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Abstract 

Cancer is a pathology that affects a large portion of the world’s population [1]. It is an 

assembly of diseases with various symptoms that significantly decreases the patient’s life 

quality and has a high rate of mortality [2]. One of the most commonly used treatments for 

this pathology is chemotherapy, involving the use of combinations of drugs to kill cancer 

cells. Since these drugs either act directly on the membrane or have to cross it to reach their 

targets, the interactions between anticancer drugs and biological membranes are of high 

importance. 

The structure of biological membranes consists of a phospholipid bilayer. In healthy 

cells, phosphatidylcholine (PC) and phosphatidylserine (PS) are some of the most common 

lipids, the PS being found on the inner leaflet, but cancer cells’ membranes usually present 

higher heterogeneity in constitution, higher fluidity and the PS exposed to the extracellular 

media [3]. The complexity of the membrane and all the variables associated with the cells’ 

functions makes it a very difficult model to study. As such, artificial model membranes like 

liposomes might present a viable alternative, being a simpler and easier to manipulate 

model that accurately simulates the cell membrane’s constitution and behaviour. 

That being said, the aim of our study was to assess the effects of two anthracyclines used 

in chemotherapy, daunorubicin and doxorubicin, on the lipid membranes of four LUV 

formulation models, two of them constituted by dimyristoyl-phosphatidylcholine (DMPC) 

with and without cholesterol, mimicking the normal cell membrane, and the other two 

simulating the tumoral cell membrane, constituted of a mixture of dimyristoyl-

phosphatidylcholine (DMPC), dioloyl-phosphatidylcholine (DOPC) and dipalmitoyl-

phosphatidylserine (DPPS) at the proportions 3:1:1, respectively,  also with and without  

cholesterol. Hepes buffer at pH 7.4 and Tris buffer at pH 6.3 were used to mimic the normal 

and tumoral tissue’s pH, respectively. 

Dynamic Light Scattering (DLS) was used to determine liposome size and Electrophoretic 

Light Scattering (ELS) liposome zeta potential. The partition coefficient (Kp) of the drugs was 

determined through derivative spectroscopy using liposome/water sytems. Membrane 

location of daunorubicin involved spectrophotometry, spectrofluorimetry and lifetime 

fluorimetry measurements. Membrane fluidity and the effect of the two drugs on it were 

assessed through fluorescence anisotropy. 

 These techniques were employed on the four formulations of liposomes mentioned 

before. Membrane location and anisotropy techniques were also performed on tumoral cells, 

the cell line MDA-MB-231, to assess the ability of the designed models of mimicking the 

actual biomembranes. 
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Size measurements confirmed that the models were prepared as intended, with liposome 

sizes being close to 100 nm. Neither drug seemed to affect liposome size. Zeta potential 

confirmed that normal model membranes had a surface charge close to neutral and tumoral 

model membranes were slightly negatively charged, which is consistent with what happens 

naturally. Increase in drug concentration made the zeta potential in tumoral models less 

negative, meaning that the drug, positively charged, was interacting with the surface of 

these membrane models. 

Kp determination showed that the two drugs, although very similar, partition very 

differently. The highest Kp is found for the normal model. Partition for the two drugs 

decreases with the presence of cholesterol in the membrane for normal models, but the 

opposite occurs for the tumoral models. Doxorubicin partitions more than daunorubicin for 

all models except the tumoral with cholesterol model. 

Daunorubicin appears to localize between the acyl chains of phospholipids in the 

membrane but still interacting through electrostatic interactions with the polar heads, so it 

appears to locate at an intermediate region. 

In terms of fluidity, the normal model with cholesterol appears to be the most rigid of 

all and remains unchanged by the addition of the drugs tested, while the normal model is 

highly fluid. Contrarily to what was expected, the tumoral model with cholesterol becomes 

less fluid with the presence of drug, which does not happen in the tumoral model without 

cholesterol. 

Summarily, Kp values prove that there is interaction between both drugs and the four 

models studied. Both drugs partition significantly less into the normal model with 

cholesterol than the normal model without it. The opposite occurs in the tumoral models, 

where cholesterol seems to be causing some adjuvant effect on the partition of the drugs. 

Evidence suggests that the drug daunorubicin located at a more interfacial region, probably 

the cooperative zone. The tumoral model with cholesterol also seems to become more fluid 

at the physiological temperature for both drugs at the cooperative zone. Similar results 

were found for tumoral cells. From all the gathered information it can be hypothesized that 

cholesterol might be forming microdomains with some of the lipids of the tumoral model, 

increasing the rigidity of the membrane in certain areas but leaving the remaining areas 

permeable to the drug, hence the higher Kp values and higher overall fluidity. It could also 

be observed that the designed model membranes, although simple, replicated biomembranes 

quite well. This study and follow-up work can be a big step towards the validation of 

liposomes as models for cell membranes, and in the future allow the facilitation of drug-

membrane interaction studies. Possible future applications would involve not only the use in 

research but the introduction of the models at an industrial level for an easier, less 

expensive and quicker development of new drugs or delivery systems for the treatment of 

several diseases that are more efficient and possess fewer side effects. 
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Chapter 1  
 

Introduction 

Cancer is a pathology that affects a large portion of the world’s population. It affects 

people from any region regardless of culture or wealth and is one of the biggest causes of 

death. Over the last 35 years, the global burden of cancer has more than doubled, with 12.4 

million new cases diagnosed and 7.6 million cancer-related deaths just in 2008. With the 

continuous growth and aging of the world, predictions point towards about 27 million new 

cancer cases diagnosed and approximately 17 million deaths as a result of cancer in the year 

2030 [1].  

In the past, many of the greatest scientific and medical accomplishments were achieved 

in developed countries, resulting in higher exposure of the people to different kinds of 

radiation, radioactivity (from nuclear accidents, nuclear weapons…) and chemical 

carcinogens. Such events could explain why cancer was, in the past, a developed country 

disease [3-5]. However, in the current years, the trend was balanced out if not overturned, 

with at least half of the global cancer cases being found in low or medium resource countries. 

In fact, in 2008 five out of every ten diagnosed cancer cases occurred in these regions [6]. 

These countries are clearly more affected as the increase in cancer cases presents a far more 

complicated issue due to the lack of proper sanitary and health care conditions. In low to 

medium resource countries cancer treatment facilities and life-extending treatments are 

often unavailable for economic reasons [3]. 

According to the American Cancer Society, cancer is not a disease but encompasses a 

group of diseases that have in common the uncontrolled growth and spread of abnormal cells. 

It can cause virtually any sign or symptom depending on the tumor’s characteristics. The 

abnormal cells compete with the healthy cells for oxygen and nutrients, eventually leading to 

the death of healthy cells. If the spread of abnormal cells is not controlled, it can result in 

death [7-9]. 

There is still no definitive and 100% effective cure for cancer. There are, however, 

treatments with a high rate of success that can eradicate the disease from an individual [7]. 

One of these treatments, chemotherapy, involves the use of drugs to eliminate cancer cells 

through a variety of mechanisms. However, they act on all cells undergoing cellular division, 

so rapidly growing tissues like skin, liver or the intestinal tract, are also under the attack of 

these drugs, which leads to a number of undesirable and severe side effects that reduce the 

patients’ life quality throughout the treatment sometimes to a state of disability and can also 

interfere with the success of the treatment [5, 10] 
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The main targets of chemotherapeutic drugs are intracellular and therefore the drugs 

must be able to surpass the plasma and possibly the nuclear and organelle membranes. 

Therefore, the study of anticancer drug-membrane interactions is an important field of 

research since it provides understanding on the drugs’ pharmacology and pharmacokinetics 

[3]. The basic structure of all cell membranes is a curved lipid bilayer composed of various 

lipids which serves as a permeability barrier to the hydrophilic molecules on either side of it 

and host many peripheral and transmembrane proteins. As such, the biophysical properties of 

the lipids that compose the bilayer may modulate its behaviour in contact with drugs as well 

as the behaviour of associated proteins and other molecules. Therefore, it is important to 

study the effect of anticancer drugs on the membranes to evaluate their efficacy, but this 

may be complicated due to the high complexity of cells. Artificial lipid model membranes 

appear as a novel way to study drug-membrane interactions since they can be made of cell 

membrane components or derivatives and mimic its behaviour while the conditions involved 

are much easier to control [11]. 

1.1 - Cancer Ethiology and Pathophysiology 

1.1.1. Cancer Ethiology 

Cancer is a pathology that is characterized by the abnormal growth and development of 

cells that acquired new characteristics through genetic mutations that provide them with 

specific capabilities, such as the ability to proliferate independently of the mechanisms that 

regulate cellular growth [12, 13]. An agglomerate of abnormal cells is called a tumor or 

neoplasia and it is not necessarily malignant. A tumor becomes a cancer when its cells gain 

the ability to migrate through different tissues and therefore invade other regions of the 

organism [11, 14]. 

When in a tissue, the tumor cells compete with the normal cells for energy and nutrients. 

Since neoplastic cells have a higher growth ability, they have an advantage, and therefore 

inhibit the normal proliferation of healthy cells leading to the deterioration of the tissue and 

failure of its functions [15]. 

Tumors constitute complex tissues that include various different cell types which 

establish a number of heterotypic interactions in order to satisfy its necessities. A good 

example could be the process through which the tumor recruits regular cells to form tumor-

associated stroma, a support structure that actively contributes to the emergence of certain 

decisive cancer-related capabilities [8]. 

When a tumor is forming, the local conditions are altered, which means that the 

developing tumor will be enclosed in an environment completely different from the one that 

is associated with normal cells. This is called the tumor microenvironment (TME) and includes 

surrounding non-tumor cells like endothelial cells, fibroblasts and immune cells that are 

embedded into the tumor tissue by extracellular matrix proteins. Soluble factors, signaling 

molecules and mechanical cues that promote malignant transformation and support the 

tumor’s growth and invasion are also part of the TME [16, 17].  

The microenvironment is characterized by low oxygen levels or hypoxia, low glucose 

concentrations and overexpression and hypersecretion of a number of hydrolytic enzymes in 

different stages of tumor progression that form the liquid milieu of the TME. A micro-acidic 

environment is common in most solid tumors, with an extracellular pH (pHe) ranging from 5.3 
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to 7.2, as a consequence of the aforementioned events. The acidity may favour the activity 

of proteases with a slightly acidic optimal pH such as cysteine and aspartic cathepsins, as 

well as the redistribution of lysosomes in the cell surface for the release on their proteases 

[16, 18]. 

The interactions between all of the TME’s components are essential for the correct 

regulation of the self-renewal and differentiation processes fulfilled by the tumor’s stem cell 

niche to promote the tumor cells’ indefinite proliferation [17]. Elements of its 

microenvironment can actually be instructive to tumor cells, making them more or less 

tumorigenic and even  maintaining or inducing a cancer stem-like state through the secretion 

of certain molecules (the secretion of hepatocyte growth factor by myofibroblasts in the 

microenvironment of colorectal cancer is an example) [17, 19]. Although its general 

constitution remains the same, a specific tumor developed in a certain tissue will have 

determined factors, signals and molecules that might not be present in another tumor type 

since their differences implicate other kinds of stimuli. Research on the specific 

microenvironments of, for instance, breast [20, 21] and lung [22] cancer, Hodgkin lymphoma 

[23], B-cell chronic lymphocytic leukemia [21] and neuroblastoma [24] produced results that 

prove as much. 

The genesis and progression of cancer is a process that occurs through a sequence of 

steps, which is confirmed by the fact that the transformation of normal cells into malignant 

ones requires progressive genetic alteration [25]. Cancer genesis can be divided into three 

phases: initiation, promotion and progression [5]. The first step is initiation and involves a 

change in the normal cells’ phenotype due to irreversible mutations in its DNA. These are 

induced by initiators, which, if not already reactive with DNA, are altered by drug-

metabolizing enzymes, being then able to cause mutations in the DNA [26, 27]. Promotion is 

the process through which the initiated cells progress into a visible tumor [28]. This process is 

undoubtedly related to epigenetic factors. The promoters do not directly interact with the 

DNA. Instead many bind to cell membrane receptors and affect internal pathways – specific 

promoters. Nonspecific promoters, on the other hand, alter gene expression without the 

presence of a known receptor. Both of them generally further alter the cell so it proliferates 

and divides, which results in their ability to grow unregulated. Promoters do not act on cells 

that have not undergone initiation and are usually specific to a certain type of tissue [3, 29, 

30]. At this point the lesion is benign. To acquire malignancy, the cells must undergo 

heritable mutations that greatly influence their histopathological characteristics of cellular 

morphology, invasiveness, growth, and differentiation.  This process is called progression. 

The three stages are represented in figure 1. 

 

 

 

 

 

Figure 1 Schematic representation of the development of a tumoral mass of cells. Here are represented 

the three main steps of cancer ethiology – initiation, promotion and progression [31]. 

 

These mutations can be caused by variability inducing phenomena, namely point 

mutations, genetic amplification or chromosomal translocation. Usually, the occurrence of 

malignant phenotype in a cell requires not only one but several alterations of its genome that 
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are accumulated over time. The cell’s DNA can suffer spontaneous mutations or they can be 

inherited from parents. An example for the last case is related to breast cancer – women that 

inherit a defective copy of the BRCA1 and BRCA2 genes are on greater danger of developing 

pathology [32]. Many external factors, usually combined, are also involved in the generation 

of cancer associated mutations. An unhealthy diet, excess body weight and little physical 

activity are all factors that can increase the risk of cancer. The abuse of substances such as 

alcohol and tobacco also increases the risk of cancer [15]. Moreover, Ultraviolet (UV) 

radiation, which comes from the sun and man-made sources like tanning beds, is able to 

affect cells of the epidermis, the most superficial layer of the skin, originating basal and 

squamous cell skin cancer or the less common but more serious melanoma, most frequently 

on more exposed areas such as the face, neck and arms [25]. Other high energy radiation 

types, like the X rays and gamma radiation used for medical purposes and nuclear power 

plants, are also associated with tumor generation, as well as some chemicals and infectious 

agents [3, 15, 25]. Carcinogen types are as listed below: 

-Lifestyle factors (nutrition, tobacco use, physical activity, etc.); 

-Naturally occurring exposures (ultraviolet light, radon gas, infectious agents, etc.); 

-Medical treatments (chemotherapy, radiation, immune system-suppressing drugs, etc.); 

-Workplace exposures; 

-Household exposures (food irradiation, consumer products containing radiation); 

-Pollution [5]. 

Any healthy nucleated cell possesses mechanisms to repair its DNA and maintain the 

stability of its genetic content. These mechanisms regulate cellular processes that increase 

the probability of mutations, such as DNA replication, chromosome segregation and others. 

When the repair mechanisms are surpassed, the DNA cannot be repaired. As a consequence, 

the control of the production and release of growth factors that happens regularly in healthy 

cells ceases to be done efficiently [33]. The subsequent mutations generate more and more 

variability in the genome of the daughter cells and the ones with a higher survival rate are 

selected leading to a higher cellular heterogeneity and finally to a state of chronical 

proliferation associated with tumor cells [5]. 

The transformation of healthy cells into cancer cells results of mutations mainly in genes 

of the following types:  

- Proto-oncogenes: genes that usually regulate cell division, apoptosis and 

differentiation; through the action of carcinogens they can become oncogenes, which 

promote malignant alterations; 

- Tumor suppressant genes: genes that suppress alterations that could lead to cancer; 

as a result, their inactivation is involved in carcinogenesis [27]. 

The tumor cells achieve immortality by controlling their own proliferative signals. This 

happens through a few alternative mechanisms. Cells can produce their own growth factors, 

to which they respond by expressing specific receptors for them – autocrine proliferative 

stimulation. Alternatively, they can stimulate normal cells in the supporting tumor-associated 

stroma to supply the cancer cells with the required growth factors [25, 33]. They can also 

increase the expression of surface receptors or change their conformation in order to make 

them hyperresponsive to growth factor ligand concentrations that would be limiting 

otherwise. Several studies using DNA sequencing analysis of cancer cell genomes have 

revealed somatic mutations that implicate the constitutive activation of signaling circuits 

usually triggered by activated growth factor receptors [34]. 
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The growth of functional cancer cells also requires cellular senescence to be stopped or 

delayed and that the cells in the interior of the tumor mass are being supplied with nutrients. 

The first need is satisfied by the fact that the enzyme telomerase, almost inexistent in 

normal cells, is present and active in cancer cells, which supports the knowledge that, during 

the transformation process to malignance, the cells suffer dedifferentiation and loss of 

function [5, 33]. Nutrients are carried to the interior of the tumor by blood vessels formed for 

that exact purpose through angiogenesis motivated by the vascular endothelial growth factor 

A (VEGF-A), for instance, and its expression can be stimulated by oncogenes [15, 27, 35]. 

Another characteristic of cancer is the acquisition by the cells of the ability to invade 

tissues besides the one they were originally formed in. This is a process named metastization 

and involves the propagation of cancer cells to different tissues of the body, starting by the 

insertion of cancer cells in the lymphatic and blood vessels near the original tumor. These 

cells then circulate in these systems and end up diffusing to the parenchyma of distant 

tissues where they constitute cancer cell nodes (micro-metastasis) that then develop into 

macroscopic tumors. 

It can therefore be concluded that cancer cells possess a setting of capabilities that 

strictly differentiate them from normal cells [8], such as: 

- Enabling replicative immortality; 

- Inducing angiogenesis; 

- Resisting cell death; 

- Sustaining proliferative signaling; 

- Evading growth suppressors; 

- Activating invasion and metastasis. 

 

1.1.2. Conventional Therapies 

Throughout the years the knowledge on the pathophysiology of cancer has been enlarged 

through constant research. The better understanding of its causes and types favored the 

development of therapies that succeed in the treatment or restriction of cancer. The concept 

of targeted therapy is still under development but there are nowadays techniques that 

produce good results in treating cancer. Although hyperthermia, immunotherapy and stem 

cell transplant are also being used, the most used and also most effective techniques until 

now will be described below [25, 36]. 

Surgery is a type of treatment that can be performed for diagnosis, to evaluate the stage 

of the disease and for reduction or removal of the tumor mass. Surgeries performed for 

diagnosis are called biopsies and involve the removal of a small portion of tissue from various 

regions of the affected organ to be analyzed. Surgeries that aim the treatment of the 

condition consist, as said, in tumor removal or are performed to mitigate the effects of the 

disease. Surgeries can be very invasive (open body surgery, laparoscopy) or less invasive 

(laser surgery, endoscopy) [25]. The choice depends on factors such as the stage of the 

disease, the patient’s age and other health problems they might suffer from [37, 38]. If 

surgical remotion of the entire tumor is possible, this therapy can rapidly eliminate the 

pathology practically by itself. However, it poses some disadvantages since it is useless in the 

case of liquid or circulating tumors and very ineffective in metastized tumors, being mostly 

used in association with one of the next therapies. It is also an invasive procedure that makes 

patients vulnerable to a number of other complications such as infection [3, 39]. 
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Radiotherapy on the other hand consists of the application of radiation, usually X or 

Gamma, to the treatment of cancer. Radiation damages the DNA of the dividing cancer cells, 

which become unviable and undergo cell death. Therefore, radiotherapy allows the reduction 

of tumor size by leading to the death of the cells that form it. However, this is more a 

contemption procedure than it is a cure, being usually utilized coupled with other treatment 

options, mainly chemotherapy. Another problem with this technique is that it doesn’t affect 

only cancer cells. It acts on cells undergoing division in every tissue, damaging healthy cells 

as well and causing secondary effects in short (skin, intestines and other rapid-growing 

tissues) and long term (bone and nervous tissue). Consequently, the therapy needs to be used 

while assuring the balance of the organism upon the damage caused, which poses some 

difficulties in its use [2, 3, 40, 41]. 

Chemotherapy is the most used type of treatment for cancer since it seems to very 

effective [32]. It involves the use of natural or synthetic chemical compounds in order to 

destroy infecting agents or cancer cells. It can be performed on its own or coupled with one 

or more of the aforementioned alternative therapy methods, depending on the type and 

stage of the pathology [3]. 

Chemotherapy can be administered in different clinical settings, such as: primary 

induction chemotherapy, for the treatment of advanced, metastatic cancer, for which the 

possibility of cure is remote and the goal is to increase the survival time and the quality of 

the patient’s life; neoadjuvant chemotherapy, used for localized tumors (anal, bladder, 

breast, esophageal, laryngeal and non-small cell lung cancers) for which alternative methods 

exist but are less efficient than desirable, leads to good results when coupled with 

radiotherapy; and adjuvant chemotherapy, used after another treatment option to prevent 

recurrence, is effective in prolonging the survival of the patients after removal or remission 

of the tumors [7]. 

The therapies that involve drugs are constantly evolving once, much like microorganisms, 

cancer cells have the ability to develop genetic alterations that grant them drug resistance. 

This was also the motive that led to the development of combined chemotherapy, which 

consists of the introduction of more than one type of drug in the organism, which allows the 

treatment of the disease on different levels and through distinct mechanisms leading to a 

higher efficacy and lower susceptibility to possible resistance by the cells  [3, 42]. 

Nowadays it is known that a determined dose of drugs used in chemotherapy could be 

enough to eradicate a certain amount of malignant cells. Thus, correlating the dose with the 

size of the tumor, it would be theoretically possible to eliminate it quickly and definitively. 

However, the fact the cancer cells derive from cells from the same individual makes it so 

that they share a few characteristics with cells in various tissues of the body. Therefore, the 

effects of the drugs occur also in healthy cells and so a drastic session is not an option. 

Instead, sequential but spaced chemotherapy sessions have to be scheduled so the patient 

doesn’t sustain lethal injuries from the treatment [3, 42]. 

Most currently used drugs on chemotherapy act on a particular characteristic of cancer 

cells – cell division. Consequently, cells in the G0 stage of the cell cycle are unaffected. On 

the other hand, cells in the S stage suffer damage to their DNA that leads to apoptosis. Just 

like radiation would, these drugs act both on malignant and rapidly growing healthy cells, 

causing side effects such as impaired wound healing, lower leukocyte production 

(compromising the immune system), hair loss, infertility and teratogenicity. 



 

Assessment of Anticancer Drugs’ Effects on Membrane Biophysical Properties using Model Membranes 

 

7 

 

Table 1 Some of the most used chemotherapeutic agents from each type and their 

mechanisms of action and main side effects [7]. 

Type Drug Mechanism of Action Side Effects 

Alkylating agent 

Cyclophosphamide 

Alkylates the DNA at the N7 position 
of guanine; inhibits DNA synthesis. 

Nausea, vomiting, Bone marrow 
suppression, leukopenia, 
thrombocytopenia, alopecia, 
hemorrhagic cystitis 

Cisplatin 
Nausea, vomiting, Bone marrow 
suppression, renal dysfunction, 
acoustic nerve dysfunction. 

Procarbazine 

Nausea, vomiting, 
myelosuppression, hemolytic 
anemia, pulmonary effects. 
 

Dacarbazine 
Nausea, vomiting, 
myelosuppression 

Mustines 
Alkylates the DNA through cross-
linking. 

Nausea, vomiting, 
myelosuppression. 

Antimetabolite 
 

Methotrexate 
Binds to the catalytic side of 
dihydrofolate reductase, inhibiting 
the folic acid pathway. 

Bone marrow suppression; 
dermatological damage and to the 
gastrointestinal mucosa. 
 

Mercaptopurine 

Activation by hypoxanthine-guanine 
phosphoribosyl transferase (HGPRT) 
to form 6-thioinosinic acid which 
inhibits enzymes involved in purine 
metabolism. 

Hyperuricemia, acute gout, 
nephrotoxicity. 

Thioguanine 
Substitution of guanine bases leading 
to inhibition of DNA and RNA 
synthesis. 

5-Fluorouracil 

One derivative inhibits thymidine 
synthesis, the other incorporates 
RNA, in general, DNA and RNA 
synthesis is inhibited. 

Myelosuppression, mucositis. 

Cytarabine 
Active form competes and inhibits 
DNA polymerase, inhibiting DNA 
synthesis but not RNA. 

Nausea, alopecia, stomatitis, 
severe myelosuppression. 

Gemcitabine 
Competes with cytidine and replaces 
it in DNA formation, inhibiting 
replication. 

Nausea, fever, headache, fatigue, 
vomiting, poor appetite, allergic 
reaction, difficulty sleepy, 
shortness of breath. 

Plant Alkaloid 

Vinblastine 
Microtubule depolarization, which 
interferes with chromosome 
segregation causing mitotic arrest at 
metaphase. 

Nausea, vomiting, alopecia, bone 
marrow suppression. 

Vincristine 
Bone marrow suppression, 
neurotoxic reactions. 

Etoposide 
Inhibits topoisomerase II, which leads 
to DNA damage and cell cycle arrest 
at late S or G2 phase. 

Nausea, vomiting, alopecia, 
hematopoietic and lymphoid 
toxicity. 

Paclitaxel 
Enhanced microtubule 
polymerization, forming bundles that 
lead to mitotic arrest. 

Vomiting, diarrhea, alopecia, 
neutropenia, thrombocytopenia, 
peripheral neuropathy. 

Antibiotics 

Anthracyclines 
(doxorubicin and 
daunorubicin, 
epirubicin) 

Intercalate the DNA and affect 
topoisomerase II inhibiting DNA and 
RNA synthesis, alter membrane 
fluidity and ion transport, and 
produce and oxygen radical species. 

Permanent heart damage, nausea, 
vomiting, myelosupression, 
alopecia. 

Bleomycin 
Produces single and double stranded 
breaks due to free radical formation, 
arresting the cell cyle in phase G2. 

Anaphylactoid reaction, fever, 
anorexia, hyperkeratosis, 
blistering. 

Hormonal Agent Tamoxifen  

Partially competes with estrogen, 
binding to estrogen receptors and 
suppresses serum levels of insulin-
like growth factor-1; and up-
regulates local TGF-beta production. 

Hot flashes, nausea, fluid retention 
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1.1.3. Anticancer Drugs 

The most used types of anticancer drugs are called cytotoxic agents and can be divided 

in various categories. 

Alkylating agents and derivatives establish covalent bonds with the DNA and prevent its 

replication. Antimetabolites block or subvert metabolic mechanisms of DNA synthesis. In 

this category there are purine anthagonists, like mercaptopurine and gemcitabine, and 

pirimidine anthagonists, such as 5-fluorouracil and cytarabine, which are drugs that 

compete with regular bases and are added as such to forming chains or influence enzymes 

associated with their metabolism or synthesis. Other pathways can also be affected by this 

type of drug, being a good example the folate metabolism. The cells need folate naturally 

to perform regular and essential functions like synthesising, repairing and methylating DNA. 

Fast growing cells like cancer cells need an even higher amount of folate. In the case of 

folate anthagonists like methotrexate, the drug binds to the enzyme responsible for 

converting folate to its active form, inhibiting this process and therefore depriving the cell 

of folate. Cytotoxic antibiotics are able to interfere with several mechanisms (depending on 

the antibiotic) in DNA replication and protein synthesis. Plant derivatives, such as alkaloids, 

taxanes and campothecins, impair the correct functioning of microtubules, interrupting the 

mitosis. Hormones are also used, especially steroids, as well as compounds that suppress or 

antagonize hormone secretion. A number of compounds that include the recent tumor-

related targets cannot be included in any of the previous categories [3, 43]. Table 1 shows 

some of the most applied chemotherapeutic drugs along with their type, mechanism of 

action and side effects. 

Due to the development of resistance by the cancer cells to the anticancer drugs and 

the lack of definitive and 100% successful cure, new drugs are currently being researched 

for their possible advantageous effects comparing to the ones already in use. An interesting 

new category are the alkyl lysophospholipids, ALP. Edelfosine appears to be the most potent 

anticancer ALP. It is particularly interesting since, unlike most chemotherapeutic drugs, it 

does not attack DNA. Instead, edelfosine accumulates in the lipid rafts of the membranes of 

tumor cells, apparently inducing apoptosis through a redistribution of lipid raft protein 

composition [44, 45]. 1-aryl-3-(2-chloroethyl) ureas or CEUs also present strong anticancer 

effects that led their intensive use in several studies. CEUs are hybrids of two also potent 

anticancer agents, aromatic nitrogen mustards and aliphatic nitrosoureas. They have shown 

to be very cytotoxic, devoid of mutagenicity and show no signs of systemic toxicity in 

animal models with tumors. They are weak alkylating agents that are unable to alkylate 

either cellular DNA or gluthatione, so the low alkylating potency is only partially responsible 

Miscellaneous 

Hydroxyurea 

Blocks an enzyme which converts the 
cytosine nucleotide into the deoxy 
derivative and the incorporation of 
the thymidine nucleotide into the 
DNA strand, inhibiting DNA synthesis. 

Drowsiness, nausea, vomiting, 
diarrhea, alopecia, anorexia, 
mucositis, stomatitis, bone marrow 
suppression. 

L-asparaginase 
Depletes serum asparagines that the 
tumor cells need but cannot 
produce, leading to cell death. 

Allergy, anaphylaxis, pancreatitis. 

Oxaliplatin 
Forms both inter- and intra-strand 
cross links in DNA which prevent DNA 
replication and transcription. 

Nausea, vomiting, diarrhea, 
neurotoxicity, neutropenia, 
ototoxicity. 
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for their cytotoxicity. These are amphiphilic drugs that therefore can interact with the 

lipids in the membrane, so alteration of the membrane’s fluidity is thought to be the major 

cause of cytotoxicity [46]. The general structure of CEUs can be seen in figure 2. 

 

Figure 2 General structures of CEU derivatives substituted at positions four (top) and two (bottom). “R” 
representes the substituent groups (also called radical groups). The only difference between distinct 

CEUs is this R (radical) substituent [46]. 

Although chemotherapy can be performed using only one agent, introducing a 

combination of different drugs into the organism is much more common. That is because the 

combination of different types of drugs can target different pathways on the cells, making 

the therapy more efficient, and also provide a way to surpass drug resistance by cancer cells 

[32]. In Table 2 are shown a few common established combination regimens for 8 distinct 

types of cancer.  

 

Table 2 An assortment of very common and established combination chemotherapy regimens. 
Adapted from Corrie et al. 2011 [47]. 

Cancer Combination of Drugs 

Breast -Cyclophosphamide, methotrexate, 5-fluorouracil; 

-Doxorubicin, cyclophosphamide. 

Hodgkin’s Disease -Mustine (nitrogen mustard), vincristine, procarbazine, 

prednisolone; 

-Doxorubicin, bleomycin, vinblastine, dacarbazine. 

Non-Hodgkin’s Lymphoma -Cyclophosphamide, doxorubicin, vincristine, prednisolone. 

Germ Cell -Bleomycin, etoposide, cisplatin. 

Stomach -Epirubicin, cisplatin, 5-fluorouracil. 

Bladder -Methotrexate, vincristine, doxorubicin, cisplatin. 

Lung -Cyclophosphamide, doxorubicin, vincristine (etoposide). 

Colorectal -5-fluorouracil, folinic acid, oxaliplatin. 

It can be gathered from Table 2 that each drug combination includes drugs with different 

mechanisms of action, which may be associated with the importance of eliminating as much 

cancer cells as possible as well as overcoming possible drug resistance as mentioned before. 

Also, the differences in combinations support the idea that different types of cancer involve 

different mechanisms and molecules [48]. 

Targeted cancer therapies, on the other hand, are more specific as they try to eliminate 

the pathology by acting on specific molecular targets associated with cancer, blocking the 

growth and spread of cancer cells. Through these therapies, side effects can be minimized 

since the specificity towards cancer-related targets decrease or halt the action of the drugs 

on normal cells [49]. Although targeted cancer therapies are relatively new, very subjective 
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and still under development, the kind of strategy they present might be key in the future of 

cancer treatment.   

1.2 - Biological Membranes 

Cellular membranes are some of the most important components of cells. Besides their 

essential function in the compartmentalization of the cells, whether it is separating the cell 

contents from the environment in the case of the plasmatic membrane or creating a boundary 

between the inside of the cell’s organelles and its cytoplasm, biological membranes are 

involved in a number of other processes that are crucial for the development of cells and 

organisms in general [50]. These functions are mainly regulated and made possible by the 

very diverse constitution of the membranes. 

The universal basis for cell membranes’ structure has been since 1925 established to be 

the lipid bilayer [3]. The lipid bilayer is formed by a variety of amphiphilic molecules 

unevenly distributed and held together by hydrophobic interactions between their acyl 

chains. In 1972, Singer and Nicholson proposed that the membrane was structured as a fluid 

mosaic, a highly dynamic, heterogeneous and asymmetric structure composed of lipids and 

proteins that moved and changed conformation freely within the membrane’s plane. The 

fluid mosaic model is still the basis of knowledge in regards to the membrane bilayer, but 

currently there is much more information regarding its constitution and the interaction 

between its constituents at a molecular level [50, 51].  

Cell membranes are characterized by an asymmetric distribution of lipids along the 

bilayer. These lipids are mostly phosphatidylcholine (PC), phosphatidylethanolamine (PE) and 

phosphatidylserine (PS), as well as sphingomyelin (SM), phosphatidylinositol (PI) and 

cholesterol in smaller proportions, represented in figure 3 [50]. Cholesterol is a very 

important constituent of the membrane because it is the main molecule responsible for the 

maintenance of membrane’s fluidity. This molecule has a hydroxyl group that interacts with 

the hydrophilic head groups of the other lipids in the membrane, while its bulky steroid 

groups interact with their hydrophobic acyl chains, as can be seen in figure 4. 

These interactions modulate the packing of the lipids within the membrane, influencing 

its fluidity [50]. Membrane fluidity is one of the most important psychochemical 

characteristics of biological membranes since it affects several cell functions such as cell 

growth, carrier-mediated transport and enzyme and receptor-related signalling pathways like 

apoptosis. Proteins also integrate the membranes. Integral proteins span the entire 

membrane while peripheral proteins usually adhere to the surface of the membrane via 

protein-protein interactions. Proteins can contribute as molecule or ion transporters or 

anchors and are involved in a variety of biological processes [52]. 

This asymmetric distribution of lipids on the membrane is associated with the 

aforementioned lipid rafts and is maintained purposely by the cell at the expense of energy, 

which confirms its importance to the cell’s functioning [53]. An important aspect of this 

asymmetry is that in normal cells anionic aminophospholipids (mainly PS) are maintained on 

the inner leaflet of the membrane [53-55]. This is important because PS exposure at the 

surface of cells has been correlated with the maintenance of the membrane structure as well 

as some of its functions, allowing the binding of membranes proteins, being a cofactor for 

protein kinase C or PKC and the Na+/K+ ATPase and the promotion of a blood clotting 

cascade, and so it is essential that, at a normal state [54, 56], PS is not exposed. Contrarily, 
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it has been shown that PS is exposed in high amounts on the outer leaflet of tumoral cell 

membranes [54], and that has actually became a major hallmark that could in the future be 

an excellent target for the delivery of drugs. The same seems to happen with PE, although its 

involvement in the membrane behaviour seems to be smaller [56]. 

So it is clear that the constitution and structure of the cell membrane differs greatly from 

normal to tumoral cells. Interestingly, slight changes can be seen even between the structure 

and composition of the membranes of different types of cancer cells. Studies on hepatoma 

cells showed that their membranes contained four times more SM than normal ones, as well 

as an increase in choline plasmalogen and unsaturated fatty acids, which might indicate 

higher membrane fluidity [57]. In human colorectal cancer cells, increased levels of all 

phospholipids were found, including PI, PS, PE and PC, which is associated with enhanced cell 

membrane synthesis [53, 58].  The membranes of lymphocites from patients with Chronic 

Lymphocitic Leukemia or CLL present an increase in general phospholipid concentration as 

well as cholesterol, SM and glucosylceramide and lactosylceramide while a decrease of the PC 

levels was observed when comparing the membrane fraction with the general homogenate 

[59]. Hairy cells from hairy cell leukemia (HCL) have membranes with higher content in 

cholesterol and lower fluidity than CLL lymphocites. However, the cholesterol content is 

similar to that found in normal monocytes [60]. It becomes therefore evident that cell type 

influences plasma membrane constitution, which could be a stepping stone towards 

developing new therapies or drug delivery systems specifically targeting certain tissues or 

tumoral cell types. 

 

 

 

 

 

Figure 3 Representation of the structures of some of the main lipids found in animal plasma membranes: 
phosphatidylethanolamine (A), phosphatidylserine (B), phosphatidylcholine (C) and sphingomyelin (D), 
which are phospholipids. Glycolipids appear in a much smaller amount, but the most common are 
galactocerebroside (E), GM1 ganglioside (F) and sialic acid or NANA (G). Adapted from Alberts et al. 2002 
[2]. 
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The membrane’s heterogeneity leads to the formation of microdomains in its structure 

[50]. Some of these microdomains are called lipid rafts and are made of cholesterol and 

sphingolipids [glycosphingolipids and shpingomyelin (SM)]. The lipid rafts actively participate 

in metabolic and signal transduction processes, and some of these processes are even 

involved in the promotion of cell death (like the Fas receptor death pathway)[51]. 

 
Figure 4 The structure of cholesterol is represented by formula (A) and by schematic drawing (B). (C) 
represents the cholesterol’s interaction with lipids in the bilayer. Adapted from Alberts et al. 2002 [61]. 

 

1.2.1. Importance for drug-membrane interaction studies 

Plasma membrane is a complex and intricate structure involved in a variety of life-

defining events for the cell. Besides the already mentioned importance of membrane 

proteins, changes in lipid levels have been described in a number of pathologies, namely 

cardiovascular diseases and cancer [3, 62-64]. Due to the highly prolific character of cancer 

cells, they have constitutive activation of fatty acid biosynthesis, which has been 

demonstrated to lead to altered phospholipid and fatty acid profiles in breast cancer cells 

and surrounding tissue [65]. Gangliosides were shown to be aberrantly distributed in a 

number of tumors and an accumulation of esterified cholesterol was associated with cell 

cycle progression and tumor growth. Sphingomyelin levels were reduced in a number of 

cancers as well [66]. 

It appears that the plasma membrane is also a very important participant in 

chemotherapy-induced cell death since the targets for the main chemotherapeutic drugs are 

thought to be intracellular, as well, as in the effect of a variety of other decisive drugs 

(antibiotics, antifungal drugs, etc.), but very little is understood about the actual processes 

and the way that the membrane is involved in them [51, 65, 67]. Indeed, the ultimate effect 

of the drug might be a consequence of the actual interaction of the drug with the plasma 

membrane or be related to the interaction with an intracellular target. Certain drugs can 

interact with the membrane’s proteins, which can act as receptors, signal transducers, 

transporters or enzymes. Others act on the actual lipid bilayer, altering its biophysical 

properties such as permeability (so the drug can enter the cell or to disrupt the membrane 

leading to cell death), phase behavior and conformation. Either way, an interaction with or 

penetration of the cell membrane is a crucial step in the drug’s activity, especially in the 

case of anticancer drugs [65, 68].  Other membranes (such as nuclear envelope, Golgi and 

reticulum membranes) might also be involved in the mentioned processes. Several studies 

have actually proved that there is a correlation between the cytotoxicity of certain antitumor 

agents and, for instance, membrane fluidity, as well as other parameters [46]. Therefore, the 

study of the interactions between these drugs and membranes is of vital importance since it 
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could shed light on the drugs’ activity and therefore on its pharmacology, pharmacokinetics, 

efficacy and toxicity [69]. Furthermore, the knowledge that can be obtained from the study 

of drugs-membrane interactions could allow the improvement of drugs mechanism of action 

and the development of new drug  delivery systems [68, 70]. 

 

1.2.2. Types of Model Membranes 

The complex constitution of the membrane as well as its behavior is very beneficial for 

the cell in a way that they modulate very important processes as previously mentioned. 

However, besides the difference in phospholipidic constitution and the existence of 

microdomains, the molecular shape (polymorphism) of lipids, the different degrees of affinity 

between them, the charge, the differential electrostatic interactions and other factors also 

affect the membranes’ behavior and structure. This intricacy and complexity creates great 

difficulties in the study of the referred processes, and, most importantly in the case of this 

review, in the study of anticancer drug-membrane interactions [50, 68, 71]. The solution lies 

in the use of artificial model membranes. These model membranes can be manufactured with 

the desired constitution and maintained in controlled conditions, and can be used to mimic 

simple or complex cases by just varying its lipid composition. Lacking the remaining 

constituents of an actual cell, these models are not subjected to several factors that could 

arise from differences in intracellular molecules, processes or conditions, which could 

interfere with the results obtained. 

 
 

Figure 5 Schematic representation of a biological membrane and its constituents [3]. 

A wide variety of mimetic model systems exists and is currently used for the study of 

drug-membrane interactions. In this particular case, the review will center our attention on 

those used for studies regarding the effect of anticancer drugs on model membranes. The 

review of these studies, discussed in the section below, resulted in the conclusion that lipid 

monolayers, lipid bilayers and liposomes are the most used model membrane systems used to 

assess the effects of anticancer drugs, although micelles also play a smaller but important 

role in these. 

A. Lipid Monolayers 

Lipid monolayers may be the simplest form of lipid model. They can also be called 

Langmuir monolayers and are formed at the air-water interface in a Langmuir through by 

accumulation of the lipids with a cylindrical shape in the lipid solution at the surface with the 



 

Assessment of Anticancer Drugs’ Effects on Membrane Biophysical Properties using Model Membranes 

 

14 

 

hydrophilic head in contact with the water and the hydrophobic tails turned upwards [68]. 

Since these type of lipids have a shape that does not allow the formation of curvature, the 

structure is maintained as a plane layer [66]. 

B. Lipid Bilayers 

Lipid bilayers are basically two monolayers placed together. Their structure is generally 

the one that can be found in plasma membranes: a bilayer of lipids in which the polar heads 

are turned to the outside, where they can interact with water and aqueous solutions, and the 

hydrophobic lipid tails are placed on the core of the bilayer [72]. 

Both monolayers and bilayers can also be supported lipid monolayers or bilayers. In this 

case, instead of being at an air-water interface, these structures are adsorbed to a solid 

surface like mica or gold [73]. 

C. Micelles  

Micelles are vesicles delimitated by a lipid monolayer of conical-shaped lipids. This shape 

makes the monolayer curve until a closed vesicle is formed. Depending on the shape of the 

lipid, the micelle can be a regular one, with the polar heads turned outwards and the 

hydrophobic tails turned to the inside, or an inverted micelle in which the opposite occurs 

[66, 69]. 

D. Liposomes 

Liposomes are a more complex but also a much more versatile model to study drug-

membrane interactions. These structures are basically vesicles with a lipid bilayer as a 

surrounding membrane. These vesicles can differ both in size and number of bilayers. 

Liposomes with multiple concentric bilayers separated by liquid are designated multilamellar 

lipid vesicles  (MLVs); while unilamellar vesicles have only one lipid bilayer and, depending on 

their size, they are classified as small unilamellar vesicles (SUVs), large unilamellar vesicles 

(LUVs) or giant unilamellar vesicles (GUVs) [74]. 

1.3 - Anticancer Drug-Membrane Interaction Studies 

1.3.1. Techniques applied in anticancer drug-membrane interaction 
studies 

It has so far been described the importance of lipid model membranes in the study of 

drug-membrane interactions, but its importance only exists if there are techniques to study 

those interactions. Along with the development of novel model membranes, a wide variety of 

techniques have been develop to better understand these interactions and in order to assess 

not only the partition or location of the drug in the membrane, but also its conformation and 

orientation upon interaction with it, as well as the changes in lipid phase, structure, stability 

and even at a molecular or elementary level  upon drug presence [75, 76]. Table 3 correlates 

the most used techniques in this field with the model membranes that are frequently used 

with and its respective goal. 
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Table 3 Experimental techniques applied to the study of anticancer drug-membrane interaction studies using different membrane mimetic models. 

Technique 
Type of model 

membrane 
Biophysical parameter studied References 

DSC 
MLVs 

Effect of squalene-gemcitabine, tamoxifen, paclitaxel, cisplatin and methotrexate on the lipid phase transition 

temperatures [77-82] 

SUVs 
Effect of paclitaxel, etoposide and cytarabide on the lipid phase transition temperatures 

[80, 83] 

SAXS 

MLVs 
Effect of squalene-gemcitabine on structural parameters and phase behavior of bilayers 

[77] 

Lipid Bilayers 
Effect of  squalene-gemcitabine on structural parameters above and below the transition 

[84] 

LUVs 
Effect of doxorubicin on the packing details of the membranes 

[85] 

WAXS 
MLVs 

Effect of paclitaxel on structural parameters and phase behavior of bilayers 
[77] 

Lipid Bilayers 
Effect of squalene-gemcitabine on structural parameters above and below the transition 

[84] 

Monolayer 

Techniques 

Lipid 

Monolayers 

Assessment of edelfosine, doxorubicin and paclitaxel’s capacity of penetrating into the monolayer 
[44, 45, 86-90] 

Fluorescence 

measurements 

Lipid 

Monolayers 

Effect of edelfosine on the lipid structure; assessment of the formation of edelfosine-lipid micelles 
[44] 

LUVs 
Effect of doxorubicin, edelfosine and 2-hydroxyoleic acid (2 OHOA) on the membrane structure and permeability; 

partition of the drug 

SUVs 
Assessment of doxorubicin’s capacity of penetrating into the bilayer 

[87] 

Micelles 
Assessment of doxorubicin’s capacity of penetrating into the monolayer 

[87] 

Turbidity LUVs 
Assessment of bilayer solubilization as an effect of edelfosine 

[44] 

FT-IR 

SUVs 
Determination of changes in membrane structure and dynamics upon interaction with etoposide and cytarabide 

[83] 

MLVs 
Effects of acyl chain length on structural parameters such as lipid order and the strength of hydrogen bonding 

under the effect of tamoxifen [78, 79] 

MLVs 
Determination of changes in membrane structure and dynamics upon interaction with CEUs 

[46, 91] 

Lipid Bilayers 
Effects of CEUs on the gel-to-liquid–crystalline phase transition temperature of the acyl chains of the lipid; study 

of CEU incorporation into the bilayer [46] 

Phase Contrast GUVs 
Effects of ODPC on membrane structure 

[92] 
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Microscopy 

BAM 
Lipid 

Monolayers 

Effects of edelfosine on the morphology of the monolayer 
[45] 

NMR 

MLVs 
Study of the influence of CEUs on the membrane phase behavior and conformation 

[91] 

Lipid Bilayers 
Study of the influence of cisplatin on the phase behavior and conformation of the bilayer 

[93] 

Liposomes 
Study of the influence of cisplatin on the phase behavior and conformation of the bilayer 

[94] 

EPR MLVs and SUVs 
Determination of changes in membrane structure and dynamics as an effect of paclitaxel presence 

[80] 

Circular 

Dichroidism 
LUVs 

Assessment of doxorubicin’s partitioning 
[85, 95] 

DLS MLVs 
Determination of the effect of doxorubicin on phase transition temperature 

[88] 

Cyclic Voltametry 

Supported 

Lipid 

Monolayers 

Assessment of doxorubicin’s partitioning conditions 
[89] 

SERRS 

Supported 

Lipid 

Monolayers 

Assessment of doxorubicin’s interactions with the monolayer (penetration or binding) 
[89] 

QCM and SPR 

Supported 

Lipid 

Monolayers 

Quantification of the doxorubicin that is able to interact with the monolayer 
[89] 

2D TLC MLVs 
Study of the complexation of cisplatin with the membrane in the presence of a competitor (glutathione) 

[96] 
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From the information presented in Table 3 it appears that the most used model 

membranes are lipid monolayers and bilayers (MLVs and LUVs). Lipid monolayers are the 

simplest model membrane, with a typically smooth structure that is easy to create and 

monitorize. The main conditions to have in mind, such as pH, ion content, temperature, and 

surface pressure are easily controlled [97]. Bilayers, although a little more complex in 

structure, share some of these characteristics, which also makes them a preferred model 

[97]. In the case of liposomes, some techniques benefit from the use of a higher amount of 

sample, and so MLVs are a good choice [76]. However, unilamellar vesicles also have its 

relevance, particularly LUVs due to the fact that their membrane curvature is similar to that 

of cells [75, 76]. 

In the case of liposomes and lipid bilayers that can be generically called models with 

bilayered membranes, differential scanning calorimetry (DSC) is one of the most often used 

techniques, along with SAXS and WAXS, NMR, FT-IR and Circular Dichroidism (CD). 

The physicochemical properties of phospholipids lead them to form bilayers 

spontaneously, and the bilayer’s physical organization highly depends on temperature, type 

of phospholipid and water-lipid ratio. For instance, at higher temperatures, a bilayer can be 

organized in the liquid crystalline phase (Lα) and as the temperature decreases it changes to 

the gel phase (Lβ) with limited movement of the hydrocarbon chains. This is important 

because the lipid phase of the majority of the phospholipids in a membrane is directly related 

to the degree of disorder of its lipids and therefore the membrane’s fluidity. This can be 

better understood in figure 6. DSC is a thermodynamics technique that is able to asses 

changes in phase transition by measuring the heat exchange associated with cooperative lipid 

phase transitions in model and biological membranes. One of the most important parameters 

to be obtained seems to be the change in the main phase transition temperature, which is 

the peak of the gel-to-liquid crystalline endotherm, Tm. A decrease in Tm suggests higher 

disorder of the hydrocarbon chains and, therefore, an increased fluidity of the membrane can 

be inferred [98]. Zhao et al. used DSC to determine the phase transition temperatures of MLV 

and SUV lipids under the influence of CEUs [80], while Speelmans and Pignatelo performed 

similar experiments using cisplatin[81] and methotrexate[82] respectively on MLVs. 

 

 
 

Figure 6 Structures adopted by phospholipids in aqueous media. Most phospholipids adopt only the first 
two phases, while some other such as DPPE form hexagonal phases.  Lβ and Lα (gel and liquid crystalline) 
states exists at low and intermediate temperatures respectively, while the inverted cylinder 
(hexagonal) HII state is found at high temperatures. Adapted from Seydel et al. (2002) [98]. 

Fluorescence measurements include a variety of methods that use fluorescence to 

determine a number of parameters. A few of these fluorescence methods will be described 

where relevant along this topic.  
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Fluorescence measurements are actually very useful in this field and versatile, allowing 

the evaluation of parameters such as membrane organization, permeability and fluidity as 

well as drug location in model membranes. The techniques are fairly simple and involve the 

coupling of a fluorescent probe to the drug or the membrane lipids, depending on the goal of 

the study. The fluorescence can then be followed through fluorescent microscopy or 

spectrometry [98]. 

Fluorescence anisotropy can be used to determine the size and shape of molecules, 

interactions between molecules and rigidity of many molecular environments, having been 

employed in the study of membrane fluidity [99, 100]. Fluorescence anisotropy is a 

phenomenon through which the light emitted by a fluorophore has different intensities along 

different axes of polarization. In other words, this is a method based on the photoselective 

excitation of fluorophores by polarized light. These preferentially absorb protons whose 

electric vectors are aligned parallel to the transition moment of the fluorophore. As a result, 

upon excitation with a polarized light, one is selectively exciting the fluorophores whose 

absorption transition dipole is parallel to the electric vectors of the excitation [100]. Emission 

occurs also with a polarized light through a fixed axis. The relative angle between these two 

axis determines the maximum anisotropy measure [100]. 

In a regular experiment using this method, the fluorescence intensities with the 

excitation polarizer aligned vertically while the emission polarizer is aligned vertically as well 

(Ivv) and horizontally (Ivh) are measured. Through the following equation, the anisotropy 

value, A, can be obtained: 

   
          

             
 

Where G is the grating factor, which is a correction factor for the polarization by the 

interior components of the fluorometer that is determined by 
   

   
 . Ihv and Ihh are the 

measured intensities with the excitation polarizer aligned horizontally while the emission 

polarizer is oriented first vertically and then horizontally, respectively [99, 100]. 

The anisotropy, A, depends on the fraction of fluorescent solute interacting with a 

macromolecule, in this case, an anticancer drug molecule, and on the rigidity of the 

complex[99]. In the paper by Martin et al., fluorescence anisotropy showed a decrease in 

membrane lipids order in the presence of 2-hydroxyoleic acid (2OHOA) [101]. 

Certain substances have the ability to decrease the intensity of fluorescence of a 

fluorophore. That process is called quenching, and the causing substance or molecule is a 

quencher. This is a very useful in membrane-drug interaction studies. Let’s suppose that the 

drug studied is coupled with a fluorophore that suffers quenching by a certain region of the 

hydrocarbon chains of the membrane’s phospholipids. The membrane is put in contact with 

the drug, which penetrates it. The fluorescence can be measured then. Depending on the 

amount of quenching the fluorophore suffered, it can therefore be determined how close to 

the quencher region of the hydrocarbon chain the drug partitioned to [98, 102]. Also to 

determine partition, fluorescence microscopy can be used and the fluorophore-drug complex 

can be visualized in the compartment it partitioned into. The same can be performed with 

confocal microscopy [98]. 

De Wolf measured the quenching doxorubicin bring upon itself when it self-associates and 

through this knowledge was able to determine that doxorubicin complexes dissociated and 

bonded to SUVs [87]. To test the effect of edelfosine on the membrane’s permeability, Busto 

et al. used LUVs containing a fluorescent substrate and added the drug to the medium. By 
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measuring the fluorescence on the outside of the vesicles it was possible to determine vesicle 

efflux caused by edelfosine and that the drug increased the membrane’s permeability [44]. Li 

performed similar experiments using doxorubicin on MLVs [85]. 

X-ray diffraction techniques (small angle, SAXS, or wide angle x-ray scattering, WAXS) are 

very useful to obtain information regarding the localization of the drug on the membrane and 

the conformational changes of the membrane. The principle behind it consists of comparing 

the electron density profile of untreated lipid membranes with the profile of lipid membranes 

under the effect of the drug [98]. If the sample is partially hydrated, probes are used and a 

coherent Bragg-like scattering can be obtained with reasonable resolution. The differences 

observed give information on the drug location within a bilayer, as well as on the structural 

changes that it caused to the membrane [98]. Pili and Bildstein used the techniques SAXS and 

WAXS to determine the effect of a hybrid anticancer drug made of squalene and gemcitabine 

on structure parameters at varying temperatures and on phase transition [77, 84]. Li and 

colleagues analyzed the  effect of doxorubicin on the packing of lipids using SAXS [85]. 

 

 
 

Figure 7 A schematic of a Langmuir Blodgett trough: 1. Amphiphilic monolayer 2. Liquid subphase 3. LB 
Trough 4. Solid substrate 5. Dipping mechanism 6. Wilhelmy Plate 7. Electrobalance 8. Barrier 9. Barrier 
Mechanism 10. Vibration reduction system 11. Clean room enclosure. 

DSC and x-ray diffraction techniques are often coupled with nuclear magnetic resonance 

(NMR) spectrometry, a technique that is also able to evaluate the effect of ligands (drugs in 

the case) on the membrane structure as well as its motional characteristics. NMR techniques 

provide detailed information about molecular conformation and ordering, and relaxation time 

measurements probe the amplitude and time scale of motions and allow interaction 

phenomena to be studied. Solid-state NMR allows a more direct approach to ligand–receptor 

interactions, normally with enhanced sensitivity, resolution and assignments, by specifically 

incorporating NMR isotopes (2H, 13C, 15N, 19F). Solid-state NMR can provide information on 

the orientational constraints of labeled groups in ligands and peptides caused by the spectral 

anisotropy of certain nuclei. Magic angle spinning (MAS) solid-state NMR methods have been 

applied to determine spin-coupled distances through dipolar coupling determinations, to high 

resolution (0.3Å) and chemical shifts to define the ligand-binding environment [98]. Jensen 

studied the effect of cisplatin on the phase behavior and conformation of lipid bilayers [93] 

and liposomes [94]. 

Fourier transform infrared spectroscopy (FT-IR) also provides organizational information 

on the lipid membrane but at a molecular level. The spectra are characterized by the 

wavelength of the maximum of the absorption signal and the width and intensity of the signal 

as a function of the direction of the polarized light beam. The analysis of the signals obtained 
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for the hydrophobic and hydrophilic regions of the phospholipids can give insight regarding 

intra- and intermolecular interactions. When amphiphilic drugs are added, local phase 

changes can be detected if the drug has interacted with the membrane, providing 

information regarding the phase changes [98]. Therefore, the orientation and degree of 

organization of substructures within the phospholipids can be assessed through this method, 

as well and the possibility of drug partitioning into the bilayer [98]. Therefore, FT-IR data can 

complement or even substitute the information that can be obtained through NMR [98]. FT-IR 

has been used, for example, to determine the effect of etoposide and cytarabide on the 

membrane structure of SUVs [83] and to study the changes in membrane structure and phase 

transition temperatures as well as the drug incorporation in lipid bilayers and MLVs suing 

CEUs [46, 91]. 

Circular Dichroidism also focuses on determining drug location and conformation on the 

membrane [98]. Li and Gallois used this technique to assess the partitioning of doxorubicin 

into LUVs [85, 95]. 

Lipid monolayer techniques are some of the most used techniques to study the effect of 

anticancer drugs on lipids of the membrane. Although the monolayer structure differs from 

the general structure of cell membranes (bilayer), it is thought that they provide an 

organized interfacial structure similar to that found in cell membranes. With this model, the 

tendency of drugs to accumulate in the interface of the membrane can be studied as well as 

its behavior there. Drug-monolayer interactions can be characterized by changes in the 

surface pressure, surface potential or binding [98]. Langmuir monolayers, which are basically 

monolayers constituted of only one molecule type, are often chosen due to the simplicity of 

preparation and control of the conditions, with main focus on surface pressure for example. 

Busto and colleagues were able to study the effect of edelfosine on Langmuir monolayers, 

namely the drug’s capacity of penetrating the monolayer [44]. There is also the Langmuir-

Blodgett (LB) monolayer, and its preparation involves the transfer of a Langmuir monolayer to 

a solid substrate in order to make highly ordered, ultra-thin, defectless films with 

controllable architecture, orientation and thickness [103]. Studies of these models were used 

to determine the adsorption of doxorubicin to the monolayer [89]. The monolayers are 

usually formed and analyzed in an apparatus called Langmuir-Blodgett trough, schematized in 

figure 7. 

Another method used to determine surface potential is electrophoretic light scattering 

(ELS). The principle of ELS is fairly similar to that of dynamic light scattering or DLS – a laser 

beam directed at a sample will produce a frequency or phase shift that depends on the 

dispersed particles’ mobility. While, in the case of DLS, Brownian movements are responsible 

for particle motion, in ELS that is caused by an oscillating electric field [102]. The ELS 

technique is mainly useful to determine the zeta potential of a particle. The zeta potential is 

the potential difference between the dispersion medium and the stationary layer of fluid 

attached to the dispersed particle [104].  

It is a good indicator of the magnitude of repulsive electrostatic interactions between 

particles, and as such can provide insight on molecule adhesion, flotation and, in membranes 

for example, rigidity [104]. Park et al. used this technique to determine particle size, 

polydispersity index and zeta potential of nanoparticles loaded with doxorubicin [105]. 

It is evident that different techniques can give different data that overlap amongst them.  

Determination of drug partition was for many years performed using the octanol-water 

partitioning method. However, it is being put aside due to its limitations compared to 
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partitioning into the membranes. In fact, the octanol-water partition coefficient has been 

proven to not always be the most accurate. Therefore, membranes are recently being used 

for this purpose and have demonstrated enormous discrepancy with the older method’s 

values. It appears that the octanol-water partition coefficient alone is unable to account for 

variations in biological selectivity, which might be related to, besides hydrophobicity, 

hydrogen-bonding substituents. 

Lipid vesicles are models that can replicate cellular conditions, since they present a 

curvature of the membrane like what is observed in cells, besides the possibility of being 

produced with components very similar to those existing in biological membranes. All of 

these extra parameters in regards to structure and composition, these models allow the study 

of other interactions besides hydrophobic, such as electrostatic interactions. Using lipid 

vesicles, the partition can be detected by simply coupling with spectroscopy, a method 

described above. Alternatively, HPLC could also be used depending on the constituents of the 

membranes. Appropriate columns, with, for instance, irreversively bound phosphatidylcholine 

are currently commercially available. 

Circular Dichroidism and FT-IR, as well as cyclic voltametry are other techniques are 

currently used for the determination of the partition of the drug. [98]. 

A few studies also contemplate the relative affinity of anticancer drugs to the membrane 

comparing with other drugs, such as neomycin. Burger and colleagues used the two-

dimensional thin-layer chromatography (2D TLC) to distinguish and separate the drugs 

regarding their affinity [96, 98]. 

 

1.3.2. Effect of anticancer drugs on biophysical parameters of model 
membranes 

 

The previous topic showed that model membranes are being considerably used in several 

research areas nowadays. Actually, contrary of what could be believed, using lipid 

membranes as models to study the behavior of cell membranes while interacting with drugs is 

not a new concept and has been the goal of numerous studies for more than 20 years [87, 

106-108]. However, since the membrane is such a complex structure, and there are many 

parameters involved in the study of its interactions with drugs, more information is still to be 

gathered. This field continues to be of high importance in the general overview of scientific 

and health-related research, as the understanding of the penetration and state changes in 

membranes as a result of its interaction with anticancer drugs could benefit the development 

of new and possibly more efficient drugs as well as provide higher amounts of base knowledge 

that could be used in other fields as well, like in nanotechnology [97]. 

Table 4 presents a summary of the main effects of different anticancer drugs on various 

model membranes as well as the techniques used to study them. 

It has been previously stated that the membrane’s lipid composition determines its 

characteristics as well as its behavior under different conditions. Consequently, it makes 

sense that the lipid composition of model membranes plays a similar role. Therefore, one of 

the most important aspects to have in mind in drug-membrane interaction studies is the lipids 

that constitute the model membrane. 

The most used lipids in these studies, according to table IV, seem to be derivatives of 

phosphatidylcholine (PC), such as dipalmitoyl phosphocholine (DPPC), dioleoyl 

phosphocholine (DOPC), palmitoyl oleoyl phosphocholine (POPC) and egg PC (EPC). 
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Phosphatidylcholine is, as previously stated, one of the major components of naturally 

occurring biological membranes, so the use of PC derivatives in model membranes promotes a 

proximity in the natural and artificial membranes’ characteristics, theoretically producing a 

model membrane that is more similar to a biological one, not only in structure but also in 

curvature and behavior when interacting with external substances, in the present case, 

anticancer drugs [50, 61]. Dimyristoyl phosphoglycerol (DMPG) and dipalmitoyl 

phosphocholine (DPPG) are also amongst the most used components of model membranes for 

similar reasons, being derivatives of an important and very simple phospholipid found in 

biological membranes, phosphatidylglycerol (PG) [50]. 

However, biological membranes naturally contain other molecules in lesser amounts that 

can also modulate its behavior. Important examples are sphingomyelin (SM) and cholesterol, 

which appear to have some importance in regulating the membrane’s stability and signal 

transducing properties [50, 51], and therefore are also used in drug-membrane interaction 

studies, whether it is in combination with each other [45] or as a part of model membranes 

made of a variety of lipids [46, 80, 85, 88, 90, 95, 108, 109]. Also, comparisons between 

single lipid models and mixtures allow the determination of the effect of specific lipids in 

drug-membrane interactions [97]. 

Other lipids that also appear in cell membranes in lower quantities, such as phosphatidic 

acid (PA) and phosphatidylinositol (PI) and its derivatives (phosphatidylinositol-1-phosphate, 

PIP, and phosphatidylinositol-2-phosphate, PIP2), are also used in some studies [87, 93, 95, 

108]. 
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Table 4 Overview of the state of the art regarding drug-membrane interaction studies – the effects of anticancer drugs on lipid model membranes. 

Anticancer Drug 

studied 
Drug Concentration 

Type of Model 

Membrane 

Composition 

(proportion) 
Technique pH Drug Effects (and location) on the membrane Refs. 

Squalene+Gemci

tabine 

7 mM MLVs DPPC SAXS; WAXS 7.4 -Penetration into the membrane. [77] 

SqGem/DPPC ratio = 0 to 

0.45 
Lipid Bilayers DPPC SAXS; WAXS 7.4 

-Formation of a bicontinuous cubic phase (between gel and fluid 

phases); 

-Drug partitions between the lipid acyl chains of the bilayer. 

[84] 

SqGem/DPPC ratio = 0 to 

0.45 
Lipid Bilayers DPPC DSC 7.4 -Higher lipid disorder – more fluidity. [84] 

1.4 mM 

 

Lipid 

Monolayers 

DOPC; 

DOPC:DSPC(1:1);DOPC

:DSPC:Chol(4.5:4.25:1

.25) 

BAM; 

Langmuir 

balance 

7.4 

-The drug penetrated in all the tested monolayers - smoother and 

faster for pure DOPC monolayer; slow for DOPC:DSPC due to 

closer packing of the lipids. 

-Presence of cholesterol improved drug adsorption to the 

membrane. 

[109] 

Edelfosine 

0-20  µM 
Lipid 

Monolayers 
POPC 

Langmuir 

balance; 

Fluorescence 

spectrometry 

7.4 

-Insertion into the monolayer at surface pressure above those 

supported by cell membranes; 

- Increased permeability of the monolayer. 

[44] 

Mole fraction 0; 0.025; 0.05; 

0.1; 0.2; 0.3 and 0.5 

Lipid 

Monolayers 
DPPC 

Langmuir 

isotherms 
7.4 

-Drug and lipid are miscible in monolayers; 

-Weak interactions and only at low levels of surface pressure. 
[86] 

Mole fractions 0.1, 0.3, 0.5, 

0.7 and 0.9 

Lipid 

Monolayers 
SM:Chol (2:1; 1:1;1:2) 

Langmuir 

isotherms 
6.5 

-Disorder of the lipid chains, more pronounced at lower 

proportions of cholesterol; 

-Increased permeability of the monolayer. 

[45] 
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Mole fractions 0.1, 0.3, 0.5, 

0.7 and 0.9 

Lipid 

Monolayers 
SM:Chol (2:1; 1:1;1:2) BAM 6.5 

-Alterations in the liquid and gaseous phases; 

-Alteration of the monolayer’s morphology, becoming 

inhomogeneous. 

[45] 

18  µM; 37,5  µM; 75  µM; 250  

µM. 
LUVs EPC 

Fluorescence 

spectroscopy 
7.4 -Increased permeability of the membrane. [44] 

CEUs 

Lipid/CEU molar ratios 0.1 

and 0.25 
MLVs 

DMPC; DOTAP; 

DOTAP:DMPC (1:1) 
FT-IR 7.4 

-No changes in fluidity of DMPC liposomes’ membranes; higher 

fluidity of DOTAP liposomes’ membranes at low drug 

concentrations; 

-Increased fluidity and permeability in DOTAP:DMPC monolayers. 

[91] 

Lipid/CEU molar ratios 5:1, 

20:1 and 50:1 
Lipid Bilayers 

DMPC;  

DMPC:Chol(7:3) 
FT-IR 7.5 

-Smaller and/or more branched R groups, sulfur atoms attached 

to the aromatic ring or low concentrations cause increase in 

fluidity; CEUs substituted in different positions lead to differences 

in fluidity; 

-Less disorder and fluidity in cholesterol-containing membranes. 

[46] 

Lipid/CEU molar ratios 5:1, 

20:1 and 50:1 
Lipid Bilayers DMPG FT-IR 7.5 -Increased fluidity, but less than for DMPC membranes. [46] 

Lipid/CEU molar ratios 5:1, 

20:1 and 50:1 
Lipid Bilayers POPC:DMPC (1:1) FT-IR 7.0 -Increased fluidity, similarly to that noted for DMPC bilayers. [46] 

Paclitaxel 23.4, 58.6 and 117 mM MLVs and SUVs 
DPPC; DPPC:Chol 

(9:1) 
DSC 6.5 

-Higher fluidity of the membrane; detection of a maximum 

solubility value of the drug; 

-Membrane containing cholesterol is more stable; 

-Drug located in the outer hydrophobic cooperative zone of the 

bilayer, i.e., region of carbon atoms C1–C8 in the acyl chain. 

[80] 
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23.4 and 234 mM MLVs and SUVs 
DPPC; DPPC:Chol 

(9:1) 
EPR 6.5 

-Higher fluidity and penetration of the DPPC membrane; 

-For the DPPC:Chol membrane, fluidity increases with 

temperature increase until Tm; from Tm up the opposite happens; 

-Drug located in the outer hydrophobic cooperative zone of the 

bilayer, i.e., region of carbon atoms C1–C8 in the acyl chain. 

[80] 

11.7, 23.4, 58.6, 117 mM SUVs 
DPPC; DEPC; DPPE; 

DSPC 
DSC  

-Little change observed for the DSC profiles of the DPPE and DSPC 

liposomes; noticeable change in the thermographs of DPPC and 

DEPC liposomes; 

-Paclitaxel localized in the outer hydrophobic cooperative zone of 

the bilayer, i.e, in the region of atoms C1-C8 of the acyl chain or 

binding at the polar head group of the phospholipid. 

[110, 

111] 

23.4, 58.6 and 117 mM [110-

112]; 5, 10, 300 and 600 nM  

[90];  

Lipid 

Monolayers 

DPPC; DEPC; DPPE; 

DSPC 

Langmuir 

balance 
 

-Drug penetration occurs rapidly until a solubilization limit. 

-Drug located in the outer hydrophobic cooperative zone of the 

bilayer, i.e., region of carbon atoms C1–C8 in the acyl chain. 

[90, 

110-

112] 

5, 10, 300 and 600 nM 
Lipid 

Monolayers 

Cancerous cervical 

lipid extract 

Langmuir 

balance 
 

-Drug penetration occurs rapidly until a solubilization limit for 

lower initial surface pressure values; for the higher value tested, 

rapid penetration of the drug is detected but after the maximum 

penetration desorption of the drug starts to occur gradually. 

[90] 

5, 10, 300 and 600 nM 
Lipid 

Monolayers 

Normal cervical tissue 

lipid extract 

Langmuir 

balance 
 

-Very different results compared to DPPC and cancerous cervical 

lipid monolayers; 

-At lower initial surface pressure values, equilibrium is achieved 

rapidly; at the highest initial pressure, membrane destabilization 

occurs. 

[90] 
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5, 10, 300 and 600 nM 
Lipid 

Monolayers 

DPPC:SM(8:2; 5:5; 

7:3) 

Langmuir 

balance 
 

-Paclitaxel penetration is  inversely proportional to the 

concentration of SM. 
[90] 

Doxorubicin, 

Pirarubicin and 

Daunorubicin 

1 µM LUVs 
PC:PA:Chol (75:5:20, 

60:20:20 and 52:3:45) 

Fluorescence 

measurements 
6 

-Permeability coefficient is the highest in LUVs which contain the 

lowest amount of cholesterol and PA; 

-Pirarubicin is more rapidly encapsulated than the rest; 

doxorubicin is the opposite. 

[108] 

Doxorubicin and 

Daunorubicin 
5 x 10 -4 M-1, 100 µM and µM LUVs 

PC:PA:Chol(95:5:0,75:

5:20,55:5:40, 

80:20:0,75:20:5, 

70:20:10,65:20:15,60:

20:20,55:20:25, 

50:20:30,45:20:35, 

and 40:20:40) 

Circular 

Dichroidism 
7 

-Doxorubicin: at low concentrations of PA, interaction is mainly 

through electrostatic forces; increases in PA amount lead to 

hydrophobic interactions predominating. 

-Daunorubicin: moves directly from the aqueous phase to the 

embedded site within the polar head region; 

-For both drugs, cholesterol concentration seems to produce no 

significant change in drug penetration. 

[95] 

Idarubicin and 

Idarubicinol 
5 x 10 -4 M-1, 100 µM and µM LUVs 

PC:PA:Chol(95:5:0,75:

5:20,55:5:40, 

80:20:0,75:20:5, 

70:20:10,65:20:15,60:

20:20,55:20:25, 

50:20:30,45:20:35, 

and 40:20:40) 

Circular 

Dichroidism 
7 

-Idarubicin: no or low PA causes embedding of idarubicin into the 

bilayer  as a monomer; high concentrations of PA induce 

embedding with formation of a complex of 2 or 3 molecules of the 

drug with molecules of PA and cholesterol; 

-Idarubicinol: penetrating as a monomer; 

-For both drugs, cholesterol is an essential factor for the 

penetration process. 

[95] 

Doxorubicin 
3.4 mM and 0.34 mM LUVs EPC:Chol (55:45) 

Confocal 

Microscopy 
7.5 -No observable membrane invaginations. [85] 

3.4 mM and 0.34 mM LUVs EPC:Chol (55:45) Circular 4 -Interaction drug-membrane is detectable regardless of drug [85] 
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Dichroidism and 

5 

concentration; 

-Doxorubicin’s complexed form seems to be the predominant 

form inside the liposomes. 

100  to 103 µM 
Lipid 

Monolayers 
PIP2 

Langmuir 

balance 
7.4 

-The drug penetrates into the monolayer; 

-Doxorubicin has similar affinity to this monolayer as neomycin. 
[87] 

5, 10, 25, 50, 100 and 200 µM Lipid Monolayer 

Pure lipids: PI; PIP; 

PIP2; DOPA; 

Cardiolipin; SAPA. 

Mixtures: 80% of 

DOPC+ 20% of each of 

the previous 

Langmuir 

balance 
7.4 

-More penetration in the PIP and PIP2 monolayers especially with 

DOPC (mixtures). 
[87] 

10  µM 
SUVs and 

Micelles 

Pure lipids: PI; PIP; 

PIP2; DOPA; 

Cardiolipin; SAPA. 

Mixtures: 80% of 

DOPC+ 20% of each of 

the previous 

Fluorescence 

spectroscopy 
7.4 

-More penetration in  PIP and PIP2 membranes, especially those 

containing also DOPC (similar as seen in the previous study. 
[87] 

20 and 40 nM 
Lipid 

Monolayers 

DPPC:Chol:PEG-PE  

(100:0:0;  100:20:0; 

100:0:4; 100:20:4) 

Langmuir 

balance 
7.4 

-In pure DPPC monolayers, doxorubicin penetrates creating a less 

condensed state; presence of cholesterol increased the rigidity of 

the membrane; 

-Drug localized between the DPPC acyl chains. 

[88] 

40 nM MLVs 
DPPC:Chol:PEG-PE  

(100:0:0;  100:20:0; 
DLS 7.4 

-Higher fluidity in all liposomes; 

-Presence of cholesterol reduced the aforementioned effect; 
[88] 
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100:0:4; 100:20:4) -Presence of PEG-PE lowers the penetration of the drug; 

-Drug localized between the DPPC acyl chains. 

1 x 10-5 M 
Lipid 

Monolayers 

Octadecanethiol:octa

decylamine (C18-

SH:C18NH2) and 

octadecanethiol:dihex

adecyl phosphate 

(C18-SH:DHP) 

Langmuir 

balance 
 

-Higher penetration for C18-SH:DHP than for  C18-SH:C18NH2 

monolayers. 
[89] 

1 x 10-5 M 

Langmuir–

Blodgett 

monolayers (on 

gold surface) 

C18-SH:C18NH2 and C18-

SH:DHP 

Cyclic 

Voltametry 
 

-Time of drug adsorption/partitioning on/into mixed monolayers 

is relatively short (~= 1 min); much faster adsorption/partitioning 

of doxorubicin into two-component monolayers. 

[89] 

1 x 10-5 M 

Langmuir–

Blodgett 

monolayers (on 

gold surface) 

C18-SH:C18NH2 and C18-

SH:DHP 

SERRS, SPR 

and QCM 
 

-Doxorubicin adsorbs at the monolayer surface but does not 

penetrate it; 

 -Drug located at the surface of the biomimetic film; the sugar 

moiety of the drug is expected to be away from the metal. 

[89] 

Cisplatin 

1 mM and 5 mM MLVs DOPS:DOPC (1:1) 2D TLC  

-Molar excess of glutathione prevents cisplatin-PS complexation. 

This also happens in cells. 

-Drug located in the inner leaflet of the membrane, in the polar 

head region. 

[96] 

10 and 30 mol% Lipid Bilayers 

PE 16.7%:PS 10.6%:PC 

9.6%:PA 2.8%:PI 1.6% 

and total pig brain 

NMR 7.4 
-Increase in fluidity; 

-Drug binds to the carboxyl groups in the polar head. 
[93] 
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lipid extract 58.7% 

10 and 30 mol% Liposomes POPS NMR 7.4 
-Cisplatin–POPS complex formation, possibly with cisplatin binding 

to one of the oxygen atoms of the POPS phosphate moiety. 
[94] 

25 to 250 µM LUVs 
DPPC; DPPG; 

DOPE:DOPC (1:1) 
Binding assays 

6 

and 

7.4 

-Interaction involved negatively charged phospholipids and only in 

buffers with low CI- concentration, indicating that aquated, 

positively charged cisplatin is involved. 

-Drugs binds to the polar heads of PS and PA. 

[81] 

5 mM MLVs 
DPPC; DPPG; 

DOPE:DOPC (1:1) 
DSC  

-Less fluidity but a high amount of bounds; 

-Drugs binds to the polar heads of PS and PA. 
[81] 

Methotrexate 
Drug-DMPC molar ratios of 

0.01 to 0.09 
MLVs DMPC DSC 7.4 

-Methotrexate conjugates increase membrane fluidity in a 

concentration-dependant way. 
[82] 

Tamoxifen 

1, 6, 9 and 15 mol% MLVs DMPC; DPPC DSC 7.4 
-Increased membrane fluidity; 

-Drug locates at the polar head region. 
[79] 

1, 6, 9 and 15 mol% MLVs DMPC; DPPC; DPPG FT-IR 7.4 

-For DPPG, higher fluidity is observed at low concentration of the 

drug (1 mol%); 

-Drug locates at the polar head region. 

[79] 

1, 6, 9 and 15 mol% MLVs DMPC DSC and FT-IR 7.4 
-Higher membrane fluidity with increase in drug concentration; 

-Drug partitions to the hydrophobic core of the bilayer. 
[78] 

Cytarabide 5 x 10-3 M SUVs  DPPC 
DSC, NMR and 

FT-IR 
7.4 

-Penetration into the bilayer observed; interactions with the 

choline group of DPPC; 

-Cytarabide ring and etoposide ring insert into the bilayer at the 

same depth and therefore can compete to penetrate it. 

[83] 

Etoposide 5 x 10-3 M SUVs DPPC 
DSC, NMR and 

FT-IR 
7.4 [83] 
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From Table 4 we gather that the effects of different drugs vary even when the same 

model membrane is used.  This is expected, since an assortment of very different drugs is 

currently being studied, with very different structures and conformations. 

This review focuses on some of the most used anticancer drugs for chemotherapy, namely 

doxorubicin, daunorubicin, cisplatin, paclitaxel, metothrexate and tamoxifen, and on few 

new drugs that seem promising and as a result have been widely studied ever since its 

discovery, such as ALPs, especially edelfosine, CEUs and a hybrid of gemcitabine and 

squalene. 

Even inside the same class of drug, for example, the anthracyclines, we find differences 

in the effects they exert on a model membrane. Doxorubicin and daunorubicin, for example, 

differ in terms of lipophilicity, and so they interact differently with the same membrane. In 

membranes with PC, PA and cholesterol, doxorubicin binds mostly through electrostatic 

forces, maintaining its dihydroxyanthraquinone moiety in the aqueous phase, while the more 

lipophilic daunorubicin requires mostly hydrophobic bonds, and as a result it partitions into 

different regions and through different processes [95]. More on this subject will be explained 

further ahead. 

Gemcitabine is a prodrug that has been studied for membrane interactions after being 

coupled with squalene, a natural lipid precursor of cholesterol biosynthesis. The resulting 

conjugate spontaneously self-assembles in water to form nanoparticles with an inverse 

hexagonal phase [97] and is apparently much more effective than the drug on its own [113]. 

The gemcitabine-squalene hybrid seems to generally increase DPPC membranes’ fluidity by 

causing disorder of the lipid acyl chains. It is able to penetrate both single lipid monolayers 

and bilayers [77, 84, 109], contrarily to gemcitabine that, at neutral pH, partitions between 

the aqueous medium and the lipid water interface, barely interacting with DPPC. The hybrid 

molecules insert between the lipid acyl chains while maintaining their polar head group 

anchored at the aqueous interface [97]. The gemcitabine-squalene bioconjugate induces the 

formation of an unusual inverse bicontinuous cubic phase over time, with a lipid order 

between those of the gel and fluid phases of DPPC, partly reminiscent of the “liquid ordered” 

phase Lo formed in saturated mixtures of PC or SM with cholesterol. When the temperature 

increased, a reversible transition to the fluid lamellar phase was observed. This influence has 

been correlated with the ability to alter the spontaneous curvature of the cell membrane 

leaflets, so this hybrid proves to be of relevance in the present context [84]. Edelfosine has 

been mainly studied using Langmuir monolayer techniques. It has been found that it also 

penetrates the monolayers, namely constituted of POPC and DPPC [44, 86]. This anticancer 

drug could increase the permeability of the membrane inserting in it also in LUVs made of 

EPC [44]. More complex models, such as lipid bilayers with different proportions of 

sphingomyelin and cholesterol, have provided not only information on the action of the drug 

over the membrane but also regarding the effect of cholesterol in the stabilization of the 

membrane when in contact with the drug. In fact, edelfosine was able to insert the bilayer, 

but this penetration was less effective in bilayers with higher amounts of cholesterol, which 

leads to believe that this molecules is able to stabilize the membrane and thus impair the 

penetration and general effects of edelfosine [45]. 

CEUs are a type of novel anticancer drug that are being exhaustively studied. There are a 

wide variety of these compounds and the difference in their properties resides in the 

composition and structure of their radical (R) group. Studies showed that 4-n-butyl CEU did 

not interact with DMPC liposomes, but that at low concentrations it did interact with DOTAP 
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liposomes or liposomes constituted of equal parts of DMPC and DOTAP, leading to believe that 

DOTAP could promote the insertion of 4-n-butyl CEU into the membrane [91]. 4-sec-butyl CEU 

however acts on both DMPC and DOTAP membranes leading to acyl chain disorder, although in 

different (but not quite defined) ways [91]. The effect of differences in R group was tested 

by applying CEUs with R groups of different lengths or branching on pure DMPC lipid bilayers 

and studied with FT-IR. CEUs composed of R groups with higher branching led to bigger 

decreases in Tm, which indicates that more branched CEUs fluidize the membrane better. 

The effect of the length of the R group was tested in a similar fashion and proved that 

smaller lengths lead to bigger decreases in Tm and therefore a more fluid membrane. The 

same effect was observed for CEUs possessing a sulfur atom bound to the aromatic ring. The 

effect of the position in which the CEU is substituted was also studied, and it was observed 

that the CEU substituted at the position four has a much higher influence in increasing the 

fluidity of the membrane and inserting in it than the one substituted at the position two [91]. 

The effects of 4-butyl CEU and 4-sec-butyl CEU were further tested with membranes 

constituted of DMPC with 30% of cholesterol. The presence of cholesterol markedly decreased 

the cooperativity of the lipid phase transition, but the effects on the lipid hydrocarbon chains 

were similar to those observed for DMPC systems in the absence of cholesterol [91]. 

Zhao and colleagues (2007) described the interactions of paclitaxel with MLVs and SUVs of 

DPPC in the absence and presence of cholesterol through DSC and EPR. They observed that 

the membrane became more flexible as a result of interaction with paclitaxel at a 

concentration up to 5%, which led to believe that there was a solubility limit for this drug in 

these membranes [80]. This concentration of the drug corresponded to the most stable mixed 

monolayers obtained, as inferred from the excess free energy of mixing [112]. The same 

models formed by DPPC and 10% of cholesterol produced similar results regarding the lipid 

disorder caused by paclitaxel and its insertion, but cholesterol seemed to stabilize the final 

membrane by strengthening the interactions between DPPC and paclitaxel, impairing further 

penetration of the drug [80]. Preetha et al. (2006), on the other hand, used lipid monolayers 

to study the effect of paclitaxel. Simple DPPC monolayers became more fluid after 

interacting with the drug, allowing it to rapidly penetrate the monolayer until a solubility 

limit was achieved. This is congruent with the findings of Zhao et al. (2007) [80, 114]. This 

data was then compared with the effect of paclitaxel on monolayers made of normal cervical 

lipid extract and of cancerous cervical lipid extract. Three initial surface pressures were used 

in the study – 10, 20 and 30mN/m. For monolayers constituted of cancerous cervical lipid 

extract, the first (and lower) two initial pressure values produced results no different than 

those found for DPPC monolayers.  However, at the highest initial value, 30mN/m, after a 

maximum of solubilization of paclitaxel into the membrane, there appears to be desorption 

of the drug from the monolayer. The normal cervical lipid extract monolayers presented very 

different kinetics of drug penetration. 

In this case, at 10 and 20mN/m, very rapid drug adsorption occurs and the equilibrium is 

achieved much faster than in the previous monolayer types. However, at 30mN/m the 

opposite occurs, the equilibrium being achieved after much more time than for the other 

monolayers, and beyond that point a progressive decrease in surface pressure is observed 

down to values even below zero, indicating membrane destabilization [114]. So, higher drug 

penetration was observed for DPPC monolayers compared to the other two. Comparing the 

two lipid extract monolayers, drug penetration was higher for the one formed by normal 

cervical lipids. This may be due to the different composition of the two lipid extracts. 
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Posterior quantification of these two lipid extract monolayers showed that cholesterol was 

1.5 times higher in amount in cancerous than in normal cervical tissue. Sphingomyelin (SM), 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylinositol (PI) and phosphatidylglycerol (PG) were also present in higher amounts in 

cancerous cervical tissue [114]. Cholesterol was found to reduce drug penetration when 

present in DPPC membranes [115]. Preetha and colleagues proved also that sphingomyelin 

prevented drug penetration. Consequently, it is possible to infer that the higher amount of 

both lipids in the cancerous cervical tissue and in the resulting extract creates a more rigid 

monolayer that impairs paclitaxel penetration, which would explain these results, and this is 

in agreement with a previous study by the same authors that actually showed that the 

cancerous cervical lipid extract monolayer was more rigid than the normal cervical lipid 

extract one [114, 116]. 

Doxorubicin is perhaps the anticancer drug studied using the widest variety of model 

membranes, but in all studies it was shown that interaction with the membranes occurred 

and that doxorubicin could actually penetrate lipid membranes, even using very different 

lipids in each study [85, 87-89]. Interestingly, once again, membranes formed of more than 

one component appear to produce more relevant results. SUVs and micelles studied by De 

Wolf and colleagues allowed the penetration of doxorubicin in membranes of PIP and PIP2 

and even more if these contained also DOPC, being the latter more physiologically relevant 

[87]. Similarly to what is observed for paclitaxel, the presence of cholesterol in DPPC:PEG-PE  

monolayers and MLVs decreases the drug penetration into the membrane; PEG-PE appears to 

have a similar effect, which might be related to its binding partly to the hydrophobic region 

and partly to the polar heads of the lipid membrane [89]. 

The studies by Speelmans (1994), Frézard and Gallois (1998) focused in comparing the 

effects of various anthracyclines derivatives on the membrane of LUVs encapsulating DNA, 

and therefore being one step closer to cells [95, 108, 117]. 

The permeation of the membranes by anthracyclines occurred in three steps: partition 

within the interfacial region of the bilayer, followed by diffusion through the hydrophobic 

core and lastly desorption from the interface on the opposite side. At physiological pH, these 

molecules could partition within the interfacial regions through electrostatic and hydrophobic 

interactions and then cross the hydrophobic core in their unprotonated form [97]. Studies 

performed at pH 5 showed that the protonated form was unable to cross membranes [108]. 

Fluorescence studies were used to compare the effect of doxorubicin, pirarubicin and 

daunorubicin on membranes of phosphatidylcholine (PC), phosphatidic acid (PA) and 

cholesterol at various molar ratios. It was shown that although all three penetrate into the 

membrane, the permeability is decreased as the amount of PA and/or cholesterol is elevated 

[95]. This is confirmed by other studies such as the one by Gallois and colleagues, which 

compared the effects of doxorubicin and daunorubicin with LUVs of similar constitutions and 

observed that at low molar ratios of drug/liposomes, both drugs interacted with the 

membrane as monomers. Doxorubicin displayed two types of interactions: electrostatic, in 

which the dihydroxyanthraquinone ring remained outside the bilayer, in the aqueous phase, 

and hydrophobic, in which the dihydroxyanthraquinone ring intercalated with the lipid acyl 

chains inside the bilayer. The proportions of these interactions depended on the composition 

of the membrane, which means that at low molar ratios between PA and doxorubicin, it binds 

to the membrane mainly through electrostatic interactions, remaining at the interface. When 
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this ratio increases, however, a hydrophobic interaction begins to prevail. Daunorubicin, 

being more lipophilic, displayed only hydrophobic interactions [95]. 

In general, the rate of uptake was the lowest for doxorubicin and the highest for 

pirarubicin, since it was the most hydrophobic and showed the highest pKa (highest 

neutral/protonated form ratio) [108]. The permeability coefficients were the highest for the 

lowest amounts of PA and/or cholesterol in the membrane [108], although cholesterol didn’t 

seem to exert as much as an important effect in this case as it does when the more lipophilic 

drugs idarubicin and idarubicinol are studied [95]. 

It is interesting to notice that a very limited number of model membrane types is chosen 

for the displayed studies. These types of model membranes were described previously. The 

specific choice of these, however, resides in a set of properties they possess and/or share 

with cells and that can therefore give credibility to the results. Lipid monolayers are used not 

only for their simplicity and ease of production, but mostly for the possibility of controlling 

all of the conditions surrounding them. Monolayers might not produce results that can be 

directly linked to cell membranes, but monolayer techniques provide a wide basic knowledge 

on the behavior and interactions of a desired lipid or set of lipids with desired drugs [97]. 

Micelles achieve similar results, although they are perhaps a slightly more accurate model 

due to lipid curvature. Liposomes, however, seem to be the most used models. This may be 

because they combine two of the main characteristics they share with cell membranes: a 

bilayered structure of phospholipids and a curvature that allows it to become a closed 

vesicle. Being so, they are most likely the models that are closest to the cell structure, and 

can therefore provide more biologically accurate data. MLVs and LUVs are the most 

frequently used. MLVs are the easiest to obtain and are constituted of a number of 

membranes that can be analyzed. LUVs are of especial importance, though, since the degree 

of curvature of their lipid membranes is the most similar to that of actual cell membranes 

[97]. 
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Chapter 2  

Aim 

The previous chapter described the state of the art in this field and as a result 3 main 

factors become evident: drug-membrane interaction studies are essential to the advance of 

pharmacology and medical science in general, but biophysical studies such as these are not as 

common as they should be; cells are complex, time-consuming and expensive models for this 

kind of study; membrane models such as liposomes can be a good alternative. As a result, 

there are two needs that arise - further investigation on drug-membrane interactions and the 

development of better models to perform them in. 

In this context, this work was designed to tackle both of these needs. The objective was 

to develop an innovative set of liposome formulations that can mimic the membranes of 

normal and tumoral cells and be henceforth used in biophysical studies to determine the way 

the anticancer drugs interact with biomembranes.  

For that purpose, two anticancer drugs were chosen for the study, daunorubicin and 

doxorubicin, since they are currently among the most used and the most effective and also 

due to the fact that they present similar structures except for one functional group, which 

leads to their use in different types of cancer. Four liposome models were designed, two to 

mimic the normal membranes (one with and one without cholesterol in its composition) and 

two to simulate a tumoral cell membrane (also one with and one without cholesterol). 

The effect of the two drugs in size, zeta potential, partition coefficient, membrane 

location and membrane fluidity were assessed for the four formulations and for a tumoral cell 

line. These biophysical studies may help to get a higher knowledge about complementary 

mechanisms of action at the lipid membrane level of these two anticancer drugs using simple 

but reliable membrane models. It is important to stress that the simplification of the 

membranes and therefore a complete control of such complex structures is critical to 

understand the interactions at the molecular level. Nevertheless, some of the interaction 

studies performed in the model membranes were also performed in tumor cell lines (MDA-MB-

231), to assess the degree of similarity regarding biophysical parameters and regardless the 

simplicity of the models. These studies in cells are a novelty and their development and 

standardization can be a big step ahead in membrane biophysics studies.  
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Chapter 3  
 

Materials and Methods 

The current chapter describes all the methodologies employed in this work for the study 

of anticancer drug-membrane interactions. The theoretical foundation behind each technique 

will be exploited as well as their practical application in the case of this study. The results 

obtained are shown and discussed in the next chapter.  

3.1- Drug Choice 

Daunorubicin and doxorubicin were chosen for the aforementioned studies. These are, as 

has been established in the introduction, two of the most frequently used chemotherapeutic 

drugs, being highly effective in a wide range of tumors [47]. It seems, therefore, like a good 

starting point to study drugs with a wide range of therapeutic and toxic effects as it can 

provide information that can be narrowed down to more specific inferences in future 

research. These two anthracyclines are very similar in structure except for one group, as is 

represented in figure 8. 

 
Figure 8 Chemical structures of doxorubicin, Dox (left) and daunorubicin, Dan (right). These two 
anthracyclines present almost identical structures except for an extra alcohol group in doxorubicin, in 
the figure represented in blue (Image from [118]). 

 

It is evident that the structures of the two drugs vary only in a single functional alcohol 

group that is present in doxorubicin but not in daunorubicin. However, while daunorubicin is 
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almost only used to treat acute leukemia, doxorubicin has a very wide range of application, 

being used in the treatment of non-Hodgkin’s and Hodgkin’s lymphoma, multiple myelomas, 

as well as lung, ovarian, gastric, thyroid, breast and pediatric cancers [119]. Also, although 

both drugs cause the same kind of side-effects (see Table 2), being the most concerning by 

far cardiotoxicity, it appears that these side effects are usually more severe when 

doxorubicin is used, and as such this drug could be considered more aggressive [120]. In fact, 

several cases of cardiomyopathy have been correlated with cumulative exposure to 

doxorubicin [120, 121]. 

So, these two drugs, although sharing the same mechanism of action and side effects, 

peak in antitumoral activity efficacy in different types of tumors and cause side effects with 

different levels of severity. In this context, it was thought that studying these two drugs and 

their interaction with the membrane specifically could be a way to justify these differences.  

 

3.2- Reagents 

DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), DOPC (1,2-dioleoyl-sn-glycero-3-

phosphocholine), DPPS (1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine) and cholesterol were 

purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA), and daunorubicin and 

doxorubicin were obtained from Biovision Inc. (Milpitas, CA, USA) and used without further 

purification. DPH (l,6-diphenyl-l,3,5-hexatriene) and TMA-DPH (1-(4-

trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate) were obtained 

from Molecular Probes (Invitrogen Corporation, Carlsbad, CA, USA). Methanol, chloroform, 

DMSO (Dimethyl Sulfoxide), Hepes Hemisodium Salt, Trizma Maleate and NaCL (Sodium 

Chloride) were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). The cell 

medium RPMI 1640 with UltraGlutamine I and Hepes, trypsin-EDTA (ethylenediamine 

tetraacetic acid), PBS (phosphate-buffered saline), FBS (fetal bovine serum) and Trypan Blue 

were purchased from Gibco by Life Technologies (Invitrogen Corporation, Carlsbad, CA, USA). 

Drug solutions were prepared either with Hepes buffer (10 mM, pH 7.4) or Tris buffer (0.1 

M, pH 6.3). The ionic strength of Hepes buffer was adjusted to physiological conditions with 

NaCl (I = 0.1 M). The buffers were prepared using double-deionised water (conductivity 

inferior to 0.1 μScm-1). 

The medium used on the culture of MDA-MB-231 cells was RPMI 1640 with UltraGlutamine 

I and Hepes to which 5% of FBS was added. 

 

3.3- Liposome Models and Preparation  

3.3.1. Liposome Models 

Since our aim was to study the effects of the two anticancer drugs on both normal and 

tumoral membranes, membrane models for both cases were designed. For each case, another 

model was designed without any cholesterol content in order to help determine the influence 

of this molecule on the membrane itself and on the interaction studies. The prepared models 

and respective properties are shown in Table 5. 
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The normal membrane models were mainly composed of DMPC since PC is the biggest 

constituent of membranes. The model containing cholesterol was prepared with 25% of this 

lipid. The tumoral formulations were prepared using a mixture of DMPC (as main constituent), 

DPPS, to represent the exposed PS on the outer leaflet of the membranes of tumoral cells, 

and DOPC, which is an unsaturated phospholipid that is included to mimic the increase in 

fluidity observed for tumoral membranes [57, 60]. The lipid stechiometry used is also 

represented in table 5 and was decided taking into account what is found in the literature 

regarding the differential lipid content of cell membranes [50, 52-60]. 

Table 5 Membrane mimetic models designed for the present study, along with their 
composition and pH conditions. 

Model 
Lipid Composition (Molar 

Proportions) 
pH (Buffer) 

Normal DMPC 

7.4 (Hepes) 
Normal with Cholesterol DMPC:Chol (3:1) 

Tumoral DMPC:DOPC:DPPS (3:1:1) 

6.3 (Tris) 
Tumoral with cholesterol DMPC:DOPC:DPPS:Chol (3:1:1:1) 

The formulations were designed to be made up of LUVs 100 nanometers in diameter since 

these mimic the natural cell membrane’s curvature the best [75, 76]. 

 

3.3.2. Preparation 

Multilamellar vesicles (MLVs) were prepared by the classical method of the lipid film 

hydration [122]. The lipid solution, prepared using chloroform/methanol (3:2) as solvent, was 

evaporated to dryness with a nitrogen stream at 60ºC in a rotative evaporator. For the DPH 

and TMA-DPH labelled liposomes used in the fluorescence measurements, probe stock 

solutions were prepared using the organic solvents used for the lipids [chloroform/methanol 

(3:2)]. A specific volume of this solution was then added to the lipid in chloroform/methanol 

(3:1) at a lipid:probe molar ratio of 300:1, which is the ideal ratio for good signal detection 

without altering the membranes’ properties [100]. The mixture containing lipid and probe 

was then dried together. The resultant dried lipid film was dispersed with convenient buffer, 

either Hepes buffer or Tris buffer, and the mixture was vortexed to create MLVs. In order to 

obtain 100 nanometer unilamellar liposomes (LUVs), the mixture was extruded 10 times 

through polycarbonate filters with a pore diameter of 100 nm [123], at 60 °C (a temperature 

above the phase transition temperature of the lipids).  

 

3.4- Cell Culture 

3.4.1. Cell Type  

The cells used for the membrane location studies were the MDA-MB-231 cell line. These 

are from mammary gland adenocarcinoma and were chosen because breast cancer is one of 

the most frequent types of cancer to arise specially in women above 45 years of age, and still 
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has a very high mortality rate [6]. As such, the decision was made to use this cell type as the 

first one tested to validate the tumoral liposome models described above. 

 

3.4.2. Culturing Conditions 

MDA-MB-231 cells were cultured in 75 cm2 flasks at 37 ºC in an atmosphere with 5% CO2 

(Unitherm CO2 Incubator 3503 Uniequip; Planegg, Germany) in RPMI 1640 U1 with Hepes 

medium supplemented with 5% of FBS. Every three days, when cells were at approximately 

80% confluence, the old cell medium was removed, the cells were washed with PBS and 

detached from the surface using trypsin-EDTA, being the resulting cell suspension adequately 

dilluted onto a new flask with fresh medium. 

For the location assays, cells at 80-90% confluence were detached in the same way, but 

after ressuspension with medium they were centrifuged at 1500 rpm for 5 minutes so as to 

precipitate the biomass only. The supernatant medium was then removed and the cells were 

ressuspended in 3 mL of the same buffer used for tumoral liposome models, Tris buffer (pH 

6.3). Cells were labelled with DPH at a concentration of 1 mM or with TMA-DPH at 10.3 µM by 

incubation in the dark in ice for 1 hour. These concentrations of fluorophore were used since 

this protocol is still under optimization and these were the concentrations tested that 

allowed the acquisition of detectable signal. 

3.4.3. Cell Counting and Viability Assessment 

Cell counting was performed for each replica through the Trypan Blue Exclusion assay in 

order to make possible the determination of the volume of cell suspension to add to the 

samples so that their cell concentration was 1.6 x 105 cells/mL. 

 

 

 

 

 

 

 

 

 

 

In order to count the cells, a mixture of cell suspension and 0.4% Trypan Blue solution in 

PBS at a 1:1 proportion would be prepared and loaded onto a hematocytometer (Neubauer 

chamber) represented in figure 9 [124]. 

The cells in the areas marked with a “C” in figure 9 are counted, and the cell 

concentration in the suspension is therefore calculated by the following equation: 

        
           

                                                   Equation 1 

where n represents the number of cells counted in the four areas marked as “C”, 104 is the 

volume of those areas and Fd is the dilution factor, which in this case is 2. 

Cells were counted in the beginning of any methodology and after incubation with the 

fluorescent probes to ensure that the probes were not toxic to the cells and that the 

methodologies could proceed. Since the studied drugs are cytotoxic, cells were also counted 

Figure 9 Picture and representation of a Neubauer chamber. The cells on 
the chamber quadrants represented with “C” are counted. 
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after the execution of the techniques for a number of samples to ensure that the techniques 

were executed with enough live cells to produce viable results. 

 

3.5- Size and Zeta Potential Determination 

Before starting an actual biophysical study of drug-membrane interaction, the 

characterization of the model membranes that were prepared for this study is important to 

ensure that the preparation methods described in topic 3.3.2 were able to generate 

liposomes with the intended characteristics and as such ready to be applied to the 

biophysical methods ahead [125, 126]. 

The size and membrane surface charge of liposomes, the latter analysed through the 

determination of the zeta potential, were assessed through Dynamic Light Scattering (DLS) 

and Electrophoretic light Scattering (ELS), respectively. 

Light Scattering involves the incidence of a polarized laser beam on a sample and its 

scattering towards a detector placed at a 90º angle from the incident beam. Disperse 

particles suspended in a liquid medium undergo Brownian motions, which means that they 

are continuously moving, vibrating, translating and rotating. This causes the laser to be 

scattered at different intensities [125]. The scattered intensities fluctuate with time and 

provide information on the translational diffusion coefficient (Dt) of the particles. In a DLS 

apparatus, the signal obtained is processed by a correlator, and the fluctuations are 

interpreted by autocorrelation. It is through specific correlation of intensity fluctuations 

caused by the Brownian motions of the molecules in the sample along a period of time and 

with the aid of electrodynamics and theory of time dependent statistical mechanics that it is 

possible to obtain information regarding the structure and molecular dynamics of the 

particles in the medium [125, 126]. 

This method is one of the most used to determine the size of a particle in suspension as 

well as the range of particle sizes in said suspension. It is also useful for the determination of 

the surface charge via zeta potential, which is a measure of the electrical potential of the 

double layer at the interface between the dispersed medium and the stationary fluid adhered 

to the dispersed particle, and thus it gives us the information of the membrane surface 

behaviour in terms of charge [127, 128]. 

Ultimately, this technique was used to confirm if the prepared liposomes were 

approximately 100 nanometers in diameter, and if the surface charge was close to neutral in 

the normal models and negative in the tumoral models. For that purpose, samples for each 

model at a lipid concentration of 500 µM in the respective buffer were used. To determine if 

the chosen drugs had effect on liposome size and charge, samples with liposomes from each 

model at a lipid concentration of 500 µM were prepared with increasing concentrations of 

each drug, namely 5, 40 and 75 µM, and analysed through DLS (ZetaPALS BrookHaven 

Corporation Instruments; Software: PALS Zeta Potential Analyser v.5, Brookhaven 

Instruments; Holtsville, NY, USA). The assays were performed three times independently. 
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3.6- Biophysical modifications of the membrane 

The membrane structure is very important not only because of membrane permeability 

and interaction with exogenous molecules but also due to the action of endogenous molecules 

attached to the membrane (proteins, receptors, channels) and the molecular mechanisms 

involved in pharmacological effects exhibited by a variety of drugs [92, 93, 156]. 

Experimental work on membrane mimetic systems has demonstrated that their structural 

properties are strongly affected by membrane associated molecules. Many drugs are able to 

directly or indirectly influence cell membrane properties. For instance, interactions between 

proteins and phospholipids or the formation of complexes between ligand molecules and 

phospholipids or sterols can lead to disruption of the membrane so that it becomes highly 

permeable [129]. Some compounds can actually affect the fluidity of membranes, and some 

examples can be found in Chapter 1, Table 4 [46, 78-82, 84, 88, 91, 93, 94]. Additionally, 

changes in membrane fluidity can affect receptor and enzyme activity and influence the 

ability of drugs to pass through the membrane, which in turn can affect their efficacy. 

The importance of studying the action of anticancer drugs in the biophysical properties of 

the membrane is not limited to the understanding of their therapeutic effects but also to the 

elucidation of their side effects. A single biophysical method is not sufficient for a detailed 

analysis of the complexity of membrane dynamics and thermodynamics in the absence and 

presence of drug molecules. 

In this context, the next topics present several techniques that when combined provide a 

detailed description of the membrane biophysical changes resultant from the actions of 

drugs.  

3.6.1. Membrane partitioning    

The first step for the study of the interaction of drugs with membrane models should be 

the determination of the partition coefficient, which characterizes the extent of the 

interaction of a drug with a micro-heterogeneous system in a quantitative manner. Every 

bioactive compound needs an adequate balance between liposolubility (solubility in 

membranes) and hydrosolubility (solubility in blood and cytosol) and this balance is often 

expressed by the partition coefficient. The partition coefficient is therefore a key aspect for 

understanding the pharmacokinetics and pharmacodynamics of drugs, since it is associated 

with their passive permeation into or across membranes to access their sites of action [130], 

which in turn has implications in their therapeutic effects [129]. Additionally, the partition 

coefficient can be useful to predict toxic effects that arise from the bioaccumulation of drugs 

in tissues [130]. 

The partition coefficient (P) is defined by the ratio at equilibrium of the drug 

concentration in the organic phase and the concentration of the same drug in the aqueous 

phase [129]: 

  
             

           
               Equation 2 

The partition coefficient in the octanol/water system (KO/w) is the most commonly used 

parameter for determining the lipophilicity of a compound [131-133]. This biphasic mixture is 

widely used as a standard system mainly because it was the first system to be developed for 

the determination of the partition coefficient. Despite its successful application in drug 
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design, the octanol/water system may be an oversimplification and has been often seen as 

inadequate since an isotropic medium bears little similarities to biomembranes [129, 133], 

especially if we take into account that the organic phase in this system, octanol, lacks the 

amphiphilic nature of phospholipids, which have hydrophilic head groups and hydrophobic 

acyl chains [131-134]. Consequently, the Ko/w does not take into account the electrostatic 

interactions of compounds with the organic phase and provides information only on the 

hydrophobic interactions with the aqueous phase. The fact that more than 60% of the 

marketed drugs are ionisable (which includes the ones in this study, daunorubicin and 

doxorubicin [95]) makes the use of Ko/w  somewhat unreliable [135]. Finally, the relative toxic 

nature of octanol also dictates the need to use less pollutant alternative systems for partition 

coefficient determination [131]. 

Liposomes and micelles can advantageously replace octanol/water systems due to their 

anisotropic nature and their lipid ordered structure similar to that of natural membranes, and 

also by the possibility of studying the influence of electrostatic interactions in the partition 

phenomenon. Thus, the determination of the partition coefficient in liposomes or micelles/ 

water systems (Kp) gives more reliable data regarding the drug-membrane interactions, being 

these lipid model systems able to mimic the diverse membrane environments, from the polar 

surface to the lipophilic core. 

Some Kp determination methods in membrane model/aqueous systems involve phase 

separation while others don’t. Since phase separation is laborious and may cause equilibrium 

perturbation, the method selected to evaluate the lipophilicity of the anticancer drugs 

studied in the course of this work doesn’t involve phase separation. The quantification 

analysis was performed by derivative spectroscopy that will be further described in the next 

subchapter. 

i. Derivative spectroscopy 

For most of the cases, the partition coefficient of a molecule between a lipid and an 

aqueous phase can be evaluated by UV-Vis spectrophotometry as long as there is a difference 

in an absorbance parameter of the partitioning molecule (e.g., molar absorptivity, ε, and/ or 

wavelength of maximum absorbance, λmax) when in aqueous solution and after incorporation 

into the membrane [131-133, 136]. Therefore, it is possible to calculate Kp of a drug as long 

as its incorporation in the membrane leads to a change in the λmax in the order of 5-10 nm, 

and/ or a change in the ε between the two solvents (≥ 10%). The difference in the wavelength 

of maximum absorption in the presence of liposomes in relation to absorption maximum in 

buffer solution can also provide information about the distribution of the drug between the 

aqueous and lipid phase. Indeed, batochromic deviations (λmax deviations for higher 

wavelengths) are indicative of decrease of polarity in the drug’s surroundings and indicates 

an incorporation of the investigated compounds into the hydrophobic part of the lipid bilayer 

[137]) whereas hypsochromic deviations (λmax deviations for lower wavelengths) are indicative 

of the presence of the drug in a more polar microenvironment [137]). The use of UV-Vis 

spectrophotometry has plenty advantages, not only because most compounds have easily 

measurable spectroscopic properties, which depend on the chemical nature of the medium 

and are proportional to the concentration of compound at each stage, but also because the 

sensitivity of this technique allows the use of concentrations similar to those found in natural 

systems [138]. 
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Given the definition of the partition coefficient and the conditions under which the law of 

Lambert-Beer is applied, the absorbance of a solution containing a certain concentration of 

drug (Abs), that is distributed between the lipid (l) and aqueous (w) phase, can be related 

with Kp according to Equation 3 [136, 139]: 

   
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                         Equation 3 

 

where AbsT, Absw and Absl correspond to the total, aqueous and lipid absorbance of the 

compound, respectively, Kp is the partition coefficient (dimensionless), [L] the lipid 

concentration (molL-1) and Vφ the lipid molar volume (Lmol-1). 

Despite the apparent simplicity of Equation 3, its application is limited to systems with 

low scattering of light, such as micellar/aqueous systems. However, especially in cases where 

liposomes are used as membrane models, the presence of microstructures of heterogeneous 

sizes causes light scattering [132, 136, 140, 141], particularly at wavelengths below 300 nm, 

which results in a decrease of the light that reaches the detector. The spectroscopic 

interference of light scattering and the absorbance produced by the microstructures will turn 

the analysis of changes in the absorbance of the drug upon partition into a difficult task. To 

eliminate the background signal intensity caused by the vesicles, the absorption spectra of 

vesicle suspensions (references) with the same lipid concentration as the samples are 

measured and these spectra are subtracted to the correspondent sample spectra. However, 

even if the suspensions in the samples and references are prepared to contain the same 

amount of lipid vesicles, the counterbalance of the sample and reference beams is always 

incomplete being usually difficult to cancel completely the effects of the strong background 

signals, to obtain a flat and zero-level base line. The problem of the background interference 

of the medium due to light scattering of the vesicles is only eliminated by the use of 

derivative spectrophotometry (in order to wavelength, λ). In this context, the derivative 

spectrophotometry for the calculation of Kp is advantageous because it allows the elimination 

of interference caused by organized systems (difficult to cancel in zero-order 

spectrophotometry), without the need to employ techniques of phase separation. 

Furthermore, the derivative analysis of the spectra leads to a better resolution of overlapping 

bands [136, 140, 142]. 

The calculation of Kp by derivative spectrophotometry is based on an equation similar to 

Equation 3 [136, 143]:  
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n Abs
D




                  Equation 5 

 

The partition coefficients are then calculated by fitting Equation 4 to experimental 

derivative spectrophotometric data (D vs. [L]) through a nonlinear regression method where 

the adjustable parameters are Dl and Kp. 

Even with the aforementioned advantages of derivative spectroscopy, the overall analysis 

of spectra required for Kp determination is a time consuming process that involves many 

steps. Therefore, a friendly-use application for Microsoft Excel® created by Doctor Cláudia 
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Nunes, the Kp Calculator, was used during the course of this study to completely overcome 

this drawback.  

To assess the Kp values of all liposome models described, samples containing a fixed drug 

concentration of 40 µM and increasing concentrations of lipid (100, 200, 300, 400, 500, 600, 

700, 800, 900 and 1000 µM) were prepared. 

The therapeutic drug concentration of daunorubicin is 25.5 µM [144] and of doxorubicin 

about 29.4 µM [145]. In this study, most conditions were maintained as close as therapeutic 

conditions as possible. However, in the case of the drug concentrations used in research, 

concentrations often have to be adapted to the equipment’s sensitivity, and the drug 

concentration was chosen to be 40 µM since it has been proven to be an ideal concentration 

that allows good detection in previous published [146, 147] and unpublished work [148] using 

other drugs, and also produced the same good results when different concentrations were 

tested using daunorubicin and doxorubicin by MSC Catarina Alves and the author of this work. 

Identical samples without any drug content were also prepared to serve as references and 

allow the removal of some of the noise caused by micro scattering associated with the 

liposomes. Samples containing only drug at 40 µM were also prepared. All of the samples 

were incubated for 30 minutes at 37ºC. After that time their absorption spectra were 

recorded at physiological temperature (37ºC) in 96-well plates in a UV-Vis spectrophotometer 

(BioTek Synergy HT, Software: Gen 5, BioTek Instruments, Inc., Winooski, VT, USA). After 

measurements, each reference spectrum (background) was subtracted from the 

correspondent sample spectrum to obtain corrected absorption spectra. Derivative spectra 

were calculated using the Savitzky–Golay method [149] in which a second-order polynomial 

convolution of 13 points was employed. This was performed according to the Nature protocol 

by Magalhães et al. [150]. Three independent assays were performed. 

 

3.6.2.  Membrane location 

For compounds whose target sites are membranes or that interact at the membrane level, 

the orientation and location in the membrane are relevant parameters describing their 

effects. The study of membrane location thus allows a deeper understanding of the mode of 

action of drugs, contributing to the development of new types of drugs, more potent, more 

selective and with fewer side effects. 

In the case of this study, indirect methods of determining the membrane location of a 

compound will be used. These require the presence of a foreign compound that is normally a 

fluorescent probe included in the membrane. This probe works as a reporter and if any 

changes are observed on the fluorescence of this probe, those changes can be then related to 

the location of the drug. For example, if the molecular location of a probe within membranes 

is known with certainty, the deactivation of the probe’s fluorescence (also known as 

fluorescence quenching) induced by a drug can be used to reveal the location of the drug in 

the membrane [131, 143, 151, 152]. 

i. Steady-state fluorescence quenching 

In this study, the membrane location of drugs was assessed by fluorescence quenching of 

membrane bound extrinsic fluorophores (fluorescent probes). These fluorophores, usually 
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amphiphilic molecules, whose membrane location is known and well characterized, emit 

constant fluorescence in situations where there is no interference with their environment. 

However, when a drug partitions into the membrane, it can have a location close to the 

fluorophore and induce a decrease in its emitted fluorescence.  

Consequently, the decrease in the emitted fluorescence, also known as fluorescence 

quenching, of a membrane bound fluorophore provides a measure of its accessibility to the 

drug (quencher) and can be related with the concentration of the quencher [Q] by the Stern-

Volmer equation (Equation 6) [100]: 

 QK
I

I
SV10

                   Equation 6 

where I0 and I are, respectively, the corrected fluorescence intensity of fluorophores in the 

absence and presence of drug and KSV is the Stern-Volmer constant. 

Plotting the values of corrected fluorescence intensities (I0/I-1) as a function of drug 

concentration ([Q]) a linear relationship is obtained, where the slope is the Stern-Volmer 

constant (KSV). 

The corrected fluorescence intensities used on Equation 6 were the result of a previous 

correction of the fluorescence values to eliminate the inner filter effect. The inner filter 

effect occurs when the drug absorbs at the wavelength of excitation of the fluorophore and 

decreases the effective intensity of the exciting light beam decreasing the measured 

fluorescence intensity. Since the absorption increases with the increase of the quencher 

concentration, this induces an apparent quenching and increases the values of the Stern-

Volmer quenching constants obtained from steady-state experiments. Therefore, 

fluorescence intensities should be corrected to eliminate this apparent quenching by 

Equation 7 [153]: 
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                   Equation 7  

where Icorr is the corrected fluorescence intensity, I the experimental fluorescence and AQ and 

AF are the absorbance of the sample in the absence and presence of the quencher, 

respectively. 

ii. Fluorescence Quenching Mechanism 

There are two kinds of mechanisms responsible for fluorescence quenching [100, 154]: 

a) Static quenching: in static quenching a non-fluorescent complex is formed between the 

fluorophore and the quencher. When this complex absorbs light it immediately returns to the 

ground state without emission of any photon; 

b) Dynamic or collisional quenching: in the case of collisional quenching, the quencher 

must diffuse to the fluorophore during the lifetime of the excited state. Upon contact, the 

fluorophore returns to the ground state, with emission of a photon. In general, quenching 

occurs without any permanent change in the molecules, that is, without chemical reaction.  

Static and dynamic quenching can be distinguished by their differing dependence on 

temperature, viscosity and lifetime measurements [100]. The most effective way to 

distinguish the type of quenching is by lifetime measurements, and if the quenching process 

has a dynamic nature it will occur an equivalent decrease in fluorescence intensity and 

lifetime [100, 154]: 
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

 00 
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                         Equation 8 

where I0, τ0 and I, τ are respectively, the corrected fluorescence intensity and lifetime of the 

fluorophore in the absence and presence of the quencher. The decrease in lifetime occurs 

because quenching is an additional rate process that depopulates the excited state. Thus, in 

cases of collisional quenching the graphical representation of the values of fluorescence 

intensity (I0/I-1) or lifetime (τ0/τ-1) as a function of the concentration of the drug ([Q]) 

originates a linear fit in which the slope corresponds to the Stern-Volmer constant (KSV) that 

in this case is also called dynamic constant (KD). 

In the case of the static quenching, occurs the formation of a non-fluorescent complex 

between the fluorophore and the drug and thus the residual detectable fluorescence 

corresponds to the fraction of non complexed fluorophores. The fraction of fluorophore 

molecules that are not complexed by the drug remains undisturbed, and consequently the 

lifetime of the excited state remains also constant [100]: 

10 



                   Equation 9 

iii. Deviations from the linear Stern-Volmer plots 

When the Stern-Volmer plot (I0/I -1 as a function of [Q]) is linear this indicates that only 

one type of quenching occurs. However, deviations from the linearity may also occur [100, 

154]. 

The negative deviations correspond to non-linear Stern-Volmer plots with a downward 

curvature towards the x-axis and may indicate the presence of fractions of fluorophore with 

different accessibility to the quencher, i.e., fractions that are not exposed together with 

fractions that are more accessible [100]. This negative deviation of Stern-Volmer plots is 

especially common in proteins. Indeed, proteins usually contain several tryptophan residues 

that work as fluorophores and are positioned in distinct environments. Each residue can be 

differently accessible to quencher. Hence one can expect complex Stern-Volmer plots, and 

even spectral shifts due to selective quenching of exposed versus buried tryptophan residues. 

The positive deviations correspond to non-linear Stern-Volmer plots with an upward 

curvature and are frequently observed when the extent of quenching is large and can be 

attributed to problems of distribution of the quencher and/ or the fluorophore [100]. Two 

models can explain this deviation: combined static and dynamic quenching and the sphere of 

action model [100]. 

In the case of this particular study, combined static and dynamic quenching might be the 

most adequate explanation. In many instances the fluorophore can be quenched both by 

collisions and by complex formation with the same quencher, translated by the following 

equation [100]: 

   20 )(1 QKKQKK
I

I
SDSD                   Equation 10 

where I0 and I are, respectively, the corrected fluorescence intensity of fluorophores in the 

absence and presence of the quencher; [Q] is the concentration of the quencher and KD and 

KS are respectively the Stern-Volmer constants for dynamic and static quenching. For 

simplicity, Equation 10 can be re-written as follows: 
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                Equation 11 

A plot of (I0/I -1)/ [Q] versus [Q] yields a straight line with an intercept of KD + KS and a 

slope of KSKD (Figure 10). 

Moreover, the efficiency of the quenching or the accessibility of the fluorophores can also 

be assessed by the calculation of the bimolecular quenching rate constant [100]: 

 q 
 S 


            Equation 12 

If the quenching is known to be dynamic, the Stern-Volmer constant will be represented 

by KD, otherwise this constant will be described as KSV. Diffusion-controlled quenching 

typically results in values of near 1 x 1010 M–1s–1. Values of Kq smaller than the diffusion-

controlled value can result from steric shielding of the fluorophore or a low quenching 

efficiency. Apparent values of Kq larger than the diffusion-controlled limit usually indicate 

some type of binding interaction. 

 
Figure 10  Positive deviations to the Stern-Volmer equation and alternative models of linearization. 
Adapted from [100]. 

iv. Fluorescence probes 

Fluorescence probes contain fluorophores groups that allow obtaining a great variety of 

information through analysis of their excitation and emission spectra, their fluorescence 

quantum yield and the lifetime of the excited state and their polarization [129, 155]. The 

information reported by a probe inserted into a membrane (natural or model membrane) can 
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be used in the evaluation of membrane fluidity, the location of molecules in the membrane, 

intracellular ionic concentrations and membrane potential, among others [156]. 

Currently, there is a wide range of compounds used as fluorescence probes in several 

studies. In this work, the fluorophores chosen for assessing the membrane location of 

daunorubicin were DPH and TMA-DPH. TMA-DPH, contains a DPH phenyl ring located within 

the hydrophobic acyl chains of the membrane phospholipids and a cationic group, that 

anchors the probe to the polar headgroups of the phospholipids [157, 158]. Therefore, TMA-

DPH reports to the interfacial region of lipid membranes, while DPH provides information 

regarding the hydrophobic area of the membrane [157-159].  

v. Time-resolved fluorescence quenching 

Time-resolved measurements are widely used in fluorescence spectroscopy, particularly 

for studies of biological macromolecules and increasingly for cellular imaging [100]. 

Time-resolved measurements provide more information than the available from the 

steady-state data. One of the examples of the necessary use of time-resolved measurements 

is to distinguish between static and dynamic quenching using lifetime measurements [100, 

154]. Lifetime measurements are thus important, as they determine the time available for 

the fluorophore to interact with or diffuse in its environment, and hence the information 

available from its emission [100, 154]. 

There are essentially two types of methods for measuring fluorescence lifetimes that are 

in widespread use today: the time-domain and frequency-domain methods.  

In time-domain or pulse fluorometry, the sample is excited with a pulse of light. The 

width of the pulse is made as short as possible, and is preferably much shorter than the decay 

time τ of the sample. The time dependent intensity is measured following the excitation 

pulse, and the decay time τ is calculated from the slope of a plot of log I(t) versus t, or from 

the time at which the intensity decreases to 1/e of the intensity at t = 0 [100, 154].  

The alternative method of measuring the fluorescence lifetime is the frequency-domain 

or phase-modulation method, which was the one used in this work. In this case, the sample is 

excited with intensity-modulated light, typically sine-wave modulation (Figure 21). The 

intensity of the incident light is varied at a range of frequencies, usually 10-250 MHz. Its 

reciprocal frequency is comparable to the reciprocal of decay time τ [100, 154]. When a 

fluorescent sample is excited in this manner the emission is forced to respond at the same 

modulation frequency. The lifetime of the fluorophore causes the emission to be delayed in 

time relative to the excitation, shown as the shift to the right in figure 11. This delay is 

measured as a phase shift (φ), which can be used to calculate the decay time. The phase 

shift and modulation of the emission depend on the relative values of the lifetime and the 

light modulation frequency. The emission occurs at the same frequency as the excitation. 

Because of the loss of electron energy (Stokes’ shift) between excitation and emission, the 

emission waveform is demodulated and phase-shifted in comparison to the excitation. Thus 

the demodulation ratio (mω) and phase-angle shift (φ) constitute two separate observable 

parameters that are both directly related, via a Fourier transformation, to the initial 

fluorescence intensity and lifetime, τ, for a population of fluorophores [100, 154]. 

The shape of the frequency response is determined by the number of decay times 

displayed by the sample. If the decay is a single exponential, the frequency response is 

simple. One can use the phase angle or modulation at any frequency to calculate the 
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lifetime. For a single-exponential decay, the phase and modulation are related to the decay 

time (τ) by [100, 154]: 

t tan                 Equation 13 

and 

2
1

22 )1(


 m                     Equation 14 

where ω is the modulation frequency in radians/s and mω is the demodulation ratio of the 

emission. The origin of the phase shift and demodulation can be understood by considering 

the time-dependent excitation intensity and the time of intensity decay of the fluorophore.  

Most samples of interest display more than one decay time. In this case the lifetimes 

calculated from the value of φω or mω, measured at a particular frequency, are only apparent 

values and are the result of a complex weighting of various components in the emission. For 

such samples it is necessary to measure the phase and modulation values over the widest 

possible range of modulation frequencies. 

When the fluorescence decay of a fluorophore is multi-exponential, the lifetime is 

defined by [154]: 

i

n

i

if  



1

                Equation 15 

where fi  is the fractional contribution of component i to the total lifetime. 

 

Figure 11  Frequency-domain lifetime measurements. The ratios B/A and b/a represent the modulation 
of the emission and excitation, respectively. In this example the assumed decay time is 5 ns and the 
light modulation frequency is 80 MHz. Adapted from [100]. 

In Figure 12, is shown an example of a frequency domain lifetime measurement, 

performed in a previous work by Doctor Cláudia Nunes, on a suspension of LUVs of DPPC, 

labelled with TMA-DPH, upon addition of a NSAID (Piroxicam). From the variation of phase 

angle and modulation as a function of frequency (Figure 12 A), is possible to obtain the 

lifetime values, considering the discrete components and their contribution to the 

fluorescence. Additionally, the residue of adjustment for the multi-exponential model can be 

seen (Figure 12 B), and a distribution around zero shows a good fit for the phase angle and 

modulation.  
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The curve fitting is performed, by the least-squares method, in the frequency domain, 

i.e. directly using the variations of the phase shift φ and the modulation ratio M as functions 

of the modulation frequency. 

 
Figure 12 (A) Frequency-domain data for a double exponential decay obtained from LUVs of DPPC 
labelled with TMA-DPH after incubation with Piroxicam. The phase angle increases and the modulation 
decreases with increasing modulation frequency. (B) Residue model fit representing the small deviations 
between the theoretical multi-exponential fit and the experimental data. 

Usually phase data and modulation are analysed simultaneously, being the reduced chi 

squared (χ 2) given by [154]: 
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where N is the total number of frequencies. In this case, the number of data points is twice 

the number of frequencies, so that the number of degrees of freedom is υ = 2N – p (p = 

number of fitted parameters). The subscript c is used to indicate calculated values for 

assumed values of fi and τi, and σф and σM are the uncertainties in the phase and modulation 

values, respectively. 

In order to assess the quality of the fit is essential to observe the χ 2, whose value should 

be close to 1 for a good fit. Acceptable values are in the 0.8–1.2 range [100, 154]. Lower 

values indicate that the data set is too small for a meaningful fit and higher values are 

caused by a significant deviation from the theoretical model (e.g. insufficient number of 

exponential terms). Systematic errors (arising for instance from radiofrequencies interfering 

with the detection) can also explain higher values. 

For these studies, DPH- and TMA-DPH-labelled liposomes were incubated with various 

concentrations of the drug daunorubicin. Samples contained a fixed concentration of lipid of 

500 µM and increasing concentrations of daunorubicin (0, 5, 10, 15, 20, 25, 40 and 75 μM). 

Before fluorescence measurements, the resulting suspensions were incubated for 30 minutes 

at physiological temperature (37ºC) so that the drug could reach the partition equilibrium 

between the lipid membranes and the aqueous medium. Fluorescence measurements were 

carried out at a controlled temperature for each pH value of 37 °C, at excitation and 

emission wavelengths defined as 357 nm and 429 nm, for the DPH probe, and 359 nm and 429 

nm, for TMA-DPH. Fluorescence steady-state measurements were performed in a 

spectrofluorimeter (Jasco FP 6500, Software Spectra Manager, Jasco Analytical Instrumments, 

Easton, MD, USA) ) equipped with a constant temperature cell holder. All data were recorded 

in a 1 cm path length cuvette. For each measurement, fluorescence emission was 



 

Assessment of Anticancer Drugs’ Effects on Membrane Biophysical Properties using Model Membranes 

 

50 

 

automatically acquired during 30 s. Fluorescence intensity values were corrected for inner 

filter effects at the excitation wavelength [153]. The same measurements were performed 

using the same samples in a plate-reading spectrofluorimeter (BioTek Cytation 3, Software 

Spectra Manager, BioTek Instruments, Inc., Winooski, VT, USA), in order to compare results 

and validate this method, since the plate reader is a much easier and faster method that 

could facilitate future studies. The same measurements were performed using cells by 

preparing samples at the same concentrations of daunorubicin with a steady concentration of 

cells of 1.6 x 105 cell/mL per sample. 

Fluorescence time-resolved measurements were made with a Fluorolog Tau-3 Lifetime 

system. Modulation frequencies were acquired between 10 and 250 MHz. Integration time was 

10 s. The fluorescence emission was detected with a 90° scattering geometry. All 

measurements were made using Ludox as a reference standard (τ  0.00 ns). Two independent 

assays were performed for each case. 

3.6.3.  Steady-state anisotropy 

The steady-state fluorescence anisotropy (rss) is based on determining the degree and 

extent of rotational diffusion of the fluorophore (probe) during the lifetime of the excited 

state. Small changes in the stiffness of the matrix surrounding the probe produce changes in 

the rotational movement of the probe and, as such, cause changes in the anisotropy [100]. 

To determine the steady-state anisotropy, the sample is excited with vertically polarized 

light and fluorescence intensities are measured with the emission polarizer oriented parallel 

(III) and perpendicular (I) to the excitation polarizer [100]. 

The steady-state anisotropy (rss) is then defined by the following relationship between the 

relative intensities of fluorescence: 
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                Equation 17 

where G is an instrumental correction factor, given by the ratio of the sensitivities of the 

detection system for vertically and horizontally polarized light [100]: 

||I

I
G                  Equation 18 

The determination of steady-state anisotropy involves the use of probes (extrinsic 

fluorophore) inserted into the membrane, whose photoselective excitation is performed by 

polarizers. If the molecules of fluorophore are present in a highly ordered membrane, as seen 

in the gel or solid-crystalline state or in a viscous solvent, their movement is highly restricted 

and it is induced a parallel orientation of the fluorophore molecules to the vertical excitation 

polarizer. As a result, the molecules of fluorophore emit polarized light because they remain 

immobile during the lifetime of the excited state. However, if the environment surrounding 

the fluorophore is the fluid state, the notorious free rotation of the fluorophore molecules 

pushes a random fluorophore orientation, resulting in a decrease in the emission of polarized 

light. The explanation for this decrease is based on the lack of alignment with the vertical 

excitation polarizer (Figure 13) [100]. 

The application of studies of steady-state anisotropy to membrane models allows the 

determination of the main phase transition temperature of the lipid. The essence of this 
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technique consists on monitoring the anisotropy in a range of temperatures, of a labelled 

suspension of liposomes. 

 

 
 

Figure 13  Effects of polarized excitation and rotational diffusion on the anisotropy of the emission. 
Adapted from [100]. 

Typically, sigmoid curves are obtained which show the variation of the anisotropy of 

fluorophores in liposomes with the temperature, allowing analysing: the influence of the drug 

on the phase transition temperature (Tm) and influence on the anisotropy before and after 

the transition and the transition profile. The parameters of cooperativity (B) and Tm, are 

calculated from the slope and the inflection point of the data fitted to sigmoid curves, 

respectively, using the following Equation 19 [160]: 
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where T is the absolute temperature, Tm is the midpoint of the phase transition, B is a 

measure of the cooperativity of the transition, p1 and p2 correspond to the slopes of the 

straight lines at the beginning and at the end of the plot, and r1 and r2 are the anisotropy 

intercepting values at the y axis. Cooperativity is a concept associated with the transfer of 

energy that is occurring between the molecules at the measured conditions – the higher the 

cooperativity, the more synergistic the energy transfer in the model studied [161]. 

Due to strong packing, the lipid molecules are unable to disorder gradually, and thus, 

when the phase transition occurs, there is a sudden increase in the movements of 

phospholipids. Therefore, the phase transition is a cooperative process where all the lipid 

molecules are involved. The presence of a foreign molecule in the acyl chain region of the 

membrane decreases cooperativity, turning the lipid melting into a more gradual, smooth and 

therefore less cooperative process [162]. It is more frequent that the drugs decrease the 

cooperativity of a process. However, some drugs also increase the cooperativity of the 

transition, from which can be inferred that the drugs are located within the lipid bilayer but 

closer to the polar zone, so its presence does not cause any delay on the lipid melting process 

[163].  

The measurement of fluorescence anisotropy is therefore very useful in evaluating the 

fluidity of the membrane, by providing information about the microviscosity of the lipid 

environment where the probe is inserted and has even applied to assess pathologies and the 

therapeutic action of drugs. For example, fluorescence anisotropy studies have shown that 

patients with active rheumatoid arthritis (pain) have an increased stiffness of the membranes 

of lymphocytes [164]. In turn, using the same technique, it was found that the drugs used for 

the treatment of this disease induce the increase of membrane fluidity of lymphocytes, 

suggesting that the study of changes in membrane fluidity, by means of steady-state 
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anisotropy measurements, can be used to monitor the effectiveness of the treatment of drugs 

[165]. 

In this work, LUVs at a concentration of 500 µM per sample of the defined models labelled 

with either DPH or TMA-DPH were used. The liposome suspensions were incubated without 

drug and with either daunorubicin or doxorubicin at increasing concentrations – 5, 10, 15, 20, 

25, 40 and 75 µM for 30 minutes at 37 ºC and steady-state anisotropy and temperature-

resolved anisotropy was measured for these concentrations. The monitoring of the anisotropy 

was also done for a range of temperatures from 10 to 60ºC for samples with no drug and drug 

at the concentrations of 40 and 75 µM – temperature-resolved anisotropy. The same was 

performed using cell suspensions labelled with the referred probes also at drug 

concentrations of 0, 40 and 75 µM, but the temperature range was 10-50ºC. The cells were 

used at a concentration of 1.6 x 105 cells/mL per sample. Two independent assays were 

performed for each case. 

 

3.7- Statistical Analysis 

Statistical analysis was performed using IBM® SPSS® Statistics software (v.20.0.0.0; IBM, 

Armonk, NY, USA). The measurements were repeated at least twice and data was expressed 

as mean ± standard deviation (SD). Data was statistically analysed through the one-way 

analysis of variance (ANOVA) method and differences between groups were compared by 

Bonferroni and Tukey post-hoc tests in which a p value lower than 0.05 (p0.05) was 

considered statistically significant. 
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Chapter 4  

Results and Discussion 

4.1- Liposome Characterization 

The formulations designed were characterized as explained above, to guarantee they 

possessed the characteristics of interest for the following studies. Particle size was measured 

through DLS and is presented in figure 14. 

  

Figure 14 Size distribution of liposomes in the four fourmulations designed (normal, normal with 
cholesterol, tumoral, and tumoral with cholesterol) with increasing concentrations of daunorubicin 
and doxorubicin ranging from 0 to 75 µM. * represents that means are significantly different (p<0.05) 

relatively to the suspensions without drug (0 µM) of the same model. 
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From figure 14 it is possible to verify that the liposomes produced were in fact 100 nm in 

diameter as desired. Even though some statistically significant differences can be seen for 

the normal with cholesterol model, overall the addition of the drugs does not appear to 

produce substantial effects in the size of the liposome formulations studied. 

As described previously in this document, normal cell membranes are composed of a 

number of molecules charged differently, but these are present at certain equilibrium so that 

the surface charge is close to 0 as described in the literature [54, 56]. Contrarily, tumor cell 

membranes expose to the outer leaflet of the membrane anionic lipids such as PS, having 

therefore a negative surface charge [54, 56]. The determination of the zeta potential of the 

designed mimetic membrane models helps comprehend if these changes can also be 

mimicked. 

Figure 15 represents the zeta potential for the four models prepared without any drug 

and with 3 concentrations of either daunorubicin or doxorubicin – 5, 40 and 75 µM. First, 

these values will be used to assess the similarities of the models to actual cell membranes. 

Secondly, the effect of each drug and the referent concentrations on the surface charge of 

the models will be explored, and finally, an overall review of the meaning of the zeta 

potential values obtained will be done. 

 It can be observed that for the normal formulations with or without cholesterol, the zeta 

potential values are around 0, which indicates neutral surface charge, while for the tumoral 

formulations negative values of zeta potential were obtained. This is consistent with what is 

found in actual cell membranes (normal and tumoral, respectively), and as such we can 

conclude that the proposed formulations successfully mimic the surface charge of the cell 

membranes they’re intended to be models for. 

A tendency can be observed for the tumoral models as it appears that the zeta potential 

becomes less negative and tends towards neutrality as the drug concentration is increased. 

That is likely to happen because both drugs (pKa=8.4)[95] are positively charged at the pH 

values used during the assays due to their amine group (see figure 8). This might mean that 

Figure 15 Zeta potential of liposomes in the four formulations designed (normal, normal with 
cholesterol, tumoral, and tumoral with cholesterol) in increasing concentrations of daunorubicin and 
doxorubicin ranging from 0 to 75 µM. * represents that means are significantly different (p<0.05) 
relatively to the suspensions without drug (0 µM) of the same model. 
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the positively charged amine group is able to interact with the negatively charged phosphate 

groups at the polar heads of the anionic phospholipids (especially due to the increase in the 

amount of PS on the outer leaflet of the membrane), neutralizing those charges via these 

interactions. 

In general, liposome formulation characterization allowed to confirm that the membrane 

models were prepared as intended, with surface charge that is similar to that of normal and 

tumoral cells and a diameter that creates a membrane curvature similar to that of actual 

cells. 

Although it can’t be said without doubt that interactions between the two drugs and the 

four models are occurring, the results give some indications that that might be happening. To 

confirm and help understand these interactions, further studies were performed. 

 

4.2- Membrane Partition Studies  

 

The membrane partition, analysed by the measure of the partition coefficient (Kp), was 

performed through derivative spectrophotometry. As explained in the chapter 3, lipid 

suspensions were prepared at a range of lipid concentrations from 100 to 1000 µM – these 

were the reference samples. Similar ones were prepared with drug at a fixed concentration 

of 40 µM. 40 µM solutions of only drug in buffer were also prepared. All of these were placed 

in 96-well plates and the absorbance spectra were measured. Studies were performed 3 times 

independently. Once confirmed that the values of all three replicas were coincident, the 

mean values of the samples, references and drug spectra were introduced in a Microsoft 

Excel® application created by Doctor Cláudia Nunes – Kp Calculator [150]. The mentioned 

absorbance spectra obtained are represented as an example in figure 16. 

 

 
Figure 16 Absorbance spectra plotted from the experimental data. In this case it is shown the data 
plotted from the normal model for the drug daunorubicin. 

The absorbance spectra values from the reference samples were subtracted to the values 

referent to the samples containing drug. From this data, and to decrease the noise associated 

with the microscattering as previously explained, the first, second and third derivative were 

calculated, being an example of the third derivative represented in figure 17. The third 

derivative is usually chosen for the following steps since it allows for a better reduction of 

the noise caused by the microscattering associated with the liposomes. From the spectrum of 

the third derivative, four peaks are chosen and the values for each drug concentration at the 

four wavelengths chosen are collected, as is represented for one wavelength in figure 17. 

These values were then inserted into the Origin Pro 8.5.1 software, plotted and a non-linear 

curve fitting was calculated using Equation 4, described in Chapter 3 of this document. The 
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resulting plot of the derivative data and the fitting associated are also represented in figure 

17. 

From this fitting it is possible to obtain the Kp value for each wavelength tested, being 

the final Kp the average of these values for that drug using that mimetic model. To obtain 

adimensional Kp values and remove the influence of the different microenvironments of the 

different models, the values obtained before are divided by the specific molar volume of the 

lipids used in that specific mimetic model. 
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Figure 17 Third derivative spectrum of the data from figure 16 and the respective actual data for a 
particular wavelength (above). Below is the fitting performed using the Origin Pro software.  

The adimensional Kp values found for both daunorubicin and doxorubicin using the four 

mimetic models are represented in figure 18. These allow the analysis of 3 main factors. First 

the two drugs will be compared; then, the effect of cholesterol in the membrane models will 

be evaluated; finally, a comparison of normal vs. tumoral models can be made. 
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Regarding the two compounds tested, it is very clear that they partition very differently 

into the different membrane models. In the normal model, the drug doxorubicin partitions 

into the membrane approximately 12 times more than daunorubicin does. In the case of the 

normal model containing cholesterol, the same tendency applies, with doxorubicin 

partitioning 38 times more than daunorubicin. Since the only difference between the two 

drugs is that doxorubicin has an alcohol group, the results indicate that this alcohol group is 

likely to be involved in the higher partition of the drug into the normal membrane models. A 

hypothesis that can be formulated is that, besides the interaction of the drugs’ amine group 

with the membrane, this OH group might be establishing hydrogen bonds with the ester 

groups of the phospholipids. In the case of the normal model with cholesterol, this partition 

decreases, once the model becomes more rigid it does not have as many ester groups 

available do establish the hydrogen bonds. This is not observed for the tumoral models. Both 

drugs partition similarly into the membranes of the tumoral model. However, for the tumoral 

model with cholesterol, doxorubicin partitions slightly less into the membrane than 

daunorubicin. 

From the results obtained it appears that the presence of cholesterol has a particular 

effect in the different model membranes. In the normal models, drug partition is lower when 

cholesterol is present in the membrane, which was to be expected since it is known that in 

nature cholesterol generally makes the membrane more rigid and more compact. In the case 

of daunorubicin, there is very little partition into the normal with cholesterol membrane, 

being this value by far significantly the lowest of all. However, in the tumoral models, the 

drugs partition more when cholesterol is present. A possible explanation for this resides in 

the fact that cholesterol creates microdomains such as lipid rafts by associating with other 

components of the membrane such as the PS. These are localised structures that are rigid and 

Figure 18 Partition Coefficient (Kp) values for both drugs used in the sudy, daunorubicin and 
doxorubicin, determined though derivative spectrophotometry using four different lipidic mimetic 
models of the membrane – normal, normal with cholesterol, tumoral and tumoral with cholesterol.* 
represents significant difference (p<0.05), comparing the models for the same drug. 
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overall tend to decrease the fluidity of the membrane. It might be the case that cholesterol 

is forming these microdomains in the tumoral mimetic model that contains cholesterol, and 

that the remaining lipids of the membrane outside of these microdomains are becoming more 

permeable due to the absence of cholesterol there to compact, and as a result the 

cholesterol is improving drug partition in the case of the tumoral membrane models. It is also 

interesting to notice that in the literature, lower amounts of anionic phospholipids in the 

membrane were seen to cause an increase in their permeability for both anthracyclines [95, 

108]. Therefore it may be fair to conclude that the decreased proportion of PS, an anionic 

lipid, in the membrane of the tumoral with cholesterol is favorable for the uptake of both 

drugs, which might be related to the possibility that PS is one of the main lipids to form 

complexes or domains with cholesterol. 

Finally, comparing the models taking into account the type of tissue they try to mimic, 

it’s clear that daunorubicin partitions much better into the tumoral model containing 

cholesterol, which is a factor of much value to its therapeutic effect especially since it seems 

that the drug has higher affinity towards tumoral models. Doxorubicin, while partitioning less 

into the tumoral membranes than into the normal ones, still has very high partition 

coefficients in the case of the tumoral models, which also plays in favor of its effectiveness in 

treatment. These findings are in accordance to the literature, which suggests that membrane 

models of higher heterogeneity (mixtures of lipids) usually promote the interaction, partition 

or even penetration of drugs such as doxorubicin into the the membranes [87-89]. 

Overall, it can be concluded that, with the exception of daunorubicin in the normal with 

cholesterol model, the drugs partition very well into all the membranes of the tested models, 

which could explain why they are to this day some of the most used for chemotherapy but 

also why they have such severe side effects - since the high partition is also verified for the 

normal cell-mimicking models, there is high cytotoxicity not only for the tumoral cells, but 

also to the normal ones.  

 

Table 6 Logarithmic values of the partition Coefficient (Kp) values for both drugs used in the 
sudy, daunorubicin and doxorubicin, determined though derivative spectrophotometry using 
four different lipidic mimetic models of the membrane – normal, normal with cholesterol, 
tumoral and tumoral with cholesterol, as well as the partition coefficient for each drug found 
via the octanol/water method. 

  

In fact, while doxorubicin causes the same kind of side effects as daunorubicin, the 

effects associated with the first are much more severe, being doxorubicin considered a more 

aggressive drug [119-121]. The findings described are consistent with that, showing a 

partition of doxorubicin into normal membranes that is several times higher than that of 

daunorubicin and than that of doxorubicin in tumoral models.     

The results obtained using the method of derivative spectrophotometry were then 

compared to the values of partition for both drugs described in the literature determined 

 
Octanol/Water 

Method  
Derivative Spectrophotometry [log(Kp)] 

 
Log(P) [166] Normal 

Normal with 
Cholesterol 

Tumoral 
Tumoral with 
Cholesterol 

Daunorubicin 1.83 3.27 ± 0.05 2.49  ± 0.04 3.28 ± 0.04 3.55 ± 0.03 

Doxorubicin 1.27 4.34 ± 0.01 4.07 ± 0.07 3.30 ± 0.01 3.44 ± 0.04 
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through the octanol/water partition method. Since these values are usually presented, from a 

pharmaceutical point of view, in the logarithmic form, table 6 presents the partition 

coefficient of both drugs in logarithmic form using both methods. 

As mentioned before, octanol, the organic phase of the octanol/water method, lacks the 

amphiphilic nature that is so characteristic of phospholipids and essential for the cell 

membranes’ structure [131-134]. As such, this method bears very little resemblance to the 

actual biomembranes found in nature. On the other hand, using liposomes as model 

membranes solves this problem as these are very similar to biomembranes. In table 6 it is 

shown that the partition coefficient values found in this study using derivative 

spectrophotometry are very different from those found using the octanol/water method. The 

Kp values found in this study are actually much higher than those of the octanol/water 

method. This proves that the interactions between the two drugs and the membranes involve 

not only hydrophobic but also electrostatic and Van der Waals interactions as well as 

hydrogen bonds, which are facts supported by previous research [95, 108]. Thus, the 

liposomes/water system appears to be a much more effective, complete and accurate way of 

determining the partition coefficient and therefore obtaining information regarding the way 

the drugs partition into the biomembranes. The transition in industry and research of the use 

of the octanol/water method to the use of model membranes to determine partition 

coefficient could in the future prove to be a great improvement in both fields. 

 
 

4.3- Membrane Location of Daunorubicin 

 

Membrane location assays were performed for the drug daunorubicin using the four 

models designed for this study. The same assays were performed for a line of tumoral cells, 

the line MDA-MB-231 that can be seen in figure 19, in order to produce results that could be 

comparable to those of the models. The assays were performed using liposomes and cells 

labeled with either DPH or TMA-DPH. These are two fluorescent probes that have a known 

and described location in the membrane. Since their location in the membrane is known, the 

proximity of the drug to these probes can give information on their own location in the 

membrane. That is because the probes’ fluorescence is deactivated by the proximity of the 

drug, a phenomenon called quenching.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 MDA-MB-231 cells cultured with RPMI U1 25mM Hepes and 5% FBS observed after 2 days of 

growth under an inverse microscope at a magnification of 1000x. 



 

Assessment of Anticancer Drugs’ Effects on Membrane Biophysical Properties using Model Membranes 

 

60 

 

As explained in Chapter 3, there are two types of mechanisms for fluorescence 

quenching: static and dynamic or collisional quenching. When quenching is static, a 

permanent complex is formed between the fluorophore and the quencher and the lifetime 

measurements remain constant for each sample, which would mean that the KD would equal 

zero. The dynamic or collisional mechanism involves the interaction of the quencher with the 

fluorophore in the excited state, but this is temporary since the fluorophore then returns to 

ground state. If this is the mechanism, the I0/I values would form a linear plot, that should 

be superimposable with τ0/τ, meaning that KSV is equal to KD. Since neither case is observed, 

it is fair to infer that the mechanism of quenching involves combined static and dynamic 

quenching. 

The chosen fluorescent probes to be used in this study were DPH and TMA-DPH. These are 

interesting because they insert into the lipid bilayer, possessing however an important 

distinction. The DPH probe possesses a structure that is hydrophobic (represented in figure 

20) and as such inserts into the acyl chain region of the phospholipidic membranes, being 

therefore more internally located. The TMA-DPH (figure 20) is very similar to DPH, however it 

contains an amine group which is polar and therefore able to interact with the polar heads of 

the phospholipids. DPH will tend to be nearest to the center of the bilayer due to its affinity 

to the fatty acid tails of the phospholipids. TMA-DPH, although being partially inserted 

between the acyl chains, also interacts with the polar regions, therefore locating at a sort of 

transition region between the polar and apolar zones of the phospholipids, allowing the 

acquisition of information at a more superficial level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The closest the drug’s proximity, the more the deactivation of the probe’s natural 

fluorescence. With that information, correlations can be made using an array of samples of 

increasing drug concentrations to in turn determine biophysical parameters that can help 

shine light on the drug location. The determination of the drug-induced quenching involves 

the measurement of the fluorescence emission spectra of samples at a lipid concentration of 

500 µM and drug concentrations from 0 to 75 µM. These spectra can be obtained through a 

regular spectrofluorimeter, in which each sample has to be changed manually, or by a plate 

Figure 20 Schematic representation of the structure of the fluorescent probes DPH and TMA-DPH and 
their average location next to an example of phospholipid (to the right of each probe), which is the 
constituent of a lipid bilayer. This image was kindly provided by MSc Ana Catarina Alves. 

Center of the Bilayer 
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reading spectrofluorimeter, in which all samples are introduced in a 96-well plate and all the 

samples are inside the equipment throughout the whole reading process. Now, a regular 

spectrofluorimeter has the advantage of a higher sensitivity. However, since it can only hold 

one sample at a time and these have to be manually changed, it is a much more morose and 

time-consuming process to use this device. Also, in cases such as this when it is very 

important to keep the samples in the dark to avoid fluorescence bleaching and always at 37ºC 

to ensure the measurements are done at that specific temperature, this method involves 

some sample disturbance by having to transport them at room temperature from the 

incubator to the device and having to open the sample holder sometimes to measure the 

temperature, which might impair both needs. On the other hand there is the plate reader, 

which is a slightly less sensitive equipment. However, it has the advantage of allowing the 

introduction of all the samples at the same time, which reduces light and room temperature 

exposure. Also, it can be programmed to incubate the samples at the desired temperature for 

a certain time, ensuring that the spectra readings are done at that temperature. In this case, 

the plates were incubated for 10 minutes at 37ºC prior to reading. The measurements are 

also programmed once the plate is inserted, which makes the process much more expeditious 

since the operator does not need to be present during the measurements. 

The plate reading spectrofluorimeter seems to be a more practical and advantageous 

alternative, but its use needed to be validated to ensure that this methodology works in this 

apparatus once there is no described protocol. For that purpose, the fluorescence spectra 

(emission and excitation) measurements were performed in both devices. The results for both 

equipments can be seen in Annex I. 

The dynamic constant (KD) remains the same since the measurements for its 

determination were performed in a different fluorimeter (one able to perform lifetime 

measurements). The comparison must therefore be done between mainly the static constants 

represented (KS), which were obtained directly from the slopes of fitting curves obtained 

using equation 11 on the emission  spectra maximum values. Since KD values are the same and 

the Stern-Volmer constant, KSV, is a calculated as KS+KD, this constant can also be used to 

compare the two devices used. 

Overall, it can be observed that the values of KD and KSV obtained using the two devices 

were quite similar, and, as such, the use of the plate reader on its own is a valid choice. 

Small differences in the values between devices are easily explained by the vast array of 

disturbing conditions the samples suffer in the regular spectrofluorimeter measurements, 

such as more light incidence and temperature variations, even with the utmost care from the 

operator. The results for the regular spectrofluorimeter present very small values of standard 

deviation, while in general the results obtained with the plate reader have wider standard 

deviation values, which is according to the fact that the latter has a lower detection limit, 

allowing for less precise measurements. In the end, we conclude that although the regular 

fluorimeter is more precise, both of the devices are very accurate and can be used for these 

procedures. 

To make easier the visualization and understanding of the results, only the results 

obtained using the plate reading spectrofluorimeter will be shown in figure 21. 

The Stern-Volmer quenching constant (KSV) indicates the sensitivity of the fluorophore to 

a quencher. Higher values of the Stern-Volmer constant mean higher deactivation (quenching) 

of the fluorophore. The bimolecular quenching constant, or Kq, represented in figure 22, is 

often used to reflect the efficiency of quenching or the accessibility of the fluophores to the 
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quencher. Kq eliminates the contribution of the intrinsic lifetime of the probe and therefore, 

when comparing different probes with different lifetimes, Kq represents a much more 

accurate parameter. In this sense, all the comparisons beneath will take that constant into 

account. 

 

 
Figure 21 Plotted results of the static, dynamic and Stern-Volmer constants determined using a a plate 

reading spectrofluorimeter. These constants were determined for all four models plus the tumoral cells 

MDA-MB-231, under the effect of daunorubicin, for the two probes, DPH and TMA-DPH. 

In figure 22 it is evident that for the normal and tumoral model without cholesterol drug 

locates closer to the location site of TMA-DPH, while for both models with cholesterol the Kq 

value is close between the two probes.  

This leads to conclude that, for the models without cholesterol, daunorubicin is located 

at a more superficial zone, having its amine group interacting with the phosphate groups of 
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Figure 22 Bimolecular quenching constant (Kq) determined using a a plate reading spectrofluorimeter. 
These constants were determined for all four models plus the tumoral cells MDA-MB-231, under the 
effect of daunorubicin, for the two probes, DPH and TMA-DPH. 
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the polar heads of the phospholipids while the rest of the drug molecule inserts in between 

the acyl chains of the lipids. 

In the case of the models with cholesterol, it is possible that cholesterol, having a small 

headgroup with affinity to choline, may prevent the interaction of the amino group of 

daunorubicin with the phosphate group due to steric hindrance. Therefore the quenching 

effect is less noticeable at the TMA-DPH region when comparing with the model without 

cholesterol. Nevertheless and comparing with all the other lipid models, the normal model 

containing cholesterol resulted in very low values for all the constants. This means that very 

little drug could be found nearing either location of the probes. This is consistent with the 

very low partition coefficient obtained for daunorubicin – if the drug isn’t able to partition 

into the membrane or partitions very little, then there’s very little drug to interact with the 

fluorophores and the resulting constant values are very low. 

For the tumoral cells, the obtained Kq values also point to a drug location closer to TMA-

DPH. However, the constant values found for DPH using the tumoral cells were much lower 

than those of the tumoral model, which makes sense considering the much higher complexity 

of a biomembrane, containing a wide variety of different domains and molecules in large 

quantities that might prevent the drug from penetrating it with ease. 

 

4.4- Membrane Fluidity 

4.4.1.Temperature-Resolved Anisotropy 

When measuring anisotropy along a range of temperatures, an anisotropy profile is 

obtained such as is shown in figure 23 as an example. 

At lower temperatures, a plateau of high anisotropic values exists, which represents the 

solid-crystalline or gel phase of the lipids (Lβ). The temperature at which the arrangement of 

the lipids shifts to form a fluid or liquid-cristaline phase (Lα) is known as the phase transition 

temperature or Tm. 

Revealing information can be gathered from both observing the obtained anisotropy 

profiles for each sample and calculating the phase transition temperature. Since we 

Figure 23 Anisotropy profile from 10 to 60ºC to the normal model with no drug for the probe DPH. The 
gel phase and liquid-crystalline phases are represented as Lβ and Lα, respectively. The phase transition 
temperature or Tm is the inflexion point of the plot. 

Lβ 

Lα 

Tm 
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performed the phase transition temperature measurements for liposome suspensions without 

drug and with two concentrations of drug (daunorubicin and doxorubicin) for the two 

fluorescent probes, it is possible to determine if the drugs are causing higher fluidity of the 

membranes, the phase they are causing differences on and the membrane location where 

those changes are happening as well. 

However, it is also interesting to know the differences in fluidity for the different models 

without the involvement of the drugs, mainly because it can allow a comparison with the 

fluidity of biomembranes in nature. Figure 24 represents the profiles for the liposome 

suspensions of each model for both probes. 

 

 

  

 

 

 

 

 

 

 

 

 

From figure 24 it is clear that the models have very different behaviors in terms of 

fluidity in the range of temperature used. Moreover, different profiles depending on the used 

probe are obtained. As the TMA-DPH reports to a zone closer to the polar head groups it 

represents higher anisotropy values when compared with the profile obtained for DPH. 

For DPH, the normal model shows the highest rigidity in the gel phase but one of the 

lowest in the fluid phase, which means that in the gel phase the normal model is the most 

rigid but that does not happen after the phase transition. It is also possible to see, in the acyl 

chains region, a stabilizing effect of cholesterol, for both models with cholesterol, fluidizing 

the gel phase and stiffening the fluid phase. In what concerns the head group region, 

cholesterol has a stiffening effect due to its electrostatic interaction with the choline group. 

Moreover, and due to the increment of serine in the tumoral model, which has a bulky head 

group, the tumoral mimetic model is more rigid in this region contrarily to the very simple 

normal model. 

It is also worth pointing out that in both regions the probes report to, the tumoral models 

tend to be more fluid overall and particularly near the 37ºC temperature than the normal 

with cholesterol model, which in reality is the one with physiological interest since normal 

biomembranes are never made of only one lipid (like is the case of the normal model). This is 

in accordance with what was intended, and as such it is proof that these models were indeed 

able to mimic the higher fluidity of tumoral cell membranes. 

Figure 25 gathers the anisotropy profiles of the four models labeled with two probes 

without drug and for two drug concentrations (40 and 75 µM).  
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Figure 24 Anisotropy profiles for the four different liposome models membranes labelled with both of 

the fluorescent probes used (DPH and TMA-DPH).  
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Figure 25 Anisotropy profiles for the four different liposome models designed labelled with both of the fluorescent probes used (DPH and TMA-DPH). For each model and each 
probe a sample with no drug and two other at drug concentrations of 40 and 75 µM were prepared and the profiles obtained are shown in this figure. This figure shows profiles 
where the drug used was daunorubicin. 
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In general, the normal model with cholesterol appears to be unchanged with the addition 

of drug for both probes. If we look back to the partition coefficients obtained for the model 

normal with cholesterol, these were very small for daunorubicin, which is consistent with the 

lack of alteration in fluidity. 

For the tumoral models, at physiological temperature, the presence of daunorubicin 

seems to result in an increase in membrane rigidity at least at a more internal level of the 

bilayer, as seen in the profile obtained using DPH. The more interfacial or superficial zone of 

the membrane (given by TMA-DPH) seems to suffer no alterations. However, the tumoral 

model containing cholesterol appears to become more fluid in the same conditions in both 

regions, which is consistent with the fact that both drugs partition more into this model than 

the one without cholesterol. This observation supports the hypothesis that cholesterol, by 

bonding with the polar heads of certain lipids, creates microdomains that are rigid, but might 

be localized and leave the rest of the surface area more fluid. This is consistent with the 

values of Kp, which are higher for both drugs for the tumoral model that contains cholesterol. 

 

Table 7 Phase transition temperatures (Tm) and Cooperativity values for the four models and 
the two probes (DPH and TMA-DPH) without daunorubicin and at daunorubicin concentrations 
of 40 and 75 µM. 

  
Tm (ºC) Cooperativity 

  
Drug Concentration Drug Concentration 

Model Probe 0 µM 40 µM 75 µM 0 µM 40 µM 75 µM 

Normal 
DPH 27.3 ± 0.7 27 ± 1 27.1 ± 0.8 166 ± 12 148 ± 12 150 ± 24 

TMA-DPH 25.14 ± 0.09 25.7 ± 0.1 25.6 ± 0.7 213 ± 11 168 ± 37 145.2 ± 0.6 

Normal with 
Cholesterol 

DPH 40 ± 3 39.6 ± 0.6 40 ± 0 62.2 ± 0.1 71 ± 8 69.52 ± 0.01 

TMA-DPH 38 ± 3 36 ± 2 40 ± 0 57 ± 5 70 ± 5 55 ± 5 

Tumoral 

DPH 29.00 ± 0.02 29 ± 1 29.2 ± 0.4 95 ± 10 168 ± 34 209 ± 10 

TMA-DPH 28.8 ± 0.9 29.1 ± 0.5 30 ± 1 
111.5 ± 

0.4 
97 ± 36 156 ± 15 

Tumoral 
with 

Cholesterol 

DPH 35.0 ± 0.5 32 ± 1 30.88 ± 0.08 76 ± 8 122 ± 32 137 ± 12 

TMA-DPH 33.36 ± 0.06 31.44 ± 0.02 32 ± 1 70 ± 6 93 ± 12 97 ± 13 

 

More information can be gathered from observing the phase transition temperature (Tm) 

and cooperativity values of the membrane models labeled with the two probes at these three 

concentrations of daunorubicin. This information can be seen in table 7. 

The only clear tendency regarding the Tm is that it decreases for the tumoral with 

cholesterol model with the DPH probe, which means that the membrane becomes more fluid. 

The same appears to happen with the probe TMA-DPH. For the remaining models no tendency 

can be observed. That might be better explained by associating again with the results 

obtained for the membrane partition. Daunorubicin partitions the most into the membrane of 

the tumoral with cholesterol model, and that would make it so that this drug is more able to 

interact with the fluorescent probes in this model than in the other ones, justifying the 

aforementioned findings. 

Regarding cooperativity, the cooperative zone is usually associated with the first segment 

of the acyl chains bound to the polar head of a phospholipid, commonly the C1-C8 region 

[110]. In this sense, daunorubicin appears to be located the interfacial region,since the 

cooperativity in this model increases with the increase in concentration of drug, and the 
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increase in cooperativity values is associated with an interaction with the polar heads [167]. 

Since the drug has a positively charged amine group at the pH values used in the study, these 

interactions with the polar heads are most likely between this amine group and the 

negatively charged phosphate groups of phospholipids. 

The normal with cholesterol model is the one with which daunorubicin partitions the 

least, which is consistent with the lack of alteration in Tm and the very low values of 

cooperativity. 

In the case of the models without cholesterol, it is shown that, although they partition 

similarly, the cooperativity values decrease in the case of the normal model but increase in 

the tumoral model. That might occur because the tumoral model is much more 

heterogeneous, and, since the drug is a small molecule, it can function the way that 

cholesterol does for the models containing cholesterol and organize the membrane lipids. In 

fact, phosphatidylserine, one of the lipids in the tumoral model membrane, possesses a very 

large polar head, that can favour the packing of a smaller molecule like daunorubicin. In a 

membrane as heterogeneous as the one from the tumoral model, the energy transmission is 

very heterogeneous as well. However, if the packing increases in the membrane as an effect 

of daunorubicin as theorized above, the energy transfer can become more homogeneous, 

which could explain the increase of cooperativity. The normal model is already very 

homogeneous since it is composed of only one lipid type. As such, any interference, like the 

inclusion of daunorubicin into the membrane, hinders the energy transfer, hence leading to 

the decrease in cooperativity. 

The tumoral model becomes more rigid, which can be observed by the anisotropy profile 

for this model with DPH as well as by the increase in cooperativity. This doesn’t seem to 

happen in the tumoral with cholesterol model. This could be explained by the possibility that 

daunorubicin, as explained above, may be associating with other constituents of the tumoral 

model membrane that make the membrane more rigid, while it can be making the tumoral 

with cholesterol membrane more fluid by disorganizing the membrane structure in this 

model, leading to the decrease in Tm.  

The temperature-resolved anisotropy was also measured with the tumoral cells to assess 

the effect of daunorubicin, but the results produced did not make possible the acquisition of 

phase transition temperatures or cooperativity values. However, from the anisotropy profiles, 

depicted in figure 26, some inferences can be made. For example, it is noticeable that in the 

absence of drug, the polar region of the cell membrane bilayer is more rigid than the 

hydrophobic center. Curiously, the addition of daunorubicin seems to cause the polar regions 

of the membrane to become more fluid, while the hydrophobic chains become slightly more 

rigid. The biggest alterations in profile are found for the probe TMA-DPH, which indicates 

that also in the cell membrane of tumor cells the drug appears to locate in the cooperative 

zone, inserting in the acyl chains but also interacting with the polar heads. The observations 

for the tumoral cell anisotropy profiles are in fact similar to those made for the liposome 

tumoral with cholesterol model. This is more evidence that the models designed are in fact in 

the right path towards the validation of models for biophysical membrane studies. 
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Temperature-resolved anisotropy measurements were also performed for a range of 

temperatures from 10 to 60ºC using the same models and probes but testing the drug 

doxorubicin. The anisotropy profiles of the four models labeled with two probes without drug 

and for two drug concentrations (40 and 75 µM) of doxorubicin are shown in figure 27. 

Overall, the profiles found for doxorubicin are very similar to those found using the other 

drug tested, daunorubicin. As such, the same observations made for daunorubicin regarding 

fluidity by analysis of the anisotropy profile can be applied to the case of doxorubicin. 

The phase transition temperature, Tm, and cooperativity were also determined for 

doxorubicin and are established in table 8. 

 

Table 8 Phase transition temperatures (Tm) and Cooperativity values for the four models and 
the two probes (DPH and TMA-DPH) without doxorubicin and at doxorubicin concentrations of 
40 and 75 µM. 

  Tm (ºC) Cooperativity 

  Drug Concentration Drug Concentration 

Model Probe 0 µM 40 µM 75 µM 0 µM 40 µM 75 µM 

Normal DPH 26.83 ± 0.09 27.6 ± 0.1 27.80 ± 0.02 115 ± 2 127 ± 2 121 ± 12 

TMA-DPH 25.21 ± 0.01 25.7 ± 0.2 25.7 ± 0.9 198 ± 33 167 ± 40 139 ± 21 

Normal with 
Cholesterol 

DPH 39 ± 1 40.5 ± 0.6 38 ± 3 66 ± 10 62 ± 3 70 ± 12 

TMA-DPH 40.001 ± 0.002 40.000 ± 0.003 40.007 ± 0.008 67 ± 4 53 ± 5 71 ± 21 

Tumoral DPH 29 ± 0.8 30 ± 1 30.5 ± 0.8 89 ± 15 110 ± 20 118 ± 28 

TMA-DPH 29.1 ± 0.4 29.3 ± 0.8 31.2 ± 0.4 118 ± 5 111 ± 16 168 ± 31 

Tumoral with 
Cholesterol 

DPH 33 ± 0 31 ± 2 31 ± 1 87 ± 0 83 ± 25 94 ± 12 

TMA-DPH 33.34 ± 0.05 31.39 ± 0.08 32 ± 1 70 ± 6 91 ± 14 85 ± 3 
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Figure 26 Anisotropy profiles for the tumoral cell line MDA-MB-231 labelled with both of the fluorescent 
probes used (DPH and TMA-DPH). Anisotropy was measured for samples with no drug, and at two 

concentrations of drug, 40 and 75 µM. 
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Figure 27 Anisotropy profiles for the four different liposome models designed labelled with both of the fluorescent probes used (DPH and TMA-DPH). For each model and each 
probe a sample with no drug and two other at drug concentrations of 40 and 75 µM were prepared and the profiles obtained are shown in this figure. This figure shows profiles 
where the drug used was doxorubicin. 
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However, as opposed to what occurs in relation to daunorubicin, doxorubicin does not 

seem to produce any tendency towards Tm alteration in any of the membrane models, but 

some similarities in the tendencies of the cooperativity values can be seen. A tendency 

towards a decrease in cooperativity can be observed using the probe TMA-DPH for the normal 

model, which means that the energy transfer at the polar head region of the bilayer in being 

impaired with the addition of doxorubicin. As such, an explanation might be that the normal 

bilayer, made up of only one type of lipid, is very homogeneous, and therefore in normal 

conditions, energy transfer happens smoothly and homogeneously. When an exogenous factor 

is introduced, in this case, the doxorubicin drug molecule, the homogeneity is impaired, and 

the energy transfer as a result is as well, resulting in a decrease in cooperativity. This means 

that the molecules can be located near the phospholipid headgroup, then moving away. In 

the case of the tumoral model, the opposed tendency happens, so the cooperativity 

increases. This might be again because the tumoral model membrane is already 

heterogeneous, and in such a case, the doxorubicin molecule might actually come to have a 

stabilizing effect, with its amine group interacting with the phosphate groups from the polar 

heads of the phospholipids and the remaining of the molecule interacting via hydrogen bonds 

or Van der Waals forces with the cooperative zone. A more stable structure facilitates the 

passage of energy, which explains the increase in cooperativity for this model with the 

increase in doxorubicin concentration. 

 

4.4.2. Steady-State Anisotropy 

 

Steady-state anisotropy was also measured using liposomes of the four models labeled 

with either DPH or TMA-DPH to assess the effect of increasing concentration of daunorubicin 

at 37ºC. The results of such measurements are represented in figure 28. 

Using the probe DPH, it can be seen that the normal with cholesterol membrane model 

suffers no alterations in fluidity at the physiological temperature, which is consistent with all 

the previous data. The normal and tumoral models seem to become slightly more rigid at the 

hydrophobic area at concentrations of drug up to 20 µM. This is in agreement with the 

findings through temperature-resolved anisotropy. Interestingly, above that concentration of 

drug, this effect stagnates, which seems to suggest that a saturation level is achieved, and 

that these models can only incorporate the drug up to a certain concentration, which would 

be, as mentioned, approximately 20 µM. It could perhaps be useful to try to perform 

temperature-resolved anisotropy measurements for these (or all) models again but using drug 

concentrations below 20 µM. In that situation, the measurements would be performed in 

conditions where the drug was still being incorporated and not after the membrane was 

saturated, which could allow the determination of more distinct profiles with more accurate 

phase transition temperatures and cooperativity values. 

As for the tumoral with cholesterol model, it does not suffer alterations until higher 

concentrations of drug are achieved (40 and 75 µM), at which point the membrane becomes 

more fluid. The same seems to happen to tumoral cells, which presents another biophysical 

similarity between the models designed and the cells they were designed after. 

When focusing on the more superficial area of the bilayer by attending to the anisotropy 

at 37ºC obtained for TMA-DPH-labeled cells, one can once again verify no changes in fluidity 

associated with the normal with cholesterol model. Unexpected, however, could be the fact 
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that no changes can be seen for the tumoral with cholesterol model either, which is very 

different than what is found for tumoral cells, whose membrane appears to become more 

fluid also at the polar regions. However, one must keep in mind that these are still very 

simple models compared to cells, which usually possess a variety of proteins, ions and 

molecules anchored to its surface, something that was not mimicked in this study. As for the 

normal and tumoral models, no alterations can be seen unless at higher concentrations of 

drug (40 and 75µM), at which the membrane becomes slightly more fluid. 

As such, it can be concluded that the drug daunorubicin appears to have a packing effect 

on the hydrophobic region of the phospholipids, probably at the cooperative zone, for the 

models without cholesterol, while making the membrane of the tumoral with cholesterol 

model more fluid at that region, being consistent with the findings for tumoral cells. 

Summarily, this is in accord with the idea that the drug probably is located in the 

cooperative zone while also interacting with the polar heads of phospholipids. Furthermore, 

it confirms some more similarities between the models of this study and the membranes of 

tumoral cells, which proves this study to be a great and crucial step towards the validation 

and standardized use of liposomes as model membranes in biophysical studies. 

 

 

4.5- Cell Viability 
 

To ensure that the probes and drug used did not induce a level of cytotoxicity that could 

jeopardize the results, cell viability was confirmed by counting the live cells via the Trypan 

Blue Exclusion method before and after incubation with the compounds. Although this assay 

is not a valid choice when viability is in fact the key parameter in study, since the intention 

was only to confirm that there was a high percentage of live cells even after the assays were 

finished, a simple counting method such as this was employed. 
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Figure 28 Steady-state anisotropy values found using DPH and TMA-DPH fluorescent probes on for the four 
membrane models and the tumoral cells MDA-MB-231 with no drug or under the effect of daunorubicin. 
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Figure 29 shows the percentage of cells before and after the addition and incubation for 1 

hour with the used probes. 

 

 
Figure 29 Percentage of cells counted before and after the incubation of the cells for 1 hour with the 
probes. 

The number of cells counted before the addition of any probe was normalized to 

correspond to 100%. The results show that the both of the probes appear to be innocuous, 

since the percentage of cells after incubations remains approximately the same. As such, the 

methodologies could proceed. 

Since the drugs used are cytotoxic, the assays were performed by keeping the time of 

contact between the cells and the drugs to a minimum. To ensure that the measurements 

were correctly performed, cells were counted once again after the different methods were 

employed and the results are presented in figure 30. 

 

 
Figure 30 Percentage of cells counted after the employed methodologies. The number of cells counted 
for the suspension without drug (0 µM) was normalized to represent 100%. The samples containing 20 µM 
and 40 µM of daunorubicin (for both probes) were chosen and the cells in them counted to ensure 
viability after the assays. 

As can be seen, the percentage of cells counted after the execution of the assays was 

never below 60%, and as such it can be considered that the techniques were performed 

correctly and the measurements obtained corresponded in fact to the labeled cells. 
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In both figures though, the standard deviation values can be quite high. However, one 

have to keep in mind that the counting method is very subjective, highly depending on the 

operator, the equipment used, and a number of other variables impossible to control, which 

makes this a not very precise assay. Nonetheless, it is reliable enough to guarantee that the 

techniques were correctly performed. 
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Chapter 5  

Conclusions 

Size measurements confirmed that the models were prepared as intended, with liposome 

diameters being close to 100 nm. Neither drug seemed to affect liposome size. Zeta potential 

confirmed that normal model membranes had a surface charge close to neutral and tumoral 

model membranes were slightly negatively charged, which is consistent with what happens 

naturally. Increase in drug concentration made the potential less negative, meaning that the 

drug, positively charged at the pH used, was most likely interacting with the membrane. This 

is consistent with what is found in literature since the mechanism of action of both drugs 

involves intercalating the DNA molecule, and to access the DNA the drug has to have the 

ability to cross the membrane, so a drug-membrane interaction needs to occur [7]. 

Kp determination showed that the two drugs, although very similar in structure, partition 

very differently into the different mimetic systems. The highest Kp is found for the normal 

model, since this is the simplest and therefore most homogeneous one, composed of only one 

fluid lipid that creates a quite porous membrane, which is confirmed by the fact that the 

normal model presents the lowest phase transition temperatures of all models studied. 

Partition for the two drugs decreases with the presence of cholesterol in the membrane for 

normal models, but the opposite occurs for the tumoral models. Doxorubicin partitions more 

than daunorubicin for all models except tumoral with cholesterol. 

In both models without cholesterol, daunorubicin appears to localize between the acyl 

chains of phospholipids in the membrane while still interacting through electrostatic 

interactions with the polar heads, so it appears to locate at an intermediate region. A 

previous study showed that doxorubicin’s location in DPPC models was between the acyl 

chains of the phospholipids [88]. This is an interesting finding – since doxorubicin is more 

hydrophobic, it locates in hydrophobic regions of the bilayer, while in our study we have 

found that daunorubicin, which is less hydrophobic, is able to locate between the acyl chains 

and also interact with the polar headgroup of phospholipids, which makes sense. 

Using the tumoral cells results were obtained that indicate that the drug located at a 

more superficial level, and the impairment in the entrance into the membrane might be 

related to the high complexity and variety of its components. As such, some of similarities 

could be drawn between the tumoral models and the tumoral cells, which leads to believe 

that the formulations designed in this study did a quite good job at mimicking the cell 
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membranes they intended to mimic, which is very good considering this is a first step toward 

that objective. Also very interesting is to keep in mind that we were able to prove or confirm 

that membrane location can be assessed for cells through the same techniques employed for 

liposomes and that enlightening results can be obtained.  

In terms of fluidity, the normal model with cholesterol appears to be the most rigid of all 

and remains unchanged by the drugs, while the normal model is highly fluid. Contrarily to 

what was expected, the tumoral model with cholesterol becomes more fluid at the interfacial 

or more superficial region (TMA-DPH region) with the addition of either drug fluid with the 

presence of drug, which does not happen in the tumoral model without cholesterol. The same 

is curiously found for the profiles obtained using the cells under the effect of daunorubicin, 

which further supports that the models were very good cell membrane simulators. Also, it is 

very important that profiles of anisotropy along a range of temperatures were obtaines for 

cells, which had not been described before either, and would be thought to be impossible 

due to the cells complexity. 

It is also important to note that, looking at the viability results, the techniques could be 

performed while maintained a high rate of live cells in the sample (always above 60%), which 

proves that these methodologies can continue to be employed in this sense. 

To justify the obtained results, the cholesterol might be forming microdomains with some 

of the lipids of the tumoral model, increasing the rigidity of the membrane in the areas those 

domains begin to exist, but making the remaining portion of the membrane more permeable. 

This hypothesis makes sense considering the higher partition into the tumoral with 

cholesterol model which is the most interesting one at a physiological level since it was 

designed to mimic the tumoral cell membrane. A high partition of both drugs into the 

membrane as well as the increase in membrane fluidity for this model is according to the fact 

that they are some of the most effective drugs in the treatment of cancer since a high 

partition indicates high interaction with the membrane and probably higher ability to cross 

the membrane. The fact that doxorubicin has higher partition coefficient for all the mimetic 

systems except the tumoral with cholesterol one can justify the higher severity of its side 

effects in comparison to daunorubicin [119-121]. 

Overall it appears that the models projected were a good example to study the 

interactions between these two drugs and the membrane, providing some enticing and 

clarifying information. The membrane location and fluidity studies using cells are a complete 

novelty in this field that produced interesting results, that to a certain degree allow 

validating the tumoral models in this study and can help in the future to develop even more 

accurate models that can be revolutionary to the world of membrane biophysics as we know 

it now. 

This study and follow-up work can be a big step towards the validation of liposomes as 

models for cell membranes, and in the future allow the facilitation of drug-interaction 

studies. Possible future applications would involve not only the use in research but the 

introduction of the models at an industrial level for an easier, less expensive and quicker 

development of new drugs or delivery systems for the treatment of several diseases that are 

more efficient and with fewer side effects. 
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Chapter 6  

Future Work 

In the future, membrane location studies should also be performed using the four 

liposome models and the tumoral cells for the drug doxorubicin. 

The same studies (membrane location and anisotropy) should also be performed on MCF 

10A cells, which are cells from normal breast gland tissue and, as such, the normal 

counterpart of the tumoral cells used. These studies would not only allow a comparison with 

the results obtained for the normal models with intent to improve them but also allow a 

comparison of the behaviour of the drugs in normal and tumoral biomembranes. 

It would also be interesting to determine the partition coefficient using both lines of cells 

(MDA-MB-231, tumoral, and MCF 10A, normal), which would be useful to compare with the 

findings from the other techniques. For that purpose, a protocol should be designed, since at 

the moment there is no protocol that confirms the possibility of use of the derivative 

spectrophotometry to determine the Kp using cells. 

Further ahead, it would be important to perform all of these studies in other tumoral and 

normal cell lines, since the effect of drugs varies from cell type to cell type, not only due to 

their cell membrane but also due to internal molecular processes that differ depending on 

the tissue.  

After the execution of these studies, we would be equipped to draw conclusions that 

would allow the alteration of the models in this study to further resemble the actual 

biomembranes. Eventually, with the knowledge acquired, validation of the models could be 

performed and there would henceforth be a model membrane for breast adenocarcinoma. 

With further research there could be in the future the development of models for several 

cancer types or even several diseases other than cancer. This could then allow the study of 

not only drug-membrane interactions, but also of the effect of proteins that exist inserted or 

anchored to the biomembranes using the models created, which is another very enticing and 

essential line of work.  
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Chapter 8  

Annexes 

Annex I Plotted results of the static, dynamic and Stern-Volmer constants determined using a 
regular spectrofluorimeter (left) and a plate-reading spectrofluorimeter (right. These 
constants were determined for all four models plus the tumoral cells MDA-MB-231 under the 
effect of daunorubicin for the two probes, DPH and TMA-DPH. 
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Annex II Static, dynamic and Stern-Volmer constants (Ks, KD, KSV respectively) obtained for 
the four models designed for this study plus the tumoral cells MDA-MD-231, for the two 
probes, DPH and TMA-DPH. 

  
Probes KD KS KSV 

Fluorimeter 

Normal 

DPH 24660 88583 113243 

TMA-DPH 52170 ± 4385 347275 ± 7187 399445 ± 11572 

Normal 

with 

Cholesterol 

DPH 6502 51592 58094 

TMA-DPH 7137 ± 842 55916 ± 6996 63053 ± 6154 

Tumoral 

DPH 85352 ± 530 235949 ± 2649 321301 ± 2120 

TMA-DPH 53499 ± 5592 240108 ± 7276 293607 ± 1684 

Tumoral 

with  

Cholesterol 

DPH 44208 ± 629 187358 ± 4229 231567 ± 3600 

TMA-DPH 56812 ± 2631 76351 ± 1528 133164 ± 4159 

Plate 

Reader 

Normal 

DPH 24 660 88583 113243 

TMA-DPH 52170 ± 4385 266284 ± 25731 318454 ± 21346 

Normal 

with 

Cholesterol 

DPH 6389 ± 161 54851 ± 3990 61240 ± 4151 

TMA-DPH 7137 ± 842 40624 ± 1995 47762 ± 2837 

Tumoral 

DPH 85352 ± 530 222465 ± 14996 307817 ± 15526 

TMA-DPH 53499 ± 5592 204264 ± 58087 257763 ± 63679 

Tumoral 

with  

Cholesterol 

DPH 44208 ± 629 142125 ± 5135 186333 ± 5764 

TMA-DPH 56812 ± 2631 82106 ± 2084 138918 ± 6798 
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Annex III Bimolecular constant (Kq) obtained for the four models designed for this study plus 
the tumoral cells MDA-MD-231, for the two probes, DPH and TMA-DPH. plus the tumoral cells 
MDA-MD-231, for the two probes, DPH and TMA-DPH. 

Method Model Probe Kq (x 1E+13) 

Fluorimeter 

Normal 
DPH 1.4 ± 0.6 

TMA-DPH 9.68 ± 0.05 

Normal with Cholesterol 
DPH 0.6 

TMA-DPH 0.85 ± 0.07 

Tumoral 
DPH 3.9 ± 0.1 

TMA-DPH 8.01 ± 0.09 

Tumoral with  
Cholesterol 

DPH 2.49 ± 0.03 

TMA-DPH 2.21 ± 0.08 

Plate 
Reader 

Normal 
DPH 1.3 

TMA-DPH 7.7 ± 0.7 

Normal with Cholesterol 
DPH 0.60 ± 0.04 

TMA-DPH 0.65 ± 0.05 

Tumoral 
DPH 3.7 ± 0.3 

TMA-DPH 7 ± 2 

Tumoral with  
Cholesterol 

DPH 2.01 ± 0.07 

TMA-DPH 2.3 ± 0.1 

Tumoral Cells 
DPH 0.48 ± 0.01 

TMA-DPH 3.8 ± 0.5 

 


