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SUMMARY 

Seismic risk is the result of the convolution of three different quantities (i) seismic hazard, (ii) 

exposure and (iii) vulnerability. Considering that both seismic hazard and exposure cannot be 

changed, vulnerability assumes a special role in reducing the expected seismic risk level. By 

properly intervening on a structure’s performance (e.g. by retrofitting solutions) the respective 

seismic risk level can be minimized. Improvements on the field of analytical performance, 

damage and loss assessment of reinforced concrete moment resisting frames are presented in 

this study.  

From the study of tridimentional finite element models of structures designed for increasing 

levels of ground shaking intensity ranging from close to zero (i.e. buildings with very low 

seismic design) up to 0.4g (i.e. moderate to high seismic hazard), new simplified relationships 

for estimating the period of vibration the height and the seismic design level are provided. In 

addition, suitable fragility functions parameters for European R.C. buildings have been 

developed within a risk-targeted hazard assessment framework. Statistical analyses to 

estimate appropriate boundaries for the collapse probability of buildings experiencing the 

design ground motion and for its dispersion are presented. A comprehensive study on the 

influence of these parameters on the final risk metrics (e.g. average annual loss) is also 

included 

Through a comprehensive analysis on the expected damage and the correspondent repair 

techniques, the expected losses of real Portuguese reinforced concrete buildings have been 

computed using real up-to-date construction costs. From the analytical results a new damage-

to-loss model developed for Portuguese construction has been presented. A methodology for 

computing vulnerability directly from the distribution of losses per seismic intensity is also 

provided. 

Finally, following an event based approach a new seismic risk map for mainland Portugal is 

presented. 

 

Keywords: Reinforced concrete buildings; Analytical vulnerability assessment; Seismic risk  
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SUMÁRIO 

Risco sismico é geralmente calculado através da convulução de três quantidades (i) 

perigosidade, (ii) exposição e (iii) vulnerabilidade. Considerando o facto de que tanto a 

periogosidade como a exposição são invariáveis, vulnerabilidade assume um papel fulcral na 

mitigação do nivel de risco sísmico. Através de intervenções correctas no desempenho de uma 

estrutura (por exemplo através soluções de reforço estrutural) é possivel reduzir o respectivo 

nivel de risco sísmico. Avanços nas metodologias de avaliação de desempenho e dano, 

especialmente em estruturas de betão armado são propostos nesta tese.  

Através da análise do desempenho de modelos numéricos de estruturas desenhadas para 

niveis crescentes de aceleração de pico desde um nivel próximo de zero (desempenho sismico 

muito limitado) até 0.40g (perigosidade sísmica moderada a elevada), relações simplificadas 

para cálculo do periodo de vibração a partir da altura e do nível de aceleração de 

dimensionamento são propostas. Adicionalmente, parâmetros de fragilidade adequados para 

o cálculo de curvas de fragilidade para edificios de betão armados europeus foram 

desenvolvidos no âmbito de um estudo risk-targeted hazard assessment. Estudos estatisticos para 

definir intervalos para a probabilidade de colapso para edificios sujeitos à aceleração de 

dimensionamento e para a variabilidade da curva de fragilidade. Um estudo detalhado acerca 

da influência destes parâmetros no valor do nivel de risco associado é igualmente apresentado. 

Através de um estudo detalhado do dano e das respectivas técnicas de reparação as perdas de 

edificios reais de betão armado foram calculadas tendo por base custos de construção 

actualizados. Através de análises dinâmicas não lineares um modelo de consequência 

desenvolvido para a construção portuguesa foi desenvolvido. Uma metodologia para cálculo 

da vulnerabilidade directamente a partir da distribuição de perdas por intensidade sísmica é 

igualmente proposta. 

Seguindo uma metodologia event-based um novo mapa de risco sismico para Portugal é 

também apresentado. 

 

Palavras-chave: Edificios de betão armado; Metodologias analiticas de vulnerabilidade; Risco sismico 
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1  
 

INTRODUCTION  
 

1.1 THE NEED FOR AN EARTHQUAKE LOSS ASSESSMENT STUDY 

Earthquakes are amongst the natural hazards responsible for the highest number of human 

casualties and economic losses throughout mankind's history. Recently the world's population 

reached the seven billion mark with the prospect of surpassing nine billion by the year 2050 

(Silva 2013). The exponential growth in the world's population has led to an increase in the 

number of megacities (i.e. cities with a population larger than two million) many of them in 

earthquake prone regions and potentially at risk (Crowley et al. 2006). In the past century alone 

it has been estimated that on average nearly seventeen thousand people have lost their lives 

annually as a direct result of strong ground motion (Sen 2009). Seismic events also have had a 

significant impact on the economy both at the country level and globally in recent years. For 

example, following Haiti's Earthquake in 2010 the total economic losses were estimated to be 

around 120% the country's gross domestic product (GDP) and in 2011 after the Great East 

Japan Earthquake a worldwide rise in the prices of electronics was observed due to disruptions 

in the supply chain to several factories (Silva 2013).  

Figure 1.1 presents the global economic losses due to natural disasters from the past few 

decades. From the figure it can be observed that the total insured losses are usually less than 

half the total portfolio’s value. Earthquakes are usually responsible for about 20% of the global 

monetary losses (Silva 2013), nonetheless it has been observed that monetary losses due to 

earthquakes are increasing rapidly. Taking the past century as an example, if the total 

economic losses are averaged over the one hundred years time span the resulting annual value 

is about ten billion dollars. However considering only the last decade the annual losses have 

been estimated at around twenty billion dollars, double the average for the entire twentieth 

century (Elnashai and Di Sarno 2008). 
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Figure 1.1 - Overall and insured losses due to natural catastrophes from 1980 to 2011 (MunichRe 2012). 

 

Modern seismic design codes prescribe different performance levels for different ground 

shaking intensity levels that the structures must fulfil. Usually these performance criteria are 

translated into a given demand parameter or damage level that must not be exceeded and are 

defined based on a given accepted level of risk. The origins of this approach to seismic design, 

known as Performance-based Earthquake Engineering (PBEE), can be traced back to 60's (Priestley 

et al. 2007, Sen 2009) and yet current design techniques used by most engineering practitioners 

are still unable to correctly assess the risk level associated with the performance criteria. 

Seismic codes require new structures to be designed for a ground motion intensity level, 

associated with a prescribed return period, under the assumption that the resultant collapse 

probability is uniform throughout a given region. The uncertainty on the collapse probability 

distribution and the variability on the shape of the hazard curves often results on a seismic 

risk level that is site and structure specific, thus invalidating the previous hypothesis. Despite 

the obvious need for collapse prevention when designing and constructing new structures, it 

is also important to minimize the potential losses due to extensive damage for more frequent 

events. Observation of past events has revealed regions where modern seismic design 

regulations are well established, but still high economic losses have been reported. For 
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example, the 1994 Northridge Earthquake is deemed as one of the costliest seismic events in 

recent history (Elnashai and Di Sarno 2008) and most of the economic losses came from 

severely damaged structures, and not due to its limited number of collapses. 

The situation is even more complex when applying the concepts of performance-based design 

to existing buildings. Even today is not unusual to find several codes of practice that simply 

state that existing structures must comply with the same level of performance as of a new 

construction, which in practice is usually not feasible. Moreover, this often leads to significant 

negative consequences because those accountable for the safety of the structure generally 

choose not to know the risk level rather than being informed and fail to meet the required 

performance (Calvi 2013). 

Much has been learnt from the past and great advances in the field of seismic risk assessment 

have been made in the last decades, nonetheless seismic risk is heavily influenced by 

numerous sources of uncertainty. From the discussion in this section is clear that research in 

earthquake loss estimation is still a very relevant topic with the capability of reducing the 

impact of seismic events. The activities developed within this thesis aimed the development 

and verification of techniques that contribute for a reduction in the level of uncertainty in 

seismic risk assessment studies.  

 

1.2 OVERVIEW ON SEISMIC RISK ASSESSMENT 

Seismic risk is usually defined as the probability of exceeding a given level of loss of a set of 

assets within a reference time period as a consequence of strong ground motion (Di Pasquale 

et al. 2005). The loss metrics (e.g. number of human casualties, total repair cost, downtime, etc) 

vary depending on the nature of the exposed assets (e.g. people, buildings, infrastructures, 

business, etc).  

Any seismic risk assessment study is inherently influenced by uncertainty ranging from 

uncertainties in the spatial, temporal occurrence and size of earthquakes, to the uncertainties 

in the structural performance for a given ground shaking and the subsequent damage and 

losses. Despite the efforts to minimize the global level of uncertainty in the field of seismic risk 

a complete probabilistic assessment of all the variables involved is often not possible. The 
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current practice is to account only for the uncertainties in the dominant factors and ignore 

those either deemed negligible or difficult to measure (Di Pasquale et al. 2005). Some 

frameworks have been proposed over the years to account for the aforementioned 

uncertainties, probably the best known of these is the so-called PEER Framing Formula 

originally presented by Deierlein et al (2003). The proposed formula provides an explicit 

methodology for considering the sources of uncertainty that directly contribute to a given 

Decision Variable (DV). The process begins by defining a ground motion Intensity Measure (IM) 

that defines in a probabilistic sense the main attributes of the ground motion that affect the 

structural performance. The next variable, Engineering Demand Parameter (EDP), describes the 

structural response to the earthquake loads from the outputs of numerical analysis (e.g. floor 

accelerations, drift ratios, etc). The final quantity is the Damage Measure (DM) that describes 

the physical condition of the structure as a function of EDP. The PEER Framing Formula is 

mathematically expressed by the triple integral given in Eq. (1.1). This equation is a direct 

application of the total probability theorem where the uncertainties in each variable are 

described as independent conditional probabilities. The terms G(DV|DM), G(DM|EDP) and 

G(EDP|IM) are conditional probabilities relating one quantity with another while dλ(IM) is 

the derivative of the hazard curve (i.e. a curve with intensity level vs frequency of occurrence). 

The left side of the equation gives the probabilistic description of the chosen decision variable 

(Deierlein et al. 2003). 

               IMdIMEDPdGEDPDMdGDMDVGDV  |||  (1.1) 

 

The three main components of an earthquake risk model are: seismic hazard, exposure and 

vulnerability. A brief discussion on each one of these components is provided below.  

i. Seismic hazard 

The objective of seismic hazard assessment is to estimate the rate of exceedance of a given 

ground motion intensity for a given return period. A standard approach to hazard analysis is 

to perform a site specific Probabilistic Seismic Hazard Assessment (PSHA) considering all the 

possible expected earthquakes within a region. A typical PSHA analysis usually has four main 

steps (Kramer 1996): (i) identification of the seismic sources and characterization of the 

distribution of the probability for generating strong ground motion within the area; (ii) 
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characterize the seismicity of each source by a recurrence relationship (i.e. the average rate at 

which an earthquake of a given size is exceeded); (iii) compute the ground motion at the site 

of interest for any possible earthquake of any possible size and distance through Ground Motion 

Prediction Equations (GMPE); and finally (iv) combine the uncertainties from earthquake size, 

location and ground motion prediction and compute the probability of the ground motion 

parameter being exceeded during a specified time span.  

The fundamentals of probabilistic seismic hazard assessment (PSHA) were first established 

during late 60's and early 70's and nowadays PSHA has become common practice for hazard 

studies. Notwithstanding that still some level of clarification is required on how the 

computations should be performed (Bommer and Abrahamson 2006).  

In the same way as many other subjects in earthquake engineering, hazard assessment is often 

undermined by uncertainties. The inherent variability considered directly in the hazard 

computation is called the aleatory variability while the uncertainty arising from the scientific 

models (e.g. models for earthquake recurrence and ground motion prediction) is called 

epistemic uncertainty. The main difference between these concepts is that aleatory variability 

determines the shape of the hazard curve, whilst considering epistemic uncertainty produces 

alternative hazard curves (Abrahamson and Bommer 2005). The common practice to account 

for these sources of variability is to consider a logic tree. After the logic tree has been defined 

the hazard computations are performed following each one of the branches and the associated 

weight is given by multiplying the weights in the respective path. The weights assigned to 

each individual branch are usually a decision of the analyst and represent the relative level of 

confidence in one model with respect to another and its applicability to a particular project. 

From the hazard estimates and associated weight, hazard curves can be computed for any 

desired percentile. At this point, and usually for design purposes, the most common approach 

is to consider only the mean hazard curve; nonetheless some authors have questioned this 

practice. For example, Abrahanson and Bommer (2005) claim that the use of the mean hazard 

curve for design purposes 'blurs the distinction between aleatory variability and epistemic 

uncertainty'. It must be noted that according to the authors this practice only creates an issue 

for special structures (e.g. nuclear power plants and infrastructures) for which the design 

ground motion is pushed to much lower annual frequencies of occurrence than in regular 
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buildings. At longer return periods the mean hazard curve is pushed to higher fractiles and 

this shift is neither systematic nor predictable. 

 

ii. Exposure 

Exposure data is defined herein as the description of assets exposed to seismic hazard such as 

people, buildings and infrastructures. The parameters required to develop an exposure model 

are the value of the asset, its taxonomy and geographic coordinates (Silva et al. 2014b). 

Taxonomy is defined as a classification system that contains very different attributes (such as 

construction material, height, age, etc) and is used to assign the asset with an appropriate 

vulnerability curve. The geographic coordinates are required to compute the ground shaking 

at the site. 

The most common and detailed source of information for building the exposure module are 

usually the different national census. The recent developments in satellite imaging technology 

have provided new tools for fast assessment of the distribution and classification of assets at 

risk. There are global databases with information about the distribution of population that 

combines the information from the national census and satellite data (namely night images) 

(e.g. GRUMP- Global Urban and Rural Mapping Project and GWP - Gridded Population of the 

World). Currently the only available database for the building stock at a global level is PAGER 

(Jaiswal and Wald 2008)  

 

iii. Vulnerability 

Vulnerability is defined as the probability of loss for a given ground shaking intensity. Physical 

vulnerability of the exposed elements plays a crucial role in the magnitude of losses of a given 

seismic event, because despite being natural events most of consequences of earthquakes are 

caused by the poor structural performance of buildings. This realization implies that it is 

possible to minimize the expected losses by designing new structures capable of withstanding 

the dynamic loads and correctly improving the performance of existing ones through careful 

retrofitting. 
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The understanding of the important role that structural performance plays during an 

earthquake event meant that during the past decades a significant effort has been made in 

developing more accurate methodologies for assessing physical vulnerability. The several 

methods for vulnerability assessment found in the literature can be grouped in two main 

categories: (i) empirical and (ii) analytical methods (Calvi et al. 2006). 

The first category makes use of the information of past seismic events in order to compute 

fragility functions for a given typology. The second group relies on the results given by 

numerical simulations of the structural response of buildings for increasing levels of ground 

shaking. This latter group of methods has as its main advantage not depending on the 

availability of damage or loss data from historical earthquakes. Depending on the level of 

detail of the numerical models and the analysis algorithm, the analytical methods can also 

include key aspects of the structural response such as: nonlinear behaviour, structural 

irregularities and the influence of higher modes of vibration (Silva 2013). Despite the 

recognition of these methods as a reliable tool for vulnerability assessment, some drawbacks 

of the analytical methods must be mentioned the most relevant being the computational effort 

and total number of analyses required to have meaningful results. 

The first stage of an analytical vulnerability assessment is to employ the results from structural 

analysis to establish a relation between a meaningful engineering demand parameter and a 

structural damage threshold. Then, the evaluation of the evolution of damage with increasing 

ground shaking intensity can be used to derive structural fragility functions, which provide 

the probability of exceeding a set of structural damage states, conditional on a set of ground 

motion levels. The issue of defining damage from structural performance parameters has been 

addressed in previous studies, (Park and Ang 1985, Calvi 1999, Borzi et al. 2008, Benavent-

Climent 2011, Fardis et al. 2012), or technical guidelines and design recommendations (CEN 

2005, FEMA 2014). However, whilst EDP-to-damage estimation is well documented and deals 

with concepts that are easily recognized by most engineering practitioners and researchers, 

the same cannot be said regarding the relationship between damage and a level of loss, usually 

defined by the so-called damage-to-loss or consequence models (e.g. (Kappos et al. 2006, Bal et 

al. 2010b)). Despite efforts from a number of researchers to improve the field of loss assessment 

(e.g. (Gunturi 1993, Kappos et al. 1998, Di Pasquale and Goretti 2001, Kappos et al. 2006, Bal et 

al. 2008, Ramirez et al. 2012)), in general, the majority of available consequence models are still 
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deterministic and/or based on limited empirical data. Furthermore, it is also important to 

emphasize that the majority of the existing damage-to-loss models were developed and 

calibrated to represent the reality of a small number of countries and corresponding building 

stock, which may lead to a misleading vulnerability evaluation when applied to other regions 

of the world. 

In traditional approach to analytical vulnerability assessment one has to firstly develop a 

fragility model and then combine it with an available damage-to-loss model. Too frequently 

this is performed without much thought for the compatibility between both models. A recent 

study by Martins et al (2016) demonstrated how this practice can have a significant impact on 

the final expected loss value. The findings of this study point towards the recommendation 

that ideally risk modellers should seek to develop vulnerability models purely based on the 

distribution of loss ratio per intensity measure levels (IML), for example following an 

approach based on the cost of repair and cost of replacement. This way the compatibility issue 

is completely avoided. If this is not feasible it should be at least ensured that the selected 

damage criteria and fragility model are as much compatible as possible with the damage-to-

loss model. 

 

1.3 SCOPE AND MOTIVATION 

Portuguese territory is considerate to have moderate seismicity with several destructive 

earthquakes being recorded in the past. For example, it is believed that about 50% of Lisbon’s 

buildings collapsed or suffered heavy damage during the well-known 1755 earthquake, and 

that in 1909 the 6.6 Mw earthquake with an epicentre in Benavente caused damage to over 

3000 dwellings. Despite the great developments on the field of seismic risk assessment and 

prevention developed over the past few decades, it has been estimated that large economic 

losses would still be expected if such historical events were to occur (Sousa 2006). 

Reinforced concrete has become the most predominant construction material for structural 

elements in Portugal. From the last national Census (INE 2011) has been estimated that 

reinforced concrete construction accounts for nearly 50% of the Portuguese building stock with 

the vast majority being residential buildings. As previously mentioned physical vulnerability 

plays an important role on minimizing seismic risk. The main goal of the studies presented in 
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this thesis is to improve the field of analytical vulnerability assessment of RC buildings. Hence 

it is expected that the methodologies presented herein provide a reliable source for estimating 

(and possibly minimize) the risk level for the majority of Portuguese building stock. 

 

1.4 THESIS' LAYOUT 

The present thesis has been divided in six different chapters. The first, and current, chapter 

provides a general introduction to several aspects addressed in the thesis and the main scope 

and motivation. 

The second chapter introduces some general concepts about analytical vulnerability 

assessment methodologies that are the foundation of the techniques used on this this study. 

The third chapter provides a study on the development of simplified period-height 

relationships for reinforced concrete buildings. Estimating the period of vibration of a 

structure is essential for computing seismic demands, however this is often not always a 

simple procedure, and in the cases of large scale assessments analysing every single structure 

is simply not feasible. For these cases simplified relationships that allow to estimate the period 

of vibration have proven to be of great value. In this section sets of reinforced concrete 

buildings designed according to the most up-to-date European regulations and for increasing 

levels of ground motion have been analysed. For these sets of structures both the elastic and 

inelastic period have been computed and simplified relationships have been proposed. The 

findings of this study allowed for developing functions that allow to estimate the period of 

vibration from not only using the height of the building as the main input parameter but also 

considering the seismic design level (measured as the design peak ground acceleration) 

Chapter four examines the influence of fragility parameters within a risk-targeted assessment 

framework. From sets of structures designed according to the same criteria and increasing 

design ground motion levels, fragility parameters (namely the probability of collapse at the 

design ground motion and lognormal standard deviation) suitable for European R.C. moment 

resisting frame buildings have been proposed. The expected average annual probability of 

collapse for the entire European continent has also been computed. 
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The fifth chapter presents a study on the development of damage-to-loss models for 

Portuguese reinforced concrete buildings. Damage-to-loss models were developed from the 

damage prediction of real buildings and the correspondent expected repair cost estimated 

from real market values taken from a construction technique database. An investigation on the 

influence of using non compatible fragility and damage-to-loss models on the final loss metrics 

is also provided.  

Chapter number six takes the main results computed in the previous sections and applies them 

to a seismic risk assessment of mainland Portugal.  

The final chapter summarizes the main conclusions of the thesis while providing guidelines 

for future works intended to extend and improve the subjects addressed herein. 
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2  
 

ANALYTICAL METHODOLOGIES 
FOR FRAGILITY AND 

VULNERABILITY ASSESSMENT  
 

2.1 SUMMARY 

Physical vulnerability plays an important role in minimizing seismic risk. This realization 

meant that significant improvements on the field of analytical vulnerability assessment 

methodologies have been proposed in the past few decades. Comments on the methodologies 

currently used within a seismic vulnerability assessment framework are provided in this 

section. This discussion also serves the purpose of introducing the general concepts used 

throughout the remaining sections of this thesis.  

A discussion on the process of analytical vulnerability assessment from the performance and 

fragility estimation to damage assessment is provided. An overview on nonlinear static and 

dynamic analyses is presented highlighting the major advantages and pitfalls of each 

methodology. 

 

2.2 PERFORMANCE ASSESSMENT METHODOLOGIES 

2.2.1 Pushover analysis 

In pushover analysis the structure's performance is assessed by applying incremental lateral 

loads at the floor levels until a collapse mechanism is reached. Despite being usually simpler 

and less computational demanding than nonlinear dynamic analysis, pushover analysis have 

demonstrated to be useful for vulnerability assessment, especially to identify regions where 

significant plastic deformations are expected (Elnashai and Di Sarno 2008). The best results 
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given by pushover algorithms are usually obtained on structures with regular distribution of 

stiffness and mass for which the influence of higher modes is negligible.  

The objective of these analyses is solving the nonlinear system in Eq. (2.1) where KT is the 

tangent stiffness matrix, RT is the unbalanced force vector and F is the vector of external loads. 

The algorithm starts by taking the last converged tangent stiffness matrix (in the first load 

increment this is the elastic stiffness matrix) and nodal displacement vector. Within a load 

increment the unbalanced forces are recalculated and reintroduced until equilibrium is 

reached. At this point the structure's tangent stiffness matrix and geometry are updated and 

stored in order to become the initial conditions for a new load increment. This is repeated until 

the development of a collapse mechanism, i.e. up to the point where no longer is possible to 

balance the equation.  

              FRuKFuK TT   (2.1)  
 

Pushover algorithms are usually grouped in two main categories based on how the applied 

lateral load profile is handled during the analysis. If the load profile remains constant this is 

known as conventional pushover algorithm whilst if the load profile is updated in order to take 

in consideration the changes in the structure's dynamic properties this is known as adaptive 

pushover algorithm. Unlike nonlinear dynamic analysis for which the seismic demand is implicit 

considered from the ground motion records in nonlinear static methodologies seismic demand 

is taken into consideration using the so-called Nonlinear Static Procedures. A brief discussion on 

these subjects is provided in the following sub-sections. 

 

2.2.1.1 Conventional pushover algorithms 

The origins of pushover analysis can be traced back to the pioneer work of Gulkan and Sozen 

(1974) in which single degree of freedom (SDOF) systems have been used to capture the 

nonlinear behaviour of multiple degree of freedom structures.  

Conventional pushover methodologies have been praised as a valuable tool for vulnerability 

assessment due to their simplicity and reduced runtime. However, these methods are unable 

of reproduce certain phenomena like viscous damping, strength degradation and pinching. 
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Krawinkler and Seneviratna (1998) have highlighted the constant load pattern as one of the 

major pitfalls of the this type of pushover algorithms since they ignore deformation modes 

that are propelled by the dynamic response and are unable to track the changes in the 

structure's dynamic properties due to nonlinear effects.  

In these methodologies the external applied load profile usually adopts a uniform shape or a 

shape proportional to either the distribution of floor masses (mi) along height (hi) (Eq. (2.2)) or 

to the first mode of vibration components (i,1) (Eq.(2.3)) and it is kept constant until collapse 

is reached. 
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2.2.1.2 Adaptive pushover algorithms 

Adaptive pushover algorithms have been developed as an attempt to overcome the main 

drawbacks of their conventional counterparts. Over the past few decades some authors, e.g. 

(Bracci et al. 1997, Antoniou and Pinho 2004), have proposed fully adaptive pushover 

methodologies for earthquake vulnerability assessment. These have the advantage of better 

accounting for stiffness degradation and the influence of higher modes of vibration. This is 

accomplished by computing the structure's properties after each load increment and updating 

the applied load pattern accordingly. 

The results from an adaptive pushover for any load increment are given as a combination 

(often using either Square Root of the Sum of Squares (SRSS) or Complete Quadratic Combination 

(CQC)) of the results from the analyses performed with the load pattern (Fij) given by Eq. (2.4) 

(- participation factor; M- mass matrix) computed for all the significant modes of vibration 

().  

 gMF ijijij   (2.4)  
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2.2.1.3 Nonlinear static procedures 

Nonlinear static procedures (NSP) make use of the structure's capacity curve and the ground 

motion characteristics (frequently by considering the earthquake's response spectrum) in 

order to estimate the performance point. 

 

i. Coefficient Method of Displacement Modification (CMDM) 

The CMDM was firstly proposed in ATC-40 (1996) document and further developed in FEMA-

440 (2005).This method allows to compute the maximum displacement of the real MDOF 

system by modifying the spectral displacement of an equivalent SDOF system at the effective 

fundament period of vibration through a set of four coefficients Ci (Eq. (2.5)). FEMA-440 

provides values for each one of these parameters for different building typologies that have 

been calibrated from the statistics of dynamic analyses performed in SDOF systems. In Eq. 

(2.5) C0 has the purpose of introducing the effect of the difference in the response of SDOF and 

MDOF systems, C1 is a measure of the level of ductility, C2 allows to introduce the effects of 

pinching and stiffness and strength degradation and lastly C3 simulates the influence of P-Δ 

effects. The effective period of vibration is computed from the structure's capacity curve. 

 gTSaCCCC e
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ii. Capacity Spectrum Method (CSM) 

The CSM method was originally proposed in the 70's by Freeman et al (1975) as a tool for fast 

seismic vulnerability assessment. For this methodology firstly is necessary to transform the 

capacity curve from its usual displacement vs. base shear form to spectral acceleration vs. 

spectral displacement. The procedure for computing the target displacement through the 

Capacity Spectrum Method compares the capacity and demand using the capacity curve of an 

equivalent SDOF system and a damped response spectrum, respectively. The inelastic 

behaviour of the structure is taken in consideration by adjusting the viscous damping of the 

ground motion spectrum as a function of the displacement level at the point in which the 

response spectrum intersects the capacity curve. Usually iterations are required in order to 

match the damping applied to the response spectrum with the equivalent viscous damping 



Earthquake damage and loss assessment of reinforced concrete buildings  

15 

for the structure. The target displacement is given by the final crossing point between the 

capacity curve and the response spectrum.  

Due to some criticisms, e.g. (Fajfar 1999, Chopra and Goel 2000), to the original formulation of 

the Capacity Spectrum Method for its tendency to underestimate structural deformations, the 

FEMA-440 (2005) report introduced some modifications to the method with the majority of the 

changes to CSM recommended in FEMA-440 being related with the way equivalent viscous 

damping is calculated. 

An important aspect worth commenting is the definition of the bilinear relationship and the 

yield point. The ATC-40 (1996) document defines the slope of the initial segment of the bilinear 

curve from the initial stiffness. Silva (2013) has mentioned the need to comply with the rule of 

equal dissipated energy (i.e. the integral of the capacity and the bilinear curves must be 

equivalent) for some cases, mostly for ground motion of lower intensities, may lead to yielding 

points located still in the elastic portion of the capacity curve. An alternative that leads to more 

realistic bilinear curves is to use the effective stiffness of the structure instead, as suggested in 

FEMA-273 (1997). 

 

iii. N2 Method 

Initially proposed by Fajfar and Gašperšič (1996), the N2 method has been incorporated in EN 

1998-1 (CEN 2010c) as the recommended NSP for nonlinear static analyses. The N2 method 

differs from the CSM by using an inelastic response spectrum in order to estimate the 

performance point instead of an overly damped spectrum. In this method the capacity of 

idealized SDOF system is characterized through an elastic-perfect plastic relationship 

determined based on equilibrium of areas. 

In order to compute the target displacement using the N2 method is necessary to define if the 

equivalent SDOF system is in the short-period or medium/long-period range (i.e. the period 

of the equivalent system (T*) is lower or greater than the corner period (TC)). If the structure is 

considered to be in the medium/long period range the target displacement is taken as by the 

equivalent displacement rule. If on the other hand the structure is on the short period range an 

additional procedure is required to determine if the structure's yielding capacity has been 

exceeded. If the structure has remained in the elastic range the target displacement is once 
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again considered as equal to the elastic spectral displacement at the equivalent period of 

vibration. If the structural response is inelastic the target displacement is given by Eq. (2.6) 

where qu is the ratio between the spectral acceleration at the period T* and at the yield point. 
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2.2.2 Nonlinear dynamic analysis 

Amongst the scientific community there is a general consensus that nonlinear dynamic 

analysis is the most accurate technique for assessing the structure's response due to earthquake 

loading, however this approach requires more computational effort and can become 

numerically unstable. Silva (2013) has estimated that to achieve comparable levels of 

confidence in the vulnerability assessment, nonlinear dynamic analyses may require up to six 

times the runtime of pushover algorithms. 

The main objective in nonlinear time-history analysis is to solve the dynamic equilibrium 

equation (Eq. (2.7)) in which [M], [C] and [K] are the mass, damping and stiffness matrices 

respectively, {u(t)} is the displacement time series and üg(t) is the ground acceleration. For 

linear systems this can be achieved through modal superposition or spectral analysis, however 

for nonlinear systems solving the dynamic equations often requires numerical integration 

methods like Newmark or Hilber-Hughes-Taylor (Clough and Penzien 1993, Chopra 2007). 

These integration methods solve the nonlinear dynamic equations by computing the structural 

response between discrete time increments for which the system is handled as linear elastic. 

Once equilibrium is reached the geometry and stiffness properties are updated and a new load 

increment is applied. The accuracy and stability of these methods is closely related with the 

size of the time increment, however choosing too small time increments leads to unreasonable 

runtimes. It is generally considered sufficient to choose a time increment that ensures both 

numerical stability and the integration of the last significant mode of vibration. 

                     tuMtuKtuCtuM g  1  (2.7)  
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2.3 FRAGILITY AND VULNERABILITY ASSESSMENT 

2.3.1 Damage assessment 

Current seismic design provisions allow for some level of damage in the building to occur 

during an earthquake considering the performance and safety criteria are not exceeded.  

Correctly predicting the damage level is a crucial step in computing a fragility model. 

However, despite the contributions to this field proposed in the past few decades, defining a 

unified damage assessment methodology universally accepted amongst the scientific 

community has yet to be reached. One of the main difficulties still to overcome with 

developing a uniform damage criterion being defining the concept of damage itself since it is 

not uncommon that this concept is used with subjectivity (Kappos 1997). Most of the available 

damage scales for reinforced concrete have overcome this by being based on some level of 

observable physical anomaly such as cracking, spalling or buckling of the rebar recorded from 

inspections performed after real seismic events (e.g. (Park and Ang 1985). 

 

2.3.1.1 Assessing local damage 

One of the most common methods to assess local damage is through damage indices. A 

complete list of all available damage indices is out of scope of this thesis, however a brief 

presentation on the Park and Ang (1985) index is provided. This is one of the most commonly 

referenced indices for damage assessment in R.C. structures and has provided the foundations 

for the development of other indices like the one used in section 5.3 of this thesis. 

Park and Ang damage index (PADI) establishes the damage in reinforced concrete elements 

as a linear combination of the damage due to excessive deformation with the damage due to 

hysteresis. Eq. (2.8) shows the general mathematical formula for the damage index where δM 

and δu are the maximum and ultimate deformation for the element, Qy is the yield capacity 

under static loading and dE is the dissipated energy. The β parameter is a function of the plastic 

hinge length, the axial load and the total amount of rebar and stirrups in the element. 
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From observations of damage on real buildings, Park et al (1987) have established 0.40 as the 

threshold marking the damage level from which repairing is no longer economically viable. 

These observation also allowed the authors to propose thresholds for other damage levels 

ranging from undamaged to collapse (Table 2.1). Williams and Sexsmith (1995) highlighted the 

fact PADI has been calibrated from real damage from past earthquakes as one of the main 

advantages of this index. However, some authors, e.g. (Chung et al. 1987), have raised 

questions on the definition of the β parameter and on the legitimacy of linearly combining the 

damage due to deformation and due to dissipated energy. 

 

Table 2.1 - Damage state limits proposed by Park et al (1987). 

Damage state Threshold 
Undamaged D<0.1 

Light damage 0.1≤D<0.25 
Moderate damage 0.25≤D<0.4 

Severe damage 0.4≤D<1.0 
Collapse D≥1.0 

 

2.3.1.2 Assessing global damage and the collapse DS 

Probably one of the most significant damage states to any seismic vulnerability study is 

collapse. Firstly, a distinction between element collapse and global structural failure should be 

made since the first often does not immediately lead to the latter because well-designed 

structures are expected to be able to redistribute the loads between the remaining elements. 

Thus, analytically assessing the global collapse of a structure is often a complex task with 

considerable uncertainty. Generally it is assumed that structure has collapsed when it is no 

longer able to support the permanent loading or when its repair is no longer a cost effective 

option (Kappos 1991, Ibarra and Krawinkler 2005). Several approaches for estimating collapse 

within an analytical performance assessment framework have been suggested. One criteria 

commonly used in analytic performance assessment is to consider a structure as collapsed 

when a reduction on 20% on the lateral load bearing capacity is observed, e.g (Silva et al. 

2014d). Criteria based on the local damage have also been proposed to estimate global collapse, 

e.g. (Bal et al. 2010a), these are usually connected to a prescribed collapse mechanism (e.g. soft 

storey linked to the failure of the columns at a given floor). It should be noted that Silva et al 



Earthquake damage and loss assessment of reinforced concrete buildings  

19 

(2014d) have discussed on the use of local criteria to define limit states for fragility assessment 

and have concluded that this path may not be adequate for generating curves for a population 

of buildings  

In a vulnerability assessment framework, the residual deformations of the structure should 

also be considered for evaluating collapse since severely deformed structures may require to 

be demolished meaning a complete loss of the structure (i.e. for all practical purposes the 

structure should be considered as collapsed) (Ramirez and Miranda 2012).  

 

2.3.2 Computing fragility and vulnerability curves 

Fragility curves provide the probability of a structure reaching or exceeding a given damage 

conditional on the ground shaking intensity level.  

Traditionally, fragility curves are assumed to follow a cumulative lognormal distribution 

given by Eq. (2.9), where Φ is the standard normal distribution, β logarithmic standard 

deviation and θ the median (Cimellaro et al. 2011). According to Shinozuka et al (2000), the 

wide spread of the two-parameter lognormal model in fragility assessment was due to its 

mathematical convenience in relating with the structure’s real strength capacity. The actual 

capacity of a structure can generally be described through a safety factor which in turn can be 

factored into a multiplicative of safety factors, each one associated with a given source of 

uncertainty. Applying the lognormal assumption for each one of these factors ensures that the 

overall seismic safety factor also follows a lognormal distribution due to the multiplicative 

reproducibility of the lognormal variables. The two parameters of the lognormal distribution 

(i.e. θ and β) are generally assessed through Maximum Likelihood Estimation (MLE), with the 

likelihood function being given in Eq. (2.10) in which F is the fragility function for a specific 

damage state and xi a parameter that can take the value of 0 or 1 depending whether the 

structure is capable or not of sustaining a given damage state at the intensity level yi. 

 

     0;ln1 
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Vulnerability curves provide the distribution of loss conditional on the level of ground 

shaking. Often vulnerability curves are computed through the convolution fragility with an 

available damage-to-loss model, which correlates the level of damage with the respective 

expected loss. Damage-to-loss models, also known as consequence models, are probably one 

of the main sources for uncertainty in the vulnerability assessment. Damage-to-loss models 

simultaneously fully compatible with the fragility model and developed for the region and 

building typology under assessment are often not available. This, obviously, has an impact on 

the final loss estimates. Martins et al (2016) have studied these effects and proposed an 

alternative way to compute vulnerability curves directly from the cost of repairing the damage 

on the different elements. 
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3  
 

DEVELOPMENT OF PERIOD-
HEIGHT RELATIONSHIPS FOR 

ASSESSMENT OF REGULAR 
CODE-COMPLIANT 

REINFORCED CONCRETE 
BUILDINGS 

 

3.1 SUMMARY  

Simplified relationships to compute the period of vibration are useful in the estimation of 

seismic loads during the design process of new structures, in the assessment of the structural 

vulnerability of existing buildings, or in the estimation of earthquake losses of large portfolios 

of assets. The height of a structure (or in alternative the number of storeys) has been 

traditionally used as the main parameter to quickly estimate the period of vibration. A brief 

examination of existing height-period relationships demonstrates that more often than not 

they are specific to a given region and therefore with limited applicability. By analysing a large 

number of buildings with varying heights and designed according to increasing levels of 

ground motion, this study proposes simplified relationships suitable for assessment of regular 

code-compliant European reinforced concrete moment frame buildings. 

 

3.2 INTRODUCTION 

Estimating the period of vibration of a structure is an essential step for the calculation of the 

seismic demand in the design process. However, this is often not always a simple procedure. 

While numerical modelling is a suitable alternative, for estimating the period of vibration for 

single structures, when assessing a region containing a large number of buildings this is simply 
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not feasible. For these large-scale assessments is not unusual to apply simplified relationships 

(i.e. requiring no numerical modelling) to predict the expected period of vibration, (Bal et al. 

2010a). The vast majority of these models use the height of the structure (or in alternative the 

number of storeys) as the main input parameter to estimate the period of vibration and 

although not innovative, the simplicity of the height-dependent empirical relationships 

contributed greatly to their widespread dissemination.  

Traditionally, these relationships have been developed from either monitoring the dynamic 

properties of real buildings, (Oliveira and Navarro 2010), or from numerical analysis, 

(Crowley and Pinho 2004). The former approach allows a more realistic estimation of the 

periods of vibration, but it might be too structure-specific, and in the vast majority of the cases 

it only allows the estimation of the elastic period of vibration. Moreover, the experimental 

measurement of the dynamic properties of a statistically sufficient sample of structures can be 

considerably expensive and time-consuming. The latter approach enables considering a wider 

variety of structures, and the estimation of the period of vibration at various stages of damage 

(from elastic (undamaged), to yielding or even near collapse).  

The majority of the proposed models to estimate the fundamental period of vibration have the 

form given by Eq. (3.1), in which H is the building's height and Ct and α are constants. A 

detailed examination and discussion on existing period-height relationships is presented in 

Crowley and Pinho (2004, 2010). For the sake of synthesis, in this study a summary of 

previously published relationships for European constructions is provided in Table 3.1. 

Common limitations of current period-height relationships are, for example, the reduced 

number of structures and/or the need to consider more storeys. Moreover, structures designed 

and built according to different seismic regulations and to distinct levels of ground shaking 

are often analysed together in order to attain a statistically significant sample. One of the 

justifications for this study was to evaluate in a consistent manner the variations that different 

design accelerations can induce on the period estimates within the scope of large scale seismic 

assessment studies. Furthermore, despite the significant number of simplified period-height 

relationships, it is clear that European structures designed according to the Eurocodes have 

yet been the target of limited scrutiny. Additionally, the current version of Eurocode 8 (CEN 

2010c) uses a formula initially developed for Californian buildings during the 70’s decade. This 
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study offers the opportunity to revise its applicability. Moreover, the mathematical model 

included in Eurocode 8 was intended to underestimate or the period of vibration in order to 

be used with the lateral force method, as observed by Gallipoli et al (2009) and remarked by 

Crowley and Pinho (2010), This approach, albeit valid for design, is not suitable for assessing 

the behaviour of existing structures where the mean value for the period of vibration is 

required. Hence, the present study improves upon former ones by addressing these issues and 

providing updated mathematical models for predicting the expected period of vibration of 

reinforced concrete structures designed according to the most recent European regulations, 

and considering different design shaking, with and without infill panels.  

For this study the first mode elastic and inelastic periods of vibration of reinforced concrete 

moment frame buildings were estimated from a significant number of finite element models. 

The total number of floors of these structures ranged between 3 and 10, and the influence of 

infill panels has also been considered. The elastic period was computed from eigenvalue 

analysis whilst the inelastic period was estimated from pushover analysis. This study expands 

on previous endeavours by: (i) including the seismic design level rather than just the total 

height as an input parameter for estimating the period of vibration, (ii) considering both the 

elastic and inelastic (at the yielding point) periods of vibration, (iii) considering the influence 

of infill panels and the number of bays, (iv) propagation of the building-to-building variability 

in the period estimates, and (v) evaluation of the impact in the calculation of and derivation of 

fragility models and on the final risk metrics. 

 

 HCT t  (3.1)  
 

 

Table 3.1 - List of proposed period-height relationships. 

Region  
Elastic period (Tel) Yielding period (Ty) 

Reference  Bare 
frame 

Infilled Bare frame Infilled 

Spain     (Kobayashi et al. 1996) 

Spain      (Navarro et al. 2002) 

NT 051.0

NT 049.0
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France     (Dunand et al. 2002) 

Southern Europe    *  (Crowley and Pinho 2004) 

Southern Europe    HT 055.0  (Crowley and Pinho 2006) 

Southern Europe    **  (Crowley et al. 2008) 

Italy     (Gallipoli et al. 2009) 

Turkey     (Bal et al. 2010b) 

Portugal      (Oliveira and Navarro 2010) 

Southern Europe   𝑇 = 0.014𝐻  (Ricci et al. 2011) 

N - Total number of storeys; H - Height 
(*) non ductile structures 
(**) ductile structures 

 

3.3 CASE STUDY 

According to the global building database developed by the PAGER group (Jaiswal et al. 2010), 

on average, reinforced concrete moment frames (with or without masonry infill walls) host 

51% of the population in Southern Europe, where seismic hazard is highest. Silva et al (2014) 

indicated that reinforced concrete construction accounts for approximately 50% of the 

Portuguese building stock and hosts 60% of the national population. The vast majority of these 

structures are composed by moment frames with masonry infills, and 51% have been designed 

following either to latest Portuguese design regulation or the Eurocodes. This type of 

construction has been increasing significantly in the last decades in Southern Europe. For 

example, reinforced concrete was rare in Italy, Portugal and Greece in the 1920’s, and in the 

last decade it accounted for (on average) 68% of the new construction. The growing acceptance 

and enforcement of the Eurocodes suggests an expected increase on the number of Eurocode-

compliant structures. 

The calculation of the elastic or inelastic period of vibration using analytical approaches is 

usually performed using 2D models or equivalent single-degree-of-freedom systems, and less 

frequently 3D structures. Considering the structures covered in this study, (Crowley and 

Pinho 2004, Silva et al. 2014d, Ulrich et al. 2014) used 2D moment-resisting frames with 1 to 8 

storeys and 1 to 7 bays (on average, 3.5 bays). Similarly, Silva et al. (2014) assessed the dynamic 

HT 015.0

HT 1.0

HT 07.0

HT 016.0

HT 083.0

HT 022.0 HT 013.0



Earthquake damage and loss assessment of reinforced concrete buildings  

25 

response of 2D frames with a number of storeys ranging from 1 to 8, with 3 bays. Bal et al. 

(2010b)and Ulrich et al. (2014) instead modelled 3D structures with 2 to 8 storeys and 2 to 4 

bays (on average, 3.1 bays). The present study considered sets of 3 to 10 storeys moment-

resisting frame reinforced concrete structures designed according to the most recent European 

standards (CEN 2009, CEN 2010a, CEN 2010b, CEN 2010c) and for increasing levels of ground 

shaking. The majority of the case study structures were 3-bay moment resisting frames. 

However, for the taller buildings, an extra bay was added, as the footprint of buildings with a 

higher number of storeys tends to be larger (e.g. Oliveira and Navarro (2010)). The structures 

were designed to be regular in height and symmetrical in both horizontal axes, as recommend 

by modern design regulations. The chosen concrete class has a characteristic compressive 

strength of 25 MPa, whilst the characteristic yield strength of the rebar steel is 500 MPa. A 

permanent vertical load of 6.25 kNm-2 has been considered in the design in order to represent 

the expected weight of the concrete slab. An additional live load of 2.80 kNm-2 has also been 

included. Following the recommendations in Eurocode 1-1 (CEN 2009), the absolute value of 

the live load has been lowered at the roof level to 0.40 kNm-2. In addition to the vertical loads, 

all structures have been designed to withstand the horizontal loading due to the wind 

excitation, considering a wind velocity of 25ms-1 and a Class II terrain, according to the 

Eurocode 1-4 (CEN 2010a). Five levels of ground motion intensity were considered with design 

peak ground acceleration ranging from 0.05g (i.e. low seismic hazard) to 0.40g (i.e. high seismic 

hazard) selected to cover the range of expected design ground motion levels for the European 

continent . 

To avoid excessive deformations under static loading, the minimum height for the beams was 

set to 1/12 of the respective span while the minimum cross section for the columns was 

0.25x0.25 m2. For the 10-storey structures, a vertical element has been added to account for the 

increase in stiffness of a lift shaft. For each intensity level, 25 structures were generated and 

both the span length and storey height have been randomly sampled from the probability 

distributions found in Silva et al (2014d). For the sake of simplicity, the same beam length was 

used for each bay within the same structure, which is a common assumption in other similar 

studies(e.g. (Ulrich et al. 2014)). 
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Brick infill panels were considered on the building’s facade. These have been modelled with a 

double diagonal struts system with the strength and stiffness properties computed according 

to the recommendations of Crisafulli and Carr (1997) and Smyrou et al (2006, 2011).  

The numerical models have been constructed using force-based beam elements with 

distributed plasticity and five integration points using the open-source finite element software 

OpenSees (McKenna et al. 2000). The nonlinear material behaviour of the concrete was 

modelled following the stress-strain relationship proposed by Mander et al (1988), whilst the 

steel reinforcement was modelled following Menegotto and Pinto (1973) recommendations. 

 

3.4 USING EIGENVALUE ANALYSIS TO COMPUTE ELASTIC UNCRACKED PERIOD 

Although unlikely to find any structure responding with its uncraked stiffness, using period 

estimates based on gross stiffness can still be useful especially within a force-based design 

framework where an overestimation of the expected shear forces is recommended. This also 

provides a suitable lower boundary for the true value of the expected fundamental period of 

vibration. 

Figure 3.1 depicts the fundamental periods of vibration computed from the 3D finite element 

models for both the bare frame and infilled structures. The results have been sorted in total 

number of storeys and design ground motion. As expected, the average period increases with 

the number of storeys and decreases with the seismic design level.  
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Figure 3.1 - First mode elastic period vs design ground motion. Top: Bare frame structures; Bottom: Infilled 

structures 

Figure 3.1 shows a decrease of around 20% on the average period from the lowest ground 

motion level to the highest due to the need for having elements with larger cross section (and 

consequently with greater inertia and stiffness). These differences are obviously non-

negligible and are quite significant for the development of fragility functions, e.g. (Silva et al. 

2013), or employment of displacement-based earthquake loss assessment methodologies, e.g. 

(Bal et al. 2010a), further supporting the claim for including the seismic design level on the 

period estimates.  

Moreover, comparing between the top and bottom plots indicate a decrease of more than 50% 

in the period of vibration. Silva et al (2014d) in a former study has also found a reduction on 

the elastic period due to the introduction of the infill panels in the same order of magnitude.  
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An additional comment on Figure 3.1 is that the decrease in the mean period of vibration 

between from 0.05g to 0.10g is comparably smaller than the decrease for the remaining design 

levels. This is probably due to the fact that for these levels of ground shaking the lateral load 

resisting system design is often governed by a combination of permanent load and live loads 

(e.g. wind). 

Fitting unconstrained power laws to the complete datasets the models yielded the models 

plotted in Figure 3.2. The accuracy of the fits was quantified by the standard error of estimate 

(Sest) which provides an indication on the on the error introduced when predicting the period 

of vibration from the proposed models for any possible value for the building's height 

(Crowley and Pinho 2004). This parameter is calculated using Eq. (3.2) where rTpred,Tobs 

represents the correlation between the observed periods (Tobs) and their predicted 

counterparts (Tpred) with a sample with size n. The error was found to be equal to 0.094s and 

0.048s for the bare-frame and infilled structures, respectively. These reasonably low values 

indicate an acceptable fitting of the mathematical model. 
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Figure 3.2 - Power law fitting to first mode elastic period. Top: Bare frame structures; Bottom: Infilled structures 

 

  (3.2)  

 

Although the models in Figure 3.2 yielded relatively small standard errors of estimate and 

exceptionally good correlation factors (R2>0.90), the dispersion around the best-fit curve is still 

considerably large (especially for the taller buildings). Therefore, it seems obvious that in order 

to have the best possible period estimate, prior to fit any mathematical model the data should 

be firstly sorted by seismic design level. Figure 3.3 depicts the results of fitting an 

unconstrained power laws (Ct and α in Table 3.2 and Table 3.3) to the elastic periods of 

vibration given by the Eigenvalue analysis sorted by design ground motion. The results in 

Table 3.2 and Table 3.3 show, as expected, a decrease of at least 40% on the standard error of 
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estimate for the new models when comparing with the one computed considering the whole 

dataset. 

 

 

 

 

Figure 3.3 - Power law fitting to first mode elastic period sorted by design PGA. Top: Bare frame structures; 

Bottom: Infilled structures 

 

Table 3.2 - Models parameters (elastic period-bare frame structures) 

Design PGA [g] Ct α Sest [s] 
0.05 0.0986 0.7972 0.0645 
0.10 0.0989 0.7934 0.0671 
0.20 0.0995 0.7641 0.0526 
0.30 0.1015 0.7327 0.0518 
0.40 0.0945 0.7349 0.0368 

Ct and α - Model parameters; Sest - Standard error of estimation 
 

Table 3.3 - Models parameters (elastic period-infilled structures) 

Design PGA [g] Ct α Sest [s] 
0.05 0.0223 0.8896 0.0200 
0.10 0.0214 0.8997 0.0220 
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0.20 0.0221 0.8696 0.0219 
0.30 0.0259 0.7962 0.0164 
0.40 0.0257 0.7838 0.0137 

Ct and α - Model parameters; Sest - Standard error of estimation 
 

The mathematical models presented in Table 3.2 and Table 3.3 have been calibrated to discrete 

values of design ground motion. However, one of the objectives of this study to generalize the 

results to any design ground motion. To this end, a surface model was fitted considering the 

entire dataset as illustrated in Figure 3.4. Due to the physics of the problem it is obvious that 

the best-fit surfaces must not yield negative values for the period of vibration for any realistic 

combination of design ground motion and height within the region of interest (i.e. non-

negative design ground motion and non-negative height values lower than 40 metres), 

therefore any best-fit surface must contain the origin. Consequently, and if one assumes a two 

parameter polynomial function to represent the best-fit surface, this constraint was met by 

setting the constant of the function to zero. The degree of the polynomial function was defined 

after some iterations and evaluating the maximum degree without parameters with non-

meaningful coefficients. The best-fit surface that complied with these conditions was found to 

be the polynomial function shown in Eq. (3.3) and (3.4). For this case the computed standard 

errors of estimate for the surface fit were 0.054s and 0.018s for the bare frame and infilled 

structures.  

   HPGAPGAHPGAHPGAT  03.017.007.006.0),( 2
1  (3.3)  

 

   HPGAPGAHPGAHPGAT  01.025.002.011.0),( 2
1  (3.4)  
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Figure 3.4 - Surface fitting to first mode elastic period. Top: Bare frame structures; Bottom: Infilled structures 

 

3.5 USING PUSHOVER ANALYSIS TO COMPUTE YIELD PERIOD 

While using period estimates based on the uncracked stiffness could be acceptable to compute 

a lower boundary of the true value of the period of vibration for displacement-based 

assessment the expected yield rather than the elastic period is often necessary. In reinforced 

concrete buildings, cracking in critical elements (e.g. beams) is expected to occur under 

permanent loading alone. Even in the unlikely cases where cracking has not occurred it is 

unreasonable to believe that a structure would respond with its gross stiffness under an 

earthquake since cracking will occur at the early stages of the dynamic response and therefore 

stiffness will reduce rapidly. Moreover, the derivation of fragility models (Silva et al. 2013) or 

the direct assessment of earthquake losses (Bal et al. 2010a) may require the calculation of the 

yield period of vibration. All the case study structures are symmetrical in plan and regular in 

height and as a consequence the influence of the higher modes is negligible. Therefore, 
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pushover algorithms have been considered an acceptable alternative to the more accurate, but 

also more computational demanding, nonlinear time-history analysis for estimating the yield 

period. An approach to compute the expected yield period of the structure can be to firstly 

compute the yield displacement of the equivalent single degree of freedom system. In this 

study the bilinearization of the capacity curve using the N2 method (Fajfar and Gašperšič 1996) 

has been used to compute such yield displacement. Knowing the yield displacement and the 

correspondent structure's deformed shape the expected yield period is computed from Eq. 

(3.5) where Meff is the effective mass of the equivalent system calculated by the means of Eq 

(3.6), Vy is the base shear at the point of yield and dy,eff  is the correspondent displacement 

measured at the height of centre of the seismic forces (heff). Figure 3.5 depicts the yield period 

computed from the capacity curves for bare and infilled structures. 

 

  (3.5)  

 

  (3.6)  

 

  (3.7)  
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Figure 3.5 - Yield period vs design ground motion. Top: Bare frame structures; Bottom: Infilled structures 

 

It should be noted that, in this context, Ty could also be calculated following a mechanical 

approach, in which dy,eff is estimated following the formulae for the calculation of the 

displacement (or curvature) at the yielding point, e.g. (Sullivan and Calvi 2012). 

The results from Figure 3.5 indicate a decrease on the yield period of vibration with the design 

ground shaking in the order of 39% for bare frames and 24% for infilled frames. This decrease 

is also more pronounced for taller structures, as also observed in the assessment of the elastic 

period. 

When unconstrained power laws were fitted to the analytical results (see Figure 3.6), the 

standard error of estimate for the yield period were found to be equal to 0.201s and 0.105s, 

which is about double the error computed for the uncracked elastic period. This was to be 

expected since the nonlinear behaviour of the structure inherently introduces additional 

variability on the response. However, it should be noted that the standard error of estimate 

found is still relatively small. 
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Figure 3.6 - Power law fitting to yield period. Top: Bare frame structures; Bottom: Infilled structures 

 

Similarly to what has been presented in section 3.4, it has been decided to fit different 

mathematical laws according to the considered seismic design levels (see Figure 3.7). The 

standard error of estimate described in Table 3.4 and Table 3.5 indicate a significant decrease 

in comparison with the one computed from the data prior to be sorted by seismic design level.  
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Figure 3.7 - Power law fitting to yield period sorted by design PGA. Top: Bare frame structures; Bottom: Infilled 

structures 

 

Table 3.4 - Models parameters (yield period -bare frame structures) 

Design PGA [g] Ct α Sest [s] 
0.05 0.1647 0.7302 0.1032 
0.10 0.1657 0.7267 0.0984 
0.20 0.1529 0.7054 0.0771 
0.30 0.1352 0.7068 0.0690 
0.40 0.1320 0.6829 0.0571 

Ct and α - Model parameters; Sest - Standard error of estimation 
 

Table 3.5 - Models parameters (yield period- infilled structures) 

Design PGA [g] Ct α Sest [s] 
0.05 0.0188 1.2367 0.0784 
0.10 0.0179 1.2513 0.0798 
0.20 0.0179 1.2296 0.0570 
0.30 0.0217 1.1427 0.0565 
0.40 0.0183 1.1632 0.0511 

Ct and α - Model parameters; Sest - Standard error of estimation 
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The same criteria presented in section 3.4 to estimate the best-fit surface was employed to 

model the inelastic period for the bare frame and infilled structures, as shown in Eq. (3.8) and 

(3.9) and depicted in Figure 3.8. For these best-fit surfaces the computed standard error of 

estimate were 0.104s and 0.077s for bare frames and infilled structures, respectively. As 

previously discussed increasing the design ground motion level naturally decreases the 

structure's period of vibration. This decrease is more apparent for the inelastic period (see 

Figure 3.8) since structures designed for lower levels of PGA are expected to develop a 

mechanism at earlier stages of loading. Considering that the inelastic period is especially 

suited within a displacement-based assessment framework, where the main goal is to correctly 

predict the displacements, it is recommended that at least on these cases to use mathematical 

models that also consider the seismic design level rather than just the height, like the ones 

presented herein. 

   HPGAPGAHPGAHPGATy  05.098.011.074.0),( 2  (3.8)  
 

   HPGAPGAHPGAHPGATy  03.030.003.016.0),( 2  (3.9)  
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Figure 3.8 - Surface fitting to yield period. Top: Bare frame structures; Bottom: Infilled structures  

 

3.6 COMPARISON WITH PREVIOUS MODELS 

This section presents a comparison with the models derived herein and previous proposals. 

As previously mentioned, the vast majority of the existing studies on this subject are region-

specific. Since the structures generated in this study have been designed according to 

European regulations, it was decided to limit this comparative study only to models 

developed for this region. For the relationships listed in Table 3.1 where the number of storeys 

rather than height was used as the input parameter to compute the expected period an average 

storey height of 3 metres was considered. 

The majority of the previous models were developed based on the results from structures with 

very limited (if any) seismic design, therefore in this section and for comparison purposes, 

only the models developed for the lowest ground motion level have been considered. The 

study from Oliveira and Navarro (2010) contains structures built in Portugal (mainly in the 
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region of Lisbon) between 1940 and late 2000's with the majority being post 1980's buildings, 

consequently with some degree of seismic design. For this reason, when comparing the period 

estimates proposed by this study with the models from Oliveira and Navarro, only functions 

developed for peak ground acceleration equal to 0.20g (i.e. the expected acceleration for the 

475-year return period at the city of Lisbon) have been used.  

Most of the models listed in section Table 3.1 have been developed from data collected using 

monitoring systems installed on buildings under low amplitude motion. Under these 

circumstances is safe to assume that these models are most likely best suited for estimating the 

elastic period of vibration. Only Crowley and Pinho (2004) propose different models for both 

the elastic and inelastic period of vibration. Figure 3.9 summarizes the main findings of this 

comparative study.  

 

 

Figure 3.9 - Comparative study. 

 

As previously mentioned, the differences on the period of vibration introduced by the seismic 

design level can on average reach about 20%. This is consistent with the results shown on the 
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top-left plot of Figure 3.9 where the differences between both curves become more discernible 

with increasing heights. Another comment on the results depicted in Figure 3.9 is that the 

period predictions obtained with the model from Oliveira and Navarro (2010) for bare frame 

structure are clearly set apart from the remaining mathematical models with significantly 

lower estimates. One of the reasons for this discrepancy could be the poor correlation between 

the periods of vibration and height indicated by Oliveira and Navarro (2010), due to the 

limited number of analysed structures. When analysing the results for the infilled frames, a 

stronger correlation between all the models for heights up to 10 metres (i.e. around 3 storeys) 

was found. For higher structures, the models start to deviate considerably. When considering 

the elastic period, the relationships proposed herein generally yielded slightly more flexible 

solutions than the remaining studies. This could result from the fact that some building 

collections considered in previous studies have also included buildings with a greater number 

of bays than the ones considered in this study (more commonly observed in taller buildings, 

e.g. Oliveira and Navarro (2010). However, as previously mentioned the total number of bays 

considered herein was selected based on existing literature and is a commonly seen building 

typology. An additional factor to possibly have contributed for this observation was the fact 

that the buildings analysed in this study have been designed according to modern design 

codes that generally favour more flexible solutions for better energy dissipation. With regards 

to the inelastic period, the models developed herein and the ones proposed by Crowley and 

Pinho (2004) provided period estimations with remarkable correlation for the heights up to 10 

metres, but after this point the models start to diverge and the model proposed herein 

consistently produces lower estimates of the expected period of vibration. This behaviour is 

most likely to have occurred due to the period saturation expected to happen in taller 

buildings that cannot be captured using a linear function as proposed by Crowley and Pinho 

(2004), and the addition of the influence of stiff structural elements such as staircases or lift 

shafts. 

 

3.7 IMPACT ON THE DERIVATION OF FRAGILITY AND SEISMIC RISK 

The derivation of fragility functions (establishing the probability of exceeding a number of 

damage states conditional on a set of ground shaking levels) using simplified approaches often 
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relies on period-height relationships (e.g. Borzi et al. (2008), Silva et al. (2013), Villar-Vega et 

al. (2017)). Thus, the accuracy and reliability of these relationships will affect directly the 

resulting fragility functions. A simple demonstration is provided herein, in which two single-

degree-of-freedom systems were created considering the expected periods of vibration, using 

the formulae proposed in this study. These two SDOF systems represent two mid-rise (5 

storeys) structures, and will have distinct periods of vibration due to the different design 

ground shaking (0.20g and 0.40 g – see Figure 3.6). In order to appraise the differences in the 

structural response only due to the distinct periods of vibration, the same yielding (1%) and 

ultimate (3%) global drifts were considered. However, it is acknowledged that distinct designs 

would certainly lead to different displacement capacities. The resulting capacity curves are 

presented in Figure 3.10. These two SDOF systems have been tested (using nonlinear time 

history analysis) against the European database of strong motion (Akkar et al. 2014) in order 

to derive a fragility function for the yielding and collapse damage states, as illustrated in 

Figure 3.11. Additional information about this methodology can be found in Villar-Vega et al. 

(2017). Finally, these fragility functions were used to calculate the average annual probability 

of exceeding yielding (AAPY) or reaching collapse (AAPC), considering a hazard curve for the 

city of Istanbul (www.efehr.org), as described in Table 3.6. 

 

 

Figure 3.10 - Example differences introduced in the of capacity curves. 
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Figure 3.11 - Fragility curves for 5 storeys building. 

 

Table 3.6 - Annual average probability of exceeding yield and reaching collapse. 

AAPY AAPC 
dsgPGA=0.20g dsgPGA=0.40g dsgPGA=0.20g dsgPGA=0.40g 

2.36x10-3 2.03x10-3 4.37x10-4 3.319x10-4 
 

These results shown in Figure 3.11 and Table 3.6 demonstrate that the variability in the fragility 

and risk metrics would have been underestimated should a single period-height relationship 

had been used for the derivation of the SDOF systems, as opposed to account for the effects 

due to the consideration of distinct design ground shaking.  

 

3.8 FINAL REMARKS 

Period of vibration versus height relationships have been used for several decades for the 

design of new structures or the assessment of large portfolios of buildings, where 

individualized numerical analyses are not practical. One of the major limitations of the existing 

height-period relationships is that often they have limited applicability outside of the region 

where they have been developed or calibrated, and no distinction is made regarding the design 

acceleration.  
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In this study, sets of reinforced concrete frames (bare and infilled) were created and their 

period of vibration was estimated using an analytical approach. These structures have been 

designed to be compliant with the most up-to-date European regulation and different levels 

of design ground motion. Tridimentional finite elemental models were created and the elastic 

and inelastic periods were evaluated by the means of eigenvalue and pushover analysis 

respectively.  

The results presented herein allowed developing functions that consider both the building's 

height and the design ground motion as input parameters. Considering these two parameters 

together has led to a reduction of about 50% in the standard error of estimate when comparing 

with models were the data had not been sorted by seismic design level.  

The findings on this study suggest a reduction of the period of vibration of around 20% from 

the lowest to the highest design peak ground acceleration levels considered. For the elastic 

period of vibration, the introduction of the infill panel lead to a decrease in the period of 

vibration for about one third of its equivalent for the bare frame structures. With regards to 

the inelastic period, the introduction of the infill panels leads to a minimum reduction of about 

30% in the period. 

The models presented in this study have been compared with existing studies developed for 

European constructions. The results revealed slightly more flexible period predictions given 

by the models developed herein, which may be a result of the fact of the other models 

contained structures with a higher number of bays.  

Finally, an evaluation of the impact in seismic risk introduced by the period of vibration has 

been included. The analysis allowed to identify and illustrate (i) the need for correct period 

estimations to avoid erroneous demand predictions potentially resulting in biased assessment, 

and (ii) the variability on the fragility and risk metrics can be significantly underestimated if a 

single period-height equation is applied.  
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4  
 

ADVANCES IN THE DERIVATION 
OF FRAGILITY MODELS FOR 

THE DEVELOPMENT OF RISK-
TARGETED HAZARD MAPS 

 

Martins, L., Silva, V., Bazzurro, P. and Marques, M. (2016) Advances in the derivation of fragility models for 
development of risk-targeted hazard maps, Engineering Structures (under review). 

 

4.1 SUMMARY 

Risk-targeted hazard assessment aims at estimating the design ground shaking that leads to a 

uniform distribution of the collapse probability of buildings within a given region. An 

essential aspect of this methodology relies on the definition of the relationship between the 

collapse probability of buildings designed according to modern seismic regulations and the 

considered design ground motion. This study adds to previous research on the topic of seismic 

risk-targeted hazard assessment by investigating how the collapse probability varies with the 

design level of ground motion, and how this variability influences the resulting seismic risk 

across Europe. A large number of structures designed according to the most recent seismic 

regulation in Europe have been analysed. These structures were designed for increasing levels 

of peak ground acceleration ranging from values close to zero (i.e. buildings located in regions 

with very low seismic hazard) up to 0.40 g (i.e. moderate to high seismic hazard). Each 

structure was modelled as a tri-dimentional finite element model, and tested against a set of 

ground motion records using nonlinear dynamic analyses. Several fragility functions were 

derived for yielding and collapse damage states, and combined with the seismic hazard curves 

from the European project SHARE to calculate the spatial distribution of earthquake risk 

across Europe. 
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4.2 INTRODUCTION  

Current seismic design codes require buildings to be designed for a given ground motion 

intensity level that is determined from a prescribed return period. The implicit assumption is 

that this design criterion ensures that the probability of collapse of different types of buildings, 

although often unknown, is comparable if not uniform. This is unfortunately not true. 

Uncertainties in the fragility of structures and on the shape of the local hazard curves often 

lead to an associated seismic risk level that is not only site-specific but also structure-specific, 

thus invalidating the previous hypothesis (Luco et al. 2007, Douglas et al. 2013).  

Luco et al (2007) has described a methodology, known as risk-targeted hazard assessment, that 

aims at computing the ground motion intensity that in fact leads to an uniform distribution of 

the seismic risk within a region, usually at national level. The target seismic risk level is directly 

correlated to the risk a given community or society is willing to accept, and should be 

established by decision makers, such as politicians with the support of engineers and 

sociologists.  

In this context, it is clear that following a design methodology based on the principles of risk-

target assessment has several advantages in comparison with the current procedures. 

However, a significant obstacle in the implementation of this methodology still needs to be 

overcome. An essential aspect of this methodology relies on the relationship between the 

design ground motion (ades) and the expected collapse probability of the structure given a 

ground motion intensity (Pc|ades). Low values for the probability of collapse at the design 

ground motion are to be expected for newly designed structures. However, a literature review 

has revealed an extremely high variability in this parameter, ranging from 10-7 to 10-2 (Luco et 

al. 2007, Douglas et al. 2013, Silva et al. 2014a, Ulrich et al. 2014, Martins et al. 2015, Sinković et 

al. 2016). These studies, however, considered different types of buildings and design 

regulations, which often required the use of values of ades corresponding to distinct return 

periods. Appropriate boundaries for Pc|ades and its associated dispersion can be defined by 

analysing large suits of structures designed according to the same criteria. The ground motion 

intensity, ag, at which the collapse is reached is usually modelled as a random variable with a 

cumulative lognormal distribution, defined by a logarithmic standard deviation (β) and by 
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any quantile of the distribution (e.g. the 50th quantile, namely the median, âc for which 

Pc|ades=0.5). High dispersion for β has also been found with proposed values ranging from 0.4 

to 1.0 (Silva et al. 2016). This parameter has a significant influence on the resulting risk-targeted 

hazard results, as it affects directly the slope of the fragility curve. For example, although not 

often recognized, large values of β in the widely adopted lognormal distribution modelling 

framework cause non-negligible values of Pc for levels of ground motion that are hardly felt 

by humans and certainly of no harm to engineered structures such as those considered here. 

This large variability and its direct impact in the resulting earthquake risk strengthens the need 

to further investigate reasonable ranges for Pc|ades and β. 

Despite the obvious need for providing an adequate safety margin against collapse when 

designing and constructing new structures, it is also important to minimize the potential losses 

due to extensive damage for more frequent events. Observations of past events have revealed 

regions where modern seismic design regulations are well established, but still high economic 

losses have been reported. For example, the 1994 Northridge earthquake is deemed as one of 

the costliest seismic events in recent history, and most of the economic losses came from 

severely damaged structures, and not due to the very limited number of collapses. These 

considerations have already been accounted for in some design regulations, such as the 

Eurocode 8 (CEN 2010c), which establishes a damage limitation requirement for a design 

ground motion corresponding to a probability of exceedance of 50% in 50 years. However, 

such an approach, once again, leads to an uneven distribution of damage risk across different 

structures and regions. 

This study investigates the structural fragility of new buildings designed according to the 

European regulation, within the context of risk-targeted hazard assessment. This goal is 

achieved through numerical modelling of a number of structures designed considering 

different seismic ground motion hazard levels, which are then utilized to perform numerous 

nonlinear dynamic analyses (NDA). The building responses resulting from the NDAs are 

combined with a damage model to derive fragility functions for yielding (representing the 

onset of damage) and structural collapse. A comparison is also made between existing fragility 

functions and those developed herein. Conclusions are drawn regarding the impact that 

fragility curves with different characteristics have on the annual probability of collapse or of 

reaching structural damage for different buildings across Europe. Moreover, the findings 
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presented herein also allow estimating fragility curves for any region in Europe, provided that 

the buildings have been designed according to the Eurocode. 

 

4.3 NUMERICAL MODELLING AND GROUND MOTION SELECTION 

4.3.1 Structural design and 3D finite element modelling 

For this study a pre and post-processing Matlab® (MathWorks 2013) algorithm has been 

developed and all the structural analyses have been performed with the open-source finite 

element software OpenSees (McKenna et al. 2000). 

The case study buildings are reinforced concrete moment frames designed according to the 

most up-to-date European regulations (CEN 2009, CEN 2010a, CEN 2010b, CEN 2010c). All 

the structures are regular in height and symmetric along both horizontal main axes. The 

concrete class chosen for the structural design has a characteristic strength of 25MPa, whilst 

the characteristic yield stress of the rebar steel considered herein was 500MPa. A permanent 

load of 6.25 kNm-2 has been considered on all floors to reproduce the weight of a reinforced 

concrete slab of average thickness. Following the guidelines of Eurocode 1-1 (CEN 2009) for 

residential buildings, an additional live load of 2.80 kNm-2 has also been considered in the 

design stage. For the top floor (roof) the absolute value of the live load has been lowered to 

0.40 kNm-2. In addition to the vertical loads, all structures have been designed to withstand 

horizontal loading due to the wind excitation, considering a wind velocity of 25ms-1 and a 

Class II terrain, according to the Eurocode 1-4 (CEN 2010a). 

To avoid excessive deformations under static loading, all beams have been designed with a 

minimum height equal to 1/12 of the span length, while the minimum cross section considered 

for columns was 0.25x0.25 m2. Standard values for the reinforcing bars diameters have been 

used (i.e. 6, 8, 10, 12, 20, 25 and 32 mm). The adopted rebar pattern was the one that minimized 

the difference between the required rebar area and the actual rebar area while ensuring 

sufficient spacing between rebars in the most congested cross sections. When designing the 

structural elements, if the cross section of any structural components had to be updated, the 

minimum increment in the section's dimensions considered was 0.05 m.  
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Five sets of 10 structures with 3 and 5 storeys designed for 5 increasing levels of ground motion 

ranging from peak ground acceleration (PGA) of 0.05g (i.e. very low seismic hazard) up to 0.4 

g (i.e. moderate to high seismic hazard) have been analysed herein. Eurocode 8 (CEN 2010c) 

performance requirements and recommendations have been followed during the design 

phase. In order to introduce variability in the design, the span length and storey height have 

been randomly sampled from the probability distributions found in Silva et al (2014d). An 

example of the numerical model is presented in Figure 4.1.  

 

 

Figure 4.1 - Representation of the numerical models Left) 3 storeys building; Right) 5 storeys building 

 

Being regular structures, a simpler procedure with 2D frames and lateral forces has been used 

during the design stage, which is also in agreement with the common practice. The design 

ground motion levels and, consequently, the lateral earthquake loads assumed that the 

structures are constructed on rock sites (i.e. average shear wave velocity in the top 30m greater 

than 800ms-1). Both types of seismic action currently included in Eurocode 8 (i.e. Type 1 – far 

field earthquakes, and Type 2 – near field earthquakes) were considered, and the one that led 

to the higher base shear was utilised in the design process. Furthermore, all the structures were 

assumed to have medium ductility. 

The 3D structural models developed for assessing the seismic performance of each building 

were defined using force-based fibre elements, each with five Gauss-Lobatto integration 

points. The nonlinear material behaviour of the concrete was modelled following the stress-

strain relationship proposed by Mander et al (1988), whilst the steel reinforcement was 
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modelled following Menegotto and Pinto (1973) recommendations. Figure 4.2 displays the 

natural periods of vibration for the different sets of structures assuming uncracked sections. 

 

 

 

Figure 4.2 - First mode period of vibration [s] Top) 3 Storeys buildings; Bottom) 5 Storeys buildings 
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damage in comparison with PGA (e.g. (Silva et al. 2013, De Biasio et al. 2014)), most of the 

seismic hazard maps are defined in terms of PGA. Thus, fragility curves using the former IM 

can lead to risk metrics with higher accuracy and lower dispersion, but the latter allows a 

direct estimation of the collapse probability and the design ground motion.  

The seismic loads were introduced using scaled real ground motion records, applied to the 

structure's foundations in both horizontal directions. The combination of effects given by the 

bidirectional loading was done with one of the horizontal components being multiplied by 

0.30, whilst the other remained unchanged, as recommended by the Eurocode 8 (CEN 2010c). 

Calabrese et al (2010) have demonstrated that distributed plasticity elements can become 

numerically unstable at high ductility levels, especially if the structure exhibits softening 

behaviour. Therefore, before reporting a numerical collapse, the implemented framework 

tested several nonlinear solution algorithms (regular Newton-Raphson, modified Newton-

Raphson and Newton-Raphson with line search), before reducing the time step given by the 

ground motion record by a factor of 10 and increasing the tolerance from 10-6 to 10-4 in order 

to try to attain convergence.  

Ground motion is known to be one of the main sources of uncertainty in structural 

vulnerability assessment, (Shome and Cornell 1999). For this reason, special consideration has 

been given to the selection of the ground motion records. The framework developed by Sousa 

et al. (2014) has been used herein to select a large number of accelerograms. This framework is 

strongly based on the Conditional Spectrum (CS) method developed by Baker and co-workers 

(Baker 2011, Jayaram et al. 2011, Lin et al. 2013), which relies on the empirically verified 

assumption that the set of (log) spectral accelerations at various periods follow a random 

multivariate normal distribution. By defining the target spectral acceleration, one can obtain 

from disaggregation the parameters, such as magnitude and source-to-site distance, of the 

controlling scenarios. The values of such parameters inserted in a ground motion prediction 

model (GMPM) provide the conditional mean and variance of Sa at the vibration periods of 

interest. The methodology proposed by Sousa et al. (2014) improves on the original CS method 

by using several GMPM at the same time to compute the full distribution of magnitude and 

distance given by the disaggregation. 
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4.4 SEISMIC PERFORMANCE ASSESSMENT 

4.4.1 Capacity assessment and definition of damage states 

In this study the damage states thresholds used for fragility assessment have been calculated 

from the individual capacity curve of each structure, which were derived using an adaptive 

pushover algorithm (Antoniou and Pinho 2004). As mentioned, two limit states were 

considered in this study, yielding (marking the onset of damage) and collapse, which are the 

main damage states of significance for risk-targeted hazard assessment. 

Yielding was assumed to have occurred for the interstorey drift (ISD) level at which the 

relationship with the normalized base shear departs considerably from linearity (hence, not at 

the first crack in the first member that yields). The exact interstorey drift threshold was 

computed from bilinearization of the capacity curve. The buildings were considered to have 

reached their ultimate lateral load bearing capacity when a 20% reduction in base shear is 

observed (Silva et al. 2014d). Some of the structures displayed excessive ductility, with this 

drop in the base shear capacity only occurring for maximum interstorey drift levels at which 

the structures are most certainly unstable and/or un-repairable (e.g. interstorey drifts higher 

than 4%). For these structures, the drift thresholds proposed by Ghobarah (2004) for ductile 

moment resisting frames have been followed (i.e. for these structures collapse was assumed to 

have occurred for ISD >3%). Figure 4.3 depicts the evolution of the base shear (normalized by 

its peak value) with the maximum interstorey drift for all seismic design levels. 
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Figure 4.3 - Mean capacity curves expressed as Maximum interstorey drift vs Normalized base shear Top) 3 

Storeys structures; Bottom) 5 storeys structures. 

 

The mean capacity curves plotted in Figure 4.3 display, as expected, an increase on the ultimate 

displacement capacity and a reduction on the level of post yield softening with the increase on 

the design acceleration. It is relevant to note that the capacity curves computed for the lowest 

level of design acceleration (i.e. applicable to regions with low seismic hazard or for buildings 

with low seismic provisions) have an average collapse drift level around 3%, which is in line 
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for example with the threshold proposed by Rossetto and Elnashai (2003) (2.8%) for non-

ductile structures. 

 

4.4.2 Fragility assessment 

Considering the performance thresholds computed from the capacity curves and the results 

from the nonlinear dynamic analyses, a number of fragility curves were calculated as depicted 

in Figure 4 to Figure 4.7. As previously mentioned, a lognormal distribution has been assumed 

for the acceleration, ag, at which the damage state is reached (in the collapse case) or exceeded 

(in the onset of damage case) using two intensity measures: PGA and Sa at the mean period of 

vibration of each set of structures (Tavg) illustrated in Figure 4.2. The associated parameters for 

the collapse damage state (θ, β) are provided in Table 4.1 and Table 4.2 for PGA, and in Table 

4.3 and Table 4.4 for Sa. 

 

 

Figure 4.4 - Fragility curves for 3 storeys frames (IM=PGA) for onset of damage (top row) and collapse (bottom 

row). 

 

0 2 4
0

0.2

0.4

0.6

0.8

1

P
[D

S
Y

ie
ld

|IM
]

Design PGA=0.05g

0 2 4
0

0.2

0.4

0.6

0.8

1
Design PGA=0.10g

0 2 4
0

0.2

0.4

0.6

0.8

1
Design PGA=0.20g

0 2 4
0

0.2

0.4

0.6

0.8

1
Design PGA=0.30g

0 2 4
0

0.2

0.4

0.6

0.8

1
Design PGA=0.40g

0 2 4
0

0.2

0.4

0.6

0.8

1

P
[D

S
C

ol
la

ps
e|

IM
]

0 2 4
0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

Peak ground acceleration [g]
0 2 4

0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1



Earthquake damage and loss assessment of reinforced concrete buildings  

55 

 

Figure 4.5 - Fragility curves for 5 storeys frames (IM=PGA) for onset of damage (top row) and collapse (bottom 

row). 

 

 

Figure 4.6 - Fragility curves for 3 storeys frames (IM= Sa(Tavg)) for onset of damage (top row) and collapse (bottom 

row). 
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Figure 4.7 - Fragility curves for 5 storeys frames (IM= Sa(Tavg)) for onset of damage (top row) and collapse (bottom 

row). 

 

Table 4.1 - Fragility parameters for the collapse (3 storeys structures, IM=PGA). 

Str. # 
PGA=0.05g PGA=0.10g PGA=0.20g PGA=0.30g PGA=0.40g 
θ β θ β θ β θ β θ β 

1 0.479 0.552 0.771 0.566 2.106 0.714 3.109 0.785 1.968 0.684 
2 0.436 0.543 0.775 0.645 1.605 0.624 1.987 0.662 2.457 0.623 
3 0.383 0.589 0.792 0.651 1.931 0.680 3.552 0.885 2.678 0.642 
4 0.571 0.548 0.454 0.383 2.173 0.724 3.323 0.869 3.439 0.738 
5 0.373 0.632 0.661 0.538 1.654 0.673 3.153 0.848 2.713 0.869 
6 0.402 0.433 0.767 0.590 1.630 0.651 2.598 0.734 5.010 1.041 
7 0.721 0.574 0.801 0.616 1.405 0.681 1.435 0.706 4.694 0.922 
8 0.444 0.622 0.685 0.539 1.632 0.626 2.784 0.792 3.791 0.792 
9 0.624 0.525 0.772 0.685 1.616 0.629 2.048 0.665 4.515 0.952 
10 0.493 0.610 0.709 0.585 1.715 0.654 1.177 0.733 2.270 0.573 

Mean 0.493 0.563 0.719 0.580 1.747 0.666 2.517 0.768 3.354 0.784 
CoV. 0.218 0.098 0.137 0.138 0.132 0.050 0.308 0.100 0.311 0.191 

θ - Median; β - Logarithmic standard deviation; CoV - Coefficient of variation 
 

Table 4.2 - Fragility parameters for collapse damage state (5 storeys structures; IM=PGA). 

Str. # 
PGA=0.05g PGA=0.10g PGA=0.20g PGA=0.30g PGA=0.40g 
Θ β θ β θ β θ β θ β 

1 0.944 0.643 0.833 0.657 1.913 0.601 2.143 0.770 4.089 0.849 
2 0.880 0.640 1.004 0.590 2.633 0.823 2.372 0.825 3.576 0.813 
3 1.330 0.639 0.943 0.693 2.518 0.688 2.533 0.917 3.326 0.701 
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4 0.768 0.724 0.788 0.736 2.078 0.787 3.631 0.814 3.848 0.738 
5 1.047 0.605 1.220 0.523 1.910 0.622 2.271 0.785 4.821 0.730 
6 0.707 0.715 1.330 0.639 2.078 0.787 2.047 0.534 3.773 0.850 
7 0.962 0.575 0.778 0.747 2.491 0.819 2.533 0.917 5.348 0.761 
8 1.220 0.523 1.043 0.614 2.288 0.646 3.009 0.702 4.249 0.938 
9 1.067 0.702 0.778 0.747 4.333 0.962 2.672 0.978 3.356 0.705 

10 0.977 0.565 1.246 0.628 2.241 0.628 2.144 0.813 4.821 0.730 
Mean 0.990 0.633 0.996 0.657 2.448 0.736 2.536 0.806 4.121 0.782 
CoV. 0.181 0.101 0.199 0.107 0.274 0.151 0.180 0.148 0.158 0.095 

θ - Median; β - Logarithmic standard deviation; CoV - Coefficient of variation   
 

Table 4.3 - Fragility parameters for collapse damage state (3 storey structures; IM= Sa(T)). 

Str. # 
PGA=0.05g PGA=0.10g PGA=0.20g PGA=0.30g PGA=0.40g 
θ β θ β θ β θ β θ β 

1 0.382 0.547 0.559 0.436 0.654 0.607 0.684 0.643 0.924 0.530 
2 0.431 0.507 0.537 0.634 0.845 0.428 0.673 0.523 0.982 0.428 
3 0.630 0.539 0.611 0.536 0.679 0.652 0.718 0.842 0.770 0.590 
4 0.336 0.400 0.475 0.326 0.565 0.604 1.010 0.843 0.988 0.619 
5 0.687 0.589 0.509 0.428 0.559 0.566 0.644 0.743 1.164 0.848 
6 0.350 0.237 0.525 0.548 0.722 0.542 0.689 0.684 1.127 0.942 
7 0.604 0.474 0.338 0.490 0.740 0.504 0.786 0.618 1.315 0.736 
8 0.654 0.521 0.540 0.468 0.751 0.527 0.769 0.679 0.937 0.636 
9 0.405 0.350 0.526 0.637 0.987 0.593 0.690 0.519 0.793 0.916 
10 0.465 0.512 0.646 0.426 0.653 0.614 0.732 0.588 1.173 0.407 

Mean 0.494 0.468 0.526 0.493 0.715 0.564 0.739 0.668 1.017 0.665 
CoV. 0.259 0.218 0.149 0.188 0.170 0.110 0.134 0.164 0.163 0.272 

θ - Median; β - Logarithmic standard deviation; CoV - Coefficient of variation   
 

Table 4.4 - Fragility parameters for collapse damage state (5 storey structures; IM= Sa(T )). 

Str. # 
PGA=0.05g PGA=0.10g PGA=0.20g PGA=0.30g PGA=0.40g 
θ β θ β θ β θ β θ β 

1 0.353 0.542 0.326 0.449 0.478 0.517 0.463 0.421 0.880 0.593 
2 0.317 0.432 0.372 0.452 0.697 0.567 0.606 0.512 0.794 0.614 
3 0.510 0.402 0.376 0.525 0.595 0.525 0.632 0.542 0.572 0.519 
4 0.309 0.490 0.320 0.463 0.484 0.428 0.936 0.419 0.760 0.538 
5 0.451 0.418 0.438 0.408 0.416 0.530 0.590 0.551 1.054 0.632 
6 0.299 0.431 0.510 0.402 0.484 0.428 0.453 0.445 0.895 0.603 
7 0.368 0.495 0.283 0.515 0.612 0.534 0.632 0.542 1.312 0.504 
8 0.438 0.408 0.377 0.439 0.605 0.539 0.697 0.522 0.783 0.624 
9 0.397 0.491 0.361 0.505 0.901 0.333 0.611 0.551 0.587 0.561 

10 0.405 0.485 0.499 0.428 0.571 0.513 0.520 0.528 1.055 0.632 
Mean 0.385 0.459 0.386 0.459 0.584 0.491 0.614 0.503 0.869 0.582 
CoV. 0.179 0.102 0.194 0.095 0.238 0.147 0.223 0.107 0.260 0.083 

θ - Median; β - Logarithmic standard deviation; CoV - Coefficient of variation   
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For the yield damage state, little variation between the average value for θ and β has been 

found for all the case study structures. This behaviour is most likely due the fact that the vast 

majority of the structures reach yield for a similar value of interstorey drift ratio (around 1.5%).  

The values of β were found to range from 0.60 up to 0.80 when using peak ground acceleration, 

and from 0.40 to 0.60 when using spectral acceleration. This higher dispersion for the fragility 

curves defined in terms of PGA is due, as demonstrated by De Biasio et al (2014) and Silva et 

al (2014d), to the lower efficiency of PGA in estimating interstorey drift, which is the 

engineering demand parameter adopted here to set the thresholds of the two damage states. 

Previous authors (Haselton et al. 2011, Lazar and Dolšek 2014, Silva et al. 2014d), have also 

analysed the fragility of groups of structures and have proposed a range for the logarithmic 

standard deviation between 0.35 and 0.50 when Sa is used as the intensity measure and 

between 0.50 and 0.75 for PGA. The boundaries found in this study are slightly higher than 

the ones previously proposed, likely due to the variability in the structural design within each 

set of structures not accounted for in previous studies. 

 

4.5 IMPACT ON RISK-TARGETED HAZARD ASSESSMENT 

4.5.1 Correlation between collapse probability (Pc|ag) and design ground motion  

The fragility curves in terms of PGA were used to calculate the probability of collapse at the 

design ground motion, Pc|ades, for values of PGA from 0.05g to 0.40g, as indicated in Table 4.5 

and Table 4.6. The data for each design class indicates that the average Pc|ades should be placed 

in the interval of 10-5 to 10-3. An analysis of the results of the five sets of structures shows that 

structures designed for PGA=0.05g generally exhibit values of Pc|ades lower than those of the 

remaining case study structures. Although this behaviour was expected, it should be noted 

that for some of these structures the loads controlling the design were due to wind and not 

seismic activity. This explains some of the lowest values seen in this study (i.e. in the order of 

magnitude of 10-10 to 10-7). It is also relevant to note that the same behaviour was reported by 

Ulrich et al (2014). 
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Table 4.5 - Probability of collapse at design ground motion (3 storey structures). 

Str.# 
Pc|ades 

PGA=0.05g PGA=0.10g PGA=0.20g PGA=0.30g PGA=0.40g 
1 2.123x10-5 1.536x10-4 4.871x10-4 1.442x10-3 9.884x10-3 
2 3.261x10-5 7.461x10-4 4.233x10-4 2.148x10-3 1.786x10-3 
3 2.713x10-5 7.440x10-4 4.252x10-4 2.619x10-3 1.538x10-2 
4 4.379x10-6 3.811x10-5 4.919x10-4 2.832x10-3 1.772x10-3 
5 7.327x10-4 2.256x10-4 8.512x10-4 2.772x10-3 1.382x10-2 
6 7.650x10-7 2.781x10-4 6.284x10-4 1.639x10-3 7.597x10-3 
7 1.673x10-6 3.652x10-4 2.101x10-3 1.331x10-2 3.796x10-3 
8 2.217x10-5 1.766x10-4 3.999x10-4 2.456x10-3 2.258x10-3 
9 7.471x10-7 1.430x10-3 4.473x10-4 1.946x10-3 5.431x10-3 
10 8.704x10-5 4.041x10-4 5.073x10-4 3.107x10-2 1.220x10-2 

Mean 9.305x10-5 4.561x10-4 6.763X10-4 6.223X10-3 7.392X10-3 
CoV. 2.307 0.865 0.727 1.434 0.664 

CoV - Coefficient of variation 
 

Table 4.6 - Probability of collapse at design ground motion (5 storey structures). 

Str.# 
Pc|ades 

PGA=0.05g PGA=0.10g PGA=0.20g PGA=0.30g PGA=0.40g 
1 2.413x10-6 6.312x10-4 8.602x10-5 5.346x10-3 3.075x10-3 
2 3.645x10-6 2.370x10-5 8.664x10-4 6.120x10-3 3.527x10-3 
3 1.404x10-7 6.007x10-4 1.150x10-4 1.002x10-4 1.263x10-3 
4 7.959x10-5 2.533x10-3 1.465x10-3 1.106x10-3 1.082x10-3 
5 2.417x10-7 8.708x10-7 1.416x10-4 5.227x10-3 3.219x10-3 
6 1.051x10-4 2.552x10-5 1.465x10-3 1.620x10-4 4.124x10-3 
7 1.384x10-7 3.028x10-3 1.030x10-3 1.002x10-4 3.252x10-3 
8 5.105x10-10 6.788x10-5 8.082x10-5 5.081x10-4 5.857x10-3 
9 6.400x10-6 3.028x10-3 6.964x10-4 1.267x10-3 1.280x10-3 
10 7.103x10-8 2.969x10-5 5.954x10-5 7.778x10-3 3.219x10-3 

Mean 1.977x10-5 9.970x10-4 6.006x10-4 2.771x10-3 2.990x10-3 
CoV. 1.961 1.320 0.967 1.077 0.493 

CoV - Coefficient of variation 
 

The values taken by Pc|ades have been the target of limited investigation. Ramirez et al (2012) 

analysed a large number of reinforced concrete structures designed according to modern 

seismic provisions for Western US that prescribe a design ground motion equal to 2/3 of the 

acceleration of the Maximum Considered Earthquake (MCE). This ground motion level is 

similar to what is expected for the 475-year return period. The estimated values of Pc|ades varied 

between 0.4% and 4.2%, which is in agreement with the values proposed by FEMA (2009), 

Goulet et al (2007) and Haselton et al (2011). These values are considerably higher than those 

obtained in this study, probably due to the lower safety margins implicit in the design 



Chapter 4 - Advances in the derivation of fragility models for the development of risk-targeted hazard maps 

60 

provisions for structures in western US, a region with moderate to high seismic hazard. 

Douglas et al (2013) while developing risk-targeted hazard maps for France has proposed a 

probability of collapse at the 475-year return period ground motion equal to 10-5. Later, Ulrich 

et al (2014) analysed several 3-storeys moment frame reinforced concrete buildings designed 

for increasing levels of ground motion and proposed an acceptable interval for Pc|ades between 

10-7 and 10-5. These values, which are lower than those proposed by Douglas et al (2013) and 

those obtained herein, are perhaps too conservative for ordinary structures (ASCE 2005). It 

should be noted, however, that the study by Ulrich et al (2014) focused on buildings in France, 

where seismic hazard is generally lower than the hazard of Southern Europe. Another recent 

study for European buildings (Silva et al. 2016) has suggested a range of values of Pc|ades similar 

to those obtained herein.  

In order to incorporate the variability of Pc|ades in probabilistic risk analysis of structures, a 

parametric distribution of this random variable is desirable. This distribution can be 

empirically estimated via a statistical model of the residuals for all five sets of 3 and 5 storeys 

structures. The residuals are simply the differences between the value of Pc|ades for every 

sample structure and the mean value of Pc|ades for all the buildings in the same design structure 

set. The symmetry of the residuals around the null value suggested that a normal distribution 

could be used to model this variability (see Figure 4.8). The adequacy of the fitted distribution 

was assessed through a one-sample Kolmogorov-Smirnov (K-S) test. In addition, the Root 

Mean Squared Error (RMSE) between the empirical and theoretical Cumulative Distribution 

Function (CDF) was also calculated. Table 4.7 presents the mean and standard deviation for 

the best fit probability density function and the significance level at which the K-S test is 

satisfied. 
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Figure 4.8 - Fitted Gaussian distribution to the residuals around the mean probability of collapse at the design 

ground motion. 

 

Table 4.7 - Best fitted distribution to the residuals around the mean probability of collapse at the design ground 

motion. 

Probability  
density model 

Parameters Significance level RMSE 

Normal µ=0; σ=0.0021 1% 0.0085 

RMSE - Root Mean Squared Error; µ - Mean; σ - Standard deviation 

 

4.5.2 Investigation on the logarithmic standard deviation 

Similarly, to what done for the probability of collapse at the design ground motion, an 

investigation on the distribution of residuals around the mean logarithmic standard deviation 

of β was also performed. The adequacy of the fit to the different probability models has been 

assessed using the same procedure used for Pc|ades. The findings (see Table 4.8, Table 4.9 and 

Figure 4.9) suggest that a normal probability distribution is sufficient to accurately represent 

the distribution of residuals around the mean value of β for both damage states (onset of 

damage and collapse) and intensity measures, PGA and Sa. 
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Table 4.8 - K-S test and RMSE results from fitting residuals around the mean β (IM=PGA) 

Probability 
density 
model 

Yield DS Collapse DS 

Parameters 
Significanc

e level 
RMSE Parameters 

Significanc
e level 

RMSE 

Normal 
µ=0; 

σ=0.0481 
1% 0.0005 

µ=0; 
σ=0.0915 

1% 0.0008 

RMSE - Root Mean Squared Error; µ - Mean; σ - Standard deviation 

 

Table 4.9 - K-S test and RMSE results from fitting residuals around the mean β (IM=Sa) 

Probability 
density 
model 

Yield DS Collapse DS 

Parameters 
Significanc

e level 
RMSE Parameters 

Significanc
e level 

RMSE 

Normal 
µ=0; 

σ=0.0535 
5% 0.0046 

µ=0; 
σ=0.0515 

5% 0.0044 

RMSE - Root Mean Squared Error; µ - Mean; σ - Standard deviation 

 

  

  

  

Figure 4.9 - Histogram and fitted probability distributions to the residuals around the mean β for all five design 
structure sets. Top) IM=PGA; Bottom) IM=Sa; Left) Yield DS; Right) Collapse DS. 
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the same findings. The results suggest that a significant correlation exist (R2=0.67) between the 

logarithmic standard deviation and the natural logarithm of Pc|ades, as illustrated in Figure 

4.10. This result indicates that it is important to consider the correlation between β and Pc|ades 

in the generation of synthetic collapse fragility curves from the aforementioned probability 

distributions to prevent unrealistic curves from being generated. 

 

Figure 4.10 - Relationship between the natural log of the probability of collapse at the design ground motion, 

Pc|ades, and logarithmic standard deviation, β. 

 

4.5.3 Sensitivity analysis on the annual probability of collapse 

In the previous sections, fragility curves were derived for reinforced concrete structures 

designed for increasing levels of ground motions. This exercise provided boundaries and 

probability distributions for both the probability of collapse at the design ground motion 

(Pc|ades) and the variability of the fragility curves (β). In this section we investigate how the 

variability of Pc|ades and β influences the mean annual rate of reaching the collapse damage 

state.  

The mean annual rate of collapse is also known to be affected by the shape of the local hazard 

curve (Luco et al. 2007). Hence, our investigation considered three different locations (Vienna, 

Lisbon and Istanbul) with 475-year return period PGA values ranging from 0.10 g (i.e. low 

hazard) up to 0.40 g (i.e. moderate to high hazard). The required PGA hazard curves (see 

Figure 4.11) were developed within the FP7 European project SHARE (Woessner et al. 2015), 
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and extracted from the European Facility for Earthquake Hazard and Risk 

(http://www.efehr.org/en/hazard-data-access/hazard-curves/). 

 

 

Figure 4.11 - Hazard curves for chosen locations at rock site in terms of peak ground acceleration. 

 

For each location a total of twenty hypothetical fragility curves with Pc|ades ranging from 10-5 

to 10-2 and β ranging from 0.5 to 0.9 were constructed assuming a lognormal probability 

distribution (see Figure 4.12) for the acceleration ag at which the damage state is reached (in 

the collapse case) or exceeded (in the onset of damage case). Section 4.5.2 highlighted that 

correlation between Pc|ades and β should be considered in a real seismic risk assessment 

scenario in order to avoid unrealistic fragility estimates. However, the main objective of this 

section is to provide a sensitivity analysis on the effects that a variation on the fragility 

parameters introduce on annual rate of collapse, thus for the sake of simplicity and to 

accentuate any possible trend it was decided not to include the correlation effects in this 

exercise.  

In order to compute the annual rate of collapse, the method proposed by Eads et al. (2013), and 

further explored by Silva et al. (2016), was used. The original hazard curves were converted 

before using them from the native annual probability of exceedance into annual rate of 

exceedance assuming a Poisson model. The resulting curves were then discretized into several 

segments and the rate of occurrence associated with the central acceleration value of each 

segment was calculated. Then, for any given fragility curve the probability of collapse (Pc|ag,i) 
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at the central acceleration value (ag,i) of the ith segment was calculated and then multiplied by 

the rate of occurrence of ag,i. The annual rate of collapse is the sum of these products for all n 

values of ag,i where n are the number of segments in which the hazard curve has been 

discretized. The results from this sensitivity analysis are provided in Table 4.10 to Table 4.12. 

 

 

 

Figure 4.12 - Examples of fragility curves. Top: ades=0.2g; Pc|ades =10-5 and five values of β; Bottom: ades=0.2g; β=0.7 
and four values of Pc|ades. 
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Table 4.10 - Sensitivity analysis on the expected mean annual rate of collapse for Vienna. 

Pc|ades 
Expected annual rate of collapse (Vienna ades=0.10g) 

β=0.50 β=0.60 β=0.70 β=0.80 β=0.90 
10-5 4.7x10-5 2.4x10-5 1.3x10-5 7.6x10-6 4.8x10-6 
10-4 9.5x10-5 5.5x10-5 3.4x10-5 2.3x10-5 1.6x10-5 
10-3 2.0x10-4 1.3x10-4 9.4x10-5 7.1x10-5 5.5x10-5 
10-2 4.4x10-4 3.4x10-4 2.8x10-4 2.4x10-4 2.1x10-4 

 

Table 4.11 - Sensitivity analysis on the expected mean rate of collapse for Lisbon. 

Pc|ades 
Expected annual rate of collapse (Lisbon ades=0.20g) 

β=0.50 β=0.60 β=0.70 β=0.80 β=0.90 
10-5 4.0x10-5 1.9x10-5 9.7x10-6 5.7x10-6 3.6x10-6 
10-4 8.7x10-5 4.9x10-5 3.0x10-5 1.9x10-5 1.4x10-5 
10-3 1.9x10-4 1.3x10-4 9.1x10-5 6.8x10-5 5.3x10-5 
10-2 4.6x10-4 3.6x10-4 2.9x10-4 2.5x10-4 2.2x10-4 

 

Table 4.12 - Sensitivity analysis on the expected mean annual probability of collapse for Istanbul. 

Pc|ades 
Expected annual rate of collapse (Istanbul ades=0.40g) 

β=0.50 β=0.60 β=0.70 β=0.80 β=0.90 
10-5 1.2x10-5 5.2x10-6 2.7x10-6 1.6x10-6 1.1x10-6 
10-4 3.5x10-5 1.8x10-5 1.1x10-5 7.5x10-6 5.5x10-6 
10-3 1.0x10-4 6.4x10-5 4.5x10-5 3.5x10-5 2.8x10-5 
10-2 3.0x10-4 2.3x10-4 1.9x10-4 1.7x10-4 1.5x10-4 

 

The results for all three locations indicate, as expected, that the mean annual rate of collapse 

increases with the values of Pc|ades. These results are not surprising since a higher value for 

Pc|ades generally indicate more fragile structures, as illustrated in Figure 4.12 by the shift to the 

left of the curves with the increasing level of Pc|ades. Increasing β for the same level of Pc|ades 

has instead the effect of reducing the expected annual probability of collapse. This trend can 

be explained by the flatter shape of fragility curve with higher values of β, that produce lower 

probabilities of collapse for ground motion levels higher than that of Pc|ades.  

 

4.5.4 Annual rate of exceeding a given DS 

The consideration of several structural models in this study allowed the development of 

empirically-based probabilistic models for the parameters defining the fragility curves (Pc|ades, 

β) and for the correlation between them. The definition of these parameters in a probabilistic 

manner allows the propagation of the associated uncertainties to the final risk estimates. In 
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this context, a Monte Carlo simulation was employed to generate a hundred fragility curves 

for each one of the two damage states using the statistical models previously established for 

each level of ades. Then, each fragility curve was used to calculate the annual rate of reaching 

the associated damage state, according to the methodology described in the preceding section. 

The results are provided in Table 4.13 and Table 4.14.  

 

Table 4.13 - Expected mean annual rate of yield at three locations and respective coefficient of variation. 

Location 
Annual rate of yield 

Mean Coefficient of variation 
Vienna (ades=0.1g) 1.86x10-4 0.248 
Lisbon (ades=0.20g) 5.29x10-4 0.244 

Istanbul (ades=0.40g) 1.39x10-3 0.236 
 

Table 4.14 - Expected mean annual rate of collapse at three locations and respective coefficient of variation. 

Location 
Annual rate of collapse 

Mean Coefficient of variation 
Vienna (ades=0.10g) 2.03x10-5 0.322 
Lisbon (ades=0.20g) 4.32x10-5 0.320 

Istanbul (ades=0.40g) 5.31x10-5 0.301 
 

The average annual rate of exceeding the onset of damage or reaching collapse can be 

compared with acceptable risk thresholds in order to decide whether risk reduction measures 

should be pursued. Luco et al (2007) in a previous study for the US estimated an acceptable 

threshold for the annual probability of collapse of around 2x10-4. Douglas et al (2013) upon 

extensive review on existing literature proposed 10-5 as an appropriate upper limit for this 

parameter. After an analysis of several acceptable thresholds for societal risk and fatality rates 

for inhabitants of reinforced concrete structures, Silva et al (2016) proposed an acceptable 

threshold (5x10-5) in between those of the former two studies.  

This threshold determines how the design ground motion at a given site should be adjusted 

to attain a uniform risk distribution. The accepted risk threshold to be adopted, and 

consequently the design ground motion, has a profound impact not only on the direct costs of 

design and construction but also on the expected social and economic losses (e.g. the expected 

mortality rate or number of damaged buildings) in future earthquakes. Selecting a more 

conservative threshold increases the initial costs of design and construction and lowers future 



Chapter 4 - Advances in the derivation of fragility models for the development of risk-targeted hazard maps 

68 

losses. The task facing decision makers is determining an adequate balance between a level of 

safety and the cost necessary to achieve it. 

For the locations considered here and assuming the proposal by Silva et al (2016), it is possible 

to observe that in some cases the estimated mean annual collapse rate exceeds the acceptable 

limit, and in others this value is below. More specifically, the design ground shaking for 

Istanbul should be increased, whilst the one for Vienna or Lisbon could be reduced. However, 

if one assumes the threshold proposed by Douglas et al (2013) the results indicate that the 

design ground motion should be increased in all three locations. 

 

4.5.5 Average rate of collapse for new reinforced concrete frames in Europe 

An analysis on the expected annual rate of collapse of newly designed reinforced concrete 

frame buildings has been performed for the European continent. For each location, the 

expected design ground motion for the 475-year return period has been extracted from the 

SHARE model. Then, in order to estimate collapse fragility curves for any value of ground 

motion, the results from Table 4.2 were used to fit linear functions for the median (θ), 

logarithmic standard deviation (β) and Pc|ades (see Figure 4.13). Strong positive correlation 

between the design PGA and the fragility parameters, Pc|ades and β was found, with values of 

the coefficients of determination (R2) above 0.80. Since more than 120,000 locations have been 

considered in this study, only the mean collapse fragility curve was considered at each site, 

unlike in the probabilistic procedure explored in the previous section. The computed values 

for the probability of collapse at the design acceleration for each location are depicted in Figure 

4.14.  
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Figure 4.13 - Polynomial functions used to estimate the values of the parameters of the collapse fragility curves.  

 

 

Figure 4.14 - Computed probability of collapse at the design ground motion at site. 

 

The annual probability of collapse across the European territory is illustrated in Figure 4.15. 

Assuming an acceptable threshold for the annual probability of collapse of 5x10-5, Figure 4.15 

suggests that the design ground motion for most of the Northern European countries could be 

lowered since the mean annual rate of collapse is considerably lower than the proposed 
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acceptable risk threshold. This finding is not surprising since the design at these latitudes is 

often not controlled by seismic loads (the seismic hazard is low) but rather by a combination 

of permanent and live loads (e.g. wind or snow loads).  

For South and Southeast Europe (e.g. Southern Italy, Central and Southern Greece and the 

North Anatolian Fault in Turkey), Figure 4.15, however, exhibits a quite different scenario. 

Considering the threshold suggested by Silva et al (2016), the results would call for an increase 

of the design ground motion in order to attain an admissible and uniform risk distribution in 

these regions. It should be noted that in some of these regions the estimated annual rate of 

collapse peaked to almost double the acceptable risk threshold adopted here.  

Finally, the findings of this study also indicate that for the majority of Central Europe the mean 

annual probability of collapse is between 3x10-5 and 5x10-5, very similar to the acceptable 

threshold value adopted in this study.  
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Figure 4.15 - Map for the average annual probability of collapse for newly designed reinforced concrete frame 

buildings in Europe. 

 

It is interesting to note that the results presented herein differ quite significantly from a 

previous study for Europe by Silva et al (2014a), especially for the Northern European 

countries. The fragility parameters used by Silva et al (2014a) were kept constant across the 

European territory, whereas those used in this study are conditional on the local design 

ground motion level. Regardless of the approach for the definition of the fragility curves, it is 

clear that the spatial distribution of risk across Europe varies considerably, despite the fact that 

the same return period for the design ground shaking is being considered. 
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4.6 FINAL REMARKS 

This study analysed the influence of the structural fragility on the probability of collapse at the 

design ground motion level in order to identify key aspects that impact the development of 

risk-targeted hazard maps, such as the uncertainty in building fragility and the annual 

probability of reaching (or exceeding) a given damage state.  

A set of regular reinforced concrete moment frame structures compliant with the most up-to-

date European regulations and designed for increasing levels of ground motion has been 

created. Each structure was represented using a tridimentional finite element model, and 

tested against a set of ground motion records using nonlinear dynamic analyses. This study 

considered two damage states: yielding (onset of structural damage) and the structural 

collapse. Variability in the structural design has been introduced in order to propagate the 

building-to-building variability to the risk estimates. 

The results presented herein suggest that the mean probability of collapse at the design ground 

motion for modern code compliant structures lays between 10-5 and 10-3. These values are 

similar to those of other previously published studies, l. Lower values for the probability of 

collapse at the design ground motion have been found for structures designed for the lowest 

ground motion level considered herein. In these cases, the design of the lateral load resisting 

system was generally not controlled by earthquake loading, but by loads due to other actions 

(e.g. wind loads). These results seem to suggest that in some locations with very low 

earthquake hazard, the seismic design recommendations enforced by the codes may be 

unnecessary since the lateral load capacity required by other sources of horizontal excitation 

could be sufficient to ensure an adequate seismic performance.  

The previous observation was later confirmed by analysing the annual rate of collapse for the 

European continent. Considering the currently enforced 475-year return period design ground 

motion, most of the regions in Northern Europe exhibited annual rates of collapse below all 

commonly accepted risk thresholds. On the other end of the spectrum, this study also 

identified regions (mostly in southern Europe) where the design ground motion would have 

to be increased in order to bring the expected earthquake risk to an acceptable level. Mapping 

the expected annual rate of collapse across Europe has also demonstrated one of the main 

problems with modern seismic design codes. Despite having considered the same return 



Earthquake damage and loss assessment of reinforced concrete buildings  

73 

period for the design ground motion the computed spatial distribution of seismic risk was far 

from being uniform.  

This study also provided probability distributions functions for the residuals around the mean 

logarithmic standard deviation and probability of collapse at the design ground motion used 

to develop fragility functions within a probabilistic framework. A sensibility analysis on the 

influence of the fragility parameters on the final risk metrics has also been included. 

Summarizing, the results of this study contribute to the understanding of the seismic 

performance of new structures designed according to modern codes, and consequently to the 

increase of the robustness and reliability of the risk-targeted hazard methodology. 
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5  
 

DEVELOPMENT AND 
ASSESSMENT OF DAMAGE-TO-

LOSS MODELS FOR MOMENT-
FRAME REINFORCED 

CONCRETE BUILDINGS 
 

Martins, L., Silva, V., Marques, M., Crowley, H. and Delgado, R. (2016) Development and assessment of 
damage-to-loss models for moment-frame reinforced concrete buildings. Earthquake Engineering & 
Structural Dynamics, 45(5): p. 797-817. DOI: 10.1002/eqe.2687. 

 

5.1 SUMMARY 

In this section a methodology for computing losses induced by earthquake loads in reinforced 

concrete structural elements is presented. Structural damage has been correlated with the 

element's chord rotation through a modified version of the Park and Ang (1985) damage index. 

Damage levels are correlated with an appropriate repair technique and the expected loss is 

computed as a combination of expected repair cost per technique weighted by the probability 

of the element being in a given damage state. 

The proposed method relies on a comprehensive study on the cost of repair of damaged 

structures. Real and up-to-date repair costs suitable for Portuguese RC buildings are 

presented. The methodology described in this section has been drafted for the Portuguese 

building stock; however, the general principals presented herein are still applicable to any 

region of the globe provided a reliable source of repair costs is available.  

The methodology has been applied to two real Portuguese reinforced concrete structures built 

during the late 50's and early 60's. From the estimated structural losses suitable damage-to-

loss models have been produced. A study between the differences in the expected annual 
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losses computed with the proposed methodology and the traditional methodology has also 

been included. 

 

5.2 INTRODUCTION 

Seismic risk analysis should be performed with the highest possible level of accuracy, in order 

to provide decision makers with reliable information that can be used for risk mitigation 

purposes. However, the process of performing risk analysis still involves a number of steps 

which could benefit from further improvements, mainly in the definition of the relationship 

between damage and loss, arguably one of the highest sources of uncertainty within an 

analytical vulnerability assessment. 

The first stage of an analytical vulnerability assessment is to employ the results from structural 

analysis to establish a relation between a meaningful engineering demand parameter - EDP 

(e.g. drift ratios, dissipated energy, floor acceleration) and a structural damage threshold. 

Then, the evaluation of the evolution of damage with increasing ground shaking intensity can 

be used to derive structural fragility functions, which provide the probability of exceeding a 

set of structural damage states, conditional on a set of ground motion levels. The issue of 

defining damage from structural performance parameters has been addressed in previous 

studies, (Park and Ang 1985, Calvi 1999, Borzi et al. 2008, Benavent-Climent 2011, Fardis et al. 

2012), or technical guidelines and design recommendations (CEN 2005, FEMA 2014). 

However, whilst EDP-to-damage estimation is well documented and deals with concepts that 

are recognized by most engineering practitioners and researchers, the same cannot be said 

regarding the relation between damage and a level of loss, usually defined by the so-called 

damage-to-loss or consequence models (e.g. (Kappos et al. 2006, Bal et al. 2010b)).  

Despite efforts from a number of researchers to improve the field of loss modelling (e.g. 

(Kappos et al. 1991, Gunturi 1993, Kappos et al. 1998, Di Pasquale and Goretti 2001, Kappos et 

al. 2006, Bal et al. 2008, Ramirez et al. 2012)), in general, the majority of available consequence 

models are still deterministic and/or based on limited empirical data. Furthermore, it is also 

important to emphasize that the majority of the existing damage-to-loss models were 

developed and calibrated to represent the reality of a small number of countries and 
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corresponding building stock, which may lead to a misleading vulnerability evaluation when 

applied to other regions of the world, as demonstrated herein. 

This study presents a procedure to estimate the expected level of damage for a given ground 

shaking intensity, through the employment of numerical modelling and nonlinear dynamic 

analysis. A comprehensive study on the repair of reinforced concrete structural elements was 

used as the starting point to compute the expected structural losses due to seismic excitation. 

For what concerns the non-structural vulnerability, a decision was made to account for the 

possible damage in the infill walls, openings, plumbing and electrical network. Different 

repair techniques were adopted based on the extent of damage in the various components, 

and vulnerability functions were derived combining the losses given by the component 

structural damage and the complete structural collapse. By relating the estimated losses back 

to global damage states, it has been possible to define damage-to-loss models for the case study 

structures.  

Two moment-frame reinforced concrete buildings located in Portugal have been considered 

for these analyses. Currently, no studies seem to exist in the literature concerning consequence 

models for Portugal, which makes the present study a significant contribution for future loss 

studies. The need for an adequate damage-to-loss model for Portuguese buildings has been 

addressed by Martins et al (2014). In the latter study, a vulnerability analysis was presented 

using a component-based consequence model developed for the Californian building stock, 

which was deemed to lead to a significant overestimation of losses in Portugal, especially for 

greater ground shaking intensity levels. Likewise, the findings of the present study also 

demonstrate that the assessment of probabilistic risk using damage-to-loss models developed 

for other countries might lead to erroneous results, often by a factor of two. Hence, the present 

investigation improves upon existing studies by using repair costs that are specific to the 

Portuguese reality, and also provides a general methodology to compute structural losses that 

can be easily adapted to other countries.  
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5.3 METHODOLOGY FOR COMPUTING STRUCTURAL LOSSES 

5.3.1 Element damage assessment 

In order to determine the damage level of each structural element, a modified version of the 

Park and Ang (1985) damage index originally proposed by Beck et al (2002) (Eq. (5.1)) was 

applied. The Deformation Damage Index (DDI) is defined as the ratio of the maximum plastic 

hinge rotation attained during seismic loading (θp_transient), and the difference between the 

ultimate rotation capacity (θu) and the recoverable rotation at unloading (θr). 

 
ru

transientpDDI





 _  (5.1)  

 

In monotonic loading, the recoverable rotation may be approximately determined assuming 

the initial stiffness path as the unloading path. However, in dynamic analysis, the computation 

of plastic hinge rotations is not straightforward as the unloading path is a function of the 

loading history, which varies from record to record (Chen and Lui 2006). By providing 

additional runtime for the structure to stabilize after the seismic excitation, it is possible to 

estimate the plastic rotations (θpl) due to residual deformation. Computing the recoverable 

rotation is then just a matter of subtracting the residual rotation from the maximum recorded 

rotation. The ultimate rotation capacity is dependent on the section geometry, reinforcing steel 

pattern and the internal stresses, which are combined through Eq. (5.2), originally proposed 

by Priestley and Park (1987), where Фy and Фu are the yield and ultimate curvature, Ls is the 

shear-span and Lpl is the plastic hinge length. 
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5.3.2 Repair cost estimation 

The deformation damage index for each structural element was used to assign a damage state 

(DS) using the component fragility functions proposed by Haselton et al. (2008) (Figure 5.1 and 

Table 5.1). It should be mentioned that these fragility functions have been developed for code 

compliant structures, for which no failure due excessive shear is expected. For gravity-
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designed structures the shear forces must be controlled and in case of excessive shear, the 

element should automatically be assigned to the Collapse damage state. 

 
Figure 5.1 - Probability of exceeding a given damage state as a function of the DDI (Haselton et al. 2008). 

 

Table 5.1 - Lognormal distributions proposed by Haselton et al (2008). 

Damage State 
Fragility parameters 

Median (Xm) 
Logarithmic Standard 

Deviation (β) 
Light damage (DS1) 0.08 1.36 

Moderate damage (DS2) 0.31 0.89 
Significant damage (DS3) 0.71 0.80 

Collapse (DS4) 1.28 0.74 
 

By identifying a damage state to each structural member, it is possible to establish the most 

appropriate repair technique. Knowing the probability of being in a particular damage state 

at a given ground shaking level (P[DS=ds|IM]), and provided that a reliable estimate of the 

cost of the associated repair technique (Crpr_ds) is available, one can estimate the expected total 

repair cost per element (E[Crpl_elem|IM]) using Eq. (5.3). In this equation, DS=0 corresponds to 

the undamaged state for which no repair costs are expected. 
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According to Haselton et al (2008), structural elements assigned to the light damage state can 

be repaired with epoxy injection. On the other hand, elements that have suffered moderate 
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damage require a more expensive intervention in order to be restored to their previous 

undamaged state, with a recommendation given for jacketing-based techniques. For more 

severe damage states, a complete replacement of the structural element (i.e. rebuilding the 

whole element) is recommended. It is worth mentioning that the complete replacement of a 

damaged element is possible but often a difficult operation to execute in practice. The 

feasibility of this repair job in real life conditions should always be determined through a 

careful inspection of the damaged element and its surroundings on site. Regardless of this, 

determining the practicability of the element replacement has been considered out of the scope 

of this work and incompatible with the definition of a generalized and methodology for loss 

assessment (i.e. the main objective of this section) thus for it has been assumed that this 

operation could always be performed.  

In sections 5.3.2.1 to 5.3.2.3 a more detailed description on the procedure adopted to compute 

the cost associated to each repair technique is presented. In order obtain realistic loss estimates 

a real up-to-date online database specialized in construction costs has been used 

(http://www.geradordeprecos.info/).  

 

5.3.2.1 Expected epoxy injection cost 

It has been determined that, unsurprisingly, the global cost of an epoxy injection is closely 

related with the amount of structural adhesive applied. In regular injections the quantity of 

epoxy varies from 0.2kg to 3.0kg per linear metre of repaired element. For Portuguese 

construction this translates to a repair cost ranging from 9.18€/m to 74.26€/m. 

The amount of adhesive is correlated to the width and length of the cracks in the concrete, and 

therefore it is reasonable to assume that the cost of epoxy injection must be related with the 

damage (herein assumed to be measured by the DDI). Thus, lower values of DDI will lead to 

less expensive repair costs.  

In order to incorporate this variability in the cost estimation, a relationship between the 

deformation damage index and the unit cost of the epoxy injection has been assumed. From 

the parameters in Table 5.1 for the light damage state, the DDI values that lead to a probability 

of exceedance of 0.10 and 0.90 were computed. Due to lack of data regarding the cost of repair, 
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a linear variation of the repair cost has been arbitrarily assumed between these values, whereas 

outside this interval the repair cost was presumed to remain constant and equal to the 

minimum and maximum costs respectively (Figure 5.2). 

 
Figure 5.2 - Epoxy injection cost vs. DDI relationship. 

 

5.3.2.2 Expected jacketing cost 

Jacketing is one of the most frequently used techniques for repairing and/or strengthening 

structural elements (Waghmare 2011). The jacketing cost is dependent on the type and 

geometry of the structural element. Thus, in order to make an informed judgment on the cost 

of a jacketing operation, a decision was made to divide the total cost into a number of 

individual costs.  

For columns, a four-sided RC jacket executed with a cast-in-place technique was assumed. For 

the sake of simplicity, the width of the jacket was kept at the recommended minimum of 0.10m 

and 8 new longitudinal rebars were added (Fardis 2009, Waghmare 2011). The same diameter 

of the existing corner rebar has been used as reference for the size of the additional reinforcing 

steel, with a minimum of 12 mm for the steel bars at the corners of the RC jacket (Waghmare 

2011). The transverse reinforcement spacing has been halved within the jacket, as suggested 

by Julio et al. (2003). Waghnare (2011) recommends that the compressive strength of the 

concrete jacket should be at least equal to that of the existing structure, or up to 5 MPa higher. 

For the majority of ordinary building structures in Portugal this translates into a compressive 

strength between the classes C25/30 and C30/37 of Eurocode 2 (CEN 2010b), and thus the price 
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used to compute the jacketing repair cost was given by the average of these two classes. This 

assumption is in agreement with the work of Silva et al. (2014d) that from the results of core 

drilling tests in 76 Portuguese buildings has proposed a model for estimating the compressive 

concrete strength based on a gamma distribution with an average value of 23.8 MPa and 

Coefficient of Variation (CoV) of 49%. Most guidelines and published literature on RC 

jacketing highlight the need for preparing the interface between the concrete on the original 

column and the added jacket. This task serves the purposes of increasing the surface roughness 

of the original column, which is usually followed by the application of a bounding agent like 

an epoxy based compound. In order to provide a good estimate of the complete repair cost, in 

addition to the cost of the aforementioned materials, the expenditure of formwork and labour 

were also considered.  

Knowing the geometry of the jacket and the number of additional rebars, one can determine 

most of the quantities needed for the repair job, with the exception of the labour and bounding 

agent that are not directly correlated with the dimensions of the jacket. In this context, a 

number of possible column cross sections were considered and the associated amount of 

labour and adhesive were estimated using the aforementioned database. Then, using these 

possible scenarios, a regression analysis was performed to approximate several polynomial 

functions establishing a relation between the column cross section area and the amount of 

labour and adhesive, as illustrated in Figure 5.3. 

 
Figure 5.3 - Model for labour and bounding agent estimates as a function of column cross section. 
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For what concerns the repair of the beams, in order to avoid creating a strong beam - weak 

column mechanism, the maximum stiffness and strength should be kept in the columns. For 

this reason, the chosen repair technique for beams was steel jacketing, with the steel sheet 

being applied only at the bottom of the beam. Prior to the jacketing, it is necessary to repair 

any possible damage sustained by the beams due to the seismic loads, and thus the application 

of repair mortar in the surface area of the beam has been included in the total repair cost. 

According to the queried database, the cost for steel jacketing of beams is solely dependent on 

the thickness of the steel sheet, with all other costs (labour and additional materials) remaining 

constant. For simplicity, an average thickness of 3mm of S355 grade steel for the repair job has 

been assumed herein. Table 5.2 and Table 5.3 describe the unit costs of all the aforementioned 

repair tasks, which were used to compute the expected structural repair costs. 

Table 5.2 - List of unit costs for column repair. 

Description Unit Unit cost [€/un] 

Concrete m3 107.56 

Reinforcing Steel kg 0.82 

Formwork m2 10.50 

Surface roughening  m2 40.52 

Bonding agent (epoxy) kg 11.25 

Specialized worker hr 17.69 

Regular worker  hr 17.27 

 

Table 5.3 - List of unit costs for beam repair. 

Description Unit Unit cost [€/un] 

Repair mortar m2 90.02 

Surface preparation  m2 40.52 

Steel jacket (3mm S355 
steel sheet) 

m2 92.02 
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5.3.2.3 Computing replacement cost 

Herein the element's replacement cost (Crpl_elem) has been computed as a function of the 

structures's replacement cost (Crpl_str), assumed to be a percentage of the building's replacement 

cost. It is reasonable to assume that a smaller and less important element should have a lower 

replacement cost. In this work the ratio between the element's volume (Velem) and the whole 

structure's volume has been used in order to estimate the element's replacement cost (Eq. (5.4)). 

It should be mentioned that although completely acceptable whenever no additional 

information is available, the cost estimates given by Eq. (5.4) may be considered over 

simplistic. Nonetheless this equation has been suggested in this study because it enables the 

development of an entirely universal methodology for loss assessment that is independent of 

the structure being analysed and easily adaptable to other regions of the globe. 

An approximation of the building's replacement cost may be achieved using the average 

construction cost per square metre. These are usually readily available and frequently 

updated, for example the Portuguese government publishes on a regular basis this information 

for tax purposes. According to the Portuguese Ministry of Finance (2003) the average 

construction cost accounts for all the direct and indirect costs associated with the construction 

industry namely labour, materials, equipments and energy. Herein the average construction 

cost suggested by the Portuguese government (603€/m2) (Finanças 2013) has been used. It 

should be noted that this value can be further updated to account for the building's location 

and age. However, for the sake of simplicity in this work it has been decided to ignore this and 

adopt the default value. 
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5.4 COMPUTING NON-STRUCTURAL LOSSES 

Recent events have indicated that a large portion of the direct losses are due to damage in the 

non-structural components, and not in the structural elements (e.g. (Taghavi and Miranda 

2003, Miranda et al. 2012)). Recent studies (Pinto 2007, Mendes 2011, Mêda 2014) regarding the 

typical construction practices in Portugal has revealed that, on average, structural components 

account only for 32% of the building's total value. The remaining costs are distributed amongst 
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infill panels (33%), plumbing and electricity (15%), openings (i.e. windows, doors) (12%) and 

other elements (8%). The monetary value of each of these categories of non-structural 

components can be estimated by multiplying the building's total replacement cost by the 

respective percentage.  

For the assessment of the losses due to damage in the brick infill walls, the normalized 

economic damage index proposed by Kappos et al (1998) has been used. This index establishes 

the onset of damage in the panels at interstorey drift ratios of 1‰ and the complete loss of the 

panels at 4‰. Although important, the combination of in-plane and out-of-plane excitation 

has not been considered herein for computing losses in the walls and only the former has been 

considered. Once the economic damage index has been computed for each floor and each 

direction, the final economic loss due to damage in the infill walls is given by the sum of the 

product of these coefficients by the expected masonry monetary value. 

The calculation of the expected losses for the remaining non-structural components followed 

a similar approach to the one used for the infill walls. The limit states proposed by HAZUS 

(FEMA 2014) have been adopted, considering whether the expected damage is drift or 

acceleration sensitive. A deterministic loss analysis has been considered herein with the 

median value for each damage state being assumed to be the performance threshold.  

The monetary loss due to non-structural damages (E[LossnonStruc]) was obtained by summing 

the expected losses for each non-structural element. It should be mentioned that different 

thresholds could have been used to estimate the damage in the non-structural components 

(e.g. those proposed by the FEMA P58), but the general procedure remains unaltered 

regardless of the adopted damage criteria. 

Despite consisting the majority of the building replacement cost, the methodology to compute 

loss in non-structural elements is clearly less detailed than the methodology followed for 

structural elements. This is in large amount due to the less evolved state of current scientific 

knowledge when comes to non-structural elements (e.g. the simple double strut models for 

modelling infills) and the very different behaviour between all the different types of non-

structural elements (e.g. drift sensitive vs acceleration sensitive).  
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5.4.1 Computing global losses 

Having computed the expected repair cost for all the structural elements the expected loss for 

the building can be obtained through a weighted sum of the building's replacement cost and 

the total repair cost for the whole structure (Eq. (5.5)). It should be mentioned that computing 

the repair cost for the whole structure as a sum of the individual repair costs for each element 

may lead to an overestimation of the actual repair cost. All real repair operations have variable 

costs (e.g. the cost for transporting materials and equipments to the site) that decrease with the 

number of repaired elements. These costs are usually dependent on the resources put at 

disposal by the construction companies and their overall level of expertise and therefore are 

difficult to assess a priori. Despite being an important issue that needs to be properly 

addressed, including these considerations in the proposed methodology would probably 

widen too much the scope this work.  

Another critical aspect of Eq. (5.5) that needs further commenting is the correct evaluation of 

the building's collapse probability (P[Coll|IM]). When performing a vulnerability analysis, the 

structural behaviour might not be completely characterized by the peak transient response 

due to excessive residual deformations, which might lead to the need for demolition, resulting 

in its complete loss. Ramirez and Miranda (2012) have addressed this issue and proposed to 

model the probability of demolition as a function of the residual interstorey drift, using a 

lognormal distribution with median of 0.015 and logarithmic standard deviation of 0.30. Thus, 

if the structure has not collapsed due to the earthquake loads, the probability of demolition is 

calculated using the residual deformation and the aforementioned probability distribution. 
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5.5 CASE STUDY AND DERIVATION OF A DAMAGE-TO-LOSS MODEL 

5.5.1 Numerical models and analysis algorithm 

This section summarises the most relevant findings of the application of the aforementioned 

methodology to two real Portuguese residential buildings. Both structures are mid-rise 
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reinforced concrete (RC) moment frame buildings (see Figure 5.4) built between the late 50's 

and early 60's. Given their date of construction, both buildings were mainly designed to 

withstand only gravity loads. 

The first structure, henceforth referred to as Str1, is a five storey moment-frame with a 

maximum height of 14.25m, a floor area of 151m2 and a natural (uncracked) period of vibration 

of 0.36s. The second structure, from now on referred to as Str2, is a six storey moment-frame 

with a maximum height of 18.0m, a floor area of 254.8 m2 and a natural (uncracked) period of 

vibration of 0.46. The façade of both buildings consists in a double layered hollow brick wall. 

For the nonlinear dynamic analyses, in addition to the permanent loads, the live loads acting 

on the structure were also considered. For the nonlinear dynamic analyses, in addition to the 

permanent loads, the live loads acting on the structure were also considered. 

  

Figure 5.4 - Left: Perspective view of Str1; Right: Perspective view of Str2. 

 

In order to assess the structural performance of each building, 3D finite element models have 

been created using the open-source software OpenSEES (McKenna et al. 2000). The models 

were defined using force-based fibre elements, each with five Gauss-Lobatto integration 

points. As demonstrated by Calabrese et al (2010), distributed plasticity elements can become 

numerically unstable at high ductility levels, especially if the structure exhibits softening 

behaviour. Therefore, before reporting a numerical collapse, the implemented framework 

tested several nonlinear solution algorithms (regular Newton-Raphson, modified Newton-

Raphson, Newton-Raphson with line search and Broyden-Fletcher-Goldfarb-Shanno), before 

reducing the time step given by the ground motion record by a factor of 100 and increasing 

the tolerance from 10-6 to 10-4 in order to try to attain convergence. The infill walls were 
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modelled with two nonlinear single-struts connecting the opposing corners of the panel. The 

strength and stiffness properties of the struts were computed following the proposals of 

Crisafulli and Carr (1997) and Smyrou et al (2006). To improve numerical stability while 

avoiding spurious damping, a 2% tangent stiffness proportional damping was considered 

with the damping matrix being updated at all converged time steps. After applying the 

earthquake loading, the structure was allowed to vibrate freely until it finally stabilized in 

order to determine potential residual drifts and rotations.  

Using the spectral acceleration at the fundamental period of vibration (Sa (T1)) as the intensity 

measure (IM), a modified version of the incremental dynamic analysis (IDA) (Vamvatsikos 

and Cornell 2002), often referred as multiple stripe analysis (Lin and Baker 2013), was applied 

for the structural assessment, in which different ground motion records were selected for each 

intensity level in order to better match the scenarios that contribute to the expected regional 

seismic hazard at different intensity levels, as discussed further in the section 5.5.2.  

 

5.5.2 Ground motion record selection 

Given the importance of record-to-record variability on the seismic response of structures, 

careful consideration has been given to the methodology used for selection and scaling of 

natural ground motion records. The Conditional Spectrum (CS) proposed by Baker and co-

workers (Baker 2011, Jayaram et al. 2011, Lin et al. 2013), incorporating target mean and 

variance, provides an adequate mechanism to determine structural response variability 

conditioned to different levels of ground motion intensity. It is based on the empirically 

verified observation that the set of logarithmic spectral accelerations at various periods follow 

a random multivariate normal distribution (Jayaram and Baker 2008). Thus, by defining the 

target spectral acceleration at the first period of vibration, one can obtain its causal earthquake 

magnitudes, distances and other parameters from disaggregation, in order to compute the 

conditional mean and variance at the periods of interest.  

As described in Sousa et al (2014), another fundamental aspect of the addressed method is the 

selection of ground motion prediction models (GMPM), which is a crucial step to ensure 

consistency between target spectra and the ground motion properties expected for the site of 

interest. Thus, Atkinson and Boore (2006) and Akkar and Bommer (2010) models are selected, 
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following the work of Silva et al (2013). In this context, an 'exact' CS is adopted, considering 

multiple causal earthquake magnitudes, distances and GMPM with corresponding weights as 

established by Lin et al (2013). 

For this study, the two structures were assumed to be located in Lisbon. For each spectral 

acceleration intensity level, the thirty ground motion records that best-fitted the corresponding 

conditional spectra were selected from the PEER (https://ngawest2.berkeley.edu/site) and 

ESMD (http://www.isesd.hi.is/ESD_Local/home.htm) databases, as the input for the multiple 

stripe analyses. A maximum scaling factor of 5 has been considered within the matching 

algorithm. 

 

5.5.3 Case study structural performance assessment 

By combining the damage index for each element (Section 5.3.1) with the fragility parameters 

in Table 5.1, it is possible to compute, for each element in the building, the probabilities of 

being in a given damage state, conditioned to the ground shaking level.  

Figure 5.5 and Figure 5.6 depicts the average probability of each damage state across the 

elements, sorted by element type (columns on the left and beams on the right) and floor (where 

the floor number increases downwards), for both structures. From the evaluation of these 

results it is possible to observe that the main failure mechanism for both structures was a soft-

storey at the ground floor. Thus, it is fair to assume that both structures do not comply with 

the strong column-weak beam design rule, as expected from gravity-load designed structures. 

The main difference between them in terms of structural performance is the ground shaking 

intensity level that leads to structural collapse. It has been observed that the six storey frame 

(Str2) reaches higher probabilities of column collapse at lower intensity measure levels (IML) 

than the five storey structure (Str1), which could be expected since Str1 displayed a higher 

ductility.  

The figures also indicate that the structural damage in Str2 is much more concentrated in the 

columns and the beams do not sustain more than light damage, whereas the beams in Str1 

have a small probability of being severely or moderately damaged or even collapsed, despite 

the overall collapse mechanism of both structures being a ground floor soft-storey.  



Chapter 5 - Development and assessment of damage-to-loss models for moment-frame reinforced concrete buildings 

90 

These differences in the structural behaviour of the case study structures indicate a smoother 

transition between the elastic response range and the collapse state for Str1, when compared 

to Str2. 

 
Figure 5.5 - Average probability of element damage (Str1). 
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Figure 5.6 - Average probability of element damage (Str2). 

 

5.5.4 Element loss assessment 

By applying the methodology described in Section 5.3 to the case study structures, it has been 

possible to estimate the expected repair costs per technique featured on the current section. 

Figure 5.7 shows the total repair cost for the epoxy injection technique. In this plot, one can 

observe not only the effects of the ground shaking intensity but also the effect of the record-

to-record variability. The observed dispersion on the plot is a direct result of considering a 

range of possible repair costs for the epoxy injection and its relationship with the damage 

index (see Figure 5.2) 
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Figure 5.7 - Epoxy injection cost Left: Str1; Right: Str2. 

 

Figure 5.8 represents the distribution of the jacketing repair cost for both structures. It should 

be noted that the level of damage in a given structural element is correlated with the ground 

motion. However from the point when an element has sustained enough damage to be 

repaired with a jacketing, the cost of this operation is constant, since it is solely dependent on 

the element's geometry (see section 5.3.2.2). It is worth mentioning that the average unit cost 

for the jacketing operation computed with the methodology suggested in this study is 

remarkably close to the value proposed by Calvi (2013), in which a unit cost of 200€/m for a 

jacketing operation is suggested. The average repair cost using the methodology presented 

here was 202€/m, by considering the data from both frames. It is pertinent to mention that on 

average, the use of steel jacketing for the beams led to a slightly more expensive unit cost 

(229€/m) than the RC jacketing considered for the columns (162€/m).  

Figure 5.8 - Jacketing cost. Left: Str1; Right: Str2. 
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The methodology outlined in Section 5.3 requires an estimation of the element replacement 

cost in order to compute the economic loss for the significant and collapse damage state. In 

order to understand the replacement cost distribution for the two case studies, Eq. (5.4) has 

been employed to determine the cost of each structural element, as depicted in the histograms 

in Figure 5.9. 

 
Figure 5.9 - Element replacement cost. Left: Str1; Right: Str2. 

 

Once the expected repair cost for every structural element has been computed with Eq. (5.3), 

it is divided by the element replacement cost, leading to the expected element loss ratios 

presented in Figure 5.10. These results indicate negligible structural losses in both structures 

until Sa(T1)=0.4g. Whilst Str1 exhibits a considerable number of elements with losses exceeding 

10% of the replacement cost, the losses in Str2 are separated in clusters with very few elements 

registering loss ratios above this threshold. This is just another evidence of the more 

pronounced soft storey collapse mechanism in Str2. The result of this in terms of loss 

assessment is that the overall economic losses of Str2 are expected to be controlled by the losses 

due to complete structural collapse. 
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Figure 5.10 - Element loss ratio. Left: Str1; Right: Str2. 

 

5.5.5 Non-structural element loss estimation 

From the results of the incremental dynamic analyses the expected losses in non-structural 

elements have been computed. Figure 5.11 depicts the evolution of the sum of non-structural 

losses normalized by the total economic value of the non-structural components for each 

ground motion record. From these results, it can be observed non-negligible losses for lower 

ground shaking intensities. Most of these are due to damage on the masonry walls, given the 

limited interstorey drift capacity of these elements. 

 

Figure 5.11 - Non-structural loss ratio - Left: Str1; Right: Str2. 
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5.5.6 Defining a damage scale 

Creating a damage-to-loss model often requires the definition of a number of global discrete 

damage states (DS). As previously discussed, the main observed collapse mechanism for both 

structures was a soft storey at the ground level, and therefore the selected damage criteria 

must be able to capture this collapse mechanism.  

The damage scale proposed herein makes use of the local element seismic response to define 

the global structural damage. The criteria for assessing the global structural damage were 

inspired by the work of Bal et al (2010b). This model was based on the nonlinear analysis of 

numerous structures and correlation of element damage with the structural global 

performance. The model proposed herein uses most of the thresholds suggested by Bal et al; 

but this original work did not provide a clear separation between slight damage and the 

undamaged state, and instead merged both into a single DS. In order to keep consistency with 

the damage scale presented in section 5.3.1, four damage states had to be established herein. 

A comment on the division between DS2 and DS3 is that it was defined from the point where 

non-repairable damage starts to be observable on the structure. The global collapse has been 

correlated with the failure of a storey or with the point where the repair of the structure is no 

longer cost effective. While few would argue against a collapse criteria defined through the 

generalized column failure due to the fact that column stability is critical to the stability of the 

whole structure a comment on the criteria defined by beam failure must be added. Generalized 

beam failure throughout the building would most likely render the structure as unusable after 

the earthquake loads have ceased. It should also be taken into consideration that beam repair 

is often a more complex and costlier operation than repairing columns. It is not uncommon 

that when facing the decision of repairing a building with generalized beam failure or 

rebuilding it, the most cost efficient choice is the reconstruction. In this case and from a 

practical perspective, the structure should be classified as collapsed. 

Listed below are the criteria proposed by this study and used in Section 5.5.7 to assess the 

global structural damage. 

 Light damage (DS1) is reached if 5% of the beams exceeded the yield capacity; otherwise 

the structure is considered to be Undamaged (DS0). 

 Moderate damage (DS2) is reached if 10% of the beams or any column has yielded. 
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 Significant damage (DS3) is reached if 30% of the beams in the direction of loading or more 

than 80% of the columns at the ground floor have yielded. None of the structural elements 

must have reached the ultimate capacity. 

 Collapse (DS4) is reached if 20% of the beams in the direction of loading or 80% of the 

columns at ground floor have reached their ultimate capacity. The structure is also 

considered to be in this damage state if a collapse is verified during the dynamic analyses. 

 

5.5.7 Defining a damage-to-loss model 

In order to determine appropriate damage-to-loss models, for each ground motion record and 

intensity level, the expected loss has been computed and allocated to one of the four previously 

described damage states. The result of this effort was a vector of loss ratios per damage state 

from which was Figure 5.12 computed. Information regarding the dispersion in the computed 

damage-to-loss models is provided in Table 5.4. 

  
Figure 5.12 - Damage-to-loss models. Left: Str1; Right: Str2. 

 

Table 5.4 - Standard deviation for the damage-to-loss models. 

Damage state 
Standard deviation 

Str1 Str2 
Light Damage (DS1) 0.049 0.054 

Moderate Damage (DS2) 0.070 0.110 
Significant Damage (DS3) 0.086 0.118 

Collapse (DS4) 0.130 0.094 
 

Since no significant differences between the models in Figure 5.12 have been observed, and 

both Str1 and Str2 are pre-code mid-rise RC frames, a decision was made to merge information 

from both case studies into a single damage-to-loss model (see Figure 5.13 and Table 5.5). The 
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proposed damage-to-loss model was computed using the average of all loss ratios values 

deemed to be in a given damage state.  

 
Figure 5.13 - Combined damage-to-loss model. 

 

Table 5.5 - Combined damage-to-loss model. 

Damage state Mean loss ratio 
Standard 
deviation 

CoV. 

DS1 0.117 0.051 0.430 
DS2 0.321 0.099 0.308 
DS3 0.583 0.117 0.201 
DS4 0.887 0.119 0.134 

 

Comparing the proposed model with some other damage-to-loss models found in the 

literature for reinforced concrete frames (see Figure 5.14) it can be observed the average loss 

ratio for the proposed damage-to-loss model for the uppermost damage state is around 89%, 

which is slightly higher than the central value of the damage-to-loss model proposed for 

Greece by Kappos et al (2006). A loss ratio below 1 for the last DS in the consequence model 

indicates that the damage scale considered has a conservative approach to assess structural 

damage, which could signify that a globally defined collapsed state does not actually translate 

to a total loss of the building. Despite these results, it is important to recognize that repairing 

a building heavily damaged might not be a practical option, and in reality the structure is 

likely to be demolished. For example FEMA P-58 (FEMA 2012) mentions that several owners 

have selected to replace buildings when the expected repair costs exceeded about 40% of the 

replacement cost. This possibility has been incorporated in the damage-to-loss model derived 
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by Bal et al (2008), which defines a loss ratio for extensive damage equal to 1.04, to account for 

demolition, removal of debris and re-construction of the structure. Analysing the proposed 

value for DS1, it should be noted that it is in the same order of magnitude of the one proposed 

by Bal et al, although slightly lower. As previously mentioned, most of the losses for this 

damage state come from the damage in the infill walls. In fact, it was observed that the 1‰ 

interstorey drift threshold considered as the onset of damage for the walls was exceeded for 

low ground shaking intensities, for which the structure has not yet sustained significant 

structural damage. These results, added to the fact that the masonry walls account for over 

one third of the building's replacement value, explain the losses computed for in DS1. 

Figure 5.14 - Example of Damage-to-loss models. From left to right: Di Pasquale and Goretti (2001) (Italy); Kappos 

et al (2006)(Greece); Bal et al (2008)(Turkey) and HAZUS (FEMA 2014) (California). 

 

Having information on the dispersion of the damage to loss model means that in a risk 

assessment, it is possible to define the consequence model with a random variable, and 

compute the expected loss and associated uncertainty within a probabilistic framework. To 

test if any of the most common probability models used in engineering could represent the 

data for each DS, a one-sample Kolmogorov-Smirnov (K-S) test for a 5% significance level has 

been performed. Table 5.6 summarizes the results given by the K-S test in which a value of 1 

implies a rejection of the null-hypothesis (i.e. there is no sufficient evidence to support the 

statement that the data can be represented by the selected probability model). In addition, the 

root mean squared error (RMSE) between the empirical and theoretical cumulative 

distribution function (CDF) has also been calculated. By analysing the results from Table 5.6, 

it can be observed that a significant percentage of the probability distributions did not pass 

the K-S test for the selected significance level and have high RMSE. One of the reasons for this 

outcome could be that the amount of data is insufficient to ensure a proper fitting of the results, 
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and thus additional analyses should be performed. Silva et al (2014d) refers to the Beta 

distribution as appropriate to represent consequence models. The results shown in Table 5.6 

seem to validate these findings since this probability distribution has passed the K-S test for 

DS1 and DS4 and exhibits amongst the lowest values for RMSE for DS2 and DS3. It should 

also be mentioned that the Gamma and Lognormal distributions have also performed 

reasonably well for the majority of the damage states and could equally be considered as valid 

options. 

An alternative to the representation of the distribution of loss ratio per damage state with a 

parametric distribution could be the use of a probability mass function. In this approach, a 

number of loss ratio bins are defined, with an associated probability of occurrence. 

Table 5.6 - K-S test results and RMSE for proposed damage-to-loss model. 

Probability 
distribution 

DS1 DS2 DS3 DS4 
K-S test RMSE K-S test RMSE K-S test RMSE K-S test RMSE 

Beta 0 0.3304 1 0.3280 1 0.2646 0 0.0023 
Exponential 1 0.3156 1 0.3151 1 0.3223 1 0.4659 

Gamma 0 0.3356 0 0.3346 0 0.2661 1 0.0116 
Lognormal 0 0.3356 0 0.3346 0 0.2632 1 0.0134 

Normal 0 0.3354 1 0.3345 0 0.2705 1 0.0083 
Weibull 0 0.3353 1 0.3343 1 0.2830 1 0.0023 

K-S - Kolmogorov-Smirnov; RMSE - Root Mean Squared Error 
 

5.6 INVESTIGATION ON THE INFLUENCE OF SELECTING A DAMAGE-TO-LOSS MODEL 

5.6.1 Developing a compatible fragility model 

Having established a suitable damage scale in Section 5.5.6, compatible fragility functions 

(Figure 5.15) were developed for the case study structures in order to later compute the 

expected losses.  

For Str1, the median value for the DS1 curve is around 0.14g, which is significantly close to the 

first spectral acceleration level used for selecting ground motion records, as discussed in 

Section 5.5.2. It would have been useful to have a better discretization of ground motion 

intensities around Sa(T1)=0.10g, by adding for example the 0.05g and 0.15g levels; however, 

due to the computational demand of performing non-linear analysis in 3D models, it was 

decided to keep the number of intensity levels to a minimum. Furthermore, at this ground 
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shaking level the structure is expected to respond in the elastic range, which implies a lower 

response variability. In addition, significant structural damage, which has a higher 

contribution to the overall loss, only occurs for higher levels of ground motion. 

  
Figure 5.15 - Fragility functions Left: Str1; Right: Str2. 

 

5.6.2 Derivation of vulnerability functions 

5.6.2.1 Discrete vulnerability functions 

The development of a fragility model is often one of the first steps in a loss estimation exercise 

(Spence 2007), which can be combined with a consequence model to derive a set of 

vulnerability functions, and then employed to assess seismic risk (e.g. (Erberik 2008, Costa et 

al. 2010, Silva et al. 2014d)). However, this combination can influence greatly the resulting 

vulnerability functions, and consequently the associated losses, as demonstrated herein. 

Section 5.5.7 featured a qualitative comparison between the average model calculated in this 

study against other damage-to-loss models, e.g. (Di Pasquale and Goretti 2001, Kappos et al. 

2006, Bal et al. 2008, FEMA 2014). This section provides a quantitative analysis on the 

importance of using compatible fragility and damage-to-loss models. Using the damage-to-

loss models derived for each frame (see Figure 5.15 )and the models proposed in the literature, 

mean vulnerability functions have been computed (Figure 5.16) through the convolution of 

the consequence models with the fragility functions (Eq.(5.6)). In this equation, LRds refers to 

the loss ratio provided by the damage-to-loss model for each DS. Both the models from Di 

Pasquale and Goretti and Kappos et al have one more DS than the damage scale considered in 

this study, and therefore a harmonization was required. For the model proposed by Kappos et 

al, it has been decided to merge the two lowest DS in this model and adopt the average central 

value. For the second model, given the significant difference between DS1 and DS2, assuming 
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the average loss ratio of the two damage states would most likely introduce significant bias in 

the results, and thus this model has not been considered in this comparison.  

    



nDS

ds
dsLRIMdsDSPIMLossRatioE

0
]|[|  (5.6)  

 

  
Figure 5.16 - Mean discrete vulnerability functions. Left: Str1, Right: Str2. 

 

5.6.2.2 Continuous vulnerability functions  

The proposed methodology to compute losses as presented in Section 5.3 does not require an 

explicit fragility and consequence model, provided that an estimate of the collapse probability 

is produced, as discussed previously. This method is recommended for the computation of 

vulnerability functions since it is not attached to discrete fragility or consequence models, thus 

avoiding problems of incompatibility between these two components.  

Taking the mean value of residual interstorey drift suggested by Ramirez and Miranda (2012) 

and the number of non-converged analyses as collapse indicators the collapse probability 

conditional to the ground shaking intensity has been computed. As expected, from the 

discussion in Section 5.5.3, the collapse curve for Str2 is much steeper than the one for Str1. For 

the mid to high range intensities the losses computed with Eq. (5.5) for Str2 to be governed by 

the first half of the equation, while for Str1 the contribution of the losses given by the structural 

collapse and the element repair and non-structural losses were more evenly distributed. Figure 

5.17 depicts the expected mean loss ratios as computed with Eq. (5.5) using the repair costs 

given by the thirty ground motion records and the respective collapse probabilities. 

As previously stated, this approach is the preferred method to compute vulnerability models, 

and therefore the functions in Figure 5.17 will be used as the reference in the risk comparisons 

presented in Section 5.6.3. 
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Figure 5.17 - Expected loss ratios given ground shaking intensity. 

 

5.6.3 Impact in seismic loss assessment 

In order to determine the influence of the damage-to-loss model on probabilistic loss 

assessment, the annual expected loss for both case study frames has been calculated. Hazard 

curves for the same location adopted for the ground motion selection (see Figure 5.18) have 

been calculated using the results from the FP7 European project SHARE (www.share-eu.org). 

These curves describe the probability of exceeding a set of ground shaking intensities for a 

reference time period, and can be combined with vulnerability functions to estimate 

probabilities of exceeding levels of loss. Further explanations on the numerical procedure to 

compute the expected losses from the hazard and vulnerability curves are provided in Eads et 

al (2013). Applying this methodology to the vulnerability functions previously computed and 

the aforementioned hazard curves, leads to the annual expected loss ratios listed in Table 5.7 

and Figure 5.19. 
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Figure 5.18 - Hazard curves for Lisbon in terms of the spectral acceleration at the fundamental period of each 

structure. 

 

Table 5.7 - Annual expected loss ratio. 

Structure 

Annual expected loss ratio (AELR) 
This study 

(Damage-to-
loss model) 

Kappos et al 
(2006) model 

Bal et al 
(2008) model 

HAZUS 
Reference 

(Continuous 
vulnerability) 

Str1 2.336x10-3 1.953x10-3 4.145x10-3 1.813x10-3 2.148 x10-3 

Str2 1.232x10-3 9.204x10-4 1.320x10-3 9.983x10-4 1.102 x10-3 

 

 
Figure 5.19 - Annual expected loss ratio. 
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From the results in Figure 5.19, it can be concluded that the consequence model that performed 

best when compared with the reference AELR was, unsurprisingly, the model proposed in this 

study. This was expected since the fragility and damage-to-loss models were developed 

jointly, and therefore compatibility was ensured. Nonetheless, significant differences are still 

observed when the vulnerability functions derived from the combination of fragility and 

damage-to-loss models were employed.  

This example illustrates one of the main problems with developing a vulnerability function 

through discrete damage states, in comparison to a model based on continuous damage and 

loss estimation. The main contribution to the AELR is given by the lowest intensity events. 

Having failed to have a good discretization of the damage-to-loss model at the lowest damage 

states (i.e. having a damage scale with less damage states than it would otherwise be 

recommended) will most likely translate into an erroneous estimate of the expected losses, 

even in the best-case scenario in which compatibility between fragility and consequence 

models is guaranteed. From these results, it is fair to state that any loss assessment study that 

uses the traditional technique to compute losses should be preceded by an investigation of the 

definition of the minimum number of damage states. Nevertheless, a more accurate alternative 

is to follow a continuous vulnerability assessment methodology as suggested herein. 

 

5.7 SIMPLIFIED METHODOLOGY FOR COMPUTING STRUCTURAL LOSSES 

The previous sections have outlined a generalized methodology to compute structural losses 

directly from the element damage without the need for an explicit fragility or consequence 

models that in the authors' opinion has several advantages over the traditional methodology 

to compute vulnerability functions. The structural damage has been assessed through a 

modified version of the Park and Ang (1985) index proposed by Beck et al (2002), so-called 

Deformation Damage Index (DDI), and defined as a ratio between chord rotations. The proposed 

technique also requires the explicit computation of the individual repair costs for all structural 

elements as a function of the probability of exceeding a number of damage states, as proposed 

by Haselton et al (2008). Despite the clear advantages of assessing directly structural losses, as 

oppose to evaluate damage states and then relate them with a fraction of loss, it is relevant to 

acknowledge that such methodology requires a significant number of steps, the most 
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important being correctly assign the element to a damage state, determining the correspondent 

repair cost and compute the structure's probability of collapse, thus rendering it quite time 

consuming. In addition, for this methodology is essential to have reliable and up-to-date 

information on the cost of repairing the elements. 

Ideally, one should be able to estimate the expected structural loss directly from the element's 

performance information as given by the dynamic analyses' outputs. Defining a possible 

relationship between the expected structural loss and some performance parameter could be 

described as the main objected of this section. This approach not only has the potential to 

simplify the overall vulnerability assessment procedure but also to minimize the uncertainty 

on the final loss computation. 

 

5.7.1 Study on developing simplified relationships for computing structural losses 

Using the Matlab algorithm described in section 3.3, three 3-storey and three 5-storey 

structures designed for increasing levels of ground motion (ag=0.05g, 0.2g and 0.4g) were 

analysed. Using the methodology previously described the expected loss ratio, i.e. the quotient 

between the cost of repair and the cost of replacement, for every structural element has been 

computed from the results given by the nonlinear dynamic analyses performed on the 

numerical models.  

The expected loss ratio was later plotted against the correspondent damage index value in 

order to evaluate the potential existence of a significant correlation. Second degree polynomial 

functions were later fitted to the data (see Figure 5.20). The R2 coefficient for these functions 

was found to range from 0.923 to 0.977, which indicates a strong correlation between the 

variables. 
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Figure 5.20 - Damage index vs. Expected loss ratio. Left: 3 storey frames; Right: 5 storey frames (design 

acceleration increases downwards). 

 

The findings in Figure 5.20 suggest it is reasonable to assume that a polynomial relationship 

between the natural logarithm of the damage index and the correspondent loss ratio exists. A 

comment on the polynomial functions depicted in the figure is that being second degree 

polynomials, the domain of applicability of fitted functions is limited to the point with a 

horizontal tangent, at which one starts to observe decreasing loss ratios with increasing 

damage, which is clearly unreasonable given the physics of the problem.  

Having established that a polynomial relationship between the DDI and the expected loss ratio 

is likely to exist when plotted in a logarithmic space, a global function combining the data from 

all the structures has been defined (see Figure 5.21). Commenting on the proposed model it 

must be mentioned that it is only valid for DDI levels lower than 1.06, i.e. an abscissa lower 

0.06. It has to be referred that if one was to apply this model to assess the losses of a different 
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set of structures this would probably not be a limitation because at the corresponding 

performance level most of the elements are expected to be heavily damaged or even collapsed, 

meaning that a replacement of the element is likely to be necessary. Thus if a loss estimate 

beyond the range of applicability is needed, a unit loss ratio should be assumed. 

 

 

Figure 5.21 - DDI-to-loss model. 

 

5.8 FINAL REMARKS 

This section presented an alternative to the commonly applied vulnerability assessment 

methodologies, with an application to Portuguese RC buildings, through the estimation of 

element damage and employment of damage-specific repair methods and associated costs. As 

previously discussed, to the authors' knowledge there were no detailed studies on damage-to-

loss models for Portugal, meaning that most of the current loss assessment analyses rely on 

models developed and calibrated to other regions (e.g. (Costa et al. 2010, Silva et al. 2014d)).  

Through a modified version of the Park and Ang damage index (DDI) and a comprehensive 

study of the repair costs, it has been possible to estimate element loss ratios, expressed as cost 

of repair to cost of replacement. The methodology for estimating the repair costs was 

developed considering the Portuguese building stock, but it can be easily adapted to other 

realities, provided that a reliable source of information on the required unit costs is available. 

It is acknowledged that the real repair cost of a damaged element might be different from the 

one predicted using the methodology presented in this paper if additional tasks (such as 

demolition and removal of debris) are required prior to the actual repair job. Given that it was 
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intended to develop a generalised methodology easily modifiable, a decision was made to 

neglect these additional costs. 

The expected losses from the non-structural components have also been considered within this 

methodology, by using a ratio between structural and non-structural components in the total 

cost of the building. Only deterministic performance thresholds have been adopted to assess 

the damage, but the general methodology remains unaltered should a probabilistic approach 

have been adopted for this purpose.  

In addition to presenting the methodology to compute losses, this section also described a case 

study application considering two existing reinforced concrete structures, through numerical 

modelling and nonlinear incremental dynamic analysis. Each structure was subjected to a 

large set of ground motion records, and allocated into a damage state according to the extent 

of damage in the structural elements. Then, the estimated fraction of loss in each structure per 

damage state was analysed, in order to derive a loss ratio distribution per damage state. In 

addition, the portion of structures in each damage state per intensity measure level was also 

utilised to derive a fragility model for each structure. Both of these models were combined to 

derive discrete vulnerability functions. In parallel, the distribution of loss ratio per intensity 

measure level was also used to directly compute a continuous vulnerability function, assumed 

to be the most accurate approach in the present study. The comparison of the discrete and 

continuous vulnerability functions revealed significant differences, which consequently affect 

strongly the associated risk metrics (e.g. average annual loss ratio). 

The findings of this study indicate that ideally risk modellers should seek to develop 

vulnerability models purely based on the distribution of loss ratio per intensity measure levels. 

In the absence of such possibility (for example, if a comprehensive fragility model is already 

in place), the selected damage-to-loss model should as much as possible be compatible with 

the established damage scale and criteria, thus minimising possible bias in the risk analysis. 

In addition, evidences for a possible polynomial relationship between the structural losses and 

the DDI have also been presented. As demonstrated herein, the data can be very well fitted by 

a polynomial function for the entire range of interest of the damage index when plotted in a 

logarithmic space. Being second degree polynomial functions, the models provided herein are 

limited to the maximum abscissa given by the point where the slope of the tangent to the curve 
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changes sign. It is acknowledged that the expected repair costs per technique necessary for 

developing the DDI-to-loss functions presented in this study have been calibrated for the 

Portuguese building stock. Therefore, some of the results and conclusions presented herein 

may not be directly applicable to other realities. 

It is expected that the discovery of a polynomial relationship between the DDI and the 

correspondent structural loss could stimulate further research in order to develop functions 

suitable for a larger and more diverse set of structures. This procedure would provide a quick 

and easy technique to estimate losses without the need to allocate the elements into a discrete 

damage state and explicitly compute the repair costs. It should also be mentioned that 

computing structural losses directly from the results given by the nonlinear dynamic analyses 

has, in the author's opinion, not only the potential to simplify the overall vulnerability 

assessment procedure but also to minimize the uncertainty on the final loss estimation.  
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6  
 

AN UPDATED SEISMIC RISK 
PROFILE FOR MAINLAND 

PORTUGAL 
 

6.1 SUMMARY 

Portugal’s history is marked by high intensity seismic events, such as the devastating 1755 

Lisbon, believed to have had a moment magnitude above 8.0 (Vilanova et al. 2003). More 

recently, the 1909 and 1969 seismic events were also responsible for great social and economic 

losses with significant number human fatalities and buildings reported either as heavily 

damaged or collapsed. Reliable earthquake loss estimates are useful for the development and 

implementation of mitigation strategies aimed to reduce the expected consequences of future 

events. Despite the obvious need for reliable vulnerability estimates, more often than not the 

necessary inputs (i.e. fragility and damage-to-loss models) are either not available or not 

calibrated for the region of interest and respective building stock.  

This study provides an updated seismic risk profile for mainland Portugal considering the 

latest advances in seismic fragility assessment and the correlation between damage and losses 

developed specifically for the Portuguese building stock. Fragility models for the most 

significant building classes identified in the exposure model were developed considering 

equivalent single degree of freedom systems and nonlinear time history analysis. These were 

later combined with damage-to-loss models to compute vulnerability curves. For what 

concerns the seismic hazard analysis (SHA) component, this study considered the hazard 

model developed for Portuguese mainland proposed by Vilanova and Fonseca (2007). 

The earthquake losses were estimated following an event-based approach, in which a large set 

of stochastic events is generated, representing possible realizations of the seismicity across the 

region of interest within a given time span. Each generated event is used to calculate an 
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aggregated economic loss, leading to a set of losses within the same time span. These results 

can be used to derive annualized average losses, loss exceedance curves and probable 

maximum losses. This study also advances previous endeavours by following an event-based 

procedure, as opposed to the classical probabilistic seismic hazard assessment approach. 

 

6.2 SEISMIC HAZARD ASSESSMENT 

Located in the vicinity of the southern boundary between the Eurasian and African tectonic 

plates, mainland Portugal’s seismic hazard is primarily characterized by large offshore 

earthquakes and moderate onshore earthquakes. Seismicity in mainland Portugal is 

predominantly generated in two distinct tectonic environments: (i) stable continental regions 

(SCR) and (ii) active continental regions (ACR). SCR comprises the part of continental crust 

where the main tectonic activity is not directly linked with plate boundary processes, whilst 

for ACR the tectonic activity is predominantly correlated with plate boundary movements 

(Vilanova and Fonseca 2007). 

Virtually non-existent recorded data for significant earthquakes meant the majority of past 

seismic hazard studies developed for Portugal have relied on historical and/or macroseismic 

information (Vilanova and Fonseca 2007). The ground motion fields utilized in this study were 

computed using the OpenQuake (OQ) engine (Silva et al. 2014b) and the hazard model 

proposed by Vilanova and Fonseca (2007). The chosen source model comprises two different 

broad zones (see Figure 6.1) divided in several smaller seismogenic area sources. Zonation SA 

includes eleven source zones based on the distribution of seismic intensity of past earthquakes, 

whilst zonation SB is divided in eight distinct source zones and is in essence an adaptation of 

source model previously proposed by Paláez Montilla and López Casado (2002).  
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Figure 6.1 - Representation of the source model proposed by Vilanova and Fonseca (2007). 

 

The local soil conditions have been considered by including the average shear wave velocity 

at the first 30 metres (Vs,30) into the hazard calculations. Considering Vs,30 to categorise the local 

site condition has become a standard in seismic risk analyses with, for example, the OQ engine 

using ground motion prediction equations that require this value as an input. In order to 

develop an appropriate distribution of Vs,30 to be used by the engine, the same topography 

based approach followed by Silva et al (2014b) was used. The resulting map is presented in 

Figure 6.2 - Left.  

The uncertainties on the source model and on the ground motion prediction equations (GPME) 

were accounted in the hazard calculations with the logic tree suggested by Vilanova and 

Fonseca (2007). The logic tree was translated into the nmrl programming language, and after 

minor adjustments to account for the GMPE availability in OpenQuake’s library, included in 

the hazard calculations. An example of the hazard maps for a ground shaking with 475 year 

return period is given in Figure 6.2 - Right. 
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Figure 6.2. - Left) Vs,30 mapping, Right) Mean ground motion field (IM=PGA, 475 year return period). 

 

6.3 EXPOSURE MODEL 

It was not considered within the scope of this study to provide full description on how to 

develop exposure models, and for that reason the reader is directed to the original work by 

Silva et al (2014c) for detailed information on the exposure model used herein. Despite this, a 

brief description is provided since it includes important information to justify the building 

taxonomies considered in section 6.4. 

The last national building census held in Portugal in 2011 reported over 3.5 million residential 

buildings with an estimated replacement cost exceeding 470 billion euros and totalling nearly 

5.9 million dwellings (Silva et al. 2014c). The survey included information regarding the 

building material and type of construction, construction year and height. Regarding the 

building material and type of construction, Silva et al (2014c) distributed the Portuguese 

building stock in five main categories (i) reinforced concrete (RC), (ii) masonry with in concrete 

floors (M1), (iii) masonry with wooden floors (M2), (iv) weak masonry (e.g. adobe 

construction, rammed earth or field stone) (M3) and lastly (v) the remaining types of 

construction (e.g. steel, composite and timber structures) were lumped together in a single 

category (OT).  

Combined, masonry and reinforced concrete make up to 99.2% of the total number of 

buildings in Portugal. Despite having a slightly inferior representation on the building stock 
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(48.6%) when comparing with masonry, reinforced concrete structures host the majority (60%) 

of the Portuguese population due the fact that reinforced concrete structures are often 

significantly taller than masonry ones (Silva et al. 2014c). 

The age of a building has a great impact on the seismic performance of structures as it is 

strongly associated with the minimum requirements for seismic capacity enforced by law at 

time of construction. Correlating the year of construction with main design codes created for 

the Portuguese building stock, Silva et al (2014c) concluded that only 51% of reinforced 

concrete buildings were designed according with modern regulations. This means that 

potentially a very significant number of people are exposed to unacceptable levels of seismic 

risk. This last observation reinforces the need for a careful analysis on the expected seismic 

risk of RC structures thus supporting the need for a study like the one presented herein. 

Adding the building’s height to the previous categories, Silva et al (2014c) have proposed the 

disaggregation of the census data represented in Figure 6.3. 

 

 
Figure 6.3 - Disaggregation of building census data by typology, year of construction and height proposed Silva et 

al (2014c). 

 

In order to provide an estimate of the economic loss due to ground shaking an approximation 

of the total value of the Portuguese building stock was necessary. For the purposes of this 

study a similar approach to the one applied in section 5.3 was followed with the building’s 

replacement cost being assumed to be the product between the total area and the reference 

cost per square metre given by the Portuguese government. The national Census data provides 

a spatial distribution of the number of buildings and dwellings at the parish level, however as 
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denoted by Silva et al (2014c) this resolution can result in crude earthquake losses estimation. 

The authors overcome this limitation by making the spatial distribution of buildings in the 

national Census data proportional to the population distribution in the LandScan database. 

LandScan allocates the population in a finer grid of 30 arc seconds according an algorithm that 

reflects several parameters like night lights and proximity to railroads or roads (Silva et al. 

2014c). Merging the distribution of buildings with the respective replacement cost produced, 

after some post-processing, the map in Figure 6.4. 

 

 
Figure 6.4 - Economic value of Portuguese building stock (interpolated using QGIS to a 0.001°x0.001° grid). 

 

Analysing the spatial distribution of economic value of the Portuguese building stock in Figure 

6.4 it is firstly possible to observe a concentration of assets along the coast line which is 

consistent with what is generally perceived for mainland Portugal. Probably more important 

than this observation is the fact that the areas with highest concentration of economic value 

and the areas with higher seismic hazard overlap quite remarkably. As a result of that a 

significant percentage of the assets in Portugal is potentially at risk of unacceptable levels of 

economic loss in the event of a future earthquake. 
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6.4 FRAGILITY AND VULNERABILITY ASSESSMENT 

For this study updated fragility models have been computed using an analytical framework 

similar to one by proposed by Silva et al (2014d). The framework is based on the analysis of 

equivalent single degree of freedom (SDOF) systems through nonlinear time history 

algorithms. Each SDOF is represented by its mean capacity curve (expressed in spectral 

displacement vs spectral acceleration) calculated from the period of vibration, first mode 

participation factor (Г) and yield and ultimate displacement capacity. Having estimated the 

roof displacement on the real structure (e.g. taking the yield/ultimate drift limits in Table 6.1), 

the spectral displacement (Sd) and spectral acceleration (Sa) of the equivalent SDOF are 

computed from Eq. (6.1) and (6.2). 
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Similarly to the work of Silva et al (2014c), the building classes were allocated in three main 

categories based on the year of construction and expected seismic design level. The first 

Portuguese design code to include seismic provisions was introduced in 1961 (DL 44041 - 

Regulamento de Solicitações em Edifícios e Pontes). This first generation of seismic regulations 

comprised mainly of simplified methodologies to compute the earthquake loads considering 

the weight of building and seismic coefficients. The next generation of design standards was 

approved in 1986 (DL 235/83 - Regulamento de Segurança e Acções para Estruturas de Edifícios e 

Pontes) and introduced considerably more restrictive seismic regulations and more advanced 

design techniques which are still in force to this date. In this study structures built prior to 

1961 code were considered as pre-code, consequently with very limited (if any) ductility and 

energy dissipation capability, whilst buildings designed according with the current design 

code were considered to have a ductile behaviour. The remaining structures were assumed to 
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have moderate ductility and their respective capacity parameters were defined considering a 

balance between a non-ductile and a ductile behaviour. 

In addition to the ductility level and height, a distribution of building classes by seismic 

zonation was also considered. The Portuguese design code (DL 235/83) divides the national 

territory in four distinct seismic zones (i.e. zone A located in Southwest of Portugal to zone D 

located in Northeast of Portugal). The prescribed ground shaking for a rock site ranges from 

0.08g to 0.23g, with zone A exhibiting the highest seismic demand and zone D the lowest. The 

seismic zonation included in DL 235/83 is in essence an update on the map proposed in 1961, 

with the only difference being the addition of zone D generated from the division of zone C in 

two, and for this reason the same design ground accelerations were considered. To account for 

the differences in the seismic capacity introduced by the distinct design ground motion in each 

seismic zone (see example in Figure 6.5 - Left ) and also to provide a connection with the work 

developed in the previous sections, the period-height relationships developed in section 3 

were utilized to estimate the expected period of vibration for each reinforced concrete 

typology designed according to code. For the remaining building classes the expected yield 

period of vibration was estimated from simplified equations taken from the literature (e.g. (Bal 

et al. 2010b, Crowley and Pinho 2010, Silva et al. 2014b)). 

When deriving fragility functions the building-to-building variability has also been 

considered. To this end 150 capacity curves (see Figure 6.5 - Right) were created from a 

randomly sampled population of Sd-Sa pairs assuming a normal distribution with a 25% 

coefficient of variation. Silva et al (2014d) have concluded that the yield and ultimate 

displacement capacity are often positively correlated. For this reason, a correlation coefficient 

of 0.60 was considered when generating capacity curves. 

Considering that the main subject of this thesis is the seismic behaviour of reinforced concrete 

and that these structures host the majority of the population, more detail has been given to 

this typology when comparing, for example, with masonry buildings. Even so, fragility 

models for the most represented masonry classes were also developed following the same 

recommendations of Silva et al (2014d). Classes M1 and M2 were merged into a single typology 

(henceforth labelled simply as M) and no distinction between design levels was considered for 

M3. The capacity parameters for the masonry classes were defined from (Villar-Vega et al. 
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2017) considering ductile masonry as reinforced masonry, non-ductile masonry as 

unreinforced masonry and class M3 as unreinforced masonry with adobe blocks. Given the 

very reduced number of masonry structures with more than 4 storeys (see Figure 6.3) only 

fragility functions for masonry structures up to 3 storeys have been explicitly developed in 

this study. A complete list of the building classes considered in this study is provided in Table 

6.1. The first pair of letters in the taxonomy code reflects the building material (e.g. 

RC=reinforced concrete), the second specifies the ductility level (i.e. ND= non ductile, 

MD=moderate ductile, D=ductile), followed by a reference the height (e.g. 1S=1 storey) and 

lastly to the seismic zone. 

 

Table 6.1 - Building classes and mean capacity parameters used for fragility assessment. 

Building 
class 

Dsg. 
PGA [g] 

Ty 
[s] 

Yield 
global 

drift [%] 

Ult. 
global 

drift [%] 

Sd_y 
[m] 

Sa_y 
[g] 

Sd_ult 
[m] 

Sa_y 
[g] 

RC_ND_1S N.A. 0.27 0.66 2.61 0.012 0.687 0.048 0.687 
RC_ND_2S N.A. 0.57 0.66 2.61 0.028 0.355 0.112 0.355 
RC_ND_3S N.A. 0.87 0.66 2.61 0.043 0.228 0.169 0.228 
RC_ND_4S N.A. 1.17 0.66 2.61 0.057 0.167 0.225 0.167 

RC_ND_5-7S N.A. 1.77 0.66 2.61 0.085 0.109 0.337 0.109 
RC_ND_8-15S N.A. 2.67 0.66 2.61 0.128 0.072 0.506 0.072 
RC_MD_1S_A 0.23 0.16 0.79 3.31 0.013 2.159 0.055 2.159 
RC_MD_2S_A 0.23 0.43 0.79 3.31 0.033 0.702 0.136 0.702 
RC_MD_3S_A 0.23 0.71 0.79 3.31 0.049 0.393 0.205 0.393 
RC_MD_4S_A 0.23 0.98 0.79 3.31 0.065 0.272 0.273 0.272 

RC_MD_5-7S_A 0.23 1.54 0.79 3.31 0.098 0.167 0.409 0.167 
RC_MD_8-15S_A 0.23 2.36 0.79 3.31 0.147 0.106 0.614 0.106 

RC_MD_1S_B 0.16 0.19 0.79 3.31 0.013 1.448 0.055 1.448 
RC_MD_2S_B 0.16 0.48 0.79 3.31 0.033 0.577 0.136 0.577 
RC_MD_3S_B 0.16 0.76 0.79 3.31 0.049 0.339 0.205 0.339 
RC_MD_4S_B 0.16 1.05 0.79 3.31 0.065 0.239 0.273 0.239 

RC_MD_5-7S_B 0.16 1.62 0.79 3.31 0.098 0.151 0.409 0.151 
RC_MD_8-15S_B 0.16 2.48 0.79 3.31 0.147 0.097 0.614 0.097 

RC_MD_1S_C 0.12 0.22 0.79 3.31 0.013 1.142 0.055 1.142 
RC_MD_2S_C 0.12 0.51 0.79 3.31 0.033 0.511 0.136 0.511 
RC_MD_3S_C 0.12 0.80 0.79 3.31 0.049 0.310 0.205 0.310 
RC_MD_4S_C 0.12 1.09 0.79 3.31 0.065 0.222 0.273 0.222 

RC_MD_5-7S_C 0.12 1.67 0.79 3.31 0.098 0.141 0.409 0.141 
RC_MD_8-15S_C 0.12 2.55 0.79 3.31 0.147 0.091 0.614 0.091 

RC_D_1S_A 0.23 0.16 0.91 4.00 0.016 2.585 0.070 2.585 
RC_D_2S_A 0.23 0.43 0.91 4.00 0.039 0.840 0.172 0.840 
RC_D_3S_A 0.23 0.71 0.91 4.00 0.059 0.471 0.258 0.471 
RC_D_4S_A 0.23 0.98 0.91 4.00 0.078 0.325 0.345 0.325 

RC_D_5-7S_A 0.23 1.54 0.91 4.00 0.118 0.200 0.517 0.200 
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RC_D_8-15S_A 0.23 2.36 0.91 4.00 0.176 0.127 0.775 0.127 
RC_D_1S_B 0.16 0.19 0.91 4.00 0.016 1.733 0.070 1.733 
RC_D_2S_B 0.16 0.48 0.91 4.00 0.039 0.691 0.172 0.691 
RC_D_3S_B 0.16 0.76 0.91 4.00 0.059 0.406 0.258 0.406 
RC_D_4S_B 0.16 1.05 0.91 4.00 0.078 0.287 0.345 0.287 

RC_D_5-7S_B 0.16 1.62 0.91 4.00 0.118 0.180 0.517 0.180 
RC_D_8-15S_B 0.16 2.48 0.91 4.00 0.176 0.116 0.775 0.116 

RC_D_1S_C 0.12 0.22 0.91 4.00 0.016 1.367 0.070 1.367 
RC_D_2S_C 0.12 0.51 0.91 4.00 0.039 0.612 0.172 0.612 
RC_D_3S_C 0.12 0.80 0.91 4.00 0.059 0.371 0.258 0.371 
RC_D_4S_C 0.12 1.09 0.91 4.00 0.078 0.266 0.345 0.266 

RC_D_5-7S_C 0.12 1.67 0.91 4.00 0.118 0.169 0.517 0.169 
RC_D_8-15S_C 0.12 2.55 0.91 4.00 0.176 0.110 0.775 0.110 

RC_D_1S_D 0.08 0.24 0.91 4.00 0.016 1.078 0.070 1.078 
RC_D_2S_D 0.08 0.54 0.91 4.00 0.039 0.540 0.172 0.540 
RC_D_3S_D 0.08 0.84 0.91 4.00 0.059 0.337 0.258 0.337 
RC_D_4S_D 0.08 1.13 0.91 4.00 0.078 0.245 0.345 0.245 

RC_D_5-7S_D 0.08 1.73 0.91 4.00 0.118 0.159 0.517 0.159 
RC_D_8-15S_D 0.08 2.62 0.91 4.00 0.176 0.104 0.775 0.104 

M_ND_1S N.A. 0.17 0.14 0.60 0.002 0.317 0.010 0.317 
M_ND_2S N.A. 0.30 0.14 0.60 0.005 0.203 0.020 0.203 
M_ND_3S N.A. 0.45 0.14 0.60 0.007 0.136 0.029 0.136 
M_MD_1S N.A. 0.17 0.37 1.10 0.005 0.733 0.016 0.733 
M_MD_2S N.A. 0.30 0.37 1.10 0.011 0.471 0.033 0.471 
M_MD_3S N.A. 0.45 0.37 1.10 0.016 0.314 0.049 0.314 
M_D_1S N.A. 0.17 0.60 1.60 0.010 1.358 0.026 1.358 
M_D_2S N.A. 0.30 0.60 1.60 0.020 0.872 0.052 0.872 
M_D_3S N.A. 0.45 0.60 1.60 0.029 0.581 0.078 0.581 
M3_1S N.A. 0.17 0.10 0.50 0.002 0.226 0.008 0.226 
M3_2S N.A. 0.30 0.10 0.50 0.003 0.145 0.016 0.145 
M3_3S N.A. 0.45 0.10 0.50 0.005 0.097 0.024 0.097 

N.A. - not applicable 
 

  
Figure 6.5 - Example of capacity curves used in fragility assessment. Left) Effect of different prescribed design 

ground motion on the mean capacity; Right) Effect of dispersion on capacity parameters for RC_D_3S_A. 
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For this study four distinct damage states ranging from light damage (DS1) to collapse (DS4) 

were considered for deriving fragility functions and the performance thresholds were 

computed from each capacity curve assuming the limits recommended by Villar-Vega (2017) 

(see Table 6.2). The equivalent SDOFs were put against ground motion records selected from 

the European strong motion database (Akkar et al. 2014) to be compliant with the main tectonic 

environment in mainland Portugal and nonlinear time history analyses were conducted. 

Several intensity measures have been tested and the one that lead to the best fitting was 

selected. The resulting fragility parameters are listed in Table 6.3. 

 

Table 6.2 - Performance thresholds for fragility assessment. 

Damage state Threshold  
Light damage (DS1) 0.70xSd_y 

Moderate damage (DS2) 0.75xSd_y+0.25xSd_ult 
Extensive damage (DS3) 0.50x(Sd_y+Sd_ult) 

Collapse (DS4) Sd_ult 

Sd_y – Spectral displacement at yield; Sd_ult – Spectral displacement at ultimate capacity 
 

Table 6.3 - Computed fragility parameters for buildings classes. 

Building  
class 

IM 
DS1 DS2 DS3 DS4 Mean 

R2 θ [g] β θ [g] β θ [g] β θ [g] β 
RC_ND_1S Sa(0.3) 0.24 0.16 0.65 0.51 0.92 0.41 1.39 0.38 0.77 
RC_ND_2S Sa(0.6) 0.16 0.25 0.38 0.28 0.55 0.31 0.96 0.30 0.92 
RC_ND_3S Sa(0.8) 0.09 0.25 0.16 0.44 0.25 0.33 0.42 0.36 0.89 
RC_ND_4S Sa(1.0) 0.09 0.21 0.19 0.30 0.29 0.30 0.46 0.35 0.92 

RC_ND_5-7S Sa(1.8) 0.08 0.29 0.20 0.25 0.29 0.28 0.43 0.38 0.91 
RC_ND_8-15S Sa(2.0) 0.11 0.46 0.27 0.37 0.37 0.39 0.54 0.53 0.77 
RC_MD_1S_A Sa(0.3) 0.76 0.57 1.82 0.49 2.08 0.44 2.40 0.34 0.71 
RC_MD_2S_A Sa(0.6) 0.24 0.48 0.63 0.53 0.93 0.46 1.44 0.34 0.81 
RC_MD_3S_A Sa(0.8) 0.10 0.28 0.23 0.52 0.35 0.41 0.60 0.33 0.86 
RC_MD_4S_A Sa(1.0) 0.10 0.24 0.27 0.29 0.40 0.31 0.63 0.30 0.90 

RC_MD_5-7S_A Sa(1.8) 0.10 0.22 0.25 0.27 0.37 0.29 0.55 0.37 0.91 
RC_MD_8-15S_A Sa(2.0) 0.13 0.39 0.32 0.36 0.45 0.41 0.68 0.62 0.74 

RC_MD_1S_B Sa(0.3) 0.45 0.56 1.23 0.59 1.51 0.55 1.87 0.44 0.69 
RC_MD_2S_B Sa(0.6) 0.22 0.43 0.56 0.42 0.86 0.33 1.38 0.27 0.83 
RC_MD_3S_B Sa(0.8) 0.10 0.27 0.22 0.48 0.39 0.38 0.58 0.33 0.86 
RC_MD_4S_B Sa(1.0) 0.10 0.23 0.26 0.27 0.39 0.31 0.61 0.31 0.90 

RC_MD_5-7S_B Sa(1.8) 0.10 0.22 0.25 0.27 0.36 0.28 0.54 0.40 0.89 
RC_MD_8-15S_B Sa(2.0) 0.14 0.40 0.32 0.36 0.44 0.40 0.68 0.62 0.73 

RC_MD_1S_C Sa(0.3) 0.36 0.59 0.96 0.61 1.22 0.57 1.58 0.49 0.69 
RC_MD_2S_C Sa(0.6) 0.20 0.38 0.50 0.37 0.76 0.37 1.26 0.31 0.88 
RC_MD_3S_C Sa(0.8) 0.10 0.25 0.20 0.48 0.32 0.37 0.54 0.34 0.87 
RC_MD_4S_C Sa(1.0) 0.10 0.24 0.25 0.29 0.38 0.33 0.59 0.33 0.90 
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RC_MD_5-7S_C Sa(1.8) 0.10 0.23 0.25 0.26 0.36 0.27 0.54 0.39 0.89 
RC_MD_8-15S_C Sa(2.0) 0.12 0.43 0.31 0.38 0.43 0.41 0.64 0.60 0.75 

RC_D_1S_A Sa(0.3) 0.99 0.51 2.22 0.48 2.51 0.42 2.84 0.32 0.67 
RC_D_2S_A Sa(0.6) 0.32 0.42 0.86 0.57 1.32 0.43 1.91 0.34 0.74 
RC_D_3S_A Sa(0.8) 0.11 0.37 0.28 0.51 0.44 0.38 0.74 0.33 0.85 
RC_D_4S_A Sa(1.0) 0.12 0.27 0.32 0.32 0.49 0.31 0.76 0.30 0.90 

RC_D_5-7S_A Sa(1.8) 0.12 0.20 0.30 0.25 0.44 0.29 0.67 0.39 0.89 
RC_D_8-15S_A Sa(2.0) 0.16 0.40 0.38 0.37 0.53 0.47 0.87 0.70 0.71 

RC_D_1S_B Sa(0.3) 0.53 0.59 1.43 0.57 1.71 0.51 2.14 0.40 0.72 
RC_D_2S_B Sa(0.6) 0.27 0.43 0.73 0.47 1.12 0.35 1.69 0.27 0.80 
RC_D_3S_B Sa(0.8) 0.30 0.23 0.77 0.27 1.16 0.32 1.73 0.45 0.77 
RC_D_4S_B Sa(1.0) 0.12 0.25 0.30 0.27 0.46 0.31 0.71 0.31 0.89 

RC_D_5-7S_B Sa(1.8) 0.12 0.22 0.31 0.26 0.44 0.31 0.67 0.42 0.88 
RC_D_8-15S_B Sa(2.0) 0.16 0.40 0.38 0.38 0.52 0.46 0.87 0.71 0.71 

RC_D_1S_C Sa(0.3) 0.45 0.55 1.24 0.56 1.52 0.49 1.92 0.40 0.70 
RC_D_2S_C Sa(0.6) 0.25 0.42 0.66 0.43 1.03 0.32 1.60 0.29 0.83 
RC_D_3S_C Sa(0.8) 0.10 0.26 0.26 0.43 0.42 0.31 0.68 0.26 0.87 
RC_D_4S_C Sa(1.0) 0.11 0.21 0.31 0.25 0.47 0.31 0.71 0.31 0.90 

RC_D_5-7S_C Sa(1.8) 0.12 0.22 0.30 0.26 0.42 0.32 0.65 0.44 0.86 
RC_D_8-15S_C Sa(2.0) 0.16 0.43 0.36 0.39 0.50 0.46 0.83 0.72 0.71 

RC_D_1S_D Sa(0.3) 0.36 0.69 0.99 0.62 1.27 0.57 1.68 0.51 0.61 
RC_D_2S_D Sa(0.6) 0.22 0.38 0.59 0.36 0.90 0.30 1.46 0.28 0.85 
RC_D_3S_D Sa(0.8) 0.10 0.27 0.26 0.41 0.42 0.30 0.68 0.29 0.87 
RC_D_4S_D Sa(1.0) 0.12 0.22 0.31 0.23 0.47 0.31 0.70 0.31 0.89 

RC_D_5-7S_D Sa(1.8) 0.12 0.27 0.32 0.27 0.45 0.33 0.69 0.49 0.84 
RC_D_8-15S_D Sa(2.0) 0.16 0.42 0.36 0.39 0.49 0.44 0.82 0.74 0.69 

M_ND_1S Sa(0.3) 0.19 0.22 0.28 0.28 0.47 0.27 0.59 0.25 0.95 
M_ND_2S Sa(0.4) 0.11 0.16 0.28 0.26 0.34 0.26 0.50 0.39 0.93 
M_ND_3S Sa(0.6) 0.08 0.17 0.20 0.14 0.24 0.20 0.41 0.31 0.95 
M_MD_1S Sa(0.3) 0.39 0.31 0.79 0.35 0.96 0.34 1.21 0.32 0.83 
M_MD_2S Sa(0.4) 0.24 0.25 0.50 0.24 0.66 0.24 0.91 0.30 0.92 
M_MD_3S Sa(0.6) 0.21 0.11 0.30 0.10 0.51 0.24 0.67 0.27 0.92 
M_D_1S Sa(0.3) 0.77 0.38 1.67 0.36 1.88 0.33 2.23 0.31 0.60 
M_D_2S Sa(0.4) 0.47 0.21 0.98 0.27 1.25 0.22 1.65 0.23 0.89 
M_D_3S Sa(0.6) 0.31 0.30 0.61 0.25 0.76 0.25 1.03 0.29 0.92 
M3_1S Sa(0.3) 0.17 0.14 0.30 0.25 0.36 0.26 0.48 0.30 0.95 
M3_2S Sa(0.4) 0.09 0.23 0.20 0.25 0.28 0.20 0.42 0.41 0.93 
M3_3S Sa(0.6) 0.05 0.30 0.13 0.22 0.18 0.25 0.29 0.33 0.94 

θ – Median; β – Logarithmic standard deviation 
 

To estimate the seismic losses firstly it was necessary to convert the fragility models developed 

in this section into vulnerability models (i.e. distribution of loss given an intensity level). To 

this end each fragility function was combined with suitable damage-to-loss models. For the 

masonry building classes the same damage to loss model suggested by Silva et al (2014d) was 

used , whilst for reinforced concrete classes the model developed in section 5.5 was chosen. It 

is acknowledged that some RC building typologies considered in this section do not belong to 
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the same class used to develop the consequence model presented in section 5.5. However, to 

the best of the author’s knowledge this is the only consequence model explicitly developed for 

Portuguese building stock and for this reason this model was selected to compute the expected 

economic losses. Table 6.4 lists the damage to loss models used in the risk analyses conducted 

in this section. 

 

Table 6.4 - Damage-to-loss models used in seismic risk study. 

Damage state 
Mean loss ratio 

Reinforced concrete Masonry 
DS1 0.117 0.100 
DS2 0.321 0.300 
DS3 0.583 0.600 
DS4 0.887 1.000 

 

6.5 SEISMIC RISK ASSESSMENT 

In the current section an event-based approach was followed to the seismic risk for mainland 

Portugal. Such approach is required when the mean aggregated loss of a spatial distributed 

portfolio of assets and the respective dispersion are to be estimated. Modelling each seismic 

event separately allows to model the spatial correlation of ground motion which is known to 

have a significant impact on the loss predictions. In an event-based seismic risk assessment a 

Monte Carlo simulation is generally employed to simulate the seismicity over a significant 

period of time, frequently in the order of hundreds of thousands of years (Crowley 2014). For 

each rupture the respective losses are computed from the respective ground motion field (see 

Figure 6.6) 

  
Figure 6.6 - Example of rupture catalogue (Left) and ground motion field (Right). 



Chapter 6 - An updated seismic risk profile for mainland Portugal 

124 

 

In the insurance and reinsurance industry the ordinary catalogues used to compute the 

aggregated average annual loss (AAAL) often contain anything between 10000 to 100000 years 

of simulated seismicity, with the former being more a more frequent (e.g. http://www.air-

worldwide.com/Publications/AIR-Currents/2013/Modeling-Fundamentals--What-Is-AAL-/). 

For this study a catalogue of comprising 25000 years of simulated events has been used in 

computing both the AAAL, loss maps and loss exceedance probability curves (EP curves) 

shown in this section. The choice for this an event catalogue was a result of an effort to balance 

the computational power required to simulate an additional 75000 years of seismic activity 

while still providing meaningful results within the insurance and reinsurance industry 

standards. The event catalogue yielded an aggregated average annual loss of 262 million euros 

(standard deviation of 19.2 million euros) and a loss of 27.2 billion euros for the 475 year return 

period (see Figure 6.7), which translate to loss ratios of 5.42x10-4 and 0.058 with respect to the 

total economic value.  

Silva et al (2014d) in their study have estimated an annual average loss of 288 million euros, 

which is about 15% higher than the value computed in this section. Considering the wide 

spectrum of uncertainties in any seismic risk assessment study, the author believes that the 

AAAL computed in this section is within reason. Moreover, it was expected the losses to be 

slightly lower due to the damage-to-loss model used to compute the vulnerability functions 

for RC structures and the contribution of the design level explicitly incorporated in fragility 

assessment. Where this study improves on previous attempts to evaluate seismic risk for 

mainland Portugal is the consideration of spatial correlation of ground motions only possible 

through an event based seismic risk assessment approach. 
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Figure 6.7 - Loss exceedance curve.  

 

In order to understand the spatial distribution of economic loss in the Portuguese territory the 

average loss map with 475 year return period was plotted (see Figure 6.8). According the 

results in this section the majority of economic losses in mainland Portugal is mostly 

concentrated around Lisbon’s metropolitan area and the district of Faro, areas with both high 

concentration of assets and high seismic hazard. 

 
Figure 6.8 - Total economic loss for 475 year return period at municipality level. 
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6.6 FINAL REMARKS 

In this study an updated seismic risk profile of mainland Portugal is presented. New fragility 

models for the most common building typologies found in Portugal were developed using 

analytical methodologies based on nonlinear dynamic analyses performed in equivalent single 

degree of freedom systems. This fragility models were developed explicitly incorporating the 

effects of the seismic design level through the use of the equations developed in section 3 to 

estimate the yield period from the height and design acceleration taken from the Portuguese 

design code. Vulnerability models were computed using the most recent damage-to-loss 

models developed for Portuguese building stock. 

The studies presented in this section are an extension of the work developed by Silva et al 

(2014d) in order to incorporate the most recent developments in loss assessment for Portugal 

and the spatial correlation between ground motion fields. To this end seismic risk was 

computed following an event based approach with a catalogue comprising 25000 years of 

simulated seismicity. The seismic risk assessment study allowed to place the expected average 

annual loss in about 262 million euros,15% less than previous estimates, and the expected 

aggregated loss with 10% probability of exceedance in 50 years in 27.2 billion euros. When 

normalized for the Portuguese GDP these values yielded a loss of 0.1% and 13%. It was 

observed that seismic risk in mainland Portugal is concentrated in the Lisbon Metropolitan 

Area and in Algarve. Areas of high seismic risk Figure 6.8 seem to follow closely the areas of 

high seismic hazard in Figure 6.2 – Left. Therefore an improvement to the studies presented 

in this section would be the inclusion of an additional seismic source model (e.g. SHARE) and 

the combination of the seismic risk estimates coming from both models.  
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7  
 

FINAL REMARKS AND FUTURE 
DEVELOPMENTS 

 

7.1 FINAL REMARKS 

The subjects addressed in this thesis can be divided in two main categories (i) performance 

and fragility assessment and (ii) damage and loss estimation. Regarding the performance 

assessment this thesis developed studies on the relationship between the expected period of 

vibration and height and on the computation of fragility parameters for European structures. 

On the subject of damage and loss estimation studies on the computing the expected repair 

costs and the development of damage-to-loss models suitable for Portuguese reinforced 

concrete.  

The period of vibration provides valuable information about a structure and its correct 

estimation is an essential step of the calculation of the seismic demand in the design process. 

Nevertheless, correctly estimating this parameter is frequently challenging and more often 

than not requires time consuming numerical modelling. For large case assessment scenarios 

this is simply not feasible and simplified relationships are often used. From the discussion in 

section 3 it was identified that available simplified equations for estimating the period of 

vibration are more often than not region specific, thus with limited applicability. In addition, 

it appears to exist an obvious absence of studies on the expected period of vibration for 

European structures especially those designed according to the new regulations. The work 

developed herein addressed this lack by developing simplified period vs. height relationships 

for reinforced concrete moment frame structures designed according to the Eurocodes. The 

structures used in this study shared the same design criteria and basic geometry differing only 

from each other on the seismic design acceleration level (which ranged from a design PGA of 

0.05g up to 0.40g). The results indicated a decrease on the computed periods of vibration (both 
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elastic and inelastic) with the design ground motion of about 20%. These findings lead to the 

hypothesis that ideally prior to fitting a mathematical model to predict the period data should 

be sorted by design acceleration. Having considered also the design ground motion as an input 

instead of solely the height for the simplified relationships lead to a decrease in standard error 

of estimate of around 50% when comparing with the models using height as the sole input 

parameter. The models proposed in this thesis have been compared with some other 

relationships developed for European structures with equivalent seismic design levels. The 

models proposed in this thesis yielded good correlation with previous studies with the period 

estimations being slightly more flexible. The mathematical models proposed in this thesis 

provide a reliable method to estimate the expected period of vibration for code-compliant 

reinforced concrete buildings either on the early stages of design or within a performance 

assessment framework.  

Current seismic design codes are based on the assumption that designing for a prescribed 

ground motion associated with a given return period leads to a uniform distribution of risk. 

As mentioned in section 4.2 the effects of uncertainties on the shape of seismic hazard and 

fragility curves have disproven this hypothesis. The studies developed in this thesis aimed to 

understand the effect of fragility in the expected mapped ground motion within a risk-targeted 

framework. This goal was achieved through numerical modelling of a significant number of 

structures designed considering different seismic hazard levels. The results suggest that the 

average probability of collapse at design ground (P[ac<ades]) should be placed between 10-5 to 

10-3 whilst the average lognormal standard deviation (β) was constrained between 0.5 and 0.8. 

The findings of this study allow for computing suitable fragility curves for European R.C. 

moment resisting frames, provided that they have been designed according to the Eurocodes. 

It should be noted that significantly lower values P[ac<ades] were found for some structures 

designed for the lowest design peak ground acceleration level considered. In these cases, the 

seismic excitation did not determine the final design solution when comparing with other 

horizontal loads. This behaviour suggests that in regions with low expected seismic hazard 

the demands imposed by other sources of horizontal excitations may be sufficient to ensure 

an adequate seismic performance and consequently the design ground motion could be 

lowered with all the inherent potential reductions in the cost of design and construction.  
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One of them main sources of uncertainty in a vulnerability assessment study is the correlation 

between the expected damage and the correspondent loss. Most of available consequence 

models are region specific thus providing erroneous loss estimates outside the area where they 

have been calibrated especially when combined with a non-compatible fragility models. The 

work presented in this thesis highlighted the need to use suitable and compatible fragility and 

consequence models and their impact on the final loss metrics. With the findings of this study 

suggesting that in order to minimize bias in the final loss metrics risk modellers should seek 

to select damage-to-loss model as much compatible as possible with the established damage 

scale and criteria. Ideally the vulnerability models should be developed purely based on the 

distribution of loss ratio per intensity measure levels. For this, damage-to-loss models 

specifically developed for Portuguese reinforced concrete structures have been defined based 

on a comprehensive analysis on the expected damage and corresponding repair costs. The 

studies were based on real market value for the materials and labour costs and on the most 

suitable repair techniques for each damage level. The final loss of each element was obtained 

as a weighted sum of the different repair costs whist the total loss was considered as a sum of 

the element’s estimated loss. It is acknowledged that considering the total repair cost simply 

as a sum of the costs of repairing the individual elements, as performed in this thesis, neglects 

the effect of performing large scale repairs (which lowers the expected total cost) and the 

preparation works needed prior to the actual repair job (e.g. removing debris). These effects 

are often difficult to predict since they often require an in situ inspection of the damaged 

buildings and therefore are challenging to implement in a generalized loss assessment 

methodology as the one developed in this thesis. However, to the extent of the author’s 

knowledge this is the first, and so far only, comprehensive study on the repair cost estimation 

tailored for the Portuguese building stock.  

Summarizing, the findings presented in this thesis provide a better understanding of the 

seismic performance and damage assessment of reinforced concrete structures.  
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7.2 FUTURE DEVELOPMENTS 

The core of science is to improve on previous works in order to provide a better understanding 

on the physical world. It is obvious that some subjects addressed in this thesis would benefit 

from new research endeavours.  

On the estimation of the elastic and yield period, the studies presented on this thesis are 

limited to regular and symmetrical structures both in geometry and in the distribution of mass 

in plan. It is known that irregularities influence significantly a building’s seismic performance, 

for example an uneven distribution of weights in a floor introduces torsional effects that 

otherwise would not be present. In addition, it must be noted that the percentage of buildings 

with irregularities is not negligible. Thus introducing some source of irregularities in the 

models and comparing the results with the ones presented herein may provide a better 

understanding on their influence on the dynamic properties of structures. Herein the yield 

period has been estimated from the bilinear capacity computed by applying the N2 method to 

the capacity curve given by pushover analysis. Therefore, it is suggested to analyse the 

differences introduced on the period estimations with the chosen analysis algorithm and the 

NSP and comparing the subsequent mathematical models with the ones proposed herein.  

Running nonlinear time history analyses for a large number of 3D structures and post 

processing the outputs is obvious very computational intensive. And one of the reasons the 

studies on the influence of the fragility parameters in a risk-targeted hazard assessment 

presented herein have only addressed structures from a limited number of building typologies 

was limitations on the computational runtime. Therefore, future studies should seek to extend 

the work developed in this thesis to both low-rise and high-rise buildings and register the 

evolution of the fragility parameters, like the probability of collapse at design ground motion 

(P[ac<ades]) and the lognormal standard deviation (β), with the building’s height. This thesis has 

provided probability density functions that could be used to model the uncertainty in the 

fragility parameters within a probabilistic framework. The quality of the fit has been addressed 

a through a one-sample Kolmogorov-Smirnov (K-S) test. A criticism to the methodology 

presented in this study is the applicability of the K-S test to a sample size equal to the one used 

herein, thus in future research the total number of structures should be increased in order to 

further validate (or refute) the findings presented herein. 
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On the subject of estimating repair costs and economic losses the studies presented in this 

thesis have not considered the different dependence relationships between the components. 

Considering that, for example, plumbing and electric installations are usually imbedded in the 

infill panels their ultimate capacity should be, in some extent, linked to the performance of the 

infill panels since a complete loss of the infill should translate into a complete loss of these 

installations. The approach followed by this study, albeit valid, has only addressed 

deterministic performance thresholds based on if the elements were drift or acceleration 

sensitive, thus room for further improvement still exists for example by considering a 

probabilistic framework. Furthermore, the results presented on section 5 were based on repair 

costs calculated based on a limited number of repair techniques, however for different cases 

probably more than one repair techniques may be applicable. Thus the studies presented 

herein could be improved by creating an inventory of additional alternative suitable repair 

techniques and analysing the differences on the expected economic losses. Moreover, it is clear 

that the level of detail when computing repair costs for the RC structure is clearly higher than 

one for infill walls and other non-structural elements, despite the latter comprising the 

majority of the building’s replacement cost. This is in large due to the many uncertainties 

associated with masonry infills (e.g. mechanical properties, numerical models). Therefore 

future studies should seek for a better understanding the physical behaviour of masonry infill 

in an attempt to define suitable repair techniques in with a similar level of detail to the one 

currently possible for the RC structure. Finally, the damage-to-loss model developed in this 

study is limited to pre-code mid-rise R.C moment resisting frames. Additional research on this 

topic should seek to extend the studies presented herein to other building typologies.  
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