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Resumo 

 

O sistema nervoso periférico (SNP) é composto por nervos sensoriais e motores que, 

respectivamente, detectam sinais internos ou externos, como dor e calor, e estimulam tecidos 

efectores como glândulas e músculos para realizar uma função ou reflexo. Um SNP funcional 

depende inteiramente da integridade da relação entre o axónio e a célula de Schwann (SC), 

sendo esta essencial para o próprio desenvolvimento e para a manutenção a longo prazo dos 

nervos periféricos. Assim, a disrupção da comunicação axo-glial pode estar envolvida na 

patogénese de neuropatias periféricas, como a doença de Charcot-Marie-Tooth, neuropatias 

diabéticas e esclerose lateral amiotrófica, que apresentam alta prevalência a nível mundial. Por 

essa razão, é imperativo explorar mais profundamente a fisiologia e a fisiopatologia do SNP, a 

fim de que novos caminhos terapêuticos se abram para modular a progressão dessas doenças. 

Uma potencial nova função das SCs é a de fornecer suporte metabólico e energético ao 

axónio subjacente. Ambas as células no SNP expressam transportadores de monocarboxilatos 

(MCTs) através dos quais substratos altamente energéticos, como o lactato, podem ser trocados. 

Embora a distribuição celular dos diferentes MCTs sugira um tráfego metabólico da SC para o 

axónio, a sua caracterização funcional é ainda desconhecida. Para além disso, não é claro em 

que medida o suporte metabólico é necessário. Será continuamente fornecido pela glia ou 

apenas desencadeado por necessidades energéticas mais elevadas dos axónios, como durante 

a atividade neuronal? 

Para preencher a lacuna existente na área, nós colocamos a hipótese de que as SCs 

detetam a atividade neuronal via receptores de neurotransmissores, desencadeando cascatas 

de sinalização intracelular e potencialmente aumentando o importe/a geração de lactato. Este 

monocarboxilato pode então ser transferido para o axónio através de MCTs para a produção de 

energia. 

Com este trabalho, nós mostrámos que a breve exposição ao glutamato desencadeia a 

ativação das vias de sinalização ERK e AKT/mTOR/S6RP em culturas primárias de SCs, 

principalmente quando são previamente expostas a neuregulina-1. Essas respostas 

intracelulares podem preceder ajustes na sua atividade metabólica. Para avaliar potenciais 

variações nos níveis de lactato intracelular, começámos a estabelecer um ensaio baseado em 

FRET usando células HEK293T e uma sonda de deteção de lactato codificada geneticamente, a 

Laconic. O conhecimento assim obtido será no futuro aplicado a SCs. Finalmente, observámos 

preliminarmente que a ablação de MCT1 ou MCT4 especificamente em SCs não parece 

perturbar a estrutura nem a função do SNP, o que pode dever-se a uma expressão 

compensatória de outros transportadores. 

 

 

Palavras-chave 

Sistema nervoso periférico; Célula de Schwann; Glutamato; Lactato; Transportadores de 

monocarboxilatos  
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Abstract 

 

The peripheral nervous system (PNS) is composed of sensory and motor nerves that, 

respectively, detect internal or external signals such as pain and heat, and stimulate effectors like 

glands and muscles to perform a function or reflex. A functional PNS relies entirely on the integrity 

of the axon-Schwann cell (SC) unit and the crosstalk between the two partners is essential for 

proper development and long-term maintenance of peripheral nerves. Thus, impaired SC-axon 

communication may be involved in the pathogenesis of peripheral neuropathies, such as Charcot-

Marie-Tooth disease, diabetic neuropathies and amyotrophic lateral sclerosis, which show high 

prevalence worldwide. For that reason, it is imperative to explore more deeply the physiology and 

pathophysiology of the PNS, so that new therapeutic avenues open to modulate the progression 

of these diseases. 

One potential novel role of SCs is to provide metabolic and energetic support to the 

underlying axon. Both cells in the PNS express monocarboxylate transporters (MCTs) through 

which high energetic substrates, such as lactate, can be exchanged. Although the cellular 

distribution of different MCTs suggests SC-to-axon metabolic traffic, their functional 

characterization is still missing. Furthermore, it is not clear to what extent metabolic support is 

required. Is it continuously provided by glia or only triggered by higher energy demands of axons, 

such as during neuronal activity? 

 To fill the existing gap in the field, we hypothesized that SCs detect neuronal activity via 

receptors for neurotransmitters, triggering intracellular signaling cascades and potentially 

increasing lactate import/generation. This monocarboxylate may then be transferred to the axon 

through MCTs for energy production. 

 Here, we show that short exposure to glutamate triggers the activation of ERK and 

AKT/mTOR/S6RP signaling pathways in primary cultured SCs, particularly when primed with 

neuregulin-1. These intracellular response may precede adjustments in their metabolic activity. 

To evaluate potential variations in intracellular lactate levels, we started to establish a FRET-

based assay using HEK293T cells and a genetically encoded lactate-sensing probe, Laconic. The 

knowledge obtained with this will be applied to SCs in the future. Finally, we preliminarily observed 

that SC-specific ablation of either MCT1 or MCT4 does not seem to perturb PNS structure and 

function, which could be due to a compensatory expression of other transporters. 

 

 

Keywords 

Peripheral nervous system; Schwann cell; Glutamate; Lactate; Monocarboxylate transporter 
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1. Introduction  

 

1.1. Peripheral Nervous System: Function, Structure and Development 

 

 The peripheral nervous system (PNS) contains all the nerves and ganglia that lie outside 

the brain and spinal cord, structures that constitute the central nervous system (CNS). While 

neuronal cell bodies reside within the CNS or the peripheral ganglia, the axons bundle together 

to build up the nerves. Some of them are composed by sensory fibers, which transmit to the CNS 

signals from the internal or external environment that are detected by sensory receptors (e.g. 

mechanoreceptors in the skin). After being processed in the CNS, the output is carried by motor 

neurons to produce a response upon activation of effector organs, such as muscles and glands. 

Therefore, the PNS functions as the bond between the CNS and the periphery of the body 

(Kandel, Schwartz & Jessel, 2000). 

Peripheral nerves are organized in a way that three tissue compartments can be 

distinguished (Figure 1). Endoneurium is the innermost part, consisting of connective tissue 

found between individual axons within a fascicle. Bundles of multiple axons are surrounded by a 

sheath of fibroblasts and collagenous connective tissue, called perineurium, which functions as a 

blood-nerve barrier. The epineurium embeds these structures in a collagenous matrix where 

adipose tissue, elastin fibers and vascular endothelial cells can also be found (Jessen & Mirsky, 

1999). 

 

     

Figure 1. Schematic representation of the structure of peripheral nerves. As found in (Kisner & Colby, 

2012) 
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The structure and function of peripheral nerves is ensured by the intimate interactions 

established between neurons and glial cells. During development, both cell types derive from the 

neural plate, which is later divided into neural tube and neural crest. The former differentiates into 

the brain and spinal cord and into the motor neurons of the PNS. Neural crest cells, in turn, migrate 

away to the periphery to give rise to all sensory neurons and glial cells of the PNS (Jessen & 

Mirsky, 2005). 

Schwann cells (SCs) are the major type of peripheral glial cells and the counterpart of the 

oligodendrocytes in the CNS. Both cells spirally extend their cell membrane to produce myelin 

around axons, even though this process is differently regulated. Besides SCs, peripheral glial 

cells include satellite cells enveloping cell bodies in the ganglia; perisynaptic SCs at 

neuromuscular junctions; terminal SCs at sensory axons; olfactory ensheathing cells engulfing 

axons of the olfactory nerve; and enteric glial cells surrounding autonomic ganglia of the gut 

(Jessen, 2004). 

In the PNS, the maturation of neural crest cells generates SC precursors – found at the 

embryonic day (E) 12/13 in mouse nerves (Jessen & Mirsky, 2005). Their differentiation around 

E13-15 in mice gives rise to immature SCs, which are found ensheathing numerous axons of 

mixed caliber. A fate decision point is reached perinatally, in which immature SCs undergo a 

morphogenetic process known as radial sorting that leads to the formation of myelinating and 

non-myelinating SC that ensheath large and small diameter axons, respectively (Feltri et al., 

2016).  

 

Figure 2 – Schematic representation of the progression of Schwann cell lineage. As found in (Jessen & 

Mirsky, 2005). 

 

At the moment of decision between myelinating versus non-myelinating phenotype, SC 

metabolism and gene expression are tightly modulated, in particular by the axons with which they 

are associated. Among several neuronal growth factors, neuroregulin-1 (Nrg1) plays a major role 

at this stage of development, instructing the survival, migration, proliferation and differentiation of 

SC-lineage cells (Nave & Salzer, 2006). This occurs through the signaling of Nrg1 type III via 

ErbB2/ErbB3 receptors on the glial membrane, which triggers SC’s intracellular pathways that 
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target, among others, ERK and AKT (Harrisingh et al., 2004; Lyons et al., 2005; Ogata et al., 

2004).  

Thinner axons (diameter < 1μm), which display less Nrg1 at their surface, are ensheathed 

together by the cytoplasm of non-myelinating SCs into Remak bundles (Griffin & Thompson, 

2008; Sherman & Brophy, 2005). Since ion channels are diffusely distributed along the 

unmyelinated fibers, the signal transmission in Remak bundles is continuous and slow. In large 

caliber axons (diameter > 1μm), in turn, Nrg1 acts as a positive regulator of myelin-sheath 

thickness in function of axon size (Michailov et al., 2004). Each axonal segment is then 

enwrapped by myelin sheath provided by a single myelinating Schwann cell (Feltri, Poitelon, & 

Previtali, 2016). Interestingly, Nrg1 overexpression in neurons instructs non-myelinating SCs to 

myelinate de novo the thin axons with which they are associated (Taveggia et al., 2005). 

Moreover, a notable feature of the PNS is that fully differentiated SCs retain plasticity 

throughout life and can readily revert to a phenotype similar to that of immature Schwann cells, a 

phenomenon that typically occurs in response to nerve injury (Ceci et al., 2014; Morrison et al., 

1999). Nrg1 also appears to promote SC de-differentiation in injured nerves (Zanazzi et al., 2001). 

Although solving similar tasks, the maturation of Schwann cells and oligodendrocytes is 

distinct and modulated by different factors (Nave & Werner, 2014). Indeed, Nrg1/ErbB signaling 

is not necessary for CNS myelination to occur and oligodendrocytes only require physical 

association with axons at the last step of maturation (Brinkmann et al., 2008). Therefore, the 

regulation of myelination by neurons seems to be less pronounced in the CNS. 

There are also clear differences between the CNS and the PNS with respect to the 

composition of myelin. The most abundant proteins of peripheral myelin are the specific 

glycoproteins myelin protein zero (MPZ/P0) and protein 2 (Pmp2), whereas CNS myelin is rich in 

proteolipid protein (PLP) (Jahn et al., 2009; Patzig et al., 2011). Moreover, MBP is not required 

for PNS myelination but is rate limiting for CNS myelination (Kirschner & Ganser, 1980; Readhead 

et al., 1987). 

Myelin produced by either SCs or oligodendrocytes is repeatedly wrapped and 

compacted around segments of axons to electrically insulate them (Hildebrand et al., 1993; 

Webster, 1971). During myelination, the cytoplasmic leaflets of the glial membrane are fused 

together forming dark dense lines visible in electron microscopy, which alternate with intraperiod 

lines of the myelin sheath (Scherer & Arroyo, 2002). Nodes of Ranvier consist of the short regions 

that separate consecutive myelinated segments (internodes) and where action potentials are 

generated (Salzer, 2003). This way, myelination provides the basis for the rapid and energy 

efficient saltatory impulse propagation required for motor, sensory, and cognitive functions of the 

vertebrate nervous system (Nave & Werner, 2014).  

To efficiently support this role, axons and glia form a symbiotic unit where distinct 

structural domains are organized (Salzer, 2003) (Figure 3). At each end of the internode, a 

paranodal junction separates the nodes of Ranvier from a juxtaparanodal region, where Na+ 

channels and K+ channels are respectively clustered (Buttermore et al., 2013). A continuous 

network of non-compact myelin connects the outermost (abaxonal) region of the myelin sheath, 



4 – Ana Temporão | Masters Dissertation 
 

where most glial organelles and cytosolic components are found, to the innermost (adaxonal) 

layer, which is in direct contact with the narrow periaxonal space that separates axons from the 

myelin sheath (Nave, 2010b). This channel-like system is additionally shaped by Cajal bands, 

positioned underneath the SC plasma membrane, and by the lumina of the paranodal loops and 

Schmidt-Lanterman incisures, both comprising gap-junction connections between adjacent 

membranes (Nave, 2010b). SLIs are exclusive structures of the PNS, consisting on local stacks 

of non-compacted myelin radially disposed around the axon (Nave, 2010b). Hence, although 

axons are almost completely surrounded by myelin, the intercellular exchange of nutrients, ions 

and other small molecules can take place in this system of non-compacted myelin that connects 

the periaxonal space to the glial soma (Nave, 2010b). However, the physiological purposes for 

the existence of this structure are not completely understood.  

 

 

Figure 3 – Schematic representation of a myelinated axon – with the unrolled sheath of SC shown on the 

right, where several compartments can be distinguished. As found in (Nave, 2010b). 

 

Despite myelination playing a valuable role on the proper function of the vertebrate 

nervous system, the significance of neuron-glia interactions goes much beyond the benefits 

provided by myelination itself. Indeed, glial cells also play a critical role on the survival, function 

and regeneration of neurons, as they regulate their structural integrity, provide trophic and 

metabolic support, and confer neuroprotection (Samara et al., 2013).  

  



FEUP | ICBAS – 5 
 

1.2. Metabolic communication between SCs and peripheral axons  

 

The complex functions and large dimension of the nervous system require fast neuronal 

communication. In vertebrates that is possible by means of myelination, which allows quick and 

efficient impulse propagation as areas of regeneration of action potentials are restricted to very 

short regions on the axonal surface (Nave, 2010a). However, myelination itself creates a nearly 

complete physical barrier that deprives axons from the free access to extracellular metabolites 

(Nave, 2010b). Nodal uptake of metabolites might not be sufficient to meet their energy demands, 

at least in fibers with longer internodes, larger caliber, or higher firing frequencies (Hirrlinger & 

Nave, 2014).  

Axons can connect the neuronal cell body to target cells so far away that more than 99% 

of the neuronal mass is axonal, as it is the case for sciatic nerve fibers (Nave, 2010b). The length 

and volume of neurons are often further increased by axonal ramifications (Matsuda et al., 2009). 

Consequently, distal regions of long axons receive limited metabolic resources from the neuronal 

soma, thus requiring the exchange of metabolites with the surrounding space (Nave, 2010b). 

Indeed, the assumption that long axons may require additional metabolic support is compatible 

with the progressive length-dependent loss of axons observed in peripheral neuropathies 

(Spencer et al., 1978).  

Although myelin was long thought to have a passive function in the nervous system, it is 

now well-recognized that the function and structural integrity of neurons depend on their 

continuous and reciprocal interaction with glial cells (Samara et al., 2013).  

A growing body of evidence suggests that myelinating glial cells are able to provide 

trophic and metabolic support to axons to compensate for their physical insulation (Pellerin et al., 

1998; Lee et al., 2012; Saab et al., 2013). To that end, the channel-like system of non-compacted 

myelin may serve as the path through which metabolites and trophic factors flow in direction to 

the adaxonal layer of myelin (Nave, 2010b). Notwithstanding with this potential functionality of the 

myelin structure, this function is presumably held by all axon-associated glial cells, since non-

myelinating Schwann cells were shown to also protect the survival of sensory axons (Chen et al., 

2003). 

The first evidence for this glial function emerged from studies in the CNS, which gave rise 

to the astrocyte-neuron lactate shuttle hypothesis (ANLSH) (Pellerin et al., 1998). Blood-borne 

glucose represents the major energy substrate for the nervous system, being taken up by 

astrocytes in the CNS (Pellerin, 2003). Glucose is unlikely to be exported, since it is immediately 

phosphorylated by hexokinase, being instead used to produce pyruvate/lactate by glycolysis 

(Hirrlinger & Nave, 2014). Alternatively, astrocytes are enzymatically equipped to store it as 

glycogen, likely to be used under conditions of energy deprivation (Brown & Ransom, 2007; Chih 

et al., 2001). Lactate is then transferred to neurons and converted back to pyruvate, which 

undergoes oxidative metabolism in mitochondria to generate high amounts of ATP (Pellerin et al., 

1998).  

The ANLSH has been refined and the revised hypothesis includes the participation of 

oligodendrocytes in the shuttling of lactate in the CNS (Funfschilling et al., 2013; Lee et al., 2012; 
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Rinholm et al., 2011). Oligodendrocytes are able to import glucose either from the extracellular 

space or from astrocytes (with whom they are connected by connexins) to produce lactate 

(Rinholm & Bergensen, 2012). During myelination, they may consume it for energy production, 

as well as for lipid synthesis (Rinholm & Bergersen, 2014; Sánchez-Abarca et al., 2001). In mature 

CNS, glycolytic metabolism may yield sufficient energy to support oligodendrocyte survival and 

lactate is thought to be exported to the periaxonal space to metabolically support the underlying 

axon (Funfschilling et al., 2012; Lee et al., 2012; Rinholm & Bergersen, 2012). 

Since the ANLSH emerged, a growing amount of studies have been done to explore the 

energy metabolism in the CNS, which is currently believed to be distributed across the three 

abovementioned cellular compartments (Amaral et al., 2013). Although less work has been 

devoted to PNS metabolism, emerging data also points to a division of metabolic activities 

between SCs and neurons (Brown et al., 2012; Chen et al., 2003; Viader et al., 2011). The 

exchange of energy substrates in the nervous system relies on the specific expression of 

connexins, glucose transporters (GLUT), monocarboxylate transporters (MCTs) and enzymes 

according to the metabolic tasks of the cells (Hirrlinger & Nave, 2014) (Figure 4). 

Regarding the CNS, glucose enters the brain parenchyma via GLUT1 at the blood-brain 

barrier and is taken up by astrocytes through GLUT1, but also by oligodendrocytes and neurons 

through GLUT1 and GLUT3, respectively (Maher et al., 1994). Similarly in the PNS, GLUT1 is 

present in the perineurium and in the abaxonal side of Schwann cells, and GLUT3 mediates the 

uptake of glucose by the axon (Jensen et al., 2014). 

Lactate shuttling requires particularly high lactate dehydrogenase (LDH) activity and rapid 

intercellular lactate transport (Hui et al., 2017). Lactate can only be used as a source of energy if 

oxidized to pyruvate via lactate dehydrogenase. Neurons express the LDH isoform LDH1, which 

preferentially uses lactate as substrate, whereas astrocytes express mostly LDH5, typically 

present in lactate-producing tissues (Bishop et al., 1972; Pellerin et al., 1998). The different 

distribution of these isoenzymes supports the idea that astrocytes might act as lactate sources 

for neurons to use it as energy substrate, in agreement with the ANLSH. 

 

 

Figure 4. Graphic summary of reactions involved in cellular energy metabolism in the nervous system. 
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Lactate is exchanged between cells through MCTs. These transmembrane proteins 

perform also the proton-coupled transport of other monocarboxylates, namely pyruvate and 

ketone bodies, although at much lower extent (Halestrap, 2012). Four MCT types were 

functionally characterized, showing different affinities for monocarboxylates: MCT2 has a high 

affinity; MCT1 and MCT3 show an intermediate to high affinity, and MCT4 a low affinity 

(Bergersen et al., 2001; Grollman et al., 2000). Their selective presence in tissues tends to be 

related with their glycolytic versus oxidative phenotype. In the CNS, oligodendrocytes, neurons, 

and astrocytes predominantly express MCT1, MCT2, and MCT4, respectively (Lee et al., 2012). 

This cellular distribution of MCTs appear to be correlated with their main metabolic properties, 

which is consistent with the lactate shuttle hypothesis (Morrison et al., 2013).  

Regarding the presence of MCTs in the PNS, our group has demonstrated the expression 

of MCT1, MCT2 and MCT4 by SCs, while MCT1 and MCT2 were found in mouse DRG neurons 

(Domènech-Estévez et al., 2015). A higher level of MCT1 expression was observed in maturing 

PNS, which suggested an increased need of monocarboxylates, presumably lactate, during that 

time (Domènech-Estévez et al., 2015). Regarding their spatial distribution, MCT1 was found in 

Schmidt-Lanterman incisures (SLIs) and in paradonal regions, both Cx32-rich structures 

composed by non-compacted myelin (Balice-Gordon et al., 1998; Domènech-Estévez et al., 

2015). In turn, MCT4 was localized in the perinuclear and abaxonal compartments of mSCs, 

suggesting its presence in Cajal bands and in the outer cytoplasmic mesaxonal line (Domènech-

Estévez et al., 2015). Altogether the available data indicate that each MCT isoform shows a 

preferred cellular distribution in CNS matching metabolic phenotype of glia and neurons 

(Domènech-Estévez et al., 2015). In the PNS, MCTs are expressed in different compartments of 

the SC-axon complex, potentially allowing lactate transport following a concentration gradient.  

A schematic view of the main neuron-glia metabolic interactions in the CNS and PNS are 

shown in Figure 5. 
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Figure 5. Schematic representation of the metabolic communication between neurons and glial cells in the 

CNS (A) and in the PNS (B). 
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1.3. Implications of disrupted SC-axon crosstalk  

 

Several evidences for an axon-glia metabolic communication come from studies with 

animal models exhibiting axonal degeneration independently of myelin loss. Regarding the CNS, 

mice lacking oligodendroglia-specific genes PLP1 (Garbern et al., 2002) and CNP (Lappe-Siefke 

et al., 2003) did not show extensive signs of impaired myelination but presented axonal 

degeneration. In the PNS, mouse mutants for the myelin-associated glycoprotein (MAG) 

presented axonal degeneration and decreased axon caliber in sciatic nerve fibers, despite their 

apparently normal myelination (Li et al., 1994). Moreover, SC-specific deletion of the metabolic 

regulator liver kinase B1 (LKB1) led to axon degeneration as a consequence of perturbed energy 

homeostasis independently of dysmyelination (Beirowski et al., 2014). 

Given that lactate was proposed to be a crucial fuel for metabolic support to axons, it is 

not surprising that disrupting MCT1-mediated transfer of lactate from oligodendrocytes led to 

axonal damage (Lee et al., 2012). Importantly, in an in vitro experiment, the addition of free lactate 

to the medium rescued MCT1 blockage and ameliorated axonal phenotype, showing that 

neurodegeneration was due to decreased lactate export from oligodendrocytes and not import 

into neurons (Lee et al., 2012). 

Similarly, axonal dysfunction in central and peripheral neuropathies may occur through 

myelin-unrelated mechanisms such as the failure of metabolic support.  

Amyotrophic lateral sclerosis (ALS) is characterized by a progressive loss of motor 

neurons in the brain and spinal cord, also manifesting degeneration of peripheral fibers (Riva et 

al., 2014). Reduced levels of MCT1 expression in oligodendroglia were observed in superoxide 

dismutase 1 (SOD1)-mutant mice, a model of ALS and in brain samples from ALS patients (Lee 

et al., 2012). Together with the failure of mitochondrial bioenergetics (Ferri et al., 2006) and 

perturbations in axonal transport (Marinkovic et al., 2012), the lack of glial supply of lactate to 

motor neurons may also potentially be involved in the pathogenesis of ALS (Beirowski, 2013). 

Whether MCT dysfunction compromising SC-axon metabolic coupling is implicated in ALS 

pathogenesis is still unknown. 

Peripheral neuropathies are a common cause of morbidity in elderly populations, 

representing a significant economic and societal burden (Hughes, 2002). The etiology for this 

type of peripheral neuropathies goes from metabolic irregularities (e.g. diabetic neuropathy) and 

genetic mutations (e.g. Charcot-Marie-Tooth diseases) to inflammation (e.g. demyelinating 

polyneuropathies) and infection (e.g. leprosy) (Samara et al., 2013).  

Heritable peripheral neuropathies are collectively designated as Charcot-Marie-Tooth 

diseases (CMT). Most of the genes mutated in CMT play a role in maintaining the structure or 

function of the axon-SCs complex formed by and motor/sensory neurons (Saporta & Shy, 2014). 

CMT neuropathies cause distal muscle weakness and atrophy, and they can be roughly divided 

into demyelinating (CMT1), axonal (such as CMT2) and more rare intermediate variants 

(Timmerman et al., 2013). As in some forms of CMT2 disease the neurodegeneration occurs in 

the absence of detectable changes in myelin integrity, the disruption of metabolic support of the 
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peripheral neurons may also be implicated in the pathogenesis of this CMT variant (Timmerman 

et al., 2013). This hypothesis is further supported by the observation that many types of peripheral 

neuropathies exhibit deficits in axonal energy, such as mitochondrial dysfunction, as a common 

feature (Beirowski et al., 2014; Viader et al., 2011).  

In order to develop new therapeutic approaches to treat or at least improve the quality of 

life of people suffering from these diseases, it is crucial to explore the metabolic SC-axon 

communication in physiological and pathological conditions. 

 

 

  



FEUP | ICBAS – 11 
 

1.4. Aim, Hypothesis and Strategy 

 

Both neurons and glia play critical roles on nervous system homeostasis, and 

abnormalities in their relationship are at the core of innumerous neuropathic disorders. The 

delivery of high-energy substrates from glial cells to neurons via MCTs may be one of the most 

important events underlying their communication. Although much work has been done to explore 

CNS metabolism, comprehensive knowledge regarding the physiological relevance of glia-axon 

metabolic support and the role of MCTs in the PNS is still missing. 

Therefore, the aim of this master’s thesis is:   

1. To explore SCs’ metabolic adaptations to neuronal cues, in particular lactate flow and 

production; 

2. To study the role of monocarboxylate transporters in SCs in vivo. 

 

Firstly, we hypothesized that extrasynaptically released neurotransmitters interact with 

receptors in SCs, triggering the activation of certain signaling pathways associated with the 

reprogramming of their metabolic status. We believe that it would enhance lactate uptake and/or 

glycolytic metabolism leading to increased intracellular levels of lactate. This monocarboxylate 

would then be shipped to the periaxonal space and taken up by the axon through MCTs, finally 

undergoing oxidative metabolism to provide the energy needed for signal transmission along the 

axon. 

 To test these hypotheses, we elaborated a strategy divided into in vitro studies and in 

vivo approaches. First, we intended to evaluate whether signaling pathways reported to precede 

metabolic shifts are activated in cultured SCs in response to glutamate. To do that, we compared 

the phosphorylation levels of proteins involved in these pathways between stimulated and non-

stimulated cultures using Western Blot. Additionally, we planned to monitor the intracellular levels 

of lactate in SCs upon glutamate exposure, by performing continuous FRET imaging of cultured 

SCs expressing a lactate-sensitive probe. Lastly, we aimed to characterize conditional knock-out 

mouse models where MCT1 or MCT4 were specifically deleted in SCs to study their physiological 

role in vivo and their importance for axon-SC metabolic communication. The validation of the 

mouse models and the effects of MCT depletion were assessed by immunohistochemistry and 

quantitative PCR, among others. 

 A schematic summary of our hypotheses and strategy is shown in Figure 6. 
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2. Materials and Methods 

 

2.1. Reagents 

 

Buffers and Solutions 

Lysis buffer (for protein): 80mM TrisHCl (Duchefa Biochemie, T1513.1000); 5 mM EDTA (Sigma-

Aldrich, 101520387), 5% SDS (Sigma-Aldrich, 101944022), 1 mM NaF (Sigma-Aldrich, S7920), 

1 mM NaVO4 (AppliChem, A2196.0005) and protease inhibitor cocktail 1X (complete Mini-EDTA-

free tablets; Roche, 11836170001) 

Running buffer: 25 mM Tris base (Sigma, 101776239, USA), 192 mM glycine (AppliChem, 

A4554.5000) and 0.1% SDS (AppliChem, A3942.1000) in distilled water 

Transfer buffer: 25 mM Tris base (Sigma, 101776239), 192 mM glycine (AppliChem, 

A4554.5000), and 20% methanol (Honeywell, 24229-2.5L-R) in distilled water 

Tris-buffered saline (TBS): 20 mM Tris base (Sigma, 101776239) and 150 mM NaCl (Honeywell, 

10314835) in distilled water, pH 7.5 

Blocking buffer (for WB): 5% non-fat dried milk (AppliChem, A0803.1000) in TBS 

TBS Tween: 0.05% Polysorbate 20 (Duchefa Biochemie, P1362.1000) in TBS 

Phosphate buffer saline (PBS): 137mM NaCl (Honeywell, 10314835), 2.7mM KCl (VWR, 

26764.260), 10mM Na2PO4 (Sigma, S-0751), 1.7mM KH2PO4 (VWR, 26764.260), pH7.5 

Krebs-Ringer-HEPES (KRH) buffer: 112mM NaCl (Honeywell, 10314835), 1.25mM CaCl2 

(Sigma-Aldrich, 10314835), 1.25mM MgSO4 (Sigma-Aldrich, 101928373), 10mM HEPES 

(AppliChem, A3724.0100), 24mM NaHCO3 (Merck, 1.06329.0500), 5mM KCl (VWR, 26764.260) 

in distilled water 

Lysis Buffer (for DNA): 0.5 mg/mL Proteinase K (Merck, 1.24568) added to 100mM NaCl 

(Honeywell, 10314835), 50mM Tris-HCl pH8.0, 100mM EDTA (Sigma-Aldrich, 101520387), and 

1% SDS (Sigma-Aldrich, 101944022) 

Phosphate buffer (PB) 0.1M: Na2PO4.2H2O (Honeywell, 10314743), 0.1M NaH2PO4 anhydrous 

(Sigma-Aldrich, RDD007) in distilled water, pH7.2 

Zamboni fixative: 2% paraformaldehyde (PFA; AppliChem, A3813.0500) with 15% Picric Acid 

(Sigma-Aldrich, 239801) in PB, pH7.3 

 

Cell culture 

Poly-L-Lysine (PLL) coating:  0.1 mg/ml PLL (Sigma, P1274) in PBS 



14 – Ana Temporão | Masters Dissertation 
 

SC culture medium: DMEM 1X + GlutaMAX (Gibco, 61965-026) supplemented with 10% fetal 

bovine serum (FBS; Gibco, 16000-044), 50 U/ml penicillin, 50 µg/ml streptomycin (Gibco, 

15070063), 4 μM forskolin (LC labs, 66575-29-9), and 1.25 nM EGF domain NRG1b1 (R&D 

Systems, 396-HB). DMEM contains 0.4 mM glycine. 

Bovine pituitary extract (Lonza Biosciences, CC-4009) (working solution: 21mg/mL) 

Glutamate: L-Glutamic acid monosodium salt hydrate (Sigma-Aldrich, 1002218638) 

HEK293T culture medium: DMEM 1X + GlutaMAX (Gibco, 61965-026), 10% FBS (Gibco, 16000-

044), 50 U/ml penicillin, 50 µg/ml streptomycin (Gibco, 15070063), 1X Non-Essential Amino Acids 

solution (Gibco, 11140050) and 1 mM Sodium Pyruvate (Gibco, 11360). 

 

2.2. Glutamate stimulation of primary cultured SCs 

 

Cell culture 

Rat Schwann cells were obtained from sciatic nerves, extracted from 1-3 days old 

Sprague Dawley rats, and prepared as previously described (Brockes et al., 1979).  

Cells were plated in PLL-coated 6 cm Petri dishes, at a starting density of 4 million 

cells/dish, maintained in SC culture medium and passaged no more than 6 times. 

 

Immunoblot analysis of cell signaling 

Cultures were rinsed twice in PBS and exposed to starving and stimulation media as 

described in detail in the ‘Results and Discussion’ section.  

After stimulation, cells were rinsed twice in PBS, lysed with 150 μL lysis buffer, and 

scraped with a plastic spatula. Lysates were collected, further homogenized in the Tissue Lyser 

II (Qiagen) with steel beads and centrifuged 20 min at 13000g in Centrifuge 5415D (Eppendorf). 

Protein concentration was estimated for each cell lysate by PierceTM bicinchoninic acid 

assay (BCA; Thermo Scientific, 23225) and absorbance was determined at 562 nm using 

PlateReader (Biotek). 

Equivalent amounts of protein were loaded into a 10% SDS-PAGE gel, along with 

molecular weight marker (Precision Plus Protein Standards; BIO-RAD, 161-0373). Proteins were 

electrotransferred to nitrocellulose membranes. Membranes were blocked for 1h with blocking 

buffer, incubated overnight at 4ºC with primary antibodies, and with secondary antibodies for at 

least 1h20 at room temperature (RT) (Table 1). Immunoblots were analyzed using the LI-COR 

Odissey system (Biosciences) as recommended by the company. The results were expressed as 

the ratio of phopsphrylated/total protein, following the normalization to tubulin. 
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Table 1. List of primary and secondary antibodies used for Western Blot. 

Primary antibodies 

Antigen Animal of origin Dilution Product reference 

P-AKT (S473) Rabbit 1:1000 Cell Signaling, 3787 

P-ERK (T202/Y204) Rabbit 1:1000 Cell Signaling, 9101 

P-S6RP (S235/236) Rabbit 1:1000 Cell Signaling, 2211 

AKT Rabbit 1:1000 Cell Signaling, 9272 

ERK Rabbit 1:1000 Cell Signaling, 9102 

S6RP Rabbit 1:1000 Cell Signaling, 2217 

Tubulin Mouse 1:5000 Cell Signaling, 3873 

Secundary antibodies 

Antigen Conjugated fluorophore Animal of origin Dilution Product reference 

Rabbit IgG IRDye® 800CW Goat 1:10000 LI-COR 925-32211 

Mouse IgG IRDye® 680RD Donkey 1:10000 LI-COR 925-68072 

 

2.3. FRET-based intracellular lactate measurements 

 

Approximately 40 000 HEK 293T cells (Thermo-Fisher Scientific) were plated onto PLL-

coated 18 mm coverslips, and transfected 48h later with LipoD293 (SignaGen) and 0.75mg of 

Laconic DNA, according to the indication of the manufacturer (San Martín et al., 2013).  

24h after transfection, cells were imaged at the Advanced Light Microscopy Facility 

(Science for Life Laboratory, Stockholm, Sweden) using a 10x air objective, in the absence of 

atmospheric control.  

Cells were exposed to different solutions prepared in KRH buffer, as detailed in ‘Results 

and Discussion’ section, at a perfusion temperature of 37ºC. Laconic behavior at each condition 

was monitored during 5 minutes, and data was finally presented as mTFP/Venus fluorescence 

ratio in function of the time, normalized to the first fluorescence ratio acquired at steady-state. 

 

2.4. Characterization of the mouse models 

 

Animals 

Conditional knockout (cKO) mice expressing Cre recombinase under the promoter for P0 

and floxed MCT1 or MCT4 alleles were provided by our collaborator Dr. Luc Pellerin’s group at 

the University of Lausanne, Switzerland. The P0-Cre line is commercially available from Jackson 

Labs (B6N.FVB-Tg(Mpz-cre)26Mes/J) (M. A. Feltri et al., 1999). The floxed lines were developed 

by Cyagen (Switzerland). 
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Ablation of MCT1 expression is driven by the excision of exon 5 of gene SLC16A1. In 

turn, deletion of MCT4 expression occurs through the elimination of exons 3, 4 and 5 of SLC16A3. 

All experiments were performed in accordance with the guidelines of Karolinska Institute. 

 

Genotyping 

DNA from mouse ear or tail clips was extracted by incubating samples at least 4 hours at 

56ºC with lysis buffer, and by alternating centrifugations with the sequential addition of 5M NaCl, 

isopropanol and ethanol 70%, and finally resuspended in TE buffer. 

A cocktail of PCR reagents was prepared by mixing primers (0.2μM at working solution; 

Table 2) with DreamTaq Master Mix (ThermoFisher, K1082) in nuclease-free water. The cocktail 

was added to 0.5μL DNA, undergoing a PCR reaction (Table 3). 

PCR products were resolved in a 1-2% agarose gel by electrophoresis (Agarose, Fisher 

Scientif, BP160-500; GelRed Nucleic Acid Stain, 41003; Ready-to-use 100bp DNA ladder, 31032, 

Biotium). The gel was visualized using ChemiDoc (BIO-RAD). 

 

Table 2. Primer sequences used for genotyping PCR. 

Gene Primer Forward Primer Reverse 

MCT1 5’-AGACTTGGGTAACTGAATGATGCTGACT-3’ 5’-TCCAAGGACAGCCAAGCTACATAGAG-3’ 

MCT4 5’-ATTTAGACTCAGAGGTGGGCAGAGTG-3’ 5’-TTGCCAGGGTGACCATCTCA-3’ 

P0-Cre 5’-AGGTGTAGAGAAGGCACTTAGC-3’ 5’-CTAATCGCCATCTTCCAGCAGG-3’ 

IL-2 5’-CTAGGCCACAGAATTGAAAGATCT-3’ 5’- GTAGGTGGAAATTCTAGCATCATCC-3’ 

 

Table 3. Programs used for PCR Reaction. 

 Floxed MCT1/ MCT4 P0-Cre 

 Temperature Time Cycles Temperature Time Cycles 

Initial 
denaturation 

94 ºC 3 min 1 94 ºC 3 min 1 

Denaturation 94 ºC 30 s 

35 

94 ºC 15 s 

32 Hybridization 55 ºC 30 s 62 ºC 15 s 

Extension 72 ºC 30 s 72 ºC 15 s 

Final 
extension 

72 ºC 10 min 1 72 ºC 2 min 1 

Conservation 4 ºC pause - 4 ºC pause - 

 

 

Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) 

RNA from the endoneurium of mouse sciatic nerves was extracted using RNeasy Lipid 

Tissue Kit (Qiagen 74804), following the manufacturer’s instructions. Briefly, tissue was 

homogenized in 500μL QIAzol (QIAGEN, 79306) and RNA fraction was extracted using 
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chloroform (Sigma-Aldrich, 101538376). RNA was then purified in column using the reagents 

provided in the kit. Residual contaminating DNA was digested with RNAse free DNAse set 

(QIAGEN, 79254). Next, RNA concentration was determined using NanoDrop 1000 (Agilent). 

Finally, 40ng RNA was retrotranscribed with PrimeScript RT reagent Kit (Takara RR037A), 

according to the manufacturer’s recommendations (Table 4). 

MCTs, P0 and Ubiquitin-conjugating enzyme E2 L3 (Ubiq) mRNA levels were detected 

by quantitative real-time PCR using FastStart Universal SYBR Green Master Mix (Roche, 

10356100) and 7500 Fast Real Time PCR System (Applied Biosystems).  

Oligonucleotides sequences used are shown in Table 5 and qPCR protocol in Table 6. 

 

Table 4. Retrotranscription protocol. 

 Temperature Time 

Reverse transcription 37 ºC 15 min 

Inactivation of reverse transcriptase 85 ºC 5 s 

Conservation 4 ºC pause 

 

Table 5. Primer sequences used for qPCR. 

Gene Primer Forward Primer Reverse 

MCT1 5’-AATGCTGCCCTGTCCTCCTA-3’ 5’-CCCAGTACGTGTATTTGTAGTCTCCAT-3’ 

MCT2 5’-CAGCAACAGCGTGATAGAGCT-3’ 5’-TGGTTGCAGGTTGAATGCTAA-3’ 

MCT4 5’-CAGCTTTGCCATGTTCTTCA-3’ 5’-AGCCATGAGCACCTCAAACT-3’ 

P0 5’-AGCCCCAGCCCTATCCTGGC-3’ 5’- GCAGTGCAGGGTCACCTGGG-3’ 

Ubiq 5’-CAGCCACCAAGACTGACCAA-3’ 5’-CATTCACCAGTGCTATGAGGGA-3’ 

 

Table 6. qPCR protocol. 

 Temperature Time Cycles 

Activation 50 ºC 2 min 1 

Denaturation 95 ºC 10 min 1 

Denaturation 95 ºC 15 s 
40 

Extension 60 ºC 1 min 

Melting curve 

95 ºC 15 s 1 

60 ºC 1 min 1 

95 ºC 15 s 1 
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Immunohistochemistry 

Adult animals were anesthetized intraperitoneally with a mixture of 10 µL/g of Ketanarkon 

100 (1 mg/ml, Streuli) with 0.1% Rompun (Bayer) in PBS, sacrificed by cervical dislocation, and 

dissected to collect sciatic nerves, muscles (gastrocnemius, tibialis, soleus, extensor digitalis 

longus (EDL)) and hind paw skin. Tail was also collected for validation of the previously performed 

genotyping. 

After fixations, tissues were cryoprotected (sucrose 20% overnight at 4ºC), embedded in 

optimal cutting temperature medium (OCT; Cell Path, KMA-0100-00A), and sectioned according 

to Table 7. 

Tissues were immunostained following the procedures detailed below. Images were then 

acquired using Zeiss LSM 700 confocal microscope and processed with FIJI software (Schindelin 

et al., 2019). 

 

Table 7. Settings for fixation and sectioning of different tissues. 

Tissue Fixation Sections Thickness 

Sciatic nerve 4% PFA; 1h Transversal 10 µm 

Gastrocnemius 
4% PFA; 15 min 

Longitudinal 25 µm 
Tibialis 

Soleus 
4% PFA; 10 min 

EDL 

Hind paw skin Zamboni fixative; 2h Transversal 50 µm 

 

Teased fibers of sciatic nerve 

PFA-fixed fixed mouse sciatic nerves were stripped of perineurium and small bundles of 

fibers separated using thin needles. Individual myelinated fibers were spread on a TESPA 

(Sigma-Aldrich, 101698432)-coated glass slide, allowed to dry and stored at -80ºC until used. 

For immunostaining, samples were initially washed with PBS and permeabilized with 

0.2% Triton X-100 for 15 min at RT. Afterwards, fibers were blocked with 1% BSA and 0.2% Triton 

X-100 for 1h at RT, and incubated with primary antibodies overnight at 4ºC or RT (Table 8). Next, 

samples were washed and fluorescently labeled with secondary antibodies for 2h at RT (Table 

8). Lastly, nuclei were counterstained with DAPI and tissues were mounted with Vectashield. 

 

Cross sections of sciatic nerve 

 10μm-thick cryosections of mouse sciatic nerve were washed with PBS and 

permeabilized as previously described. Secondly, samples were blocked and incubated with 

primary antibodies overnight at 4ºC or RT (Table 8). Next, sections were washed, incubated with 

secondary antibodies and counterstained with DAPI (Table 8) before mounting with Vectashield. 
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Intraepidermal nerve fibers  

Hind paw skin was sectioned at 50 μm thickness, blocked with 1% NGS and 0.15% Triton 

X-100 for 3h at RT and incubated with primary antibodies overnight at 4ºC. Next, sections were 

fluorescently labeled with secondary antibodies for 2H at RT, stained with DAPI and mounted. 

Z-stacks were obtained from four different frames of three or more sections per animal. 

The number of intraepidermal fibers was counted and normalized to the length of dermal-

epidermal junction in the superimposed image. 

 

Neuromuscular junctions 

 Muscle sections were washed with PBS, and blocked with 4% BSA and 0.5% Triton X-

100 for 5h at RT. Then, samples were incubated with primary antibodies (Table 8) for 48h at 4ºC, 

washed and stained with secondary antibodies (Table 8) for 2h at RT. Finally, samples were 

counterstained with DAPI and mounted. 

 

Table 8. List of primary antibodies, secondary antibodies and stains used for immunohistochemistry. 

Primary antibodies 

Antigen Animal of origin Dilution Product reference 

MCT1 Rabbit 1:200 Homemade 

MCT4 Rabbit 1:200 Santa Cruz sc-50329 

Neurofilament-145 Rabbit 1:200 Millipore AB1987 

Neurofilament-200 Mouse 1:400 Sigma N0142 Clone N52 

PGP9.5 Rabbit 1:400 Ultraclone RA95101 

Secundary antibodies 

Antigen Conjugated fluorophore Animal of origin Dilution Product reference 

Mouse IgG Alexa Fluor® 488 Goat 1:200 Life Tech R37120 

Mouse IgG Alexa Fluor® 594 Goat 1:200 Life Tech R37121 

Rabbit IgG Alexa Fluor® 488 Goat 1:200 Life Tech A11034 

Rabbit IgG Alexa Fluor® 594 Goat 1:200 Life Tech A11037 

Stains 

 Conjugated fluorophore Dilution Product reference 

α-Bungarotoxin Alexa Fluor® 488 1:500 Thermo Scientific B13422 

Phalloidin Alexa Fluor® 488 1:20 Thermo Scientific A12379 

4',6-Diamidino-2-Phenylindole, Dihydrochloride 
(DAPI) 

1:10000 Sigma-Aldrich D9542 
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3. Results and Discussion 

 

3.1. In vitro study of the intracellular response of SCs to neurotransmitters 

 

Active axons can release ATP and glutamate (Glu) into the narrow periaxonal space, 

where they reach high local concentrations (Samara et al., 2013; Stys, 2011). Myelinating and 

non-myelinating SCs, as well as their common precursors, express various ion channels and G 

protein-coupled receptors at their surface that may act as activity sensors. Purinergic and 

glutamatergic receptors are among this set of proteins, so that SCs can detect ATP and Glu as 

extrasynaptic signals of axonal activity (Samara et al., 2013).  

In the CNS, it was suggested that neuronal activity induces astrocytes and 

oligodendendrocytes to provide metabolic substrates and enzymes to neurons (Barros, 2013; 

Frühbeis et al., 2013). Peripheral glia may play a similar role by providing the metabolic support 

to axons. 

In order to dissect whether (and how) the metabolic status of SCs is modulated by 

neuronal activity, we devised a strategy to assess the amplitude of lactate production and release 

by cultured SCs when stimulated by glutamate. If SCs promptly increase the generation of 

glycolysis products to support axons during periods of their activity, short-term exposure of SCs 

to neurotransmitters should be enough to trigger a feedback response.  

With this in mind, we first evaluated whether rat SCs in our cell-culture settings were able 

to readily sense the presence of glutamate and initiate a feedback response through the activation 

of metabolism-related signaling pathways. Once we confirm that SCs in our in vitro system are 

responsive to glutamate and we establish a reliable protocol of glutamate-driven SC stimulation, 

we can use it coupled with a FRET system to screen potential fluctuations of the SC’s intracellular 

level of lactate arising from glutamate signaling. Hence, we worked in parallel on setting up a 

FRET imaging system for cultured cells expressing Laconic, a lactate-sensitive FRET probe (San 

Martín et al., 2013). As an initial attempt to reproduce the method using the available protocol for 

Laconic, we exposed HEK293T cells expressing Laconic to solutions that were reported to cause 

specific signal emission. 

Of note, this in vitro approach is still ongoing and no conclusive data will be presented. A 

long series of optimization steps were needed to be carried out for the establishment of both 

systems. 

 

3.1.1. Cell signaling cascades triggered in cultured SCs by glutamate exposure 

During neuronal activity, glutamate extrasynaptically secreted by axons can interact with 

either ionotropic or metabotropic receptors in SCs (Verkhratsky & Kirchhoff, 2007). The former 

are ligand-gated ion channels subdivided into NMDA, AMPA and kainate receptors, which exhibit 

distinct functional properties (Verkhratsky & Kirchhoff, 2007). Metabotropic glutamate receptors 

(mGluR), in turn, are G-protein-coupled receptors that control intracellular second messenger 

signaling cascades. In comparison with ionotropic receptors, mGluR tend to be activated by a 
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stronger and/or longer stimulus (Verkhratsky & Kirchhoff, 2007). As such, following the 

abovementioned strategy to test if SCs promptly respond to axonal cues of activity, we expect to 

trigger ionotropic signaling in SCs shortly exposed to low concentrations of glutamate.  

Recently, it was reported that ionotropic glutamate stimulation in primary rat SC cultures 

triggered the robust activation of PI3K/AKT/S6RP and ERK signaling pathways, in particular 

through interaction with NMDA receptors (Campana et al., 2017). These signaling pathways may 

be associated with glycolytic metabolism (Bhaskar & Hay, 2007; Marat & Haucke, 2016; Perkinton 

et al., 2002). The response was transient and bimodal, peaking upon a treatment of 80 µM 

glutamate for 20min and ceasing when glutamate concentrations exceeded 250 µM. This work 

matched perfectly the first part of our hypothesis. Thus, we followed the same protocol (Campana 

et al., 2017) as an attempt to replicate the outcome in our cell cultures, since more or less defined 

parameters in in vitro contexts can influence the type or magnitude of the effect. 

The methodology involved starving subconfluent rat SCs for 1 hour in serum-free medium 

in order to reduce their metabolism to the basal levels. Then, different concentrations of Glu were 

applied for 10min, the proteins were extracted from treated and non-treated cells, and the levels 

of total and phosphoryled AKT, S6RP and ERK were assessed by Western Blot (WB) (Table 9, 

step 1). Surprisingly, in our cell culture settings, no apparent effect of Glu was observed. The 

removal of fetal bovine serum (FBS), even when combined with the absence of pituitary extract, 

was not sufficient to reduce the cell metabolism to the baseline, which is required to reveal the 

specific response to Glu. Exploring the small deviations from the reported protocol, we found that 

loading half of the protein mass into the WB gel could be a potential cause for such outcome.  

Moreover, whereas enhanced chemiluminescence (ECL) was the method adopted by 

Campana and colleagues for WB detection, we used Odyssey® Infrared Imaging System. We 

believe that this divergence is not a limiting factor. On the contrary, infrared imaging counteracts 

the dynamic light-producing enzymatic reactions on which ECL relies, suppressing this way the 

need for optimizing reaction times and imaging (Mathews et al., 2009). Furthermore, the highly-

sensitive method that we used allows a broader detection range than ECL and the simultaneous 

imaging of different proteins on the same blot, which increases the detection efficiency. 

In order to enhance the outcome of Glu-mediated stimulation of SCs, we used a multi-

step optimization process (Table 9). We changed the culture medium to contain Nrg1 type III 

instead of bovine pituitary extract (BPE), as the latter possess undefined – and possibly variable 

– composition. We also performed the next assay on confluent populations of SCs as a way to 

collect more proteins from each culture plate (Table 9, step 2). Since we obtained a good outcome 

from the first optimized stimulation of confluent cells, we presumed that high cell density allowing 

us to have enough material would not be a parameter negatively affecting the outcome of our 

experiments. Additionally, we tried to strengthen SC starving step to lower their metabolic 

baseline (Table 9, steps 3-4). 

In parallel, as a way to prevent operation errors, we minimized the number of conditions 

to test, doing also technical replicates for each condition. Since we were interested on evaluating 

the shortest axonal stimulation that triggers a glial response, we tested exposing cells for 5 min 
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to 40 µM or 80 µM glutamate, concentrations described to induce the stronger effect, in 

comparison with 20 min-long stimulation.  

The initial trials of cell starvation exhibited variable efficiency, even when the experiment 

was repeated using the same settings. An activation of AKT and/or ERK pathways following Glu 

exposure was visible when the starving was successful. A rise in ERK phosphorylation was 

observed specially for 5 min-long treatment with Glu. However, the results regarding the AKT 

signaling pathway were not linear. The phosphorylation of AKT was either robust or absent, while 

no clear effects on S6RP phosphorylation were observed.  

We found in the literature that Glu at high concentration (2 mM) signals through 

metabotropic glutamate receptors in SCs to enhance Nrg1-induced phosphorylation of ERK, but 

not AKT (Saitoh et al., 2016). In that work, the metabolic baseline of primary cultured SCs was 

reached after starving cells during 6h in 1% FBS medium, and Glu stimulation was done for 30min 

in the presence of different picomolar concentrations of Nrg1 type III. Bearing this in mind, we 

questioned whether ionotropic glutamate signaling in SCs may similarly modulate ErbB receptor-

mediated cellular signaling. 

To test this possibility, we tried to combine the approaches described in the two referred 

papers (Table 9, steps 5-6). After the application of an optimized starving method, subconfluent 

cultured SCs were stimulated for 10 min with Nrg1 at concentrations ranging from tens of 

picomolar to few nanomolar, in the absence or presence of 80 μM glutamate. Cells efficiently 

reached the basal levels of activity, and usually the magnitude of activation of AKT/S6RP and 

ERK signaling increased in function of the concentration of Nrg1. Intriguingly, the addition of Glu 

generally decreased the effect induced by Nrg1, with exception of one assay where AKT 

phosphorylation was enhanced by Glu in the presence of at least 0.1 nM Nrg1. Furthermore, Glu 

alone induced variable types of response, either reducing or increasing the phosphorylation of 

the ERK, AKT and/or S6RP.  

We supposed that the level of cell confluence may have largely influenced the outcome. 

Cultured SCs displayed ~85% confluence at the onset of the experiments as suggested by 

Campana and colleagues (2017). However, the method of starving described in the same article 

was substantially weaker compared to the treatment that we adopted. We observed that in 

standard culture conditions, our rat SCs would continue to replicate until the cytoplasm was 

compacted and little space would be visible between cells. Consequently, subconfluent cells may 

rely more on the presence of nutrients and growth factors, and may be more susceptible to 

starving-induced stress. As such, SCs in this set of tests may be more stressed upon starvation 

induced by removal of Fsk and Nrg1 from the culture medium for 24h plus FBS for 2h. The fact 

that AKT/S6RP signaling is also associated with survival responses and that stress activates ERK 

signaling (Yarden & Sliwkowski, 2001) can potentially explain the observed phenotype. We 

believe that exposing subconfluent SCs to a strong starvation regime induces more stress. In this 

context, residual levels of Nrg1 may trigger the activation of AKT/S6RP and ERK signaling in 

order to generate the survival response to stress. The additional presence of Glu seems to 

counteract the survival response of SCs to Nrg1. In line with our hypothesis, glutamate may signal 
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the metabolic demands of axons to SCs, leading to the glial mobilization of energy reserves, 

which are already depleted under these conditions. Thus, we believe that cell confluence is a 

critical factor to take into account in these experiments. 

Having this in mind, we lastly followed the same procedure on a confluent culture of rat 

SCs, adding Nrg1 at concentrations in the order of hundreds of picomolar, alone or combined 

with 80 μM glutamate (Figure 7). Under these conditions, the presence of Glu appeared to 

enhance the Nrg1-induced phosphorylation of AKT, S6RP, and ERK. Moreover, the effect of Glu 

was visible even in the absence of Nrg1, and peaked when the lowest concentration of Nrg1 was 

added to the culture (Figure 8). 

Firstly, these observations suggest that cell confluence is an important parameter to take 

into consideration in our experimental settings. Indeed, when cells in culture are establishing more 

and tighter contacts with each other, they form a more stable cell population. That means that 

confluent cells are less sensitive and can adapt much more efficiently to stress conditions. We 

further suppose that it can result in more consistent responses to external factors. Nevertheless, 

this experiment has to be repeated exactly with the same technical conditions to evaluate the 

reproducibility of the outcome. 

Additionally, it seems that the number of times that SCs are passaged in culture 

influences the type of response triggered by stimulation. In Campana et al. (2017), it was 

mentioned that cells used were passaged no more than 7 times. We followed this indication 

without attention if a given protocol was repeated on cells at the same passage level. However, 

it may have compromised the replication of the results. Having a look on the assays number 2 

and 3 where only Glu stimulation was tested (Table 9), there are clear differences on the type of 

response exhibited by confluent cells at the fourth passage (P4) versus at the sixth passage (P6) 

exposed to the same experimental settings. The metabolic baseline, as well as a robust Glu-

induced increase of Erk and/or Akt phosphorylation, were reached in both tests for cells at P6; 

whereas a mild efficacy of the starving and a low phosphorylation of AKT and ERK were observed 

in cells at P4 in the best case scenario. 

This difference may partially follow differences in physiological events in the developing 

versus mature PNS. In fact, since myelin-forming cells are highly energy demanding during 

lineage progression and particularly myelination (Rinholm et al., 2011; Sánchez-Abarca et al., 

2001), it is plausible to assume that glia-to-axon metabolic support does not occur or is minimized 

at that period. In mature PNS, in turn, a growing body of evidence supports the idea that SCs 

provide axons with metabolites, as we intend to prove during neuronal activity. Thus, even though 

we used confluent cultured cells, the state of cell maturity (as reflected by the number of SC 

passages) may modulate their plasticity to develop physiological adjustments through subcellular 

signaling upon stimulation with neurotransmitters. 
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Table 9. Main steps of optimization for the glutamate stimulation of cultured rSCs and respective outcomes (continues on the next page). 

 Purpose Culture Starving Stimulation Observations n 

1 

Follow procedure 

described in 

Campana et al. 

(2017) 

~85% cell confluence 

SCs at passage no. 4 

FBS/Fsk/BPE in DMEM 

Fsk/BPE in 

DMEM; 1h 
0, 20, 40, 80, 100, 250, 

500, 2000 μM Glu 

Positive Ctr: Nrg1 5nM 

10 min 

Low mass of protein loaded 

Baseline not reached 

Total AKT, ERK and S6RP variable 

No reproduction of phosphorylation levels 

1 

Fsk in DMEM; 

1h 
1 

2 

Load 40μg protein 

Use media with 

more defined 

composition 

Reduce number 

of conditions-test 

~98% cell confluence 

a) SCs at passage no. 6 

b) SCs at passage no. 4 

FBS/Fsk/Nrg1 in DMEM 

Fsk/Nrg1 in 

DMEM; 1h 

0, 40, 80 μM Glu 

5, 20 min 

a) No replicates 

b) 3/4 replicates 

a) Baseline reached 

Robust phosphorylation of AKT and ERK (the 

longer/stronger exposure the less robust) 

b) Baseline not reached 

Low phosphorylation of AKT and ERK (peaking at 

5min 80μM Glu) 

2 

3 
Test a longer and 

stronger starving 

~98% cell confluence 

a) SCs at passage no. 6 

b) SCs at passage no. 4 

FBS/Fsk/Nrg1 in DMEM 

Fsk in DMEM;  

5-6h 

0, 40, 80 μM Glu 

5, 20 min 

Triplicates 

a) Baseline reached 

Robust phosphorylation of ERK, particularly for 5min 

Glu exposure 

AKT/S6RP signaling pathway seems to be unaffected 

by Glu exposure 

b) Less efficient starving 

Total AKT, ERK and S6RP variable 

Robust phosphorylation of ERK only for 5min Glu 

exposure 

Low phosphorylation of S6RP but not AKT 

2 

4 

Test an even 

longer and 

stronger starving 

~98% cell confluence 

SCs at passage no. 4 

FBS/Fsk/Nrg1 in DMEM 

Fsk in DMEM,  

5-6h 

FBS in DMEM, 

24h + DMEM 2h 

0, 80 μM Glu 

Positive Ctr: Nrg1 5nM 

5 min 

Duplicates 

The longer starving is even more efficient, and cells are 

still responsive to stimuli 

Signal coming from the stimulated cells is weaker in the 

longer starving 

1 
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5 

Test whether Glu 

enhances the 

effect of Nrg1 at 

concentrations 

tested in Saitoh et 

al. (2016) on a 

subconfluent 

culture as used in 

Campana et al. 

(2017) 

~85% cell confluence 

a) SCs at passage no. 5 

b) SCs at passage no. 4 

FBS/Fsk/Nrg1 in DMEM 

FBS in DMEM, 

24h + Nrg1 (0, 

15.625, 31.25, 

62.5 pM) in 

DMEM, 2h 

0, 15.625, 31.25, 62.5 

pM Nrg1 

+/- 80 μM Glu 

Positive Ctr: Nrg1 5nM 

10 min 

Baseline reached 

Glu decreases the effect of Nrg1, except only for the 

phosphorylation of AKT when cells were exposed to the 

higher concentrations of Nrg1 

a) Phosphorylation of AKT, S6RP and ERK increases as 

higher concentrations of Nrg1 are added 

In the absence of Nrg1, Glu triggers the activation of 

AKT/S6RP and ERK pathways 

b) Phosphorylation of AKT, S6RP and ERK is not so 

robust and generally decreases as higher 

concentrations of Nrg1 are added 

In the absence of Nrg1, Glu triggers only the activation 

of ERK pathway 

2 

6 

Test whether Glu 

enhances the 

effect of Nrg1 at 

higher 

concentrations 

than those tested 

in Saitoh et al. 

(2016) on a 

culture 

subconfluent as 

used in Campana 

et al. (2017) 

~85% cell confluence 

a) SCs at passage no. 5 

b) SCs at passage no. 4 

FBS/Fsk/Nrg1 in DMEM 

FBS in DMEM, 

24h + Nrg1 (0, 

0.1, 0.3, 1 nM) 

in DMEM, 2h 

0, 0.1, 0.3, 1 nM Nrg1 

+/- 80 μM Glu 

Positive Ctr: Nrg1 5nM 

10 min 

Baseline reached 

a) Phosphorylation of AKT, S6RP and ERK generally 

increases as higher concentrations of Nrg1 are added 

Glu decreases the effect of Nrg1, except only for the 

phosphorylation of AKT when cells were exposed to 

the lower concentration of Nrg1  

Phosphorylation of AKT, S6RP and ERK is even lower 

when Glu alone is added than in the absence of stimuli 

b) Phosphorylation of AKT, S6RP and ERK is more 

robust and generally increases as higher 

concentrations of Nrg1 are added 

Glu generally decreases the effect of Nrg1 on the 

phosphorylation of ERK and S6RP 

Glu increases the effect of Nrg1 on the 

phosphorylation of AKT: more the concentration of 

Nrg1 more the phosphorylation is enhanced  

In the absence of Nrg1, Glu triggers only the 

phosphorylation of S6RP 

2 
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Figure 7. Scheme of the protocol to test whether ionotropic glutamate signaling in confluent cultured SCs 

modulates Nrg1-induced activation of AKT/S6RP and ERK subcellular signaling. 

 

A 

 

B      

 

Figure 8. Immunoblot images (A) and quantified expression levels (B) of phosphorylated/total AKT, ERK, 

and S6RP in primary cultured SC after treatment for 10 min with Glu and Nrg1 at varying concentrations as 

indicated. The quantified expression level was normalized to the total protein expression level, relative to 

the condition without Nrg1 nor Glu (n = 1). 
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Other features that may be underlying the variability of the results during the process of 

optimization include the varying volume of protein lysate loaded into the gel of Western blot 

among different samples. Even if the mass of protein loaded is always normalized, the volume of 

SDS – used to give all proteins present a uniform negative charge – is proportional to the volume 

of the protein lysate. The migration of the negatively-charged proteins to the positively charged 

electrode through the acrylamide gel, as well as the transfer of proteins from within the gel onto 

the nitrocellulose membrane to be targeted by antibodies, are more or less efficient according to 

the amount of SDS present (Kurien & Scofield, 2009). Occasionally in some assays, the volume 

of protein loaded differed perceptibly among conditions. After the quantification, normalization to 

the housekeeping protein and to the total protein may be insufficient to normalize the quality of 

the signal emitted among the different lanes, due to the fact that antibody detection efficacy is 

unevenly reliant on the amount of protein present in the membrane.  
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3.1.2. Monitoring fluctuations of the intracellular levels of lactate in cultured SCs in 

response to glutamate 

According to our hypothesis, glutamate may trigger an increased lactate import and/or 

production in SCs, leading to a raise in intracellular lactate concentration. The increase in lactate 

is then accompanied by its release into the extracellular space, which stabilizes the levels of 

lactate inside the cell. Complementary processes would be expected to occur in neurons, leading 

to a peak of the lactate level soon after its uptake from the periaxonal space and before its 

consumption by oxidative metabolism to produce energy.  

The global scenario is that the intracellular concentration of lactate varies according to its 

relative exchange between extracellular, cytosolic and mitochondrial compartments – 

corresponding respectively to the lactate/pyruvate import/export through MCTs, glycolytic 

production, and consumption through the TCA cycle. These intercellular and subcellular lactate 

shuttles move continuously toward a metabolic equilibrium (San Martín et al., 2013). 

Laconic, a genetically-encoded FRET-based lactate sensor, can be a very useful tool for 

monitoring the dynamic changes in intracellular concentrations of lactate in real-time and at a 

single cell resolution (San Martín et al., 2013). Laconic is composed of two fluorescent reporter 

proteins – mTFP and Venus – flanking a bacterial protein complex termed LldR (Figure 9). The 

latter is formed by a lactate-binding/regulatory element and a DNA-binding domain (San Martín 

et al., 2013).  

Even though the reporter proteins are expected to exhibit distinct peaks of fluorescence 

(492 nm for mTFP and 526 nm for Venus), the emission spectrum of the donor fluorophore mTFP 

overlaps with the excitation spectrum of the acceptor Venus. This enables mTFP-to-Venus 

transfer of energy to occur. When lactate binds to the sensor moiety, this domain undergoes 

conformational alterations, which in turn change the relative distance and/or orientation of mTFP 

and Venus, decreasing FRET efficiency (Figure 9). Thus, the change in FRET, which is simply 

measured by the relative light intensities emitted from the two fluorophores, correlates negatively 

with the change in lactate concentration (Hou et al., 2011; San Martín et al., 2013).  

In the first place, our approach relied on trying to replicate the methodology reported by 

San Martín et al. (2013) to become acquainted with this novel tool as well as to optimize the 

parameters for our own system. Initially, we used HEK293T cells due to their low endogenous 

capacity to uptake glucose (Takanaga & Frommer, 2010), besides their fast growth and 

propensity for transfection. 

 

Lactate-free Laconic Lactate-bound Laconic 

  

Figure 9. The reversible binding of lactate to Laconic decreases FRET efficiency. Adapted from (Hou et 

al., 2011; San Martín et al., 2013) 
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The overall procedure comprises transfecting subconfluent HEK293T cells with a plasmid 

encoding Laconic; setting up the FRET imaging system; exposing cells to media with a defined 

composition while acquiring over time the signals emitted by the two fluorophores; and processing 

the data (San Martín et al., 2013). 

 The first observation at the microscope was a clear fluorescence emitted by transfected 

HEK293 cells, specifically from the cytosol and not from the nucleus, as expected (San Martín et 

al., 2013). This shows that they were successfully lipofected with Laconic.  

We then tested the effects of exposing our sample to different solutions: 5 mM glucose, 

6 mM sodium oxamate, 10 mM lactate, 5 mM glucose + 10 mM lactate, and 5 mM glucose + 10 

mM lactate + 1 μM AR-C155858 (ARC), all diluted in KRH (pH=7.4) buffer. All conditions could 

be tested on the same cells because we used a continuous superfusion system. Each condition 

was tested during 5 minutes to guarantee the steady-state to be reached. 

The experiment began by exposing cultured cells to 5 mM glucose in KRH HEPES pH7.4 

buffer, our reference solution. Glucose is expected to be taken up and consumed by the cells to 

produce lactate by glycolysis, which is exported through MCTs (Figure 10B, point 1). After setting 

up the sample in our imaging system and allowing time for cells to reach the thermodynamic 

equilibrium under this condition, we initiated data acquisition. The mTFP/Venus ratio for the first 

signals detected was used to normalize all the following values. This way, the graph in Figure 

10A represents the variation of mTFP/Venus, an estimate of the intracellular levels of lactate, in 

response to a metabolic stimulation compared to the steady-state condition in which glucose is 

available in the medium. 

It is important to highlight that mTFP/Venus ratio is not a direct readout of lactate 

concentrations, which would require sensor calibration in each cell. Thus, since mTFP/Venus ratio 

values are not absolute, it is not appropriate to display the data acquired from different 

experiments in the same plot. The graph in Figure 10A is representative and corresponds to one 

out of the three assays that we performed using the same experimental settings. 

Then we applied the same buffer without glucose (and any other carbon sources) that 

functions as a washing solution. We expected to observe a partial reduction in the FRET ratio, 

which would be due to the discontinuation of lactate production (Figure 10B, point 2). However, 

we were unable to visualize clearly any variation of the signal. 

After re-exposing the cells to reference solution, they were exposed to 6 mM sodium 

oxamate to pump out any residual lactate. Oxamate is a non-metabolizable substrate of MCTs 

and inhibitor of LDH, with a fast and reversible mode of action (Yang et al., 2014). When oxamate 

is transported by MCTs, it produces a trans-acceleration-exchange, pumping lactate to the 

extracellular space (Brown & Brooks, 1994) (Figure 10B, point 3). With this procedure, no lactate 

is presumably present inside the cell, and, consequently, we obtained the minimum value of 

mTFP/Venus ratio (Rmin). 

Cells were exposed again to the reference buffer in order to return to the original baseline. 

Following a washing step, we activated the perfusion of 10 mM lactate, which is supposed to 

enter in the cell at a high rate due to the difference of concentrations on each side of the plasma 
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membrane (Figure 10B, point 4). At a certain point, the saturation of the transporters is achieved. 

Indeed, the mTFP/Venus ratio increased substantially upon exposure to lactate and then 

stabilized. 

In order to reach the maximum value of mTFP/Venus ratio (Rmax) for this experiment, 

we loaded the cells with lactate up to Laconic saturation. For that end, we gave another pulse of 

10 mM lactate but in the presence of 5 mM glucose. This way, the intracellular lactate can rise 

through glycolysis and import of extracellular lactate (Figure 10B, point 5). The additional 

presence of 1 μM of ARC in the medium blocks the exit of lactate, since ARC is an inhibitor of 

MCT1 and MCT2 (Ovens et al., 2010). Glycolytic lactate production further enhances lactate 

accumulation, resulting in the full sensor saturation, this is Rmax (Figure 10B, point 6). Since 10 

mM is already very close to Laconic saturation, a substantial change in FRET ratio in the presence 

of glucose and ARC was not observed.  

The outcome from this test showed some imperfections. Specifically, the signal was very 

weak, which gave rise to the noisy traces in the mTFP/Venus ratio plot. Since the nanosensor is 

ratiometric, potential artifacts induced by volume or focus changes are canceled out by the 

mTFP/Venus ratio (San Martín et al., 2013). Thus, the low signal intensity may be due to low 

expression of the sensor by the cells. Indeed, we specifically selected cells with low signal 

intensity to avoid saturation of the detector. As such, we propose optimizing the step of HEK293T 

cells transfection with Laconic for the future experiments, as well as adjusting the laser intensity 

to avoid saturation and bleaching. Moreover, cell-to-cell variability can naturally occur, even if this 

parameter was always taken into account when the regions of interest for signal acquisition were 

defined.   

The results can be analyzed in a relative or absolute manner. For relative quantification, 

a simple comparison of the steady-state FRET ratio before/after exposure to a stimulus is suitable. 

For absolute quantification of intracellular lactate concentrations, a quadratic equation can be 

used based on the Rmin, Rmax and KD constants for Laconic determined in vitro (San Martín et 

al. 2013). 

In order to apply this system to SCs and perform an absolute quantification, we must 

confirm that Laconic behaves in a similar way in a different cell type. That would require an 

invasive calibration protocol with cellular permeabilization to determine if the KD values vary (San 

Martín et al., 2013). However, this is not necessary for the relative quantification approach. For 

our purposes, the comparison of FRET ratios before and after exposure to glutamate, for 

example, should be adequate and sufficiently informative. One point to take into account is that 

SCs also express MCT4, which is not inhibited by ARC. In this case, we will have to combine 

ARC with the irreversible inhibitor pCMBS (4-(chloromercuri)benzenesulfonic acid sodium salt), 

a modifier of SH groups in proteins (Zhang & Solomon, 1992). Alternatively, the expression of a 

given MCT type in cultured SCs could be knocked-down using, for instance, shRNA, and Laconic 

could then be used to assess the contribution of specific isoforms to flux of lactate. 
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Figure 10. A. Graph showing the variations on the mTFP/Venus intensity upon exposing HEK293T cells to 

the indicated conditions over time. The bars represent the standard deviation (n = 3 or 5 cells).  

B. Schematic representation of the expected cellular responses developed under the conditions numbered 

above the graph. 
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3.2. Characterization of in vivo models to study the role of MCTs in SCs 

 

 Myelinating SCs and neurons in the PNS were reported to express monocarboxylate 

transporters (Domènech-Estévez et al., 2015). This evidence was crucial for the formulation of 

our hypothesis. MCT1 and MCT4 were mainly found in regions of non-compacted myelin, 

potentially to serve as a route by which SCs provide lactate to the underlying axon (Domènech-

Estévez et al., 2015). 

In order to explore the neuron-glial metabolic communication in the PNS, and particularly 

to disclose the role of peripheral MCTs in vivo, we proposed to characterize the phenotype of 

cKO mouse models where MCT1 or MCT4 were specifically ablated in SCs.  

MCT1 cKO mice carry the exon 5 flanked with LoxP sites in both alleles of mSLC16A1 

gene (coding for MCT1). In MCT4 cKO mice, in turn, the exons 3, 4 and 5 in both alleles of 

mSLC16A3 gene (coding for MCT4) are flanked with LoxP sites. In opposition to the respective 

control animals, MCT1 or MCT4 cKO animals further carry Cre recombinase under the promoter 

of myelin protein zero (P0), which is specifically activated in SCs between embryonic days 13.5 

and 14.5 (M. A. Feltri et al., 1999) (Figure 11). 

 

MCT1 cKO MCT1 Control MCT4 cKO MCT4 Control 

    

 

Figure 11. Schematic representation of the mutations carried by homozygous cKO mice for MCT1 and 

MCT4, and respective control animals. 

 

We first performed analysis at the DNA, RNA and protein levels to evaluate the specificity 

and efficiency of MCT1 or MCT4 depletion. Conditional knock-out and control mice were 

compared at those levels respectively by means of genotyping, q-PCR using RNA extracted from 

the endoneurium of sciatic nerves (SN), and immunohistochemistry on both teased fibers and 

cross sections of sciatic nerves. 

Once the animal models started to be validated, we analyzed the consequences of the 

loss of MCT1 and MCT4 in SCs in these animals by assessing the integrity of the neuromuscular 

junctions and the density of sensory innervation.   
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3.2.1. Validation of the mouse models 

 

Genotyping 

Genotyping PCR was indispensable during the process of generation of homozygous 

cKO mice and mouse line expansion, and always used to confirm the genotype of the animals 

before collecting their tissues/cells for analysis.  

Using primers that target the LoxP site we were able to distinguish homozygous (1 flox 

band), heterozygous (1 flox band + 1 WT band) and WT (1 WT band) animals for the insertion of 

floxed exons of mSLC16A1 or mSLC16A3. To distinguish cKO from control mice, a pair of primers 

specific for Cre recombinase was used in combination with primers targeting the gene encoding 

for IL-2 in mouse, which was used only to confirm the presence of DNA.  

After extracting DNA from a biopsy of ear or tail from each animal, the targeted sequences 

of DNA were amplified by PCR and the products were separated by electrophoresis following the 

respective length (Table 10). Figure 12 shows the electrophoretic profile of bands that are 

visualized for MCT1 Control, MCT1 cKO, MCT4 Control, and MCT4 cKO mice before Cre 

recombination.  

 

Table 10. Expected length of the amplification products. 

 Flox WT 

MCT1 227 bp 166 bp 

MCT4 507 bp 446 bp 

Cre 450 bp 

IL-2 327 bp 

 

 

Figure 12. Electrophoretic separation of amplified segments of DNA to specifically genotype MCT1 or 

MCT4 cKO mice and the respective control animals. 
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Quantitative PCR 

 We next aimed to determine whether removing part of the gene encoding for MCT1 or 

MCT4 had resulted effectively in a loss of expression. To investigate this, we extracted RNA from 

the endoneurium of sciatic nerves collected from 4-months-old mice of both mouse lines. The 

endoneurium is almost exclusively composed by axons and SCs, the latter being the major source 

of the RNA by a large margin.  

The amplitude of expression of MCT1, MCT2, and MCT4, which are the types of MCTs 

reported to be expressed by SCs (Domènech-Estévez et al., 2015), was then determined by 

qPCR. We also evaluated the expression of P0 and ubiquitin-conjugating enzyme E2 (Ubiq), the 

latter being the reference gene used to normalize all the other values (Figure 13). The mRNA 

expression levels from MCT1 cKO mice and MCT4 cKO mice are presented relative to the 

respective control animals. 

  

 

Figure 13. mRNA expression of MCT1, MCT2, MCT4 and P0 relative to the levels of Ubiq expression in 

sciatic nerve endoneurium of 4-months-old mice from both mouse lines (n = 1). 

 

As expected, MCT1 cKO mice exhibited a strong decrease on the expression of MCT1 in 

comparison with the respective control. In the other mouse line, the depletion of MCT4 expression 

appeared to be less efficient. However, MCT4 expression in WT is low, therefore the qPCR 

efficiency may be interfering with the result. Of note, we observed that P0 was slightly less 

expressed in the MCT4 cKO animals compared to the MCT4 control mice, whereas the opposite 

effect was observed in the MCT1 cKO mouse line. Nevertheless, this quantitative analysis needs 

to be repeated with more samples, and it is required to perform studies at the level of mRNA 

translation into MCT1 or MCT4.  

Interestingly, the depletion of MCT1 in SCs triggered a robust enhancement of MCT4 

expression. In turn, MCT4 cKO mice exhibited higher expression of MCT1 and MCT2 when 

compared to the corresponding control. Therefore, this preliminary data points to a potential 

phenomenon of compensation activated in SCs for the loss of expression of MCT1 or MCT4. 
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Immunohistochemistry 

Following gene transcription and RNA processing, additional regulatory processes can 

act to determine if – and at what extent – the expression of a given gene is translated into a 

functional protein (Cooper, 2000). For instance, miRNAs can modulate the RNA stability, which 

affects its lifetime and, consequently, the number of proteins produced (Cooper, 2000). 

 Having this in mind, we further studied the expression of MCT1 and MCT4 in the 

respective cKO and control mice at the protein level.  

Immunostaining on teased fibers of sciatic nerves from adult mice of both lines revealed 

an efficient depletion of the respective isoform of MCT in the cKO animals. Whereas MCT1 

unsurprisingly co-localized with phalloidin in MCT1 control mice (Domènech-Estévez et al., 2015), 

no MCT1 staining was observed in the cKO teased fibers, showing its efficient depletion from 

Schmidt-Lanterman incisures (SLIs) (Figure 14). In turn, MCT4 expression seems to be strongly 

decreased (or even absent) in the perinuclear cytoplasm of myelinating SCs (Domènech-Estévez 

et al., 2015) in the MCT4 cKO teased fibers (Figure 15). However, co-immunostaining against 

MCT4 and NF200 in cross sections of the MCT4 cKO sciatic nerve revealed the presence, 

although potentially reduced, of MCT4 in the perinuclear cytoplasm of SCs (Figure 16). 

Quantification of the MCT4 staining needs to be performed to compare the protein levels between 

the MCT4 cKO mice and the respective control. The validation of this mouse model is strictly 

dependent on the efficiency of MCT4 depletion. 
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Figure 14. Co-immunostaining of MCT1/Phalloidin/DAPI on teased fibers prepared from sciatic nerves of 

adult MCT1 control and MCT1 cKO animals. Scale bar: 25μm 
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Figure 15. Immunostaining of MCT4 on teased fibers prepared from sciatic nerves of adult MCT4 control 

and MCT4 cKO animals. Scale bar: 25μm 
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Figure 16. Co-immunostaining of MCT4/NF200/DAPI on cross sections of sciatic nerves from adult MCT4 

control and MCT4 cKO animals. Scale bar: 25μm 

 

 Altogether, these experiments suggest that MCT1 cKO animals exhibit an efficient 

depletion of MCT1, as confirmed at the RNA and protein levels, which may be counteracted by 

an overexpression of MCT4. Regarding MCT4 cKO mice, the mRNA expression for MCT4 did not 

decrease as robustly, which was also reflected at the protein level.  
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3.2.2. Analysis of the effects of MCT1 or MCT4 depletion in the PNS 

 

The consequences of the loss of MCT1 or MCT4 in SCs were previously assessed 

regarding the structure of myelinated fibers in sciatic nerves from both mouse models (data not 

shown). Myelin sheath thickness in function of the axonal diameter was determined by g-ratio 

measurements in semi-thin sections of sciatic nerve. Myelin ultrastructure and the density of 

myelinated fibers/Remak bundles were also evaluated by means of electron microscopy. No 

apparent differences were observed between MCT1 or MCT4 cKO mice and the respective 

control mice, neither at late development nor during adulthood. This data indicates that MCT 

depletion does not directly cause demyelination or myelin-related effects on peripheral nerves. 

This is not completely surprising, since peripheral neuropathies like CMT2, which are very 

debilitating, are also not associated with enlarged or hypertrophic peripheral nerves and exhibit 

slowly progressive weakness of distal muscles and mild or no sensory loss (Barreto et al., 2016). 

To dissect whether MCT1 depletion in SCs affects the sensory or motor functions of 

peripheral fibers, we proposed to evaluate the intraepidermal nerve fiber density (IENFD) and the 

muscular innervation, respectively, on 1-year-old animals. Regarding the former, we 

immunostained sections of hind paw skin from two MCT1 cKO mice and one control animal for 

PGP9.5, a marker of sensory fibers (Mccarthy et al., 1995). DAPI staining was used to define the 

separation between dermis and epidermis based on the density of nuclei – keratinocyte nuclei in 

the epidermis are more compacted, while fibroblasts in the dermis are more spread in the 

collagenous matrix (Figure 17) (Mccarthy et al., 1995). So far, the preliminary quantification of 

intraepidermal PGP9.5-positive fibers normalized to the length of dermal-epidermal transition did 

not reveal significant differences between the cKO animals and the control. A reliable and 

statistically significant analysis requires the use of more animals. IENFD is also going to be 

determined for the MCT4 cKO mouse line. 

To assess the impact of MCT depletion on motor functions of the PNS, we intended to 

measure the level of innervation in four different muscles (gastrocnemius, tibialis, soleus, and 

extensor digitorum longus) from 1-year-old animals. Neuromuscular junctions (NMJs), the 

expanded terminals formed when motor neuron axons synapse on skeletal muscles, express 

acetylcholine receptors that can be targeted by α-bungarotoxin (Herbst et al., 2010). Thus, the 

co-localization of the fluorescently labeled α-bungarotoxin with a neuronal marker, such as 

neurofilament, or a synaptic vesical marker indicates the extent of innervation. In Figure 18, we 

show an example of a fully innervated NMJs in a control animal.  
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Figure 17. Immunostaining of mouse hindpaw skin to show intraepidermal nerve fibers (PGP9.5, red) and 

dermal-epidermal transition (traced line). Scale bar: 50μm. Quantification of IENFD in control (n = 1) and 

MCT1 cKO (n = 2) mice on the right. Scale bar represents the standard error of the mean. 
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Figure 18.  Co-localization of the α-bungarotoxin (green) with neurofilament-145 (NF145; red) showing a 

fully innervated neuromuscular junction in gastrocnemius muscle of MCT1 control animal. Scale bar: 

25μm. 
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4. Conclusion and Future Perspectives 

 

In conclusion, our data indicates that short-term in vitro exposure to glutamate signals via 

ionotropic receptors of confluent mature SCs to boost Nrg1/ErbB-mediated activation of 

AKT/S6RP and ERK pathways. Since these pathways can be involved in mobilization of energetic 

reserves, among others, these results support our initial hypothesis. Glutamate extrasynaptically 

released during axonal activity may trigger a metabolic shift in SCs towards increased production 

and release of lactate to properly support axons with energy substrates. 

These data need to be confirmed with more assays in order to combine glutamate 

stimulation with FRET-based lactate measurements.  

Additionally, we observed that SC-specific depletion of either MCT1 or MCT4 does not 

seem to perturb PNS structure and function, which could be due to a compensatory expression 

of other transporters. In order to understand this, we are establishing a MCT1/MCT4 double cKO 

and MCT2 cKO mouse lines to further explore the role of MCTs in the PNS. 

As part of the characterization of these models, we are performing motor nerve 

conduction velocity measurements and will evaluate sensory and motor functions in vivo with 

behavioral tests (hot/cold plate, Von Frey filaments, rotarod, grip strength test, among others). 

In the future, it would also be interesting to study the influence of MCTs in models of 

neuropathic disorders, such as ALS and CMT4C. This could give us some deeper understanding 

of the pathophysiology of these conditions, which could allow the development of new therapeutic 

strategies. 
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