FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Automated Software Process
Performance Analysis and
Improvement Recommendation

Mushtaq Raza

[BPORTO

FEU P FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

MAP-i Doctoral Program in Computer Science

Supervisor: Jodo Pascoal Faria

June 27, 2017

(© Mushtaq Raza, 2017

Automated Software Process Performance Analysis and
Improvement Recommendation

Mushtaq Raza

MAP-1 Doctoral Program in Computer Science

Dissertation submitted to the Faculty of Engineering, University of Porto
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Approved by:

President: Dr. Eugénio da Costa Oliveira

Referee: Dr. Anténio Manuel Ferreira Rito da Silva
Referee: Dr. Paulo Jorge dos Santos Gongalves Ferreira

Referee: Dr. Fernando Manuel Pereira da Costa Brito e Abreu
Referee: Dr. Ademar Manuel Teixeira de Aguiar

Supervisor: Dr. Jodo Pascoal Faria

June 27, 2017

Abstract

Software development processes can generate significant amounts of data that can be periodically
analyzed to identify performance problems, determine their root causes and devise improvement
actions. However, there is a lack of methods and tools for helping in that kind of analysis. Con-
ducting the analysis manually is challenging because of the potentially large amount of data to
analyze, the effort and expertise required and the lack of benchmarks for comparison.

Hence, the goal of this dissertation is to develop methods, models and tools for automating the
analysis of process performance data and identifying and ranking performance problems and their
root causes, reducing effort and errors and improving user satisfaction as compared to previous
approaches.

The main contributions of the dissertation are a novel method for process performance analysis
and improvement recommendation (the ProcessPAIR method), a support tool (the ProcessPAIR
tool), and a performance model for instantiating ProcessPAIR for the Personal Software Process
(the ProcessPAIR model for the PSP).

In the ProcessPAIR method, the analysis of the performance data of an individual process user
is based on a performance model that is defined by an expert in the process under consideration
and calibrated automatically from the performance data of many process users. To enable the
automatic identification of performance problems, the process expert has to define the relevant
(top-level) performance indicators (PIs); recommended performance ranges, needed for classify-
ing and ranking the values of PIs according to three semaphors (red, yellow or green), are derived
from calibration data sets. To enable the automatic identification of potential root causes, the pro-
cess expert has to indicate hierarchical cause-effect relationships between the top-level and more
detailed performance indicators. To rank the identified root causes, a novel ranking method is
proposed based on the computation of a ranking coefficient that represents a cost-benefit estimate
of improvement efforts; the needed data comes from the training data set (statistical distribution
of individual PIs and regression models between related PlIs).

The support ProcessPAIR tool is able to automatically identify and rank performance problems
and their potential root causes, so that subsequent manual analysis for the identification of deeper
causes and improvement actions can be properly focused. Performance models for a process under
consideration are defined as tool extension and calibrated automatically based on the performance
data of many process users. The results of the analysis of the performance data of an individual
process user are shown in multiple views.

A performance model was developed to enable the application of ProcessPAIR for the Personal
Software Process (PSP). The model addresses time estimation accuracy, quality, and productivity
as top-level PIs. A PSP data set from the Carnegie Mellon Software Engineering Institute, refer-
ring to more than 30,000 projects, was used to validate and calibrate the model.

Two experiments were conducted to validate the approach. In a postmortem experiment in
which we compared the results of manual performance analysis (by 20 students from Instituto
Tecnoldgico de Monterrey in Mexico) and automatic performance analysis, ProcessPAIR was able

il

to accurately identify performance problems in 96% of the cases (292 out of 302 cases), and root
causes or intermmediate causes in 74% of the cases (the other 26% cases were not conclusive).
A controlled experiment involving 61 software engineering master students also from Instituto
Tecnologico de Monterrey in Mexico, half of whom used ProcessPAIR in a PSP performance
analysis assignment, showed significant benefits in terms of students’ satisfaction (average score
of 4.78 in a 1-5 scale for ProcessPAIR users, against 3.81 for non-ProcessPAIR users), quality of
the analysis outcomes (average grades achieved of 88.1 in a 0-100 scale for ProcessPAIR users,
against 82.5 for non-ProcessPAIR users), and time required to do the analysis (average of 252
minutes for ProcessPAIR users, against 262 minutes for non-ProcessPAIR users, but with much
room for improvement).

Resumo

Os processos de desenvolvimento de software podem gerar quantidades significativas de dados
que podem ser periodicamente analisados para identificar problemas de desempenho, determinar
as suas causas raiz e planear acdes de melhoria. No entanto, hd uma falta de métodos e ferramentas
para ajudar nesse tipo de andlise. Realizar a andlise manualmente ¢ um desafio por causa da
quantidade potencialmente grande de dados para analisar, do esforco e conhecimentos necessarios
e da falta de benchmarks para comparagao.

Assim, o objetivo desta dissertacdo ¢ desenvolver métodos, modelos e ferramentas para autom-
atizar a andlise de dados de desempenho de processos de desenvolvimento de software e identificar
e priorizar os problemas de desempenho e suas causas, reduzindo o esforco e erros € melhorando
a satisfacdo dos utilizadores em comparacdo com abordagens anteriores.

As principais contribuicdes da dissertagdo sdo um novo método para a andlise de desempenho
e recomendacdo de melhorias em processos de desenvolvimento de software (o método Process-
PAIR), uma ferramenta de suporte (a ferramenta ProcessPAIR) e um modelo de desempenho para
instanciar ProcessPAIR para o Personal Software Process (0o modelo ProcessPAIR para PSP).

No método ProcessPAIR, a andlise dos dados de desempenho de um utilizador individual
de um processo de desenvolvimento de software é baseada num modelo de desempenho que é
definido por um especialista no processo em consideracio e calibrado automaticamente a partir
dos dados de desempenho de muitos utilizadores do processo. Para permitir a identificacdo au-
tomdtica de problemas de desempenho, o especialista no processo tem de definir os indicadores
de desempenho relevantes (de nivel de topo); os intervalos de desempenho necessarios para clas-
sificar os valores de cada indicador de acordo com trés semaforos (vermelho, amarelo ou verde)
s@o derivados de conjuntos de dados de calibragdo. Para permitir a identificacdo automadtica de
possiveis causas raiz, o perito no processo deve indicar relacdes de causa-efeito hierarquicas entre
os indicadores de desempenho de nivel superior e mais detalhados. Para classificar as causas raiz
identificadas, um novo método de priorizacdo € proposto com base no calculo de um coeficiente
que representa uma estimativa de custo-beneficio dos esfor¢os de melhoria; os dados necessarios
provém do conjunto de dados de calibragdo (distribuicdo estatistica de indicadores individuais e
modelos de regressdo entre indicadores relacionados).

A ferramenta ProcessPAIR de suporte € capaz de identificar e priorizar automaticamente os
problemas de desempenho e as possiveis causas raiz, de modo que a andlise manual subsequente
para a identificac@o de causas mais profundas e acdes de melhoria pode ser devidamente focada.
Modelos de desempenho para um processo em consideracio sao definidos como extensdes da fer-
ramenta e calibrados automaticamente com base nos dados de desempenho de muitos utilizadores
do processo. Os resultados da andlise dos dados de desempenho de um utilizador individual sdo
apresentados em multiplas vistas.

Um modelo de desempenho foi desenvolvido para permitir a aplicagdo de ProcessPAIR para o
Personal Software Process (PSP). O modelo aborda a precisdo das estimativas de tempo, qualidade
e produtividade como indicadores de nivel de topo. Um conjunto de dados de PSP do Carnegie

il

v

Mellon Software Engineering Institute, referindo-se a mais de 30.000 projetos, foi usado para
validar e calibrar o modelo.

Duas experiéncias foram conduzidas para validar a abordagem. Numa experiéncia post-mortem,
em que foram comparados os resultados da andlise de desempenho manual (por 20 estudantes do
Instituto Tecnoldgico de Monterrey no México) e da andlise automética, a ferramentas Process-
PAIR conseguiu identificar com precisao os problemas de desempenho em 96% dos casos (292
de 302 casos) e causas raiz ou causas intermediarias em 74% dos casos (os outros 26% casos nao
foram conclusivos). Uma experiéncia controlada envolvendo 61 estudantes de mestrado em en-
genharia de software do Instituto Tecnolégico de Monterrey no México, metade dos quais utilizou
o ProcessPAIR num trabalho de anélise de desempenho PSP, mostrou beneficios significativos em
termos de satisfacdo dos alunos (valor médio de 4,78 numa escala de 1-5 para utilizadores de Pro-
cessPAIR e 3,81 para os outros utilizadores), qualidade dos resultados da andlise (média de 88,1
numa escala de 0-100 para os utilizadores de ProcessPAIR, contra 82,5 para outros utilizadores)
e tempo necessdrio para fazer a andlise (média de 252 minutos para utilizadores de ProcessPAIR,
contra 262 minutos para outros utilizadores, mas com muito espago para melhoria).

Acknowledgments

For me this thesis is not only a representation of my academic work that I have performed at
the Department of Informatics Engineering but also a representation of five years spent away
from home in Porto. Producing this thesis wouldn’t have been possible without the help, support,
encouragement and love of many people both in professional and personal spheres.

First and foremost, I want to thank my supervisor and mentor Professor Jodo Pascoal Faria
for believing in me, and for providing continuous guidance and support. His scholarly advice,
and scientific approach has been an inspiration and beacon of light for me throughout my work. 1
have learnt a lot from the excellent example he has provided as a software engineer, manager, and
professor.

In addition, I want to thank Professor Gabriel David, who introduced me to the Department of
Informatics Engineering, FEUP and later helped me in selecting my supervisor that was the first
successful step in my PhD journey. I also want to thank Professor Raul Moreira Vidal for being
a constant support. I am deeply indebted to Mrs. Marisa Silva for her support in administrative
tasks, which made my work a lot easier.

I also want to thank all the technical and administrative staff members of Faculty of Engineer-
ing, University of Porto, for their kind help and co-operation throughout my study period, and for
making me feel at home.

I would like to acknowledge the funding and data sources that made my Ph.D. work possible.
SEI - Software Engineering Institute and Tecnolégico de Monterrey for giving access to the data
for performing this study. FCT - Fundacdo para a Ciéncia e a Tecnologia for supporting this study
under research grant SFRH/BD/85174/2012 and as part of project UID/EEA/50014/2013. Abdul
Wali Khan University Mardan for their partial initial grant. Additionally, this research has been
partially supported by the ERDF — European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within
project POCI-01-0145-FEDER-006961, and North Portugal Regional Operational Programme
(ON.2 — O Novo Norte), under the National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF), in the scope of the BEST CASE program.

I would like to thank my family for their unconditional love and support over the past five
years. To my mother and father, for all they have given me and for making me the person I
am today. To my mother-in-law and father-in-law for their support. To my brothers and sister,
specifically, to Hassan Raza for keeping me informed about matters back home in Kokarai, Swat
Pakistan. To my uncle, Sanaullah, whose words of encouragement and motivation have kept me
going.

I would also like to thank my friends who were always by my side, for their encouragement
and motivation. To Muhammad Ali Khan, Bruno Lima, Arsalan, Muhammad Asif, Muhammad
Ajmal, Bilal, Saad Sultan, David, André Pilastri, Ali Awan, Niaz Ali Khan, Aftab Rashid, Alam,
Saqlain, Arif, Farhan, Muhammad Farooq, Zahid Igbal, Asad, and Kashif Mushtaq for making

vi

this academic adventure more enjoyable. I genuinely hope your friendship will accompany me
much further in the future.

Last but not the least, I want to thank my wife Palwasha for her love, support and for making
me feel at home thousands of miles away from my family, and for taking care of our son, Muwahid
while I worked long hours.

Mushtaq Raza

“You should be glad that bridge fell down.
I was planning to build thirteen more to that same design”

Isambard Kingdom Brunel

vii

viii

Contents

1 Introduction

3

1.1 Motivation oo e e
1.2 Researchgoals
1.3 Research contributions
1.4 Document StruCture v vt v it e e e e e e e e e e e
State of the art
2.1 Performance measurement and analysisinCMMI
21,1 Overview e
2.1.2 CMMI practices related to process performance analysis
2.2 Performance measurement and analysisin PSP
221 OVEIVIEW vt e e e e e
222 ProcessStructureot e
2.2.3 Measurement frameworko Lo oL
2.2.4 Finalreportassignment
225 ToolsupportforPSP
2.3 Performance measurement and analysis in other processes
2.4 Performance problem identification techniques
24.1 Controlcharts e
2.4.2 Benchmark based software evaluation
2.5 Root cause analysis techniques Lo
2.5.1 Fishbone diagrams
2.5.2 Defectcausal analysis
2.5.3 Process performance models
254 Regressionmodelso Lo Lo
2.5.5 Sensitivity analysis oL

Proposed performance analysis method

3.1

32
33

Overall approach
3.1.1 Problem identification approach
3.1.2 Root cause identification approach
3.1.3 Rankingapproach

Performance model definition
Performance model calibration

3.3.1
332
333
334

Approximate cumulative distribution functions
Performanceranges L o
Regression models and sensitivity coefficients
Datasetfiltering

ix

AN W N = -

10
12
12
16
16
17
20
22
24
24
26
27
27
28
29
30
31

3.4 Model-based performance analysis
Project level information
Subject level information
Ranking calculations

34.1
342
343

Performance model for the PSP

4.1

4.2

4.3

Model definition Lo
4.1.1 Performance indicators and dependencies

4.1.2 Predictability
413 Quality
414 Productivity
Model validation and calibration
421 Dataset
4.2.2 Model validation
423 Modelcalibration
Support data for the ranking method
43.1 Introduction., .
4.3.2 Support data for the sensitivity coefficient

4.3.3 Support data for the percentile coefficient

43.4 Rankingexample

The ProcessPAIR tool implementation

5.1
5.2
53
54

5.5

Architecture
Model calibration user interface
File selection user interface
Analysis views
Reportview
Tableview
Indicatorview

54.1
542
543
54.4

Tool extension API

Cause-effectview

Experimentation and validation

6.1

6.2

Postmortem experiment
Research questions
Inputdata
Data analysis procedures
Results
Overall statistics

6.1.1
6.1.2
6.1.3
6.14
6.1.5
6.1.6
6.1.7

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

Discussion
Limitations and threats to validity
Controlled experiment
Context
ProcessPAIR tuning
Experimentdesign
Results
Discussion L.
Threats to validity

CONTENTS

CONTENTS

Conclusions and future work

7.1 Summary of contributions
7.2 Research questions revisited L o

7.3 Future work . .

A Tutorial on PSP Final Report guidelines with ProcessPAIR
A.1 Analysis of size estimating accuracy
A.2 Analysis of time estimating accuracy
A3 Defectandyieldanalysiso

A.4 Quality analysis

References

X1

95
95
96
97

929
100
107
116
126

129

Xii

CONTENTS

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9

2.10
2.11

3.1

3.2

33

34

3.5

3.6
3.7

3.8

39

4.1
4.2
4.3
4.4
4.5

CMMI process areas organized by categories and maturity levels. 10
CMMI process area decomposition. 11
PSP process evolution (Humphrey, 2005). 14
PSP process flow (Humphrey, 2000). 17
PSP process elements (Humphrey, 2000). 20
Examples of data analysis charts and reports from PSP student workbook. 24
Examples of data analysis charts from Process Dashboard tool. 25
Mlustration of acontrol chart. 26
Ilustration of deriving control limits and zones from the statistical distribution of

historical data, assuming normal distribution. 27
Process stability versus capability. 28
Fishbone diagram. 29
UML activity diagram (UML2.5, 2015) depicting the main activities and artifacts

in the ProcessPAIR approach., 34
UML class diagram depicting the main concepts involved in model definition and

calibration. 37

Ilustration of the procedure for obtaining an approximate cumulative distribution
function of a PI (example with hybrid continuous-discrete distribution, and sam-
pling at 20% intervals). 38
Ilustration of the procedure for determining the green (G), yellow (Y) and red (R)
ranges from the cumulative distribution function of a PI, in case the optimal value

lays in the middle of the scale. 39
UML class diagram depicting the main concepts involved in the analysis of subject

data. 42
Computation of sensitivity coefficients between indirectly related PIs. 45
Examples of solving indeterminacy in the calculation of the percentile coefficient

by using limits. L. L 46
Example of solving indeterminacy in the calculation of the ranking coefficient by

using limits. L e e 47
Example of selection and sortingrules, . 48
Performance indicators and dependencies. 50
Evaluation of top-level and nested (shaded) PIs in the case study for projects 1 to 7. 55
Example of generated regressiontree.o 56
Graphical representation of part of a PM forthe PSP. 57
Approximate cumulative distribution functions for all PIs in our model derived

fromthe PSPdataset. 60

X1V

4.6

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

6.1

6.2

6.3

6.4

6.5

LIST OF FIGURES

Computing the percentile coefficient for Code Productivity based on percentiles
extracted from the historical data. 61

UML package diagram depicting the logical architecture of the ProcessPAIR tool. 66

Model calibration window. oL 67
Summary of calibrationresults. 67
Dialog for providing auser profile. L. 68
Calibration results with filtering. 68
Entry window. L 69
Report view example. 69
Table view example (partially expanded). 70
Indicator view example.o 71
Indicator view with multiple PIs selection. 72
Cause-effect view showing only leafcauses. 72
Cause-effect view showing intermediate causes. 73
Cause-effect view showing numerical ranking labels. 73
Excerptof PSPmodelcode. 75
Example of automatic evaluation of top-level and nested PIs. 81

Average scores of the user satisfaction survey questions given by ProcessPAIR
(P) and Process Dashboard (D) users (Note: column ‘O’ shows average for all

QUESLIONS). . . . v v ot e e e e e e e e e 89
Distribution and box plot of time spent (in minutes) by developers in both groups
in the PSP Final Report assignment. 90
Distribution and box plot of report size (in pages) by developers in both groups in
the PSP Final Report assignment. 90

Distribution and box plot of grades achieved by developers in both groups in the
PSP Final Report assignment. 91

List of Tables

2.1

2.2
23

2.4

4.1
4.2
4.3
4.4
4.5

6.1

6.2

6.3

6.4

6.5
6.6

6.7
6.8
6.9
6.10

6.11

CMMI practices in the scope of this work (highlighted) and their positioning in
the CMMImodel.
PSP base and derived measures.o
Example of questions to be addressed in the PSP Final Report assignment based
on AssignmentKit (2006).o
PSP tool support.

Inconsistencies in the PSP dataset., .
Results of the correlation tests.o
Ranking calculations for the factors that affect the overall productivity.
Performance indicators and ranges (with optimal values underlined).

Dependencies and sensitivity coefficients between related performance indicators.

Examples of questions that the subjects were requested to address and relevance
forthiscasestudy. L
Cases of bad (red-R) or good (green-G) performance explicitly indicated by one
of the subjectsinthe case study.
Problem identification statistics for one of the selected subjects in the case study
(1 subject X 6 Projects). v v v v e e e e e e e e
Problem identification statistics for all selected subjects in the case study (20 sub-
JECIS X O PIOJECES). . & v v v v e e e e e e e e e e e e
Frequency of categories and subcategories forRQ2.
Comparison of causes of identified performance problems for one subject in the
case study. e e e
User satisfaction survey questions.
Some statistics in the control experiment. L. L.
Results of hypothesistests.
Comments provided by ProcessPAIR users to the question “Please elaborate your
opinion about the overall usefulness and level of support for Performance Analysis
Purposes™. e
Data regarding total time spent in producing final report, final report size in pages

and grades of individual users from both ProcessPAIR and Process Dashboard users. 94

XV

XVi LIST OF TABLES

XVii

XViil

ABREVIATURAS E SIMBOLOS

Abbreviations and Symbols

A/FR
CAR
CMMI
CMU
CcoQ
CR
DDC
DDUT
DI
DLDR
DRL
DRR
EO
LOC
LPI
MA
MO
OEA
OPM
OPP
PEA
PI
PIP
PM
PM
PPB
PPM
PPS
PQI
PROBE
PSP
PY
SEA
SEI
TEA
TSP
UPI
UT
XML

Appraisal to Failure Ratio
Causal Analysis and Resolution

Capability Maturity Model Integration

Carnegie Mellon University
Cost of Quality

Code Review

Defect Density in Compile
Defect Density in Unit Test
Defects Injected
Detailed-Level Design Review
Defect Removal Leverage
Defect Removal Rate
Extraneous Objects

Line of Code

Lower Prediction Interval
Measurement and Analysis
Missing Objects

Objects Estimation Accuracy
Organization Process Management
Organization Process Performance
Productivity Estimation Accuracy
Performance Indicator

Process Improvement Proposal
Performance Model
Postmortem

Process Performance Baseline
Process Performance Model
Project Plan Summary

Process Quality Index
Proxy-based Estimating
Personal Software Process
Process Yield

Size Estimation Accuracy
Software Engineering Institute
Time Estimation Accuracy
Team Software Process

Upper Predication Interval
Unit Test

Extensible Markup Language

Chapter 1

Introduction

1.1 Motivation

According to Bohem (Boehm, 2011), the top two software engineering challenges are the increas-
ing emphasis on rapid development and adaptability, and the increasing software criticality and
need for assurance.

The need to ensure the quality of software products in a cost effective way drives companies
and organizations to seek to improve their software development process, as it is becoming more
and more accepted in industrial production in general and in the software industry in particular
that the quality of the process directly affects the quality of the product(Kenett and Baker, 1999)
“There is a very strong link between software quality and the processes used to develop it.” (Kenett
and Baker, 1999).

The Team Software Process (TSP) (Humphrey, 2005) and the accompanying Personal Soft-
ware Process (PSP) (Humphrey and Over, 2010) are examples of processes that can help individ-
uals and teams improve their performance and produce virtually defect free software on time and
budget (Rombach et al., 2008), addressing those challenges. One of the pillars of the TSP/PSP
is its measurement framework; based on four simple measures—effort, schedule, size, and de-
fects—it supports several quantitative methods for project and quality management and process
improvement (Humphrey, 2005).

“Measurements are key. If you cannot measure it, you cannot control it. If you cannot control
it, you cannot manage it. If you cannot manage it, you cannot improve it.”(Harrington et al., 1991)

Software process improvement and measurement go hand in hand: measures are the only way
to prove improvements in a process.

Software processes that make intensive use of metrics and quantitative methods, such as the
TSP/PSP, can generate large amounts of data that can be periodically analyzed to identify per-
formance problems, determine their root causes, and devise improvement actions (Daniel Burton,
2006).

The manual analysis of performance data for determining root causes of performance prob-

lems and devising improvement actions is challenging because of the potentially large amount of

2 Introduction

data to analyze (Daniel Burton, 2006), the effort and expert knowledge required, and the lack of
benchmarks for comparison.

Although several tools exist to automate data collection and produce performance charts and
reports for manual analysis of TSP/PSP data (Nasir and Yusof, 2005), practically, no tool support
exists for automating the performance analysis. There are also some studies that show cause—effect
relationships among performance indicators (PIs) (Kemerer and Paulk, 2009) (Shen et al., 2011),

but no automated root cause analysis is proposed.

1.2 Research goals

In this research work, we tackle the challenge of automating the analysis of performance data
produced in the context of software development processes for determining performance problems
and their root causes and devising improvement actions.

Our thesis statement is that, by taking advantage of performance models derived from the
performance data of many process users, it is possible to automatically analyze the performance
data of individual developers and identify and rank performance problems and their root causes,
reducing manual effort and errors in performance analysis, and improving user satisfaction.

The main goal is to develop methods and tools to answer the following research questions

(derived from the thesis statement):

RQI. Is it possible to automatically identify performance problems of individual developers, by
taking advantage of performance models derived from the performance data of many pro-

cess users?

RQ2. Is it possible to automatically identify the root causes of the identified performance prob-
lems, by taking advantage of performance models derived from the performance data of

many process users?

RQ3. Is it possible to automatically rank the identified performance problems, by taking advan-

tage of performance models derived from the performance data of many process users?

RQ4. Is it possible to automatically rank the identified root causes, by taking advantage of per-

formance models derived from the performance data of many process users?

RQ5. By automating the performance analysis as described in RQ1 to RQ4, is it possible to reduce

effort and errors and improve user satisfaction as compared to manual analysis?
To achieve the main goal and prove the thesis, the following tasks are considered:

- to construct and validate one or more performance models (defining performance indicators,
cause-effect relationships between them, and recommended ranges or thresholds) that can
be used to automatically identify performance problems and their root causes in software

development organizations using medium to high-maturity processes such as, but not limited

1.3 Research contributions 3

to, the PSP/TSP; we take advantage of a partnership with the Software Engineering Institute

to have access to PSP/TSP data to calibrate the performance model;

- to develop and validate algorithms for automatically evaluating and ranking (prioritizing)

performance problems and their root causes;

- to design and develop a tool for automating the performance analysis and improvement

recommendation, flexible enough to accept multiple performance models and data sources;

- to conduct experiments in real world contexts, to validate the developed models and tool

and show the benefits of the approach.

1.3 Research contributions
The main contributions of the research work are:

- the ProcessPAIR method for automated performance analysis and improvement recommen-

dation in software development (described in chapter 3);

- the ProcessPAIR support tool (described in chapter 5 and publicly available in http://
blogs.fe.up.pt/processpair/);

- the performance models for PSP (described in chapter 4);
- the experimental results of both tool and model (described in chapter 6).

ProcessPAIR is a novel tool for automated performance analysis and improvement recommen-
dation in software development. Based on performance models defined by process experts and
calibrated automatically from the performance data of many developers, it automatically identifies
and ranks potential performance problems and their root causes of individual developers, so that
subsequent manual analysis for the identification of deeper causes and improvement actions can
be properly focused.

The PSP (Humphrey, 2005) is a software process, with a stepwise training strategy, designed
by the Software Engineering Institute (SEI) to help engineers improve their performance and pro-
duce defect-free software (Rong et al., 2016). The availability of a large PSP data set for model
calibration purposes, and the lack of adequate tools for helping PSP students analyzing their per-
formance data in the PSP Final Report assignment (see Appendix A), were the main drivers for
applying ProcessPAIR for the PSP.

A postmortem experiment in which we compared the results of manual and automated (with
ProcessPAIR) performance analysis (Raza et al., 2016), showed that ProcessPAIR is able to ac-
curately identify performance problems and their root causes of PSP developers.

http://blogs.fe.up.pt/processpair/
http://blogs.fe.up.pt/processpair/

4 Introduction

A controlled experiment showed that software engineering students were able to successfully
analyze their personal performance data with the help of ProcessPAIR. The results show signif-
icant benefits in terms of students’ satisfaction (average rating of 4.78 in a 1-5 scale for Proces-
sPAIR users, against 3.81 for non-ProcessPAIR users), quality of the analysis outcomes (aver-
age grades given by instructor of 88.1 in a 0-100 scale for ProcessPAIR users, against 82.5 for
non-ProcessPAIR users), and time required to do the analysis (average of 252 minutes for Pro-
cessPAIR users, against 262 minutes for non-ProcessPAIR users, but with significant room for
improvement).

Following is the list of articles published from this research work:

- RAZA, Mushtaq; FARIA, Jodo Pascoal. ProcessPAIR: a tool for automated performance anal-
ysis and improvement recommendation in software development. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. ACM, 2016. p.
798-803.

This article is about the ProcessPAIR, a novel tool designed to help developers analyze their
performance data with less effort, by automatically identifying and ranking performance prob-
lems and their potential root causes, so that subsequent manual analysis for the identification
of deeper causes and improvement actions can be properly focused. Chapter 5 is based on this

article.

- RAZA, Mushtaq; FARIA, Jodo Pascoal; SALAZAR, Rafael. Empirical Evaluation of the Pro-
cessPAIR Tool for Automated Performance Analysis. In The 28th International Conference on

Software Engineering and Knowledge Engineering, June 30-July 3, 2016.

This article is about the results of a postmortem experiment conducted in the context of PSP
training, to show that ProcessPAIR is able to accurately identify and rank performance problems
and their potential root causes of individual developers so that subsequent manual analysis for
the identification of deeper causes and improvement actions can be properly focused. Part of
chapter 6 is based on this article. One of the co-authors is Rafael Salazar, director of the Mexican

TSP Initiative at Tecnolégico de Monterrey in Mexico.

- RAZA, Mushtaq.; FARIA, Jodo Pascoal. A model for analyzing performance problems and
root causes in the personal software process. Journal of Software: Evolution and Process, 2015.

This article (extended version of ICSSP 14 article) is about the PSP performance model, ad-
dressing time estimation accuracy, quality, and productivity, to enable the automated (tool
based) analysis of performance data produced by PSP developers, namely, identify and rank
performance problems and their root causes. A PSP data set referring to more than 30 000
projects was used to validate and calibrate the model. Parts of chapter 3 and 4 are based on this

article.

- RAZA, Mushtaq; FARIA, Jodo Pascoal. A Benchmark-based Approach for Ranking Root
Causes of Performance Problems in Software Development. In: International Conference on

1.3 Research contributions 5

Product-Focused Software Process Improvement. Springer International Publishing, 2014. p.
314-317.

This article presents an approach for automatically ranking the potential root causes identified
during performance analysis of individual process users, based on a cost-benefit estimate that
takes into account historical data. The approach was applied for the PSP, taking advantage of a

large data set from SEI. Part of chapter 3 of the thesis document is based on this article.

- RAZA, Mushtaq; FARIA, Jodo Pascoal. A model for analyzing estimation, productivity, and
quality performance in the personal software process. In: Proceedings of the 2014 International
Conference on Software and System Process. ACM, 2014. p. 10-19.

This article presents a comprehensive performance model, addressing time estimation accu-
racy, quality and productivity, to enable the automated analysis of performance data produced
in the context of the PSP, namely, identify performance problems and their root causes, and

subsequently recommend improvement actions. Part of chapter 3 and 4 is based on this article.

- RAZA, Mushtaq; FARIA, Jodo Pascoal. Factors Affecting Personal Software Development
Productivity: A Case Study with PSP Data. IASTED SE, 2014.

This article is about the analysis of factors (personal and non-personal) that affect the pro-
ductivity of software developers and may cause productivity variations among individuals and

projects.

- RAZA, Mushtaq; FARIA, Jodo Pascoal; HENRIQUES, Pedro, NICHOLS, William. Factors
affecting productivity performance in PSP training. In: Annual Software Engineering Institute
(SED TSP Symposium. 2013. p. 35-45.

This article is an extended version of IASTED SE 2014 article. In this article, we analyzed
the personal and non-personal factors that affect productivity performance. Regarding non-
personal factors, we found both process changes and program complexity to be important factors
explaining productivity variations. Regarding personal factors, we found significant variations
among individuals that can be partially explained by personal experience and programming
language used. This article is co-authored by William Nichols, senior member of the technical
staff and PSP instructor and TSP coach with the Team Software Process Program at Software
Engineering Institute, CMU, and Pedro Henriques, CEO of Strongstep- Innovation in software

quality.

- DUARTE, César Barbosa; FARIA, Jodo Pascoal; RAZA, Mushtaq. PSP PAIR: automated per-
sonal software process performance analysis and improvement recommendation. In: Quality
of Information and Communications Technology (QUATIC), 2012 Eighth International Confer-
ence on the. IEEE, 2012. p. 131-136.

Introduction

This article is about initial work on performance model (limited to the analysis of the time
estimation performance of PSP developers) and tool prototype to automate the analysis of per-
formance data produced in the context of the PSP, namely, identify performance problems and

their root causes, and recommend improvement actions.

DUARTE, César Barbosa; FARIA, Joao Pascoal; RAZA, Mushtaq; HENRIQUES, Pedro. Model
and Tool for Analyzing Time Estimation Performance in PSP. In: Annual Software Engineering
Institute (SEI) TSP Symposium. 2012. p. 21-40.

This article (extended version of QUATIC 12) presents a performance model and a tool proto-
type (limited to the analysis of the time estimation performance of PSP developers) to automate
the analysis of performance data produced in the context of the PSP , namely, identify perfor-

mance problems and their root causes, and recommend improvement actions.

RAZA, Mushtaq; FARIA, Jodo Pascoal; SALAZAR, Rafael. Helping Software Engineering
Students Analyzing their Performance Data: Tool Support in an Educational Environment. In:
International Conference on Software Engineering (ICSE). May 20-28, 2017.

This article is about the results of a controlled experiment involving 61 software engineering
master students, half of whom used ProcessPAIR in a PSP performance analysis assignment.
Part of chapter 6 is based on this article. One of the co-authors is Rafael Salazar, director of the

Mexican TSP Initiative at Tecnolégico de Monterrey in Mexico.

RAZA, Mushtaq; FARIA, Jodo Pascoal; AMARO, Luis; HENRIQUES, Pedro Castro. WebPro-
cessPAIR: Recommendation System for Software Process Improvement. In: International Con-
ference on Software and System Processes (ICSSP). July 5-7, 2017.

This article is about WebProcessPAIR, which extends ProcessPAIR with the ability to recom-
mend improvement actions to address the root causes identified, based on a crowdsourcing
approach.

1.4 Document structure

The rest of the thesis document is organized as follows.

Chapter 2 describes state of the art analysis and is organized as follows. Section 2.1 describes

performance measurement and analysis in CMMI, covering CMMI practices related to process

performance analysis. Section 2.2 describes performance measurement and analysis in PSP, cov-

ering process structure, measurement framework, final report assignment, and tool support for

PSP. Section 2.3 presents performance measurement and analysis in other process. Section 2.4

presents performance problem identification techniques, covering control charts and benchmark

based software evaluation. Section 2.5 explains root cause analysis techniques, covering fish-

bone diagrams, defect causal analysis, process performance and regression models, and sensitivity

analysis.

1.4 Document structure 7

Chapter 3 describes the proposed performance analysis method and is organized as follows.
Section 3.1 introduces the overall approach, covering problem and root causes identification and
ranking. Section 3.2 describes performance model definition. Section 3.3 describes the perfor-
mance model calibration, covering approximate cumulative distribution functions, performance
ranges, regression models and sensitivity coefficients, and data set filtering. Section 3.4 presents
model based performance analysis.

Chapter 4 covers the performance model for PSP and is organized as follows. Section 4.1
introduces model definition for PSP and covers performance indicators and dependencies for pre-
dictability, quality, and productivity. Section 4.2 describes model validation and calibration, cov-
ering available data set, model validation, and model calibration. In section 4.3, support data for
the ranking method is presented which covers sensitivity and percentile coefficients together with
ranking example.

Chapter 5 describes the ProcessPAIR tool implementation and is organized as follows. Section
5.1 presents the architecture of the tool. Sections 5.2 and 5.3 explain the model calibration, and
performance analysis user interfaces. Section 5.4 presents analysis views: report, table, indicator
and cause-effect. Finally, section 5.5 presents the tool extension APL

Chapter 6 describes the postmortem and the controlled experiments. Regarding the post-
mortem experiment, section 6.1.1 presents the research questions to be answered in the experi-
ment. Section 6.1.2 presents the input data collected for the analysis. Section 6.1.3 and 6.1.4
present the data analysis procedures and the results obtained. Section 6.1.5 and 6.1.6 present the
overall statistics and discussion. Finally, section 6.1.7 presents limitations and threats to validity.
Regarding the controlled experiment section 6.2.1 presents the context of the experiment, section
6.2.2 presents the ProcessPAIR tuning for this experiment, section 6.2.3 presents the experiment
design, section 6.2.4 and 6.2.5 present the experimental results and discussion, and section 6.2.6
presents threats to validity.

Chapter 7 presents the conclusions of this research work.

Appendix A presents a tutorial on the PSP Final Report with ProcessPAIR.

Introduction

Chapter 2

State of the art

Our approach draws a strong inspiration from process performance models (PPM) and perfor-
mance measurement and analysis in the context of CMMI and TSP/PSP.

A PPM in the context of CMMI is a description of the relationship among attributes of a
process or sub-process and its outcomes, developed from historical performance data, and cali-
brated using collected process and product measures (Chrissis et al., 2011). The purpose of using
measurement and analysis in the context of CMMI and TSP/PSP is to measure project progress,
product size or process performance in support of making decisions and taking corrective action.

This chapter is organized as follows. Section 2.1 describes performance measurement and
analysis in CMMI, covering CMMI practices related to process performance analysis. Section 2.2
describes performance measurement and analysis in PSP, covering process structure, measurement
framework, final report assignment, and tool support for PSP. Section 2.3 presents performance
measurement and analysis in other processes. Section 2.4 presents performance problem iden-
tification techniques, covering control charts and benchmark based software evaluation. Section
2.5 explains root cause analysis techniques, covering fishbone diagrams, defect causal analysis,

process performance and regression models, and sensitivity analysis.

2.1 Performance measurement and analysis in CMMI

Since the CMMI is a recognized model of software engineering best practices, it is relevant to look

at the best practices for performance analysis in software engineering embodied in the CMMI.

2.1.1 Overview

CMMI (Chrissis et al., 2011) stands for Capability Maturity Model Integration and was developed
by the Software Engineering Institute (SEI). It is a process improvement maturity model.

All CMMI models are produced from the CMMI Framework (a collection of all model com-
ponents, training material components, and appraisal components), containing 16 core process

areas. These process areas cover basic concepts that are fundamental to process improvement in

10 State of the art

any area of interest. Also these areas are shared among three groups: CMMI for Development
(CMMI-DEV), CMMI for Services (CMMI-SVC), and CMMI for Acquisition (CMMI-ACQ).

The CMMI-DEV model (Chrissis et al., 2011) provides guidance for applying CMMI best
practices in a development organization. These best practices focus on activities for developing
quality services and products to meet the needs of end users and customers. The CMMI-DEV
identifies 22 process areas given in Figure 2.1.

Each process area is described by a set of specific goals and practices, which describe activi-
ties that implement the process area. Generic goals and practices apply to all process areas, and

describe activities that institutionalize the process areas (see Figure 2.2).

Process Project

Management Management Sl Support

Requirements
Development

Organization
Process Focus

Organization

Process Definition Technical Solution

Organization

Training Product

_
P —
T
Integration
Verification Decision Ana_ly5|s
and Resolution

Risk Management

Organizational

il

P Pfrocess Integrated Project
erformance Management
Organizational A
uantitative Project . Causal Analysis
Performance " {c Velesiiam v
Management e mER and Resolution

Figure 2.1: CMMI process areas organized by categories and maturity levels.

2.1.2 CMMI practices related to process performance analysis

Table 2.1 shows the specific practices and their position in the CMMI model in the scope of this
research work.

This research work is first related to OPM SP 1.2, OPM SP 1.3, and CAR SP 1.2, because the
goal is to analyze process performance data (OPM SP 1.2) of a given subject (individual team or
organization) for the identification of performance problems (OPM SP 1.3) and root causes (CAR
SP 1.2).

In second place, it is related to OPP SP 1.3, OPP SP 1.4 and OPP SP 1.5, because, to achieve
the stated goals, we have to define the relevant performance measures (OPP SP 1.3), and per-
formance ranges taking advantage of historical data from many subjects (OPP SP 1.4), and also
establish relevant cause-effect relationships from that data (OPP SP 1.5).

2.1 Performance measurement and analysis in CMMI 11

____________ I |
Process Area v v v
T~~~ Purpose Introductry Related
\\ T~ - Statement Note Process Area
\ T~
\ -
Specific Goals \\\\\\
~» Generic Goals
NN
N\ N /1|
\ \\ N /1|
AN /y ¥
4 v
< .
Specific Generic
Practices Practices
AN / \
/ AN / \
13 b X 4
. Generic
5 FIEARC Subpractices Subpractices Practice
Products .
Elaboration
CTTTTTTTTTTTTTIT T :
1 1
i KEY Required Expected Informative i
1
1 1
1 1

Figure 2.2: CMMI process area decomposition.

MA SP 1.2 and MA SP 2.2 are support practices needed to achieve the aforementioned prac-

tices, so this research work is also indirectly related with them.

The purpose of using Measurement and Analysis (MA) (Chrissis et al., 2011) is to measure
project progress, product size or process performance in support of making decisions and taking
corrective action. Basically, MA comprises the specification of measures, mechanisms for the
collection of data, analysis techniques for the collected data, data storage, reporting and feedback.
The goal of analysis is to provide objective results that can be used for decision making and taking
appropriate corrective action. The practices performed in MA are given in Table 2.1.

The purpose of Organizational Process Performance (OPP) (Chrissis et al., 2011) is to es-
tablish and maintain quantitative understanding of the performance of selected processes in the
organization’s set of standard processes in support of achieving quality and process performance
objectives, and to provide process performance data, baseline, and model to quantitatively manage
the organization’s projects. The practices performed in OPP are given in Table 2.1.

The OPP includes specific practices (see Table 2.1) to establish Process Performance Base-
lines (PPBs). PPBs are important for organizations because when the organization has enough
measures, data, and analytical techniques for critical process, product, and service characteristics,

it can be able to determine whether the processes are behaving consistently or not. It can identify:

e processes in which the performance is within natural bounds;

12 State of the art

e processes that show unusual behavior;

e processes or aspects of processes that can be improved in the organization.

The Organizational Performance Management (OPM) (Chrissis et al., 2011) process area en-
ables the organization to manage organizational performance by iteratively analyzing aggregated
project data, identifying gaps in performance against the business objectives, and selecting and de-
ploying improvements to close the gaps. Process performance baselines and process performance
models, developed using Organizational Process Performance processes, are used as part of the
analysis. The practices performed in OPM are given in Table 2.1.

The purpose of Causal Analysis and Resolution (CAR) (Chrissis et al., 2011) is to identify
causes of selected outcomes and take action to improve process performance. Causal analysis and
resolution improves quality and productivity by preventing the introduction of defects or problems
and by identifying and appropriately incorporating the causes of superior process performance.
The practices performed in CAR are given in Table 2.1.

The CMMI is a model of best practices that suggest practices to be implemented (the what),
but does not describe corresponding operational procedures (the how). In the next section, we

analyze a process that provides some of those operational procedures.

2.2 Performance measurement and analysis in PSP

The Personal Software Process (PSP), developed by Watt S. Humphrey and the Software Engineer-
ing Institute (SEI), Carnegie Mellon University, is a framework for improving the overall quality
of software development processes for individuals (Humphrey, 2005).

The PSP heavily relies on the collection and analysis of personal data in order to demonstrate
to software engineers’ the way they develop software, weaknesses and strengths.

The main measurements which are basically collected in the PSP include the size of the soft-
ware, development time, and number of defects. Next sections will explain in detail all these

measurements (base and derived) and their collection process.

2.2.1 Overview

The PSP is a self-improvement process that helps developers in improving, controlling and man-
aging their way of working. It is an organized process framework of procedures, guidelines and
forms for developing software.

Using PSP in an appropriate way leads to the data that developers need for making and meeting
commitments; furthermore, it makes the routine elements of developers’ job more efficient and
predictable.

The core purpose of the PSP is to guide developers in defining their own processes, planning
and tracking their own work and managing the quality of the products they produce. It also helps
developers to manage their work, assess their talents, and build their skills.

The PSP makes available for software engineers:

2.2 Performance measurement and analysis in PSP 13

Table 2.1: CMMI practices in the scope of this work (highlighted) and their positioning in the
CMMI model.

MA: Measurement and Analysis (ML 2)

SG 1 Align Measurement and Analysis Activities

SP 1.1 Establish Measurement Objectives

SP 1.2 Specify Measures

SP 1.3 Specify Data Collection and Storage Procedures
SP 1.4 Specify Analysis Procedures

SG 2 Provide Measurement Results

SP 2.1 Obtain Measurement Data
SP 2.2 Analyze Measurement Data
SP 2.3 Store Data and Results

SP 2.4 Communicate Results

OPP: Organizational Process Performance (ML4)

SG 1 Establish Performance Baselines and Models

SP 1.1 Establish Quality and Process Performance Objectives

SP 1.2 Select Processes

SP 1.3 Establish Process Performance Measures

SP 1.4 Analyze Process Performance and Establish Process Performance Baselines
SP 1.5 Establish Process Performance Models

OPM: Organizational Performance Management (MLS5)

SG 1 Manage Business Performance

SP 1.1 Maintain Business Objectives
SP 1.2 Analyze Process Performance Data
SP 1.3 Identify Potential Areas for Improvement

SG 2 Select Improvements

SG 3 Deploy Improvements

CAR: Causal Analysis and Resolution (ML5)

SG 1 Determine Causes of Selected Outcomes

SP 1.1 Select Outcomes for Analysis
SP 1.2 Analyze Causes

SG 2 Address Causes of Selected Outcomes

Note: SG: Specific Goal, SP: Specific practice, ML: Maturity Level

14 State of the art

e the data and analysis techniques they need for determining the technologies and methods

that work best for them;

e a framework for learning why they make errors and what is the best way of finding, fixing,

and preventing them.

This way, software engineers can easily determine the quality of their reviews, the defect types
they usually miss, and the quality approaches that are most effective for them (Humphrey, 2005).

The recommended approach for learning the PSP is by doing a sequence of small projects
guided by a PSP instructor, using increasingly refined and more complete processes (see Figure
2.3).

Team Software

Process
* Team building
. Risk management

. Project planning and tracking

PSP 2 PSP 2.1 Introduces quality

management and

* Design templates
design

. Code reviews
. Design reviews

PSP 1.1 o
PSP 1 . Task planning Introduces estimating
* Size estimating * Schedule planning and planning
¢ Testreport
|
PSP 0.1
¢ Coding standard Lo
PSP 0 . Process improvement Introduces process discipline
. Current process proposal and measurement
¢ Basic measures . Size measurement
|

Figure 2.3: PSP process evolution (Humphrey, 2005).

PSPO - The Baseline Personal Process (establish a measured performance baseline)

The first step in the PSP is to establish a baseline that includes some measurements (the time
spent per phase and the defects found per phase) and a reporting format (Humphrey, 1997) (Humphrey,
2005). The time spent per phase is a simple record of the clock time spent in each part of the PSP
process and a defect is counted every time one changes a program to fix a problem.

The objective of the baseline process (PSPO) is to provide engineers a framework that can
help them in gathering data and writing their first PSP program. The gathered data (time and

defects) helps developers in planning and managing their projects along the PSP training and also

2.2 Performance measurement and analysis in PSP 15

shows developers where more time is spend and where most defects are injected and fixed, which
ultimately provides a consistent base for measuring progress and defining a foundation on which
to improve.

After the first programming assignment, PSPO is upgraded to PSP0.1 which introduces coding
standards, size estimation, and process improvement proposals (PIP).

The process improvement proposal is an approach to report and record process problems en-
countered, and suggest improvements. It is additionally a part of the process improvement process.
The main goal of PSPO0.1 is to give engineers a comprehension of size estimation principles.

PSP1 - The Personal Planning Process (make size, resource and schedule plans)

PSP1, which adds planning steps to PSPO, introduces size and resource estimation and a test
report. In PSP1.1, schedule planning and status tracking are introduced. The goals of PSP1 and
PSP1.1 are to train developers for understanding the significance of the relationship between the
size and time of the programs they develop, to know the way of making commitments that they
can meet, to have an organized plan for doing their tasks and a framework for tracking their
status (Humphrey, 1997) (Humphrey, 2005).

PSP2 - Personal Quality Management (practice defect management and yield management)

The goal of PSP2 is to improve the developers’ capability to produce high quality programs.
This goal can be achieved by presenting to the developers technique for better defect detection and
prevention. This process will reduce the number of defects in compile and test phases. It is also
observed that in most cases defects are simple typos, oversights, or dumb mistakes. So this way
of measuring and tracking defects will teach developers how to deal with defects objectively to
reduce rapidly the number of defects they usually inject.

PSP2 usually reduces the defects production rate by adding design and code reviews to PSP1.
These added reviews help developers to identify defects earlier in their process and reduce the
extra cost for identifying them in later stages. For developers, it is important to know the number,
cost and main causes of the defects they produced.

In PSP 2.1 the design process is addressed. The main objective of PSP2.1 is to address the
criteria for design completion and not to teach the developers how to design. After finishing de-
sign, PSP2.1 demonstrates different design verification methods and design completeness criteria.
In this case, completeness criteria is established for design only, but similar criteria can be estab-
lished for other process phases (test development, documentation development and requirement
specification) (Humphrey, 1997) (Humphrey, 2005).

PSP3 - The Cyclic Personal Process (scale up PSP methods to larger projects)

The PSP up to this point has focused only on a linear process for building small programs.
For scaling PSP2 up to larger projects, the approach is to subdivide larger programs into PSP2-
sized pieces. These smaller programs are then separately developed and integrated into the larger
total program. PSP3 is a cyclic development process that follows the principles of Boehm’s spiral
model [Boehm 1988]. The first PSP3 build provides a base that is enhanced with each successive
cycle. In each iteration, a complete PSP2- like process is used, including design, code, compile,

and test. The test step, however, is typically a combination of unit test and integration. As long as

16 State of the art

each increment is of high quality, this testing strategy is practical. The PSP3 process is suitable for
programs of up to several thousand lines of code (KLOC). (Humphrey, 1997) (Humphrey, 2005).

The PSP3 objective is to introduce the engineers to the principles of process scaling. They
find that by assuring the quality of each successive development cycle, they can concentrate on
verifying the performance of the latest increment without interference from previously-introduced
defects. If a prior increment has many defects, however, testing will be much more complex and
the scale-up benefits will largely be lost. With high-quality increments, developer productivity
often increases with program size.

TSP- The Team Software Process

Developers can use PSP3 to build programs of several KLOC. The PSP provides a disciplined
foundation the developers can use to define an effective team process. While the PSP introduces
the concepts for relating individual PSPs to the team, it does not define team processes or provide
team exercises (Humphrey, 1997) (Humphrey, 2005). That is addressed by the Team Software
Process (TSP).

2.2.2 Process structure

The PSP process flow is show in Figure 2.4. The first step of the process is planning, having as
input the requirements. There is a script to guide the work and a plan summary to record the
data in this first step. The other steps also have scripts to guide the work and logs to record the
data. In the postmortem phase (PM), the data from the logs is summarized, the program size
is measured and all of this is then recorded into the plan summary form. The output of this
phase is the finished product and the completed plan summary form. It should be noted that
(contrarily to the more complex TSP) the PSP is designed for guiding the development of small
programs (or components of large programs) by individual engineers, which is why it neither
includes requirements gathering nor high-level (architectural) design.

As illustrated in Figure 2.3 the PSP has six process versions that are labeled from PSPO to
PSP2.1. They all have a similar collection of scripts, forms, logs and standards. The scripts
instruct the software engineers, step by step, through each part of the process. To record data there
are templates (for the logs and forms) and the standards that help guide the work. The elements

described above are shown in Figure 2.5.

2.2.3 Measurement framework

In the PSP course, developers gather data regarding the size of the products they produce, the time
that they spend on each process phase (e.g., plan, design, design review etc.), and the quality of
these products, to monitor their work and to help them make better plans (i.e., improve predictabil-
ity) and produce high-quality products (i.e., improve product quality) in a cost-effective way (i.e.,
improve productivity).

Base data is gathered in three different artifacts:

2.2 Performance measurement and analysis in PSP 17

l Requirements

Planning

Design

Design review

Guide

Seripts /—\A Code
Code review
. Time
Complle Defects
Test Plan

summary

Postmortem
Project and process data
Finished Products summary report

Figure 2.4: PSP process flow (Humphrey, 2000).

e Time log - used for recording actual time spent in each process phase (possibly with multiple

entries for the same phase, with different start and stop times);

e Defect log — used for recording defects, with description, defect type (according to a defect
standard), phase in which the defect was injected, phase in which the defect was removed,

and fix time;

o PROBE estimating template and plan summary — use for estimating size, time, number of
defects (in the beginning of the project) and for recording actual size (at the end of the
project).

From this data, several measures are defined as indicated in Table 2.2.

2.2.4 Final report assignment

At the end of the PSP training, students are usually asked to perform the “PSP Final Report” as-
signment (or “PSP Performance Analysis Report”) for better understanding their current software
development performance and highest-priority areas for improvement. In the assignment, stu-
dents are asked to analyze their personal performance data collected throughout several projects
they developed and document their findings and improvement proposals in a report. To guide their

analysis, students are asked to address several questions as indicated in Table 2.3.

18

State of the art

Table 2.2: PSP base and derived measures.

Measure

Definition

Planned Time in Phase

The estimated time to be spent in a phase for a project

Actual Time in Phase

The sum of time spent (delta times in time log) for a phase of a project

Total Time

The sum of planned or actual time for all phases of a project

Time in Phase to Date

The sum of Actual Time in Phase for all completed projects

Total Time to Date

The sum of Time to Date for all phases of all projects

Time in Phase to Date%

100 * Time in Phase To Date for a phase divided by Total Time in Phase
To Date

Compile Time

The time from the start of the first compile until the first clean compile

Test Time The time from the start of the initial test until test completion

Defect Any element of a program design or implementation that must be
changed to correct the program

Defect type Each defect is classified according to a defect type standard. It includes
10 defect types in a simple classification scheme designed to support de-
fect analysis.

Fix Time The time to find and fix a defect

LOC (Size) A logical line of code as defined in the engineers counting and coding
standard

LOC Type There are 7 LOC types, Base, Deleted, Modified, Added, Reused, Added

and Modified, Total LOC and Total New Reused

LOC / Hour (Productiv-
ity)

Total added and modified LOC developed divided by the total develop-
ment hours

Estimating Accuracy

The degree to which the estimate matches the result. Calculated for time
and size %Error = 100*(Actual-Estimate)/Estimate

Test Defects/KLOC The defects removed in the test phase per added and modified KLOC.
1000x«(Defects removed in Test)/(Actual Added and Modified LOC)

Compile Defects/KLOC The defects removed in compile per added and modified KLOC.
1000« (Defects removed in Compile)/(Actual Added and Modified LOC)

Total Defects/KLOC The total defects removed per added and modified KLOC. 1000x(Total
Defects removed)/(Actual Added and Modified LOC)

Yield The percent of defects injected before the first compile that are re-
moved before the first compile. 100x(defects found before the first com-
pile)/(defects injected before the first compile)

Appraisal Time Time spent in design and code reviews

Failure Time

Time spent in compile and test

Appraisal Cost of Quality
(COQ)

100x(design review time + code review time)/(total development time)

Failure COQ

100x(compile time + test time)/(total development time)

Total COQ

Total Cost of Quality = Appraisal COQ + Failure COQ

COQ Appraisal/Failure
Ratio (A/FR)

A/FR = Appraisal Time/Failure Time

Review Rate

Lines of code reviewed per hour. 60 % (Added and Modified

LOC)/(review minutes)

2.2 Performance measurement and analysis in PSP 19

Table 2.3: Example of questions to be addressed in the PSP Final Report assignment based on
AssignmentKit (2006).

Analysis of size estimating accuracy

What are the average, maximum, and minimum actual sizes of your programs in LOC to date?
Excluding assignment 1, what percentage over or under the actual size was the estimated size for
each program (for example, if estimated/actual is in %, 85% is 15% under, 120% is 20% over)?
What are your average, maximum, and minimum values for these?

How often was my actual program size within my 70% statistical prediction interval (when you
used methods A or B)?

Do I have a tendency to add/miss entire objects?

Do I have a tendency to misjudge the relative size of objects?

Based on my historical size-estimating accuracy data, what is a realistic size-estimating goal for
me?

How can I change my process to meet that goal?

Analysis of time estimating accuracy

What are the average, maximum, and minimum times of your assignments to date?

What percentage over or under the actual time was the estimated time for each program (for ex-
ample, if estimated/actual is in %, 85% is 15% under, 120% is 20% over)?

What are your average, maximum, and minimum values for these?

How often was my actual development time within my 70% statistical prediction interval (when
you used methods A or B)?

What are the average, maximum, and minimum values for productivity per program to date in
LOC/hr.?

Is my productivity stable? Why or why not?

How can I stabilize my productivity?

How much are my time estimates affected by the accuracy of my size estimates?

Based on my historical time-estimating accuracy data, what is a realistic time-estimating goal for
me?

How can I change my process to meet that goal?

Defect and yield analysis

Which defect type accounts for the most time spent in compile?

In test? In which phase was each type of defect injected most often?

What type of defects do I inject during design and coding?

What trends are apparent in defects per size unit (e.g., KLOC) found in reviews, compile, and test?
What trends are apparent in total defects per size unit?

How do my defect removal rates (defects removed/hour) compare for design review, code review,
compile, and test?

What are my review rates (size reviewed/hour) for design review and code review?

What are my defect-removal leverages for design review, code review, and compile versus unit
test?

Is there any relationship between yield and review rate (size reviewed/hour) for design and code
reviews?

Is there a relationship between yield and A/FR?

Quality analysis

How much did the quality of the programs entering unit test change? Why?
Am I finding my defects in design and code reviews? Why or why not?
Based on my historical data, what are some realistic quality goals for me?
How can I change my process to meet those goals?

20 State of the art

PSP0 I PROBE estimating I
PSP0.1 I Plan summaries |
PSP1 I Review checklists |
PSP1.1 | Dest -
esign templates
PSP2 I
PSP2.1 | PIP
PSP3
| PSP | PSP
1 Seript — forms
4| families]
LOC counting ‘
Issue tracking ‘
Defects
Defects | -
Time sta Coding
sta
PSP PSP
standards
logs

Figure 2.5: PSP process elements (Humphrey, 2000).

2.2.5 Tool support for PSP

A variety of tools have been developed over the years to tackle the problem of manual data gath-
ering by providing semi or fully automated data collection solutions. Several of these tools can be
downloaded and used for free. Some of these tools are reviewed below (also see Table 2.4 for the
comparison of these tools).

PSP Student Workbook (PSPWorkBook), is the official tool for PSP courses developed by
the SEI and is based on Microsoft Access. This tool can be used on Microsoft Windows or emu-
lated Microsoft Windows operating systems.

It provides good support for the learning of this methodology as it has a lot of supporting
materials, such as course materials, scripts, forms, and templates, etc. It provides a lot of so-called
analysis tools to help the student in the analysis of their personal performance data (see examples
in Figure 2.6). This tool basically transforms the data into graphs of the known performance
indicators (that require some calculations), such as Time Estimation Error, Size Estimation Error

and Productivity. The different forms available for users are described below:

e Project Plan Summary: is basically used for representing the overall information of the
development such as estimated development time, estimated program size, productivity,

defect density and cost-performance index.

e Time Recording Log: records details of the time spent in each development phase like Plan,

Design, Design Review, Code, Code Review, Compile, Unit Test and Postmortem.

2.2 Performance measurement and analysis in PSP 21

e Defect Recording Log: stores information of each defect such as its injection and removal

phases, type, and description.
e Test Report: summarizes the actual and expected test results as well as testing environments.

e Process Improvement Proposal: focuses on the proposals for process improvement based on

the user’s self-evaluation.

In addition to the lack of support for problem identification and their root cause analysis, there
are several other limitations of PSP Student Workbook. E.g., several important PSP elements
such as counting standard, coding standard, design review checklist, design templates, and code
review checklist are not supported by this tool. The users need to separately create and store these
documents which is really an overhead.

Furthermore, PSP Student Workbook might not be suitable for professional use since the Ac-
cess database can inevitably become unnecessarily large and this could cause serious performance
problems for the development environments.

Process Dashboard (Dashboard), is an open source tool, originally developed by the United
States Air Force in 1998. It supports all the standard functionalities which can be found in the PSP
Student Workbook. This tool supports the PROxy-Based Estimating method (PROBE), which is
the main feature of the PSP framework. It is developed in Java and can be run on Windows, Linux,
Unix, Macintosh, etc. Like other tools, Process Dashboard displays graphs and reports based on
the development data of developers (see examples in Figure 2.7).

Hackystat (Hackystat) is an example of an extensible sensor-base tool for automatic data col-
lection during software development (such as failed tests, code changes, etc.). Hackystat provides
a range of sensors to collect data from tools such as Eclipse, Ant, Checkstyle, Clover, FindBugs,
JUnit, and Visual Studio, and APIs for the creation of customized sensors. It also provides simple
forms and APIs for data access. One limitation of Hackystat is that it only collects data during de-
velopment (and not during planning, design, and postmortem); another limitation is the difficulty
to extract higher level information (e.g., defects) from the observed events (e.g., failed test cases).

Jasmine (Shin et al., 2007), is a sensor-based automated data collection tool which helps
developers in applying the PSP. In addition to sensor-based data collection like Hackystat, Jasmine
also provides support for activities such as planning, estimation, and tracking. Furthermore, it also
includes EPG (Electronic Process Guide) and ER (Experience Repository) to easily navigate the
PSP elements, and to share and sort additional process related information respectively. Jasmine
provides analysis of the performance data in the form of tables, graphs and charts.

PSP.NET (Nasir and Yusof, 2005), is a web-based application comprising two layers: ap-
plication and database. It is basically a PSP supporting tool which automatically collects the
primary data using electronic forms to reduce the time spend and overhead during recording data
in PSP courses. It provides support in PSP components such as templates, checklist, and log form.
PSP.NET can also print (according to the PSP level) the PSP forms after publishing in HTML
format. Furthermore, PSP.NET provides help in producing project plan summaries for analysis.

22 State of the art

PSPA (Sison, 2005), is a system of Web clients written in .Net languages. The main feature of
this tool is the automatic recording of compile defects from the programs written in C and JAVA
languages. The tool is mainly supported by Eclipse and is not a good option for programmer using
other integrated development environments. The tool also provides: automatic support for lines-
of-code (LOC) counting; daily schedule tracking; size and time estimation; preparing PSP reports

and graphs; editing PSP logs.

WBPS (Thisuk and Ramingwong, 2014), is implemented in PHP and MySQL, and provides
standard PSP functions which can be found in the official PSP Student Workbook such as time
logging, defect logging and process improvement proposal. In addition to the standard functions,
WBPS also offers several other features, such as management of design documents and standards,
integrated screens, review assistant and instructor assistant. It also proposes a multi-language

interface and online accessibility.

The tools discussed above mostly collect the data in automatic or semi-automatic way and
present them in the form of graphs, charts and summaries for further analysis but in practice there
is no automatic or semi-automatic support for the collected performance data to be analyzed for

problem and root causes identification and ranking.

In Figure 2.6 and Figure 2.7 are given examples of how PSP Student Workbook and Process
Dashboard tools provide support in the form of graphs, charts and reports for further manual

analysis.

By doing this analysis automatically, developers can save time for further in-depth analysis of

their performance data.

2.3 Performance measurement and analysis in other processes

Agile methods are the dominant paradigm in software engineering industry and education. An ex-
ample of metrics collection and analysis in agile project courses is described in (Alperowitz et al.,
2016). Some metrics are introduced to measure the success of three key workflows (merge man-
agement, continuous integration and continuous delivery), giving instructors and project leaders
a quick overview of the project status and problems which they can react upon. The main differ-
ences with respect to this research work are: in this research work the goal is to retrospectively
analyze completed projects; we try to identify and rank potential causes; for problem identifica-
tion, we use thresholds derived from large data sets. Nevertheless, the metrics introduced by the
authors could be adapted and explored in our approach. In principle, performance measures can
be defined for assessing the adherence to agile practices, such as the twelve XP practices (Beck,
2000). One of the challenges is the automatic collection of relevant process measures (e.g., to
assess the adherence to “sustainable pace”); the other challenge is the availability of large data

sets for model calibration.

2.3 Performance measurement and analysis in other processes

Table 2.4: PSP tool support.

23

Charact-

eristics

Source Technology Process Data collec- | Data analysis
tion
Tool
PSP Student | Software Engineering In- | Microsoft PSP Manual Standard PSP
Workbook stitute (SEI) Access charts and reports
showing historical
trends
Process US Air Force Tuma Solu- | Java PSP /TSP Manual Standard PSP
Dashboard tions (1998-present) charts and reports
showing historical
trends
Hackystat University of Hawaii | Java Any (with | Automatic Summaries and
(2001-present) plug-ins) (with sen- | graphs
SOrs)
PSP.NET University of Malaya, | Web PSP Manual No information
Malaysia 2005
PSPA University of Manila, | Desktop PSP Automated No information
Philippines, 2005 (Microsoft. (with IDE
NET) plugins)
Jasmine Information and Commu- | Web PSP Automated No information
nications University (now (with sen-
merged into KAIST), SOrs)
South Korea, 2007
WBPS Chiang Mai University, | Web (PHP, | PSP Manual (au- | No information
Thailand, 2014 MySql) tomatic LOC

counting)

24 State of the art

=8] Time a = B R 8] Test Defe e = =R
Time Estimating Error Test Defects vs Yield
100 30
o
‘\ / * ¢ @
A >
50 \/ ®
S 20 &
]
® 0 a4 E 154 & ¢
©
0
= 104
7]
g [ii]
- 8 ®
-100 0 <4
408 409 410 411 412 413 414 0 20 40 &0 80 100 120
Program 1D Yield
E] Defect Fix Time by Type = = 2 EI PSP Defect Fix Time Report = = 2
- CarnegicMedln Personal Ssftware Precess™"
Defect Fix Time by Type Software Engineering Institute |PSP Defect Fix Time Report
50 Removed
Defects Removed Removed in Compile
Injected In in Compile in UT and UT
DLD] Fix Time 11 1
© Tatal 2 2
E Ava. Fix Time 55 55
= -
= CODE Fix Time 24 24
[Total 7 7
A, Fix Time 342857143 342857143
a0 &0 10 40 100 70 5 20 TOTALS Fix Time 35 35
Total | 9
Defect Type #ug Fix Time 39996089 389983889

Figure 2.6: Examples of data analysis charts and reports from PSP student workbook.

2.4 Performance problem identification techniques

In this section, specific techniques are analyzed for the identification, visualization and rating of
performance problems in relation to specific performance indicators under analysis. In general,
to decide if the value of a particular indicator is problematic and how good/bad it is, one needs
some thresholds or reference values. Ideally, those thresholds should be derived from historical
data in an automatic way, and not arbitrary values defined manually based on expert opinion. The

techniques described next differ in the way such thresholds are derived and visualized.

2.4.1 Control charts

In Statistical Process Control (SPC), run charts are used to graphically represent the behavior over
time of variables that characterize process performance (i.e., process performance indicators) and
help assessing process stability and capability. Stability has to do with the level of variability in
the variable under analysis. Capability has to do with the ability to meet desired performance
levels (Navidi, 2008).

2.4 Performance problem identification techniques 25

r

— ap— —

GQS/W%D http://localhost:2469 p A O H /;'D Data Analysis ‘ ‘ jar ;_ &:3

Data Analysis ~| All PSP Data To Date ~

Rollup Summary

Defect Analysis Click on a chart for more detail.
Defect Analysis Total Defects Defects Injected in HLD Defects Injected in Design
Plan Analvysis A 100

X 200
Process Analvsis

Quality Analvsis

Defect Densities and Fix
Times

75
150

0.0000000
100 =l

Defects’lKLOC
Defects/KLOC
Defects’lKLOC

50 25

Defect Phases/ Tvpes

Pareto Project/Task ProjectiT ProjectiTask
Custom Defects Injected in Code Defects R d in HLD Rewvi Defects R d in Design
- = Review

. 60
Save Archive Copy... 125

100

75 0.0000000

Defects/KLOC
Defects/KLOC

50

Defects’KLOC
w
a

25

V] o- . r y
Project/Task ProjectiT Project/Task

% [I T T e e

Figure 2.7: Examples of data analysis charts from Process Dashboard tool.

To assess if a process is under control (or stable), it uses control charts, which are basically
run charts with superimposed control limits — upper control limits (UCL) and lower control limits

(LCL) (see example in Figure 2.8).

Control limits are derived based on the standard deviation (o) computed from historical pro-
cess data. The area between each control limit and the centerline is divided into zones. The closest
zone to the centerline is referred to as Zone A (1-sigma zone), the next is referred to as Zone B
(2-sigma zone), and the third one is referred to as the control limit Zone C (3-sigma zone) (see

Figure 2.9). The standard UCL and LCL are usually chosen as the 3-sigma limits.

When used to monitor the process, control charts can uncover inconsistencies and unnatural

variations.

For assessing process capability, it uses specification limits (USL and LSL) derived from re-
quirements or some external reference. Usually, a process is considered capable if the control
limits (derived from the process performance data) are within the specification limits. Examples
of control charts with both control limits and specification limits, for different stability and capa-

bility status are shown in Figure 2.10.

The main focus of our work is on checking capability. A technique that can be adapted for
automatically deriving specification limits from existing data for process capability analysis is

described in the next section.

26 State of the art

Control Chart

Summary
300 —
200 —
—————————————————————————————— UCL
100 — A
[
) CL
© 4
: AV
>
O a—
———————————————————————————————— LCL
-100 —
I I I l
5 10 15 20

Time

Figure 2.8: Illustration of a control chart.

2.4.2 Benchmark based software evaluation

In our approach, in order to enable the automated identification of performance problems, after
deciding on the relevant Pls, one has to decide on the relevant ranges. Our approach for defining
such ranges draws inspiration from the benchmark-based approach developed by researchers of
the Software Improvement Group (Alves, 2012) (Alves et al., 2010) to rate the maintainability of

software products, with adaptations for process evaluation instead of product evaluation.

In (Alves, 2012) (Alves et al., 2010), the authors claim that the effective use of software met-
rics is hindered by the lack of meaningful thresholds. They also note that thresholds have been
proposed for a few metrics only, mostly based on expert opinion and a small number of observa-
tions, or systematically derived based on unjustified assumptions about the statistical properties
of the metrics (such as normality). Consequently, they propose a method to empirically derive in
a systematic way metric thresholds from measurement data (benchmarks), in order to determine
risk profiles and maintainability ratings for products under analysis. They propose a discrete rat-
ing schema (from 1 to 5 stars), based on thresholds that correspond to the 20%, 40%, 60% and
80% quantiles. This idea can be applied in our work, but a simpler rating scheme with three levels
only (and thresholds for the 33% and 66% quantiles), corresponding to the green, yellow and red

semaphores, seems sufficient and intuitive.

In our case, benchmarks may be derived from the performance data of a large community of

process users.

2.5 Root cause analysis techniques 27

99.7%

95.5%

68.3%

e e e e e e e e ——— A
____________________.___v

________________________________A
S

< <
o (]
) 5 5 @
] N N)
c | | g
.3 © © N
| £ £ I
) o0 ©
(1] ‘7, 7 E
E i A o0
» ' + (7]
(o} (o]
' +
-3 Sigma - + 3 Sigma -
Zone C Zone C

Figure 2.9: Illustration of deriving control limits and zones from the statistical distribution of
historical data, assuming normal distribution.

2.5 Root cause analysis techniques

After identifying performance problems, it is important to find their root causes, so that improve-

ment actions can subsequently be defined to address the relevant causes.

In this section, several techniques that can be used for identifying root causes are presented.

2.5.1 Fishbone diagrams

The Cause-and-Effect or Fishbone diagram (see Figure 2.11) is a classic technique for helping in
manual causal analysis and for visualizing relationships between causes and effects. It combines
the brainstorming and Mind Map to push one to consider all the possible causes of a problem. It
is also known as Ishikawa diagrams because Kaoru Ishikawa developed them in 1943 (Surhone
et al., 2010).

The Ishikawa diagram organizes and displays the relationships between different causes for
the effect that is being examined. This diagram also helps organize the brainstorming process.
The major categories of causes are put on major branches connecting to the backbone, and various

sub-causes are attached to the branches. A tree-like structure results, showing the many facets of

28 State of the art

Stability
YES NO

hi—
M AV WA AT

LcL

NO

Variable
Variable

________________ —_— -5

g Time Time
=
o
o
-]
[¥]] N
e o e e e e e e e e e e = usL | usL
@ va @ f\ K uct
YEs 2 W\W\/\/\\/\/ g \/\\ /\[W\/\/\/
&
> e > Y LcL
_____________________ ™ N AU R U s P
T T T T T T T
Time Time

Legend: UCL: Upper control limit; LCL: Lower control limit; USL: Upper specification limit; LSL: Lower
specification limit.

Figure 2.10: Process stability versus capability.

the problem. The method for using this chart is to put the problem to be solved at the head, then

fill in the major branches.

2.5.2 Defect causal analysis

An example of applying Fishbone techniques in software engineering is Defect Causal Analy-
sis (DCA). Many process improvement approaches (e.g., Six Sigma (Kwak and Anbari, 2006) or
FMEA (Campos, 2012)) described in literature and practiced in industry include causal analysis
activities for determining the causes of defects and other problems (Kalinowski et al., 2012). How-
ever, most of the techniques are essentially manual. Defect Causal Analysis (Card, 1993) is one of
the prominent methods for analyzing defects and identifying root causes for improvement in soft-
ware engineering. Furthermore, the learning capability of DCA from defects enable improvement
of processes and products, which is a significant benefit in the context of continuous improvement
strategies (Card, 2005).

The DCA process involves 6 steps to be performed in DCA workshops (Card, 1993): (1)
select problem sample; (2) classify selected defects (e.g., using ODC); (3) identify systematic
errors (e.g., with Pareto charts); (4) determine main causes (e.g., using Fishbone or cause-effect
diagrams); (5) develop action proposals; (6) document meeting results.

The main problem of DCA is that it is basically a manual process, and our goal is to auto-
mate, at least partially, the root causes identification of performance problems. The idea is to

automatically drill down from performance problems to causes up to the level permitted by the

2.5 Root cause analysis techniques 29

Cause-and-Effect Chart

People Equipment

Goal/ Problem

Procedures Materials

Figure 2.11: Fishbone diagram.

data available. Manual analysis may still be required for identifying deeper causes not apparent in

the available data. Next we investigate a technique that can help in automatic causal analysis.

2.5.3 Process performance models

In order to be able to automatically identify and rank (prioritize) the causes of performance prob-
lems, we need to have some quantitative relationship between factors (causes) and outcomes. For
that purpose, the CMMI suggests the usage of process performance models (PPM).

In the context of the CMMI process improvement framework, a PPM is a description of the re-
lationship among attributes of a process or sub-process and its outcomes, developed from historical
process performance data and calibrated using collected process and product measures (Chrissis
et al., 2011).

In the case of continuous variables, a PPM often takes the form of a regression equation,
relating controllable or uncontrollable factors (x) with outcomes (y), together with an indicator of
the degree of variability in the model, such as the R2 statistic. In the case of discrete variables,
PPMs may be based on Bayesian networks (Zubrow et al., 2009).

PPMs are useful tools for project management and process management and improvement.
In the latter case, PPMs help organizations identify and leverage important relationships among

process factors and outcomes, and estimate the effects of alternative process changes. The creation

30 State of the art

of a PPM usually involves the following steps, among others: (1) decide what outcomes to analyze;
(2) hypothesize factors to investigate; (3) select the modeling techniques to use; (4) obtain relevant
data; (5) fit the model to the data and evaluate the degree of fitness according to statistical and
business criteria (Zubrow et al., 2009).

Examples of PPMs that can be constructed and applied in the context of the TSP/PSP, to-
gether with examples of outcomes and factors to consider for a few sub-processes, are described
in (Tamura, 2009). An example of a PPM created by a TSP team for establishing a target code
review rate (number of lines of code reviewed per hour), based on the predicted impact on the

code review yield (percentage of defects found in code reviews), is as follows (Tamura, 2009):

e Regression equation: CodeReviewYield = 146 — 0.364 x CodeReviewRate

o R> =94.1%, p — value = 0.000

Examples of possible factors to consider for analyzing the code review yield are (Tamura,
2009):

e Outcome (y): code review yield,;

e Factors (x) currently collected by TSP: requirements inspections rate, high-level design in-
spections rate, detailed design review rate, detailed design inspection rate, code review rate,

code review/coding time;

e Other factors (x) that could be collected: code complexity, encapsulation, programming lan-
guage & tools, code review checklist, coding skills and experiences with the programming

languages and tools used, code review skills and experiences, quality of reused source code.

PPMs can be applied in our work with adaptations, as will be explained in more detailed in
chapter 3. All the steps discussed above for the creation of PPMs will be applied, with some
adaptations and choices: in step 2, we follow a hierarchical approach (factors that can in turn be
affected by other factors, like in Fishbone diagrams); in step 3, we use a regression model in case
of statistical relationship between factors and outcomes, and an exact formula when there is an
algebraic relationship. The type of regression models applicable for our work are discussed in
section 2.5.4.

As mentioned before, PPMs can be used to estimate the effects of alternative process changes.
In our case, PPMs can be used to rank the factors, according to the effect of changes in single
factors on the outcome under analysis. Since our goal is just to rank the factors, sensitivity analysis
techniques can be used. Sensitivity analysis techniques are discussed in section 2.5.5. The exact

approach will be explained in chapter 3.

2.5.4 Regression models

Regression analysis is a statistical process that attempts to determine the strength of the relation-

ship between a dependent variable (e.g., Process Yield) and independent variables (e.g., Design

2.5 Root cause analysis techniques 31

Review Yield, Code Review Yield, etc.). It may also be referred to as the study of how a quantita-
tive response variable (or dependent variable) varies when an explanatory variable (or independent

variable) changes.

In general, regression analysis attempts to find a function that fits a series of observations
with minimal error. It should also be noted that regression does not necessarily suggest a causal

relationship between response variable and explanatory variables but a significant association.

Analysis that assumes a single independent variable to predict the value of a dependent variable
is known as simple regression; analysis that assumes two or more independent variables for the
prediction of the value of a dependent variable is known as multiple regression (Chatterjee and
Hadi, 2015).

Regression modeling can be performed in different ways. Traditionally, regression techniques
are categorized as linear or nonlinear. Linear regression tries to model the relationship between
dependent and independent variable(s) by fitting a linear equation to observed data. For random
noise that cannot be explained by the linear relationship, a variable known as model error is intro-

duced. Linear regression models assume the form of the following expression:

y=bo+bix1+byxo+...+bixi+e 2.1

Linear regression models attempt to determine these parameters by minimizing the function in
regards to an expression that compares observed with predicted values (the least squares method
is a typical approach for this). Generally, when using linear regression models, it is simple to
interpret the relationship between dependent variable and predictors and analyze the correlation

among predictors (Kuhn and Johnson, 2013).

Nonlinear regression models (Seber and Wild, 1989) are expressed by functions that are not
linear in the parameters. These models tend to vary in approach, and comprise many different tech-
niques. Common models of this type include neural networks, Support Vector Machines (SVM),
k-Nearest Neighbors (k- NN), Multivariate Adaptive Regression Splines (MARS) and tree-based
models (Aggarwal, 2014).

2.5.5 Sensitivity analysis

When an outcome (y) is affected by multiple factors (x;...,x,, with n > 0), sensitivity coefficients
may be used to measure the importance of those factors. The sensitivity coefficient is basically the

ratio of the change in output to the change in input while keeping all other parameters constant.

In our model, we will expect two types of relationships between independent variables and

dependent variables.

In case there is an explicit algebraic equation that describes the relationship between the in-

dependent variables and the dependent variable, the sensitivity coefficient, ¢;, for a particular

32 State of the art

independent variable X; can be calculated from the partial derivative of the dependent variable

with respect to the independent variable (Hamby, 1994), i.e.

oY [X;
Ox, —y= X <Y> (2.2)

where the quotient, X; /Y, is introduced to normalize the coefficient by removing the affects of
units. Inherent to this calculation are the assumptions that the higher ordered partials are negligible
and there is no correlation between input parameters.

In case there is no explicit algebraic equation that describes the relationship between the in-
dependent and the dependent variables, then a regression formula can be calibrated based on the

historical data form many process users for sensitivity coefficient (Navidi, 2011).

Chapter 3
Proposed performance analysis method

This chapter presents the ProcessPAIR method for automated performance analysis and improve-
ment recommendation. Section 3.1 introduces the overall approach covering performance prob-
lems and their root causes identification, and ranking. Section 3.2 describes performance model
definition. Section 3.3 describes the performance model calibration covering cumulative distri-
bution functions, performance ranges, regression models and sensitivity coefficients, and data set
filtering. Section 3.4 presents model based performance analysis. The method is applicable to any

software development process or business process.

3.1 Overall approach

Our approach involves three main steps (see Figure 3.1):

1. Define: Process experts define the structure of a performance model (PM) suited for the de-
velopment process under consideration. In our approach, a PM comprises a set of top-level
and child performance indicators (PIs), organized hierarchically by cause-effect relation-

ships.

2. Calibrate: The PM is automatically calibrated by ProcessPAIR based on the performance
data of many process users. The statistical distribution of each PI and statistical relations

between PIs are computed from the calibration data set.

3. Analyze: Once a PM is defined and calibrated, the performance data of individual develop-

ers can be automatically analyzed by ProcessPAIR, to:

(a) identify performance problems (in top-levels Pls),
(b) identify potential root causes (related with child PIs), and

(c) rank the performance problems and their potential root causes.

The 3 steps of our approach are generically interrelated as described in the next sub-sections.

33

34 Proposed performance analysis method

act Process view /

1. Define performance
model structure

v

Performance model structure

Process expert

Performance indicators (PIs)
Relationships between Pls

. Performance data
2. Calibrate performance |e=—— from many

model
\l/ developers

Calibrated performance model

Statistical distribution of Pls
Statistical relationships between PIg

ProcessPAIR

performance data of a single
developer

C& Analyze developer) = Performance data

Performance analysis and
recommendation report

Performance problems
Ranked root causes

Figure 3.1: UML activity diagram (UMLZ2.5, 2015) depicting the main activities and artifacts in
the ProcessPAIR approach.

3.1.1 Problem identification approach

In order to enable the automated identification of performance problems in step 3, one has to
first decide on the relevant (top-level) PIs and recommended performance ranges. The relevant
top-level PIs are identified by the process expert in step 1. The recommended ranges of each PI
are determined automatically in step 2, based on its statistical distribution in the calibration data
set, according to the following criteria: the 1/3 values closest to the optimal value correspond to
“good” performance (no performance problem); the 1/3 values farthest from the optimal value cor-
respond to “bad” performance (clear performance problem); the 1/3 values in between correspond
to intermediate performance (potential performance problem).

The optimal value of each PI is defined by the process expert in step 1. In most cases, the

optimal value is implicit in the definition of the PI (e.g, O is the optimal value for defect density).

3.1 Overall approach 35

3.1.2 Root cause identification approach

In order to enable the automated identification of root causes of performance problems in step
3, one has to first decide on the relevant cause-effect relationships. In our approach, lower-level
PIs that may affect, directly or indirectly, top-level PIs according to a cause-effect relationship are
specified by the process expert in step 1. Then, in step 3, it is possible to recursively drill down
from problematic top-level PIs (with a clear or potential performance problems) to problematic
lower-level PIs (with a clear or potential performance problems). PIs that can not be further drilled

down indicate the potential root causes.

3.1.3 Ranking approach

When multiple potential root causes (problematic child PIs) are identified for a performance prob-
lem in a top-level P, it is important to rank them (step 3).

Let Xi,...,X, be a set of lower-level PIs that affect the value of a higher-level PI Y. Let us
assume that such relationship can be described by a function ¥ = f(Xj,...,X,), representing an
exact formula for deriving Y or a regression formula derived from the calibration data set. We
rank the factors X; according to the values of a ranking coefficient p; that represents a cost-benefit
estimate of improving each factor X; whilst keeping the other factors unchanged.

The benefit on Y of a change in the value of a factor X; can be expressed by the resulting
relative variation in the value of Y, i.e., AY /Y.

As for the cost of changing the value of a factor Xj, intuitively, the closest the value is to the
optimal value, in terms of percentiles, the more difficult (and less important) it is to improve it.
Let us denote by P,(X;) = F;(X;) — F;(0;) the percentile distance of X; to the optimal value, where
F; represents the approximate cumulative distribution function of X;, and o; represents the optimal
value of X;. Our base heuristic is that equal relative variations in the P,s have similar costs. So,
we take as cost estimate the relative variation AP;/P,.

We approximate the cost-benefit ratio using partial derivatives (for small variations) to derive

a ranking coefficient (p;):

AY
AY | Xi AX; | P ~ | Y | X 1)i _ — N
{Pi [i<Y>] " [1<Xt)] - [aXi <Y>] " [gpi <Xt>] IR
] Xi

The first coefficient, oy,_,y = % % , is a sensitivity coefficient (Saltelli et al., 2008) that

computes the impact of small variations in the value of a factor X; on the value of Y, whilst keeping

all the other factors unchanged. The second coefficient, 7p_x, = %Pi % = %&‘g@), which
TXI- i il i\ A

we call a percentile coefficient, computes the impact of small variations in the current percentile
distance (P;) of X; to the optimal value (0;) on the value of X;. We denote by F’(X;) the first
derivative of F;(X;), representing the probability density function.

The optimal value of each PI is provided by the process expert in step 1. The approximate
statistical distribution of each PI is automatically computed from the calibration data set in step 2.

Regarding the sensitivity coefficients, in case parent and child PIs have an exact relationship, the

36 Proposed performance analysis method

sensitivity coefficient is provided by the process expert in step 1; in case parent and child PIs are
statistically related, a regression model and a corresponding sensitivity coefficient are computed
automatically in step 2 from the calibration data set.

The next sections give further details about the three steps of our approach.

3.2 Performance model definition

A performance model for a development process under consideration is defined by means of the

following information (see Figure 3.2):

1. Set of relevant base measures generated by the development process under consideration, at
the project level, with their name (short name and long name), description, scale (minimum

value, maximum value and precision digits), and measurement units.

2. Set of relevant top-level PIs, described by the same attributes as the base measures, plus the
optimal value (usually implied by the definition of each PI) and formula for computation

from base measures.

3. Child PIs that affect directly or indirectly (by a cause-effect relationship) the top-level Pls
according to a formula or statistical evidence.
4. Sensitivity coefficients (Saltelli et al., 2008) ox,—,, = g—; % ,i=1...n for each PI Y that

is affected by child PIs Xj, ..., X,, according to an exact formula Y = f(X{,...,X,).

Concrete examples can be consulted in chapter 4.

3.3 Performance model calibration

The PM is automatically calibrated by ProcessPAIR from training data sets (containing values of
base measures for many users and projects), generating the following data (also visible in Fig-
ure 3.2):

e approximate statistical distribution of each PI, represented by a cumulative distribution func-
tion;

e recommended performance ranges for each PI;

e regression models and sensitivity coefficients between related PIs, but not by an exact for-

mula.

3.3.1 Approximate camulative distribution functions

The approximate cumulative distribution function of each PI could be obtained by computing a

theoretical distribution that best fits the training data, or by linear interpolation between a few

3.3 Performance model calibration 37

class performancemodel /

PerformanceModel Measure

name: String shortName: String
longName: String
<>1 <> description: String
1 1 units: String
min: double
max: double
decimalDigits: int

Semaphor . Z% A

Green
Yellow BaseMeasure
Red

/allindicators « « topLevelindicators

Performancelndicator

optimalValue: double

formula: NumericFunction<Project>
recommendedRanges: Map<Interval, Semaphor>
approximateStatisticalDistribution: StatisticalDistribution

parentindicator childIndicator *
* {ordered}

Dependency

sensitivityCoefficient: NumericFunction<Project>

Figure 3.2: UML class diagram depicting the main concepts involved in model definition and
calibration.

percentiles computed from the training data. Since different PIs may follow different types of
continuous distributions or may even follow a hybrid continuous-discrete distribution, with non-

zero probability at the ends of the scale, we opted for the second method.

To balance fit, smoothing and storage space, we sample the cumulative frequency distribution
of the training data for the following relative frequencies: 0%, 1%, 5%, 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, 95%, 99%, 100%, maximum relative frequency for which the ob-
served value equals the minimum of the scale (if any observed), and minimum relative frequency
for which the observed value equals the maximum of the scale (if any observed). The approximate
cumulative distribution function of the PI under consideration is a piecewise linear function that
connects the sampling points, as illustrated in Figure 3.3. The only calibration information that

needs to be stored are the sampling points (illustrated by red circles in Figure 3.3).

Examples of concrete distributions can be consulted in chapter 4.

38 Proposed performance analysis method

a) Distribution of a PI in the b) Approximate cumulative distribution
calibration data set function of the PI in the model
100% 100%

80%

60% /
w / |:: > o /
20% /

) N

0% 0%
min. Performance max. min. Performance max.
indicator indicator

80%

60% /

Cumulative probability

Cumulative relative frequency

Figure 3.3: Illustration of the procedure for obtaining an approximate cumulative distribution
function of a PI (example with hybrid continuous-discrete distribution, and sampling at 20% in-
tervals).

3.3.2 Performance ranges

As previously explained, performance ranges are needed for classifying values of each PI of a

subject under analysis into three semaphores:

e green - no performance problem;
e yellow - a possible performance problem;

e red - a clear performance problem.

Such ranges are determined automatically from the approximate cumulative distribution func-
tion computed in the previous step, so that there is an even distribution of training data points by
the colors (1/3 of data points per color). In case the optimal value is located in one of the extremes
of the scale, the ’green’ range is also located in the same extreme of the scale, the red’ range in the
other extreme, and the ’yellow’ range in the middle. In that case, thresholds are computed from
the cumulative distribution function based on terciles and subsequently rounded to the number of
precision digits specified for the PI under consideration. In case the optimal value is located in the
middle of the scale, we split the intervals to the left and the right of the optimal value based on

terciles, in order to derive the performance ranges, as illustrated in Figure 3.4.

3.3.3 Regression models and sensitivity coefficients

Sensitivity coefficients between Pls not related by an exact formula are computed by first determin-
ing a regression model from the calibration data set and subsequently computing the corresponding
sensitivity coefficients.

Assume that in the first step of our method the process expert indicated that a performance

indicator Y is affected by Xj,...,X,(n > 1), but Y is not determined by those factors according

3.3 Performance model calibration 39

Cumulative
probability

100%

...... >p+ 2/3 (100%-19)

~> p +1/3 (100%-p)

P
ey 213 P
ey 13 P
S s S A e TeR N R
min max Performance
indicator

optimal value

Figure 3.4: Illustration of the procedure for determining the green (G), yellow (Y) and red (R)
ranges from the cumulative distribution function of a PI, in case the optimal value lays in the
middle of the scale.

to an exact formula. An example in the PSP is the Review Yield (percentage of defects found in
reviews) which, according to (Kemerer and Paulk, 2009), is affected by the Review Rate (size

units reviewed per time units).

In such case, we first compute a regression model ¥ = £(Xj,...,X,) from the calibration data
set for predicting the value of Y from the values of (Xj,...,X,), and subsequently compute the

sensitivity coefficients from that model as
GXI-_)Y:aii7i:1,...7n. 3.1

Because the relationship between the Pls involved may be non-linear, instead of computing
a global linear model (derived by simple or multiple regression, depending on the value of n),
we have the option to compute a piecewise linear model organized as a regression tree (Breiman,
1984). The type of model to use (global or piecewise linear model) is selected by the process expert
in the first step of our method. A regression tree (Breiman, 1984) is a binary decision tree; at each
non-leaf node, the value of one of the factors (X;) is compared to a so called split value in order
to decide the sub-tree to follow. Hence, each leaf will correspond to a subset (n-dimensional cube
or cell) of the space of possible values of X1, ..., X,. Since we are interested in computing a linear
piecewise model, each leaf node k has an associated linear model ¥ = Br.o + B i X1 + ... 4 B nXn,
computed from the points in the calibration data set that fall in that cube, by simple (n=1) or

multiple (n>1) linear regression.

40 Proposed performance analysis method

Special provisions are taken for handling variables with a constant value: if a variable Xj is
constant, then B ; = 0; if ¥ is constant, then B ; = ... = B, = 0.

In the recursive tree construction process, we use the following split criterion: as suggested in
(Shalizi, 2009), we select the split variable (Xj) that provides the highest decrease of the tree SSE
(sum of squared errors); for each tentative split variable Xj, we do a split as closest as possible to
a binary split that guarantees disjoint X; values on both segments (this is important to handle re-
peated values). We use the following stop criterion: a cell size cannot contain less than a specified
minimum number of training data points (100 for inner cells, and a number between 100 and 25

for border cells, depending on the number of borders).

An alternative to regression trees are multivariate adaptive regression splines (MARS) (Fried-
man, 1991), which also handle non-linearities and interactions between factors, and generate more
compact models than regression trees. In the experiments conducted, we obtained lower mean ab-
solute errors (MAE) and root mean squared errors (RMSE) with regression trees as compared to
MARS, particularly in cases where the dependent variable Y is strongly determined by the factors
X1, ...,X, (with a coefficient of determination R? close to 1) in a non-linear manner. So, we use
the described regression trees, in spite of the higher storage space required, but can also support
MARS in the future.

In each leaf node k we only have to store the coefficients By o, Bx 1, ..., Br,» of the model. In
each non-leaf node, we have to store the index and value of the split variable. During performance
analysis (step 3), once determined the cell k corresponding to a data point (X, ...,X,,Y) under
consideration, the sensitivity coefficients are simply computed at runtime as:

Y X X;
Oox—y =— (=) =Bi=(=1,...n). 3.2
Xi—Y X (Y) ﬁk,l Y (l) ,l’l) ()

See example of excerpt of concrete regression tree in Figure 4.3 in chapter 4.

3.3.4 Data set filtering

Instead of using the full data set for calibration, it may make sense to filter the data points to be
used for calibration. One possibility is to restrict (or filter) the data points to the ones most similar
to a given user profile. This requires that each data point in the calibration data set, besides values
for the base measures, also contains values for the variables that can be used for filtering. Those

variables should be specified by the process expert together with the PM.

Similarity is computed with the Gower similarity co-efficient (Gower, 1971), because it pro-
vides a measure of proximity adequate for mixed data types (combining numeric and categorical
data).

Let n be the number of variables under consideration (the ones constrained in the supplied

profile), and let p and ¢ be vectors that contain the values of those variables in the supplied profile

and in a data point in the training data set, respectively.

3.4 Model-based performance analysis 41

In the case of a categorical variable k (e.g., programming language), the similarity s; between ¢
and p regarding k(1 < k < n), is a number between O (least similar) and 1 (most similar) computed
as (Gower, 1971):

1 ift = py,
Sk = P 3.3)
0 otherwise .
In the case of a numerical variable with a finite range (e.g., programming experience in years),

the similarity is computed as (Gower, 1971):

|t pad
Tk

=1 (3.4)

where 1y is the range of values for the kth variable (distance between minimum and maximum
allowed or observed values).

However, many numerical variables of interest have positive values spread along a wide range,
with many comparatively small values and a few comparatively large values. E.g., in the training
data set that we used for calibrating the PSP model (see chapter 4), 1,604 developers (out of 3,112)
indicated their programming experience in KLOC, with a median of 10 KLOC and a maximum
above 10,000 KLOC. Using the above formula, the similarity would be close to O for most of the
pairs of data points. In such cases, the process expert may specify a monotonic scale transforma-
tion function to be applied prior to using the similarity formula. E.g., the function 1 —e = , where
x is the variable of interest and 7 is a constant, transforms the [0, o[interval to the [0,1[interval.

Another possibility (that can be selected by the process expert) is to compute the similarity
based on the ranking of x in the training data set (i.e., the relative position of x in the sorted
multiset of values in the training dataset).

By default, all the variables are given equal weights, so the similarity s between ¢ and p (con-

sidering all the variables) becomes a simple average:

1 n
s==) s (3.5)
=]

Regarding the number of most similar data points to select, we use the following criteria:
for statistical significance, at least 50 data points are selected; additionally, all data points with
a similarity to the given profile greater or equal than 0.9 are selected. These numbers can be
configured. Data points with undefined values for any of the variables under consideration are not

selected.

3.4 Model-based performance analysis

The base performance data of a subject under analysis (developer, team or company) that needs to

be uploaded by ProcessPAIR, consists of the values of the base measures defined in the selected

42

Proposed performance analysis method

performance model for a sequence of projects (see Subject, Project, and ProjectBaseMeasure in
Figure 3.5).

class subj ectdata/

PerformanceModel

Performancelndicator

Subject

/Subjectindicator

1

*

1

*

/minimum: double
/maximum: double
/average: double

/Indicatorinstance

>

/percentile: double

Project

/sempahor: Semaphor

segNumber: int
name: String

/Projectindicator

L\~ /percentileCoefficient: double

1 1

/value: double

childOrLeaflnd parentOrToplind

1

*

ProjectBaseMeasure

* *

/Dependencylnstance

value: double

«enumeration»
RankingLabel

/sensitivityCoefficient: double
/rankingCoefficient: double

BaseMeasure

Very Large
Large
Medium
Small
Very Small

IrankingLabel: RankingLabel

*

0.1

Dependency

Figure 3.5: UML class diagram depicting the main concepts involved in the analysis of subject

data.

3.4.1 Project level information

Based on the values of the base measures, ProcessPAIR computes the following data for each PI

and project (see Projectindicator and Indicatorlnstance in Figure 3.5):

SOme Cases;

e value — computed from the base measures and PI’s formula; this value may be undefined in

e normalized percentile — computed from the previous value and the statistical distribution

of the PI in the PM, normalized so that 100% corresponds to the optimal value and 0%

corresponds to extreme values to the left or to the right of the optimal value. Formally,

denoting by F;, 0; and x the approximate cumulative distribution function, optimal value and

3.4 Model-based performance analysis 43

actual value of the PI under consideration, respectively, and by N; the normalized percentile,

we have:

1 if x = o;,
Ni=q 7 if x < oy, (3.6)
11— B x> o

e semaphore — determined by comparing the PI value with the calibrated performance ranges,
or, equivalently, computed from the normalized percentile as follows: green for the 66.7%-
100% range, yellow for the 33.3%-66.7% range, and red for the 0%-33.3% range;

e percentile coefficient — as previously explained, the percentile coefficient of a PI X; with
Fi(x)—Fi(0i)
xF,

i

approximate cumulative distribution function of X;, and F,-' is the first derivative of F;. The

value x is computed as 7p_,x, = , where o; is the optimal value of X;, F; is the

percentile coefficient is needed for computing the ranking coefficient, but is hidden from the

normal user.

For each dependency defined in the PM and project, the following information is computed

(see Dependencylnstance in Figure 3.5):

o sensitivity coefficient computed from the project data and the sensitivity formula defined in
the PM. The sensitivity coefficient is needed for computing the ranking coefficient, but is

hidden from the normal user;

e ranking coefficient - computed as the product of the previous sensitivity coefficient and the

percentile coefficient of the child PI;

o ranking label — a discretization of the ranking coefficient in terms of T-shirt sizes, for user
presentation purposes, according to the mapping {] — ,0.01[— VerySmall,[0.01,0.1[—
Small,[0.1,1[— Medium,[1,10[— Large,[10,+co[— VeryLarge}. Such thresholds may be
interpreted as follows: considering an improvement by 10% in the child PI (reduction of the
percentile distance to the optimal value), the estimated improvement in the parent PI will be
<0.1% (very small), 0.1%-1% (small), 1% - 10% (medium), 10%-100% (large), >=100%
(very large).

The following information is also computed between child indicators (at any level) and top-

level indicators:

e composite sensitivity coefficient — recursively computed from the (elementary) sensitivity

coefficients, as explained in section 3.4.3;

e composite ranking coefficient — computed as the product of the previous sensitivity coeffi-

cient and the percentile coefficient of the child PI;

e composite ranking label — computed in a way similar to the ranking label for directly Pls.

44 Proposed performance analysis method

3.4.2 Subject level information

Summary information for each PI is computed at the subject level (see Subjectindicator and Indi-

catorlnstance in Figure 3.5):

e minimum, maximum, average — simple statistics calculated from the values computed at the

project level,

o aggregated normalized percentile — weighted average of the normalized percentiles com-
puted at the project level, using an exponentially decaying weight for older projects with
a configurable "memory retention factor". Formally, denoting by x1,...,x,, and N; 1,...,N;
the values and corresponding normalized percentiles of the PI under consideration (X;) for
a sequence of projects 1,...,m, by f the memory retention factor (0 < f < 1,e.g.,0.85), by
defined(x;) a predicate that indicates if x; is defined for project j, and by N; .. the aggregated

normalized percentile, we have:

N — Zje{l,...,m}/\defined(xj-)fm_jNi,j
ix — —~

. 3.7
Zje{lm}Ndefined(x;) f

e aggregated semaphore — computed from the aggregated normalized percentile, in a similarly

way to what is done at the project level.

The following aggregated information is computed at the subject level, for direct dependen-

cies:

e aggregated ranking coefficient - weighted average of the ranking coefficients computed at
the project level, using an exponentially decaying weight for older projects with a config-

urable factor, in a way similar to the aggregated normalized percentile;

e aggregated ranking label — computed in a way similar to the ranking label at the project

level.

The following aggregated information is also computed at the subject level, for indirect de-

pendencies:

e aggregated composite ranking coefficient - weighted average of the composite ranking co-
efficients computed at the project level, using an exponentially decaying weight for older

projects with a configurable factor, in a way similar to the aggregated normalized percentile;

e aggregated composite ranking label — computed in a way similar to the ranking label at the

project level.

3.4 Model-based performance analysis 45

3.4.3 Ranking calculations
3.4.3.1 Compositive sensitivity coefficients

In the general case, the root causes to be ranked X1, ..., X, may be indirect children of the prob-
lematic top-level PI under consideration (Y). In this case, the function f that relates the involved
PIs may be expressed as a composite function, based on the elementary functions that relate each
PI with its direct children. As a consequence, the sensitivity coefficients may be computed using
the laws of partial derivatives of composite and multivariate functions. For example, regarding the
PIs illustrated in Figure 3.6, we can compute a sensitivity coefficient between indirectly related

PIs as follows:

Y (X,
GX4 —y = 87}(4 7

_ Y ox (X)) oY % (X
S 9X;oxu\ Y X, dXs \ Y (3.8)
_ Y Xi0XiXe | 0¥ X2 0% X,y
90X, Y OXuX, 0Xp Y 0X4 X

= Ox, —y Ox, —x, +0x, —y Ox, —X,

X3 Ox;»y = 0x,5v0X;-X,
X fo AY ox,oy = 0x,y0x,x, T Ox,5v0x,-x,
4
Ox.»y = O0x,-Y0x.—X,
Xs

Figure 3.6: Computation of sensitivity coefficients between indirectly related PIs.

In general, denoting by child(X;) the direct child of an indicator X}, the (composite) sensi-
tivity coefficient o between any two PIs (directly related, indirectly related or unrelated) can be

computed recursively from the elementary sensitivity coefficients as follows:

Ox,—X; if X; € Child(Xj),
Oxx, = 4 1 ifi=j, (3.9)

Liechild(X;)oy, .y, O, otherwise .

46 Proposed performance analysis method

3.4.3.2 Corner cases in ranking calculations

The value of a percentile coefficient (mp_.x,), sensitivity coefficient (Ox,_,y) or ranking coefficient
(p;) may be indeterminate for corner values (C) of the variable involved (X;), because of non-
linearities (making the derivative undefined) or operations such as 0/0 or 0 X . In order to try to

remove the indeterminacy, we take the limit, as follows:

(€)= Jim 52 ()

X;—C aR Z
. dY (X
O,y (C) = lim =+ (y)
1 1

pi€) = Jim. [0 (5) 70

Xi—
In most cases, this is sufficient to remove the indeterminacy. Some representative cases are

illustrated in Figure 3.7 and Figure 3.8.

Fi(X)
Not using limits:
0 .
m; (0) = Ao Filo) =_bob_ JOxundefined’ yb=0 = undefined
P &) |y X0 ° ifp=0
(0<b<1) b : oxa’
0 . timal " Using limits:
= min =optima i _ i FGO-Fi)| | o (aXikb)<b _
) feg ooun) ()= Jim ST < i T =1
m;(0)?
ii)
Fi(X)
Not using limits:
b—Fi(0;) ; . .
7 (0) = Fi(X)—Fi(0) _b-Fiop) _ 0 x undefined’ ifb>0 _ unie(fl“;led‘ ifb>0
: XF XD |y g OXF(0) “Fe) ey g 5B, ifb=0
(0<b<1) b oxa
0 =min < optimal X Using limits:
= i Oy = i FIED=Fi0D| _ . (aXith)=Fi(o) _ _
4+ (e.g., PY) m(0) =)l(ligﬁc o Xlil_r)t&+ Yoo =
m;(0)?
iii)
Fi(X)
. Not using limits:
1-Fi(0i) : . .
(0<d<1) d m; (m) = Fi(X)—Fi(0)| _ 1-Fi(0) _)mxundefined’ ifd<1 _ uniif_(l:)ed‘ ifd<1
t XiF (X)) |Xl-:m mxF! (m) 1-Fi(0) ifd=1 100D irg =1
mxa ’ mxa
Using limits:
max=m X; F&X)-Fio)| _ lim (@Xctb)=Filo) _ d=Fi(o) (defined)

i) —
f (e.g. PY) mi(m))%l;r—nvc XiF{ (X)) |c:m Xj~m— Xia mxa

m;(m)?

Figure 3.7: Examples of solving indeterminacy in the calculation of the percentile coefficient by
using limits.

3.4 Model-based performance analysis 47

:
0 . F(P)-F(1) (@PY+bh)—1 b-1_
: Ty = Mm o Ty e Pra AR PYa
1 PY
=max=optimal
DDUT
cDDUT +d © — pim OPDUT_PY L ePY T 20
d opr-ppur(0) = i, =5 =507 = A% ppor ~ 0 U *0)
0 1 py
Not using limits: ppy_ppyr(0) = py (0) X dpy_ppyr(0) = —0 X 0 = undefined
N . . b-1cPY _ (b-1))
Using limits: ppy_ppyr(0) = P]}l,lllonpy(PY) X opy_ppyr(PY) = I—“llllrllochDUT = aDDU; (defined)

Figure 3.8: Example of solving indeterminacy in the calculation of the ranking coefficient by using
limits.

3.4.3.3 Selection and sorting rules

In this section, we explain how the relevant root causes of an identified performance problem are

selected based on the ranking coefficients and semaphores.

Assume that a problematic top-level P1 Y was identified (with a red or yellow semaphore) for
a specific project or overall for a subject under analysis, as illustrated in Figure 3.9. Also assume
that ¥ has the direct and indirect child PIs indicated in Figure 3.9, with their semaphores and

ranking coefficients already calculated.
The selection of the relevant root causes is performed in three steps.

In step 1 (cut non major issues), we cut the child PIs (and their direct or indirect children) that
(i) have a green semaphore or (ii) a ranking coefficient to parent less than a defined threshold (e.g.,
0.1). A node in the tree with multiple parents is cut only if it (i) has a green semaphore, or (ii)
all the ranking coefficients to the parents are less than the defined threshold, or (iii) all the parents

have been cut. E.g., In Figure 3.9, X7 is not cut because only one of its two parents was cut.

In step 2 (cut non relevant leafs), we cut the leafs that have a composite ranking coefficient to
root less than the defined threshold (e.g., 0.1). This procedure is repeated (bottom-up) until there
are no leafs with that condition.

48 Proposed performance analysis method

Finally, in step 3 (show only leaf causes), we select the leafs resulting from the previous steps
as the relevant root causes to be presented to the user, sorted according to the ranking coefficient
to root.

The reason for using the 0.1 threshold is based on the following intuition. In case of a ranking
coefficient of 0.1, if we reduce by 10% the percentile distance to the optimal value of a factor X; ,

then the relative variation in the value of ¥ will be just 1%, which is almost insignificant.

Step 1 — Cut non-major issues Step 2 — Cut non-relevant leafs Step 3 - Show only
(top-down) (bottom-up) leaf causes (ranked)

‘O X, [1.0] ‘ ‘ ® X [2.0]‘ ‘O X¢[0.2] ‘ ‘O X;[0.05]

054 15<—=Ranking coefficient

to parent

OXs[10]] |® X101 Composite ranking

coefficient to root (Y)

Figure 3.9: Example of selection and sorting rules

Chapter 4

Performance model for the PSP

High-maturity software development processes, making intensive use of metrics and quantitative
methods, such as the Team Software Process (TSP) and the accompanying Personal Software Pro-
cess (PSP), can generate a significant amount of data that can be periodically analyzed to identify
performance problems, determine their root causes and devise improvement actions. However,
there is a lack of tool support for automating the data analysis and the recommendation of im-
provement actions, and hence diminish the manual effort and expert knowledge required.

In this chapter we are going to present a comprehensive performance model (the ProcessPAIR
model for the PSP), addressing time estimation accuracy, quality and productivity, to enable the
automated analysis (see automated analysis method presented in chapter 3) of performance data
produced in the context of the PSP, namely, identify performance problems and their root causes,
and subsequently recommend improvement actions. Performance ranges and dependencies in the
model were calibrated and validated, respectively, based on a large PSP data set referring to more
than 30,000 finished projects.

This chapter is organized as follows. Section 4.1 introduces model definition for PSP and cov-
ers performance indicators and dependencies for predictability, quality, and productivity. Section
4.2 describes model validation and calibration. In section 4.3, support data for the ranking method

is presented which covers sensitivity and percentile coefficients together with ranking example.

4.1 Model definition

A performance model comprises a set of performance indicators (top level and nested) and depen-

dencies, with their respective attributes.

4.1.1 Performance indicators and dependencies

This section presents a Performance Model (PM) specifically conceived for the PSP. It will summa-
rize (in Figure 4.1 and Tables 4.4 and 4.5) the PIs and dependencies of the PM that we conceived,
based on literature review and PSP specifications, for analyzing performance problems and their

root causes in the context of the PSP.

49

50 Performance model for the PSP

The three top-level PIs refer to the major performance aspects usually analyzed: predictability,

quality and productivity.

4.1.2 Predictability

The major predictability PI in the PSP is the Time Estimation Accuracy, which we measure by

the ratio between actuals and estimates, to simplify ranking calculations. Because in the PSP’s
PROBE estimation method (Humphrey, 2005), a time (effort) estimate is obtained based on a size
estimate of the deliverable (in added or modified size units) and a productivity estimate (in size

per time units), we indicate in Figure 4.1 that the Time Estimation Accuracy is affected by the

Size Estimation Accuracy and the Productivity Estimation Accuracy (the exact formula for this
dependency is shown in Table 4.5).

Because in the PROBE method productivity estimates are based on historical productivity (Humphrey,

2005), we indicate in Figure 4.1 that the Productivity Estimation Accuracy depends on the Pro-
ductivity Stability (refer to exact definition in Table 4.4).

Since in the PSP time is recorded per process phase (Humphrey, 2005), when a productivity
stability problem is encountered one can analyze the productivity stability per phase, in order
to determine the problematic phase(s). Hence, we indicate in Figure 4.1 a set of PIs for the
productivity stability per phase, which together affect the overall productivity stability (the exact
formula for this dependency is shown in Table 4.5). Since the scope of the PSP is the development
of small programs or components of larger programs, the Requirements, High Level Design, and
System Testing phases are absent (they can be found in the more complete TSP (Humphrey and

Over, 2010)). In some programming environments the Compile phase may be absent.

Time Estimation Process Quality
Acurac Index

| Productivity

[Size Estimation 4[Postmortem A Postmortem A
Accuracy Productivity Stability | Productivity
Productivity 4[Unit Test Unit Test , {Defect Density}_
Estimation Accuracy Productivity Stability Productivity in Unit Test
A. Productivity {Compile Productivity\ _[Compile {Defect Density
Stability Stability J Productivity in Compile
_[Code Review _[Code Review | _
... Qg s g9 1
Lemend: Productivity Stab111ty< Productivity B Process Yield
Code Productivity Code ! -
;) Stabili Productivi 1| | Defects Injected
y affects according ability J roductivi !
to a formula 4[Design Review Design Review | 1 [Code Review]_
. Productivity Stability Productivity to Code Ratio
: affects according - \ - - -
to literature 4[Design Design [De31gn Rev1ew]_
i (validation Productivity Stability | Productivity to Design Ratio
required) Plan Productivity Plan [Design to Code]_
... stabi]ity) Productivity Ratio

Figure 4.1: Performance indicators and dependencies.

4.1 Model definition 51

4.1.3 Quality

Product quality is usually measured by post-delivery defect density (Jones, 2000). However, be-
cause the scope of the PSP is the development of small programs or components of large programs,
post-delivery defects are seldom known.

In the PSP, an aggregated quality measure is proposed—the Process Quality Index (PQI)—that
constitutes an effective predictor of post-delivery defect density (Humphrey, 2005) (Daughtrey,
2002). Hence, we use the PQI as the top-level quality indicator to analyze.

The PQI is computed based on five components: the ratio of design time to coding time (indi-
cator of design quality), the ratio of design review time to design time (indicator of design review
quality), the ratio of code review time to coding time (indicator of code review quality), the ratio
of compile defects to a size measure (indicator of code quality), and the ratio of unit test defects to
a size measure (indicator of program quality). The components are normalized to [0, 1] such that
0 represents poor practice and 1 represents desired practice (refer to exact formula in Table 4.5).
Hence, in Figure 4.1 we indicate those components as factors that affect the PQI according to a
formula.

In turn, both the Defect Density in Compile and Unit Test are affected by the total density
of Defects Injected (and found) and the percentage of defects removed before compile and test
(called Process Yield in the PSP). In fact, high defect densities in compile and test may be caused
by a large number of defects injected (because of poor defect prevention) or a large number of
defects escaped from previous defect filters (because of poor design and code reviews).

According to Humphrey and Tamura (Humphrey, 2005) (Tamura, 2009), the time spent in
reviewing a work product in relation to its size is a leading indicator of the review yield (percentage
of defects found) and consequently of the process yield. In a published study (Kemerer and Paulk,
2009), the recommended review rate of 200 lines of code (LOC) per hour or less was found to be
an effective rate, identifying nearly two-thirds of the defects in design reviews and more than half
in code reviews. Hence, we indicate in Figure 4.1 that the Process Yield is affected by the Design

Review Productivity and the Code Review Productivity.

4.1.4 Productivity

In general, in the PSP, productivity may be measured in any size units per time units. Any size
measure can be used (function points, LOC, etc.) as long as it correlates with effort (in order to
enable effort estimation based on size estimation) and can be objectively measured (to automate
size measurement and compare actuals and estimates) (Humphrey, 2005). In this study, we use
LOC per hour, in spite of its well-known limitations (Wagner et al., 1980) (Jones, 2009), because
LOC is the size measure available in the data set we used.

Because in the PSP time is recorded per process phase, when a productivity problem is encoun-
tered one can analyze the productivity per phase, in order to determine the problematic phase(s).
Hence, we indicate in Figure 4.1 a set of PIs for the productivity per phase, which together affect

the overall productivity (the formula for this dependency is shown in Table 4.5).

52 Performance model for the PSP

In turn, the time spent in the compile and test phases (which in the PSP include defect fixing)
may be affected by the number of defects to fix, so we indicate in Figure 4.1 that the Compile
Productivity and the Unit Test Productivity may be affected by the Defect Density in Compile and
Defect Density in Unit Test, respectively.

4.2 Model validation and calibration

4.2.1 Data set

To validate and calibrate the performance model, we used a large PSP data set from the Software
Engineering Institute (SEI) referring to 31,140 projects concluded by 3114 engineers during 295
classes of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In
this training course, targeting professional developers, each developer develops 10 small projects.

Associated with the PSP Performance Model (see section 4.1) we defined the following data

quality checks on the values of base measures that can be applied for any PSP calibration data set:

- out of range values of base measures (namely, negative values);

- inconsistency between defects fixed in Compile and time in Compile: defects (>0) found

and fixed in O time, or more than 1 hour per defect found and fixed;

- inconsistency between defects fixed in Unit Test and time in Unit Test: defects (>0) found

and fixed in O time, or more than 2 hours per defect found and fixed;

- inconsistency between actual time and sum of actual time per phase: difference greater than

5 minutes (to accommodate round-off errors);
- inconsistency between total defects and sum of defects injected per phase;
- inconsistency between total defects and sum of defects removed per phase;

- inconsistency between defects injected and removed up to a phase.

In the data set used, we found 250 inconsistencies in 242 data points (project submissions) that

can be consulted in Table 4.1.

4.2.2 Model validation

The performance model of Figure 4.1 indicates several ’affects according to literature’ relation-
ships between pairs of Pls, suggested from literature. In order to validate each relationship, using
the PSP data set previously described, we computed the Pearson’s linear correlation coefficient
(rpearson) and tested the null hypothesis Hy : r = 0 against the alternative hypothesis Hy : r > 0 or
H, : r <0, depending on the sign of the expected correlation. Because the PIs under analysis
may have non-linear relationships that are not adequately captured by the Pearson’s linear cor-

relation coefficient, we also computed the Spearman’s (Navidi, 2008) rank correlation coefficient

4.2 Model validation and calibration 53

Table 4.1: Inconsistencies in the PSP data set.

Inconsistency Frequency
Inconsistency between defects fixed in Compile and time in Compile: 34
more than 1 hour per defect found and fixed
Inconsistency between defects fixed in Unit Test and time in Unit Test: 101
more than 2 hours per defect found and fixed
Inconsistency between actual time and sum of actual time per phase:
. . 115
difference greater than 5 minutes (to accommodate round-off errors)
Total 250

(Fspearman)- The Spearman’s test checks if increasing values of X are monotonically associated with
increasing (r > 0) or decreasing (r < 0) values of Y, independently of the form of the relation-
ship. The results are presented in Table 4.2. In all cases, it was observed a statistically significant
correlation between the PIs under analysis, regarding both the Person and Spearman correlation,
so the null hypothesis was rejected. We tested other dependencies, but only present in this thesis

dependencies that exhibited a statistically significant correlation (Mushtaq and Faria, 2014).

4.2.3 Model calibration

Regarding model calibration, we derived automatically from the PSP data set a set of thresholds
and ranges (Table 4.4) for classifying values of each PI into three categories: green—no perfor-

mance problem; yellow—a possible performance problem; red—a clear performance problem.

The ranges are derived based on the optimal value defined for each PI and the actual distribu-
tion in the PSP data set.

In most cases, the optimal value follows directly from the semantics of the PI, being it the
maximum of the scale (e.g., 1 for the PQI), the minimum (e.g., O for the Defect Density in Unit

Test), or a special value in between (e.g., 1 for Estimation Accuracy and Productivity Stability).

In other cases, in order to balance conflicting aspects such as quality and productivity with
an ultimate economic impact, we selected a recommended value from literature (we could not
calibrate those values from the PSP data set, because some economic impacts occur later in the
process). Regarding the Code Review Productivity (also called Review Rate), if reviews are per-
formed too fast then the quality of the reviews may suffer; if reviews are performed too slowly,
then the productivity is negatively affected. In this case, we selected the recommended value of
200 LOC per hour (Humphrey, 2005) (Tamura, 2009). A similar reasoning was followed for the
Design Review Productivity. As for the Design to Code Ratio, Design Review to Design Ratio,
and Code Review to Code Ratio (components of the PQI) the optimal values selected correspond
to the desired values indicated in the definition of the PQI (Humphrey, 2005) (Daughtrey, 2002).

After defining the optimal values, the thresholds for the ‘green’, ‘red’, and ‘yellow’ ranges
were calibrated automatically by ProcessPAIR tool based on the PSP data set, following the rules

explained in chapter 3. The results can be consulted in Table 4.4.

54 Performance model for the PSP

Table 4.2: Results of the correlation tests.

Correlation tests (Hy : ¥ = 0)

Affected Indicator (Y) Affecting Indicator (X) Hy n¢ Ipearson Tspearman pb RejectHy*
Defect Density in Unit Test ~ Process Yield <0 9612 -0.27 -0.40 <2e-16 Yes
Defect Density in Unit Test ~ Defects Injected >0 27648 0.72 0.65 <2e-16 Yes
Defect Density in Compile ~ Process Yield <0 9612 -0.24 -0.39 <2e-16 Yes
Defect Density in Compile ~ Defects Injected >0 27648 0.74 0.69 <2e-16 Yes
Process Yield Design Review Productivity r<0 9371 -0.17 -0.23 <2e-16 Yes
Process Yield Code Review Productivity r<0 9548 -0.17 -0.25 <e-16 Yes
Unit Test Productivity Defect Density in Unit Test r<0 27625 -0.20 -0.64 <2e-16 Yes
Compile Productivity Defect Density in Compile <0 27625 -034 -0.72 <2e-16 Yes
Product. Estim. Accuracy Productivity Stability >0 24574 0.46 0.65 <2e-16 Yes

4 denotes the number of data points with defined values for the variables under analysis.
b is a probability that indicates the statistical significance of the correlation coefficient in the one-tailed test.
¢ We reject the null hypothesis if p < 0.05, for a 5% significance level.

Regarding estimation accuracy (for time, size, productivity), the green range corresponds to
an error of approximately +20%, which matches what is usually considered an acceptable error
(Fenton and Bieman, 2014) (McConnell, 2006).

Regrading productivity, the green range corresponds to approximately 35 LOC/hour which
also matches to recommendations from literature (Prechelt and Unger, 1999).

Regarding defect density in Unit Test and Compile, the green ranges correspond to <=11 and
<=15 defects/KLOC, respectively, which are a bit wider than the PSP recommendations (<=5
defects/KLOC for Unit Test and <=10 defects/KLOC for Compile) (Humphrey, 2005).

4.3 Support data for the ranking method

4.3.1 Introduction

The performance model presented so far allows the automated identification of performance prob-
lems and their potential root causes for individual developers. However, when multiple potential
root causes are identified for a performance problem, it does not provide enough information to
prioritize or rank those root causes. For example, Figure 4.2 suggests five potential causes for the
poor productivity in project 7— poor productivity in Plan, Design, Design Review, Unit Test and
Postmortem phases—but does not indicate their relative importance. In chapter 3, we presented
an approach to rank those factors according to a ranking coefficient that represents a cost—benefit
estimate of improvement efforts.

As explained in chapter 3, for computing the ranking coefficient, we need to obtain: an approx-
imate statistical distribution (see Figure 4.5) of each performance indicator; a regression model for
PIs not related by a formula (but instead related according to statistical evidence); sensitivity co-

efficients for PIs related by a formula.

4.3 Support data for the ranking method 55

] ProcessPAIR v2.2 (o@] =]

File Table View | Diagram View | Report View | Indicator View

[Show only major issues] Show summary for all projects Show details of each project

Indicator Program1 Program 2 Program 3 Program4 Program5 Program6 Program 7
4 Time Estimation Accuracy 173 134 [183 101 128 139 172
Size Estimation Accuracy
4 Productivity Estimation Accuracy
4 Productivity Stability
Plan Productivity Stability
Design Productivity Stability
Design Review Productivity Stability
Code Productivity Stability
Code Review Productivity Stability
Unit Test Productivity Stability
Postmortem Productivity Stability
4 Process Quality Index 046 013 037 0.34 0.18
4 Defect Density in Unit Test
Defects Injected
4 Process Yield
Design Review Productivity
Code Review Productivity
Design to Code Ratio
Code Review to Code Ratio
Design Review to Design Ratio
4 Productivity 336
Plan Productivity 366
Design Productivity 162
Design Review Productivity
Code Productivity
Code Review Productivity
4 Unit Test Productivity
4 Defect Density in Unit Test
Defects Injected

85

148

26

60
4 Process Yield _
A

8

Design Review Productivity
Code Review Productivity
Postmortem Productivity

Figure 4.2: Evaluation of top-level and nested (shaded) PIs in the case study for projects 1 to 7.

4.3.2 Support data for the sensitivity coefficient

In Table 4.5, in case of PlIs not related by a formula, firstly a linear regression model from the
PSP data set is computed, and subsequently the sensitivity coefficient is derived from the linear
regression model. However, because in many cases the relationships are not linear, ProcessPAIR
also has the option to compute a step-wise linear regression model (this is currently the default
option) as explained in section 3.3.3. The obtained regression model is stored in the generated

calibration file. An example of part of such a model is shown in Figure 4.3.

In case of PIs related by a formula, Table 4.5 shows the computation of the sensitivity coeffi-

cient for the dependencies identified in the Performance Model of Figure 4.1.

56 Performance model for the PSP

PY > 86.0
PY>797 [*()

DDUT: Defect Density in Unit Test .
DI: Defects Injected PY> 70.2
— e
PY: Process Yield PY >56.9
— 7" e
DI >171.5
— " o
DI > 129.7
—_— e
DI>92.1 °

DI >54.2 L

DDUT ~ f (DI, PY)

DI<54.2

DI <29.5

DI<18.4 °
PY<46.4

DI<11.4

DI<7.5
L o
(a) Dlin]171.5, e[and PY in]86, 100] => DDUT~ 43.5 + 0.05 X DI — 0.43 X PY DI<5.3

(b) DIin[0,5.3] and PYin [0, 6.3] => DDUT~ 0.34 + 0.42 x DI + 0 X PY

Figure 4.3: Example of generated regression tree.

For example, one of the top-level indicators of the PSP performance model is the Time Esti-

mation Accuracy, computed from base measures as:

ActualTime

_— 4.1
EstimatedTime’ “.1)

TimeEstimationAccuracy =

being 1 the optimal value. Since in the PSP’s PROBE estimation method (Humphrey, 2005), a
time estimate is obtained based on a size estimate of the deliverable (in added or modified size
units) and a productivity estimate (in size per time units), we consider that the Time Estimation
Accuracy (TimeEA) depends on the Size Estimation Accuracy (SizeEA) and the Productivity Esti-
mation Accuracy (ProdEA), also defined as ratios between actual and estimated values. From their

definitions, we conclude that these PIs are related by the formula

SizeEA
TimeEA = ———. 4.2
e ProdEA (4.2)

4.3 Support data for the ranking method 57

From this formula, we derive the sensitivity coefficients:

dTimeEA SizeEA 1 SizeEA

SizeEA=TimeEA = "5 6i¢EA TimeEA ProdEA TimeEA @.3)

dTimeEA ProdEA _ SizeEA ProdEA
dProdEA TimeEA ~ ProdEA? TimeEA

~1. (4.4)

OprodEA—TimeEA —

This mean that 7imeEA is equally sensitive to SizeEA and ProdEA (although in opposite direc-
tions). E.g., a 5% increase in the value of the SizeEA, whilst keeping ProdEA unchanged, leads to
a 5% increase in the value of TimeEA. Similarly, a 5% increase in the value of the ProdEA, whilst

keeping SizeEA unchanged, leads to a 5% decrease in the value of 7imeEA.

These inter-related PIs can be represented graphically as depicted in the upper part of Fig-
ure 4.4.

cause-effect

relutiorz?h’ip‘s and child
sensttivity indicators
coefficients .
top-level . N
indicators '.\ . * ’\:/
; v
- Size
\'Z 1 Estimation
] Accuracy
Time ~—
Estimation
Accuracy Productivity
Estimation
-1 Accuracy

fraction of

project time
in Plan

Productivity in
Plan

(Overall)
Productivity

Productivity in
Test

fraction of
project time
in Test

Figure 4.4: Graphical representation of part of a PM for the PSP.

In the previous example, the sensitivity coefficients are constant (see Figure 4.4). For a differ-

ent example, let’s analyse another top-level PI in the PSP performance model — the Productivity

58 Performance model for the PSP

(Prod), which is computed from base measures as:

ActualSize

Prod = ———«——.
ActualTime

4.5)

In this model, the (overall) Productivity indicator has a set of child indicators representing the
productivity per phase, denoted by Prody, where k may be Plan, Design, Design Review, Code,
Code Review, Compile, Test or Postmortem. The productivity per phase is computed from base

measures as:

ActualSize
Prody, = ————. 4.6
rodk ActualTime; (4.6)
where ActualTimey is the actual time spent in phase k.
Since
ActualTime = ZActualTimek “4.7)
k
we conclude that the PIs under consideration are related by the formula
1
Prod = g (4.8)
k Prod,
From this formula, we derive the sensitivity coefficients:
1
dProd Prody ~Proa)? Prody Prod ActualTimey
OProd;,—Prod = = - = (49)

dProd; Prod (Zkﬁ)z Prod _ Prod, ActualTime

which is the actual fraction of project time spent in phase k.

This means that the overall productivity is more sensitive on the productivity of the more time
consuming phases. E.g., if a developer spends 50% of the project time in Test, and improves the
Productivity in Test by 8% (whilst keeping the productivity in the other phases unchanged), the
overall productivity will improve by 4%.

4.3.3 Support data for the percentile coefficient

The cumulative distribution function F; needed for calculating the percentile coefficient 7p_,x, can
be obtained by computing a theoretical distribution that best fits the historical data, or by linear
interpolation between a few percentiles computed from the historical data. Because some of the
performance indicators exhibit a hybrid continuous-discrete distribution, with non-zero probability
at one or both ends of the scale (refer to Process Yield, Defect Density in Compile, and Defect
Density in Unit Test in Figure 4.5), we opted for the second method. The shapes of the cumulative
distribution functions Fj constructed this way from the historical data are depicted in Figure 4.5.

The calculation of percentile coefficient (7p_,x,) with this approach is illustrated in Figure 4.6.

4.3 Support data for the ranking method 59

Table 4.3: Ranking calculations for the factors that affect the overall productivity.

.. | Probability Percentile? Sensitivity®> | Ranking?

. . Value Percentile . - . -
i | Variable (LOC/houn)| (F) ! Density Coeffllmc&t)‘,rilsm((7 ’ Coefficient | Coefficient

‘ (Fi(x) ! M= | Gi= pe | pi=mi X o
0 | Productivity 8.63 7% 0.00936 11.45
1 | Plan Productivity 73.5 10% 0.00223 5.48 0.117 0.64 (3)
2 | Design Productivity 19.4 3% 0.00172 29.11 0.446 12.98 (1Y)
3 | Design Review Productivity || 100.0 7% 0.00066 14.26 0.086 1.23 (2")
4 | Code Productivity 87.8 45% 0.00693 091 0.098 0.09 (7)
5 | Code Review Productivity 163.6 18% 0.00211 2.39 0.053 0.13 (6™)
6 | Unit Test Productivity 67.9 18% 0.00353 3.42 0.127 0.43 (4
7 | Postmortem Productivity 120.0 20% 0.00220 3.03 0.072 0.22 (5™

Computed by liner interpolation between a few percentiles computed from the training data set.
The optimal value assumed here is 0; = oo, s0 F;(0;) = 1
3 Absolute values

N =

4.3.4 Ranking example

Table 4.3 presents productivity values from a concrete project (out of a case study), as well as
all the calculations performed to rank the factors (productivity per phase) that affect the overall
productivity. Regarding the sensitivity coefficient, the phases that consume more effort (i.e., with
lower productivity) - Design and Unit Test - are ranked at the top 2 positions. However, the pro-
ductivity in Unit Test is significantly closer to the optimal value (in terms of percentiles) than, for
example, in Design Review, so, when computing the combined ranking coefficient, the produc-
tivity in Unit Test goes down to the 4™ position. In the final ranking, the top two phases which
productivity should be improved (for improving the overall productivity with the best cost-benefit
ratio) are the Design and Design Review phases. By contrast, in Figure 4.2 all the phases with
a value in the red range (percentile below 33%) - all but the Code phase in this case - would be

indicated to the user as equally important for improvement.

60

Performance model for the PSP

Predictability related Pls

Productivity related Pls

Quality related Pls

Ny
A

—8—F(Plan Productivity Stability)
~>=—F(Design Review Product. Stability)
—+—F(Unit Test Productivity Stability)
—4—F(Postmortem Product. Stability)

0.0 1.0 20 3.0 4.0

F(Phase Produtivity Stability -11)

/1/?’

500 1000 1500 2000

—#—F(Design Productivity)
==#=F(Code Productivity)
~@—F(Code Review Productivity)

—&—F(Postmortem Productivity)

o
0.6 [/
Y%

Ny

e F(Design Productivity Stability)
—=F(Code Productivity Stability)
~®—F(Code Review Product. Stability)

~———F(Compile Productivity Stability)

0.0 1.0 20 3.0 4.0

F(Estimation Accuracy) F(Productivity) F(Process Quality Index)
! — 1o "
1 - 08 / /
/‘ — = ’ //' 08 /
08 / / ° / 06 - /
o //' 04
06 0.2 {
0.2
0 /
04 0 20 40 60 80 00 4 - i
/ 0.0 0.2 04 06 0.8 10
0.2
F(Phase Productivity - 1)
0 1.0 i
- 1o 2o o w0 E— F(Defect Density)
—8—F(Time Estimation Accuracy) 08 |/=/ — 1 a
—i—F(Size Estimation Accuracy) 06 /) / _— o8 % _//./
—#—F(Productivity Estimation Accuracy) /[-/-// / //- f/-
0.4 H/\ 7 0.6
F(Productivity Stability) 02 / 04 f
P A
08 v//. 0.0 02
/ i 0 500 1000 1500 2000 4
0.6 H
04 SR H ~8—F(Plan Productivity) 0
"""""" BV oA 1 0 50 100 150 200 250
02 /' H ~>é=F(Design Review Productivity)
H i F(Defects Injected/KLOC)
° ,/‘ H —t—F(Compile Productivity) {Defects Injecte)
00 05 10 15 20 25 4 F(Defect Density in Compile)
) i i i e F(Uniit Test Productivity) o F{Defect Density n Unit Test
efect Density in Unit Test
F(Phase Produtivity Stability - 1)
//”‘ /a F(Phase Productivity - I1) F(Phase Ratios)
08 = —t ' " - 1 =y
—
/ / / o8 = e e —
06 o) . 08 —

/)

el
S
7

0.2
0
0.0 0.5 1.0 15 20 25 3.0
@ F(Design to Code Ratio)
~—F(Design Review to Design Ratio)
—4—F(Code Review to Code Ratio)
F(Process Yield)
1.0 4
4
08
0.6 >
04 /‘v/
0.2 ’-‘v/
o 20 40 60 80 100

Figure 4.5: Approximate cumulative distribution functions for all PIs in our model derived from

the PSP data set.

4.3 Support data for the ranking method 61

f(CProd)
@ 0.008
Fo0.0069< -1 F By

@ R e & @

0.004 ;
F CProd E ‘—T 2
0 0 0.002 ' & -
0.05 27 : MG eprog—CProd
0 — . . . s
0.1 38 0 50 | 100 150 200 250 300 F(Cprod) — F ()
gi gg i " F'(Cprod) x CProd
0.4 81 : F(CProd) 0.45—1
0.5 %5 1 i = 0.0069 x 87.8
0.6 113 : T
0.8 =-0091
0.7 134 @ ! / \2)
0.8 165 06 |
0.9 221 F=0.45<-03~3========- ,//
0.95 284 02 /'\

100 150 200 250 300

Figure 4.6: Computing the percentile coefficient for Code Productivity based on percentiles ex-
tracted from the historical data.

Performance model for the PSP

62

‘uonelou nyeqinog oY) yim pajussardar ore seSuer uadQ

(sumoy)awt jpn1oyua j1ouisoq

1681 ‘ol LTy ‘e8] Jeo “LTV] o7 sy ANADONpoId WaLIowIsoq

loz1 ‘ol Is1€ ‘021l Jes “gT1¢] ot ANATIONPOIJ 1SAL, U

129t ol 10L€ET *L9¥] Jes “0L€T] R P L Ananonpoiq apdwo))

lee 126INI6TT 0L | [1LS ‘TEEL N IEIT *611] 00C [cee €91 et o) AAnoNpoId MIIARY 9poD
IeL ol 1821 ‘¢l Jeo *8TI1 @é@%ﬁmﬁﬁwwﬁ Ay1anonpoiq apoD

leo ‘6881091 Ol | [688 “c6vl N JzeT 091l 00¢ [€6v ‘TeT] L i Ananonpoid M1y usisaq
1€t ol lese *LeT] Ios *gge] S AAnonpoig uStsaq

1581 ‘0l lost ‘5811 Joo ‘6% i AnAnonpoid uelq

19°02 ‘0l 1L°s€ *9°0c] Joo “Lg€] oy Aranonpord

1950 ‘0l 11 “9¢°01 [T 1] (1 smporagsmses) it Apengd) MATAdY 9po)

11570 ‘0] 11 “15°0] (T 1] (1 mrLedeed —Yupu Ayreng) moraay usisaq

1920 ‘0l 10270 ‘901 [0°T ‘o0l (1 kP upuu Anrend) usisaq

I¢t 0] 159 ‘7] (00T S0l | Qo1 x Kimmduoouolaupeinlusislos PIOIA 5599014

les ‘061 (06 ‘svl IS0 et P L od A Ansua s1090Q

Teo “06[[06 ‘St [O S pajoalu] s10950q

Joo ‘e[[ep ‘STl [s1 0l ST TL L0l i ARSI andwo) ur Aysuaq 1090

Jeo “0€l log ‘11l (11 0] L L] 1591, 1) I AYsua(109300

190°0 ‘0l 112°0 “90°0] [T ‘12°0] (S' 9Iqe], ur uonIuyap o} 19Ja1) xapuy A)reng) $s9001J
leo'ss°1[N109°0 01 | [SS'T 61°1L N 108°0 “09°0] TI61'T°080] || (moffa foms) Stbubordivobonii Annqers Kranonpoig
leo' 6 1[NIT9°0 ‘01 | [£S°T ‘1T 1IN 1280 19°0] Tz T80l P dronla KorInooy uonewnsg ANAnONpoId
lee ‘€9'1[N1#9°0 01 | [€9°T ‘TT' 1L N 1580 49701 T[ez1 580! e yaiue ok KovIndoy uonewInsy dzIg
Jeo ‘s 1lNIOL0 ‘01 | [SS'T 61 T[N 180 0L 0] Tl611°L8°0] e 7 e AoeInooy uonewnSH Wiy,
REN | MO[PA UL B[NWLIO] J03ed1puf

saguey DUBULIOLIJ

‘(paurprepun sanjea rewndo yiim) soSuel pue SI0JedIpUl SOUBWLIONS] ' S[qe],

63

4.3 Support data for the ranking method

*y asoyd w1 auny fo uodv.Lf PI1I0ISTY = LIISIE

poigduod /Dad x L1—
poid 1N/ INAd X Tv—

y aseyd ur aw} Jo UOTIOBI]

Ad/POAIYD X 800" 0—
Ad/Po1d¥d x 0£00°0—

2daj/1d x svo
2ad/ Ad X TT0—

1Naaj/1a = 8co
1Nadad/Ad x0T 0—

ASIMIBO ‘() *6°0>DTYD I °1
SSIMIAYIO () 1S 0>ATAA I* °1
ASIMIAYIO °Q 1>DTd It 1
ASIMIYI0 () :01<DA J*

‘(o1 +Da@/oaa-
aSIMIaYIO ‘() (C<LNA I
(S+1Lnd@/Lndd-

(399fo1d yuormod ur)

¥ oseyd ur awr} jJo uonoely

viad .
Spoid X 60

~I
!

2ad % L180€T ~ poidduio)
LNdd X Tyess ~ poid L]

Il naronpoud
——1 = "1X/1 = &nanonpoiq

poL1dyD X 8¥00°0—
poidyd X 0€00°0 —6S°LS ~ Ad

Iaxsyo+61°0~0dd
Ad XTT0—¢€€8C~odd

I x8¢0+9'1 ~.Inadd
Ad X 0C0—68C~ L1Ndd

¢ S0 ¢ S0
O bwzovm.::x T QﬁEvEE
(1 <01+0ad
X O oNQvSS X T i vES

X Ai‘ﬁ&%gvss = 10d

v\
1 = sposd

Spoid X Gy 0+ €650 ~ VAd

Viad __
vVaazis — \4CELUNA

(Oaa) 21duwo) ur Kysus(199§
(LNAQ) 3L un) ur Asua(10952
(*poad)y aseyq ur Ky1anonpoid

(PO1d D) ANADONPOIJ MAIASY PO
(poidy @) Aianonpoid marady ugiseg

(1) pa1oalug s1e50Qq
(Xd) PISIX $89001d

(1) palug s1950Qq
(Xd) PIFIA $$90014

(DZYD) oney 9poD 01 MIAANY APoD
(@zyq) oney uSisa 01 MAIASY USIS
(Dza) oney apo) 03 ugIsa(q

(Oaa) 2ndwo) ur Aysua(199Joq

(LNAQ@) ¥sAL MU Ut KIsud(q 1992

(Yspod)y aseyd ur ANfiqers Ananonpoid

(spotd) Aniqers Kranonpoid

(VAd) Aoeanooy uonewnsyg A11Anonpoid
(V72218) AoeINOOY uonewWIISH 9ZIS

(posgduio)) Kyanonpoid opidwo)
(po4d 11) FH1ANONPOIJ 1S3, U
(po1d) Knanonpoid

(Xd) PIIA $$9001g

(Oaa@) andwo) ur Ayisua(199§

(LNAQ@) AL MU ur ANIsua(q 1992

(10d) xapu] Apeng) $s3001d

(Sposd) Aqiqers Kiranonpoid

(VAd) Aoeandoy uorewnsyg A11Anonpoid

(yA2uwi]) KovIndOy UOTeWISH QWIL],

%.umw|\1|cm
A,‘xv xe =79

JRIYJI0)) ANADISUIS

(" 1x) S = A senuiiog
uo1SsaISIY 10 B[NULIO] 19eX

(*x)10yed1pU] SUNIRPY

(1) 10yeDIPUT PV

*SI0JedIpUI 9ourWIOIad paje[al UoaM1aq SIUAIOYJI0D AJTAIISUSS pue sarouapuada(] G 9[qeL

64

Performance model for the PSP

Chapter 5

The ProcessPAIR tool implementation

This chapter presents ProcessPAIR, a novel tool designed to help developers analyze their per-
formance data with less effort, by automatically identifying and ranking performance problems
and their potential root causes, so that subsequent manual analysis for the identification of deeper
causes and improvement actions can be properly focused.

The analysis is based on performance models (chapter 4) defined manually by process experts
in the process under consideration, and calibrated automatically from the performance data of
many developers. The chapter is organized as follows. Section 5.1 presents tool architecture.
Sections 5.2 and 5.3 explain the model calibration and file selection user interfaces. Section 5.4
presents different views for analysing the performance results and finally section 5.5 presents API

for defining a performance model as a tool extension.

5.1 Architecture

ProcessPAIR is currently implemented as a Java standalone application, comprising a core frame-
work (with 12.8 KLOC, representing 80% of the code base), independent of the process under
analysis, and an extension for the PSP (with 3.2 KLOC, representing 20% of the code base), as
depicted in Figure 5.1. Other extensions may be easily implemented in the future for other pro-

cesses. The core framework comprises three layers:

e a graphical user interface layer at the top (gui package);

e an intermediate logic layer responsible for the representation and manipulation of perfor-
mance models (PMs) (performancemodel package) and subject data under analysis (sub-

Jjectdata package);

e a layer with common utilities at the bottom (statistics package).

The PSP extension (pspextension package) contains the definition of PMs for the PSP and
subject data loaders from the most relevant project management tools used by PSP Developers —
the SEI’s PSP Student Workbook and Process Dashboard (http://www.processdash.com/)

65

http://www.processdash.com/

66 The ProcessPAIR tool implementation

The following external libraries are used:

o SWTChart (http://www.swtchart.org/)— an open-source light weight chart compo-

nent, based on SWT, used by the gui package of our tool for creating charts;

o UCanAccess (http://ucanaccess.sourceforge.net/site.html)-an open-source
Java JDBC driver implementation that allows client programs to read/write Microsoft Ac-
cess databases, used by the pspextension package of our tool to read SEI’'s PSP Student
Workbook files;

e JAMA (http://math.nist.gov/Jjavanumerics/jama/) — a Java matrix package,

used by the statistics package of our tool for computing regression and other calculations.

class Logical View /
ProcessPAIR External libraries
extensions |
pspextension l UCanAccess
I - =
v
core I
gui | SWTChart
T 1717
yie SN
performancemodel | subjectdata |
v -
\ - -
Z=
statistics | JAMA
[11

Figure 5.1: UML package diagram depicting the logical architecture of the ProcessPAIR tool.

5.2 Model calibration user interface

The user interface for performing the automatic calibration is shown in Figure 5.2. The user has
to select the performance model to be calibrated (from the list of PMs previously defined as tool
extensions), the file with the data set to be used for calibration (in a format supported by the data
loaders defined together with the PM) and the XML file for saving the calibration results.

In this example, to calibrate the PSP PM, we used a large PSP data set from the Software
Engineering Institute (SEI) referring to 31,140 projects concluded by 3,114 engineers during 295

http://www.swtchart.org/
http://ucanaccess.sourceforge.net/site.html
http://math.nist.gov/javanumerics/jama/

5.2 Model calibration user interface 67

[#-| ProcessPAIR v3.0 X

‘ File | Report View | Table View | Indicator View | Cause-Effect View | Model Calibration ‘

Performance model lPSP Performance Model v2 ']

Source data set ropbox\Mushtag Raza PhD\Tools\PSP Class Data.mdb Select ...

Filtering my profile ...
Output calibration file ®\Mushtaq Raza PhD\Tools\ProcessPairCalibration.xml

Generate

Figure 5.2: Model calibration window.

classes of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In

this training course, targeting professional developers, each engineer develops 10 small projects.

ProcessPAIR performs several data quality checks during the calibration process (according
to rules defined together with the PM as explained in section 4.2.1) and presents a summary of

problems encountered at the end of the calibration process, as illustrated in Figure 5.3.

ProcessPAIR v3.0 lﬁ

I \ Data loaded with 234 error(s) out of 31140 data points (projects)!
— See ProcessPAIR.log for details.

OK

Figure 5.3: Summary of calibration results.

Instead of using the full data set for calibration, it is also possible to filter the data points to
be used for calibration. One possibility is to restrict the data points (projects) to the ones most
similar to a given user profile, as illustrated in Figure 5.4. The parameters that can be provided
depend on the PM and data loader. Similarity is computed with the Gower similarity coefficient
(Gower, 1971) as explained in section 3.3.4. As explained in this example (see Figure 5.5), only
the 50 most similar data points were selected (minimum number required by the tool for statistical

significance), with a similarity coefficient greater than 0.889.

68 The ProcessPAIR tool implementation

ProcessPAIR - My Profile

Programming Language Java
Programming Experience in Years 5|

Programming Experience in KLOC

Figure 5.4: Dialog for providing a user profile.

ProcessPAIR v3.0 ﬁ

i Data loaded with 233 error(s) out of 31110 data points (projects)!
* Removed 3061 subjects out of 3111 with similarity coefficient undefined, 0.0 or smaller
than 0.889
See ProcessPAIR.log for details.

OK

Figure 5.5: Calibration results with filtering.

5.3 File selection user interface

Having defined and calibrated the performance model (PM), the performance data of individ-
ual developers can be automatically analyzed by ProcessPAIR, to identify and rank performance
problems and their potential causes. As exemplified in Figure 5.6, the user has to select the per-
formance model (from the list of PMs previously defined as tool extensions), the calibration file
(generated as previously explained), the type of input file with performance data to analyze (ac-
cording to the data loaders defined together with the performance model), and the file with the
actual data. By pressing the “Analyze file” button, the analysis is performed and the results are

presented in multiple views.

5.4 Analysis views

5.4.1 Report view

The goal of the Report view (Figure 5.7) is to indicate in a simple way, overall (“Summary’) or

project by project, the most relevant top-level performance problems (colored red or yellow in the

5.4 Analysis views 69

[#°| ProcessPAIR v3.0 L - 1 ﬂ :

File |Report View | Table View | Indicator View | Cause-Effect View | Model Calibration|

Model calibration file x\Mushtaq Raza PhD\Tools\ProcessPairCalibration.xml

rs
Performance model [PSP Perfarmance Model v2 'I

Type of input file to analyze PSP Student Workbook Export File {(mdb) 'I

Input file to analyze »\Mushtag Raza PhD\Tools\PSP_Assignments_be.mdd Select ...

Analyze file Exit

Figure 5.6: Entry window.

Table View) and potential root causes (leaf causes in the Cause-Effect View) properly prioritized

(according to the ranking coefficients, previously explained).

[#°] ProcessPAIR v3.0 = [E] ﬁ

File Report View | Table View | Indicator Viewl Cause-Effect View | Model Calibration‘

ISummary v] I(all indicators) v] Show only leaf causes

clear performance problem with Productivity
with very high possibility of being caused by a clear performance problem with Defects Injected in Design
with high possibility of being caused by a clear performance problem with Design Productivity
with high possibility of being caused by a clear performance problem with Defect Removal Rate in Unit Test
with moderate possibility of being caused by a clear performance problem with Plan Productivity
with moderate possibility of being caused by a clear performance problem with Design Review Productivity
with moderate possibility of being caused by a potential performance problem with Postmortem Productivity
with moderate possibility of being caused by a potential performance problem with Code Productivity

potential performance problem with Time Estimation Accuracy
with high possibility of being caused by a clear performance problem with Design Productivity Stability |
with moderate possibility of being caused by a potential performance problem with Estim. to Hist. Productivity Ratio |||
with moderate possibility of being caused by a clear performance problem with Design Review Productivity Stability |||
with moderate possibility of being caused by a potential performance problem with Plan Productivity Stability i

Figure 5.7: Report view example.

Intermediate causes can be consulted by unchecking the “Show only leaf causes” checkbox.
Comboboxes allow selecting information for specific projects and/or PIs. The links skip to the

Indicator View, for detailed information about each PI.

70 The ProcessPAIR tool implementation

5.4.2 Table view

The Table view (Figure 5.8) shows the values of the PIs defined in the model for the projects
described in the input file, as well as summarized performance information. Each cell is colored
green, yellow or red, in case its value suggests no performance problem, a potential performance
problem, or a clear performance problem, respectively. This way, the Table View helps in quickly
identifying the performance problems. The exact ranges considered can be consulted in the “In-
dicator View”. The “Percentile (all)” column shows an overall percentile for each PI, computed
from the per project values (with higher importance for the last projects), and colored according

to the percentile.

~

[ProcessPAIR v3.0 = X
File | Report View | Table View |Indicator View | Cause-Effect View | Model Calibration‘
’ Show only major issues] Show summary for all projects Show details of each project
Indicator Percentile (all) Program 1 Program 2 Program 3 Program 4 Program 5 Program 6 Program 7
-;Time Estimation Accuracyé 47% 173 134 163 101 1.28 1.39 172
» Size Estimation Accuracy 84% 1.04 151 0.96 1.08 1.08 0.98
» Productivity Estimation Accuracy 62% 0.78 0.93 0.95 0.85 0.78 0.57
4 Process Quality Index 72% 046 013 0.37 0.34 018
Design Quality 78% 0.52 051 046 0.35 100 1.00 1.00
Code Review Quality 93% 1.00 0.89 1.00 1.00 1.00
Design Review Quality 56% 0.00 0.00 1.00 1.00 0.75 1.00 0.39
» Code Quality 100% 1.00 1.00 1.00 1.00 1.00 1.00 1.00
> Program Quality 57% 0.32 0.76 1.00 0.40 0.50 0.34 046
4 Productivity 29% 336 22.7 217 29.1 20.7 11.8 86
Plan Productivity 19% 366 73 79 102 217 77 73
Design Productivity 27% 162 138 253 389 64 52 g
Design Review Productivity 32% 443 526 171 82 100
Code Productivity 55% 85 95 116 138 132 103 88
Code Review Productivity 61% 134 308 212 107 164
- Compile Productivity 0%
» Unit Test Productivity 32% 148 92 169 203 136 85 68
Postmortem Productivity 36% 409 261 202 218 365 107 120

Figure 5.8: Table view example (partially expanded).

The PIs are organized hierarchically, starting from the top-level indicators (Zime Estimation
Accuracy, Process Quality Index, and Productivity in this case), and descending to lower level
indicators (child indicators) that affect the higher level ones according to a formula or statistical
evidence (see chapter 4). This way, by drilling down from the top-level indicators to the lower
level ones, focusing on the red (or yellow) colored cells, one can easily identify potential root

causes of performance problems.

5.4.3 Indicator view

The goal of the Indicator view (Figure 5.9) is to show the behavior of each PI throughout the
projects under analysis and provide associated model definition and calibration information (de-

scription, units, optimal value, recommended performance ranges and statistical distribution).

5.4 Analysis views 71

In the bottom left, the statistical distribution of the PI in the data set used for calibrating the
model is presented. The colors correspond to the performance ranges. The actual values in the file
under analysis are also shown, marked with the “+” symbol, for benchmarking purposes.

The user may also select multiple PIs (see Figure 5.10) for comparative visualization in a

single chart. More indicator views and features can be consulted in Appendix A.

8] ProcessPAIR v3.0 = | [E]
‘ File | Report View | Table View‘ Indicator View | Cause-Effect Viewl Model Calibration‘
[Savelmage | [CoovImaae |

select indicators (one or mare)

Time Estimation Accuracy by Project

4 Performance Indicators 2
4"y Time Estimation Accuracy
> © Size Estimation Accuracy 1.8+
> @ Productivity Estimation Accuracy 73 //'1.72
> (2 Process Quality Index 164 63 b
- D Productivity /
> Base Measures 144 3
139
> Other Measures 134 /
124 1,28
b! 0 D yelow upper imit (1.55)
Statistical distribution in the performance model 1 green upper mt (1.20)
101
1 — optimal value (1.00)
:g ,ﬁ/_, 084 green lower imit (0.87)
= e yelow lower limit (0.70)
g ; 0.6+ -+~ actual values
w
05
g
E‘E / 04+
&}
0.2+
0 .)’/ T T T
0 1 2 3

0 - T T T T T T 1
Program 1Program 2Program 3 Program 4Program 5Program 6Program 7

[Hide Statistical Distribution Chart Project

Time Estimation Accuracy

The ratio of Actual Time to Estimated » User statistics X-Axis

I min: 101 max: 173 average: 1440 percentile: 47%

Figure 5.9: Indicator view example.

5.4.4 Cause-effect view

The Cause-Effect view (Figure 5.11) is an advanced view that provides essentially the same
information as the report view with additional details but in a diagrammatic way.

The goal of the Cause-Effect View it to help identify and prioritize, project by project or
overall, the root causes of performance problems, so that subsequent improvement actions can be
properly directed. The child indicators are sorted according to the value of the ranking coefficient.

As explained previously, the ranking coefficient represents a cost-benefit estimate that relates
the cost of improving the value of the child PI with the benefit on the value of the parent PI.

Intermediate causes may be consulted by unselecting the “Show only leaf causes” checkbox
(see Figure 5.12). By default, the ranking coefficients are shown by means of T-shirt sizes (see
ranking labels section 3.4.1). The numerical values of the ranking coefficients can be consulted
by selecting “Numerical Ranking Labels” in a combo box (see Figure 5.13). The selection and

sorting rules for problematic performance indicators are already explained in section 3.4.3.3.

72 The ProcessPAIR tool implementation

—— — 1
-ProcessPAlR V3! -.Lx |
| File Report View | Table View | Indicator View | Cause-Effect View

[Save Image [Copy Window| [Copv Chart

Select indicators (one or more) ol -~ Code Productivity 8- Code Review Productivity
4 Performance Indicators

> (3 Time Estimation Accuracy
4 (1 Process Quality Index
& Design Quality
O Design Review Quality
) Code Review Quality
» = Code Quality
> & Program Quality
4 O Productivity
< Plan Productivity
& Design Productivity
& Design Review Productivity
© Code Productivity
© Code Review Productivity
= Compile Productivity
£ Unit Test Productivity
© Postmortem Productivity

Base Measures
Mthaor Mazciirac
il | Program 3 Program 4 Program 5 Program 6

—

ul

=]
I

LOC/hour

Show Statistical Distribution Chart Project

~User statistics X-Axis

corelation: 031] Scatter

Figure 5.10: Indicator view with multiple PIs selection.

[ProcessPAIR v3.0 @M
| File | Report View | Table View | Indicator View| Cause-Effect View |Model Calibration|
[Program 3 vl] [Show only major issues '] IT—Shirt Size Ranking Labels v] Show only leaf causes
Accuracy
[1.63] [21.7 LOC/hour]
Size Estimation Defect Removal
i Accuracy T Rate in Unit Test
[L51] [0.0 defectshou]
Plan Productivity
L | 75 Locmou |
Postmortem
k| Productivity
[202 LOC/hour]
Code Productivity
|
M | 116 Loc/hou] "
Design
Productivity f
M| 253 LoChow]
i

Figure 5.11: Cause-effect view showing only leaf causes.

5.5 Tool extension API

The following steps are involved in defining a performance model as a tool extension, using the

provided API (as illustrated in Figure 5.14 for the PSP performance model):

5.5 Tool extension API

73
(— - 5
| ProcessPAIR v3.0 = | E S
| File | Report View | Table View | Indicator View| Cause-Effect View |
[Program 3 '] IShow only major issues '] IT—Shirt Size Ranking Labels v| ["] Show only leaf causes
Time Estimation Productivity
Accuracy
[1.63] [21.7 LOC/hour]
Size Estimation Plan Productivity
i Accuracy T

- [1.51] [79 LOC/hour]

Unit Test

e Productivity
i [16% LOC/hour]

| Defect Removal
T Rate in Unit Test
[0.0 defects/hour]
Postmortem

i Productivity
- [202 LOC/hour]
Code Productivity
M | [116 LoC/hou]

Design

Tl Productivity

- [253 LOC/hour]

Figure 5.12: Cause-effect view showing intermediate causes.

8| ProcessPAIR v3.0

== X
I” File | Report View | Table View | Indicator View| Cause-Effect View |
[Program 3 '] [ShOW only major issues '] INumericaI Ranking Labels v] st
Time Estimation Productivity
Accuracy
[1.63] [21.7 LOC/hour]
Size Estimation Plan Productivity
753 Accuracy 3%
= [1.51] ~°' [79 LOC/hour]

Unit Test
Productivity
[169 LOC/hour]
Defect Removal
Rate in Unit Test
[0.0 defects/hour]
Postmortem
Productivity
[202 LOC/hour]
Code Productivity

82.0

=
=

01 16 LOCour]
Design
T Productivity

[253 LOC/hour]

Figure 5.13: Cause-effect view showing numerical ranking labels.

o Define Base Measures: Here we define the base measures (see code in Figure 5.14) for the
process of our interest which can be used in the same way for any process under consider-
ation. In this study the process of our interest is PSP because of several reason, e.g., well

defined process and availability of data form SEI as explained in detail previously.

The ProcessPAIR tool implementation

o Define Performance Indicators: Here we define the Performance Indicators from the base
measures defined in the first step. The example in Figure 5.14 shows the code for pro-
ductivity indicator defined in our model. Basically productivity in PSP is measured as size
(LOC) per unit time (Hours) and therefore, the base measures (Actual Size and Actual Time)
are defined in the first step. The same way all the base measures for defining Performance

Indicators are defined in our model under the defineBaseMeasures method.

o Add Top-level Indicators: Here we add the top-level (or root) indicators in our model (see
Figure 5.14). The code to add the top-level indicators (e.g., Time Estimation Accuracy,
Productivity and Process Quality Index) in our PSP model is shown in the example. The
same code can be used for adding more top level indicators in our current model or any

other model for a new process under consideration.

e Load Dependencies: Here we define the dependencies based on a formula or statistical
relation between the parent and child indicators. The example in Figure 5.14 shows the
code for dependency relationship (based on formula) for Time Estimation Accuracy to Size
and Productivity Estimation Accuracy, and dependency relationship (based on statistical
relation) for Defect Density in Unit Test to Defect Injection and Process Yield. In the first
case, the last parameter is the formula for the sensitivity coefficient. The same method
(loadDependencies) can used to code more dependencies in the current model or any other

model of a new process under consideration.

5.5 Tool extension API 75

public class PSPPerformanceModel extends PerformanceModel {

@Override
public boolean checkConsistency (Project p, PrintStream log) {
// data quality checks

}

@Override
protected void defineBaseMeasures () {

addBaseMeasure ("ActualSize", // short name
"Actual Size", // long name
"Actual number of added and modified lines of code", //description
"LOC", // units
0.0, // minimum
Double.MAX VALUE, // maximum
0); // decimal digits

}

@Override
protected void definePerformanceIndicators () {

addIndicator ("Prod", "Productivity",
"The ratio of Actual Size to Actual Time",
"LOC/hour", 0.0, Double.MAX VALUE, 1,
Double.MAX VALUE, // optimal value
new Ratio ("ActualSize", "Actual Time", 60.0)); // formula

}

@Override

public void addTopLevelIndicators() {
addToplevelIndicator (getIndicator ("TimeEA")) ;
addToplevelIndicator (getIndicator ("PQI"));
addToplevelIndicator (getIndicator ("Prod")) ;

}

@Override
protected void loadDependencies () {

// Decomposition of TimeEA per factors (based on formula)
addDependency ("TimeEA", "SizeEA", new Constant (1.0));
addDependency ("TimeEA", "PEA", new Constant(-1.0));

// Decomposition of DDUT per factors (based on statistical relation)

addDependency ("DDUT", "DI", RegressionType.MultipleStepwiseRegression) ;
addDependency ("DDUT", "PY", RegressionType.MultipleStepwiseRegression) ;

Figure 5.14: Excerpt of PSP model code.

76

The ProcessPAIR tool implementation

Chapter 6
Experimentation and validation

In this chapter we describe two experiments for evaluation of the ProcessPAIR method and tool.
In the first experiment (see section 6.1) we assess the accuracy of problem and their root causes
identification by comparing the results of manual analysis (as documented by the PSP students
in their PSP Final Report) with automatic analysis (as produced by ProcessPAIR). The second
experiment (see section 6.2) is a controlled experiment involving 61 software engineering master
students, half of whom used ProcessPAIR in a PSP performance analysis assignment, to assess the

benefits of ProcessPAIR in terms of efficiency, quality, and user satisfaction.

6.1 Postmortem experiment

In this section we present an experiment conducted in the context of PSP training, to show that
the ProcessPAIR tool is able to accurately identify performance problems and their potential root

causes of individual developers.

6.1.1 Research questions

The overall objective of the experiment is to assess whether the ProcessPAIR tool is able to accu-
rately identify performance problems of individual developers and their potential causes, so that
subsequent manual analysis for the identification of deeper causes and remedial actions can be
properly focused and effort can be saved.

More specifically, the goal of the experiment is to answer the following research questions:

- RQI (problem identification): Is it possible to automatically analyze the performance data of
an individual PSP developer in order to identify performance problems, with similar results

but with less effort than in manual analysis?

- RQ?2 (causal analysis): Is it possible to automatically analyze the performance data of an
individual PSP developer in order to determine the causes of the identified performance
problems, in a way consistent with manual analysis (except when manual analysis is erro-

neous)?

7

78 Experimentation and validation

Regarding RQ! (problem identification), we consider that the results of automatic analysis

(performed by the tool) and manual analysis (conducted by the developer) are similar when:

o the developer explicitly indicates bad performance in a PI, for a specific project or overall
(summary), and the tool also points out a clear (red) or potential (yellow) performance

problem in the same PI and context (specific project or summary); or

o the developer explicitly indicates good performance in a PI, for a specific project or overall
(summary), and the tool also indicates good performance (green) in the same PI and context

(specific project or summary).
We consider that the results are dissimilar when:

o the developer explicitly indicates bad performance in a PI in a specific project or overall

(summary), but the tool indicates good performance (green) (false negative); or

o the developer explicitly indicates good performance in a PI in a specific project or overall

(summary), but the tool indicates a clear (red) or potential (yellow) problem (false positive).

We consider that the results are not comparable whenever the developer does not explicitly
mention good or bad performance. In many cases this happens with PIs that are not analyzed at all
by the developer. In other cases, the PI is analyzed but the developer just points out some extreme
cases or examples, without the concern for completeness.

Regarding RQ2 (causal analysis), we restrict the comparison to performance problems in the
top-level PIs considered in the manual analysis, which are identified simultaneously by the devel-
oper and the tool, for a specific project or overall (summary). For comparison purposes it is useful
to think of the results of causal analysis as a tree, starting from the problematic PI and drilling

down to increasingly deeper causes. We consider that the results are consistent when:

e there is a match, i.e., manual and automatic analysis point out similar causes, or no causes

are identified in both cases; or

o there is a different level of detail, i.e., the tool accurately points out intermediate causes (or
points out no causes at all) and the manual analysis points out deeper causes (deeper manual

analysis), or viceversa (deeper automatic analysis).
‘We consider that the results are inconsistent when:

e the developer and tool point out different causes, not interrelated, because of a tool fault

(missed important causes or pointed out extraneous causes); or

e the developer and tool point out different causes, not interrelated, because of a developer

fault (missed important causes or pointed out extraneous causes).

6.1 Postmortem experiment 79

6.1.2 Input data

To calibrate the model we used the PSP data set already mentioned in 4.2.1 from the Software
Engineering Institute (SEI) referring to 31,140 projects concluded by 3,114 engineers during 295
classes of the classic PSP for Engineers I/II training courses running between 1994 and 2005. In
this training course, targeting professional developers, each engineer develops 10 small projects.

The subject data under analysis is based on a data set from Instituto Tecnolégico de Monterrey,
in Mexico, referring to 27 subjects that developed 6 projects each using the PSP, in the scope of the
“Software Quality and Testing” course in 2015. The subjects used Process Dashboard (http: //
www.processdash.com/) for collecting the standard PSP base measures during their projects.
In the end of the sequence of projects, the subjects analyzed their personal performance along those
projects, and documented their findings and improvement proposals in a Final Report (written in
Spanish).

Because of the significant effort (on average 8h-10h per subject) required to translate, under-
stand and extract relevant information from those reports, we restricted the case study to a random
sample of 20 subjects.

For guiding the analysis and the production of their final reports, the subjects were requested
by the instructor to consider 30 questions in 4 categories: analysis of size estimation, analysis of
time estimation, defect and yield analysis, and quality analysis (see Table 2.3). However, some
questions are not actually related with the identification of performance problems or root causes

(see examples in Table 6.1), so we considered them out of the scope of this experiment.

6.1.3 Data analysis procedures

The author and supervisor, not involved in the PSP training in Instituto Tecnol6gico de Monterrey,
both fluent in English and one with a good reading understanding of Spanish, translated to English
and analyzed the final reports (in both English and Spanish), in order to extract relevant informa-
tion for comparison with the tool-based analysis, according to the structure illustrated in the next
section.

Results from tool-based analysis for each subject were effortlessly obtained by uploading the
performance data stored in Process Dashboard to ProcessPAIR.

The extracted results from the final reports and from the tool for each subject were then col-
lected into appropriate tables, as illustrated in the next section.

Subsequently, the results were classified according to the categories described in section 6.1.1,

and statistics where computed.

6.1.4 Results
6.1.4.1 Results per subject

Regarding RQ! (problem identification), based on the information available in the final report of

each subject, we produced a table with a synthesis of cases in which the subject explicitly indicated

http://www.processdash.com/
http://www.processdash.com/

80

Experimentation and validation

Table 6.1: Examples of questions that the subjects were requested to address and relevance for this

case study.

] Question

Relevance to this study

What are the average, maximum, and minimum
actual sizes of my programs in LOC to date?

Out of scope (size by itself is not actu-
ally a performance indicator).

How much are my time estimates affected by the
accuracy of my size estimates?

Within scope (causal analysis).

How much did the quality of the programs enter-
ing unit test change? Why?

Within scope (performance problem
identification).

Based on my historical data, what are some real-
istic quality goals for me?

Out of scope (improvement goals).

How can I change my process to meet those

goals?

Out of scope (improvement actions).

bad performance or good performance in a PI for a specific project or overall (summary). An

example is shown in Table 6.2, together with the support citations extracted from the final report.

. “With regard to program 35, the testing stage highlighted by having a high rate of removal of

defects.”

. “Syntax errors were injected in the coding phase (...) errors of type function were injected

in design and coding phases.”

. “Most of the defects were injected in the design phase”

4. “The programs with the lowest yield were programs 4 and 5, with values of 42.90 and 60

respectively (...). In the last program I could get a yield of 100%.” In the PSP, the process
yield is the percentage of defects found and fixed (usually through design and code reviews)

before compile and test.

. “The program in which I had the higher productivity was the first, with 37.2 (...) programs

5 and 6 were where more code was reused as well as also where more design and design

review conducted, which explains the low productivity.”

Table 6.2: Cases of bad (red-R) or good (green-G) performance explicitly indicated by one of the
subjects in the case study.

Indicator

Summary| P1| P2| P3| P4| P5| P6

Defect Removal Rate in Unit Test (defects/hour) (1)

Defects Injected (defects/KLOC) @)

Defects Injected in Design)

Process Yield ¥

Productivity (LOC/hour) ©)

Size Estimation Accuracy (©)

Time Estimation Accuracy (/)

6.1 Postmortem experiment 81

6. “The largest error of estimation I had was in program 2 with 80.6 error %, which is too high.
(...) In contrast, program 6 was where my estimate was closer to the actual result.”
7. “There are two that stand out for being very large, program 2 and program 5 (...) On the

other hand, the closest estimates were in program 1 and 4.”

[#" ProcessPAIR v2.3 =N X
|| File Table View | Diagram View l Report View l Indicator View
[Show only major issues] [¥] Show summary for all projects [¥] Show details of each project
Indicator Summary Program1l Program2 Program3 Program4 Program5 Program6 “
4 Time Estimation Accuracy s 119 1.96 141 117 254 177
Size Estimation Accuracy AN 1.81 137 0.67 140 0.79
4 Productivity Estimation Accuracy L 0.92 0.97 0.57 0.55 044
4 Productivity Stability L 0.99 0.97 0.57 0.54 043
Plan Productivity Stability HE 0.36 0.38 0.30 041 041
Design Productivity Stability L 177 0.94 0.37 0.32 0.33
Design Review Productivity Stability 2 014 016 0.20
Code Productivity Stability G55 0.64 1.81 111 130 0.78
Code Review Productivity Stability 2 0.26 035 025
Compile Productivity Stability & 3.10 046 024 049
Unit Test Productivity Stability G 944 118 0.86 117 113
Postmortem Productivity Stability Bie 0.16 117 0.83 041 0.20
Estim. to Hist. Productivity Ratio G 1.08 1.00 1.00 097 097
4 Process Quality Index LAY 0.00 0.00 0.32 021 023 098
4 Defect Density in Unit Test AN 29 3 9 34 38 0 il
4 Defects Injected sl 86 45 77 59 94 67 l
Defects Injected in Plan il 0 0 0 0 0 0
Defects Injected in Design L 57 42 64 17 0 22
Defects Injected in Design Review R 0 0 0 0 0 0
Defects Injected in Code il 21 3 14 42 94 44
Defects Injected in Code Review R 0 0 0 0 0 0
Defects Injected in Compile Liiiid 0 0 0 0 0 0
Defects Injected in Unit Test e 7 0 0 0 0 0
4 Process Yield 638 73 92 88 43 60 100
Design Review Productivity 2 377 159 91 87
Code Review Productivity CHs 210 159 151 96
4 Defect Density in Compile i 0 0 0 0 0 0
Defects Injected il 86 45 77 59 94 67
Process Yield R 73 92 88 43 60 100
Design to Code Ratio R 0.46 017 0.46 0.84 146 0.98 =
Code Review to Code Ratio RERE 0.00 0.00 0.50 048 0.60 0.57
Design Review to Design Ratio G5 0.00 0.00 0.61 0.57 0.69 0.65
4 Productivity HE 37.2 36.8 359 209 176 133
Plan Productivity HE 2100 754 367 183 187 169
Design Productivity & 175 310 232 90 62 56
Design Review Productivity & 377 159 91 87
Code Productivity L 81 51 106 76 91 55
Code Review Productivity il 210 159 151 96
4 Compile Productivity G 2800 8670 3570 1590 2700
Defect Density in Compile Liiiid 0 0 0 0 0 0
Defect Removal Rate in Compile 2 0.0 0.0 0.0 0.0 0.0
4 Unit Test Productivity G 131 1239 388 298 398 386
Defect Density in Unit Test C53 29 3 9 34 38 0
Defect Removal Rate in Unit Test A8 38 43 35 100 150 0.0
Postmortem Productivity R 2800 456 733 549 265 117]

Figure 6.1: Example of automatic evaluation of top-level and nested PIs.

From the comparison of the cells in the manual (Table 6.2) and automatic analysis (Figure

82 Experimentation and validation

6.1), we computed the statistics for this subject and classified the cells in Table 6.3 according to
the categories indicated in section 6.1.1. In this case, regarding the comparable results, we have
14 similar results and 1 false positive. The false positive has to do with a boundary situation:
the size estimation accuracy in project 6 (21% error), which the tool evaluates as yellow and the
subject evaluates in a positive way (see actual citation in Table 6.2).

Regarding RQ2 (causal analysis), based on the information available in the final report of each
subject and the tool results, we produced a table per subject as illustrated in Table 6.6. Each row
refers to a performance problem in a top-level PI (according to the scope of the manual analysis),
identified simultaneously by the developer and the tool, on a specific project, group of projects
or overall (in summary). We summarize the causes indicated by the subject and by the tool, and
classify their consistency according to the categories indicated in section 6.1.1. We also show the

support citations extracted from the final report. The causes identified by the tool are ranked.

6.1.5 Overall statistics

Regarding RQ1, by aggregating the results of individual subjects, we obtained the overall statistics
indicated in Table 6.4.

Regarding problem identification, from the 302 cases in which students explicitly character-
ized their performance (regarding a specific PI and a specific project or all projects), we compared

the student assessment with the tool-based assessment, and got the following results:

e In 96% of the cases, the results of manual and automatic analysis matched (i.e., both the

student and the tool indicated good performance or bad performance);

e In 3% of the cases, the tool indicated a clear or potential problem and the manual analysis

indicated good performance (false positives);

e In 1% of the cases, the tool indicated no performance problem but the developer explicitly

indicated a performance problem (false negatives).

Regarding RQ2, by aggregating the results of individual subjects, we obtained the overall

statistics given below (also see Table 6.5):

e In 21% of the cases, the tool and the developer pointed out the same causes (or none pointed

out any causes).

Table 6.3: Problem identification statistics for one of the selected subjects in the case study (1
subject x 6 projects).

Automatic Analysis

Green Yellow Red
0 (false 2 (bad 7 (bad
Bad .
negative) performance) performance)
Manual Analysis Good 5 (good 1 (false 0 (false

performance) positive) positive)

6.1 Postmortem experiment 83

e In 53% of the cases, the tool and the developer pointed out causes at different levels of
detail, with the tool accurately pointing out intermediate causes, and the developer pointing
out deeper causes. These are cases where the automatic analysis accurately points out factors

to focus in subsequent manual analysis, potentially reducing the overall manual effort.

e In 26% of the cases the results are inconsistent, because of faults in the manual analysis.
Such cases might be prevented if our tool was used by the subjects when conducting their

performance analysis.

6.1.6 Discussion
6.1.6.1 Answers to the research questions

Regarding RQ1 — “Is it possible to automatically analyze the performance data of an individual
PSP developer in order to identify performance problems, with similar results but with less effort
than in manual analysis”, Table 6.4 shows that in 292 (96%) out of the 302 cases in which the
developers explicitly indicated good or bad performance, the results of manual and automatic
analysis are similar, in the sense indicated in section 6.1.1. There are only eight false positives,
corresponding to boundary situations, in which the tool indicated a potential performance problem
(yellow) but the developer considered to exist a good performance. There are two false negatives,
in which the developer considered to exist a performance problem but the tool indicated good
performance (green); however, those cases refers to subjects that considered abnormally tight
thresholds, so they could also be classified as an erroneous evaluation by the subject. Hence,
regarding RQ1, we conclude that in this experiment the automatic analysis produces similar results
(without essentially any manual effort), with a very small number of false positives (3%).
Regarding RQ2 — “Is it possible to automatically analyze the performance data of an individual
PSP developer in order to determine the causes of the identified performance problems, in a way
consistent with manual analysis (except when manual analysis is erroneous)?”, the results in Table
6.5 show that, in the cases in which the manual analysis was not erroneous (it was erroneous in
26% of the cases!), the tool-based analysis was able to point out the same causes as the ones found
by the developers in their manual analysis (21% of the cases) or was able to point out intermediate

causes in the same direction as the deeper causes identified in manual analysis (53%) of the cases.

Table 6.4: Problem identification statistics for all selected subjects in the case study (20 subjects
x 6 projects).

Automatic Analysis

Green Yellow Red
2 (1% false 82 (bad 114 (bad
Bad .
negative) performance) performance)
Manual Analysis Good 96 (good 8 (3% false 0 (false

performance) positive) positive)

84 Experimentation and validation

Hence, regarding RQ2, we conclude that the automatic analysis was able to identify either the

same causes or causes in the same direction as the manual analysis.

Overall, the benefits of the tool-based analysis are:

e it can correctly identify the performance problems, saving manual effort;

e it can correctly identify causes for the identified performance problems, so that subsequent
manual analysis for searching deeper causes can be properly focused, reducing the overall

manual effort needed and the errors in manual analysis.

6.1.7 Limitations and threats to validity

In the experiment presented, using real world data, the conclusions obtained by the model-based
analysis are very close to the ones obtained by the developers in their manual analysis. This
suggests that our approach can be helpful in performance analysis and process improvement, by
pointing out the areas to focus in manual analysis. However, further experiments need to be
conducted to quantify the effort savings that can be achieved by conducting performance analysis

with the help of our tool from the beginning (that will be the goal of the second experiment).

Our choice of PIs was constrained by the data available, so some relevant factors (mentioned
by the developers in their manual analysis) were not captured by those Pls, such as parts’ size
estimation accuracy, level of experience, and program complexity. However, in case data about
those factors is available, our approach can be easily extended to take them into account.

Although our approach and tool are general and can be instantiated for any process, the model
and experiment described in the thesis refer only to PSP performance data. We intend to repli-
cate our approach to other processes without having such a well-defined measurement framework
as the PSP, but we expect to encounter difficulties regarding data availability, data quality, and

standardization.

Table 6.5: Frequency of categories and subcategories for RQ2.

. . Absolute Relative

Categories and subcategories
frequency frequency

Consistent — Match (same causes) 11 21%
Consistent - Different level of detail - Deeper 28 53%
manual analysis (tool accurately points out in-
termediate causes)
Inconsistent - Developer fault (wrong or miss- 14 26%
ing factors)
Total 53 100%

6.1 Postmortem experiment 85

Table 6.6: Comparison of causes of identified performance problems for one subject in the case
study.

Top-level | Project | Causes in manual | Causes in automatic anal- | Classification

Indicator analysis ysis

Size P2 No relevant cause! None? Consistent — Match (no causes)
Estimation

Accuracy

Time P2 “I attribute the bad | Size Estimation Accuracy | Consistent — Match (similar
Estimation (time) estimation to the | (red) causes)

Accuracy (bad) size estimation”

Time P5 Historical productivity | Design Productivity Stabil- | Inconsistent - Developer fault
Estimation didn’t apply because of | ity (red), Design Review | (wrong or missing factors)*
Accuracy more reused code Productivity Stability (red)

Plan Productivity Stability
(yellow), Size Estimation
Accuracy (yellow)
Productivity | P5 More reused code and | Design Productivity (red), | Consistent - Match. Inconsis-
more time in Design | Design Review Productiv- | tent - Developer fault (wrong or
and Design Review. ° ity (red), Plan Productivity | missing factors).*

(yellow), Code Productiv-
ity (yellow)

Productivity | P6 More code reused. | Design Productivity, De- | Consistent - Different level of
More time in Design | sign Review Productivity, | detail — Deeper manual analysis
and Design Review.? Code Productivity, Post- | (tool accurately points out inter-
mortem Productivity, Code | mediate causes)

Review Productivity and
Plan Productivity (red)

Defects Summary| Most defects injected in | Defects Injected in Design | Consistent - Different level of
Injected Design (mainly of type | (red), Defects Injected in | detail — Deeper manual analysis
Function), followed by | Code (yellow) (tool accurately points out inter-
Code®. mediate causes)
Process P4 “Bad because I did not | Code Review Yield (red) Consistent — Match (similar
Yield perform well (the code causes)
and) code review”
Process P5 “Bad because I did not | Code Review Yield (green) | Consistent — Match (similar
Yield perform well (the code causes)

and) code review”

!In this case, the subject mentioned “when I made this estimate I was not aware of how many lines of code I used
to program”. However, he did not analyze the two possible immediate causes - problems in the identification of
needed parts, or problems in the size estimation of each part — which would point out to relevant improvement
actions.

2In the training data set, we do not have available the data produced by PSP developers for size estimation and
measurement needed for causal analysis (parts and their estimated and actual sizes). If that data was available,
causal analysis could be automated.

3“As to the error in the program 5, I attribute it to that when I was making this estimate I used method C (time esti-
mate based on historical productivity and size estimate), when the best option was the method D (expert judgment).
This is because, unlike in previous programs, program 5 reused a lot of code.”

4 Significant process changes occur in project 4 (introduction of design templates in the Design phase) and 5 (intro-
duction of execution table analysis in the Design Review phase), which slow down productivity in those phases
on all subjects analyzed. By contrast, we did not find a significant correlation between the percentage of reused
code and the productivity. In projects P1 to P3, productivity (measured in added and modified LOC/hour) is stable
(between 36 or 37 added and modified LOC/hour), with a small % reuse (between 0% and 16%); then there is a
steep decrease of productivity in project 4 (where design templates are introduced in the Design phase), with 0%
reused code, and productivity of 21 LOC/hour.

3“Programs 5 and 6 were where I did reuse more code, and also conducted more design and design review, which
explains the low productivity (measured in added and modified LOC/hour).”

6“Most of the defects were injected in the design stage, these being mainly errors of type function”.

86 Experimentation and validation

6.2 Controlled experiment

In this section we present the results of a controlled experiment involving 61 software engineering
master students, of Instituto Tecnolégico de Monterrey, in Mexico, half of whom used Process-
PAIR tool in a PSP performance analysis assignment and other used Process Dashboard tool in
the 2016 edition of the Software Quality and Testing course.

Our goal is to assess the benefits of using ProcessPAIR for personal performance analysis, as
compared to traditional tools, in terms of user satisfaction, quality of analysis outcomes, and time

required to do the analysis.

6.2.1 Context

The “Software Quality and Testing” course includes a streamlined version of the official SEI's PSP
Fundamental and PSP Advanced training courses. In the 2016 edition, each student has to develop
7 small projects, following increasingly elaborated processes, which incorporate in a proper order
relevant software engineering best practices (project estimation, planning and tracking, unit tests,
reviews, design practices, etc.).

Several base measures are collected to support some of those practices and also to assess
personal performance status and progression. During the course, students used Process Dashboard
(Dashboard), a comprehensive PSP support tool for data collection (time, defects, size), project
planning and tracking, and data analysis (charts and reports that aid in the analysis of historical
data trends) described in section 2.2.5

At the end of the course, the students have to perform the official “PSP Final Report” assign-
ment. In this assignment, students are asked to analyze their personal performance data collected
throughout the 7 projects they developed and document their findings and improvement proposals
in a report.

To guide their analysis, students are asked to address several questions organized in the fol-

lowing categories (see also the full set of questions presented in Table 2.3):

e Analysis of size estimating accuracy (7 questions);
e Analysis of time estimating accuracy (10 questions);
e Defect and yield analysis (9 questions);

e Quality analysis (4 questions).

6.2.2 ProcessPAIR tuning

For better supporting the production of the PSP Final Report with the help of ProcessPAIR, we
tuned ProcessPAIR as follows:

6.2 Controlled experiment 87

e we configured the performance model named “PSP Performance Model for PSP Final Re-
port”, that extends our base performance model for the PSP (see chapter 4), with additional

top-level PIs;

e we prepared a web based tutorial (see Appendix A) named “PSP Final Report Guidelines”,
explaining how to take advantage of ProcessPAIR to answer the required questions.

6.2.3 Experiment design

In this experiment, we aim to prove the following main hypothesis:

Using ProcessPAIR, PSP students can analyze their performance data and produce their “PSP
Final Report” with (i) higher user satisfaction, (ii) higher quality of results, and (iii) less effort,
as compared to the traditional approaches, using only Process Dashboard.

More specifically, the research questions that this experiment aims to answer are:

- RQI: Are students that use ProcessPAIR for performing the “PSP Final Report” assign-
ment more satisfied with the tool support than students that perform that assignment in a

traditional way using Process Dashboard?

- RQ?2: Do students that use ProcessPAIR for performing the “PSP Final Report” assignment
produce higher quality reports (as measured by the grades given by the instructor) than

students that perform that assignment in a traditional way using Process Dashboard?

- RQ3: Do students that use ProcessPAIR for performing the “PSP Final Report” assignment
spend less time than students that perform that assignment in a traditional way using Process
Dashboard?

To complete the PSP Final Report assignment, the 61 students were randomly split into two
groups: a control group, with 31 students, using Process Dashboard, and an experimental group
with 30 students using ProcessPAIR. The students in the control group completed their Final Re-
port assignment in a traditional way by inspecting their performance data (charts, reports, etc.)
stored in the Process Dashboard tool. The students in the experimental group used ProcessPAIR
for analyzing their performance data to complete Final Report assignment.

To measure user satisfaction, we prepared a web-based survey to be answered by the students
of both groups after concluding the assignment. The survey contains open text questions plus 14
questions in a five-point Likert scale related to installability, usability, efficiency, usefulness and
level of support provided by the tool they used for conducting the performance analysis (see Table
6.7).

Since the students did not have any prior knowledge about ProcessPAIR, before starting the
experiment, the tool authors presented a short tutorial about ProcessPAIR (30 minutes) to the
selected students by video-conference.

In the next step, the students were assigned a time slot to install ProcessPAIR and make sure

it run properly on their performance data. During the installation and initial setup, all the students

88 Experimentation and validation

Table 6.7: User satisfaction survey questions.

>

How easy was it to install the tool on your machine? (please select 1 if you were
unable to successfully install)

How do you rate the tool usability?

How do you rate the tool efficiency?

How do you rate the overall usefulness of the tool for performance analysis purposes?
How do you rate the overall level of support provided by the tool for performance
analysis purposes?

How do you rate the level of support provided by the tool for each of the following
tasks in the PSP Final Report?

- Analysis of size estimating accuracy

- Analysis of time estimating accuracy

- Defect and yield analysis

- Quality analysis

How do you rate the level of support provided by the tool for answering the following
types of questions in the PSP Final Report?

- Values and trends of performance indicators

- Average, maximum and minimum values

- Relationships and comparisons between indicators

- Realistic performance goals

- Process changes to meet the goals

moaQw

=T Q™

Z 20 R -

were accompanied locally by their instructor, with distance assistance by the ProcessPAIR authors.
After successful installation, they performed the assignment autonomously, outside classes (they

had approximately two weeks, in part time, to conclude the assignment and submit the final report).

6.2.4 Results
For each student of both groups, the following data was collected:
e PSP Final Report submitted by the student;

e Process Dashboard file submitted by the student (with performance data from previous as-

signments and time logs of the final report assignment);

e Grading spreadsheet with the grades assigned by the instructor for the final report, average

for the last two programs and final course grade;
e Spreadsheet with results of surveys filled in by the students (as provided by Google forms).
From this data, the following metrics were extracted or computed for each student:
e The time spent in the assignment (extracted from the Process Dashboard time logs);

e Report grade, course grade and last 2 program grades (extracted from the grading spread-
sheet);

6.2 Controlled experiment 89

e Report size, in pages;
e User satisfaction scores (for all questions).

The results obtained regarding user satisfaction, time spent, report size and report grades are
summarized in Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5 and Table 6.8. User comments about
ProcessPAIR are listed in Table 6.10.

A B ¢ D EF G H I J4 K L M N O

5_
4 -
3_

variable

P

D
2_
1_
O_

e e e e e e e e e |

DP DP DP DP DP DP DP DP DP DP DP DP DP DP DP
Questions

value

Figure 6.2: Average scores of the user satisfaction survey questions given by ProcessPAIR (P) and
Process Dashboard (D) users (Note: column ‘O’ shows average for all questions).

6.2.5 Discussion

The statistics in Table 6.8 show that, on average, ProcessPAIR users were more satisfied with the
tool support, produced higher quality reports and spent less time than non-ProcessPAIR users.
Comments made by ProcessPAIR users (see Table 6.10) also show a very favorable assessment.
To determine whether the differences observed are statistically significant, we performed the t-

test for the difference of means (see Table 6.9). Since the variables under analysis did not pass

90

Time(in Minutes)

200 300 400 500

100

Experimentation and validation

o]

oo

o]

300 400 500

Time(in Minutes)
200

100

—— ProcessPAIR
© —| |~¥ ProcessDashboard

1T T 1T T 1
05 15 25

I

ProcessPAIR

I

ProcessDashboard

Developers

Figure 6.3: Distribution and box plot of time spent (in minutes) by developers in both groups in

the PSP Final Report assignment.

Pages

45

15 20 25 30 35

10

Pages

—4— ProcessPAIR
© — |~¥ ProcessDashboard

T T T 11
05 15 25

ProcessPAIR

ProcessDashboard

Developers

Figure 6.4: Distribution and box plot of report size (in pages) by developers in both groups in the

PSP Final Report assignment.

the Shapiro-Wilk normality test for one or both samples (groups), we also performed the Mann-

Whitney test for the difference of medians (see Table 6.9). Regarding user satisfaction (RQ1), we

conclude that the differences for all questions except installability are statistically significant for a

5% confidence level.

Regarding quality of results (RQ?2), the differences in the report grades achieved are statisti-

cally significant according to the t-test for the difference of means, but not according the Mann-

Whitney test for the difference of medians. By inspecting the distribution of the report grades in

6.2 Controlled experiment 91

o
S
A o
- 1 S b
L | s
o | W
Ie>)
(=T
[se) /
o]
@
o
g 8 g
o 5 28
o O]
° - ; g
=
S ! o 9 p
=% i o
L i
o [=3 i
© ! o _|
1 o™
o | —— ProcessPAIR
R © —| |~¥- ProcessDashboard
T T T 11
o | < 05 15 25
<
[[
ProcessPAIR ProcessDashboard Developers

Figure 6.5: Distribution and box plot of grades achieved by developers in both groups in the PSP
Final Report assignment.

Figure 6.5, it can be observed that there is a clear difference between the two groups to the left of
the median, but not to the right, which is consistent with the tests’ results. This suggests that the
students who get the lower grades are the ones that benefit most of using ProcessPAIR. To make
sure that the difference between the two groups was not caused by an unbalanced split of students
between groups, we also checked the grades achieved in recent projects (last programs developed,
before the final assignment) by the students in both groups, and found no statistically significant
differences (in fact, the students in the experimental group had slightly lower grades in the last
two projects).

Regarding the time spent (RQ3), ProcessPAIR users spent on average less time than non-
ProcessPAIR users, but the differences observed between both groups are not statistically sig-

nificant according to both tests. Although ProcessPAIR already has automatic report generation

Table 6.8: Some statistics in the control experiment.

Statistic Experimental group Control group
(ProcessPAIR) (Process Dashboard)

Number of students 30 31

Mean score for all students and ques- 4.78 (in a 1-5 scale) 3.81 (in a 1-5 scale)

tions in user satisfaction survey

Mean report grade 88.1 (in a 0-100 scale) 82.5 (in a 0-100 scale)

Mean time spent 252.2 minutes 262.2 minutes

Mean report size 25.0 pages 18.2 pages

Median time spent 228.5 249.0

Median report size 23 pages 16.5 pages

Median report grade 91.5 88.0

92 Experimentation and validation

Table 6.9: Results of hypothesis tests.

Variables Difference of means statis- Difference of medians
tically significant? statistically significant?
(t-test, unequal variances) (Mann-Whitney U Test)

Time spent (minutes) No (p=0.337) No (p=0.209)

Report size (pages) Yes (p=0.00049) Yes (p=0.00058)

Report grade Yes (p=0.0293) No (p=0.173)

Survey: Installability (A) No (p=0.0712) No (p=0.0630)

Survey: Usability, Effi- Yes (p<l1E-4 for all ques- Yes (p<1E-3 for all ques-

ciency, Usefullness, Level tions) tions)

of Suport (B,...,N)

features (dispensing the users from the tedious copy-paste of dozens of charts) that was intention-
ally disabled in the experiment, to have a closer comparison with Process Dashboard. By enabling
that feature in the future, we expect to significantly reduce the time needed for performing the
assignment.

On the other hand, we observed that students in the experimental group produced significantly
longer reports than the students in the control group (see Figure 6.4, Table 6.8 and Table 6.9),
which, together with the better grades, suggests that they produced more complete reports in

roughly the same time as the students in the control group.

6.2.6 Threats to validity

We identified the following threats to validity.

Different previous knowledge: The students in the experimental group did not have previous
knowledge about the tool for the experiment (ProcessPAIR), whilst the students in the control
group had significant prior knowledge of the tool for the experiment (Process Dashboad), because
they used it throughout 7 projects. This may have negatively affected the performance of Process-
PAIR users in the experiment, as compared with Process Dashboard users.

Different guidelines available: Both ProcessPAIR and Process Dashboard have extensive sup-
port documentation, but only ProcessPAIR has specific guidelines for producing the “PSP Final
Report”. This may have positively affected the performance of ProcessPAIR users in the experi-
ment, as compared with Process Dashboard users. In fact, the usefulness of the online guide was

highlighted by students in the comments given in the user satisfaction survey.

6.2 Controlled experiment 93

Table 6.10: Comments provided by ProcessPAIR users to the question “Please elaborate your
opinion about the overall usefulness and level of support for Performance Analysis Purposes”.

-“ProcessPAIR really does elaborate all the information needed to make the analysis. With the help of the
online guide it was easy to know what was happening in each graph and in each set of data.”

- “The amount of detail in the graphs generated by the platform was awesome.”
- “It’s really helpful because it already gives you all the data analysis that you need for the PSP report.”

- “Having graphical views for all calculations was very helpful, also the capability to view multiple graphs at
the same time.”

- “It’s really easy to visualize your data using the tool, and having data from other projects gives you a reference
level for you to compare your own work with so that’s great too.”

- “It was very useful and helpful for the development of the final report.”

- “The tool is useful to check all your statistics in a quickly way, still need a way to explain a little more the
graphs.”

- “They both worked better than I expected and helped me to make the process of the final report easier.”

- “T liked ProcessPAIR a lot because it was easier to use than Dashboard, and because it showed the graph for
each question, giving me the opportunity to find the answers easier.”

- “The tool was very useful, it provided a lot of features, a lot of graphs that were really easy to obtain, copy,
modify and interact with them, it also had a tab that was like an excel and it marked you in green the areas that
you were good at the PSP, and marked you the areas of opportunity in yellow and red, this was useful, because
I was able to see where I need to do better.”

- “It is very useful as it can identify as I was and where I need to improve.” (translated from Spanish)

- “It pretty much did all the charts and it was really awesome that other student data was used as reference to
visually understand where I am. And having the recommendations (the report view tab) was honestly the best
assistance given that fact that it was a second option that supported the analysis that we were doing.”

- “ProcessPAIR was really useful at displaying my dashboard metrics and their average values.”
- “Analysis was pretty straight forward and easy.”

- “The performance of the tool is excellent the tutorials help a lot and is easy to understand and elaborate your
analysis.”

- “I could answer all questions without problems.” (translated from Spanish)

- “I think everything worked perfectly, however the option to take a screenshot should create a screenshot only
of the graph, not the entire screen.”

- “It was completely relevant, giving me the metrics I needed.”

- “The application served very well to see all my historical data and to prepare the final report.” (translated from
Spanish)

- “It is really useful ProcessPAIR because it gives directly what are you problems and the possible causes.
Besides, you can verify if that’s true by going to the indicator that shows if you have a problem or not.”

- “The graphics provided by the tool are to useful for the analysis.”
- “Many links within the app did not work at all and it did not give useful feedback.”
- “It really made it easier to understand all the information in the graphs.”

- “The usefulness is great with this tool because it guides you through the report and also you can analyze more
data and statistics of your performance with all the statistics it includes when it analyses your data.”

- “The tool was very useful to understand my overall performance.”

- “It helped analyze every answer in a specific way thanks to the help of the graphs that it provided. It was
really easy to compare different statistics and understand why things happened.”

94 Experimentation and validation

Table 6.11: Data regarding total time spent in producing final report, final report size in pages and
grades of individual users from both ProcessPAIR and Process Dashboard users.

ProcessPAIR Process Dashboard
Time spent | Report size | Report grade Time spent | Report size | Report grade

Student| . minliltes) (inppages) (0-?00)g Student| . minliltes) (inppages) (0-11)00)g
1 204 22 77.0 1 249 18 73.0
2 541 44 89.0 2 175 20 78.0
3 463 30 93.0 3 273 32 81.0
4 240 21 93.0 4 241 32 62.0
5 405 35 91.0 5 429 33 41.0
6 227 22 89.0 6 118 14 93.0
7 184 21 96.0 7 354 25 79.0
8 336 40 88.0 8 274 15 84.0
9 183 29 81.0 9 220 8 100.0
10 193 22 85.0 10 305 20 95.0
11 281 30 86.0 11 297 14 70.0
12 212 30 85.0 12 230 12 80.0
13 276 21 79.0 13 188 9 88.0
14 208 25 79.0 14 266 17 77.0
15 275 43 93.0 15 225 14 96.0
16 73 24 92.0 16 144 10 53.0
17 211 26 78.0 17 344 16 72.0
18 260 20 93.0 18 263 19 93.0
19 189 10 73.0 19 318 29 93.0
20 196 19 81.0 20 308 20 93.0
21 199 28 80.0 21 235 16 96.0
22 230 15 93.0 22 165 12 73.0
23 423 22 93.0 23 205 25 96.0
24 202 20 93.0 24 438 18 93.0
25 153 24 93.0 25 187 14 55.0
26 216 19 93.0 26 215 11 81.0
27 253 13 95.0 27 327 24 88.0
28 237 27 93.0 28 122 11 92.0
29 258 18 93.0 29 209 12 93.0
30 237 30 96.0 30 462 23 96.0
- - - - 31 339 24 93.0

Chapter 7

Conclusions and future work

7.1 Summary of contributions

The main contributions of the research work are the ProcessPAIR method, the ProcessPAIR tool,

the PSP performance model for ProcessPAIR, and the ProcessPAIR experiments.

The ProcessPAIR method for automated performance analysis and improvement recommen-
dation in software development is described in chapter 3. We developed and validated the algo-
rithms for automatically evaluating and ranking (prioritizing) the performance problems and their

root causes.

The ProcessPAIR support tool is described in chapter 5 and publicly available in (http:
//blogs.fe.up.pt/processpair/. We designed and developed a novel tool (ProcessPAIR)
for automating the identification and prioritization of performance problems and their root causes
in software development, and showed its successful application for the PSP. Currently, the tool
analyzes performance data produced by PSP developers in their projects, as recorded in the PSP
Student Workbook or Process Dashboard, and pinpoints the ranked performance problems and

their possible root causes.

The PSP performance model for ProcessPAIR is described in chapter 4. We constructed and
validated the performance model (defining performance indicators, cause-effect relationships be-
tween them, and recommended ranges or thresholds) for predictability, quality, and productivity
that can be used to automatically identify and rank performance problems and their root causes of
individual PSP developers. We took advantage of the partnership with the Software Engineering
Institute (SEI) and accessed PSP data for calibration of the performance model. Since the model

is calibrated based on a large data set, it can also be used for benchmarking purposes.

The ProcessPAIR experimental results for both tool and model are described in chapter 6.
We conducted experiments in real world contexts for the validation of the developed models and
tool and showed the benefits of the approach. The results of the postmortem experiment show
that the ProcessPAIR tool is able to accurately identify performance problems of individual PSP

developers and potential causes for those problems.

95

http://blogs.fe.up.pt/processpair/
http://blogs.fe.up.pt/processpair/

96 Conclusions and future work

Regarding the results of a controlled experiment, involving 61 software engineering master
students, half of whom used ProcessPAIR in a PSP performance analysis assignment, show signif-
icant benefits in terms of students’ satisfaction, quality of the analysis outcomes, and time required

to do the analysis.

7.2 Research questions revisited

The results achieved allow us to answer positively to the 5 research questions set in section 1.2

RQ1. Is it possible to automatically identify performance problems of individual developers,
by taking advantage of performance models derived from the performance data of many process
users?

ProcessPAIR tool automatically points out the ‘problematic’ PIs (colored with red or yellow
semaphores). The only manual work needed is the definition, by a process expert, of the relevant
PIs for the process under consideration (only once per process), including their optimal values and
formulas for calculation from base data. The performance ranges for assessing the values of the
PIs are automatically calibrated based on the data set. Both experiments show that ProcessPAIR is
able to accurately identify performance problems of individual PSP developers. In the postmortem
experiment, in 292 (96%) out of the 302 cases, the results of manual and automatic analysis are
found similar.

Potential benefits are: less time spent in performance analysis; benchmarks for comparison
are produced automatically.

RQ2. Is it possible to automatically identify the root causes of the identified performance
problems, by taking advantage of performance models derived from the performance data of many
process users?

ProcessPAIR automatically identifies potential root causes by drilling down from problematic
top-level PIs to problematic child PIs that affect the former according to a formula or statistical
evidence. The only manual work needed is the definition by a process expert (once per process)
of the following information for the process under consideration: child PIs; sensitivity formula
for relationships when there is an exact formula. Performance ranges for the child Pls are also
calibrated automatically by ProcessPAIR as in RQ1 (for top-level indicators).

In the postmortem experiment, ProcessPAIR was able to point out the same causes as the ones
found by the developers in their manual analysis. In 21% of the cases, the tool and the developer
pointed out the same causes; in 53% of the cases, the tool and the developer pointed out causes at
different levels of detail, with the tool accurately pointing out intermediate causes, and the devel-
oper pointing out deeper causes. These are cases where the automatic analysis accurately points
out factors to focus in subsequent manual analysis, potentially reducing the overall manual effort.
In 26% of the cases the results are inconsistent, because of faults in the manual analysis. Such
cases might be prevented if our tool was used by the subjects when conducting their performance

analysis.

7.3 Future work 97

RQ3. Is it possible to automatically rank the identified performance problems, by taking ad-

vantage of performance models derived from the performance data of many process users?

ProcessPAIR ranks the performance problems based on semaphore (red or yellow) and overall
percentile. The semaphore is based on the performance ranges. The percentile is based on the
approximate statistical distribution. No manual input is needed. We expect that, by presenting the
performance problems properly ranked, developers may focus on the most important performance

problems.

RQ4. Is it possible to automatically rank the identified root causes, by taking advantage of

performance models derived from the performance data of many process users?

ProcessPAIR ranks the identified root causes based on a combination of a percentile coefficient
and a sensitivity coefficient that, together, give a cost-benefit estimate of improvement actions. The
information needed comes from the data set (statistical distribution, etc.). The only manual work
needed is the definition of the sensitivity formulas for PIs related by an exact formula (also needed
in RQ2). We expect that, by presenting the potential root causes properly ranked, developers may

focus on the most important causes.

RQ5. By automating the performance analysis as described in RQI to RQA4, is it possible to

reduce effort and errors and improve user satisfaction as compared to manual analysis?

In the postmortem experiment, ProcessPAIR was able to accurately identify performance prob-
lems and their potential root causes, so we expect that, by using ProcessPAIR, manual work is only
needed for identifying deeper causes, reducing the overall effort. Since in a significant number of
cases we verified that users pointed out erroneous or meaningless causes, we also expect that, by

using ProcessPAIR, errors in the analysis are reduced.

In the controlled experiment, the results show significant benefits in terms of users’ satisfac-
tion as compared to previous approaches (average score of 4.78 in a 1-5 scale for ProcessPAIR
users, against 3.81 for non-ProcessPAIR users), quality of the analysis outcomes (average grades
achieved of 88.1 in a 0-100 scale for ProcessPAIR users, against 82.5 for non-ProcessPAIR users),
and time required to do the analysis (average of 252 minutes for ProcessPAIR users, against 262
minutes for non-ProcessPAIR users, but with much room for improvement). The comments re-
garding overall usefulness and level of support for performance analysis purposes (see Table 6.10)

are also very encouraging.

7.3 Future work

Currently, ProcessPAIR is available as a standalone Java application. As future work, we in-
tend to deploy ProcessPAIR as a service available on the cloud (SaaS) and integrate it with a
cloud-based application lifecycle management tool. This will increase tool accessibility, facilitate
metrics collection, and enable the automatic recalibration of the performance models based on the

performance data of the users.

98 Conclusions and future work

Also the performance models are hardcoded as ProcessPAIR extensions. In future, we in-
tend to provide means (graphical user interfaces and configuration files) for defining performance
models without programming.

Once deployed on the cloud, we intend to add to ProcessPAIR the capability of recommend-
ing detailed improvement actions for the identified causes of performance problems, based on a
catalogue of improvement actions constructed using crowdsourcing techniques. Some initial work
was already developed to that end, resulting in a Web based platform (WebProcessPAIR, 2016)
and a master thesis co-supervised by the author.

Currently, ProcessPAIR is being successfully used by PSP users. In the future, we intend
to expand the user base by tailoring ProcessPAIR for other processes, namely, investigate the
application of ProcessPAIR for analyzing the adherence to agile practices and the performance of
agile teams (using Scrum, XP or TSP).

We also intend to explore statistical and machine leaning techniques to further automate the
ProcessPAIR method, e.g., to automatically calibrate optimal values of Pls, and to automatically

identify relationships between PIs.

Appendix A

Tutorial on PSP Final Report guidelines
with ProcessPAIR

This tutorial provides guidelines for producing the PSP Final Report with the help of ProcessPAIR.
The requirements for the PSP Final Report are described in the official SEI’s “Assignment Kit for
Final Report” of the “PSP for Engineers” course.

ProcessPAIR provides important advantages:

e compare your performance data with the performance data of a large number of PSP students
(more than 3,000);

e significantly automates the identification of your performance problems and their root causes;
o reduces the effort needed to produce the PSP Final Report;
e prevents errors in the analysis;

e lets you focus your analysis on the identification of deeper causes (not present in the data

collected) and remedial actions.

The next sections are structured according to the analysis questions described in the assign-
ment kit. For each question, it is explained how ProcessPAIR helps answering the question. It is
assumed that you have recorded your performance data with Process Dashboard or the SEI’s PSP
Student Workbook. Before proceeding to the next sections, please open ProcessPAIR and upload
your performance data file, selecting the “PSP Performance Model for PSP Final Report” model.
It is important that you read the guidelines sequentially because several features and techniques

are explained on the first occurrence.
e Analysis of size estimating accuracy
e Analysis of time estimating accuracy
e Defect and yield analysis

e Quality analysis

99

100

Tutorial on PSP Final Report guidelines with ProcessPAIR

A.1 Analysis of size estimating accuracy

1.

What are the average, maximum, and minimum actual sizes of your programs in LOC to

date?

In the “Indicator View”, “Base Measures” group, select the “Actual Size” item to obtain the
required information, as illustrated in Figure A.l. You can copy the chart to your report, using
the “Copy Image” button on the top of the screen or the usual print screen facilities, and add
any pertinent comments. In this example, the average, maximum, and minimum actual sizes
in LOC to date are 140.5, 252 and 56, respectively. Please notice that these are added and
modified lines of code (as explained in the bottom left of Figure A.1).

8] ProcessPAIR v2.6 == X
File | Report View | TabIeView| Indicator View | Cause-Effect View
[Savelmage | [CopvImaage |
Select indicators (one or more) Actual Size (LOC) by project
» Performance Indicators
300
4 Base Measures
»| Actual Size
» Estimated Size
Size UPI 2507 252
AN
Size LPL .
> Actual Time \\
Estimated Time 200+ \\
Time UPI N
Time LPI 177 AN
» Number of Defects Injected 1504 1
» Number of Defects Removed
» Defects Fix Time
» Other Measures 1004
71
50 o 56
0 4
4 {1l D Program 1 Program 2 Program 3 Program 4 Program 5 Program 6
Show Statistical Distribution Chart Project
Actual number of added and modified lines of ~ User statistics X-Axis
code L min: 36 max: 252 average: 1405 weighted: 1405 Project -

2.

Figure A.1: Actual size (LOC) by Project.

Excluding assignment 1, what percentage over or under the actual size was the estimated
size for each program (for example, if estimated/actual is in %, 85% is 15% under, 120%

is 20% over)? What are your average, maximum, and minimum values for these?

In the “Indicator View”, ‘“Performance Indicators” group, select the “Size Estimation Accu-

racy” item to obtain the required information, as illustrated in Figure A.2:

Please notice that ProcessPAIR measures the size estimation accuracy as the ratio of actual to
estimated size, being 1 the optimal value. To obtain the percentual size estimation error you
have to subtract 1 and multiply by 100%. In Figure A.2, the 2.06 accuracy corresponds to a
106 % (under) estimation error, and the 0.52 accuracy corresponds to a -48% (over) estimation
error. The average is 1.108 (10.8%).

A.1 Analysis of size estimating accuracy 101

8] ProcessPAIR v2.6 e | O -

File | Report View | Table View| Indicator View | Cause-Effect View

Save Image Copy Image

Selectlindicatorllongioqmore) Size Estimation Accuracy by Project
4 Performance Indicators 3

»| Size Estimation Accuracy

> Time Estimation Accuracy
> Productivity 254
> Productivity Stability
> Defects Injected

> Defect Removal Rate

Appraisal to Failure Ratio
> Defect Density in Unit Test

> Process Yield yellow upper mit (1.63)

> Base Measures 1.54 --- green upper lmit (1.22)
> Other Measures — optimal value (1.00)
— green lower mit (0.85)
I . 115 yelow lower imic (0.64)
L -+ actual values
0.54 s
B 0 - t ¢ - }
<1 Uy r Program 2 Program 3 Program 4 Program 5 Program &
l Show Statistical Distribution Chart Project
The ratio of Actual Size to Estimated Size + User statistics X-Axis

i min: 052 max: 2.06 average: 1108 weighted: 0.851

Figure A.2: Size estimation accuracy by Project.

ProcessPAIR computes the weighted average of a ratio by dividing the total value of the nu-
merator for all projects by the total value of the denominator for all projects. In this case, it is
the total actual size of programs 2 to 6 divided by the total estimated size of programs 2 to 6.

The weighted average is 0.851 (-14.9%). This value is of less interest in this case.

ProcessPAIR also shows in the chart the recommended performance ranges, calibrated based on
the performance data of many PSP students. The green range (good performance) corresponds
to the 1/3 best values in the calibration data, and goes from 0.85 to 1.22 (-15% to 22%). The
‘red’ range (poor performance) corresponds to the 1/3 worst values in the calibration data. The
yellow range is in between. By comparing your data with the control limits shown in the chart
, you can make informed comments about your own performance. In the Figure A.2 you can
see, the student was not able to reach a good size estimation performance (only two points

green), as compared to the population used for calibration.

You can also check in the “Report View” if ProcessPAIR identified any clear or potential (mod-

erate) problem regarding your size estimation performance, as illustrated A.3.

[| ProcessPAIR v2.6 e | [0 el
" File | Report View'| Table View | Indicator Viewl Cause-Effect View ‘
ISummary '] lSize Estimation Accuracy 'l Show only leaf causes I

potential performance problem with Size Estimation Accuracy

Figure A.3: Report view.

102 Tutorial on PSP Final Report guidelines with ProcessPAIR

By pressing the “Show Statistical Distribution Chart” button, you can get another view of how

your performance compares with the population used for calibration, as illustrated in Figure
A.4 (bottom left).

] ProcessPAIR v2.6 =ney X

File | Report View | Table View‘ Indicator View | Cause-Effect View

Save Image Copy Imaae

Select indicators (one or more) m Size Estimation Accuracy by Project
4 Performance Indicators 3
» Size Estimation Accuracy
Time Estimation Accuracy E
» Productivity 254
» Productivity Stability
> Defects Injected
> Defect Removal Rate 5
Appraisal to Failure Ratio 6
> Defect Densitv in Unit Test =
< 1 3 yellow upper imit (1.63)
4 reen upper limit (1.22
Statistical distribution in the performance model 15 . gpt\mal ?f;a,\ue It Ol()))
- 1 ///— green lower mit (0.85)
é . 115 yellow lower imit (0.64)
i 1 4'”“\ -+~ actual values
v
5 05
& 4
g £ 05 oy
&1
0 1 2 3 4 o
. I) T
Size Estimation Accuracy Program 2 Program 3 Program 4 Program S Program 6
Hide Statistical Distribution Chart Project
The ratio of Actual Size to Estimated Size ~ - User statistics X-Axis

_ min: 052 max: 206 average: 1108 weighted: 0.851

Figure A.4: Size estimation accuracy by project.

By selecting both the “Actual Size” and “Estimated Size” in the list of indicators, you can also
visually compare the base measures from which the Size Estimation Accuracy is computed, as
illustrated in Figure A.S.

3. How often was my actual program size within my 70% statistical prediction interval
(when you used methods A or B)?

The relevant chart is obtained by selecting the Actual Size, Size UPI (upper prediction interval)
and Size LPI (lower prediction interval), as shown in Figure A.6. In this example a prediction
interval was computed only in program 6. The actual size (round symbol) is within the 70%

statistical prediction interval (between LPI and UPI).

4. Do I have a tendency to add/miss entire objects?

The relevant information can be find in Figure A.7. In ProcessPAIR, missing objects are
objects that were actually added or modified, but were not planned. Extraneous objects are
objects that were planned, but were not actually added or modified. In Figure A.8, missed or
extraneous objects occurred only in the first project, so it is fair to conclude that there is no
tendency to add/miss entire objects.

5. Do I have a tendency to misjudge the relative size of objects?

A.1 Analysis of size estimating accuracy

103

7] ProcessPAIR v2.6

Save Image Copy Image

Select indicators (one or more)
» Performance Indicators
4 Base Measures
» Actual Size
»| Estimated Size
Size UPI
Size LPL
> Actual Time
Estimated Time
Time UPI
Time LPL
> Number of Defects Injected
> Number of Defects Removed
» Defects Fix Time
» Other Measures

< 1 |

File | Report View | Table View| Indicator View | Cause-Effect View

3004
2504
2004
8
=1 1504
1004

50 4

-8 Actual Size M- Estimated Size

r Program 2

l Show Statistical Distribution Chart

4 User statistics

correlation: 0.81

Program 3

[Scatter

Program 4
Project

Program 5 Program 6

X-Axis

Figure A.5: Indicator view.

-
8] ProcessPAIR v2.6

Save Image Copy Imaae

Select indicators (one or more)
» Performance Indicators
4 Base Measures
»| Actual Size
» Estimated Size
Size UPI
Size LPL
» Actual Time
Estimated Time
Time UPL
Time LPL
» Number of Defects Injected
» Number of Defects Removed
» Defects Fix Time
» Other Measures

4| 1 |

File | Report View | Table View| Indicator View | Cause-Effect View

-® Actual Size M- Size UPI -#- Size LPI

l Show Statistical Distribution Chart

350+
300
197
250+
200+ %10
8] *
o 189
-
150
100
50 A
0 4
* Program 6
Project

X-Axis

Figure A.6: Indicator view.

The relevant information can be found in Figure A.9. This Figure refers to objects that were

correctly identified in the planning phase (i.e., missing or extraneous objects are not included

here).

104 Tutorial on PSP Final Report guidelines with ProcessPAIR

] ProcessPAIR v2.6 =Rl ﬂ

File | Report View | TabIeView| Indicator View | Cause-Effect View

Save Image Copv Image

Select indicators (one or more) Missing Objects (°/o) b\[Project
4 Performance Indicators 100
4 Size Estimation Accuracy
Objects Estimation Accuracy 90
Missing Objects
Extraneous Objects 80 1
» Time Estimation Accuracy 7
» Productivity 70 A
» Productivity Stability
» Defects Injected 60 -
» Defect Removal Rate
Appraisal to Failure Ratio 50 +
» Defect Density in Unit Test — optimal value (0)
» Process Yield 40 4 - actual values
» Base Measures
» Other Measures 30 A
20 A
10 A
0 - T T T T |
R T — D Program 2 Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
The ratio of actual size of missing objects to # User statistics X-Axis
geuaiBzeolalion Seubalus min: 0 max. 77 average: 15.5 weighted: 29.2

Figure A.7: Indicator view.

-
[#-] ProcessPAIR v2.6 E@g
File | Report View | TabIeView| Indicator View | Cause-Effect View
Save Image Copv Imaae
Select indicators (one or more) Extraneous Objects (0/0) by Project
4 Performance Indicators 100
4 Size Estimation Accuracy
Objects Estimation Accuracy 90 + 2
Missing Objects
Extraneous Objects 80 A
»> Time Estimation Accuracy
> Productivity 70 A
> Productivity Stability
» Defects Injected 60
> Defect Removal Rate
Appraisal to Failure Ratio 50
» Defect Density in Unit Test — optimal value (0)
» Process Yield 40 4 -~ actual values
» Base Measures
» Other Measures 30 4
20 -+
10 A
0 - * * * T 1
4 ‘+| D Program 2 Program 3 Program 4 Program 3 Program 6
l Show Statistical Distribution Chart Project
The ratio of estimated size of extraneous objects + ~ User statistics X-Axis
el greaiHl s b _ min: 0 max 92 average: 185 weighted: 27.1

Figure A.8: Indicator view.

Currently, ProcessPAIR has no benchmarks for this indicator, because of the lack of historical
data, but it is reasonable to use ranges similar to the Size Estimation Accuracy, i.e., a green

range between 0.85 and 1.22. In this example, although it can be observed a tendency for

A.1 Analysis of size estimating accuracy

105

7] ProcessPAIR v2.6

=R X

File | Report View | Table View| Indicator View | Cause-Effect View

Save Image Copy Image

Select indicators (one or more)
4 Performance Indicators 4
4 Size Estimation Accuracy
Objects Estimation Accuracy
Missing Objects
Extraneous Objects

Objects Estimation Accuracy by Project

354

» Time Estimation Accuracy 3 A1 13
> Productivity
» Productivity Stability 25
Defects Injected
» Defect Removal Rate
Appraisal to Failure Ratio 2 A1

. Defect Density in Unit Test — optimal value (1.00)

» Process Yield 15 . -#- actual values
» Base Measures
» Other Measures /\
“97
¥\/
0.5

A8

1 L1} r Program 2 Program 3 Program 4 Program 5 Program 6

Show Statistical Distribution Chart Project

The ratio of actual size to estimated size of + User statistics X-Axis

correctly identified objects i min: 048 max: 313 average: 1397 weighted: 0.797

Figure A.9: Indicator view.

improvement, there is an oscillatory behavior with room for improvement towards the green

range.

By viewing together the Objects Estimation Accuracy and the Size Estimation Accuracy, we
can check that they are closely related as expected, as shown in Figure A.10. After program 2,

the small deviations occur because size estimates sometimes have a statistical adjustment.

6. Based on my historical size-estimating accuracy data, what is a realistic size-estimating
goal for me?

ProcessPAIR lets you compare your performance to the performance achieved by other peo-
ple, and hence helps establishing realistic goals. In case you already have a good performance
(green range), then probably you just have to keep your current performance. Otherwise, mov-

ing to the next range may be a realistic goal (from red to yellow, or from yellow to green).

. How can I change my process to meet that goal?

Before thinking of process changes you should first identify root causes for current performance
issues. To help identifying root causes, ProcessPAIR organizes the performance indicators in a
tree-like structure, where the child nodes represent factors that may affect the parent nodes, as

illustrated in Figure A.11.

So, by drilling down from top-level indicators to child indicators, you can identify the prob-
lematic factors (root causes) and subsequently devise improvement actions (process changes)

to address them, as illustrated in Figure A.11.

106 Tutorial on PSP Final Report guidelines with ProcessPAIR

] ProcessPAIR v2.6 C=HICT ﬁ

File | Report View | TabIeView| Indicator View | Cause-Effect View
Save Image Copv Image
Select indicators (one or more) — optimal value -8~ Size Estimation Accuracy - Objects Estimation Accuracy
4 Performance Indicators
4 Size Estimation Accuracy

Objects Estimation Accuracy 351
Missing Objects
Extraneous Objects 3 4
» Time Estimation Accuracy
» Productivity
» Productivity Stability 254
» Defects Injected
» Defect Removal Rate 2

Appraisal to Failure Ratio
» Defect Density in Unit Test
» Process Yield 1.54
» Base Measures
» Other Measures

1 4
0.59
- 0 = T T t -
L T — D Program 2 Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
4 User statistics X-Axis

correlation: 034 [Scatter

Figure A.10: Indicator view.

.
[ProcessPAIR v2.6 @@ﬁ

File | Report View | TabIeView| Indicator View | Cause-Effect View
Save Image Copv Imaae

Select indicators (one or more) Size Estimation Accuracy by Project
4 Performance Indicators

3
a Eile Estimation Afcu[acyl <= Top-level indicator unde: analysis
Objects Estimation Accuracy
Missing Objects
Extraneous Objects may affect
»> Time Estimation Accuracy
> Productivity
> Productivity Stability
» Defects Injected
> Defect Removal Rate

a Child indic?igrs (factors that
the parent indicator)

yelow upper lmit (1.63)
--- green upper imit (1.22)
— optimal value (1.00)
................................. — green lower mit (0.85)
yelow lower Imit (0.64)

Appraisal to Failure Ratio 154
» Defect Density in Unit Test
» Process Yield

> Base Measures 14 :LB
> Other Measures T -e- actual values
e 75\4
— 0 - T T T r
J ‘+| D Program 2 Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
The ratio of Actual Size to Estimated Size - User statistics X-Axis

min: 052 max. 206 average: 1108 weighted: 0.851

Figure A.11: Indicator view.

In the case of size estimation accuracy, the child indicators are related with the causes asked in
previous questions: tendency to add/miss entire objects; tendency to misjudge the relative size

of objects. In the example shown, the relevant cause is the tendency to misjudge the relative

A.2 Analysis of time estimating accuracy 107

size of objects. It can be observed a tendency for improvement, with a very good accuracy in
the last project (0.96 or -4% error), but oscillations are still high. Usually such oscillations are

reduced with continued practice.

In case you found deeper or different causes for the time estimation problems, you should

devise actions for addressing them.

A.2 Analysis of time estimating accuracy

1. What are the average, maximum, and minimum times of your assignments to date?

In the “Indicator View”, “Base Measures” group, select the “Actual Time” item to obtain the
required information, as illustrated in Figure A.12. You can copy the figure to your report,
using the “Copy Image” button or the usual print screen facilities, and add pertinent comments.
In this example, the average, maximum, and minimum times in the assignments to date are

232.3, 346 and 138 minutes, respectively.

8] ProcessPAIR v2.6 e | (O
| File | Report View | Table View| Indicator View | Cause-Effect View
Save Image Copv Image |
Select indicators (one or more) Actua| Time (minutes) by Project
» Performance Indicators
4 Base Measures 400+
» Actual Size
Estimated Size 350
Size UPI
Size LPL
| Actual Time 3001
Estimated Time
Time UPI 2504 "
Time LPL
> Number of Defects Injected 2004
> Number of Defects Removed
» Defects Fix Time
» Other Measures 150+
1004
50 o
0 - T 1 T T T i
1 L1} r Program 1 Program 2 Program 3 Program 4 Program 5 Program 6
Show Statistical Distribution Chart Project

Actual Time 4 User statistics W-Axis

o min: 138 max: 346 average: 2323 weighted: 2323 Project n

Figure A.12: Indicator view.

2. What percentage over or under the actual time was the estimated time for each program
(for example, if estimated/actual is in %, 85% is 15% under, 120% is 20% over)? What

are your average, maximum, and minimum values for these?

In the “Indicator View”, “Performance Indicators” group, select the “Time Estimation Accu-

racy” item to obtain the required information, as illustrated in Figure A.13.

108 Tutorial on PSP Final Report guidelines with ProcessPAIR

] ProcessPAIR v2.6 C=NIEN X
File |Repun ViewlTabIeView| Indicator View | Cause-Effect View
Save Image Copv Image

Selecindicatorsliongiogmore) Time Estimation Accuracy by Project
4 Performance Indicators 4

» Size Estimation Accuracy

» Time Estimation Accuracy 354
> Productivity 46
» Productivity Stability
» Defects Injected 3 A1
» Defect Removal Rate
Appraisal to Failure Ratio

» Defect Density in Unit Test
» Process Yield

25

yelow upper mit (1.55)

green upper imit (1.20)
— optimal value (1.00)

green lower mit (0.87)

> Base Measures 2 9
» Other Measures

15+

45 yellow lower limit (0.70)
134 ’ == actual values
1 4
|
82 &
051 66
0 - T T T T T |
1 M r Program1l Program2 Program3 Program4 Program 5 Program 6
Show Statistical Distribution Chart Project
The ratio of Actual Time to Estimated Time # User statistics X-Axis

i min: 0.66 max:. 346 average: 1430 weighted: 1.086

Figure A.13: Indicator view.

Similarly to the size estimating accuracy, you can notice that ProcessPAIR measures the time
estimation accuracy as the ratio of actual to estimated time, being 1 the optimal value. To
obtain the percentual size estimation error you have to subtract 1 and multiply by 100%. In the
Figure A.13, the 3.46 accuracy corresponds to a 246% (under) estimation error, and the 0.66
accuracy corresponds to a -34% (over) estimation error. The (simple) average is 1.430 (43%

under estimation error). The weighted average is 1.086 (8.6% under estimation error).

ProcessPAIR also shows in the chart the recommended performance ranges, calibrated based
on the performance data of many PSP students. The green range (good performance) corre-
sponds to the 1/3 best values in the calibration data, and goes from 0.87 to 1.20 (-13% to 20%).
By comparing your data with the control limits shown in the chart , you can make informed
comments about your own performance. In the Figure A.13, there was a significant improve-
ment after the first project, but the student was not yet able to produce good estimates (inside

the green range).

You can also check in the “Report View” if ProcessPAIR identified any clear or potential prob-
lem regarding your time estimation performance, as illustrated in Figure A.14. In this example
ProcessPAIR indicates a clear performance problem, together with some causes (to be investi-

gated later in this section).

By selecting both the “Actual Time” and “Estimated Time” in the list of indicators, you can also
visually compare the base measures from which the Time Estimation Accuracy is computed,

as illustrated in Figure A.15.

A.2 Analysis of time estimating accuracy 109
8] ProcessPAIR v2.6 - e | (O S
File Report View | Table View | Indicator View | Cause-Effect View
ISummary v] |Time Estimation Accuracy VI Show only leaf causes
clear performance problem with Time Estimation Accuracy
with high possibility of being caused by a potential performance problem with Estim. to Hist. Productivity Ratio
with high possibility of being caused by a potential performance problem with Size Estimation Accuracy
with moderate possibility of being caused by a potential performance problem with Design Review Productivity Stability
with moderate possibility of being caused by a potential performance problem with Design Productivity Stability
with moderate possibility of being caused by a clear performance problem with Unit Test Productivity Stability
with moderate possibility of being caused by a potential performance problem with Plan Productivity Stability
Figure A.14: Report view.
|| ProcessPAIR v2.6 - C=iEy X
File | Report View | Table View | Indicator View | Cause-Effect View
Save Image Copy Imaae
Select indicators (one or more) -8 Actual Time M- Estimated Time
> Performance Indicators
4 Base Measures
> Actual Size 400+
> Estimated Size
Size UPI 3504
Size LPL
> Actual Time 300
Estimated Time
Time UPL 250
Time LPL g
> Number of Defects Injected E
> Number of Defects Removed ‘E 200+
» Defects Fix Time
> Other Measures 150
100
50
o - T T u T
| Ul ¢ Program 1 Program 2 Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
4~ User statistics X-Axis
correlation: 0.26 [Scatter

Figure A.15: Indicator view.

3. How often was my actual development time within my 70 % statistical prediction interval

(when you used methods A or B)?

The relevant chart is obtained by selecting the Actual Time, Time UPI and Time LPI, as shown

in the Figure A.16. In this example a prediction interval was computed only in program 6.

The actual time (round symbol) is well within the 70% statistical prediction interval (between

lower prediction interval and upper prediction interval).

4. What are the average, maximum, and minimum values for productivity per program to

date in LOC/hr?

In the “Indicator View”, “Performance Indicators” group, select the “Productivity” item to

obtain the required information, as illustrated in Figure A.17.

110 Tutorial on PSP Final Report guidelines with ProcessPAIR

- —
'] ProcessPAIR v26 - o) e S
| File | Report View | TabIeView| Indicator View ‘Cause-Eﬁect View|
Save Image Copv Image
Select indicators (one or more) -8 Actual Time M- Time UPI -#- Time LPI
» Performance Indicators
4 Base Measures 160+
» Actual Size
» Estimated Size 1404 1
Size UPI 32
Size LPL 120
»| Actual Time
Estimated Time
Time UPL 100+
Time LPI 2
. = %
> Number of Defects Injected E 80 7
» Number of Defects Removed E
» Defects Fix Time
> Other Measures 60 7
40
*
32
20 A
e o -
4 M | r Program & |
[Show Statistical Distribution Chart Project
“ X-Axis

Figure A.16: Indicator view.

[- Dl FEER——
=] ProcessPAIR v2.6 [— =]
File | Report View | Table\iiew| Indicator View ‘Cause{ﬁem View|
Save Image Copv Image
Select indicators (one or more) Productivity (Locl hOI.II') by project
4 Performance Indicators 50
» Size Estimation Accuracy
» Time Estimation Accuracy
»| Productivity
» Productivity Stability 504 1
» Defects Injected
» Defect Removal Rate
Appraisal to Failure Ratio 404 %
» Defect Density in Unit Test
> Process Yield 5 —,
— optimal value (infinity’
» Base Measures 307 307 309 | — green lower imit (35.7)
» Other Measures g :
yelow lower imit (20.6)
-- actual values
209 209
10
0o - T T T T T
< L1 | D Program 1 Program 2 Program 3 Program4 Program 5 Program 6
[Show Statistical Distribution Chart Project
The ratio of Actual Size to Actual Time 4 User statistics X-Axis
min: 209 max: 511 average: 34.88 weighted: 36.28

Figure A.17: Indicator view.

You can notice that the weighted average is computed as the ratio between the total size of the

programs developed to date and the total time spent in developing those programs.

A.2 Analysis of time estimating accuracy 111

Similarly to other performance indicators, ProcessPAIR also shows in the chart the recom-
mended performance ranges, calibrated based on the performance data of many PSP students.
The green range (good performance) contains the 1/3 best values in the calibration data, and
corresponds to a productivity greater or equal to 35.7 LOC/hour. By comparing your data
with the control limits shown in the chart , you can make informed comments about your own

performance. In the Figure A.17, the productivity is almost always in the green range.

You can also check in the “Report View” if ProcessPAIR identified any clear or potential prob-
lem regarding your productivity. In this example, the Report View indicates a potential per-
formance problem with Productivity, as well as the problematic phases, as illustrated in Figure
A.18.

] ProcessPAIR v2.6 C=SlE X
File Report View | Table View | Indicator View | Cause-Effect View
< ISummary vJ > IPmdu(tivity v‘ Show only leaf causes

potential performance problem with Productivity
with moderate possibility of being caused by a clear performance problem with Design Productivity
with moderate possibility of being caused by a potential performance problem with Design Review Productivity
with moderate possibility of being caused by a potential performance problem with Code Productivity
with moderate possibility of being caused by a potential performance problem with Plan Productivity

Figure A.18: Report view.

By selecting both the “Actual Size” and “Actual Time” in the list of indicators, you can also
visually compare the base measures from which the Productivity is computed, as illustrated
in the Figure A.19 (with Scatter mode selected in the bottom). As expected, higher sizes are

associated with higher development efforts (0.84 linear correlation coefficient).

5. Is my productivity stable? Why or why not?

You can check the productivity stability by inspecting the “Productivity” indicator, or by in-
specting the “Productivity Stability” indicator computed by ProcessPAIR, as illustrated in Fig-
ure A.20.

In ProcessPAIR, the “Productivity Stability” of a project measures how close the productivity
in that project is to the historical productivity (of previous projects), and is given by the ratio

of the productivity in that project to the historical productivity, being 1 the optimal value.

Similarly to other performance indicators, ProcessPAIR also shows in the chart the recom-
mended performance ranges, calibrated based on the performance data of many PSP students.
In this case, the green range corresponds to a productivity stability between 0.80 and 1.19. By
comparing your data with the control limits shown in the chart , you can make informed com-
ments about your own performance. In the Figure A.20, the productivity stability is almost

always inside the green range.

In PSP training there is usually a productivity decrease in the middle of the training, when some

process changes are introduced, followed by a productivity recovery as the new processes are

112

Tutorial on PSP Final Report guidelines with ProcessPAIR

[- - [FERE=
=] ProcessPAIR v2.6 (]
File | Report View | TabIeView| Indicator View ‘Cause-Eﬁect View|
Save Image Copv Image
Select indicators (one or more) 400
» Performance Indicators b
4 Base Measures
» Actual Size 3504 $
» Estimated Size rogram 1
Size UPI
: 3004
Size LPI m %rﬂgram 2
» Actual Time]
Estimated Time E 250
Time UPL E $rugram 3
Time LPI P $ 4
> Number of Defects Injected E 200+ rogram
> Number of Defects Removed ':
» Defects Fix Time é 1504 %’mgram 5
> Other Measures < ’7rogram 6
1004
50
0 - T T T T T T T T T T T T T T T
< 11 | r 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
[Show Statistical Distribution Chart Actual Size (LOC)
4 User statistics X-Axis
corelation: 084 [¥lScatter
L

Figure A.19: Indicator view.

0] ProcessPAIR v2.6 - - ==
File | Report View | TabIeView| Indicator View ‘Cause—Eﬁect View|
Save Image Coov Image
Selectindiators|onjogmors) Productivity Stability by Project
4 Performance Indicators 2
» Size Estimation Accuracy
> Time Estimation Accuracy 181
» Productivity
> Productivity Stability 164
» Defects Injected
> Defect Removal Rate 144
Appraisal to Failure Ratio
» Defect Density in Unit Test L2 e i el e
» Process Yield yelow upper imtt (1.55)
> Base Measures 1 A - - gre.en upper Imit (1.19)
. Other Measures UD\‘S& — optimal value (1.00)
0.8 "84 — green lower mit (0.80)
yelow lower imit (0.60)
064 -+~ actual values
.53
044
0.24
— 0 - T T T r
J ‘+| D Program 2 Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
The ratio of Actual Productivity to Historical . User statistics X-Axis
IRy min: 0.53 max: 166 average: 0.984 weighted: 0.955
L =

Figure A.20: Indicator view.

practiced. Since the process changes usually affect specific phases, ProcessPAIR also analyzes

the Productivity Stability of each process phase.

The simplest way to identify the phases that are causing productivity instability problems is to

A.2 Analysis of time estimating accuracy 113

look at the “Report View”, as illustrated in Figure A.21. In this example, there is a moderate
problem with the overall productivity stability, caused by instability in the Design Review, De-
sign, Unit Test and Plan phases (by decreasing order of importance). This is a typical situation
in PSP training, because of the changes introduced in the design phase (introduction of design
templates), design review phase (introduction of design verification techniques), and plan phase
(introduction of size estimation, introduction of quality planning, etc.). The instability in the

Unit Test phase usually occurs because of the decrease of defects entering the unit test phase.

8] ProcessPAIR v2.6 —

C=mac X"

File | Report View | Table View | Indicator View | Cause-Effect View

ISummary '] lPrUductivity Stability

vl Show only leaf causes

potential performance problem with Productivity Stability
with moderate possibility of being caused by a potential performance problem with Design Review Productivity Stability
with moderate possibility of being caused by a potential performance problem with Desien Productivity Stability
with moderate possibility of being caused by a clear performance problem with Unit Test Productivity Stability
with moderate possibility of being caused by a potential performance problem with Plan Productivity Stability

Figure A.21: Report view.

To manually identify the problematic phases causing productivity instability problems you can
look at different charts in the “Indicator View”, e.g., by switching the X-Axis to “Phase” (Figure
A.22), or by inspecting the child indicators of the Productivity Stability (Figure A.23, for the
Unit Test phase).

] ProcessPAIR v2.6 —

C=niey X

File | Report View | Table View| Indicator View | Cause-Effect View
Save Image Copy Image

Select indicators (one or more)

Productivity Stability by Phase

4 Performance Indicators 84
> Size Estimation Accuracy
> Time Estimation Accuracy
> Productivity
> Productivity Stability .572
> Defects Injected 6
> Defect Removal Rate

Appraisal to Failure Ratio
> Defect Density in Unit Test
> Process Yield

> Base Measures 4

> Other Measures

4| 11

l Show Statistical Distribution Chart

The ratio of Actual Productivity to Historical
Productivity

e

/‘-95‘1\ T %s3

465 355

*751

Filter

Code Code Review

Phase

1 [2]

Plan Design Design Review

ISummary

T
Unit Test Postmortem

Figure A.22: Indicator view.

114 Tutorial on PSP Final Report guidelines with ProcessPAIR

] ProcessPAIR v2.6 - C=HICT ﬁ

| File | Report View | TabIeView| Indicator View ‘Cause-Eﬁect View|

Save Image Copv Image

Selecindicatorsliongiogmore) Unit Test Productivity Stability by Project
4 Performance Indicators 12
» Size Estimation Accuracy
» Time Estimation Accuracy
» Productivity 104
4 Productivity Stability
Plan Productivity Stability
Design Productivity Stability
Design Review Productivity Stability g 1 > a8
Code Productivity Stability
Code Review Productivity Stability yelow upper imt (3.20)
Compile Productivity Stability 6 4 ==~ green upper imit (1.69)
Unit Test Productivity Stability 5.84 — optimal value (1.00)
Postmortem Productivity Stability — green lower mit (0.70)
» Defects Injected 4 4 // 4.48 _._ZEE: ‘:;Tj;shmm (0-43)
» Defect Removal Rate yd
Appraisal to Failure Ratio //
» Defect Density in Unit Test //
» Process Yield L s S
» Base Measures 149
> Other Measures
0 - T T T T |
4 Ul J r Program 2 Program 3 Program 4 Program 5 Program 6 |
[Show Statistical Distribution Chart Project
The ratio of Unit Test Productivity to Historical ~ + ~ User statistics X-Axis
Unit Test Productivity i min: 149 max: 997 average: 5.932 weighted: 6.572

Figure A.23: Indicator view.

6. How can I stabilize my productivity?

As explained before, ProcessPAIR helps identifying the problematic process phases that are
causing productivity instability problems. Based on that information, you are in better position
to devise relevant improvement actions. In many cases, instability is caused by process changes

and consequently can be addressed by repeated practice with a stable (unchanged) process.

7. How much are my time estimates affected by the accuracy of my size estimates?

The simplest way to answer this question is to look at the Report View, as illustrated in Figure

A.24 (with “Show only leaf causes” unchecked, to visualize intermediate causes).

] ProcessPAIR v2.6 - C="CT ﬁ

Report View | Table View | Indicator View | Cause-Effect View

ISummary '] lTime Estimation Accuracy '] ["] Show only leaf causes I

clear performance problem with Time Estimation Accuracy
with high possibility of being caused by a potential performance problem with Size Estimation Accuracy
with moderate possibility of being caused by a potential performance problem with Productivity Estimation Accuracy
with high possibility of being caused by a potential performance problem with Estim. to Hist. Productivity Ratio
with moderate possibility of being caused by a potential performance problem with Productivity Stability
with moderate possibility of being caused by a potential performance problem with Design Review Productivity Stability
with moderate possibility of being caused by a potential performance problem with Design Productivity Stability
with moderate possibility of being caused by a clear performance problem with Unit Test Productivity Stability
with moderate possibility of being caused by a potential performance problem with Plan Productivity Stability

Figure A.24: Report view.

A.2 Analysis of time estimating accuracy 115

The causal analysis conducted by ProcessPAIR, follows the following rational: problems with
the Time Estimation Accuracy may be caused by problems with Size Estimation Accuracy or
by problems with Productivity Estimation Accuracy (discrepancies between estimated and ac-
tual productivity). In the example Figure A.24, it is identified a clear performance problem
with Time Estimation Accuracy, caused mainly (‘high possibility’) by problems with Size Es-
timation Accuracy, and in second place (‘moderate possibility’) by problems with Productivity
Estimation Accuracy. Hence, we conclude that, in this example, time estimation accuracy is

highly affected by the accuracy of size estimates.

ProcessPAIR further drills down the causal analyses according to the following rational: pro-
ductivity estimation problems may occur because of productivity instability problems (making
historical productivity not reliable for estimation) or because historical productivity is not used
in estimates. In turn, productivity stability problems may be caused by productivity instability

in specific phases.

8. Based on my historical time-estimating accuracy data, what is a realistic time-estimating

goal for me?

ProcessPAIR lets you compare your performance to the performance achieved by other peo-
ple, and hence helps establishing realistic goals. In case you already have a good performance
(green range), then probably you just have to keep your current performance. Otherwise, mov-

ing to the next range may be a realistic goal (from red to yellow, or from yellow to green).

9. How can I change my process to meet that goal?

The simplest way to answer this question is to first look at the causes suggested in the Report

View, as illustrated in Figure A.25 (“Show only leaf causes” checked).

8] ProcessPAIR v2.6 e | (O] e
File Report View | Table View | Indicator View | Cause-Effect View
|
ISummary 'J |Time Estimation Accuracy " Show only leaf causes

clear performance problem with Time Estimation Accuracy
with high possibility of being caused by a potential performance problem with Estim. to Hist. Productivity Ratio
with high possibility of being caused by a potential performance problem with Size Estimation Accuracy
with moderate possibility of being caused by a potential performance problem with Design Review Productivity Stability
with moderate possibility of being caused by a potential performance problem with Design Productivity Stability
with moderate possibility of being caused by a clear performance problem with Unit Test Productivity Stability
with moderate possibility of being caused by a potential performance problem with Plan Productivity Stability

m

Figure A.25: Report view.

In the example Figure A.25, the first two causes are much more important than the other
ones, so it is a good idea to focus on that causes. For addressing the first one, the historical
productivity of previous projects should be used in time estimating for future projects (with the
appropriate PROBE method). For addressing the second one, the relevant actions should have

already been indicated in a previous section of the report.

116 Tutorial on PSP Final Report guidelines with ProcessPAIR

In case you found deeper or different causes for the time estimation problems, you should

devise actions for addressing them.

A.3 Defect and yield analysis

1. Which defect type accounts for the most time spent in compile? In test? In which phase

was each type of defect injected most often?

In the “Indicator View”, “Base Measures” group, select the “Fixtime of Defects Removed in
Compile” and “Fixtime of Defects Removed in Unit Test” items, and “Defect Type” for the

X-Axis, to obtain the answers to the first two questions, as illustrated in Figure A.26.

C=RE X

| File | Report View | TabIeView| Indicator View | Cause-Effect View |

Save Image Copv Image
Select indicators (one or more) b -®- Fixtime of Defects Removed in Compile - Fixtime of Defects Removed in Unit Test
> Actual Size 404
» Estimated Size
Size UPI
Size LPL
» Actual Time %3.0
Estimated Time 30 /
Time UPI
Time LPI
» Number of Defects Injected
» Number of Defects Removed
4 Defects Fix Time
4 Defects Fix Time by Phase
» Fixtime of Defects Removed in Plan
> Fixtime of Defects Removed in Design | _
> Fixtime of Defects Remaved in Design I
» Fixtime of Defects Removed in Code 104
» Fixtime of Defects Remaved in Code Ry
»| Fixtime of Defects Removed in Compil
»| Fixtime of Defects Removed in Unit Tex
> Fixtime of Defects Removed inPostmo)))1 0 L- 13__‘_

[ProcessPAIR v2.6

359

259

minutes
o
T

159

» Defects Fix Time bv Defect Tvoe T 0 T T T T T T
1 1 r DocumentatiorSyntaxBuild, packaAssignmentInterface Checking Data Function System Environmen

Defect Type
Filter X-Axis

] [k

Show Statistical Distribution Chart I

a

Figure A.26: Indicator view.

In this example there are no defects found in the Compile phase. In the Unit test phase, the
defects of type Function take most of the time, followed by the defects of type Interface. Also

notice that it is shown the average fix time for all projects.

The phases where defects of type Function and Interface were injected most often (third ques-
tion), can be seen in the Figure A.27. Those types of defects are injected mostly in the Code

phase, followed by the Design and the Unit Test phases.

2. What type of defects do I inject during design and coding?

Figure A.28 provides an answer in terms of number of defects. In this example, the most

important type is Function, followed by Interface and Assignment.

A.3 Deftect and yield analysis

] ProcessPAIR v2.6 -
| File | Report View | Table View| Indicator View ‘ Cause-Effect View|

Save Image Copy Image
Select indicators (one or more) il -8 Number of Defects of Type Interface 8- Number of Defects of Type Function
» Performance Indicators 3 4
4 Base Measures
» Actual Size
» Estimated Size
Size UPI
Size LPL
> Actual Time
Estimated Time
Time UPI
Time LPL 'e
4 Number of Defects Injected @
» Number of Defects Injected by Phase EJ 137
4 Number of Defects Injected by Defect Tyf|
» Number of Defects of Type Documenty|
> Number of Defects of Type Syntax
» Number of Defects of Type Build, pack
» Number of Defects of Type Assignmen
>/ Number of Defects of Type Interface 05
» Number of Defects of Type Checking
> Number of Defects of Type Data
>|Number of Defects of Type Function| _ 0 -
’ Plan Design Design Review Code

259 5‘5

m

< 111} | Code Review Compile Unit Test Postmortem
Phase

l Show Statistical Distribution Chart
K-Axis

~ ~Filter

Summary

Figure A.27: Indicator view.

B -
] ProcessPAIR v2.6

| Report View | Table View| Indicator View ‘ Cause-Effect View|

[File
Save Image Copy Imaae
Select indicators (one or more) il -@ Number of Defects Injected in Design -M- Number of Defects Injected in Code
» Performance Indicators 3 4
4 Base Measures
> Actual Size
» Estimated Size
Size UPI
Size LPL
> Actual Time
Estimated Time
Time UPI
Time LPL E
4 Number of Defects Injected ‘2 154
4 Number of Defects Injected by Phase [T}
» Number of Defects Injected in Plan =
»| Number of Defects Injected in Design
> Number of Defects Injected in Design f
»| Number of Defects Injected in Code
> Number of Defects Injected in Code Re
> Number of Defects Injected in Compile| | 05
> Number of Defects Injected in Unit Tes
» Number of Defects Injected in Postmor
» Number of Defects Injected by Defect Tyg _ 0 A - - -

2549

m

< i1} | ’ DocumentatiorSyntaxBuild, packaAssignment Interface Checking
Defect Type

T
Data Function System Environment

l Show Statistical Distribution Chart
X-Axis

Defect Type -

~ ~Filter

Summary

Figure A.28: Indicator view.

3. What trends are apparent in defects per size unit (e.g., KLOC) found in reviews, compile,

and test?

118 Tutorial on PSP Final Report guidelines with ProcessPAIR

Figures A.29 A.30 show the relevant information. In this example there is no Compile phase.

|| ProcessPAIR v2.6 - C=HC ﬂ

File | Report View | Table\iiew| Indicator View | Cause-Effect View|
Save Image Copv Image
Select Indicators (one or more) Defect Density in Unit Test (defects/KLOC) by Project

4 Performance Indicators

» Size Estimation Accuracy

» Time Estimation Accuracy 359
» Productivity
» Productivity Stability 304 2
» Defects Injected
» Defect Removal Rate
Appraisal to Failure Ratio 259
»| Defect Density in Unit Test
» Process Yield 23
. Base Measures 209 yellow upper limit (30)

--- green upper imit (11)
— optimal value (0)

» Other Measures

31 -'= actual values
104
5 4
B 0 - T T T - -
R T — D Program1l Program2 Program3 Program4 Program5 Program 6
l Show Statistical Distribution Chart Project
The ratio of Unit Test Defects Removed to Actual » User statistics X-Axis

Size i min: 0 max: 32 average: 138 weighted: 19.0

Figure A.29: Indicator view.

] ProcessPAIR v2.6 - C=HICT ﬂ
| File | Report View | TabIeView| Indicator View ‘Cause-Eﬁect View|
Save Image Copv Image
Select indicators (one or more) s — optimal value -8 Defect Denstty in Design Review -B- Defect Density in Code Review
4 Performance Indicators
» Size Estimation Accuracy 18
» Time Estimation Accuracy
» Productivity 164
» Productivity Stability
» Defects Injected
» Defect Removal Rate 144
Appraisal to Failure Ratio |
> Defect Density in Unit Test 3 8 127
» Process Yield E‘
> Base Measures %‘ 109 |
4 Other Measures @
» DRL of Reviews or Compile versus Unit Testir l'_gl 8 1
4 Defects Removed
Defect Density in Design Review 6
Defect Density in Code Review
Defect Density in Compile o 49
Defect Density in Unit Test
» Percentage of Defects Injected 2
» Percentage of Defects Removed
> Accumulated Percentaae of Defects Iniected ™ 0 = T !
4 n | r Program 1 Program 2 Program 3 Program 4 Program 5 Program 6
[Show Statistical Distribution Chart Project
4 User statistics X-Axis
correlation: 0.72 [Scatter

Figure A.30: Indicator view.

In this example (Figure A.29), there is a trend for decreasing the defects found in unit test per

size unit, with 0 defects in the last two projects. This may be caused by defects being found in

A.3 Defect and yield analysis 119

earlier phases or because of fewer defects being injected. Usually, fewer defects found in unit
test also means that fewer defects remain in the delivered program, so the delivered program is
of higher quality.

Regarding defects per size unit found in code and design reviews, there is no clear trend (see
Figure A.30).

4. What trends are apparent in total defects per size unit?

The relevant chart is shown in Figure A.30. In this example there is a trend for decreasing in
the last two projects. Anyways, the total defects per size unit are within the green region (less

than 45 defects per KLOC) in all projects. So, the performance is good and improving.

8] ProcessPAIR v2.6 e | (O] e
File | Report View | Table View| Indicator View | Cause-Effect View|
Save Image Copy Imaae
Selcctindicator(oncionmore) Defects Injected (defects/KLOC) by Project
4 Performance Indicators
> Size Estimation Accuracy 100
» Time Estimation Accuracy
» Productivity 90 -
» Productivity Stability
Defects Injected 80 +
» Defect Removal Rate
Appraisal to Failure Ratio 70 A
» Defect Density in Unit Test
> Process Yield 60
Base Measures yellow upper imit (90)
. Other Measures 50 green upper mit (45)
— optimal value (0)
40 A -+~ actual values
36
30 4 L e
20
. /'14
0 - T T T T T
1 1T} [Programl Program2 Program3 Program4 Program 5 Program 6
Show Statistical Distribution Chart Project
The ratio of defects found in all phases to Actual = User statistics X-Axis
Size i min: 0 max: 40 average: 25.7 weighted: 308

Figure A.31: Indicator view.

5. How do my defect removal rates (defects removed/hour) compare for design review, code

review, compile, and test?

The relevant chart is shown in Figure A.32. In this example there is no Compile phase. The
Code Review phase (with 3.85 defects found per hour on average) is slightly more efficient in
finding defects than the Unit Test phase (with 3.69 defects found per hour on average). The

Design Review phase is less efficient (with 1.38 defects found per hour).

The Figure A.33, A.34 and A.35 allow a better comparison with benchmarks. As indicated in
the figures, a good performance for the defect removal rate is a value equal or greater than 8.0
defects/hour in Code Review and a value equal or greater than 4.9 defects/hour in Unit Test (less
efficient than Code Review). In this example, compared to the benchmarks, the weighted av-

erage performance in Code Review (3.85 compared to 8.0) is worse than the weighted average

120 Tutorial on PSP Final Report guidelines with ProcessPAIR

- ——
'] ProcessPAIR v26 - o) e S
| File | Report View | TabIeView| Indicator View ‘Cause-Eﬁect View|
Save Image Copv Image
Select indicators (one or more) Defect Removal Rate (defects/hour) by Phase
4 Performance Indicators
» Size Estimation Accuracy 457
» Time Estimation Accuracy
» Productivity 4 1
» Productivity Stability £ R % o
» Defects Injected 354
»| Defect Removal Rate
Appraisal to Failure Ratio 3 1
1)
» Defect Density in Unit Test g
» Process Yield _E 254 (|
> Base Measures '{ﬂ_,
» Other Measures aQ
%2]
h-]
15
138
1
051
0 4 : ‘ ;
4 M | r Design Review Code Review Unit Test
l Show Statistical Distribution Chart Phase
The ratio of number of defects removed to time ~ « Filter X-Axis
spent in defect removal phases ISummary

Figure A.32: Indicator view.

performance in Unit Test (3.69 compared to 4.9). So there is much more room for improvement

in the Code Review phase.

- —
[#-] ProcessPAIR v2.6 - b@g

| File | Report View | TabIeView| Indicator View ‘Cause—Eﬁect View|
Save Image Copv Imaae

Select indicators (ane or more) Defect Removal Rate in Design Review (defects/hour) by Project
4 Performance Indicators

» Size Estimation Accuracy 4

> Time Estimation Accuracy

» Productivity

> Productivity Stability

» Defects Injected

4 Defect Removal Rate ElN
Defect Remaoval Rate in Design Review 9
Defect Removal Rate in Code Review 25
Defect Removal Rate in Unit Test
Defect Removal Rate in Compile

— optimal value (infinity)

Appraisal to Failure Ratio 29 — green lower mit (3.6)
» Defect Density in Unit Test yelow lower lmic (0.0)
== actual values

» Process Yield 15
» Base Measures

» Other Measures 1
054
— 0 - T t - 1
d ‘+| D Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
The ratio of defects removed to time spent in ~ User statistics K-Axis

Design Review min: 0.0 max. 3.5 average: 160 weighted: 138

Figure A.33: Indicator view.

A.3 Defect and yield analysis

121

Defect Removal Rate in Compile
Appraisal to Failure Ratio i3
» Defect Density in Unit Test '

7] ProcessPAIR v2.6 - @M
File | Report View | Table View| Indicator View ‘ Cause-Effect View|
Save Image Copy Image
Selectlindicatorllongioqmore) Defect Removal Rate in Code Review (defects/hour) by Project
4 Performance Indicators
» Size Estimation Accuracy 94
» Time Estimation Accuracy
» Productivity a4
» Productivity Stability
» Defects Injected 74
4 Defect Removal Rate 7
Defect Removal Rate in Design Review 54
Defect Removal Rate in Code Review
Defect Removal Rate in Unit Test
5 — optimal value (infinity)

— green lower imit (8.0)
yelow lower imit (3.3)

338 --
» Process Yield actual values
> Base Measures 3
» Other Measures
24
14
0- T
< 1l | r Program 3 Program 4 Program 5 Program 6
[Show Statistical Distribution Chart Project
The ratio of defects removed to time spent in 4 User statistics X-Axis
Code Review i min: 0.0 max: 6.7 average: 3.68 weighted: 3.85
Figure A.34: Indicator view.
[| ProcessPAIR v2.6 - L@ﬁ
| File | Report View | Table View| Indicator View ‘ Cause-Effect View|
Save Image Copv Imaae
Selecindicatorsl(oneiormore) Defect Removal Rate in Unit Test (defects/hour) by Project
4 Performance Indicators 16
» Size Estimation Accuracy
» Time Estimation Accuracy
» Productivity 144
» Productivity Stability 33
» Defects Injected 12
4 Defect Removal Rate
Defect Removal Rate in Design Review
Defect Removal Rate in Code Review 107
Defect Removal Rate in Unit Test 8 8
Defect Removal Rate in Compile 8 - — optimal value (infiity)
Appraisal to Failure Ratio — green lower imit (4.9)
> Defect Density in Unit Test s yelow lower mit (2.0)
» Process Yield 6.3 == actual values
» Base Measures
> Other Measures 4 4 /4‘3
27
0 1 1 T T - 1
< | 1l | Program1l Program2 Program 3 Program4 Program 5 Program 6
Show Statistical Distribution Chart Project
The ratio of defects removed to time spent in User statistics X-Axis
st min: 0.0 max: 133 average: 434 weighted: 3.69

Figure A.35: Indicator view.

6. What are my review rates (size reviewed/hour) for design review and code review?

The relevant Figures are A.36 and A.37. In ProcessPAIR the Design Review Rate and Code

Review Rate are also called Design Review Productivity and Code Review Productivity, re-

122 Tutorial on PSP Final Report guidelines with ProcessPAIR

spectively. In this example, the average Design Review Rate is 324 LOC/hour, which is within
the green region. The average Code Review Rate is 310 LOC/hour, which is also within the

green region. In both cases there is a trend towards getting close to the optimal value.

[»-] ProcessPAIR v26 -— P=HI=T ﬁ

File | Report View | TabIeView| Indicator View | Cause-Effect View|

Save Imaae Copv Image

Sclectindicatorsjoneoymore) Design Review Productivity (LOC/hour) by Project
4 Performance Indicators 900
» Size Estimation Accuracy
» Time Estimation Accuracy 8004
4 Productivity
Plan Productivity 200
Design Productivity
Design Review Productivity
Code Productivity 600
Code Review Productivity
> Compile Productivity SO0 T i N e e i yellow upper limit (888)
> Unit Test Productivity -=- green upper limit (493)
Postmortem Productivity 4004 — optimal value (300)
> Productivity Stability — green lower Imt (232)
» Defects Injected 3004 yellow lower limit (161)
» Defect Removal Rate /'266 actual values
Appraisal to Failure Ratio 2004
» Defect Density in Unit Test
» Process Yield
» Base Measures 1004 102
» Other Measures
- 0 -
L) F—TT— D Program 3 Program 4 Program 5 Program 6
l Show Statistical Distribution Chart Project
The ratio of Actual Size to Design Review Time ~ ~ User statistics X-Axis

(same as Design Review Rate)

_ min: 102 max: 568 average: 3241 weighted: 2855

Figure A.36: Indicator view.

[ProcessPAIR v2.6 - @M
File | Report View | TabIeView| Indicator View ‘Cause—Eﬁect View|
Save Image Copv Image
Select indicators (one or more) Code Review Productivity (LOC/hour) by Project

4 Performance Indicators 600

» Size Estimation Accuracy
»> Time Estimation Accuracy
4 Productivity 5004
Plan Productivity
Design Productivity
Design Review Productivity
Code Productivity
Code Review Productivity
» Compile Productivity
> Unit Test Productivity 300+
Postmortem Productivity
» Productivity Stability
» Defects Injected 2004
» Defect Removal Rate

400+

yelow upper limic (571)
-=- green upper mit (332)
— optimal value (200)

— green lower imit (161)

yellow lower imit (119)

-~ actual values

Appraisal to Failure Ratio
» Defect Density in Unit Test
» Process Yield 1007
» Base Measures

» Other Measures

< | LI} | D Program 3 Program 4 Program 5 Program 6

l Show Statistical Distribution Chart Project

The ratio of Actual Size to Code Review Time 4 User statistics X-Axis

(same as Code Review Rate) min: 210 max. 420 average: 3103 weighted: 3185

Figure A.37: Indicator view.

A.3 Defect and yield analysis 123

7. What are my defect-removal leverages for design review, code review, and compile versus

unit test?

The relevant values are shown in the Figure A.38. In this example there is no Compile phase.
On average, the defect removal leverage is 0.374 for design review versus unit test and 1.042

for code review versus unit test. The interpretation was already done in a previous question.

8] ProcessPAIR v2.6 e | (O] e
| File | Report View | Table View| Indicator View | Cause-Effect View|
Save Image Copy Imaae |

Select Indicators (one or more) DRL of Reviews or Compile versus Unit Testing by Phase
Performance Indicators

» Base Measures 124
4 Other Measures
-/ DRL of Reviews or Compile versus Unit Testing
> Defects Removed 1 1042
Percentage of Defects Injected
» Percentage of Defects Removed
» Accumulated Percentage of Defects Injected 0.8
» Accumulated Percentage of Defects Removed
> Process Quality Index

Cost of li
ost of Quality 064
044
374
0.2
|
0 T
1 LT} [Design Review Code Review
Show Statistical Distribution Chart I Phase
Defect Removal Leverage of Reviews or Compile « Filter X-Axis
wversus Unit Test: the ratio of the Defects/Hour l I
Summary || > ase

rates of Design Review, Code Review or Compile ~

Figure A.38: Indicator view.

8. Is there any relationship between yield and review rate (size reviewed/hour) for design

and code reviews?

The relevant information is shown in Figure A.39 and A.40 . The review yield is undefined
when there are 0 defects entering the review phase. In this example, that happens with program
5 (for code and design reviews) and program 4 (for design review only). Regarding the Code
Review Yield versus the Code Review Rate, there is a negative correlation (-0.87) as expected
(because slower reviews are usually associated with higher yields). However, since there are
only 3 data points, the correlation is not statistically significant. As for the Design Review
Yield versus Design Review Rate, the trend is different from expected (a slower review rate
is associated with a smaller yield), but with only two data points the correlation coefficient is

meaningless (always +1 or -1).

9. Is there a relationship between yield and A/FR?

The relevant information is shown in Figure A.41. In this example there is a very good positive
correlation (0.95) between the Process Yield and the Appraisal to Failure Ratio (A/FR). The
correlation is also statistically significant (for a 5% confidence level, computed with a web

124 Tutorial on PSP Final Report guidelines with ProcessPAIR
[] ProcessPAIRv26 - C=HICT ﬂ
File | Report View | TabIeView| Indicator View | Cause-Effect View
Save Image Copv Image
Select indicators (one or more) 4= Code Review Yield ="~ Code Review Productivity
4 Performance Indicators 100 L 500
» Size Estimation Accuracy
» Time Estimation Accuracy 90 4 L 450
» Productivity
> Productivity Stability 80 1 I 400
» Defects Injected
» Defect Removal Rate 70 A T L 150
Appraisal to Failure Ratio 345
» Defect Density in Unit Test 60 - F 300 =
4 Process Yield 3
> Design Review Yield L0 4 = Loso=
. - (&)
4|Code Review Yield =]
Code Review Productivity 40 b 200 =
» Base Measures
> Other Measures 30 4 F 150
20 A r 100
10 A r 50
0 f T - 0
4 1il] J r Program 3 Program 4 Program 6
[Show Statistical Distribution Chart Project
4 User statistics X-Axis
correlation: -0.87 [Scatter

Figure A.39: Indicator view.

R N
[#-] ProcessPAIR v2.6
| File | Report View | TabIeView| Indicator View ‘Cause—Eﬁect View|
Save Image Copv Imaae
Select indicators (one or more) -~ Design Review Yield <7~ Design Review Productivity
4 Performance Indicators 100
» Size Estimation Accuracy
> Time Estimation Accuracy 90 1 L 60
» Productivity ,
» Productivity Stability 80 - 558
» Defects Injected I so0
» Defect Removal Rate 70 Tl
Appraisal to Failure Ratio T
» Defect Density in Unit Test 60 L .
400 5
4 Process Yield S H
4| Design Review Yield 509 5 %60 =
Design Review Productivity L 200 8
» Code Review Yield 40 =
» Base Measures
» Other Measures 30 4 33 L 500
20 A+
r 100
10 A
0 T -0
< | 1 | D Program 3 Program 4
l Show Statistical Distribution Chart Project
- User statistics X-Axis
correlation: 100 [Scatter

Figure A.40: Indicator view.

calculator). This correlation is as expected, because spending more time in ‘appraisal’ activities
(design and code reviews) is usually associated with a higher process yield (percentage of

defects found before compile and test).

A.3 Deftect and yield analysis 125

7] ProcessPAIR v2.6 - - @m

| File | Report View | Table View| Indicator View ‘ Cause-Effect View|
Save Image Copy Image

Select indicators (one or more) -8~ Appraisal to Faiure Ratio 8- Process Yield

4 Performance Indicators 100
» Size Estimation Accuracy
> Time Estimation Accuracy 127 90
» Productivity
> Productivity Stability - 80
> Defects Injected 10
> Defect Removal Rate r 70
Appraisal to Failure Ratio
» Defect Density in Unit Test 89 - 60
»| Process Yield
> Base Measures rso &8
» Other Measures 6
40
|
4 4 r 30
20
2 A e
1 r 10
0 - T T T T T~ 0
< L1} | r Program 1 Program 2 Program 3 Program 4 Program &
[Show Statistical Distribution Chart Project
4 User statistics X-Axis
correlation: 0.95 [Scatter
Figure A.41: Indicator view.
You can also see the same information in Figure A.42 (Scatter check box selected).
] ProcessPAIR v2.6 - - oo) e
| File |RepurtView | Table View| Indicator View ‘Cause-Eﬁect View|
Save Image Copv Image
- 100
Select indicators (one or more) ‘[’rogram 6
4 Performance Indicators
» Size Estimation Accuracy 90 1
» Time Estimation Accuracy
» Productivity 80 4
» Productivity Stability
> Defects Injected 70 ~
» Defect Removal Rate I
. . s £
Appraisal to Failure Ratio 260 4 $ 3 $‘ 4
» Defect Density in Unit Test % rogram rogram
> Process Yield £ 50 4
> Base Measures @ |
a
» Other Measures g 40 A
1)
a
30 A
20 H
Erogram 1
10 -Program 2
0 A : ‘ ‘ i : ; : : ‘ ‘ : : ‘
< 111 | r 0 1 2 3 4 5 6 7 8 9 10 11 12 13
l Show Statistical Distribution Chart Appraisal to Failure Ratio
- User statistics X-Axis
correlation: 0.95 Scarter

Figure A.42: Indicator view.

126 Tutorial on PSP Final Report guidelines with ProcessPAIR

A.4 Quality analysis

1. How much did the quality of the programs entering unit test change? Why?

In PSP, the quality of programs entering unit test is usually assessed based on the defects per
size unit found in unit test, so the relevant information is shown in Figure A.43. As already
analysed before, in this example there is a trend for decreasing the defects found in unit test per
size unit, starting with an average of 27 defects/KLOC in the first two programs, an average
of 14 defects/KLOC in programs 3 and 4, and finally 0 defects/KLOC in the last two projects,

which is a very good improvement trend.

=] ProcessPAIR v2.6 e | O e
| File | Report View | TabIeView| Indicator View |Cause-Effect View|
Save Image Copv Image |
Select Indicators (one or more) Defect Density in Unit Test (defects/KLOC) by Project

4 Performance Indicators
» Size Estimation Accuracy
» Time Estimation Accuracy 354
» Productivity
» Productivity Stability 304 2
» Defects Injected
» Defect Removal Rate
Appraisal to Failure Ratio 254
»| Defect Density in Unit Test

» Process Yield
204 yellow upper limt (30)

green upper imit (11)
— optimal value (0)

B 6
15 / == actual values

104

- Base Measures
» Other Measures

4 L1 D Program1 Program2 Program3 Program4 Program 5 Program 6

Show Statistical Distribution Chart Project

The ratio of Unit Test Defects Removed to Actual » User statistics X-Axis
Size

_ min: 0 max: 32 average: 133 weighted: 19.0

Figure A.43: Indicator view.

2. Am I finding my defects in design and code reviews? Why or why not?

The relevant information is shown in Figure A.44 and for a more detailed information, the
design review and code review yields, as shown in Figure A.45. The yield is not defined when
there are no defects entering a phase. In this example, regarding the process yield, there is a
very good evolution from very small values in the first two programs (without review phases)
to 60% in programs 3 and 4 (when reviews are introduced) and finally 100% in program 6 (in
program 5 the yield is undefined because of no defects recorded). The Code Review Yield
follows a similar trend. Regarding the Design Review Yield, it is undefined in programs 5
and 6, and the values observed in the previous two programs still have room for improvement

(namely to reach the 78% boundary).

3. Based on my historical data, what are some realistic quality goals for me?

A.4 Quality analysis 127

———
'] ProcessPAIR v2.6 - - o (T e

| File | Report View | Table View| Indicator View ‘ Cause-Effect View|

Save Image Copy Image

Select indicators (one or more) PI'OCESS Yield (a/o) by Project
4 Performance Indicators 100 00
» Size Estimation Accuracy
» Time Estimation Accuracy 90 4
» Productivity
> Productivity Stability 80 1
» Defects Injected
» Defect Removal Rate 70 4
Appraisal to Failure Ratio
» Defect Density in Unit Test 60 -]
»| Process Yield
> Base Measures 50 — optimal value (100) |
> Other Measures — green lower mit (65)
40 4 yelow lower imit (43)
-+~ actual values
30 A
20
17
10 4 12
0 T T T T |
T — v Program 1 Program 2 Program 3 Program 4 Program &
l Show Statistical Distribution Chart Project
The ratio of the No. of defects removed before ~ « ~ User statistics X-Axis

Compile and Test to The No. of defects injected
before Compile and Test in percentage -

min: 13 max: 100 average: 49.8 weighted: 36.0

Figure A.44: Indicator view.

- —
] ProcessPAIR v2.6 B L@g

| File | Report View | Table View| Indicator View ‘ Cause-Effect View|

Save Image Copy Imaae

Selectindicators|(oneOGmore) Design Review Yield (%) by Project
4 Performance Indicators 100
» Size Estimation Accuracy
» Time Estimation Accuracy 90 A
» Productivity
> Productivity Stability 80 4
» Defects Injected
» Defect Removal Rate 70 A
Appraisal to Failure Ratio
» Defect Density in Unit Test 60 A
4 Process Yield
> Design Review Yield 50 4 — optimal value (100)
> Code Review Yield — green lower Imit (78)
- Base Measures 40 4 yelow lower mit (30)

-
> Other Measures actual values

30 A 33
20 A
10
S 0 t T T !
pJ] T C Program 1 Program 2 Program 3 Program 4
l Show Statistical Distribution Chart Project
The ratio of the No. of defects removed in Design =~ User statistics X-Axis

Review to The No. of defects entering Design
Review, in percentage -

min: 0 max: 50 average: 20.8 weighted: 28.6

Figure A.45: Indicator view.

ProcessPAIR lets you compare your performance to the performance achieved by other peo-

ple, and hence helps establishing realistic goals. In case you already have a good performance

128 Tutorial on PSP Final Report guidelines with ProcessPAIR

(green range), then probably you just have to keep your current performance. Otherwise, mov-

ing to the next range may be a realistic goal (from red to yellow, or from yellow to green).
In this example, it seems realistic to be in the green region for the defects found per size unit in
unit test (<= 11 defects/KLOC) and process yield (>= 65% in the benchmarks used).

4. How can I change my process to meet those goals?

The simplest way to answer this question is to first look at the causes suggested in the Report
View, as illustrated in Figure A.46 and A.47 (“Show only leaf causes” checked).

[m] ProcessPAIR v2.6 e (O] e
File Report View | Table View | Indicator View | Cause-Effect View
ISummary V] |Process Yield v] [#] Show only leaf causes I

potential performance problem with Process Yield
with high possibility of being caused by a potential performance problem with Code Review Yield
with high possibility of being caused by a clear performance problem with Design Review Yield

Figure A.46: Report view.

[®-] ProcessPAIR v2.6 = i&
File Report View | Table View | Indicator View | Cause-Effect View
ISummary '] |Defec1 Density in Unit Test '] Show only leaf causes I

potential performance problem with Defect Density in Unit Test
with moderate possibility of being caused by a potential performance problem with Code Review Yield
with moderate possibility of being caused by a clear performance problem with Design Review Yield

Figure A.47: Report view.

In this example, it is indicated a potential performance problem with both the process yield and
the defect density in unit test, having in both cases the same root causes: potential performance
problem with the Code Review Yield and clear performance problem with the Design Review
Yield.

Although the Code Review Yield is better than the the Design Review Yield, the first priority
indicated by ProcessPAIR (based on a cost-benefit estimate) is to improve the Code Review
Yield. Since the Code Review Rate is already within the recommended range, the improvement
actions should be based on other review best practices (e.g., improving review checklists to

focus on the types of defects that escaped from code reviews).

In case you found deeper or different causes for the problems identified, you should devise

actions for addressing them.

References

Charu C. Aggarwal. Data Classification: Algorithms and Applications. Chapman & Hall/CRC,
Ist edition, 2014. ISBN 1466586745, 9781466586741.

Lukas Alperowitz, Dora Dzvonyar, and Bernd Bruegge. Metrics in agile project courses. In
Proceedings of the 38th International Conference on Software Engineering Companion, pages
323-326. ACM, 2016.

Tiago L Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from benchmark
data. In Software Maintenance (ICSM), 2010 IEEE International Conference on, pages 1-10.
IEEE, 2010.

Tiago Miguel Laureano Alves. Benchmark-based software product quality evaluation. 2012.

AssignmentKit. Assignment kit for final report, personal software process for engineers: Part
i1, PSP academic material 4-1, 2006. URL http://www.sei.cmu.edu/tsp/tools/
academic/index.cfm.

Kent Beck. Extreme programming explained: embrace change. Addison-Wesley Professional,
2000.

Barry Boehm. Some future software engineering opportunities and challenges. In The Future of
Software Engineering, pages 1-32. Springer, 2011.

L. Breiman. Classification and Regression Trees. The Wadsworth statistics/probability series.
Wadsworth International Group, 1984. ISBN 9780534980542. URL https://books.
google.pt/books?id=ml1ZgQgAACAAJ.

J Campos. Risk management and failure mode and effect analysis for product development. Rapid
Innovation LLC, 2012.

David N Card. Defect-causal analysis drives down error rates. IEEE Software, 10(4):98-99, 1993.

David N Card. Defect analysis: Basic techniques for management and learning. Advances in
Computers, 65:259-295, 2005.

Samprit Chatterjee and Ali S Hadi. Regression analysis by example. John Wiley & Sons, 2015.

Mary Beth Chrissis, Mike Konrad, and Sandra Shrum. CMMI for development: guidelines for
process integration and product improvement. Pearson Education, 2011.

Watts S. Humphrey Daniel Burton. Mining PSP Data. 2006.

Process Dashboard. Tuma Solutions LLC, Process Dashboard. URL http://www.
processdash.com/.

129

http://www.sei.cmu.edu/tsp/tools/academic/index.cfm
http://www.sei.cmu.edu/tsp/tools/academic/index.cfm
https://books.google.pt/books?id=mlZgQgAACAAJ
https://books.google.pt/books?id=mlZgQgAACAAJ
http://www.processdash.com/
http://www.processdash.com/

130 REFERENCES

T. Daughtrey. Fundamental Concepts for the Software Quality Engineer. ASQ Quality
Press, 2002. ISBN 9780873895217. URL https://books.google.pt/books?id=
dFmXBaLy0YMC.

Norman Fenton and James Bieman. Software metrics: a rigorous and practical approach. CRC
Press, 2014.

Jerome H Friedman. Multivariate adaptive regression splines. The annals of statistics, pages 1-67,
1991.

John C Gower. A general coefficient of similarity and some of its properties. Biometrics, pages
857-871, 1971.

Hackystat. Hackystat Development Team, Hackystat. URL https://code.google.com/
archive/p/hackystat/.

DM Hamby. A review of techniques for parameter sensitivity analysis of environmental models.
Environmental monitoring and assessment, 32(2):135-154, 1994.

H James Harrington et al. Business process improvement: The breakthrough strategy for total
quality, productivity, and competitiveness, volume 1. McGraw-Hill New York, NY, 1991.

Watts Humphrey and James Over. Leadership, Teamwork, and Trust: Building a Competitive
Software Capability. Addison-Wesley Professional, 2010.

Watts S Humphrey. Introduction to the Personal Software Process. Addison-Wesley Professional,
1997.

Watts S Humphrey. Team Software Process (TSP). Encyclopedia of Software Engineering, 2000.

Watts S Humphrey. PSP (sm): a self-improvement process for software engineers. Addison-
Wesley Professional, 2005.

C. Jones. Software Engineering Best Practices: Lessons from Successful Projects in the Top
Companies. McGraw-Hill Education, 2009. ISBN 9780071621625. URL http://books.
google.pt/books?id=CJd__ 8ANvtQC.

Capers Jones. Software assessments, benchmarks, and best practices. Addison-Wesley Longman
Publishing Co., Inc., 2000.

Marcos Kalinowski, David N Card, and Guilherme H Travassos. Evidence-based guidelines to
defect causal analysis. IEEE Software, 29(4):16-18, 2012.

Chris F Kemerer and Mark C Paulk. The impact of design and code reviews on software quality:
An empirical study based on PSP data. Software Engineering, IEEE Transactions on, 35(4):
534-550, 2009.

Ron S Kenett and Emanuel Baker. Software process quality: management and control. CRC
Press, 1999.

Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer, 2013.

Young Hoon Kwak and Frank T Anbari. Benefits, obstacles, and future of six sigma approach.
Technovation, 26(5):708-715, 2006.

https://books.google.pt/books?id=dFmXBaLy0YMC
https://books.google.pt/books?id=dFmXBaLy0YMC
https://code.google.com/archive/p/hackystat/
https://code.google.com/archive/p/hackystat/
http://books.google.pt/books?id=CJd__8ANvtQC
http://books.google.pt/books?id=CJd__8ANvtQC

REFERENCES 131

Steve McConnell. Software estimation: demystifying the black art. Microsoft press, 2006.

Mushtaq and Jodo Pascoal Faria. A Model for Analyzing Estimation, Productivity, and Qual-
ity Performance in the Personal Software Process. In Proceedings of the 2014 Interna-
tional Conference on Software and System Process, ICSSP 2014, pages 10-19, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2754-1. doi: 10.1145/2600821.2600828. URL
http://doi.acm.org/10.1145/2600821.2600828.

MHNM Nasir and Azwina M Yusof. Automating a modified personal software process. Malaysian
Journal of Computer Science, 18(2):11-27, 2005.

W Navidi. Statistics for scientist and engineers, 2011.

William Cyrus Navidi. Statistics for engineers and scientists. McGraw-Hill Higher Education,
2008.

Lutz Prechelt and Barbara Unger. A controlled experiment on the effects of PSP training: Detailed
description and evaluation. Univ., Fak. fiir Informatik, 1999.

PSPWorkBook. Software Engineering Institute (SEI) customer relations, self-study PSP material.
URL http://www.sei.cmu.edu/tsp/tools/student/.

Mushtaq Raza, Jodo Pascoal Faria, and Rafael Salazar. Empirical Evaluation of the Process-
PAIR Tool for Automated Performance Analysis. In The 28th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2016, Research Inc. and Knowl-
edge Systems Institute Graduate School, 2016. KSI. ISBN 1-891706-39-X. URL http:
//dblp.uni-trier.de/rec/bib/conf/seke/2016.

Dieter Rombach, Jiirgen Miinch, Alexis Ocampo, Watts S Humphrey, and Dan Burton. Teaching
disciplined software development. Journal of Systems and Software, 81(5):747-763, 2008.

Guoping Rong, He Zhang, Shan Qi, and Dong Shao. Can software engineering students program
defect-free?: an educational approach. In Proceedings of the 38th International Conference on
Software Engineering Companion, pages 364-373. ACM, 2016.

Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora
Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the primer. John
Wiley & Sons, 2008.

George AF Seber and CJ Wild. Nonlinear regression, 1989.
Cosma Shalizi. Classification and regression trees. Statistics, pages 36-350, 2009.

Wen-Hsiang Shen, Nien-Lin Hsueh, and Wei-Mann Lee. Assessing PSP effect in training disci-
plined software development: A plan—track—review model. Information and Software Technol-
0gy, 53(2):137-148, 2011.

Hyunil Shin, Ho-Jin Choi, and Jongmoon Baik. Jasmine: a PSP supporting tool. In International
Conference on Software Process, pages 73—-83. Springer, 2007.

Raymund Sison. Personal software process (PSP) assistant. In /2th Asia-Pacific Software Engi-
neering Conference (APSEC’05), pages 8—pp. IEEE, 2005.

http://doi.acm.org/10.1145/2600821.2600828
http://www.sei.cmu.edu/tsp/tools/student/
http://dblp.uni-trier.de/rec/bib/conf/seke/2016
http://dblp.uni-trier.de/rec/bib/conf/seke/2016

132 REFERENCES

L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Ishikawa Diagram. Betascript Pub-
lishing, 2010. ISBN 9786131409950. URL https://books.google.pt/books?id=
hgotkgAACAAJ.

Shurei Tamura. Integrating CMMI and TSP/PSP: Using TSP data to create Process Performance
Models. Technical report, DTIC Document, 2009.

Supachai Thisuk and Sakgasit Ramingwong. Wbps: A new web based tool for personal software
process. In Electrical Engineering/Electronics, Computer, Telecommunications and Informa-
tion Technology (ECTI-CON), 2014 11th International Conference on, pages 1-6. IEEE, 2014.

UML2.5. Unified Modeling Language™, 2015. URL http://www.omg.org/spec/UML/2.
5/.

Stefan Wagner, Melanie Ruhe, and AG Siemens. A systematic review of productivity factors in
software development. language, 1989, 1980.

WebProcessPAIR. Webprocesspair: Recommendation system of improvement actions, 2016. URL
https://repositorio—aberto.up.pt/handle/10216/85826.

Dave Zubrow, Bob Stoddard, Rawdon Young, and Kevin Schaaf. A practical approach for building
CMMI process performance models. In SEPG North America Conference, 2009.

https://books.google.pt/books?id=hqotkgAACAAJ
https://books.google.pt/books?id=hqotkgAACAAJ
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
https://repositorio-aberto.up.pt/handle/10216/85826

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research goals
	1.3 Research contributions
	1.4 Document structure

	2 State of the art
	2.1 Performance measurement and analysis in CMMI
	2.1.1 Overview
	2.1.2 CMMI practices related to process performance analysis

	2.2 Performance measurement and analysis in PSP
	2.2.1 Overview
	2.2.2 Process structure
	2.2.3 Measurement framework
	2.2.4 Final report assignment
	2.2.5 Tool support for PSP

	2.3 Performance measurement and analysis in other processes
	2.4 Performance problem identification techniques
	2.4.1 Control charts
	2.4.2 Benchmark based software evaluation

	2.5 Root cause analysis techniques
	2.5.1 Fishbone diagrams
	2.5.2 Defect causal analysis
	2.5.3 Process performance models
	2.5.4 Regression models
	2.5.5 Sensitivity analysis

	3 Proposed performance analysis method
	3.1 Overall approach
	3.1.1 Problem identification approach
	3.1.2 Root cause identification approach
	3.1.3 Ranking approach

	3.2 Performance model definition
	3.3 Performance model calibration
	3.3.1 Approximate cumulative distribution functions
	3.3.2 Performance ranges
	3.3.3 Regression models and sensitivity coefficients
	3.3.4 Data set filtering

	3.4 Model-based performance analysis
	3.4.1 Project level information
	3.4.2 Subject level information
	3.4.3 Ranking calculations

	4 Performance model for the PSP
	4.1 Model definition
	4.1.1 Performance indicators and dependencies
	4.1.2 Predictability
	4.1.3 Quality
	4.1.4 Productivity

	4.2 Model validation and calibration
	4.2.1 Data set
	4.2.2 Model validation
	4.2.3 Model calibration

	4.3 Support data for the ranking method
	4.3.1 Introduction
	4.3.2 Support data for the sensitivity coefficient
	4.3.3 Support data for the percentile coefficient
	4.3.4 Ranking example

	5 The ProcessPAIR tool implementation
	5.1 Architecture
	5.2 Model calibration user interface
	5.3 File selection user interface
	5.4 Analysis views
	5.4.1 Report view
	5.4.2 Table view
	5.4.3 Indicator view
	5.4.4 Cause-effect view

	5.5 Tool extension API

	6 Experimentation and validation
	6.1 Postmortem experiment
	6.1.1 Research questions
	6.1.2 Input data
	6.1.3 Data analysis procedures
	6.1.4 Results
	6.1.5 Overall statistics
	6.1.6 Discussion
	6.1.7 Limitations and threats to validity

	6.2 Controlled experiment
	6.2.1 Context
	6.2.2 ProcessPAIR tuning
	6.2.3 Experiment design
	6.2.4 Results
	6.2.5 Discussion
	6.2.6 Threats to validity

	7 Conclusions and future work
	7.1 Summary of contributions
	7.2 Research questions revisited
	7.3 Future work

	A Tutorial on PSP Final Report guidelines with ProcessPAIR
	A.1 Analysis of size estimating accuracy
	A.2 Analysis of time estimating accuracy
	A.3 Defect and yield analysis
	A.4 Quality analysis

	References

