.

@
@
@
@
@
@
@
@@

Tool

Charact-

eristics

Source Technology Process Data collec-
tion

Data analysis

PSP Student
Workbook

Software Engineering In-
stitute (SEI)

Microsoft
Access

PSP Manual Standard PSP
charts and reports
showing historical
trends

Process
Dashboard

US Air Force Tuma Solu-
tions (1998-present)

Java PSP / TSP Manual Standard PSP
charts and reports
showing historical
trends

Hackystat University of Hawaii
(2001-present)

Java Any (with
plug-ins)

Automatic
(with sen-
sors)

Summaries and
graphs

PSP.NET University of Malaya,
Malaysia 2005

Web PSP Manual No information

PSPA University of Manila,
Philippines, 2005

Desktop
(Microsoft.
NET)

PSP Automated
(with IDE
plugins)

No information

Jasmine Information and Commu-
nications University (now
merged into KAIST),
South Korea, 2007

Web PSP Automated
(with sen-
sors)

No information

WBPS Chiang Mai University,
Thailand, 2014

Web (PHP,
MySql)

PSP Manual (au-
tomatic LOC
counting)

No information

24 State of the art

Figure 2.6: Examples of data analysis charts and reports from PSP student workbook.

2.4 Performance problem identification techniques

In this section, specific techniques are analyzed for the identification, visualization and rating of

performance problems in relation to specific performance indicators under analysis. In general,

to decide if the value of a particular indicator is problematic and how good/bad it is, one needs

some thresholds or reference values. Ideally, those thresholds should be derived from historical

data in an automatic way, and not arbitrary values defined manually based on expert opinion. The

techniques described next differ in the way such thresholds are derived and visualized.

2.4.1 Control charts

In Statistical Process Control (SPC), run charts are used to graphically represent the behavior over

time of variables that characterize process performance (i.e., process performance indicators) and

help assessing process stability and capability. Stability has to do with the level of variability in

the variable under analysis. Capability has to do with the ability to meet desired performance

levels (Navidi, 2008).

2.4 Performance problem identification techniques 25

Figure 2.7: Examples of data analysis charts from Process Dashboard tool.

To assess if a process is under control (or stable), it uses control charts, which are basically

run charts with superimposed control limits – upper control limits (UCL) and lower control limits

(LCL) (see example in Figure 2.8).

Control limits are derived based on the standard deviation (σ) computed from historical pro-

cess data. The area between each control limit and the centerline is divided into zones. The closest

zone to the centerline is referred to as Zone A (1-sigma zone), the next is referred to as Zone B

(2-sigma zone), and the third one is referred to as the control limit Zone C (3-sigma zone) (see

Figure 2.9). The standard UCL and LCL are usually chosen as the 3-sigma limits.

When used to monitor the process, control charts can uncover inconsistencies and unnatural

variations.

For assessing process capability, it uses specification limits (USL and LSL) derived from re-

quirements or some external reference. Usually, a process is considered capable if the control

limits (derived from the process performance data) are within the specification limits. Examples

of control charts with both control limits and specification limits, for different stability and capa-

bility status are shown in Figure 2.10.

The main focus of our work is on checking capability. A technique that can be adapted for

automatically deriving specification limits from existing data for process capability analysis is

described in the next section.

26 State of the art

UCL

CL

LCL

V
ar

ia
b

le

Summary

Control Chart

300

200

100

0

-100

5 10 15 20
Time

Figure 2.8: Illustration of a control chart.

2.4.2 Benchmark based software evaluation

In our approach, in order to enable the automated identification of performance problems, after

deciding on the relevant PIs, one has to decide on the relevant ranges. Our approach for defining

such ranges draws inspiration from the benchmark-based approach developed by researchers of

the Software Improvement Group (Alves, 2012) (Alves et al., 2010) to rate the maintainability of

software products, with adaptations for process evaluation instead of product evaluation.

In (Alves, 2012) (Alves et al., 2010), the authors claim that the effective use of software met-

rics is hindered by the lack of meaningful thresholds. They also note that thresholds have been

proposed for a few metrics only, mostly based on expert opinion and a small number of observa-

tions, or systematically derived based on unjustified assumptions about the statistical properties

of the metrics (such as normality). Consequently, they propose a method to empirically derive in

a systematic way metric thresholds from measurement data (benchmarks), in order to determine

risk profiles and maintainability ratings for products under analysis. They propose a discrete rat-

ing schema (from 1 to 5 stars), based on thresholds that correspond to the 20%, 40%, 60% and

80% quantiles. This idea can be applied in our work, but a simpler rating scheme with three levels

only (and thresholds for the 33% and 66% quantiles), corresponding to the green, yellow and red

semaphores, seems sufficient and intuitive.

In our case, benchmarks may be derived from the performance data of a large community of

process users.

2.5 Root cause analysis techniques 27

68.3%

95.5%

99.7%

-1
 S

ig
m

a
–

Zo
n

e
 A

+
1

 S
ig

m
a
–

Zo
n

e
 A

+
2

 S
ig

m
a
–

Zo
n

e
 B

-2
 S

ig
m

a
–

Zo
n

e
 B

+ 3 Sigma –
Zone C

-3 Sigma –
Zone C

Figure 2.9: Illustration of deriving control limits and zones from the statistical distribution of
historical data, assuming normal distribution.

2.5 Root cause analysis techniques

After identifying performance problems, it is important to find their root causes, so that improve-

ment actions can subsequently be defined to address the relevant causes.

In this section, several techniques that can be used for identifying root causes are presented.

2.5.1 Fishbone diagrams

The Cause-and-Effect or Fishbone diagram (see Figure 2.11) is a classic technique for helping in

manual causal analysis and for visualizing relationships between causes and effects. It combines

the brainstorming and Mind Map to push one to consider all the possible causes of a problem. It

is also known as Ishikawa diagrams because Kaoru Ishikawa developed them in 1943 (Surhone

et al., 2010).

The Ishikawa diagram organizes and displays the relationships between different causes for

the effect that is being examined. This diagram also helps organize the brainstorming process.

The major categories of causes are put on major branches connecting to the backbone, and various

sub-causes are attached to the branches. A tree-like structure results, showing the many facets of

28 State of the art

YES NO

NO

YES

Stability

C
a

p
a

b
il
it

y

UCL

USL

LCL

V
ar
ia
b
le

Summary

Time

LSL

USL

UCL

LSL

V
ar
ia
b
le

Summary

Time

LCL

USL

UCL

LSL

V
ar
ia
b
le

Summary

Time

LCL

USL

UCL

LSL
V
ar
ia
b
le

Summary

Time

LCL

Legend: UCL: Upper control limit; LCL: Lower control limit; USL: Upper specification limit; LSL: Lower
specification limit.

Figure 2.10: Process stability versus capability.

the problem. The method for using this chart is to put the problem to be solved at the head, then

fill in the major branches.

2.5.2 Defect causal analysis

An example of applying Fishbone techniques in software engineering is Defect Causal Analy-

sis (DCA). Many process improvement approaches (e.g., Six Sigma (Kwak and Anbari, 2006) or

FMEA (Campos, 2012)) described in literature and practiced in industry include causal analysis

activities for determining the causes of defects and other problems (Kalinowski et al., 2012). How-

ever, most of the techniques are essentially manual. Defect Causal Analysis (Card, 1993) is one of

the prominent methods for analyzing defects and identifying root causes for improvement in soft-

ware engineering. Furthermore, the learning capability of DCA from defects enable improvement

of processes and products, which is a significant benefit in the context of continuous improvement

strategies (Card, 2005).

The DCA process involves 6 steps to be performed in DCA workshops (Card, 1993): (1)

select problem sample; (2) classify selected defects (e.g., using ODC); (3) identify systematic

errors (e.g., with Pareto charts); (4) determine main causes (e.g., using Fishbone or cause-effect

diagrams); (5) develop action proposals; (6) document meeting results.

The main problem of DCA is that it is basically a manual process, and our goal is to auto-

mate, at least partially, the root causes identification of performance problems. The idea is to

automatically drill down from performance problems to causes up to the level permitted by the

2.5 Root cause analysis techniques 29

Goal/ Problem

People Equipment

Procedures Materials

Cause-and-Effect Chart

2

2

2

2

1

11

1

3

3

3

3

Figure 2.11: Fishbone diagram.

data available. Manual analysis may still be required for identifying deeper causes not apparent in

the available data. Next we investigate a technique that can help in automatic causal analysis.

2.5.3 Process performance models

In order to be able to automatically identify and rank (prioritize) the causes of performance prob-

lems, we need to have some quantitative relationship between factors (causes) and outcomes. For

that purpose, the CMMI suggests the usage of process performance models (PPM).

In the context of the CMMI process improvement framework, a PPM is a description of the re-

lationship among attributes of a process or sub-process and its outcomes, developed from historical

process performance data and calibrated using collected process and product measures (Chrissis

et al., 2011).

In the case of continuous variables, a PPM often takes the form of a regression equation,

relating controllable or uncontrollable factors (x) with outcomes (y), together with an indicator of

the degree of variability in the model, such as the R2 statistic. In the case of discrete variables,

PPMs may be based on Bayesian networks (Zubrow et al., 2009).

PPMs are useful tools for project management and process management and improvement.

In the latter case, PPMs help organizations identify and leverage important relationships among

process factors and outcomes, and estimate the effects of alternative process changes. The creation

30 State of the art

of a PPM usually involves the following steps, among others: (1) decide what outcomes to analyze;

(2) hypothesize factors to investigate; (3) select the modeling techniques to use; (4) obtain relevant

data; (5) fit the model to the data and evaluate the degree of fitness according to statistical and

business criteria (Zubrow et al., 2009).

Examples of PPMs that can be constructed and applied in the context of the TSP/PSP, to-

gether with examples of outcomes and factors to consider for a few sub-processes, are described

in (Tamura, 2009). An example of a PPM created by a TSP team for establishing a target code

review rate (number of lines of code reviewed per hour), based on the predicted impact on the

code review yield (percentage of defects found in code reviews), is as follows (Tamura, 2009):

• Regression equation: CodeReviewYield = 146−0.364×CodeReviewRate

• R2 = 94.1%, p− value = 0.000

Examples of possible factors to consider for analyzing the code review yield are (Tamura,

2009):

• Outcome (y): code review yield;

• Factors (x) currently collected by TSP: requirements inspections rate, high-level design in-

spections rate, detailed design review rate, detailed design inspection rate, code review rate,

code review/coding time;

• Other factors (x) that could be collected: code complexity, encapsulation, programming lan-

guage & tools, code review checklist, coding skills and experiences with the programming

languages and tools used, code review skills and experiences, quality of reused source code.

PPMs can be applied in our work with adaptations, as will be explained in more detailed in

chapter 3. All the steps discussed above for the creation of PPMs will be applied, with some

adaptations and choices: in step 2, we follow a hierarchical approach (factors that can in turn be

affected by other factors, like in Fishbone diagrams); in step 3, we use a regression model in case

of statistical relationship between factors and outcomes, and an exact formula when there is an

algebraic relationship. The type of regression models applicable for our work are discussed in

section 2.5.4.

As mentioned before, PPMs can be used to estimate the effects of alternative process changes.

In our case, PPMs can be used to rank the factors, according to the effect of changes in single

factors on the outcome under analysis. Since our goal is just to rank the factors, sensitivity analysis

techniques can be used. Sensitivity analysis techniques are discussed in section 2.5.5. The exact

approach will be explained in chapter 3.

2.5.4 Regression models

Regression analysis is a statistical process that attempts to determine the strength of the relation-

ship between a dependent variable (e.g., Process Yield) and independent variables (e.g., Design

2.5 Root cause analysis techniques 31

Review Yield, Code Review Yield, etc.). It may also be referred to as the study of how a quantita-

tive response variable (or dependent variable) varies when an explanatory variable (or independent

variable) changes.

In general, regression analysis attempts to find a function that fits a series of observations

with minimal error. It should also be noted that regression does not necessarily suggest a causal

relationship between response variable and explanatory variables but a significant association.

Analysis that assumes a single independent variable to predict the value of a dependent variable

is known as simple regression; analysis that assumes two or more independent variables for the

prediction of the value of a dependent variable is known as multiple regression (Chatterjee and

Hadi, 2015).

Regression modeling can be performed in different ways. Traditionally, regression techniques

are categorized as linear or nonlinear. Linear regression tries to model the relationship between

dependent and independent variable(s) by fitting a linear equation to observed data. For random

noise that cannot be explained by the linear relationship, a variable known as model error is intro-

duced. Linear regression models assume the form of the following expression:

y = b0 +b1x1 +b2x2 + ...+bixi + e (2.1)

Linear regression models attempt to determine these parameters by minimizing the function in

regards to an expression that compares observed with predicted values (the least squares method

is a typical approach for this). Generally, when using linear regression models, it is simple to

interpret the relationship between dependent variable and predictors and analyze the correlation

among predictors (Kuhn and Johnson, 2013).

Nonlinear regression models (Seber and Wild, 1989) are expressed by functions that are not

linear in the parameters. These models tend to vary in approach, and comprise many different tech-

niques. Common models of this type include neural networks, Support Vector Machines (SVM),

k-Nearest Neighbors (k- NN), Multivariate Adaptive Regression Splines (MARS) and tree-based

models (Aggarwal, 2014).

2.5.5 Sensitivity analysis

When an outcome (y) is affected by multiple factors (x1...,xn, with n > 0), sensitivity coefficients

may be used to measure the importance of those factors. The sensitivity coefficient is basically the

ratio of the change in output to the change in input while keeping all other parameters constant.

In our model, we will expect two types of relationships between independent variables and

dependent variables.

In case there is an explicit algebraic equation that describes the relationship between the in-

dependent variables and the dependent variable, the sensitivity coefficient, φi, for a particular

32 State of the art

independent variable Xi can be calculated from the partial derivative of the dependent variable

with respect to the independent variable (Hamby, 1994), i.e.

φXi →Y=
∂Y
∂Xi

(
Xi

Y

)
(2.2)

where the quotient, Xi/Y , is introduced to normalize the coefficient by removing the affects of

units. Inherent to this calculation are the assumptions that the higher ordered partials are negligible

and there is no correlation between input parameters.

In case there is no explicit algebraic equation that describes the relationship between the in-

dependent and the dependent variables, then a regression formula can be calibrated based on the

historical data form many process users for sensitivity coefficient (Navidi, 2011).

Chapter 3

Proposed performance analysis method

This chapter presents the ProcessPAIR method for automated performance analysis and improve-

ment recommendation. Section 3.1 introduces the overall approach covering performance prob-

lems and their root causes identification, and ranking. Section 3.2 describes performance model

definition. Section 3.3 describes the performance model calibration covering cumulative distri-

bution functions, performance ranges, regression models and sensitivity coefficients, and data set

filtering. Section 3.4 presents model based performance analysis. The method is applicable to any

software development process or business process.

3.1 Overall approach

Our approach involves three main steps (see Figure 3.1):

1. Define: Process experts define the structure of a performance model (PM) suited for the de-

velopment process under consideration. In our approach, a PM comprises a set of top-level

and child performance indicators (PIs), organized hierarchically by cause-effect relation-

ships.

2. Calibrate: The PM is automatically calibrated by ProcessPAIR based on the performance

data of many process users. The statistical distribution of each PI and statistical relations

between PIs are computed from the calibration data set.

3. Analyze: Once a PM is defined and calibrated, the performance data of individual develop-

ers can be automatically analyzed by ProcessPAIR, to:

(a) identify performance problems (in top-levels PIs),

(b) identify potential root causes (related with child PIs), and

(c) rank the performance problems and their potential root causes.

The 3 steps of our approach are generically interrelated as described in the next sub-sections.

33

34 Proposed performance analysis method

 act Process v iew

P
ro

c
e

s
s

P
A

IR
P

ro
c

e
s

s
 e

x
p

e
rt

1. Define performance

model structure

2. Calibrate performance

model

3. Analyze dev eloper

performance data

Performance model structure

Performance indicators (PIs)

Relationships between PIs

Calibrated performance model

Statistical distribution of PIs

Statistical relationships between PIs

Performance analysis and

recommendation report

Performance problems

Ranked root causes

Performance data

of a single

dev eloper

Performance data

from many

dev elopers

Figure 3.1: UML activity diagram (UML2.5, 2015) depicting the main activities and artifacts in
the ProcessPAIR approach.

3.1.1 Problem identification approach

In order to enable the automated identification of performance problems in step 3, one has to

first decide on the relevant (top-level) PIs and recommended performance ranges. The relevant

top-level PIs are identified by the process expert in step 1. The recommended ranges of each PI

are determined automatically in step 2, based on its statistical distribution in the calibration data

set, according to the following criteria: the 1/3 values closest to the optimal value correspond to

“good” performance (no performance problem); the 1/3 values farthest from the optimal value cor-

respond to “bad” performance (clear performance problem); the 1/3 values in between correspond

to intermediate performance (potential performance problem).

The optimal value of each PI is defined by the process expert in step 1. In most cases, the

optimal value is implicit in the definition of the PI (e.g, 0 is the optimal value for defect density).

3.1 Overall approach 35

3.1.2 Root cause identification approach

In order to enable the automated identification of root causes of performance problems in step

3, one has to first decide on the relevant cause-effect relationships. In our approach, lower-level

PIs that may affect, directly or indirectly, top-level PIs according to a cause-effect relationship are

specified by the process expert in step 1. Then, in step 3, it is possible to recursively drill down

from problematic top-level PIs (with a clear or potential performance problems) to problematic

lower-level PIs (with a clear or potential performance problems). PIs that can not be further drilled

down indicate the potential root causes.

3.1.3 Ranking approach

When multiple potential root causes (problematic child PIs) are identified for a performance prob-

lem in a top-level PI, it is important to rank them (step 3).

Let X1, ...,Xn be a set of lower-level PIs that affect the value of a higher-level PI Y. Let us

assume that such relationship can be described by a function Y = f (X1, ...,Xn), representing an

exact formula for deriving Y or a regression formula derived from the calibration data set. We

rank the factors Xi according to the values of a ranking coefficient ρi that represents a cost-benefit

estimate of improving each factor Xi whilst keeping the other factors unchanged.

The benefit on Y of a change in the value of a factor Xi can be expressed by the resulting

relative variation in the value of Y, i.e., ∆Y/Y .

As for the cost of changing the value of a factor Xi, intuitively, the closest the value is to the

optimal value, in terms of percentiles, the more difficult (and less important) it is to improve it.

Let us denote by Pi(Xi) = Fi(Xi)−Fi(oi) the percentile distance of Xi to the optimal value, where

Fi represents the approximate cumulative distribution function of Xi, and oi represents the optimal

value of Xi. Our base heuristic is that equal relative variations in the Pi
′s have similar costs. So,

we take as cost estimate the relative variation ∆Pi/Pi.

We approximate the cost-benefit ratio using partial derivatives (for small variations) to derive

a ranking coefficient (ρi):
∆Y
Y

∆Pi
Pi

=

[
∆Y
∆Xi

(
Xi
Y

)]
×

[
∆Xi
∆Pi

(
Pi
Xi

)]
≈

[
∂Y
∂Xi

(
Xi
Y

)]
×

[
1

∂Pi
∂Xi

(
Pi
Xi

)]
= σXi→Y ×πPi→Xi = ρi

The first coefficient, σXi→Y = ∂Y
∂Xi

(
Xi
Y

)
, is a sensitivity coefficient (Saltelli et al., 2008) that

computes the impact of small variations in the value of a factor Xi on the value of Y, whilst keeping

all the other factors unchanged. The second coefficient, πPi→Xi =
1

∂Pi
∂Xi

(
Pi
Xi

)
= Fi(Xi)−Fi(oi)

XiF ′i(Xi)
, which

we call a percentile coefficient, computes the impact of small variations in the current percentile

distance (Pi) of Xi to the optimal value (oi) on the value of Xi. We denote by F ′i(Xi) the first

derivative of Fi(Xi), representing the probability density function.

The optimal value of each PI is provided by the process expert in step 1. The approximate

statistical distribution of each PI is automatically computed from the calibration data set in step 2.

Regarding the sensitivity coefficients, in case parent and child PIs have an exact relationship, the

36 Proposed performance analysis method

sensitivity coefficient is provided by the process expert in step 1; in case parent and child PIs are

statistically related, a regression model and a corresponding sensitivity coefficient are computed

automatically in step 2 from the calibration data set.

The next sections give further details about the three steps of our approach.

3.2 Performance model definition

A performance model for a development process under consideration is defined by means of the

following information (see Figure 3.2):

1. Set of relevant base measures generated by the development process under consideration, at

the project level, with their name (short name and long name), description, scale (minimum

value, maximum value and precision digits), and measurement units.

2. Set of relevant top-level PIs, described by the same attributes as the base measures, plus the

optimal value (usually implied by the definition of each PI) and formula for computation

from base measures.

3. Child PIs that affect directly or indirectly (by a cause-effect relationship) the top-level PIs

according to a formula or statistical evidence.

4. Sensitivity coefficients (Saltelli et al., 2008) σXi→Y = ∂Y
∂Xi

(
Xi
Y

)
, i = 1...n for each PI Y that

is affected by child PIs X1, ...,Xn, according to an exact formula Y = f (X1, ...,Xn).

Concrete examples can be consulted in chapter 4.

3.3 Performance model calibration

The PM is automatically calibrated by ProcessPAIR from training data sets (containing values of

base measures for many users and projects), generating the following data (also visible in Fig-

ure 3.2):

• approximate statistical distribution of each PI, represented by a cumulative distribution func-

tion;

• recommended performance ranges for each PI;

• regression models and sensitivity coefficients between related PIs, but not by an exact for-

mula.

3.3.1 Approximate cumulative distribution functions

The approximate cumulative distribution function of each PI could be obtained by computing a

theoretical distribution that best fits the training data, or by linear interpolation between a few

3.3 Performance model calibration 37

 class performancemodel

PerformanceIndicator

optimalValue: double

formula: NumericFunction<Project>

recommendedRanges: Map<Interval, Semaphor>

approximateStatisticalDistribution: StatisticalDistribution

PerformanceModel

name: String

Dependency

sensitivityCoefficient: NumericFunction<Project>

Semaphor

Green

Yellow

Red

Measure

shortName: String

longName: String

description: String

units: String

min: double

max: double

decimalDigits: int

BaseMeasure

*

11

topLevelIndicators
*

parentIndicator

*
childIndicator *

{ordered}

/allIndicators *

1

Figure 3.2: UML class diagram depicting the main concepts involved in model definition and
calibration.

percentiles computed from the training data. Since different PIs may follow different types of

continuous distributions or may even follow a hybrid continuous-discrete distribution, with non-

zero probability at the ends of the scale, we opted for the second method.

To balance fit, smoothing and storage space, we sample the cumulative frequency distribution

of the training data for the following relative frequencies: 0%, 1%, 5%, 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%, maximum relative frequency for which the ob-

served value equals the minimum of the scale (if any observed), and minimum relative frequency

for which the observed value equals the maximum of the scale (if any observed). The approximate

cumulative distribution function of the PI under consideration is a piecewise linear function that

connects the sampling points, as illustrated in Figure 3.3. The only calibration information that

needs to be stored are the sampling points (illustrated by red circles in Figure 3.3).

Examples of concrete distributions can be consulted in chapter 4.

38 Proposed performance analysis method

a) Distribution of a PI in the
calibration data set

C
u

m
u

la
ti

v
e

re
la

ti
v

e
fr

eq
u

en
cy

Performance
indicator

min. max.

100%

0%

b) Approximate cumulative distribution
function of the PI in the model

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Performance
indicator

min. max.

100%

0%

80%

60%

40%

20%

80%

60%

40%

20%

Figure 3.3: Illustration of the procedure for obtaining an approximate cumulative distribution
function of a PI (example with hybrid continuous-discrete distribution, and sampling at 20% in-
tervals).

3.3.2 Performance ranges

As previously explained, performance ranges are needed for classifying values of each PI of a

subject under analysis into three semaphores:

• green - no performance problem;

• yellow - a possible performance problem;

• red - a clear performance problem.

Such ranges are determined automatically from the approximate cumulative distribution func-

tion computed in the previous step, so that there is an even distribution of training data points by

the colors (1/3 of data points per color). In case the optimal value is located in one of the extremes

of the scale, the ’green’ range is also located in the same extreme of the scale, the ’red’ range in the

other extreme, and the ’yellow’ range in the middle. In that case, thresholds are computed from

the cumulative distribution function based on terciles and subsequently rounded to the number of

precision digits specified for the PI under consideration. In case the optimal value is located in the

middle of the scale, we split the intervals to the left and the right of the optimal value based on

terciles, in order to derive the performance ranges, as illustrated in Figure 3.4.

3.3.3 Regression models and sensitivity coefficients

Sensitivity coefficients between PIs not related by an exact formula are computed by first determin-

ing a regression model from the calibration data set and subsequently computing the corresponding

sensitivity coefficients.

Assume that in the first step of our method the process expert indicated that a performance

indicator Y is affected by X1, ...,Xn(n ≥ 1), but Y is not determined by those factors according

3.3 Performance model calibration 39

Cumulative
probability

Performance
indicator

0%

optimal value

p

1/3 p

2/3 p

p + 1/3 (100%-p)

100%

p + 2/3 (100%-p)

RR YGY G
min max

Figure 3.4: Illustration of the procedure for determining the green (G), yellow (Y) and red (R)
ranges from the cumulative distribution function of a PI, in case the optimal value lays in the
middle of the scale.

to an exact formula. An example in the PSP is the Review Yield (percentage of defects found in

reviews) which, according to (Kemerer and Paulk, 2009), is affected by the Review Rate (size

units reviewed per time units).

In such case, we first compute a regression model Ŷ = f (X1, . . . ,Xn) from the calibration data

set for predicting the value of Y from the values of (X1, ...,Xn), and subsequently compute the

sensitivity coefficients from that model as

σXi→Y =
∂Ŷ
∂Xi

Xi

Y
, i = 1, ...,n. (3.1)

Because the relationship between the PIs involved may be non-linear, instead of computing

a global linear model (derived by simple or multiple regression, depending on the value of n),

we have the option to compute a piecewise linear model organized as a regression tree (Breiman,

1984). The type of model to use (global or piecewise linear model) is selected by the process expert

in the first step of our method. A regression tree (Breiman, 1984) is a binary decision tree; at each

non-leaf node, the value of one of the factors (Xi) is compared to a so called split value in order

to decide the sub-tree to follow. Hence, each leaf will correspond to a subset (n-dimensional cube

or cell) of the space of possible values of X1, ...,Xn. Since we are interested in computing a linear

piecewise model, each leaf node k has an associated linear model Ŷ = βk,0 +βk,1X1 + ...+βk,nXn,

computed from the points in the calibration data set that fall in that cube, by simple (n=1) or

multiple (n>1) linear regression.

40 Proposed performance analysis method

Special provisions are taken for handling variables with a constant value: if a variable Xi is

constant, then βk,i = 0; if Y is constant, then βk,1 = ...= βk,n = 0.

In the recursive tree construction process, we use the following split criterion: as suggested in

(Shalizi, 2009), we select the split variable (Xi) that provides the highest decrease of the tree SSE

(sum of squared errors); for each tentative split variable Xi, we do a split as closest as possible to

a binary split that guarantees disjoint Xi values on both segments (this is important to handle re-

peated values). We use the following stop criterion: a cell size cannot contain less than a specified

minimum number of training data points (100 for inner cells, and a number between 100 and 25

for border cells, depending on the number of borders).

An alternative to regression trees are multivariate adaptive regression splines (MARS) (Fried-

man, 1991), which also handle non-linearities and interactions between factors, and generate more

compact models than regression trees. In the experiments conducted, we obtained lower mean ab-

solute errors (MAE) and root mean squared errors (RMSE) with regression trees as compared to

MARS, particularly in cases where the dependent variable Y is strongly determined by the factors

X1, ...,Xn (with a coefficient of determination R2 close to 1) in a non-linear manner. So, we use

the described regression trees, in spite of the higher storage space required, but can also support

MARS in the future.

In each leaf node k we only have to store the coefficients βk,0,βk,1, ...,βk,n of the model. In

each non-leaf node, we have to store the index and value of the split variable. During performance

analysis (step 3), once determined the cell k corresponding to a data point (X1, ...,Xn,Y) under

consideration, the sensitivity coefficients are simply computed at runtime as:

σXi→Y =
∂Ŷ
Xi

(Xi

Y

)
= βk,i

Xi

Y
(i = 1, ...,n). (3.2)

See example of excerpt of concrete regression tree in Figure 4.3 in chapter 4.

3.3.4 Data set filtering

Instead of using the full data set for calibration, it may make sense to filter the data points to be

used for calibration. One possibility is to restrict (or filter) the data points to the ones most similar

to a given user profile. This requires that each data point in the calibration data set, besides values

for the base measures, also contains values for the variables that can be used for filtering. Those

variables should be specified by the process expert together with the PM.

Similarity is computed with the Gower similarity co-efficient (Gower, 1971), because it pro-

vides a measure of proximity adequate for mixed data types (combining numeric and categorical

data).

Let n be the number of variables under consideration (the ones constrained in the supplied

profile), and let p and t be vectors that contain the values of those variables in the supplied profile

and in a data point in the training data set, respectively.

3.4 Model-based performance analysis 41

In the case of a categorical variable k (e.g., programming language), the similarity sk between t

and p regarding k(1≤ k≤ n), is a number between 0 (least similar) and 1 (most similar) computed

as (Gower, 1971):

sk =

1 if tk = pk,

0 otherwise .
(3.3)

In the case of a numerical variable with a finite range (e.g., programming experience in years),

the similarity is computed as (Gower, 1971):

sk = 1− |tk− pk|
rk

(3.4)

where rk is the range of values for the kth variable (distance between minimum and maximum

allowed or observed values).

However, many numerical variables of interest have positive values spread along a wide range,

with many comparatively small values and a few comparatively large values. E.g., in the training

data set that we used for calibrating the PSP model (see chapter 4), 1,604 developers (out of 3,112)

indicated their programming experience in KLOC, with a median of 10 KLOC and a maximum

above 10,000 KLOC. Using the above formula, the similarity would be close to 0 for most of the

pairs of data points. In such cases, the process expert may specify a monotonic scale transforma-

tion function to be applied prior to using the similarity formula. E.g., the function 1− e
−x
τ , where

x is the variable of interest and τ is a constant, transforms the [0,+∞[interval to the [0,1[interval.

Another possibility (that can be selected by the process expert) is to compute the similarity

based on the ranking of x in the training data set (i.e., the relative position of x in the sorted

multiset of values in the training dataset).

By default, all the variables are given equal weights, so the similarity s between t and p (con-

sidering all the variables) becomes a simple average:

s =
1
n

n

∑
k=1

sk (3.5)

Regarding the number of most similar data points to select, we use the following criteria:

for statistical significance, at least 50 data points are selected; additionally, all data points with

a similarity to the given profile greater or equal than 0.9 are selected. These numbers can be

configured. Data points with undefined values for any of the variables under consideration are not

selected.

3.4 Model-based performance analysis

The base performance data of a subject under analysis (developer, team or company) that needs to

be uploaded by ProcessPAIR, consists of the values of the base measures defined in the selected

42 Proposed performance analysis method

performance model for a sequence of projects (see Subject, Project, and ProjectBaseMeasure in

Figure 3.5).

 class subjectdata

Project

seqNumber: int

name: String

/ProjectIndicator

/value: double

Subject

ProjectBaseMeasure

value: double

/SubjectIndicator

/minimum: double

/maximum: double

/average: double

«enumeration»

RankingLabel

Very Large

Large

Medium

Small

Very Small

/DependencyInstance

/sensitivityCoefficient: double

/rankingCoefficient: double

/rankingLabel: RankingLabel

/IndicatorInstance

/percentile: double

/sempahor: Semaphor

/percentileCoefficient: double

PerformanceModel

BaseMeasure Dependency

PerformanceIndicator

*

1

*1

*

1

*

1

*

parentOrTopInd

1

1 *

*

0..1

*

1

*

childOrLeafInd

1

1

*

Figure 3.5: UML class diagram depicting the main concepts involved in the analysis of subject
data.

3.4.1 Project level information

Based on the values of the base measures, ProcessPAIR computes the following data for each PI

and project (see ProjectIndicator and IndicatorInstance in Figure 3.5):

• value – computed from the base measures and PI’s formula; this value may be undefined in

some cases;

• normalized percentile – computed from the previous value and the statistical distribution

of the PI in the PM, normalized so that 100% corresponds to the optimal value and 0%

corresponds to extreme values to the left or to the right of the optimal value. Formally,

denoting by Fi, oi and x the approximate cumulative distribution function, optimal value and

3.4 Model-based performance analysis 43

actual value of the PI under consideration, respectively, and by Ni the normalized percentile,

we have:

Ni =


1 if x = oi,

Fi(x)
Fi(oi)

if x < oi,

1− Fi(x)−Fi(oi)
1−Fi(oi)

if x > oi.

(3.6)

• semaphore – determined by comparing the PI value with the calibrated performance ranges,

or, equivalently, computed from the normalized percentile as follows: green for the 66.7%-

100% range, yellow for the 33.3%-66.7% range, and red for the 0%-33.3% range;

• percentile coefficient – as previously explained, the percentile coefficient of a PI Xi with

value x is computed as πPi→Xi =
Fi(x)−Fi(oi)

xF ′i
, where oi is the optimal value of Xi, Fi is the

approximate cumulative distribution function of Xi, and F
′

i is the first derivative of Fi. The

percentile coefficient is needed for computing the ranking coefficient, but is hidden from the

normal user.

For each dependency defined in the PM and project, the following information is computed

(see DependencyInstance in Figure 3.5):

• sensitivity coefficient computed from the project data and the sensitivity formula defined in

the PM. The sensitivity coefficient is needed for computing the ranking coefficient, but is

hidden from the normal user;

• ranking coefficient - computed as the product of the previous sensitivity coefficient and the

percentile coefficient of the child PI;

• ranking label – a discretization of the ranking coefficient in terms of T-shirt sizes, for user

presentation purposes, according to the mapping {]−∞,0.01[→ VerySmall, [0.01,0.1[→
Small, [0.1,1[→Medium, [1,10[→ Large, [10,+∞[→ VeryLarge}. Such thresholds may be

interpreted as follows: considering an improvement by 10% in the child PI (reduction of the

percentile distance to the optimal value), the estimated improvement in the parent PI will be

≤0.1% (very small), 0.1%-1% (small), 1% - 10% (medium), 10%-100% (large), >=100%

(very large).

The following information is also computed between child indicators (at any level) and top-

level indicators:

• composite sensitivity coefficient – recursively computed from the (elementary) sensitivity

coefficients, as explained in section 3.4.3;

• composite ranking coefficient – computed as the product of the previous sensitivity coeffi-

cient and the percentile coefficient of the child PI;

• composite ranking label – computed in a way similar to the ranking label for directly PIs.

44 Proposed performance analysis method

3.4.2 Subject level information

Summary information for each PI is computed at the subject level (see SubjectIndicator and Indi-

catorInstance in Figure 3.5):

• minimum, maximum, average – simple statistics calculated from the values computed at the

project level;

• aggregated normalized percentile – weighted average of the normalized percentiles com-

puted at the project level, using an exponentially decaying weight for older projects with

a configurable "memory retention factor". Formally, denoting by x1, ...,xm and Ni,1, ...,Ni,m

the values and corresponding normalized percentiles of the PI under consideration (Xi) for

a sequence of projects 1, ...,m, by f the memory retention factor (0 < f < 1,e.g.,0.85), by

de f ined(x j) a predicate that indicates if xi is defined for project j, and by Ni,∗ the aggregated

normalized percentile, we have:

Ni,∗ =
∑ j∈{1,...,m}∧de f ined(x j) f m-jNi, j

∑ j∈{1,...,m}∧de f ined(x j) f m-j (3.7)

• aggregated semaphore – computed from the aggregated normalized percentile, in a similarly

way to what is done at the project level.

The following aggregated information is computed at the subject level, for direct dependen-

cies:

• aggregated ranking coefficient - weighted average of the ranking coefficients computed at

the project level, using an exponentially decaying weight for older projects with a config-

urable factor, in a way similar to the aggregated normalized percentile;

• aggregated ranking label – computed in a way similar to the ranking label at the project

level.

The following aggregated information is also computed at the subject level, for indirect de-

pendencies:

• aggregated composite ranking coefficient - weighted average of the composite ranking co-

efficients computed at the project level, using an exponentially decaying weight for older

projects with a configurable factor, in a way similar to the aggregated normalized percentile;

• aggregated composite ranking label – computed in a way similar to the ranking label at the

project level.

3.4 Model-based performance analysis 45

3.4.3 Ranking calculations

3.4.3.1 Compositive sensitivity coefficients

In the general case, the root causes to be ranked X1, . . . ,Xn may be indirect children of the prob-

lematic top-level PI under consideration (Y). In this case, the function f that relates the involved

PIs may be expressed as a composite function, based on the elementary functions that relate each

PI with its direct children. As a consequence, the sensitivity coefficients may be computed using

the laws of partial derivatives of composite and multivariate functions. For example, regarding the

PIs illustrated in Figure 3.6, we can compute a sensitivity coefficient between indirectly related

PIs as follows:

σX4 →Y =
∂Y
∂X4

(
X4

Y

)

=
∂Y
∂X1

∂X1

∂X4

(
X4

Y

)
+

∂Y
∂X2

∂X2

∂X4

(
X4

Y

)

=
∂Y
∂X1

X1

Y
∂X1

∂X4

X4

X1
+

∂Y
∂X2

X2

Y
∂X2

∂X4

X4

X2

= σX1 →Y σX4 →X1 +σX2 →Y σX4 →X2

(3.8)

X1

X2

Yf0

X3

X4

f1

X5

f2

𝜎𝑋3→𝑌 = 𝜎𝑋1→𝑌𝜎𝑋3→𝑋1

𝜎𝑋4→𝑌 = 𝜎𝑋1→𝑌𝜎𝑋4→𝑋1 + 𝜎𝑋2→𝑌𝜎𝑋4→𝑋2

𝜎𝑋5→𝑌 = 𝜎𝑋2→𝑌𝜎𝑋5→𝑋2

Figure 3.6: Computation of sensitivity coefficients between indirectly related PIs.

In general, denoting by child(X j) the direct child of an indicator X j, the (composite) sensi-

tivity coefficient σ
′

between any two PIs (directly related, indirectly related or unrelated) can be

computed recursively from the elementary sensitivity coefficients as follows:

σ
′
Xi→X j

=


σXi→X j if Xi ∈ child(X j),

1 if i = j,

∑k∈child(X j)σXi→Xk
σXk→Xj

otherwise .

(3.9)

46 Proposed performance analysis method

3.4.3.2 Corner cases in ranking calculations

The value of a percentile coefficient (πPi→Xi), sensitivity coefficient (σXi→Y) or ranking coefficient

(ρi) may be indeterminate for corner values (C) of the variable involved (Xi), because of non-

linearities (making the derivative undefined) or operations such as 0/0 or 0×∞. In order to try to

remove the indeterminacy, we take the limit, as follows:

πPi→Xi(C) = lim
Xi→C

∂Xi

∂Pi

(
Pi

Xi

)

σXi→Y (C) = lim
Xi→C

∂Y
∂Xi

(
Xi

Y

)

ρi(C) = lim
Xi→C

[
σXi→Y (x)×πPi→Xi(x)

]
In most cases, this is sufficient to remove the indeterminacy. Some representative cases are

illustrated in Figure 3.7 and Figure 3.8.

Xi

(e.g. PY)

max=m

0 = min = optimal Xi

(e.g., DDUT)

Fi (Xi)

…

a Xi + b b

Not using limits:

𝜋𝑖 (0) =
𝐹𝑖 𝑋𝑖 −𝐹𝑖 𝑜𝑖

𝑋𝑖𝐹𝑖
′(𝑋𝑖) 𝑋𝑖=0

=
𝑏−𝑏

0×𝐹𝑖
′(0)

=

0

0 × 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
, 𝑖𝑓 𝑏 > 0

0

0 × 𝑎
, 𝑖𝑓 𝑏 = 0

= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

𝑈𝑠𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡𝑠:

𝜋𝑖(0) = lim
𝑋𝑖→𝑐

𝐹𝑖 𝑋𝑖 −𝐹𝑖 𝑜𝑖

𝑋𝑖𝐹𝑖
′(𝑋𝑖) 𝑐=0

= lim
𝑋𝑖→0+

(𝑎𝑋𝑖+𝑏)−𝑏

𝑋𝑖 𝑎
= 1

𝜋𝑖(0) ?

Not using limits:

𝜋𝑖 (0) =
𝐹𝑖 𝑋𝑖 −𝐹𝑖 𝑜𝑖

𝑋𝑖𝐹𝑖
′(𝑋𝑖) 𝑋𝑖=0

=
𝑏−𝐹𝑖 𝑜𝑖

0×𝐹𝑖
′(0)

=

𝑏−𝐹𝑖 𝑜𝑖

0 × 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
, 𝑖𝑓 𝑏 > 0

−𝐹𝑖 𝑜𝑖

0 × 𝑎
, 𝑖𝑓 𝑏 = 0

=
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 𝑏 > 0

−𝐹𝑖 𝑜𝑖

0 × 𝑎
, 𝑖𝑓 𝑏 = 0

𝑈𝑠𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡𝑠:

𝜋𝑖(0) = lim
𝑋𝑖→𝑐

𝐹𝑖 𝑋𝑖 −𝐹𝑖 𝑜𝑖

𝑋𝑖𝐹𝑖
′(𝑋𝑖) 𝑐=0

= lim
𝑋𝑖→0+

(𝑎𝑋𝑖+𝑏)−𝐹𝑖 𝑜𝑖

𝑋𝑖 𝑎
= −∞

(0 ≤b<1)

Fi (Xi)

…

Not using limits:

𝜋𝑖 (𝑚) =
𝐹𝑖 𝑋𝑖 −𝐹𝑖 𝑜𝑖

𝑋𝑖𝐹𝑖
′(𝑋𝑖) 𝑋𝑖=𝑚

=
1−𝐹𝑖 𝑜𝑖

𝑚×𝐹𝑖
′(𝑚)

=

1−𝐹𝑖 𝑜𝑖

𝑚× 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
, 𝑖𝑓 𝑑 < 1

1−𝐹𝑖 𝑜𝑖

𝑚×𝑎
, 𝑖𝑓 𝑑 = 1

=
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑖𝑓 𝑑 < 1

1−𝐹𝑖 𝑜𝑖

𝑚× 𝑎
, 𝑖𝑓 𝑑 = 1

𝑈𝑠𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡𝑠:

𝜋𝑖(𝑚) = lim
𝑋𝑖→𝑐

𝐹𝑖 𝑋𝑖 −𝐹𝑖 𝑜𝑖

𝑋𝑖𝐹𝑖
′(𝑋𝑖) 𝑐=𝑚

= lim
𝑋𝑖→𝑚−

(𝑎𝑋𝑖+𝑏)−𝐹𝑖 𝑜𝑖

𝑋𝑖 𝑎
=

𝑑−𝐹𝑖 𝑜𝑖

𝑚× 𝑎
(𝑑𝑒𝑓𝑖𝑛𝑒𝑑)

𝜋𝑖(𝑚) ?

(0 <d≤ 1)
1
d

a Xi + b

0 = min < optimal

Fi (Xi)

…

a Xi + b b

𝜋𝑖(0) ?

(0 ≤b<1)

Xi

(e.g., PY)

i)

ii)

iii)

Figure 3.7: Examples of solving indeterminacy in the calculation of the percentile coefficient by
using limits.

3.4 Model-based performance analysis 47

a PY + b b

𝜋𝑃𝑌(0) = lim
𝑃𝑌→0

𝐹 𝑃𝑌 − 𝐹 1

𝑃𝑌 𝐹′(𝑃𝑌)
= lim
𝑃𝑌→0+

(𝑎 𝑃𝑌 + 𝑏) − 1

𝑃𝑌 𝑎
= lim
𝑃𝑌→0+

𝑏 − 1

𝑃𝑌 𝑎
= −∞

0

F(PY)

…

PY

0

 𝐷𝐷𝑈𝑇

…

c DDUT + d

PY

d 𝜎𝑃𝑌→𝐷𝐷𝑈𝑇 0 = lim
𝑃𝑌→0

𝜕 𝐷𝐷𝑈𝑇

𝜕 𝑃𝑌

𝑃𝑌

𝐷𝐷𝑈𝑇
= lim
𝑃𝑌→0

𝑐 𝑃𝑌

𝐷𝐷𝑈𝑇
= 0 (𝑖𝑓 𝐷𝐷𝑈𝑇 ≠ 0)

1
=max=optimal

1

1

Not using limits: 𝜌𝑃𝑌→𝐷𝐷𝑈𝑇 0 = 𝜋𝑃𝑌 0 × 𝜎𝑃𝑌→𝐷𝐷𝑈𝑇 0 = −∞× 0 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

Using limits: 𝜌𝑃𝑌→𝐷𝐷𝑈𝑇 0 = lim
𝑃𝑌→0
𝜋𝑃𝑌 𝑃𝑌 × 𝜎𝑃𝑌→𝐷𝐷𝑈𝑇 𝑃𝑌 = lim

𝑃𝑌→0

𝑏−1

𝑃𝑌 𝑎

𝑐 𝑃𝑌

𝐷𝐷𝑈𝑇
=
𝑏−1 𝑐

𝑎 𝐷𝐷𝑈𝑇
(𝑑𝑒𝑓𝑖𝑛𝑒𝑑)

Figure 3.8: Example of solving indeterminacy in the calculation of the ranking coefficient by using
limits.

3.4.3.3 Selection and sorting rules

In this section, we explain how the relevant root causes of an identified performance problem are

selected based on the ranking coefficients and semaphores.

Assume that a problematic top-level PI Y was identified (with a red or yellow semaphore) for

a specific project or overall for a subject under analysis, as illustrated in Figure 3.9. Also assume

that Y has the direct and indirect child PIs indicated in Figure 3.9, with their semaphores and

ranking coefficients already calculated.

The selection of the relevant root causes is performed in three steps.

In step 1 (cut non major issues), we cut the child PIs (and their direct or indirect children) that

(i) have a green semaphore or (ii) a ranking coefficient to parent less than a defined threshold (e.g.,

0.1). A node in the tree with multiple parents is cut only if it (i) has a green semaphore, or (ii)

all the ranking coefficients to the parents are less than the defined threshold, or (iii) all the parents

have been cut. E.g., In Figure 3.9, X7 is not cut because only one of its two parents was cut.

In step 2 (cut non relevant leafs), we cut the leafs that have a composite ranking coefficient to

root less than the defined threshold (e.g., 0.1). This procedure is repeated (bottom-up) until there

are no leafs with that condition.

48 Proposed performance analysis method

Finally, in step 3 (show only leaf causes), we select the leafs resulting from the previous steps

as the relevant root causes to be presented to the user, sorted according to the ranking coefficient

to root.

The reason for using the 0.1 threshold is based on the following intuition. In case of a ranking

coefficient of 0.1, if we reduce by 10% the percentile distance to the optimal value of a factor Xi ,

then the relative variation in the value of Y will be just 1%, which is almost insignificant.

Y

X2 [0.8]X1 [1.0]

1.0

X4 [1.0] X5 [2.0] X6 [0.2]

Step 1 – Cut non-major issues
(top-down)

Step 2 – Cut non-relevant leafs
(bottom-up)

0.8

Step 3 - Show only
leaf causes (ranked)

X3 [1.0]

1.0

X7 [0.05]

.051.5 1.00.22.0

Y

X2 [0.8]X1 [1.0]

1.0

X4 [1.0] X5 [2.0]

0.8

X7 [0.05]

1.5 0.22.0

X8 [1.0] X9 [1.0]

1.5.05

Y

X4 [1.0]

X5 [2.0]

Y

X2 [0.8]X1 [1.0]

1.0

X4 [1.0] X5 [2.0]

0.8

1.52.0 0.50.50.5

Composite ranking

coefficient to root (Y)

Ranking coefficient

to parent

Figure 3.9: Example of selection and sorting rules

Chapter 4

Performance model for the PSP

High-maturity software development processes, making intensive use of metrics and quantitative

methods, such as the Team Software Process (TSP) and the accompanying Personal Software Pro-

cess (PSP), can generate a significant amount of data that can be periodically analyzed to identify

performance problems, determine their root causes and devise improvement actions. However,

there is a lack of tool support for automating the data analysis and the recommendation of im-

provement actions, and hence diminish the manual effort and expert knowledge required.

In this chapter we are going to present a comprehensive performance model (the ProcessPAIR

model for the PSP), addressing time estimation accuracy, quality and productivity, to enable the

automated analysis (see automated analysis method presented in chapter 3) of performance data

produced in the context of the PSP, namely, identify performance problems and their root causes,

and subsequently recommend improvement actions. Performance ranges and dependencies in the

model were calibrated and validated, respectively, based on a large PSP data set referring to more

than 30,000 finished projects.

This chapter is organized as follows. Section 4.1 introduces model definition for PSP and cov-

ers performance indicators and dependencies for predictability, quality, and productivity. Section

4.2 describes model validation and calibration. In section 4.3, support data for the ranking method

is presented which covers sensitivity and percentile coefficients together with ranking example.

4.1 Model definition

A performance model comprises a set of performance indicators (top level and nested) and depen-

dencies, with their respective attributes.

4.1.1 Performance indicators and dependencies

This section presents a Performance Model (PM) specifically conceived for the PSP. It will summa-

rize (in Figure 4.1 and Tables 4.4 and 4.5) the PIs and dependencies of the PM that we conceived,

based on literature review and PSP specifications, for analyzing performance problems and their

root causes in the context of the PSP.

49

50 Performance model for the PSP

The three top-level PIs refer to the major performance aspects usually analyzed: predictability,

quality and productivity.

4.1.2 Predictability

The major predictability PI in the PSP is the Time Estimation Accuracy, which we measure by

the ratio between actuals and estimates, to simplify ranking calculations. Because in the PSP’s

PROBE estimation method (Humphrey, 2005), a time (effort) estimate is obtained based on a size

estimate of the deliverable (in added or modified size units) and a productivity estimate (in size

per time units), we indicate in Figure 4.1 that the Time Estimation Accuracy is affected by the

Size Estimation Accuracy and the Productivity Estimation Accuracy (the exact formula for this

dependency is shown in Table 4.5).

Because in the PROBE method productivity estimates are based on historical productivity (Humphrey,

2005), we indicate in Figure 4.1 that the Productivity Estimation Accuracy depends on the Pro-

ductivity Stability (refer to exact definition in Table 4.4).

Since in the PSP time is recorded per process phase (Humphrey, 2005), when a productivity

stability problem is encountered one can analyze the productivity stability per phase, in order

to determine the problematic phase(s). Hence, we indicate in Figure 4.1 a set of PIs for the

productivity stability per phase, which together affect the overall productivity stability (the exact

formula for this dependency is shown in Table 4.5). Since the scope of the PSP is the development

of small programs or components of larger programs, the Requirements, High Level Design, and

System Testing phases are absent (they can be found in the more complete TSP (Humphrey and

Over, 2010)). In some programming environments the Compile phase may be absent.

Figure 4.1: Performance indicators and dependencies.

4.1 Model definition 51

4.1.3 Quality

Product quality is usually measured by post-delivery defect density (Jones, 2000). However, be-

cause the scope of the PSP is the development of small programs or components of large programs,

post-delivery defects are seldom known.

In the PSP, an aggregated quality measure is proposed—the Process Quality Index (PQI)—that

constitutes an effective predictor of post-delivery defect density (Humphrey, 2005) (Daughtrey,

2002). Hence, we use the PQI as the top-level quality indicator to analyze.

The PQI is computed based on five components: the ratio of design time to coding time (indi-

cator of design quality), the ratio of design review time to design time (indicator of design review

quality), the ratio of code review time to coding time (indicator of code review quality), the ratio

of compile defects to a size measure (indicator of code quality), and the ratio of unit test defects to

a size measure (indicator of program quality). The components are normalized to [0, 1] such that

0 represents poor practice and 1 represents desired practice (refer to exact formula in Table 4.5).

Hence, in Figure 4.1 we indicate those components as factors that affect the PQI according to a

formula.

In turn, both the Defect Density in Compile and Unit Test are affected by the total density

of Defects Injected (and found) and the percentage of defects removed before compile and test

(called Process Yield in the PSP). In fact, high defect densities in compile and test may be caused

by a large number of defects injected (because of poor defect prevention) or a large number of

defects escaped from previous defect filters (because of poor design and code reviews).

According to Humphrey and Tamura (Humphrey, 2005) (Tamura, 2009), the time spent in

reviewing a work product in relation to its size is a leading indicator of the review yield (percentage

of defects found) and consequently of the process yield. In a published study (Kemerer and Paulk,

2009), the recommended review rate of 200 lines of code (LOC) per hour or less was found to be

an effective rate, identifying nearly two-thirds of the defects in design reviews and more than half

in code reviews. Hence, we indicate in Figure 4.1 that the Process Yield is affected by the Design

Review Productivity and the Code Review Productivity.

4.1.4 Productivity

In general, in the PSP, productivity may be measured in any size units per time units. Any size

measure can be used (function points, LOC, etc.) as long as it correlates with effort (in order to

enable effort estimation based on size estimation) and can be objectively measured (to automate

size measurement and compare actuals and estimates) (Humphrey, 2005). In this study, we use

LOC per hour, in spite of its well-known limitations (Wagner et al., 1980) (Jones, 2009), because

LOC is the size measure available in the data set we used.

Because in the PSP time is recorded per process phase, when a productivity problem is encoun-

tered one can analyze the productivity per phase, in order to determine the problematic phase(s).

Hence, we indicate in Figure 4.1 a set of PIs for the productivity per phase, which together affect

the overall productivity (the formula for this dependency is shown in Table 4.5).

52 Performance model for the PSP

In turn, the time spent in the compile and test phases (which in the PSP include defect fixing)

may be affected by the number of defects to fix, so we indicate in Figure 4.1 that the Compile

Productivity and the Unit Test Productivity may be affected by the Defect Density in Compile and

Defect Density in Unit Test, respectively.

4.2 Model validation and calibration

4.2.1 Data set

To validate and calibrate the performance model, we used a large PSP data set from the Software

Engineering Institute (SEI) referring to 31,140 projects concluded by 3114 engineers during 295

classes of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In

this training course, targeting professional developers, each developer develops 10 small projects.

Associated with the PSP Performance Model (see section 4.1) we defined the following data

quality checks on the values of base measures that can be applied for any PSP calibration data set:

- out of range values of base measures (namely, negative values);

- inconsistency between defects fixed in Compile and time in Compile: defects (>0) found

and fixed in 0 time, or more than 1 hour per defect found and fixed;

- inconsistency between defects fixed in Unit Test and time in Unit Test: defects (>0) found

and fixed in 0 time, or more than 2 hours per defect found and fixed;

- inconsistency between actual time and sum of actual time per phase: difference greater than

5 minutes (to accommodate round-off errors);

- inconsistency between total defects and sum of defects injected per phase;

- inconsistency between total defects and sum of defects removed per phase;

- inconsistency between defects injected and removed up to a phase.

In the data set used, we found 250 inconsistencies in 242 data points (project submissions) that

can be consulted in Table 4.1.

4.2.2 Model validation

The performance model of Figure 4.1 indicates several ’affects according to literature’ relation-

ships between pairs of PIs, suggested from literature. In order to validate each relationship, using

the PSP data set previously described, we computed the Pearson’s linear correlation coefficient

(rpearson) and tested the null hypothesis H0 : r = 0 against the alternative hypothesis H1 : r > 0 or

H1 : r < 0 , depending on the sign of the expected correlation. Because the PIs under analysis

may have non-linear relationships that are not adequately captured by the Pearson’s linear cor-

relation coefficient, we also computed the Spearman’s (Navidi, 2008) rank correlation coefficient

4.2 Model validation and calibration 53

Table 4.1: Inconsistencies in the PSP data set.

Inconsistency Frequency
Inconsistency between defects fixed in Compile and time in Compile:
more than 1 hour per defect found and fixed

34

Inconsistency between defects fixed in Unit Test and time in Unit Test:
more than 2 hours per defect found and fixed

101

Inconsistency between actual time and sum of actual time per phase:
difference greater than 5 minutes (to accommodate round-off errors)

115

Total 250

(rspearman). The Spearman’s test checks if increasing values of X are monotonically associated with

increasing (r > 0) or decreasing (r < 0) values of Y, independently of the form of the relation-

ship. The results are presented in Table 4.2. In all cases, it was observed a statistically significant

correlation between the PIs under analysis, regarding both the Person and Spearman correlation,

so the null hypothesis was rejected. We tested other dependencies, but only present in this thesis

dependencies that exhibited a statistically significant correlation (Mushtaq and Faria, 2014).

4.2.3 Model calibration

Regarding model calibration, we derived automatically from the PSP data set a set of thresholds

and ranges (Table 4.4) for classifying values of each PI into three categories: green—no perfor-

mance problem; yellow—a possible performance problem; red—a clear performance problem.

The ranges are derived based on the optimal value defined for each PI and the actual distribu-

tion in the PSP data set.

In most cases, the optimal value follows directly from the semantics of the PI, being it the

maximum of the scale (e.g., 1 for the PQI), the minimum (e.g., 0 for the Defect Density in Unit

Test), or a special value in between (e.g., 1 for Estimation Accuracy and Productivity Stability).

In other cases, in order to balance conflicting aspects such as quality and productivity with

an ultimate economic impact, we selected a recommended value from literature (we could not

calibrate those values from the PSP data set, because some economic impacts occur later in the

process). Regarding the Code Review Productivity (also called Review Rate), if reviews are per-

formed too fast then the quality of the reviews may suffer; if reviews are performed too slowly,

then the productivity is negatively affected. In this case, we selected the recommended value of

200 LOC per hour (Humphrey, 2005) (Tamura, 2009). A similar reasoning was followed for the

Design Review Productivity. As for the Design to Code Ratio, Design Review to Design Ratio,

and Code Review to Code Ratio (components of the PQI) the optimal values selected correspond

to the desired values indicated in the definition of the PQI (Humphrey, 2005) (Daughtrey, 2002).

After defining the optimal values, the thresholds for the ‘green’, ‘red’, and ‘yellow’ ranges

were calibrated automatically by ProcessPAIR tool based on the PSP data set, following the rules

explained in chapter 3. The results can be consulted in Table 4.4.

54 Performance model for the PSP

Table 4.2: Results of the correlation tests.

Correlation tests (H0 : r = 0)

Affected Indicator (Y) Affecting Indicator (X) H1 na rpearson rspearman pb Re jectH0?c

Defect Density in Unit Test Process Yield r<0 9612 -0.27 -0.40 <2e-16 Yes

Defect Density in Unit Test Defects Injected r>0 27648 0.72 0.65 <2e-16 Yes

Defect Density in Compile Process Yield r<0 9612 -0.24 -0.39 <2e-16 Yes

Defect Density in Compile Defects Injected r>0 27648 0.74 0.69 <2e-16 Yes

Process Yield Design Review Productivity r<0 9371 -0.17 -0.23 <2e-16 Yes

Process Yield Code Review Productivity r<0 9548 -0.17 -0.25 <2e-16 Yes

Unit Test Productivity Defect Density in Unit Test r<0 27625 -0.20 -0.64 <2e-16 Yes

Compile Productivity Defect Density in Compile r<0 27625 -0.34 -0.72 <2e-16 Yes

Product. Estim. Accuracy Productivity Stability r>0 24574 0.46 0.65 <2e-16 Yes
a denotes the number of data points with defined values for the variables under analysis.
b is a probability that indicates the statistical significance of the correlation coefficient in the one-tailed test.
c We reject the null hypothesis if p < 0.05, for a 5% significance level.

Regarding estimation accuracy (for time, size, productivity), the green range corresponds to

an error of approximately ±20%, which matches what is usually considered an acceptable error

(Fenton and Bieman, 2014) (McConnell, 2006).

Regrading productivity, the green range corresponds to approximately 35 LOC/hour which

also matches to recommendations from literature (Prechelt and Unger, 1999).

Regarding defect density in Unit Test and Compile, the green ranges correspond to <=11 and

<=15 defects/KLOC, respectively, which are a bit wider than the PSP recommendations (<=5

defects/KLOC for Unit Test and <=10 defects/KLOC for Compile) (Humphrey, 2005).

4.3 Support data for the ranking method

4.3.1 Introduction

The performance model presented so far allows the automated identification of performance prob-

lems and their potential root causes for individual developers. However, when multiple potential

root causes are identified for a performance problem, it does not provide enough information to

prioritize or rank those root causes. For example, Figure 4.2 suggests five potential causes for the

poor productivity in project 7— poor productivity in Plan, Design, Design Review, Unit Test and

Postmortem phases—but does not indicate their relative importance. In chapter 3, we presented

an approach to rank those factors according to a ranking coefficient that represents a cost–benefit

estimate of improvement efforts.

As explained in chapter 3, for computing the ranking coefficient, we need to obtain: an approx-

imate statistical distribution (see Figure 4.5) of each performance indicator; a regression model for

PIs not related by a formula (but instead related according to statistical evidence); sensitivity co-

efficients for PIs related by a formula.

4.3 Support data for the ranking method 55

Figure 4.2: Evaluation of top-level and nested (shaded) PIs in the case study for projects 1 to 7.

4.3.2 Support data for the sensitivity coefficient

In Table 4.5, in case of PIs not related by a formula, firstly a linear regression model from the

PSP data set is computed, and subsequently the sensitivity coefficient is derived from the linear

regression model. However, because in many cases the relationships are not linear, ProcessPAIR

also has the option to compute a step-wise linear regression model (this is currently the default

option) as explained in section 3.3.3. The obtained regression model is stored in the generated

calibration file. An example of part of such a model is shown in Figure 4.3.

In case of PIs related by a formula, Table 4.5 shows the computation of the sensitivity coeffi-

cient for the dependencies identified in the Performance Model of Figure 4.1.

56 Performance model for the PSP

DI: Defects Injected

DI > 54.2

DI ≤ 54.2

DI ≤ 29.5

PY ≤ 6.3

PY ≤ 46.4

DI ≤ 11.4

DI ≤ 7.5

DI ≤ 18.4

DI ≤ 5.3

DI > 92.1

DI > 129.7

DI > 171.5

PY > 56.9

PY > 70.2

PY > 79.7
PY > 86.0

PY: Process Yield

…

…

…

…

…

…

…

…

…

…

…

…

…

…

DDUT: Defect Density in Unit Test

(a) DI in]171.5, ∞[and PY in]86, 100] => DDUT~ 43.5 + 0.05 × 𝐷𝐼 − 0.43 × 𝑃𝑌

(b) DI in [0, 5.3] and PY in [0, 6.3] => DDUT~ 0.34 + 0.42 × 𝐷𝐼 + 0 × 𝑃𝑌

D
D

U
T
~
ƒ
(𝐷

𝐼,
𝑃
𝑌
)

(a)

(b)

Figure 4.3: Example of generated regression tree.

For example, one of the top-level indicators of the PSP performance model is the Time Esti-

mation Accuracy, computed from base measures as:

TimeEstimationAccuracy =
ActualTime

EstimatedTime
, (4.1)

being 1 the optimal value. Since in the PSP’s PROBE estimation method (Humphrey, 2005), a

time estimate is obtained based on a size estimate of the deliverable (in added or modified size

units) and a productivity estimate (in size per time units), we consider that the Time Estimation

Accuracy (TimeEA) depends on the Size Estimation Accuracy (SizeEA) and the Productivity Esti-

mation Accuracy (ProdEA), also defined as ratios between actual and estimated values. From their

definitions, we conclude that these PIs are related by the formula

TimeEA =
SizeEA
ProdEA

. (4.2)

4.3 Support data for the ranking method 57

From this formula, we derive the sensitivity coefficients:

σSizeEA→TimeEA =
∂TimeEA
∂SizeEA

SizeEA
TimeEA

=
1

ProdEA
SizeEA
TimeEA

= 1. (4.3)

σProdEA→TimeEA =
∂TimeEA
∂ProdEA

ProdEA
TimeEA

=− SizeEA
ProdEA2

ProdEA
TimeEA

=−1. (4.4)

This mean that TimeEA is equally sensitive to SizeEA and ProdEA (although in opposite direc-

tions). E.g., a 5% increase in the value of the SizeEA, whilst keeping ProdEA unchanged, leads to

a 5% increase in the value of TimeEA. Similarly, a 5% increase in the value of the ProdEA, whilst

keeping SizeEA unchanged, leads to a 5% decrease in the value of TimeEA.

These inter-related PIs can be represented graphically as depicted in the upper part of Fig-

ure 4.4.

(Overall)
Productivity

Productivity in
Test

Productivity in
Plan

fraction of
project time

in Plan

fraction of
project time

in Test

…

…

Time
Estimation
Accuracy Productivity

Estimation
Accuracy

Size
Estimation
Accuracy

1

-1

top-level
indicators

child
indicators

cause-effect
relationships and

sensitivity
coefficients

Figure 4.4: Graphical representation of part of a PM for the PSP.

In the previous example, the sensitivity coefficients are constant (see Figure 4.4). For a differ-

ent example, let’s analyse another top-level PI in the PSP performance model – the Productivity

58 Performance model for the PSP

(Prod), which is computed from base measures as:

Prod =
ActualSize
ActualTime

. (4.5)

In this model, the (overall) Productivity indicator has a set of child indicators representing the

productivity per phase, denoted by Prodk, where k may be Plan, Design, Design Review, Code,

Code Review, Compile, Test or Postmortem. The productivity per phase is computed from base

measures as:

Prodk =
ActualSize

ActualTimek
. (4.6)

where ActualTimek is the actual time spent in phase k.

Since

ActualTime = ∑
k

ActualTimek (4.7)

we conclude that the PIs under consideration are related by the formula

Prod =
1

∑k
1

Prodk

. (4.8)

From this formula, we derive the sensitivity coefficients:

σProdk→Prod =
∂Prod
∂Prodk

Prodk

Prod
=−

− 1
(Prodk)2(

∑k
1

Prodk

)2
Prodk

Prod
=

Prod
Prodk

=
ActualTimek

ActualTime
(4.9)

which is the actual fraction of project time spent in phase k.

This means that the overall productivity is more sensitive on the productivity of the more time

consuming phases. E.g., if a developer spends 50% of the project time in Test, and improves the

Productivity in Test by 8% (whilst keeping the productivity in the other phases unchanged), the

overall productivity will improve by 4%.

4.3.3 Support data for the percentile coefficient

The cumulative distribution function Fi needed for calculating the percentile coefficient πPi→Xi can

be obtained by computing a theoretical distribution that best fits the historical data, or by linear

interpolation between a few percentiles computed from the historical data. Because some of the

performance indicators exhibit a hybrid continuous-discrete distribution, with non-zero probability

at one or both ends of the scale (refer to Process Yield, Defect Density in Compile, and Defect

Density in Unit Test in Figure 4.5), we opted for the second method. The shapes of the cumulative

distribution functions Fi constructed this way from the historical data are depicted in Figure 4.5.

The calculation of percentile coefficient (πPi→Xi) with this approach is illustrated in Figure 4.6.

4.3 Support data for the ranking method 59

Table 4.3: Ranking calculations for the factors that affect the overall productivity.

i Variable
Value
(LOC/hour)

Percentile
(Fi) 1

Probability
Density
(F ′i(x))

1

Percentile3

Coefficient
πi =

Fi(x)−Fi(oi)
2

xF ′i(x)

Sensitivity3

Coefficient
σi =

Prod
Prodk

Ranking3

Coefficient
ρi = πi×σi

0 Productivity 8.63 7% 0.00936 11.45
1 Plan Productivity 73.5 10% 0.00223 5.48 0.117 0.64 (3rd)
2 Design Productivity 19.4 3% 0.00172 29.11 0.446 12.98 (1st)
3 Design Review Productivity 100.0 7% 0.00066 14.26 0.086 1.23 (2nd)
4 Code Productivity 87.8 45% 0.00693 0.91 0.098 0.09 (7th)
5 Code Review Productivity 163.6 18% 0.00211 2.39 0.053 0.13 (6th)
6 Unit Test Productivity 67.9 18% 0.00353 3.42 0.127 0.43 (4th)
7 Postmortem Productivity 120.0 20% 0.00220 3.03 0.072 0.22 (5th)

1 Computed by liner interpolation between a few percentiles computed from the training data set.
2 The optimal value assumed here is oi = ∞, so Fi(oi) = 1
3 Absolute values

4.3.4 Ranking example

Table 4.3 presents productivity values from a concrete project (out of a case study), as well as

all the calculations performed to rank the factors (productivity per phase) that affect the overall

productivity. Regarding the sensitivity coefficient, the phases that consume more effort (i.e., with

lower productivity) - Design and Unit Test - are ranked at the top 2 positions. However, the pro-

ductivity in Unit Test is significantly closer to the optimal value (in terms of percentiles) than, for

example, in Design Review, so, when computing the combined ranking coefficient, the produc-

tivity in Unit Test goes down to the 4th position. In the final ranking, the top two phases which

productivity should be improved (for improving the overall productivity with the best cost-benefit

ratio) are the Design and Design Review phases. By contrast, in Figure 4.2 all the phases with

a value in the red range (percentile below 33%) - all but the Code phase in this case - would be

indicated to the user as equally important for improvement.

60 Performance model for the PSP

Predictability related PIs

Productivity related PIs Quality related PIs

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0

F(Estimation Accuracy)

F(Time Estimation Accuracy)

F(Size Estimation Accuracy)

F(Productivity Estimation Accuracy)

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0

F(Phase Produtivity Stability - I)

F(Plan Productivity Stability)

F(Design Review Product. Stability)

F(Unit Test Productivity Stability)

F(Postmortem Product. Stability)

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0

F(Phase Produtivity Stability -II)

F(Design Productivity Stability)

F(Code Productivity Stability)

F(Code Review Product. Stability)

F(Compile Productivity Stability)

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

F(Phase Productivity - I)

F(Plan Productivity)

F(Design Review Productivity)

F(Compile Productivity)

F(Unit Test Productivity)

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

F(Phase Productivity - II)

F(Design Productivity)

F(Code Productivity)

F(Code Review Productivity)

F(Postmortem Productivity)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

F(Defect Density)

F(Defects Injected/KLOC)

F(Defect Density in Compile)

F(Defect Density in Unit Test)

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

F(Phase Ratios)

F(Design to Code Ratio)

F(Design Review to Design Ratio)

F(Code Review to Code Ratio)

Figure 4.5: Approximate cumulative distribution functions for all PIs in our model derived from
the PSP data set.

4.3 Support data for the ranking method 61

Figure 4.6: Computing the percentile coefficient for Code Productivity based on percentiles ex-
tracted from the historical data.

62 Performance model for the PSP
Ta

bl
e

4.
4:

Pe
rf

or
m

an
ce

in
di

ca
to

rs
an

d
ra

ng
es

(w
ith

op
tim

al
va

lu
es

un
de

rl
in

ed
).

Pe
rf

or
m

an
ce

R
an

ge
s

In
di

ca
to

r
Fo

rm
ul

a
G

re
en

Ye
llo

w
R

ed

Ti
m

e
E

st
im

at
io

n
A

cc
ur

ac
y

A
ct

ua
lT

im
e

E
st

im
at

ed
T

im
e

[0
.8

7,
1.

19
]1

[0
.7

0,
0.

87
[∪

]1
.1

9,
1.

55
]

[0
,0

.7
0[
∪]

1.
55

,∞
[

Si
ze

E
st

im
at

io
n

A
cc

ur
ac

y
A

ct
ua

lS
iz

e
E

st
im

at
ed

Si
ze

[0
.8

5,
1.

22
]1

[0
.6

4,
0.

85
[∪

]1
.2

2,
1.

63
]

[0
,0

.6
4[
∪]

1.
63

,∞
[

Pr
od

uc
tiv

ity
E

st
im

at
io

n
A

cc
ur

ac
y

A
ct

ua
lP

ro
du

ct
iv

it
y

E
st

im
at

ed
P

ro
du

ct
iv

it
y

[0
.8

2,
1.

21
]1

[0
.6

1,
0.

82
[∪

]1
.2

1,
1.

57
]

[0
,0

.6
1[
∪]

1.
57

,∞
[

Pr
od

uc
tiv

ity
St

ab
ili

ty
C

ur
re

nt
P

ro
du

ct
iv

it
y

H
is

to
ri

ca
lP

ro
du

ct
iv

it
y ∗
(∗

∑
si

ze
/

∑
ef

fo
rt
)

[0
.8

0,
1.

19
]1

[0
.6

0,
0.

80
[∪

]1
.1

9
1.

55
]

[0
,0

.6
0[
∪]

1.
55

,∞
[

Pr
oc

es
s

Q
ua

lit
y

In
de

x
(r

ef
er

to
de

fin
iti

on
in

Ta
bl

e
4.

5)
[0

.2
1,

1]
[0

.0
6,

0.
21

[
[0

,0
.0

6[

D
ef

ec
tD

en
si

ty
in

U
ni

tT
es

t
#D

ef
ec

ts
fo

un
da

nd
re

m
ov

ed
in

U
ni

tT
es

t
A

ct
ua

lS
iz

e(
K

LO
C
)

[0
,1

1]
]1

1,
30

]
]3

0,
∞

[

D
ef

ec
tD

en
si

ty
in

C
om

pi
le

#D
ef

ec
ts

fo
un

da
nd

re
m

ov
ed

in
C

om
pi

le
A

ct
ua

lS
iz

e(
K

LO
C
)

[0
,1

5]
]1

5,
43

]
]4

3,
∞

[

D
ef

ec
ts

In
je

ct
ed

#D
ef

ec
ts

fo
un

di
na

ll
ph

as
es

A
ct

ua
lS

iz
e(

K
LO

C
)

[0
,4

5]
]4

5,
90

]
]9

0,
∞

[

D
ef

ec
ts

D
en

si
ty

#D
ef

ec
ts

re
m

ov
ed

in
al

lp
ha

se
s

A
ct

ua
lS

iz
e(

K
LO

C
)

[0
,4

5]
]4

5,
90

]
]9

0,
∞

[

Pr
oc

es
s

Y
ie

ld
#D

ef
ec

ts
re

m
ov

ed
be

fo
re

C
om

pi
le

an
dT

es
t

#D
ef

ec
ts

in
je

ct
ed

be
fo

re
C

om
pi

le
an

dT
es

t
×

10
0

[6
5,

10
0]

[4
3,

65
[

[0
,4

3[

D
es

ig
n

Q
ua

lit
y

m
in
(Desi

gn
T

im
e

C
od

eT
im

e
,1
)

[0
.7

0,
1.

0]
[0

.2
6,

0.
70

[
[0

,0
.2

6[

D
es

ig
n

R
ev

ie
w

Q
ua

lit
y

m
in
(2∗De

si
gn

R
ev

ie
w

T
im

e
D

es
ig

nT
im

e
,1
)

[1
,1

]
[0

.5
1,

1[
[0

,0
.5

1[

C
od

e
R

ev
ie

w
Q

ua
lit

y
m

in
(2∗Co

de
R

ev
ie

w
T

im
e

C
od

eT
im

e
,1
)

[1
,1

]
[0

.5
6,

1[
[0

,0
.5

6[

Pr
od

uc
tiv

ity
A

ct
ua

lS
iz

e(
LO

C
)

A
ct

ua
lT

im
e(

ho
ur

s)
[3

5.
7,

∞
[

[2
0.

6,
35

.7
[

]0
,2

0.
6[

Pl
an

Pr
od

uc
tiv

ity
A

ct
ua

lS
iz

e(
LO

C
)

P
la

nA
ct

ua
lT

im
e(

ho
ur

s)
[4

59
,∞

[
[1

85
,4

59
[

]0
,1

85
[

D
es

ig
n

Pr
od

uc
tiv

ity
A

ct
ua

lS
iz

e(
LO

C
)

D
es

ig
nA

ct
ua

lT
im

e(
ho

ur
s)

[3
53

,∞
[

[1
37

,3
53

[
]0

,1
37

[

D
es

ig
n

R
ev

ie
w

Pr
od

uc
tiv

ity
A

ct
ua

lS
iz

e(
LO

C
)

D
es

ig
nR

ev
ie

w
A

ct
ua

lT
im

e(
ho

ur
s)

[2
32

,4
93

]3
00

[1
60

,2
32

[∪
]4

93
,8

89
]

]0
,1

60
[∪

]8
89

,∞
[

C
od

e
Pr

od
uc

tiv
ity

A
ct

ua
lS

iz
e(

LO
C
)

C
od

eA
ct

ua
lT

im
e(

ho
ur

s)
[1

28
,∞

[
[7

3,
12

8[
]0

,7
3[

C
od

e
R

ev
ie

w
Pr

od
uc

tiv
ity

A
ct

ua
lS

iz
e(

LO
C
)

C
od

eR
ev

ie
w

A
ct

ua
lT

im
e(

ho
ur

s)
[1

63
,3

32
]2

00
[1

19
,1

63
[∪

]3
32

,5
71

]
]0

,1
19

[∪
]5

71
,∞

[

C
om

pi
le

Pr
od

uc
tiv

ity
A

ct
ua

lS
iz

e(
LO

C
)

C
om

pi
le

A
ct

ua
lT

im
e(

ho
ur

s)
[1

37
0,

∞
[

[4
67

,1
37

0[
]0

,4
67

[

U
ni

tT
es

tP
ro

du
ct

iv
ity

A
ct

ua
lS

iz
e(

LO
C
)

U
ni

tT
es

tA
ct

ua
lT

im
e(

ho
ur

s)
[3

15
,∞

[
[1

20
,3

15
[

]0
,1

20
[

Po
st

m
or

te
m

Pr
od

uc
tiv

ity
A

ct
ua

lS
iz

e(
LO

C
)

Po
st

m
or

te
m

A
ct

ua
lT

im
e(

ho
ur

s)
[4

27
,∞

[
[1

85
,4

27
[

]0
,1

85
[

a
O

pe
n

ra
ng

es
ar

e
re

pr
es

en
te

d
w

ith
th

e
B

ou
rb

ak
in

ot
at

io
n.

4.3 Support data for the ranking method 63

Ta
bl

e
4.

5:
D

ep
en

de
nc

ie
s

an
d

se
ns

iti
vi

ty
co

ef
fic

ie
nt

s
be

tw
ee

n
re

la
te

d
pe

rf
or

m
an

ce
in

di
ca

to
rs

.

A
ff

ec
te

d
In

di
ca

to
r

(Y
)

A
ff

ec
tin

g
In

di
ca

to
r(

X
i)

E
xa

ct
Fo

rm
ul

a
or

R
eg

re
ss

io
n

Fo
rm

ul
a:

Y
=

f(
X 1
,.
..
,X

n)

Se
ns

iti
vi

ty
C

oe
ffi

ci
en

t
σ

X i
→

Y
=

δ
Y

δ
X i

(X i Y

)
Ti

m
e

E
st

im
at

io
n

A
cc

ur
ac

y
(T

im
eE

A
)

Si
ze

E
st

im
at

io
n

A
cc

ur
ac

y
(S

iz
eE

A
)

Pr
od

uc
tiv

ity
E

st
im

at
io

n
A

cc
ur

ac
y

(P
E

A
)

T
im

eE
A
=

Si
ze

E
A

P
E

A
1 -1

Pr
od

uc
tiv

ity
E

st
im

at
io

n
A

cc
ur

ac
y

(P
E

A
)

Pr
od

uc
tiv

ity
St

ab
ili

ty
(P

ro
dS

)
P

E
A
∼

0.
59

3
+

0.
45

5
×

P
ro

dS
0.

45
5
×

P
ro

dS
P

E
A

Pr
od

uc
tiv

ity
St

ab
ili

ty
(P

ro
dS

)
Pr

od
uc

tiv
ity

St
ab

ili
ty

in
Ph

as
e

k(
P

ro
dS

k)
P

ro
dS

=
1/

∑
k

H
is

tF
a k

P
ro

dS
k

Fr
ac

tio
n

of
tim

e
in

ph
as

e
k

(i
n

cu
rr

en
tp

ro
je

ct
)

Pr
oc

es
s

Q
ua

lit
y

In
de

x
(P

Q
I)

D
ef

ec
tD

en
si

ty
in

U
ni

tT
es

t(
D

D
U

T)

D
ef

ec
tD

en
si

ty
in

C
om

pi
le

(D
D

C
)

D
es

ig
n

to
C

od
e

R
at

io
(D

2C
)

D
es

ig
n

R
ev

ie
w

to
D

es
ig

n
R

at
io

(D
R

2D
)

C
od

e
R

ev
ie

w
to

C
od

e
R

at
io

(C
R

2C
)

P
Q

I
=

m
in
(10

D
D

U
T
+

5
,1
) ×

m
in
(20

D
D

C
+

10
,1
) ×

m
in
(D

2C 1
,1
) ×

m
in
(D

R
2D

0.
5
,1
) ×m

in
(C

R
2C

0.
5
,1
)

-D
D

U
T

/(
D

D
U

T
+5

),
if

D
D

U
T

>5
;0

,o
th

er
w

is
e

-D
D

C
/(

D
D

C
+

10
),

if
D

D
C

>1
0;

0,
ot

he
rw

is
e

1,
if

D
2C

<1
;0

,o
th

er
w

is
e

1,
if

D
R

2D
<0

.5
;0

,o
th

er
w

is
e

1,
if

C
R

2C
<0

.5
;0

,o
th

er
w

is
e

D
ef

ec
tD

en
si

ty
in

U
ni

tT
es

t(
D

D
U

T)
Pr

oc
es

s
Y

ie
ld

(P
Y)

D
ef

ec
ts

In
je

ct
ed

(D
I)

D
D

U
T
∼

28
.5
−

0.
20
×

PY
D

D
U

T
∼

1.
6
+

0.
38
×

D
I

−
0.

20
×

PY
/
D

D
U

T
0.

38
×

D
I/

D
D

U
T

D
ef

ec
tD

en
si

ty
in

C
om

pi
le

(D
D

C
)

Pr
oc

es
s

Y
ie

ld
(P

Y)
D

ef
ec

ts
In

je
ct

ed
(D

I)

D
D

C
∼

28
.3

3
−

0.
22
×

PY
D

D
C
∼

0.
19

+
0.

45
×

D
I

−
0.

22
×

PY
/D

D
C

0.
45
×

D
I/

D
D

C

Pr
oc

es
s

Y
ie

ld
(P

Y)
D

es
ig

n
R

ev
ie

w
Pr

od
uc

tiv
ity

(D
R

P
ro

d)
C

od
e

R
ev

ie
w

Pr
od

uc
tiv

ity
(C

R
P

ro
d)

PY
∼

57
.5

9
−

0.
00

30
×

D
R

P
ro

d
−

0.
00

48
×

C
R

P
ro

d
−

0.
00

30
×

D
R

P
ro

d/
PY

−
0.

00
48
×

C
R

P
ro

d/
PY

Pr
od

uc
tiv

ity
(P

ro
d)

Pr
od

uc
tiv

ity
in

Ph
as

e
k(

P
ro

d k
)

P
ro

du
ct

iv
it

y
=

1/
∑

k
1

P
ro

du
ct

iv
it

y k
Fr

ac
tio

n
of

tim
e

in
ph

as
e

k

U
ni

tT
es

tP
ro

du
ct

iv
ity

(U
TP

ro
d)

D
ef

ec
tD

en
si

ty
in

U
ni

tT
es

t(
D

D
U

T)
U

T
P

ro
d
∼

55
24

.2
×

D
D

U
T

−
4.

2
×

D
D

U
T
/U

T
P

ro
d

C
om

pi
le

Pr
od

uc
tiv

ity
(C

om
pP

ro
d)

D
ef

ec
tD

en
si

ty
in

C
om

pi
le

(D
D

C
)

C
om

pP
ro

d
∼

23
08

17
×

D
D

C
−

17
×

D
D

C
/C

om
pP

ro
d

a
H

is
tF

k
=

hi
st

or
ic

al
fr

ac
tio

n
of

tim
e

in
ph

as
e

k.

64 Performance model for the PSP

Chapter 5

The ProcessPAIR tool implementation

This chapter presents ProcessPAIR, a novel tool designed to help developers analyze their per-

formance data with less effort, by automatically identifying and ranking performance problems

and their potential root causes, so that subsequent manual analysis for the identification of deeper

causes and improvement actions can be properly focused.

The analysis is based on performance models (chapter 4) defined manually by process experts

in the process under consideration, and calibrated automatically from the performance data of

many developers. The chapter is organized as follows. Section 5.1 presents tool architecture.

Sections 5.2 and 5.3 explain the model calibration and file selection user interfaces. Section 5.4

presents different views for analysing the performance results and finally section 5.5 presents API

for defining a performance model as a tool extension.

5.1 Architecture

ProcessPAIR is currently implemented as a Java standalone application, comprising a core frame-

work (with 12.8 KLOC, representing 80% of the code base), independent of the process under

analysis, and an extension for the PSP (with 3.2 KLOC, representing 20% of the code base), as

depicted in Figure 5.1. Other extensions may be easily implemented in the future for other pro-

cesses. The core framework comprises three layers:

• a graphical user interface layer at the top (gui package);

• an intermediate logic layer responsible for the representation and manipulation of perfor-

mance models (PMs) (performancemodel package) and subject data under analysis (sub-

jectdata package);

• a layer with common utilities at the bottom (statistics package).

The PSP extension (pspextension package) contains the definition of PMs for the PSP and

subject data loaders from the most relevant project management tools used by PSP Developers –

the SEI’s PSP Student Workbook and Process Dashboard (http://www.processdash.com/)

65

http://www.processdash.com/

66 The ProcessPAIR tool implementation

The following external libraries are used:

• SWTChart (http://www.swtchart.org/) – an open-source light weight chart compo-

nent, based on SWT, used by the gui package of our tool for creating charts;

• UCanAccess (http://ucanaccess.sourceforge.net/site.html) -an open-source

Java JDBC driver implementation that allows client programs to read/write Microsoft Ac-

cess databases, used by the pspextension package of our tool to read SEI’s PSP Student

Workbook files;

• JAMA (http://math.nist.gov/javanumerics/jama/) – a Java matrix package,

used by the statistics package of our tool for computing regression and other calculations.

 class Logical View

External l ibrariesProcessPAIR

extensions

core

gui

statistics

performancemodel subjectdata

pspextension

SWTChart

UCanAccess

JAMA

Figure 5.1: UML package diagram depicting the logical architecture of the ProcessPAIR tool.

5.2 Model calibration user interface

The user interface for performing the automatic calibration is shown in Figure 5.2. The user has

to select the performance model to be calibrated (from the list of PMs previously defined as tool

extensions), the file with the data set to be used for calibration (in a format supported by the data

loaders defined together with the PM) and the XML file for saving the calibration results.

In this example, to calibrate the PSP PM, we used a large PSP data set from the Software

Engineering Institute (SEI) referring to 31,140 projects concluded by 3,114 engineers during 295

http://www.swtchart.org/
http://ucanaccess.sourceforge.net/site.html
http://math.nist.gov/javanumerics/jama/

5.2 Model calibration user interface 67

Figure 5.2: Model calibration window.

classes of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In

this training course, targeting professional developers, each engineer develops 10 small projects.

ProcessPAIR performs several data quality checks during the calibration process (according

to rules defined together with the PM as explained in section 4.2.1) and presents a summary of

problems encountered at the end of the calibration process, as illustrated in Figure 5.3.

Figure 5.3: Summary of calibration results.

Instead of using the full data set for calibration, it is also possible to filter the data points to

be used for calibration. One possibility is to restrict the data points (projects) to the ones most

similar to a given user profile, as illustrated in Figure 5.4. The parameters that can be provided

depend on the PM and data loader. Similarity is computed with the Gower similarity coefficient

(Gower, 1971) as explained in section 3.3.4. As explained in this example (see Figure 5.5), only

the 50 most similar data points were selected (minimum number required by the tool for statistical

significance), with a similarity coefficient greater than 0.889.

68 The ProcessPAIR tool implementation

Figure 5.4: Dialog for providing a user profile.

Figure 5.5: Calibration results with filtering.

5.3 File selection user interface

Having defined and calibrated the performance model (PM), the performance data of individ-

ual developers can be automatically analyzed by ProcessPAIR, to identify and rank performance

problems and their potential causes. As exemplified in Figure 5.6, the user has to select the per-

formance model (from the list of PMs previously defined as tool extensions), the calibration file

(generated as previously explained), the type of input file with performance data to analyze (ac-

cording to the data loaders defined together with the performance model), and the file with the

actual data. By pressing the “Analyze file” button, the analysis is performed and the results are

presented in multiple views.

5.4 Analysis views

5.4.1 Report view

The goal of the Report view (Figure 5.7) is to indicate in a simple way, overall (“Summary”) or

project by project, the most relevant top-level performance problems (colored red or yellow in the

5.4 Analysis views 69

Figure 5.6: Entry window.

Table View) and potential root causes (leaf causes in the Cause-Effect View) properly prioritized

(according to the ranking coefficients, previously explained).

Figure 5.7: Report view example.

Intermediate causes can be consulted by unchecking the “Show only leaf causes” checkbox.

Comboboxes allow selecting information for specific projects and/or PIs. The links skip to the

Indicator View, for detailed information about each PI.

70 The ProcessPAIR tool implementation

5.4.2 Table view

The Table view (Figure 5.8) shows the values of the PIs defined in the model for the projects

described in the input file, as well as summarized performance information. Each cell is colored

green, yellow or red, in case its value suggests no performance problem, a potential performance

problem, or a clear performance problem, respectively. This way, the Table View helps in quickly

identifying the performance problems. The exact ranges considered can be consulted in the “In-

dicator View”. The “Percentile (all)” column shows an overall percentile for each PI, computed

from the per project values (with higher importance for the last projects), and colored according

to the percentile.

Figure 5.8: Table view example (partially expanded).

The PIs are organized hierarchically, starting from the top-level indicators (Time Estimation

Accuracy, Process Quality Index, and Productivity in this case), and descending to lower level

indicators (child indicators) that affect the higher level ones according to a formula or statistical

evidence (see chapter 4). This way, by drilling down from the top-level indicators to the lower

level ones, focusing on the red (or yellow) colored cells, one can easily identify potential root

causes of performance problems.

5.4.3 Indicator view

The goal of the Indicator view (Figure 5.9) is to show the behavior of each PI throughout the

projects under analysis and provide associated model definition and calibration information (de-

scription, units, optimal value, recommended performance ranges and statistical distribution).

5.4 Analysis views 71

In the bottom left, the statistical distribution of the PI in the data set used for calibrating the

model is presented. The colors correspond to the performance ranges. The actual values in the file

under analysis are also shown, marked with the “+” symbol, for benchmarking purposes.

The user may also select multiple PIs (see Figure 5.10) for comparative visualization in a

single chart. More indicator views and features can be consulted in Appendix A.

Figure 5.9: Indicator view example.

5.4.4 Cause-effect view

The Cause-Effect view (Figure 5.11) is an advanced view that provides essentially the same

information as the report view with additional details but in a diagrammatic way.

The goal of the Cause-Effect View it to help identify and prioritize, project by project or

overall, the root causes of performance problems, so that subsequent improvement actions can be

properly directed. The child indicators are sorted according to the value of the ranking coefficient.

As explained previously, the ranking coefficient represents a cost-benefit estimate that relates

the cost of improving the value of the child PI with the benefit on the value of the parent PI.

Intermediate causes may be consulted by unselecting the “Show only leaf causes” checkbox

(see Figure 5.12). By default, the ranking coefficients are shown by means of T-shirt sizes (see

ranking labels section 3.4.1). The numerical values of the ranking coefficients can be consulted

by selecting “Numerical Ranking Labels” in a combo box (see Figure 5.13). The selection and

sorting rules for problematic performance indicators are already explained in section 3.4.3.3.

72 The ProcessPAIR tool implementation

Figure 5.10: Indicator view with multiple PIs selection.

Figure 5.11: Cause-effect view showing only leaf causes.

5.5 Tool extension API

The following steps are involved in defining a performance model as a tool extension, using the

provided API (as illustrated in Figure 5.14 for the PSP performance model):

5.5 Tool extension API 73

Figure 5.12: Cause-effect view showing intermediate causes.

Figure 5.13: Cause-effect view showing numerical ranking labels.

• Define Base Measures: Here we define the base measures (see code in Figure 5.14) for the

process of our interest which can be used in the same way for any process under consider-

ation. In this study the process of our interest is PSP because of several reason, e.g., well

defined process and availability of data form SEI as explained in detail previously.

74 The ProcessPAIR tool implementation

• Define Performance Indicators: Here we define the Performance Indicators from the base

measures defined in the first step. The example in Figure 5.14 shows the code for pro-

ductivity indicator defined in our model. Basically productivity in PSP is measured as size

(LOC) per unit time (Hours) and therefore, the base measures (Actual Size and Actual Time)

are defined in the first step. The same way all the base measures for defining Performance

Indicators are defined in our model under the defineBaseMeasures method.

• Add Top-level Indicators: Here we add the top-level (or root) indicators in our model (see

Figure 5.14). The code to add the top-level indicators (e.g., Time Estimation Accuracy,

Productivity and Process Quality Index) in our PSP model is shown in the example. The

same code can be used for adding more top level indicators in our current model or any

other model for a new process under consideration.

• Load Dependencies: Here we define the dependencies based on a formula or statistical

relation between the parent and child indicators. The example in Figure 5.14 shows the

code for dependency relationship (based on formula) for Time Estimation Accuracy to Size

and Productivity Estimation Accuracy, and dependency relationship (based on statistical

relation) for Defect Density in Unit Test to Defect Injection and Process Yield. In the first

case, the last parameter is the formula for the sensitivity coefficient. The same method

(loadDependencies) can used to code more dependencies in the current model or any other

model of a new process under consideration.

5.5 Tool extension API 75

public class PSPPerformanceModel extends PerformanceModel {
 …
 @Override
 public boolean checkConsistency(Project p, PrintStream log) {
 // data quality checks
 …
 }

 @Override
 protected void defineBaseMeasures() {
 …
 addBaseMeasure("ActualSize", // short name
 "Actual Size", // long name
 "Actual number of added and modified lines of code", //description
 "LOC", // units
 0.0, // minimum
 Double.MAX_VALUE, // maximum
 0); // decimal digits
 …
 }

 @Override
 protected void definePerformanceIndicators() {
 …
 addIndicator("Prod", "Productivity",
 "The ratio of Actual Size to Actual Time",
 "LOC/hour", 0.0, Double.MAX_VALUE, 1,
 Double.MAX_VALUE, // optimal value
 new Ratio("ActualSize", "Actual Time", 60.0)); // formula
 …
 }

 @Override
 public void addTopLevelIndicators() {
 addToplevelIndicator(getIndicator("TimeEA"));
 addToplevelIndicator(getIndicator("PQI"));
 addToplevelIndicator(getIndicator("Prod"));
 }

 @Override
 protected void loadDependencies() {
 …
 // Decomposition of TimeEA per factors (based on formula)
 addDependency("TimeEA", "SizeEA", new Constant(1.0));
 addDependency("TimeEA", "PEA", new Constant(-1.0));
 …
 // Decomposition of DDUT per factors (based on statistical relation)
 addDependency("DDUT", "DI", RegressionType.MultipleStepwiseRegression);
 addDependency("DDUT", "PY", RegressionType.MultipleStepwiseRegression);
 …

 }
 …

}

Figure 5.14: Excerpt of PSP model code.

76 The ProcessPAIR tool implementation

Chapter 6

Experimentation and validation

In this chapter we describe two experiments for evaluation of the ProcessPAIR method and tool.

In the first experiment (see section 6.1) we assess the accuracy of problem and their root causes

identification by comparing the results of manual analysis (as documented by the PSP students

in their PSP Final Report) with automatic analysis (as produced by ProcessPAIR). The second

experiment (see section 6.2) is a controlled experiment involving 61 software engineering master

students, half of whom used ProcessPAIR in a PSP performance analysis assignment, to assess the

benefits of ProcessPAIR in terms of efficiency, quality, and user satisfaction.

6.1 Postmortem experiment

In this section we present an experiment conducted in the context of PSP training, to show that

the ProcessPAIR tool is able to accurately identify performance problems and their potential root

causes of individual developers.

6.1.1 Research questions

The overall objective of the experiment is to assess whether the ProcessPAIR tool is able to accu-

rately identify performance problems of individual developers and their potential causes, so that

subsequent manual analysis for the identification of deeper causes and remedial actions can be

properly focused and effort can be saved.

More specifically, the goal of the experiment is to answer the following research questions:

- RQ1 (problem identification): Is it possible to automatically analyze the performance data of

an individual PSP developer in order to identify performance problems, with similar results

but with less effort than in manual analysis?

- RQ2 (causal analysis): Is it possible to automatically analyze the performance data of an

individual PSP developer in order to determine the causes of the identified performance

problems, in a way consistent with manual analysis (except when manual analysis is erro-

neous)?

77

78 Experimentation and validation

Regarding RQ1 (problem identification), we consider that the results of automatic analysis

(performed by the tool) and manual analysis (conducted by the developer) are similar when:

• the developer explicitly indicates bad performance in a PI, for a specific project or overall

(summary), and the tool also points out a clear (red) or potential (yellow) performance

problem in the same PI and context (specific project or summary); or

• the developer explicitly indicates good performance in a PI, for a specific project or overall

(summary), and the tool also indicates good performance (green) in the same PI and context

(specific project or summary).

We consider that the results are dissimilar when:

• the developer explicitly indicates bad performance in a PI in a specific project or overall

(summary), but the tool indicates good performance (green) (false negative); or

• the developer explicitly indicates good performance in a PI in a specific project or overall

(summary), but the tool indicates a clear (red) or potential (yellow) problem (false positive).

We consider that the results are not comparable whenever the developer does not explicitly

mention good or bad performance. In many cases this happens with PIs that are not analyzed at all

by the developer. In other cases, the PI is analyzed but the developer just points out some extreme

cases or examples, without the concern for completeness.

Regarding RQ2 (causal analysis), we restrict the comparison to performance problems in the

top-level PIs considered in the manual analysis, which are identified simultaneously by the devel-

oper and the tool, for a specific project or overall (summary). For comparison purposes it is useful

to think of the results of causal analysis as a tree, starting from the problematic PI and drilling

down to increasingly deeper causes. We consider that the results are consistent when:

• there is a match, i.e., manual and automatic analysis point out similar causes, or no causes

are identified in both cases; or

• there is a different level of detail, i.e., the tool accurately points out intermediate causes (or

points out no causes at all) and the manual analysis points out deeper causes (deeper manual

analysis), or viceversa (deeper automatic analysis).

We consider that the results are inconsistent when:

• the developer and tool point out different causes, not interrelated, because of a tool fault

(missed important causes or pointed out extraneous causes); or

• the developer and tool point out different causes, not interrelated, because of a developer

fault (missed important causes or pointed out extraneous causes).

6.1 Postmortem experiment 79

6.1.2 Input data

To calibrate the model we used the PSP data set already mentioned in 4.2.1 from the Software

Engineering Institute (SEI) referring to 31,140 projects concluded by 3,114 engineers during 295

classes of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In

this training course, targeting professional developers, each engineer develops 10 small projects.

The subject data under analysis is based on a data set from Instituto Tecnológico de Monterrey,

in Mexico, referring to 27 subjects that developed 6 projects each using the PSP, in the scope of the

“Software Quality and Testing” course in 2015. The subjects used Process Dashboard (http://

www.processdash.com/) for collecting the standard PSP base measures during their projects.

In the end of the sequence of projects, the subjects analyzed their personal performance along those

projects, and documented their findings and improvement proposals in a Final Report (written in

Spanish).

Because of the significant effort (on average 8h-10h per subject) required to translate, under-

stand and extract relevant information from those reports, we restricted the case study to a random

sample of 20 subjects.

For guiding the analysis and the production of their final reports, the subjects were requested

by the instructor to consider 30 questions in 4 categories: analysis of size estimation, analysis of

time estimation, defect and yield analysis, and quality analysis (see Table 2.3). However, some

questions are not actually related with the identification of performance problems or root causes

(see examples in Table 6.1), so we considered them out of the scope of this experiment.

6.1.3 Data analysis procedures

The author and supervisor, not involved in the PSP training in Instituto Tecnológico de Monterrey,

both fluent in English and one with a good reading understanding of Spanish, translated to English

and analyzed the final reports (in both English and Spanish), in order to extract relevant informa-

tion for comparison with the tool-based analysis, according to the structure illustrated in the next

section.

Results from tool-based analysis for each subject were effortlessly obtained by uploading the

performance data stored in Process Dashboard to ProcessPAIR.

The extracted results from the final reports and from the tool for each subject were then col-

lected into appropriate tables, as illustrated in the next section.

Subsequently, the results were classified according to the categories described in section 6.1.1,

and statistics where computed.

6.1.4 Results

6.1.4.1 Results per subject

Regarding RQ1 (problem identification), based on the information available in the final report of

each subject, we produced a table with a synthesis of cases in which the subject explicitly indicated

http://www.processdash.com/
http://www.processdash.com/

80 Experimentation and validation

Table 6.1: Examples of questions that the subjects were requested to address and relevance for this
case study.

Question Relevance to this study
What are the average, maximum, and minimum
actual sizes of my programs in LOC to date?

Out of scope (size by itself is not actu-
ally a performance indicator).

How much are my time estimates affected by the
accuracy of my size estimates?

Within scope (causal analysis).

How much did the quality of the programs enter-
ing unit test change? Why?

Within scope (performance problem
identification).

Based on my historical data, what are some real-
istic quality goals for me?

Out of scope (improvement goals).

How can I change my process to meet those
goals?

Out of scope (improvement actions).

bad performance or good performance in a PI for a specific project or overall (summary). An

example is shown in Table 6.2, together with the support citations extracted from the final report.

1. “With regard to program 5, the testing stage highlighted by having a high rate of removal of

defects.”

2. “Syntax errors were injected in the coding phase (. . .) errors of type function were injected

in design and coding phases.”

3. “Most of the defects were injected in the design phase”

4. “The programs with the lowest yield were programs 4 and 5, with values of 42.90 and 60

respectively (. . .). In the last program I could get a yield of 100%.” In the PSP, the process

yield is the percentage of defects found and fixed (usually through design and code reviews)

before compile and test.

5. “The program in which I had the higher productivity was the first, with 37.2 (. . .) programs

5 and 6 were where more code was reused as well as also where more design and design

review conducted, which explains the low productivity.”

Table 6.2: Cases of bad (red-R) or good (green-G) performance explicitly indicated by one of the
subjects in the case study.

Indicator Summary P1 P2 P3 P4 P5 P6
Defect Removal Rate in Unit Test (defects/hour) (1)

G

Defects Injected (defects/KLOC) (2)
R

Defects Injected in Design (3)
R

Process Yield (4)
R R G

Productivity (LOC/hour) (5)
G R R

Size Estimation Accuracy (6)
R G

Time Estimation Accuracy (7)
G R G R

6.1 Postmortem experiment 81

6. “The largest error of estimation I had was in program 2 with 80.6 error %, which is too high.

(. . .) In contrast, program 6 was where my estimate was closer to the actual result.”

7. “There are two that stand out for being very large, program 2 and program 5 (. . .) On the

other hand, the closest estimates were in program 1 and 4.”

Figure 6.1: Example of automatic evaluation of top-level and nested PIs.

From the comparison of the cells in the manual (Table 6.2) and automatic analysis (Figure

82 Experimentation and validation

6.1), we computed the statistics for this subject and classified the cells in Table 6.3 according to

the categories indicated in section 6.1.1. In this case, regarding the comparable results, we have

14 similar results and 1 false positive. The false positive has to do with a boundary situation:

the size estimation accuracy in project 6 (21% error), which the tool evaluates as yellow and the

subject evaluates in a positive way (see actual citation in Table 6.2).

Regarding RQ2 (causal analysis), based on the information available in the final report of each

subject and the tool results, we produced a table per subject as illustrated in Table 6.6. Each row

refers to a performance problem in a top-level PI (according to the scope of the manual analysis),

identified simultaneously by the developer and the tool, on a specific project, group of projects

or overall (in summary). We summarize the causes indicated by the subject and by the tool, and

classify their consistency according to the categories indicated in section 6.1.1. We also show the

support citations extracted from the final report. The causes identified by the tool are ranked.

6.1.5 Overall statistics

Regarding RQ1, by aggregating the results of individual subjects, we obtained the overall statistics

indicated in Table 6.4.

Regarding problem identification, from the 302 cases in which students explicitly character-

ized their performance (regarding a specific PI and a specific project or all projects), we compared

the student assessment with the tool-based assessment, and got the following results:

• In 96% of the cases, the results of manual and automatic analysis matched (i.e., both the

student and the tool indicated good performance or bad performance);

• In 3% of the cases, the tool indicated a clear or potential problem and the manual analysis

indicated good performance (false positives);

• In 1% of the cases, the tool indicated no performance problem but the developer explicitly

indicated a performance problem (false negatives).

Regarding RQ2, by aggregating the results of individual subjects, we obtained the overall

statistics given below (also see Table 6.5):

• In 21% of the cases, the tool and the developer pointed out the same causes (or none pointed

out any causes).

Table 6.3: Problem identification statistics for one of the selected subjects in the case study (1
subject x 6 projects).

Automatic Analysis
Green Yellow Red

Bad 0 (false
negative)

2 (bad
performance)

7 (bad
performance)

Manual Analysis Good 5 (good
performance)

1 (false
positive)

0 (false
positive)

6.1 Postmortem experiment 83

• In 53% of the cases, the tool and the developer pointed out causes at different levels of

detail, with the tool accurately pointing out intermediate causes, and the developer pointing

out deeper causes. These are cases where the automatic analysis accurately points out factors

to focus in subsequent manual analysis, potentially reducing the overall manual effort.

• In 26% of the cases the results are inconsistent, because of faults in the manual analysis.

Such cases might be prevented if our tool was used by the subjects when conducting their

performance analysis.

6.1.6 Discussion

6.1.6.1 Answers to the research questions

Regarding RQ1 – “Is it possible to automatically analyze the performance data of an individual

PSP developer in order to identify performance problems, with similar results but with less effort

than in manual analysis”, Table 6.4 shows that in 292 (96%) out of the 302 cases in which the

developers explicitly indicated good or bad performance, the results of manual and automatic

analysis are similar, in the sense indicated in section 6.1.1. There are only eight false positives,

corresponding to boundary situations, in which the tool indicated a potential performance problem

(yellow) but the developer considered to exist a good performance. There are two false negatives,

in which the developer considered to exist a performance problem but the tool indicated good

performance (green); however, those cases refers to subjects that considered abnormally tight

thresholds, so they could also be classified as an erroneous evaluation by the subject. Hence,

regarding RQ1, we conclude that in this experiment the automatic analysis produces similar results

(without essentially any manual effort), with a very small number of false positives (3%).

Regarding RQ2 – “Is it possible to automatically analyze the performance data of an individual

PSP developer in order to determine the causes of the identified performance problems, in a way

consistent with manual analysis (except when manual analysis is erroneous)?”, the results in Table

6.5 show that, in the cases in which the manual analysis was not erroneous (it was erroneous in

26% of the cases!), the tool-based analysis was able to point out the same causes as the ones found

by the developers in their manual analysis (21% of the cases) or was able to point out intermediate

causes in the same direction as the deeper causes identified in manual analysis (53%) of the cases.

Table 6.4: Problem identification statistics for all selected subjects in the case study (20 subjects
x 6 projects).

Automatic Analysis
Green Yellow Red

Bad 2 (1% false
negative)

82 (bad
performance)

114 (bad
performance)

Manual Analysis Good 96 (good
performance)

8 (3% false
positive)

0 (false
positive)

84 Experimentation and validation

Hence, regarding RQ2, we conclude that the automatic analysis was able to identify either the

same causes or causes in the same direction as the manual analysis.

Overall, the benefits of the tool-based analysis are:

• it can correctly identify the performance problems, saving manual effort;

• it can correctly identify causes for the identified performance problems, so that subsequent

manual analysis for searching deeper causes can be properly focused, reducing the overall

manual effort needed and the errors in manual analysis.

6.1.7 Limitations and threats to validity

In the experiment presented, using real world data, the conclusions obtained by the model-based

analysis are very close to the ones obtained by the developers in their manual analysis. This

suggests that our approach can be helpful in performance analysis and process improvement, by

pointing out the areas to focus in manual analysis. However, further experiments need to be

conducted to quantify the effort savings that can be achieved by conducting performance analysis

with the help of our tool from the beginning (that will be the goal of the second experiment).

Our choice of PIs was constrained by the data available, so some relevant factors (mentioned

by the developers in their manual analysis) were not captured by those PIs, such as parts’ size

estimation accuracy, level of experience, and program complexity. However, in case data about

those factors is available, our approach can be easily extended to take them into account.

Although our approach and tool are general and can be instantiated for any process, the model

and experiment described in the thesis refer only to PSP performance data. We intend to repli-

cate our approach to other processes without having such a well-defined measurement framework

as the PSP, but we expect to encounter difficulties regarding data availability, data quality, and

standardization.

Table 6.5: Frequency of categories and subcategories for RQ2.

Categories and subcategories Absolute
frequency

Relative
frequency

Consistent – Match (same causes) 11 21%
Consistent - Different level of detail - Deeper
manual analysis (tool accurately points out in-
termediate causes)

28 53%

Inconsistent - Developer fault (wrong or miss-
ing factors)

14 26%

Total 53 100%

6.1 Postmortem experiment 85

Table 6.6: Comparison of causes of identified performance problems for one subject in the case
study.

Top-level
Indicator

Project Causes in manual
analysis

Causes in automatic anal-
ysis

Classification

Size
Estimation
Accuracy

P2 No relevant cause1 None2 Consistent – Match (no causes)

Time
Estimation
Accuracy

P2 “I attribute the bad
(time) estimation to the
(bad) size estimation”

Size Estimation Accuracy
(red)

Consistent – Match (similar
causes)

Time
Estimation
Accuracy

P5 Historical productivity
didn’t apply because of
more reused code 3

Design Productivity Stabil-
ity (red), Design Review
Productivity Stability (red)
Plan Productivity Stability
(yellow), Size Estimation
Accuracy (yellow)

Inconsistent - Developer fault
(wrong or missing factors)4

Productivity P5 More reused code and
more time in Design
and Design Review. 5

Design Productivity (red),
Design Review Productiv-
ity (red), Plan Productivity
(yellow), Code Productiv-
ity (yellow)

Consistent - Match. Inconsis-
tent - Developer fault (wrong or
missing factors).4

Productivity P6 More code reused.
More time in Design
and Design Review.5

Design Productivity, De-
sign Review Productivity,
Code Productivity, Post-
mortem Productivity, Code
Review Productivity and
Plan Productivity (red)

Consistent - Different level of
detail – Deeper manual analysis
(tool accurately points out inter-
mediate causes)

Defects
Injected

Summary Most defects injected in
Design (mainly of type
Function), followed by
Code6.

Defects Injected in Design
(red), Defects Injected in
Code (yellow)

Consistent - Different level of
detail – Deeper manual analysis
(tool accurately points out inter-
mediate causes)

Process
Yield

P4 “Bad because I did not
perform well (the code
and) code review”

Code Review Yield (red) Consistent – Match (similar
causes)

Process
Yield

P5 “Bad because I did not
perform well (the code
and) code review”

Code Review Yield (green) Consistent – Match (similar
causes)

1 In this case, the subject mentioned “when I made this estimate I was not aware of how many lines of code I used
to program”. However, he did not analyze the two possible immediate causes - problems in the identification of
needed parts, or problems in the size estimation of each part – which would point out to relevant improvement
actions.

2 In the training data set, we do not have available the data produced by PSP developers for size estimation and
measurement needed for causal analysis (parts and their estimated and actual sizes). If that data was available,
causal analysis could be automated.

3 “As to the error in the program 5, I attribute it to that when I was making this estimate I used method C (time esti-
mate based on historical productivity and size estimate), when the best option was the method D (expert judgment).
This is because, unlike in previous programs, program 5 reused a lot of code.”

4 Significant process changes occur in project 4 (introduction of design templates in the Design phase) and 5 (intro-
duction of execution table analysis in the Design Review phase), which slow down productivity in those phases
on all subjects analyzed. By contrast, we did not find a significant correlation between the percentage of reused
code and the productivity. In projects P1 to P3, productivity (measured in added and modified LOC/hour) is stable
(between 36 or 37 added and modified LOC/hour), with a small % reuse (between 0% and 16%); then there is a
steep decrease of productivity in project 4 (where design templates are introduced in the Design phase), with 0%
reused code, and productivity of 21 LOC/hour.

5 “Programs 5 and 6 were where I did reuse more code, and also conducted more design and design review, which
explains the low productivity (measured in added and modified LOC/hour).”

6 “Most of the defects were injected in the design stage, these being mainly errors of type function”.

86 Experimentation and validation

6.2 Controlled experiment

In this section we present the results of a controlled experiment involving 61 software engineering

master students, of Instituto Tecnológico de Monterrey, in Mexico, half of whom used Process-

PAIR tool in a PSP performance analysis assignment and other used Process Dashboard tool in

the 2016 edition of the Software Quality and Testing course.

Our goal is to assess the benefits of using ProcessPAIR for personal performance analysis, as

compared to traditional tools, in terms of user satisfaction, quality of analysis outcomes, and time

required to do the analysis.

6.2.1 Context

The “Software Quality and Testing” course includes a streamlined version of the official SEI’s PSP

Fundamental and PSP Advanced training courses. In the 2016 edition, each student has to develop

7 small projects, following increasingly elaborated processes, which incorporate in a proper order

relevant software engineering best practices (project estimation, planning and tracking, unit tests,

reviews, design practices, etc.).

Several base measures are collected to support some of those practices and also to assess

personal performance status and progression. During the course, students used Process Dashboard

(Dashboard), a comprehensive PSP support tool for data collection (time, defects, size), project

planning and tracking, and data analysis (charts and reports that aid in the analysis of historical

data trends) described in section 2.2.5

At the end of the course, the students have to perform the official “PSP Final Report” assign-

ment. In this assignment, students are asked to analyze their personal performance data collected

throughout the 7 projects they developed and document their findings and improvement proposals

in a report.

To guide their analysis, students are asked to address several questions organized in the fol-

lowing categories (see also the full set of questions presented in Table 2.3):

• Analysis of size estimating accuracy (7 questions);

• Analysis of time estimating accuracy (10 questions);

• Defect and yield analysis (9 questions);

• Quality analysis (4 questions).

6.2.2 ProcessPAIR tuning

For better supporting the production of the PSP Final Report with the help of ProcessPAIR, we

tuned ProcessPAIR as follows:

6.2 Controlled experiment 87

• we configured the performance model named “PSP Performance Model for PSP Final Re-

port”, that extends our base performance model for the PSP (see chapter 4), with additional

top-level PIs;

• we prepared a web based tutorial (see Appendix A) named “PSP Final Report Guidelines”,

explaining how to take advantage of ProcessPAIR to answer the required questions.

6.2.3 Experiment design

In this experiment, we aim to prove the following main hypothesis:

Using ProcessPAIR, PSP students can analyze their performance data and produce their “PSP

Final Report” with (i) higher user satisfaction, (ii) higher quality of results, and (iii) less effort,

as compared to the traditional approaches, using only Process Dashboard.

More specifically, the research questions that this experiment aims to answer are:

- RQ1: Are students that use ProcessPAIR for performing the “PSP Final Report” assign-

ment more satisfied with the tool support than students that perform that assignment in a

traditional way using Process Dashboard?

- RQ2: Do students that use ProcessPAIR for performing the “PSP Final Report” assignment

produce higher quality reports (as measured by the grades given by the instructor) than

students that perform that assignment in a traditional way using Process Dashboard?

- RQ3: Do students that use ProcessPAIR for performing the “PSP Final Report” assignment

spend less time than students that perform that assignment in a traditional way using Process

Dashboard?

To complete the PSP Final Report assignment, the 61 students were randomly split into two

groups: a control group, with 31 students, using Process Dashboard, and an experimental group

with 30 students using ProcessPAIR. The students in the control group completed their Final Re-

port assignment in a traditional way by inspecting their performance data (charts, reports, etc.)

stored in the Process Dashboard tool. The students in the experimental group used ProcessPAIR

for analyzing their performance data to complete Final Report assignment.

To measure user satisfaction, we prepared a web-based survey to be answered by the students

of both groups after concluding the assignment. The survey contains open text questions plus 14

questions in a five-point Likert scale related to installability, usability, efficiency, usefulness and

level of support provided by the tool they used for conducting the performance analysis (see Table

6.7).

Since the students did not have any prior knowledge about ProcessPAIR, before starting the

experiment, the tool authors presented a short tutorial about ProcessPAIR (30 minutes) to the

selected students by video-conference.

In the next step, the students were assigned a time slot to install ProcessPAIR and make sure

it run properly on their performance data. During the installation and initial setup, all the students

88 Experimentation and validation

Table 6.7: User satisfaction survey questions.

A How easy was it to install the tool on your machine? (please select 1 if you were
unable to successfully install)

B How do you rate the tool usability?
C How do you rate the tool efficiency?
D How do you rate the overall usefulness of the tool for performance analysis purposes?
E How do you rate the overall level of support provided by the tool for performance

analysis purposes?
How do you rate the level of support provided by the tool for each of the following
tasks in the PSP Final Report?

F - Analysis of size estimating accuracy
G - Analysis of time estimating accuracy
H - Defect and yield analysis
I - Quality analysis

How do you rate the level of support provided by the tool for answering the following
types of questions in the PSP Final Report?

J - Values and trends of performance indicators
K - Average, maximum and minimum values
L - Relationships and comparisons between indicators
M - Realistic performance goals
N - Process changes to meet the goals

were accompanied locally by their instructor, with distance assistance by the ProcessPAIR authors.

After successful installation, they performed the assignment autonomously, outside classes (they

had approximately two weeks, in part time, to conclude the assignment and submit the final report).

6.2.4 Results

For each student of both groups, the following data was collected:

• PSP Final Report submitted by the student;

• Process Dashboard file submitted by the student (with performance data from previous as-

signments and time logs of the final report assignment);

• Grading spreadsheet with the grades assigned by the instructor for the final report, average

for the last two programs and final course grade;

• Spreadsheet with results of surveys filled in by the students (as provided by Google forms).

From this data, the following metrics were extracted or computed for each student:

• The time spent in the assignment (extracted from the Process Dashboard time logs);

• Report grade, course grade and last 2 program grades (extracted from the grading spread-

sheet);

6.2 Controlled experiment 89

• Report size, in pages;

• User satisfaction scores (for all questions).

The results obtained regarding user satisfaction, time spent, report size and report grades are

summarized in Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5 and Table 6.8. User comments about

ProcessPAIR are listed in Table 6.10.

Figure 6.2: Average scores of the user satisfaction survey questions given by ProcessPAIR (P) and
Process Dashboard (D) users (Note: column ‘O’ shows average for all questions).

6.2.5 Discussion

The statistics in Table 6.8 show that, on average, ProcessPAIR users were more satisfied with the

tool support, produced higher quality reports and spent less time than non-ProcessPAIR users.

Comments made by ProcessPAIR users (see Table 6.10) also show a very favorable assessment.

To determine whether the differences observed are statistically significant, we performed the t-

test for the difference of means (see Table 6.9). Since the variables under analysis did not pass

90 Experimentation and validation

Figure 6.3: Distribution and box plot of time spent (in minutes) by developers in both groups in
the PSP Final Report assignment.

Figure 6.4: Distribution and box plot of report size (in pages) by developers in both groups in the
PSP Final Report assignment.

the Shapiro-Wilk normality test for one or both samples (groups), we also performed the Mann-

Whitney test for the difference of medians (see Table 6.9). Regarding user satisfaction (RQ1), we

conclude that the differences for all questions except installability are statistically significant for a

5% confidence level.

Regarding quality of results (RQ2), the differences in the report grades achieved are statisti-

cally significant according to the t-test for the difference of means, but not according the Mann-

Whitney test for the difference of medians. By inspecting the distribution of the report grades in

6.2 Controlled experiment 91

Figure 6.5: Distribution and box plot of grades achieved by developers in both groups in the PSP
Final Report assignment.

Figure 6.5, it can be observed that there is a clear difference between the two groups to the left of

the median, but not to the right, which is consistent with the tests’ results. This suggests that the

students who get the lower grades are the ones that benefit most of using ProcessPAIR. To make

sure that the difference between the two groups was not caused by an unbalanced split of students

between groups, we also checked the grades achieved in recent projects (last programs developed,

before the final assignment) by the students in both groups, and found no statistically significant

differences (in fact, the students in the experimental group had slightly lower grades in the last

two projects).

Regarding the time spent (RQ3), ProcessPAIR users spent on average less time than non-

ProcessPAIR users, but the differences observed between both groups are not statistically sig-

nificant according to both tests. Although ProcessPAIR already has automatic report generation

Table 6.8: Some statistics in the control experiment.

Statistic Experimental group
(ProcessPAIR)

Control group
(Process Dashboard)

Number of students 30 31
Mean score for all students and ques-
tions in user satisfaction survey

4.78 (in a 1-5 scale) 3.81 (in a 1-5 scale)

Mean report grade 88.1 (in a 0-100 scale) 82.5 (in a 0-100 scale)
Mean time spent 252.2 minutes 262.2 minutes
Mean report size 25.0 pages 18.2 pages
Median time spent 228.5 249.0
Median report size 23 pages 16.5 pages
Median report grade 91.5 88.0

92 Experimentation and validation

Table 6.9: Results of hypothesis tests.

Variables Difference of means statis-
tically significant?
(t-test, unequal variances)

Difference of medians
statistically significant?
(Mann-Whitney U Test)

Time spent (minutes) No (p=0.337) No (p=0.209)
Report size (pages) Yes (p=0.00049) Yes (p=0.00058)
Report grade Yes (p=0.0293) No (p=0.173)
Survey: Installability (A) No (p=0.0712) No (p=0.0630)
Survey: Usability, Effi-
ciency, Usefullness, Level
of Suport (B,. . . ,N)

Yes (p<1E-4 for all ques-
tions)

Yes (p<1E-3 for all ques-
tions)

features (dispensing the users from the tedious copy-paste of dozens of charts) that was intention-

ally disabled in the experiment, to have a closer comparison with Process Dashboard. By enabling

that feature in the future, we expect to significantly reduce the time needed for performing the

assignment.

On the other hand, we observed that students in the experimental group produced significantly

longer reports than the students in the control group (see Figure 6.4, Table 6.8 and Table 6.9),

which, together with the better grades, suggests that they produced more complete reports in

roughly the same time as the students in the control group.

6.2.6 Threats to validity

We identified the following threats to validity.

Different previous knowledge: The students in the experimental group did not have previous

knowledge about the tool for the experiment (ProcessPAIR), whilst the students in the control

group had significant prior knowledge of the tool for the experiment (Process Dashboad), because

they used it throughout 7 projects. This may have negatively affected the performance of Process-

PAIR users in the experiment, as compared with Process Dashboard users.

Different guidelines available: Both ProcessPAIR and Process Dashboard have extensive sup-

port documentation, but only ProcessPAIR has specific guidelines for producing the “PSP Final

Report”. This may have positively affected the performance of ProcessPAIR users in the experi-

ment, as compared with Process Dashboard users. In fact, the usefulness of the online guide was

highlighted by students in the comments given in the user satisfaction survey.

6.2 Controlled experiment 93

Table 6.10: Comments provided by ProcessPAIR users to the question “Please elaborate your
opinion about the overall usefulness and level of support for Performance Analysis Purposes”.

-“ProcessPAIR really does elaborate all the information needed to make the analysis. With the help of the
online guide it was easy to know what was happening in each graph and in each set of data.”

- “The amount of detail in the graphs generated by the platform was awesome.”

- “It’s really helpful because it already gives you all the data analysis that you need for the PSP report.”

- “Having graphical views for all calculations was very helpful, also the capability to view multiple graphs at
the same time.”

- “It’s really easy to visualize your data using the tool, and having data from other projects gives you a reference
level for you to compare your own work with so that’s great too.”

- “It was very useful and helpful for the development of the final report.”

- “The tool is useful to check all your statistics in a quickly way, still need a way to explain a little more the
graphs.”

- “They both worked better than I expected and helped me to make the process of the final report easier.”

- “I liked ProcessPAIR a lot because it was easier to use than Dashboard, and because it showed the graph for
each question, giving me the opportunity to find the answers easier.”

- “The tool was very useful, it provided a lot of features, a lot of graphs that were really easy to obtain, copy,
modify and interact with them, it also had a tab that was like an excel and it marked you in green the areas that
you were good at the PSP, and marked you the areas of opportunity in yellow and red, this was useful, because
I was able to see where I need to do better.”

- “It is very useful as it can identify as I was and where I need to improve.” (translated from Spanish)

- “It pretty much did all the charts and it was really awesome that other student data was used as reference to
visually understand where I am. And having the recommendations (the report view tab) was honestly the best
assistance given that fact that it was a second option that supported the analysis that we were doing.”

- “ProcessPAIR was really useful at displaying my dashboard metrics and their average values.”

- “Analysis was pretty straight forward and easy.”

- “The performance of the tool is excellent the tutorials help a lot and is easy to understand and elaborate your
analysis.”

- “I could answer all questions without problems.” (translated from Spanish)

- “I think everything worked perfectly, however the option to take a screenshot should create a screenshot only
of the graph, not the entire screen.”

- “It was completely relevant, giving me the metrics I needed.”

- “The application served very well to see all my historical data and to prepare the final report.” (translated from
Spanish)

- “It is really useful ProcessPAIR because it gives directly what are you problems and the possible causes.
Besides, you can verify if that’s true by going to the indicator that shows if you have a problem or not.”

- “The graphics provided by the tool are to useful for the analysis.”

- “Many links within the app did not work at all and it did not give useful feedback.”

- “It really made it easier to understand all the information in the graphs.”

- “The usefulness is great with this tool because it guides you through the report and also you can analyze more
data and statistics of your performance with all the statistics it includes when it analyses your data.”

- “The tool was very useful to understand my overall performance.”

- “It helped analyze every answer in a specific way thanks to the help of the graphs that it provided. It was
really easy to compare different statistics and understand why things happened.”

94 Experimentation and validation

Table 6.11: Data regarding total time spent in producing final report, final report size in pages and
grades of individual users from both ProcessPAIR and Process Dashboard users.

ProcessPAIR Process Dashboard

Student#
Time spent
(in minutes)

Report size
(in pages)

Report grade
(0-100)

Student#
Time spent
(in minutes)

Report size
(in pages)

Report grade
(0-100)

1 204 22 77.0 1 249 18 73.0
2 541 44 89.0 2 175 20 78.0
3 463 30 93.0 3 273 32 81.0
4 240 21 93.0 4 241 32 62.0
5 405 35 91.0 5 429 33 41.0
6 227 22 89.0 6 118 14 93.0
7 184 21 96.0 7 354 25 79.0
8 336 40 88.0 8 274 15 84.0
9 183 29 81.0 9 220 8 100.0
10 193 22 85.0 10 305 20 95.0
11 281 30 86.0 11 297 14 70.0
12 212 30 85.0 12 230 12 80.0
13 276 21 79.0 13 188 9 88.0
14 208 25 79.0 14 266 17 77.0
15 275 43 93.0 15 225 14 96.0
16 73 24 92.0 16 144 10 53.0
17 211 26 78.0 17 344 16 72.0
18 260 20 93.0 18 263 19 93.0
19 189 10 73.0 19 318 29 93.0
20 196 19 81.0 20 308 20 93.0
21 199 28 80.0 21 235 16 96.0
22 230 15 93.0 22 165 12 73.0
23 423 22 93.0 23 205 25 96.0
24 202 20 93.0 24 438 18 93.0
25 153 24 93.0 25 187 14 55.0
26 216 19 93.0 26 215 11 81.0
27 253 13 95.0 27 327 24 88.0
28 237 27 93.0 28 122 11 92.0
29 258 18 93.0 29 209 12 93.0
30 237 30 96.0 30 462 23 96.0
- - - - 31 339 24 93.0

Chapter 7

Conclusions and future work

7.1 Summary of contributions

The main contributions of the research work are the ProcessPAIR method, the ProcessPAIR tool,

the PSP performance model for ProcessPAIR, and the ProcessPAIR experiments.

The ProcessPAIR method for automated performance analysis and improvement recommen-

dation in software development is described in chapter 3. We developed and validated the algo-

rithms for automatically evaluating and ranking (prioritizing) the performance problems and their

root causes.

The ProcessPAIR support tool is described in chapter 5 and publicly available in (http:

//blogs.fe.up.pt/processpair/. We designed and developed a novel tool (ProcessPAIR)

for automating the identification and prioritization of performance problems and their root causes

in software development, and showed its successful application for the PSP. Currently, the tool

analyzes performance data produced by PSP developers in their projects, as recorded in the PSP

Student Workbook or Process Dashboard, and pinpoints the ranked performance problems and

their possible root causes.

The PSP performance model for ProcessPAIR is described in chapter 4. We constructed and

validated the performance model (defining performance indicators, cause-effect relationships be-

tween them, and recommended ranges or thresholds) for predictability, quality, and productivity

that can be used to automatically identify and rank performance problems and their root causes of

individual PSP developers. We took advantage of the partnership with the Software Engineering

Institute (SEI) and accessed PSP data for calibration of the performance model. Since the model

is calibrated based on a large data set, it can also be used for benchmarking purposes.

The ProcessPAIR experimental results for both tool and model are described in chapter 6.

We conducted experiments in real world contexts for the validation of the developed models and

tool and showed the benefits of the approach. The results of the postmortem experiment show

that the ProcessPAIR tool is able to accurately identify performance problems of individual PSP

developers and potential causes for those problems.

95

http://blogs.fe.up.pt/processpair/
http://blogs.fe.up.pt/processpair/

96 Conclusions and future work

Regarding the results of a controlled experiment, involving 61 software engineering master

students, half of whom used ProcessPAIR in a PSP performance analysis assignment, show signif-

icant benefits in terms of students’ satisfaction, quality of the analysis outcomes, and time required

to do the analysis.

7.2 Research questions revisited

The results achieved allow us to answer positively to the 5 research questions set in section 1.2

RQ1. Is it possible to automatically identify performance problems of individual developers,

by taking advantage of performance models derived from the performance data of many process

users?

ProcessPAIR tool automatically points out the ‘problematic’ PIs (colored with red or yellow

semaphores). The only manual work needed is the definition, by a process expert, of the relevant

PIs for the process under consideration (only once per process), including their optimal values and

formulas for calculation from base data. The performance ranges for assessing the values of the

PIs are automatically calibrated based on the data set. Both experiments show that ProcessPAIR is

able to accurately identify performance problems of individual PSP developers. In the postmortem

experiment, in 292 (96%) out of the 302 cases, the results of manual and automatic analysis are

found similar.

Potential benefits are: less time spent in performance analysis; benchmarks for comparison

are produced automatically.

RQ2. Is it possible to automatically identify the root causes of the identified performance

problems, by taking advantage of performance models derived from the performance data of many

process users?

ProcessPAIR automatically identifies potential root causes by drilling down from problematic

top-level PIs to problematic child PIs that affect the former according to a formula or statistical

evidence. The only manual work needed is the definition by a process expert (once per process)

of the following information for the process under consideration: child PIs; sensitivity formula

for relationships when there is an exact formula. Performance ranges for the child PIs are also

calibrated automatically by ProcessPAIR as in RQ1 (for top-level indicators).

In the postmortem experiment, ProcessPAIR was able to point out the same causes as the ones

found by the developers in their manual analysis. In 21% of the cases, the tool and the developer

pointed out the same causes; in 53% of the cases, the tool and the developer pointed out causes at

different levels of detail, with the tool accurately pointing out intermediate causes, and the devel-

oper pointing out deeper causes. These are cases where the automatic analysis accurately points

out factors to focus in subsequent manual analysis, potentially reducing the overall manual effort.

In 26% of the cases the results are inconsistent, because of faults in the manual analysis. Such

cases might be prevented if our tool was used by the subjects when conducting their performance

analysis.

7.3 Future work 97

RQ3. Is it possible to automatically rank the identified performance problems, by taking ad-

vantage of performance models derived from the performance data of many process users?

ProcessPAIR ranks the performance problems based on semaphore (red or yellow) and overall

percentile. The semaphore is based on the performance ranges. The percentile is based on the

approximate statistical distribution. No manual input is needed. We expect that, by presenting the

performance problems properly ranked, developers may focus on the most important performance

problems.

RQ4. Is it possible to automatically rank the identified root causes, by taking advantage of

performance models derived from the performance data of many process users?

ProcessPAIR ranks the identified root causes based on a combination of a percentile coefficient

and a sensitivity coefficient that, together, give a cost-benefit estimate of improvement actions. The

information needed comes from the data set (statistical distribution, etc.). The only manual work

needed is the definition of the sensitivity formulas for PIs related by an exact formula (also needed

in RQ2). We expect that, by presenting the potential root causes properly ranked, developers may

focus on the most important causes.

RQ5. By automating the performance analysis as described in RQ1 to RQ4, is it possible to

reduce effort and errors and improve user satisfaction as compared to manual analysis?

In the postmortem experiment, ProcessPAIR was able to accurately identify performance prob-

lems and their potential root causes, so we expect that, by using ProcessPAIR, manual work is only

needed for identifying deeper causes, reducing the overall effort. Since in a significant number of

cases we verified that users pointed out erroneous or meaningless causes, we also expect that, by

using ProcessPAIR, errors in the analysis are reduced.

In the controlled experiment, the results show significant benefits in terms of users’ satisfac-

tion as compared to previous approaches (average score of 4.78 in a 1-5 scale for ProcessPAIR

users, against 3.81 for non-ProcessPAIR users), quality of the analysis outcomes (average grades

achieved of 88.1 in a 0-100 scale for ProcessPAIR users, against 82.5 for non-ProcessPAIR users),

and time required to do the analysis (average of 252 minutes for ProcessPAIR users, against 262

minutes for non-ProcessPAIR users, but with much room for improvement). The comments re-

garding overall usefulness and level of support for performance analysis purposes (see Table 6.10)

are also very encouraging.

7.3 Future work

Currently, ProcessPAIR is available as a standalone Java application. As future work, we in-

tend to deploy ProcessPAIR as a service available on the cloud (SaaS) and integrate it with a

cloud-based application lifecycle management tool. This will increase tool accessibility, facilitate

metrics collection, and enable the automatic recalibration of the performance models based on the

performance data of the users.

98 Conclusions and future work

Also the performance models are hardcoded as ProcessPAIR extensions. In future, we in-

tend to provide means (graphical user interfaces and configuration files) for defining performance

models without programming.

Once deployed on the cloud, we intend to add to ProcessPAIR the capability of recommend-

ing detailed improvement actions for the identified causes of performance problems, based on a

catalogue of improvement actions constructed using crowdsourcing techniques. Some initial work

was already developed to that end, resulting in a Web based platform (WebProcessPAIR, 2016)

and a master thesis co-supervised by the author.

Currently, ProcessPAIR is being successfully used by PSP users. In the future, we intend

to expand the user base by tailoring ProcessPAIR for other processes, namely, investigate the

application of ProcessPAIR for analyzing the adherence to agile practices and the performance of

agile teams (using Scrum, XP or TSP).

We also intend to explore statistical and machine leaning techniques to further automate the

ProcessPAIR method, e.g., to automatically calibrate optimal values of PIs, and to automatically

identify relationships between PIs.

Appendix A

Tutorial on PSP Final Report guidelines
with ProcessPAIR

This tutorial provides guidelines for producing the PSP Final Report with the help of ProcessPAIR.

The requirements for the PSP Final Report are described in the official SEI’s “Assignment Kit for

Final Report” of the “PSP for Engineers” course.

ProcessPAIR provides important advantages:

• compare your performance data with the performance data of a large number of PSP students

(more than 3,000);

• significantly automates the identification of your performance problems and their root causes;

• reduces the effort needed to produce the PSP Final Report;

• prevents errors in the analysis;

• lets you focus your analysis on the identification of deeper causes (not present in the data

collected) and remedial actions.

The next sections are structured according to the analysis questions described in the assign-

ment kit. For each question, it is explained how ProcessPAIR helps answering the question. It is

assumed that you have recorded your performance data with Process Dashboard or the SEI’s PSP

Student Workbook. Before proceeding to the next sections, please open ProcessPAIR and upload

your performance data file, selecting the “PSP Performance Model for PSP Final Report” model.

It is important that you read the guidelines sequentially because several features and techniques

are explained on the first occurrence.

• Analysis of size estimating accuracy

• Analysis of time estimating accuracy

• Defect and yield analysis

• Quality analysis

99

100 Tutorial on PSP Final Report guidelines with ProcessPAIR

A.1 Analysis of size estimating accuracy

1. What are the average, maximum, and minimum actual sizes of your programs in LOC to
date?

In the “Indicator View”, “Base Measures” group, select the “Actual Size” item to obtain the

required information, as illustrated in Figure A.1. You can copy the chart to your report, using

the “Copy Image” button on the top of the screen or the usual print screen facilities, and add

any pertinent comments. In this example, the average, maximum, and minimum actual sizes

in LOC to date are 140.5, 252 and 56, respectively. Please notice that these are added and

modified lines of code (as explained in the bottom left of Figure A.1).

Figure A.1: Actual size (LOC) by Project.

2. Excluding assignment 1, what percentage over or under the actual size was the estimated
size for each program (for example, if estimated/actual is in %, 85% is 15% under, 120%
is 20% over)? What are your average, maximum, and minimum values for these?

In the “Indicator View”, “Performance Indicators” group, select the “Size Estimation Accu-

racy” item to obtain the required information, as illustrated in Figure A.2:

Please notice that ProcessPAIR measures the size estimation accuracy as the ratio of actual to

estimated size, being 1 the optimal value. To obtain the percentual size estimation error you

have to subtract 1 and multiply by 100%. In Figure A.2, the 2.06 accuracy corresponds to a

106 % (under) estimation error, and the 0.52 accuracy corresponds to a -48% (over) estimation

error. The average is 1.108 (10.8%).

A.1 Analysis of size estimating accuracy 101

Figure A.2: Size estimation accuracy by Project.

ProcessPAIR computes the weighted average of a ratio by dividing the total value of the nu-

merator for all projects by the total value of the denominator for all projects. In this case, it is

the total actual size of programs 2 to 6 divided by the total estimated size of programs 2 to 6.

The weighted average is 0.851 (-14.9%). This value is of less interest in this case.

ProcessPAIR also shows in the chart the recommended performance ranges, calibrated based on

the performance data of many PSP students. The green range (good performance) corresponds

to the 1/3 best values in the calibration data, and goes from 0.85 to 1.22 (-15% to 22%). The

‘red’ range (poor performance) corresponds to the 1/3 worst values in the calibration data. The

yellow range is in between. By comparing your data with the control limits shown in the chart

, you can make informed comments about your own performance. In the Figure A.2 you can

see, the student was not able to reach a good size estimation performance (only two points

green), as compared to the population used for calibration.

You can also check in the “Report View” if ProcessPAIR identified any clear or potential (mod-

erate) problem regarding your size estimation performance, as illustrated A.3.

Figure A.3: Report view.

102 Tutorial on PSP Final Report guidelines with ProcessPAIR

By pressing the “Show Statistical Distribution Chart” button, you can get another view of how

your performance compares with the population used for calibration, as illustrated in Figure

A.4 (bottom left).

Figure A.4: Size estimation accuracy by project.

By selecting both the “Actual Size” and “Estimated Size” in the list of indicators, you can also

visually compare the base measures from which the Size Estimation Accuracy is computed, as

illustrated in Figure A.5.

3. How often was my actual program size within my 70% statistical prediction interval
(when you used methods A or B)?

The relevant chart is obtained by selecting the Actual Size, Size UPI (upper prediction interval)

and Size LPI (lower prediction interval), as shown in Figure A.6. In this example a prediction

interval was computed only in program 6. The actual size (round symbol) is within the 70%

statistical prediction interval (between LPI and UPI).

4. Do I have a tendency to add/miss entire objects?

The relevant information can be find in Figure A.7. In ProcessPAIR, missing objects are

objects that were actually added or modified, but were not planned. Extraneous objects are

objects that were planned, but were not actually added or modified. In Figure A.8, missed or

extraneous objects occurred only in the first project, so it is fair to conclude that there is no

tendency to add/miss entire objects.

5. Do I have a tendency to misjudge the relative size of objects?

A.1 Analysis of size estimating accuracy 103

Figure A.5: Indicator view.

Figure A.6: Indicator view.

The relevant information can be found in Figure A.9. This Figure refers to objects that were

correctly identified in the planning phase (i.e., missing or extraneous objects are not included

here).

104 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.7: Indicator view.

Figure A.8: Indicator view.

Currently, ProcessPAIR has no benchmarks for this indicator, because of the lack of historical

data, but it is reasonable to use ranges similar to the Size Estimation Accuracy, i.e., a green

range between 0.85 and 1.22. In this example, although it can be observed a tendency for

A.1 Analysis of size estimating accuracy 105

Figure A.9: Indicator view.

improvement, there is an oscillatory behavior with room for improvement towards the green

range.

By viewing together the Objects Estimation Accuracy and the Size Estimation Accuracy, we

can check that they are closely related as expected, as shown in Figure A.10. After program 2,

the small deviations occur because size estimates sometimes have a statistical adjustment.

6. Based on my historical size-estimating accuracy data, what is a realistic size-estimating
goal for me?

ProcessPAIR lets you compare your performance to the performance achieved by other peo-

ple, and hence helps establishing realistic goals. In case you already have a good performance

(green range), then probably you just have to keep your current performance. Otherwise, mov-

ing to the next range may be a realistic goal (from red to yellow, or from yellow to green).

7. How can I change my process to meet that goal?

Before thinking of process changes you should first identify root causes for current performance

issues. To help identifying root causes, ProcessPAIR organizes the performance indicators in a

tree-like structure, where the child nodes represent factors that may affect the parent nodes, as

illustrated in Figure A.11.

So, by drilling down from top-level indicators to child indicators, you can identify the prob-

lematic factors (root causes) and subsequently devise improvement actions (process changes)

to address them, as illustrated in Figure A.11.

106 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.10: Indicator view.

Figure A.11: Indicator view.

In the case of size estimation accuracy, the child indicators are related with the causes asked in

previous questions: tendency to add/miss entire objects; tendency to misjudge the relative size

of objects. In the example shown, the relevant cause is the tendency to misjudge the relative

A.2 Analysis of time estimating accuracy 107

size of objects. It can be observed a tendency for improvement, with a very good accuracy in

the last project (0.96 or -4% error), but oscillations are still high. Usually such oscillations are

reduced with continued practice.

In case you found deeper or different causes for the time estimation problems, you should

devise actions for addressing them.

A.2 Analysis of time estimating accuracy

1. What are the average, maximum, and minimum times of your assignments to date?

In the “Indicator View”, “Base Measures” group, select the “Actual Time” item to obtain the

required information, as illustrated in Figure A.12. You can copy the figure to your report,

using the “Copy Image” button or the usual print screen facilities, and add pertinent comments.

In this example, the average, maximum, and minimum times in the assignments to date are

232.3, 346 and 138 minutes, respectively.

Figure A.12: Indicator view.

2. What percentage over or under the actual time was the estimated time for each program
(for example, if estimated/actual is in %, 85% is 15% under, 120% is 20% over)? What
are your average, maximum, and minimum values for these?

In the “Indicator View”, “Performance Indicators” group, select the “Time Estimation Accu-

racy” item to obtain the required information, as illustrated in Figure A.13.

108 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.13: Indicator view.

Similarly to the size estimating accuracy, you can notice that ProcessPAIR measures the time

estimation accuracy as the ratio of actual to estimated time, being 1 the optimal value. To

obtain the percentual size estimation error you have to subtract 1 and multiply by 100%. In the

Figure A.13, the 3.46 accuracy corresponds to a 246% (under) estimation error, and the 0.66

accuracy corresponds to a -34% (over) estimation error. The (simple) average is 1.430 (43%

under estimation error). The weighted average is 1.086 (8.6% under estimation error).

ProcessPAIR also shows in the chart the recommended performance ranges, calibrated based

on the performance data of many PSP students. The green range (good performance) corre-

sponds to the 1/3 best values in the calibration data, and goes from 0.87 to 1.20 (-13% to 20%).

By comparing your data with the control limits shown in the chart , you can make informed

comments about your own performance. In the Figure A.13, there was a significant improve-

ment after the first project, but the student was not yet able to produce good estimates (inside

the green range).

You can also check in the “Report View” if ProcessPAIR identified any clear or potential prob-

lem regarding your time estimation performance, as illustrated in Figure A.14. In this example

ProcessPAIR indicates a clear performance problem, together with some causes (to be investi-

gated later in this section).

By selecting both the “Actual Time” and “Estimated Time” in the list of indicators, you can also

visually compare the base measures from which the Time Estimation Accuracy is computed,

as illustrated in Figure A.15.

A.2 Analysis of time estimating accuracy 109

Figure A.14: Report view.

Figure A.15: Indicator view.

3. How often was my actual development time within my 70% statistical prediction interval
(when you used methods A or B)?

The relevant chart is obtained by selecting the Actual Time, Time UPI and Time LPI, as shown

in the Figure A.16. In this example a prediction interval was computed only in program 6.

The actual time (round symbol) is well within the 70% statistical prediction interval (between

lower prediction interval and upper prediction interval).

4. What are the average, maximum, and minimum values for productivity per program to
date in LOC/hr?

In the “Indicator View”, “Performance Indicators” group, select the “Productivity” item to

obtain the required information, as illustrated in Figure A.17.

110 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.16: Indicator view.

Figure A.17: Indicator view.

You can notice that the weighted average is computed as the ratio between the total size of the

programs developed to date and the total time spent in developing those programs.

A.2 Analysis of time estimating accuracy 111

Similarly to other performance indicators, ProcessPAIR also shows in the chart the recom-

mended performance ranges, calibrated based on the performance data of many PSP students.

The green range (good performance) contains the 1/3 best values in the calibration data, and

corresponds to a productivity greater or equal to 35.7 LOC/hour. By comparing your data

with the control limits shown in the chart , you can make informed comments about your own

performance. In the Figure A.17, the productivity is almost always in the green range.

You can also check in the “Report View” if ProcessPAIR identified any clear or potential prob-

lem regarding your productivity. In this example, the Report View indicates a potential per-

formance problem with Productivity, as well as the problematic phases, as illustrated in Figure

A.18.

Figure A.18: Report view.

By selecting both the “Actual Size” and “Actual Time” in the list of indicators, you can also

visually compare the base measures from which the Productivity is computed, as illustrated

in the Figure A.19 (with Scatter mode selected in the bottom). As expected, higher sizes are

associated with higher development efforts (0.84 linear correlation coefficient).

5. Is my productivity stable? Why or why not?

You can check the productivity stability by inspecting the “Productivity” indicator, or by in-

specting the “Productivity Stability” indicator computed by ProcessPAIR, as illustrated in Fig-

ure A.20.

In ProcessPAIR, the “Productivity Stability” of a project measures how close the productivity

in that project is to the historical productivity (of previous projects), and is given by the ratio

of the productivity in that project to the historical productivity, being 1 the optimal value.

Similarly to other performance indicators, ProcessPAIR also shows in the chart the recom-

mended performance ranges, calibrated based on the performance data of many PSP students.

In this case, the green range corresponds to a productivity stability between 0.80 and 1.19. By

comparing your data with the control limits shown in the chart , you can make informed com-

ments about your own performance. In the Figure A.20, the productivity stability is almost

always inside the green range.

In PSP training there is usually a productivity decrease in the middle of the training, when some

process changes are introduced, followed by a productivity recovery as the new processes are

112 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.19: Indicator view.

Figure A.20: Indicator view.

practiced. Since the process changes usually affect specific phases, ProcessPAIR also analyzes

the Productivity Stability of each process phase.

The simplest way to identify the phases that are causing productivity instability problems is to

A.2 Analysis of time estimating accuracy 113

look at the “Report View”, as illustrated in Figure A.21. In this example, there is a moderate

problem with the overall productivity stability, caused by instability in the Design Review, De-

sign, Unit Test and Plan phases (by decreasing order of importance). This is a typical situation

in PSP training, because of the changes introduced in the design phase (introduction of design

templates), design review phase (introduction of design verification techniques), and plan phase

(introduction of size estimation, introduction of quality planning, etc.). The instability in the

Unit Test phase usually occurs because of the decrease of defects entering the unit test phase.

Figure A.21: Report view.

To manually identify the problematic phases causing productivity instability problems you can

look at different charts in the “Indicator View”, e.g., by switching the X-Axis to “Phase” (Figure

A.22), or by inspecting the child indicators of the Productivity Stability (Figure A.23, for the

Unit Test phase).

Figure A.22: Indicator view.

114 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.23: Indicator view.

6. How can I stabilize my productivity?

As explained before, ProcessPAIR helps identifying the problematic process phases that are

causing productivity instability problems. Based on that information, you are in better position

to devise relevant improvement actions. In many cases, instability is caused by process changes

and consequently can be addressed by repeated practice with a stable (unchanged) process.

7. How much are my time estimates affected by the accuracy of my size estimates?

The simplest way to answer this question is to look at the Report View, as illustrated in Figure

A.24 (with “Show only leaf causes” unchecked, to visualize intermediate causes).

Figure A.24: Report view.

A.2 Analysis of time estimating accuracy 115

The causal analysis conducted by ProcessPAIR, follows the following rational: problems with

the Time Estimation Accuracy may be caused by problems with Size Estimation Accuracy or

by problems with Productivity Estimation Accuracy (discrepancies between estimated and ac-

tual productivity). In the example Figure A.24, it is identified a clear performance problem

with Time Estimation Accuracy, caused mainly (‘high possibility’) by problems with Size Es-

timation Accuracy, and in second place (‘moderate possibility’) by problems with Productivity

Estimation Accuracy. Hence, we conclude that, in this example, time estimation accuracy is

highly affected by the accuracy of size estimates.

ProcessPAIR further drills down the causal analyses according to the following rational: pro-

ductivity estimation problems may occur because of productivity instability problems (making

historical productivity not reliable for estimation) or because historical productivity is not used

in estimates. In turn, productivity stability problems may be caused by productivity instability

in specific phases.

8. Based on my historical time-estimating accuracy data, what is a realistic time-estimating
goal for me?

ProcessPAIR lets you compare your performance to the performance achieved by other peo-

ple, and hence helps establishing realistic goals. In case you already have a good performance

(green range), then probably you just have to keep your current performance. Otherwise, mov-

ing to the next range may be a realistic goal (from red to yellow, or from yellow to green).

9. How can I change my process to meet that goal?

The simplest way to answer this question is to first look at the causes suggested in the Report

View, as illustrated in Figure A.25 (“Show only leaf causes” checked).

Figure A.25: Report view.

In the example Figure A.25 , the first two causes are much more important than the other

ones, so it is a good idea to focus on that causes. For addressing the first one, the historical

productivity of previous projects should be used in time estimating for future projects (with the

appropriate PROBE method). For addressing the second one, the relevant actions should have

already been indicated in a previous section of the report.

116 Tutorial on PSP Final Report guidelines with ProcessPAIR

In case you found deeper or different causes for the time estimation problems, you should

devise actions for addressing them.

A.3 Defect and yield analysis

1. Which defect type accounts for the most time spent in compile? In test? In which phase
was each type of defect injected most often?

In the “Indicator View”, “Base Measures” group, select the “Fixtime of Defects Removed in

Compile” and “Fixtime of Defects Removed in Unit Test” items, and “Defect Type” for the

X-Axis, to obtain the answers to the first two questions, as illustrated in Figure A.26.

Figure A.26: Indicator view.

In this example there are no defects found in the Compile phase. In the Unit test phase, the

defects of type Function take most of the time, followed by the defects of type Interface. Also

notice that it is shown the average fix time for all projects.

The phases where defects of type Function and Interface were injected most often (third ques-

tion), can be seen in the Figure A.27. Those types of defects are injected mostly in the Code

phase, followed by the Design and the Unit Test phases.

2. What type of defects do I inject during design and coding?

Figure A.28 provides an answer in terms of number of defects. In this example, the most

important type is Function, followed by Interface and Assignment.

A.3 Defect and yield analysis 117

Figure A.27: Indicator view.

Figure A.28: Indicator view.

3. What trends are apparent in defects per size unit (e.g., KLOC) found in reviews, compile,
and test?

118 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figures A.29 A.30 show the relevant information. In this example there is no Compile phase.

Figure A.29: Indicator view.

Figure A.30: Indicator view.

In this example (Figure A.29), there is a trend for decreasing the defects found in unit test per

size unit, with 0 defects in the last two projects. This may be caused by defects being found in

A.3 Defect and yield analysis 119

earlier phases or because of fewer defects being injected. Usually, fewer defects found in unit

test also means that fewer defects remain in the delivered program, so the delivered program is

of higher quality.

Regarding defects per size unit found in code and design reviews, there is no clear trend (see

Figure A.30).

4. What trends are apparent in total defects per size unit?

The relevant chart is shown in Figure A.30. In this example there is a trend for decreasing in

the last two projects. Anyways, the total defects per size unit are within the green region (less

than 45 defects per KLOC) in all projects. So, the performance is good and improving.

Figure A.31: Indicator view.

5. How do my defect removal rates (defects removed/hour) compare for design review, code
review, compile, and test?

The relevant chart is shown in Figure A.32. In this example there is no Compile phase. The

Code Review phase (with 3.85 defects found per hour on average) is slightly more efficient in

finding defects than the Unit Test phase (with 3.69 defects found per hour on average). The

Design Review phase is less efficient (with 1.38 defects found per hour).

The Figure A.33, A.34 and A.35 allow a better comparison with benchmarks. As indicated in

the figures, a good performance for the defect removal rate is a value equal or greater than 8.0

defects/hour in Code Review and a value equal or greater than 4.9 defects/hour in Unit Test (less

efficient than Code Review). In this example, compared to the benchmarks, the weighted av-

erage performance in Code Review (3.85 compared to 8.0) is worse than the weighted average

120 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.32: Indicator view.

performance in Unit Test (3.69 compared to 4.9). So there is much more room for improvement

in the Code Review phase.

Figure A.33: Indicator view.

A.3 Defect and yield analysis 121

Figure A.34: Indicator view.

Figure A.35: Indicator view.

6. What are my review rates (size reviewed/hour) for design review and code review?

The relevant Figures are A.36 and A.37. In ProcessPAIR the Design Review Rate and Code

Review Rate are also called Design Review Productivity and Code Review Productivity, re-

122 Tutorial on PSP Final Report guidelines with ProcessPAIR

spectively. In this example, the average Design Review Rate is 324 LOC/hour, which is within

the green region. The average Code Review Rate is 310 LOC/hour, which is also within the

green region. In both cases there is a trend towards getting close to the optimal value.

Figure A.36: Indicator view.

Figure A.37: Indicator view.

A.3 Defect and yield analysis 123

7. What are my defect-removal leverages for design review, code review, and compile versus
unit test?

The relevant values are shown in the Figure A.38. In this example there is no Compile phase.

On average, the defect removal leverage is 0.374 for design review versus unit test and 1.042

for code review versus unit test. The interpretation was already done in a previous question.

Figure A.38: Indicator view.

8. Is there any relationship between yield and review rate (size reviewed/hour) for design
and code reviews?

The relevant information is shown in Figure A.39 and A.40 . The review yield is undefined

when there are 0 defects entering the review phase. In this example, that happens with program

5 (for code and design reviews) and program 4 (for design review only). Regarding the Code

Review Yield versus the Code Review Rate, there is a negative correlation (-0.87) as expected

(because slower reviews are usually associated with higher yields). However, since there are

only 3 data points, the correlation is not statistically significant. As for the Design Review

Yield versus Design Review Rate, the trend is different from expected (a slower review rate

is associated with a smaller yield), but with only two data points the correlation coefficient is

meaningless (always +1 or -1).

9. Is there a relationship between yield and A/FR?

The relevant information is shown in Figure A.41. In this example there is a very good positive

correlation (0.95) between the Process Yield and the Appraisal to Failure Ratio (A/FR). The

correlation is also statistically significant (for a 5% confidence level, computed with a web

124 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figure A.39: Indicator view.

Figure A.40: Indicator view.

calculator). This correlation is as expected, because spending more time in ‘appraisal’ activities

(design and code reviews) is usually associated with a higher process yield (percentage of

defects found before compile and test).

A.3 Defect and yield analysis 125

Figure A.41: Indicator view.

You can also see the same information in Figure A.42 (Scatter check box selected).

Figure A.42: Indicator view.

126 Tutorial on PSP Final Report guidelines with ProcessPAIR

A.4 Quality analysis

1. How much did the quality of the programs entering unit test change? Why?

In PSP, the quality of programs entering unit test is usually assessed based on the defects per

size unit found in unit test, so the relevant information is shown in Figure A.43. As already

analysed before, in this example there is a trend for decreasing the defects found in unit test per

size unit, starting with an average of 27 defects/KLOC in the first two programs, an average

of 14 defects/KLOC in programs 3 and 4, and finally 0 defects/KLOC in the last two projects,

which is a very good improvement trend.

Figure A.43: Indicator view.

2. Am I finding my defects in design and code reviews? Why or why not?

The relevant information is shown in Figure A.44 and for a more detailed information, the

design review and code review yields, as shown in Figure A.45. The yield is not defined when

there are no defects entering a phase. In this example, regarding the process yield, there is a

very good evolution from very small values in the first two programs (without review phases)

to 60% in programs 3 and 4 (when reviews are introduced) and finally 100% in program 6 (in

program 5 the yield is undefined because of no defects recorded). The Code Review Yield

follows a similar trend. Regarding the Design Review Yield, it is undefined in programs 5

and 6, and the values observed in the previous two programs still have room for improvement

(namely to reach the 78% boundary).

3. Based on my historical data, what are some realistic quality goals for me?

A.4 Quality analysis 127

Figure A.44: Indicator view.

Figure A.45: Indicator view.

ProcessPAIR lets you compare your performance to the performance achieved by other peo-

ple, and hence helps establishing realistic goals. In case you already have a good performance

128 Tutorial on PSP Final Report guidelines with ProcessPAIR

(green range), then probably you just have to keep your current performance. Otherwise, mov-

ing to the next range may be a realistic goal (from red to yellow, or from yellow to green).

In this example, it seems realistic to be in the green region for the defects found per size unit in

unit test (<= 11 defects/KLOC) and process yield (>= 65% in the benchmarks used).

4. How can I change my process to meet those goals?

The simplest way to answer this question is to first look at the causes suggested in the Report

View, as illustrated in Figure A.46 and A.47 (“Show only leaf causes” checked).

Figure A.46: Report view.

Figure A.47: Report view.

In this example, it is indicated a potential performance problem with both the process yield and

the defect density in unit test, having in both cases the same root causes: potential performance

problem with the Code Review Yield and clear performance problem with the Design Review

Yield.

Although the Code Review Yield is better than the the Design Review Yield, the first priority

indicated by ProcessPAIR (based on a cost-benefit estimate) is to improve the Code Review

Yield. Since the Code Review Rate is already within the recommended range, the improvement

actions should be based on other review best practices (e.g., improving review checklists to

focus on the types of defects that escaped from code reviews).

In case you found deeper or different causes for the problems identified, you should devise

actions for addressing them.

References

Charu C. Aggarwal. Data Classification: Algorithms and Applications. Chapman & Hall/CRC,
1st edition, 2014. ISBN 1466586745, 9781466586741.

Lukas Alperowitz, Dora Dzvonyar, and Bernd Bruegge. Metrics in agile project courses. In
Proceedings of the 38th International Conference on Software Engineering Companion, pages
323–326. ACM, 2016.

Tiago L Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from benchmark
data. In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages 1–10.
IEEE, 2010.

Tiago Miguel Laureano Alves. Benchmark-based software product quality evaluation. 2012.

AssignmentKit. Assignment kit for final report, personal software process for engineers: Part
ii, PSP academic material 4-1, 2006. URL http://www.sei.cmu.edu/tsp/tools/
academic/index.cfm.

Kent Beck. Extreme programming explained: embrace change. Addison-Wesley Professional,
2000.

Barry Boehm. Some future software engineering opportunities and challenges. In The Future of
Software Engineering, pages 1–32. Springer, 2011.

L. Breiman. Classification and Regression Trees. The Wadsworth statistics/probability series.
Wadsworth International Group, 1984. ISBN 9780534980542. URL https://books.
google.pt/books?id=mlZgQgAACAAJ.

J Campos. Risk management and failure mode and effect analysis for product development. Rapid
Innovation LLC, 2012.

David N Card. Defect-causal analysis drives down error rates. IEEE Software, 10(4):98–99, 1993.

David N Card. Defect analysis: Basic techniques for management and learning. Advances in
Computers, 65:259–295, 2005.

Samprit Chatterjee and Ali S Hadi. Regression analysis by example. John Wiley & Sons, 2015.

Mary Beth Chrissis, Mike Konrad, and Sandra Shrum. CMMI for development: guidelines for
process integration and product improvement. Pearson Education, 2011.

Watts S. Humphrey Daniel Burton. Mining PSP Data. 2006.

Process Dashboard. Tuma Solutions LLC, Process Dashboard. URL http://www.
processdash.com/.

129

http://www.sei.cmu.edu/tsp/tools/academic/index.cfm
http://www.sei.cmu.edu/tsp/tools/academic/index.cfm
https://books.google.pt/books?id=mlZgQgAACAAJ
https://books.google.pt/books?id=mlZgQgAACAAJ
http://www.processdash.com/
http://www.processdash.com/

130 REFERENCES

T. Daughtrey. Fundamental Concepts for the Software Quality Engineer. ASQ Quality
Press, 2002. ISBN 9780873895217. URL https://books.google.pt/books?id=
dFmXBaLy0YMC.

Norman Fenton and James Bieman. Software metrics: a rigorous and practical approach. CRC
Press, 2014.

Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics, pages 1–67,
1991.

John C Gower. A general coefficient of similarity and some of its properties. Biometrics, pages
857–871, 1971.

Hackystat. Hackystat Development Team, Hackystat. URL https://code.google.com/
archive/p/hackystat/.

DM Hamby. A review of techniques for parameter sensitivity analysis of environmental models.
Environmental monitoring and assessment, 32(2):135–154, 1994.

H James Harrington et al. Business process improvement: The breakthrough strategy for total
quality, productivity, and competitiveness, volume 1. McGraw-Hill New York, NY, 1991.

Watts Humphrey and James Over. Leadership, Teamwork, and Trust: Building a Competitive
Software Capability. Addison-Wesley Professional, 2010.

Watts S Humphrey. Introduction to the Personal Software Process. Addison-Wesley Professional,
1997.

Watts S Humphrey. Team Software Process (TSP). Encyclopedia of Software Engineering, 2000.

Watts S Humphrey. PSP (sm): a self-improvement process for software engineers. Addison-
Wesley Professional, 2005.

C. Jones. Software Engineering Best Practices: Lessons from Successful Projects in the Top
Companies. McGraw-Hill Education, 2009. ISBN 9780071621625. URL http://books.
google.pt/books?id=CJd__8ANvtQC.

Capers Jones. Software assessments, benchmarks, and best practices. Addison-Wesley Longman
Publishing Co., Inc., 2000.

Marcos Kalinowski, David N Card, and Guilherme H Travassos. Evidence-based guidelines to
defect causal analysis. IEEE Software, 29(4):16–18, 2012.

Chris F Kemerer and Mark C Paulk. The impact of design and code reviews on software quality:
An empirical study based on PSP data. Software Engineering, IEEE Transactions on, 35(4):
534–550, 2009.

Ron S Kenett and Emanuel Baker. Software process quality: management and control. CRC
Press, 1999.

Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer, 2013.

Young Hoon Kwak and Frank T Anbari. Benefits, obstacles, and future of six sigma approach.
Technovation, 26(5):708–715, 2006.

https://books.google.pt/books?id=dFmXBaLy0YMC
https://books.google.pt/books?id=dFmXBaLy0YMC
https://code.google.com/archive/p/hackystat/
https://code.google.com/archive/p/hackystat/
http://books.google.pt/books?id=CJd__8ANvtQC
http://books.google.pt/books?id=CJd__8ANvtQC

REFERENCES 131

Steve McConnell. Software estimation: demystifying the black art. Microsoft press, 2006.

Mushtaq and João Pascoal Faria. A Model for Analyzing Estimation, Productivity, and Qual-
ity Performance in the Personal Software Process. In Proceedings of the 2014 Interna-
tional Conference on Software and System Process, ICSSP 2014, pages 10–19, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2754-1. doi: 10.1145/2600821.2600828. URL
http://doi.acm.org/10.1145/2600821.2600828.

MHNM Nasir and Azwina M Yusof. Automating a modified personal software process. Malaysian
Journal of Computer Science, 18(2):11–27, 2005.

W Navidi. Statistics for scientist and engineers, 2011.

William Cyrus Navidi. Statistics for engineers and scientists. McGraw-Hill Higher Education,
2008.

Lutz Prechelt and Barbara Unger. A controlled experiment on the effects of PSP training: Detailed
description and evaluation. Univ., Fak. für Informatik, 1999.

PSPWorkBook. Software Engineering Institute (SEI) customer relations, self-study PSP material.
URL http://www.sei.cmu.edu/tsp/tools/student/.

Mushtaq Raza, João Pascoal Faria, and Rafael Salazar. Empirical Evaluation of the Process-
PAIR Tool for Automated Performance Analysis. In The 28th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2016, Research Inc. and Knowl-
edge Systems Institute Graduate School, 2016. KSI. ISBN 1-891706-39-X. URL http:
//dblp.uni-trier.de/rec/bib/conf/seke/2016.

Dieter Rombach, Jürgen Münch, Alexis Ocampo, Watts S Humphrey, and Dan Burton. Teaching
disciplined software development. Journal of Systems and Software, 81(5):747–763, 2008.

Guoping Rong, He Zhang, Shan Qi, and Dong Shao. Can software engineering students program
defect-free?: an educational approach. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 364–373. ACM, 2016.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora
Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the primer. John
Wiley & Sons, 2008.

George AF Seber and CJ Wild. Nonlinear regression, 1989.

Cosma Shalizi. Classification and regression trees. Statistics, pages 36–350, 2009.

Wen-Hsiang Shen, Nien-Lin Hsueh, and Wei-Mann Lee. Assessing PSP effect in training disci-
plined software development: A plan–track–review model. Information and Software Technol-
ogy, 53(2):137–148, 2011.

Hyunil Shin, Ho-Jin Choi, and Jongmoon Baik. Jasmine: a PSP supporting tool. In International
Conference on Software Process, pages 73–83. Springer, 2007.

Raymund Sison. Personal software process (PSP) assistant. In 12th Asia-Pacific Software Engi-
neering Conference (APSEC’05), pages 8–pp. IEEE, 2005.

http://doi.acm.org/10.1145/2600821.2600828
http://www.sei.cmu.edu/tsp/tools/student/
http://dblp.uni-trier.de/rec/bib/conf/seke/2016
http://dblp.uni-trier.de/rec/bib/conf/seke/2016

132 REFERENCES

L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Ishikawa Diagram. Betascript Pub-
lishing, 2010. ISBN 9786131409950. URL https://books.google.pt/books?id=
hqotkgAACAAJ.

Shurei Tamura. Integrating CMMI and TSP/PSP: Using TSP data to create Process Performance
Models. Technical report, DTIC Document, 2009.

Supachai Thisuk and Sakgasit Ramingwong. Wbps: A new web based tool for personal software
process. In Electrical Engineering/Electronics, Computer, Telecommunications and Informa-
tion Technology (ECTI-CON), 2014 11th International Conference on, pages 1–6. IEEE, 2014.

UML2.5. Unified Modeling LanguageTM, 2015. URL http://www.omg.org/spec/UML/2.
5/.

Stefan Wagner, Melanie Ruhe, and AG Siemens. A systematic review of productivity factors in
software development. language, 1989, 1980.

WebProcessPAIR. Webprocesspair: Recommendation system of improvement actions, 2016. URL
https://repositorio-aberto.up.pt/handle/10216/85826.

Dave Zubrow, Bob Stoddard, Rawdon Young, and Kevin Schaaf. A practical approach for building
CMMI process performance models. In SEPG North America Conference, 2009.

https://books.google.pt/books?id=hqotkgAACAAJ
https://books.google.pt/books?id=hqotkgAACAAJ
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://repositorio-aberto.up.pt/handle/10216/85826

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research goals
	1.3 Research contributions
	1.4 Document structure

	2 State of the art
	2.1 Performance measurement and analysis in CMMI
	2.1.1 Overview
	2.1.2 CMMI practices related to process performance analysis

	2.2 Performance measurement and analysis in PSP
	2.2.1 Overview
	2.2.2 Process structure
	2.2.3 Measurement framework
	2.2.4 Final report assignment
	2.2.5 Tool support for PSP

	2.3 Performance measurement and analysis in other processes
	2.4 Performance problem identification techniques
	2.4.1 Control charts
	2.4.2 Benchmark based software evaluation

	2.5 Root cause analysis techniques
	2.5.1 Fishbone diagrams
	2.5.2 Defect causal analysis
	2.5.3 Process performance models
	2.5.4 Regression models
	2.5.5 Sensitivity analysis

	3 Proposed performance analysis method
	3.1 Overall approach
	3.1.1 Problem identification approach
	3.1.2 Root cause identification approach
	3.1.3 Ranking approach

	3.2 Performance model definition
	3.3 Performance model calibration
	3.3.1 Approximate cumulative distribution functions
	3.3.2 Performance ranges
	3.3.3 Regression models and sensitivity coefficients
	3.3.4 Data set filtering

	3.4 Model-based performance analysis
	3.4.1 Project level information
	3.4.2 Subject level information
	3.4.3 Ranking calculations

	4 Performance model for the PSP
	4.1 Model definition
	4.1.1 Performance indicators and dependencies
	4.1.2 Predictability
	4.1.3 Quality
	4.1.4 Productivity

	4.2 Model validation and calibration
	4.2.1 Data set
	4.2.2 Model validation
	4.2.3 Model calibration

	4.3 Support data for the ranking method
	4.3.1 Introduction
	4.3.2 Support data for the sensitivity coefficient
	4.3.3 Support data for the percentile coefficient
	4.3.4 Ranking example

	5 The ProcessPAIR tool implementation
	5.1 Architecture
	5.2 Model calibration user interface
	5.3 File selection user interface
	5.4 Analysis views
	5.4.1 Report view
	5.4.2 Table view
	5.4.3 Indicator view
	5.4.4 Cause-effect view

	5.5 Tool extension API

	6 Experimentation and validation
	6.1 Postmortem experiment
	6.1.1 Research questions
	6.1.2 Input data
	6.1.3 Data analysis procedures
	6.1.4 Results
	6.1.5 Overall statistics
	6.1.6 Discussion
	6.1.7 Limitations and threats to validity

	6.2 Controlled experiment
	6.2.1 Context
	6.2.2 ProcessPAIR tuning
	6.2.3 Experiment design
	6.2.4 Results
	6.2.5 Discussion
	6.2.6 Threats to validity

	7 Conclusions and future work
	7.1 Summary of contributions
	7.2 Research questions revisited
	7.3 Future work

	A Tutorial on PSP Final Report guidelines with ProcessPAIR
	A.1 Analysis of size estimating accuracy
	A.2 Analysis of time estimating accuracy
	A.3 Defect and yield analysis
	A.4 Quality analysis

	References

