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In many follow-up studies different types of outcomes are collected including longitudinal measure-
ments and time-to-event outcomes. Commonly, it is of interest to study the association between them.
Joint modeling approaches of a single longitudinal outcome and survival process have recently gained
increasing attention from both frequentist and Bayesian perspective. However, in many studies several
longitudinal biomarkers are of interest and instead of selecting one single biomarker, the relationships
between all these outcomes and their association with survival needs to be investigated. Our motivating
study comes from Peritoneal Dialysis Programme in Nephrology research from Nephrology Unit, CHP
(Hospital de Santo António), Porto, Portugal in which the interest relies on the possible association
between various biomarkers (calcium, phosphate, parathormone, and creatinine) and the patients’ sur-
vival. To this aim, we propose a two-stage model-based approach for multivariate longitudinal and
survival data that allowed us to study such complex association structure. The multivariate model
suggested in this paper provided new insights in the area of nephrology research showing valid results
in comparison with those models studying each longitudinal biomarker with survival separately.

Keywords: Multivariate longitudinal data; Nephrology peritoneal dialysis; Survival models;
Two-stage models.

� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Introduction

In biomedical studies the clinicians often collect repeated measurements over time and they are also
interested in time to recovery, recurrence of a disease or mortality. Those repeated measurements,
so-called longitudinal biomarkers, can be associated with the time-to-event. To properly study the
association between a single longitudinal biomarker and a time-to-event, appropriate regression tech-
niques are needed. Joint modeling approaches of longitudinal and time-to-event data are developed to
handle these type of associations. These approaches have gained a remarkable attention in the litera-
ture over the recent years (Wulfsohn and Tsiatis, 1997; Henderson et al. 2000; Rizopoulos, 2012). The
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joint models are based on a joint likelihood calculation of longitudinal and time-to-event data within
different frameworks to calculate the conditional distributions. For instance, the shared random effects
framework is based on the simultaneous estimation of both longitudinal and time-to-event through an
incorporation of shared random effects that underlines the conditional distributions (Wulfsohn and
Tsiatis, 1997).

However, many biomedical studies collect multiple longitudinal outcomes and the correlation struc-
ture between these multiple biomarkers of the same patient has to be taken into account. In our case
study, different types of information about the patient and their health condition are collected during
the peritoneal dialysis program of a Nephrology Department from Hospital Geral de Santo António
Centro Hospitalar do Porto. At the first visit, the baseline characteristics of the patients such as age
and gender are recorded. During the treatment, the patients are monitored with regular control visits
where several clinical parameters are collected. Therefore peritoneal dialysis patients data present two
different types of outcomes: (i) longitudinal outcomes, composed by clinical parameters measured at
several time points and (ii) time-to-event outcome, composed by the follow-up time until the occur-
rence of an event of interest. Dialysis quality control parameters must be debated and investigated in
order to accurately identify which measure actually impacts patient mortality.

Association between each longitudinal biomarker and the time-to-event need to be studied taking
into account the correlation structure of the longitudinal outcomes. Indeed, an appropriate regression
technique to study such associations would be the joint modeling approach.

There are already several extensions in joint modeling approaches such as the use of flexible longitu-
dinal profiles using multiplicative random effects (Ding and Wang, 2008), alternatives to the common
parametric assumptions for the random effects distribution (Brown et al., 2005), and handling multi-
ple failure times (Elashoff et al, 2008). Nice overviews of this field are given by Tsiatis and Davidian
(2004) and Yu et al. (2008). However, extensions to multiple longitudinal biomarkers with time-to-
event data are focused mainly on the Bayesian framework (Rizopoulos and Ghosh, 2011; Tang et al.,
2014, among others). Although there are some developments from the frequentist perspective (see
for example Albert and Shih, 2010) the joint modeling approaches within a shared random effects
framework is difficult to implement when the number of longitudinal biomarkers is large.

The initial approaches for joint modeling of simple longitudinal and time-to-event data have been
based on two-stage approaches where the likelihood is calculated in two steps instead of a calculation
of a full joint likelihood (see Pawitan and Self, 1992; Tsiatis et al., 1995, among others). To avoid the
computational difficulties on the joint likelihood calculation, we focus on the main idea of these initial
approaches and propose a two-stage based model for multivariate longitudinal and time-to-event data.
Our two-stage model based proposal allows studying the correlation between multivariate longitudinal
data and their association with the time-to-event.

The outline of this paper is as follows. In the second section, we will describe our motivating database
from a peritoneal dialysis program including descriptive analysis of the several clinical variables
considered. The third section of the paper gives a brief background of joint modeling approaches of
a single longitudinal biomarker with survival process. We will illustrate our two-stage model based
proposal with an extension to multivariate longitudinal case in the fourth section. Finally, we end with
a discussion section.

2 Motivating database

The motivating database includes patients who started Peritoneal Dialysis (PD) between October
1999 and January 2013 in Peritoneal Dialysis Unit, Nephrology Department, CHP – Santo António
Hospital, Porto, Portugal. Consecutive incident end-stage renal disease (ESRD) patients starting PD
were identified from an ongoing registry-based prospective study of quality assessment. One hundred
and thirty-seven patients were followed during the dialysis. There were 48.2% females and 51.8% males
with mean age of 48.07 years (sd = 15.79). Patients follow regular visits every 1–2 months and various
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Figure 1 Overall curves of calcium, PTH, creatinine, and phosphorus for the patients divided in two
groups: those who transfered to haemodialysis or died (exitus) and the others (alive).

longitudinal outcomes with time to event are collected during the peritoneal dialysis program. The
number of visits for each patient is random with a median of 21.44 (7.82–43.71) days starting with a
baseline value at time 0 and a maximum of 170 days. In the specific case of peritoneal dialysis patients,
it is only possible to observe the first event (and consequently the first time-to-event) from a set of
possible competing events: death, transfer to haemodialysis and renal transplant. We consider the
event of interest as the combined survival, characterized by the combination of the events death and
transfer to haemodialysis. The renal transplant is combined with censored patients.

This outcome is an important indicator for the evaluation of a peritoneal dialysis program. The
combined survival is a major clinical outcome measured in this peritoneal dialysis unit as part of
its quality assessment. On the other hand, Health Ministry calls for intermediate quality control
parameters such as the measurement of calcium, phosphate, and parathormone (PTH) and creatinine,
as examples. These biomarkers of pathophysiologic processes are variably associated with mortality
but are a mandatory parameter in annual reports and focus of pharmacological intervention. The
question is whether the proposed targets of these biomarkers and the measured values at a time point
accurately reflect the patient risk. Often it is the trend in the values rather than the time-specific measure
that signs the risk. Moreover the cumulative exposure to a pathophysiologic process (reflected in serial
longitudinal measures of the biomarkers) is presumably more accurately associated with the final event
(death or combined survival) than the measure at a single fixed time. Therefore investigation is needed
to select the more informative parameter guiding both clinicians and administrators in their process
for quality achievement.

Figure 1 shows overall curves of each outcome estimated by using spline smoothing for the patients
divided in two groups: those who observed the time-to-event of interest (alive) and those who are
censored (exitus). We can observe that the time effect on the longitudinal biomarkers is not constant
and differs between two groups. This shows the possible effect of the longitudinal biomarkers on the
patient’s time-to-event. It is also noticed that, especially the overall trends of PTH and creatinine levels,
the time effect is not linear. For this reason, we will use quadratic effect of time on the longitudinal
model.

3 Modeling longitudinal and survival data: Univariate case

In this section, we will give the statistical background of the joint modeling considered, taking into
account one single longitudinal biomarker and time-to-event data.
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In many follow-up studies, interest is in the association between the time-to-event and longitudinal
biomarker. The research questions are mainly focused on investigating the association between mor-
tality and the longitudinal biomarker that are taken during the follow-up study. As already commented
in Section 1, the joint modeling approaches are the most popular statistical techniques to study the
longitudinal and time-to-event data. In general, the application of joint modeling approaches includes
different type of follow-up studies such as longitudinal data with a drop-out process generated by
nonignorable mechanism, survival analysis with endogenous variables or simultaneous interest on
both longitudinal and survival data.

The joint models for longitudinal and survival data (JMLS) are based on a full joint distribution
of both processes. There are different factorizations of this joint distribution that generate various
modeling strategies. For a general idea, let the Y be longitudinal process, T the survival processes, and
U a latent random effect. Then, JMLS can be grouped into the following modeling classes:

Selection Models: In these models a latent random effect, U , underlines only the longitudinal process
Y , and the calculation of joint likelihood consists of a factorization into the conditional distribution
of the longitudinal process given the random effect on the one hand and the conditional distribution of
the survival process given the longitudinal outcome on the other hand. In this type of model the focus
is only on the time-to-event process, thus can be used for survival analysis with endogenous variables.

f (Y, T,U ) = f (U ) f (Y | U ) f (T | Y )

Pattern-Mixture Models: These models are similar to the selection models, but factorization is
reversed. In this setting, the factorization of the joint likelihood is conducted into the conditional
distribution of the longitudinal outcome given the survival process on the one hand, and the conditional
distribution of the survival outcome given the random effect on the other hand. This type of models can
be used for the longitudinal studies with a drop-out process generated by nonignorable mechanism.

f (Y, T,U ) = f (U ) f (T | U ) f (Y | T )

Shared Random Effect Models: In these models the latent random effect underlines both longitudinal
and survival processes.

f (Y, T,U ) = f (U ) f (Y | U ) f (T | U )

In JLMS, standard methods within shared random effect models make use of two submodels, in
order to specify the full joint likelihood. The longitudinal process is modeled by a linear-mixed model
as follows

Yti j = β0 + β1ti j + U0i + U1iti j + εi j (1)

where Yi j is response variable measured on subject i = 1, ..., n at time point ti j , with j = 1, ..., mi. The
β0, β1 represent the coefficients of the fixed effects, (i.e., the intercept and the time effect respectively),
and U0i, U1i are the random intercept and random slope effects respectively. Here we assume(

U0i
U1i

)
∼ N

((
0
0

)
, �)

)

with

� =
(

σ 2
u0

σu0
σu1

ρ12

σu0
σu1

ρ12 σ 2
u1

)

In the � expression, σ 2
u0

and σ 2
u1

are the variances of the random effects and ρ12 represents the
correlation between them.
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The survival process is usually modeled by using the following Cox proportional hazard model (Cox,
1982)

λ(t) = λ0(t) exp(βX + αωi(t)) (2)

where λ0(t) is the unspecified baseline risk function, X is a matrix of fixed effects including the baseline
covariates (such as age, gender, etc...), ωi(t) is a function reflecting the association structure between
the longitudinal and survival data including the same random effects U , and α is the coefficient of
this association. In the following, we present four different association structures ωi(t) that can be
considered between the longitudinal and time-to-event data.

3.1 The random effects predictions at time t (Wulfsohn and Tsiatis, 1997)

The first proposal takes the random time trend into account in the time to event model. In this model,
the association structure ωi(t) measures the association between the random effects and the hazard
for an event that express the subject-specific deviations from the average intercept and average slope.

ωi(t) = U0i + U1iti j

assuming that the random intercepts and slopes have zero-mean bivariate normal distribution as
indicated in [1].

Thus the survival submodel becomes,

λ(t) = λ0(t) exp(βX + α(U0i + U1iti j ))

in which α is the association between the longitudinal biomarker and the risk of death at time t with a
unit change in the marker corresponding to a exp(α) fold change in the risk for death.

3.2 The true unobserved (current) value at time t (Rizopoulos, 2012)

This parameterization includes the true value of the longitudinal biomarker at time t into the survival
model. In this case, the association structure is defined via:

ωi(t) = β0 + β1ti j + U0i + U1iti j

The survival submodel becomes,

λ(t) = λ0(t) exp(βX + α(β0 + β1ti j + U0i + U1iti j ))

in which α represent the association between the longitudinal biomarker and the risk for death at time
t taking into account the true value of the longitudinal biomarker both with fixed and random effects
predictions.

3.3 Time-dependent slopes including both current value and the slope of the trajectory at
time t (Ye et al., 2008)

In the previous two parameterizations we have assumed that the risk for an event depends on the current
value of the longitudinal biomarker. However, it is also reasonable to consider other parameterizations
that allow the risk for an event to also depend on other features of this trajectory. A parameterization
of this type has been considered by Ye et al. (2008b) in which the risk depends both on the current
true value of the trajectory and on the slope of the true trajectory at time t. The relative risk survival
sub-model takes the form

ωi(t) = β0 + β1ti j + U0i + U1iti j and ω′
i(t) = d

dt
(β0 + β1ti j + U0i + U1iti j )
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Thus the survival submodel becomes

λ(t) = λ0(t) exp
(
βX + α1ωi(t) + α2ω

′
i(t)

)
Parameter α1 has the same interpretation as in Section 3.2 and α2 represents for patients having the
same level of the true longitudinal biomarker at time t, the log hazard ratio for a unit increase in the
current slope of the longitudinal trajectory. This parameterization could capture situations in which,
at a specific time point, two patients show similar true marker levels, but they may differ in the rate of
change of the marker.

3.4 Cumulative effect including the whole area under the trajectory (Rizopoulos, 2012)

All the three parameterizations so far assume that the risk for an event at a specific time depends on
features of the longitudinal trajectory at only a single time point. However, in many cases we may
benefit by allowing the risk to depend on function of the longitudinal marker history. One approach
that allows the whole history of the marker to be associated with the hazard for an event is to include in
the linear predictor of the relative risk submodel the integral of the longitudinal trajectory, representing
the cumulative effect of the longitudinal outcome up to time of the repeated measurements are taken
t. This association structure takes the form,

ωi(t) =
∫ t

0
(β0 + β1si j + U0i + U1isi j )ds

Thus the survival submodel becomes

λ(t) = λ0(t) exp(βX + α1ωi(t))

With this parameterization, α1 is the association between the whole history (area under the trajectory)
of the longitudinal biomarker and survival.

In the particular peritoneal dialysis program setting, that will be analyzed in this paper, the longi-
tudinal biomarkers have different behaviors over time (see Fig. 1). For each longitudinal biomarker it
is important to explore different parameterizations to detect the appropriate association between the
longitudinal and survival data.

As we have multiple longitudinal biomarkers with time-to-event process in the peritoneal dialysis
program, the clinical interest is on the correlation structure between these biomarkers and their associ-
ation with the time-to-event. However, JMLS approaches within the shared random effects framework
is difficult to implement when the number of longitudinal biomarkers is high. The mentioned frame-
work consists of estimating all the parameters of a variance-covariance matrix for different random
effects of each longitudinal outcome. Computational problems arise as a result of high dimension-
ality in the variance-covariance matrix when the number of these random effects are getting higher
(Fieuws and Verbeke, 2006). For instance, in case of assuming model (1) for a number of k longitu-
dinal biomarkers, we would have 2k × 2k variance-covariance matrix of the random components and
k × k variance-covariance matrix of the error components. The resulting high dimensional matrix is
computationally getting complex for the increasing number of k.

4 Modeling multivariate longitudinal and survival data

The main idea of the initial approaches of JMLS depends on two-stage modeling (see Pawitan and
Self, 1992; Tsiatis et al., 1995 among others) where the likelihood of the above mentioned models are
calculated separately. Guler et al. (2014) showed in a particular case study that the resulting estimations
of these models and their predictive performances are similar to JMLS in case of one single longitudinal
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and survival data. For that reason, in this paper, we will propose a JMLS extension for multivariate
longitudinal and survival data based on the idea of this two-stage initial approaches.

As the first stage, we use a multivariate-mixed model for all longitudinal biomarkers within a random
effects framework. Let Uki be the random effect of the k-th longitudinal biomarker. The main idea is to
specify a joint distribution for the random effects Uki. However, given the high number of longitudinal
biomarkers, a pairwise modeling approach (Fieuws and Verbeeke, 2006) will be used where all the
possible pairs of bivariate-mixed models are fitted and combined in a final step. Thus, we assume a
multivariate normal distribution for the random effects Uki.

At the second stage, we then fit a Cox proportional hazard regression model with the incorporation
of each longitudinal biomarker with different association structures (presented in Section 3).

4.1 Stage 1: Multivariate longitudinal model

4.1.1 Univariate analysis

The four longitudinal biomarkers calcium, PTH, phosphorus, and creatinine in the study have their
own trajectories over time. The overall profile of PTH values has the same behavior over time after
a log transformation, thus, from now on, we consider the PTH values with log transformation for
normalizing the distribution of the variable. Firstly, a univariate analysis is conducted fitting indepen-
dent linear-mixed models for each of the longitudinal model to check the covariate effects. On the
other hand, the correlation between the longitudinal biomarkers is important to explore using random
intercepts and random slopes and should be taken into account in the multivariate longitudinal model.

We have used the following model for individual i at time point j for outcome k:

Yi jk = β0k + β1kage + β2kgender + β3kti jk + β4kt2
i jk + U0ik + U1ikti jk + εi jk(t) (3)

We assume correlated random intercept and slope for each longitudinal biomarker k (in our case
k = 4).

being (
U0i
U1i

)
∼ N

((
0
0

)
, �

)

with

� =
(

σ 2
u0

σu0
σu1

ρ12

σu0
σu1

ρ12 σ 2
u1

)

The results of the univariate model are presented in Table 1. As shown in this table, the time variable
has a significant quadratic effect on log(PTH), phosphorus and creatinine measurements.

As we can observe in Figure 2, some of the longitudinal biomarkers have high correlations on
intercepts and slopes between them. These correlations have to be taken into account in the joint lon-
gitudinal model using a multivariate normal (MVN) distribution for all the random effects across the
longitudinal outcomes. However, this MVN distribution has a high dimensional variance-covariance
matrix that is computationally complex to estimate. Therefore, the pairwise approach of multivariate
longitudinal data is used to fit a joint longitudinal model for Stage 1.

4.1.2 Pairwise approach for multivariate longitudinal data

Fieuws and Verbeke (2006) introduced a pairwise approach for multivariate longitudinal data that
can be used instead of maximizing the likelihood of the full joint model. They fit all the possi-
ble pairs of maximum likelihood to obtain one single estimate for each parameter. We use this
latter approach in the first stage of the proposed model to study the four longitudinal biomark-
ers included in the database: calcium, creatinine, log(PTH), and phosphorus measurements. The
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Figure 2 Principal components analysis of independent random intercept and slopes.

pairwise approach consists of modeling bivariate longitudinal models independently for each pair
and these models will be joined by specifying a common distribution for their random effects. More
precisely, p = k(k − 1)/2 pairs are fitted. In this case p = 6 bivariate longitudinal models, namely,
((Yi j1,Yi j2), (Yi j1,Yi j3), (Yi j1,Yi j4), (Yi j2,Yi j3), (Yi j2,Yi j4), (Yi j3,Yi j4))) are fitted and joined to ob-
tain a covariance matrix of the random intercept and slopes. Joining the equations in Model (3) we
obtain,

Calciumi j = β0,1 + β1,1age + β2,1gender + β3,1ti j,1 + β4,1t2
i j,1 + U0i,1 + U1i,1ti j,1 + εi j,1(t)

Creatininei j = β0,2 + β1,2age + β2,2gender + β3,2ti j,2 + β4,2t2
i j,2 + U0i,2 + U1i,2ti j,2 + εi j,2(t)

log(PT H )i j = β0,3 + β1,3age + β2,3gender + β3,3ti j,3 + β4,3t2
i j,3 + U0i,3 + U1i,3ti j,3 + εi j,3(t)

Phosphori j = β0,4 + β1,4age + β2,4gender + β3,4ti j,4 + β4,4t2
i j,4 + U0i,4 + U1i,4ti j,4 + εi j,4(t)

with ⎛
⎜⎜⎜⎝

U0i,1
U1i,1
...

U0i,4
U1i,4

⎞
⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

0
0
...

0
0

⎞
⎟⎟⎟⎠, �

⎞
⎟⎟⎟⎠

where � is a general variance-covariance matrix of all the random intercept and random slope effects.
In the pairwise fitting approach the log likelihood of the following form will be maximized separately:

N∑
i=1

lpi(θp)

where p = 1, ..., P and θ is the vector combining each pair-specific parameter vectors θp. Estimations
for the elements in θ are obtained by maximizing each of the p = 6 likelihoods separately (Fieuws and
Verbeeke, 2006; Fieuws, Verbeke and Molenberghs, 2007).

Although in the pairwise approach a set of likelihoods is maximized separately, the approach fits
within the pseudo-likelihood framework. Indeed, fitting all possible pairwise models is equivalent to
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maximizing a pseudo-likelihood (pl) function of the following form:

pl (θ ) =
N∑

i=1

lrsi
(Y ri,Y si|θr,s)

where r = 1, ..., k − 1 and s = r + 1, ..., k. θr,s represents the vector of all parameters in each pair (r, s)
of joint mixed model.

The asymptotic multivariate normal distribution for θ is given by:
√

N(θ − θ ) ≈ MV N(0, J−1KJ−1)

where J is a block-diagonal matrix with diagonal blocks Jpp and K is a symmetric matrix containing
blocks Kpq.

Jpp = − 1
N

N∑
i=1

E

(
d2lpi

dθ ′
pdθp

)

Kpq = 1
N

N∑
i=1

E

(
dlpi

dθp

dlqi

dθ ′
q

)
, p, q = 1, ..., P

In the final step, estimates for the parameters are calculated by taking averages over all pairs
(Fieuws and Verbeke, 2006). The main advantage of this model is that it helps us determine whether
or not the longitudinal biomarkers are associated since this association is captured via the bivariate
normal random effects. In this study, interest was on the predictions of the random effects from the
multivariate-mixed model to be used as covariates in Stage 2 for the survival model.

4.2 Stage 2: Survival model

We use the classical Cox proportional hazard model (Cox, 1972) including the estimated values of
longitudinal biomarkers obtained from the first stage.

λi(t) = λ0(t) exp

(
β1age + β2gender +

4∑
k=1

αkωik(t)

)
(4)

For the association structure of each longitudinal biomarkers and survival data, we will focus on
four different parameterizations described in Section 3. Thus the linear predictor, ωik(t), takes the
following forms

� The random effects predictions at time t : Wik(t) = U0ik + U1ikti jk
� The true unobserved (current) value at time t : ωik(t) = β0k + β1kage + β2kgender + β3kti jk +

β4kt2
i jk + U0ik + U1ikti jk

� Time-dependent slopes including both current value and the slope of the trajectory at time
t : αkwik(t) + αk2w′

ik(t) = αk(β0k + β1kage + β2kgender + β3kti jk + β4kt2
i jk + U0ik + U1ikti jk) +

+αk2(β3k + β4kti jk + U1ik)
� Cumulative effect including the whole area under the trajectory : Cum(wik(t)) = ∫ t

0 (β0k +
+β1kage + β2kgender + β3ksi jk + β4ks2

i jk + U0ik + U1iksi jk)ds

In the two-stage based modeling framework, the calculation of the longitudinal and survival sub-
model likelihood is done separately.
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Table 2 Correlation between the random intercepts (int) and random slopes (slp) of the pairwise
bivariate joint models.

Correlation Matrix

Calcium
int

log(PTH)
int

Phosphor
int

Creatinine
int

Calcium
slp

log(PTH)
slp

Phosphor
slp

Creatinine
slp

Calcium int 1 −0.13 −0−19 −0.01 −0.67 −0.40 0.17 −0.19
log(PTH) int 1 0.22 0.15 −0.11 −0.56 −0.22 −0.10
Phosphor int 1 0.46 0.02 −0.36 −0.54 −0.44
Creatinine int 1 0.03 −0.24 −0.39 −0.44
Calcium slp 1 −0.40 −0.17 −0.04
log(PTH) slp 1 0.50 0.07
Phosphor slp 1 0.82
Creatinine slp 1

5 Application to peritoneal dialysis data

The fixed effects were found to be significant in each pair as in the univariate models in the pairs.
Further, for most of the bivariate models, the parameter estimates and standard errors for the fixed
effects remained the same as in the univariate models. The p-values were similar in both type of models.
Since the association levels of the four longitudinal biomarkers was of primary interest, the correlation
of the random intercepts and slopes in each pairwise bivariate joint model was examined. Table 2
shows the correlation structure of the random effects from the pairwise modeling of the longitudinal
biomarkers. As observed in univariate analysis with principal components of the random effects, the
creatinine and phosphorus measurements are correlated on the intercept with a moderate correlation
(0.46) and with a high correlation on the slope (0.82).

Tables 3 and 4 show the results of the survival model fitted with different association structures.
We can observe the differences of each of the parametrizations including their results for fixed effects
estimations. For instance, we do not observe statistically significant effect of the true value of calcium,
log(PTH) and phosphorus levels at time t, when we predict them using the multivariate longitudinal
model. However, the cumulative effect of these biomarkers on time-to-event are significant. These
results show the importance of the association structure that we use in the survival model, shown in
Section 4.

As the type of association structure is unknown, it would be good practice to compare different
association structure, and select the best association structure using some model selection method.
Different association structures can be chosen for each longitudinal biomarker on a unique survival
model and observe the significant effects on time-to-event. Also, the model selection can be done by
a comparison of log-likelihood values of the survival models. In terms of the log-likelihood values in
Tables 3 and 4, the association structure between the cumulative effect of longitudinal biomarkers and
time-to-event is chosen for the survival model. In our particular case, as we observe the association
between the cumulative values under the curve for the longitudinal trends and survival is significant,
we choose the corresponding association structure. On the other hand, the selection of the association
structure is also discussed depending on the clinical aspects. The statistical analysis has relevant clinical
impact and allowed important achievement towards the dialysis clinics quality control. The innovative
methodology showed that: (i.) the predictive power of serum creatinine in dialysis populations is
reproduced and its lower value, even as a fixed time measurement impacts on survival; (ii.) cumulative
exposition (cumulative effect including the whole area under the trajectory) related to the importance
of calcium, phosphate and log(PTH) rather than its measurements at a fixed time impact survival.
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In fact serum levels of creatinine increase in patients who lose renal excretion capacity and its
increased levels could at a first glance translate in higher mortality dialysis that is prescribed to reduce
serum levels of toxins and creatinine. However, creatinine is a biomarker of muscle mass and nutrition
(Wang et al., 2016). A lower level of creatinine is mostly a marker of protein wasting strongly impacting
survival. The study showed that at time t this measure is a useful predictor of combined survival but also
the cumulative effect shows significant association. On the other hand the study questions the standard
policy of reporting calcium, phosphate, and log(PTH) measurements at time t as useful parameters
of quality control. These measurements have limited ability to predict patient outcomes and merit
investigation (Block et al., 2013). Instead it is the cumulative effect that showed to significantly impact
on survival. This cumulative effect integrate the complex biological association of these variables
with the outcomes. For this reason, it is recommended that these measurements including the serum
creatinine values should be recorded in a way that the cumulative effect can be calculated.

6 Discussion

Previous research on joint modeling approaches has mostly concentrated on modeling a single longitu-
dinal biomarker with time-to-event. However, the follow-up studies often include multiple longitudinal
biomarkers that can have nonlinear profiles and high dimension complexities. We proposed a two-stage
based model proposal for multivariate longitudinal and survival data. With the pairwise approach from
Fieuws and Verbeke (2006) and a two-stage based likelihood we avoid the computational problems
that occurs during the calculation of a full joint likelihood. Thus, the proposed model allowed us to
study the complex association structure between all the longitudinal biomarkers and time-to-event of
interest in the peritoneal dialysis program.

The need of using the proposed model was to develop an alternative method to flexibly model
multivariate longitudinal and survival data in a frequentist framework for our particular case study.
The high dimensional problems for jointly modeling multiple longitudinal data in the frequentist
framework are already discussed in the literature by Fieuws and Verbeke (2006). Furthermore, in
settings with an additional time-to-event and/or having nonlinear multiple longitudinal profiles, the
joint likelihood calculation gets more complex. To this aim, we propose a two-stage modeling approach
that can be extended toward a flexible multivariate longitudinal and survival data. For instance Guler
et al. (2016) presents an application study on Orthotopic liver transplantation (OLT) data where the
postoperative glucose and insulin trends have nonlinear profiles over time. The linear multivariate
longitudinal models may not be appropriate in this situation. Our two-stage model based proposal can
be extended in this particular case to study a flexible multivariate longitudinal and survival data using
smoothing methods.

The limitation of this proposed model could be the unignorable informative censoring on the
longitudinal model cause of drop-out process. Many studies in the literature has compared two-stage
based modeling approaches and joint models in a single longitudinal biomarker context and proved
that there could be a bias cause of the unignorable censoring during the follow-up study (Kalbfleisch
and Prentice, 2002).

Firstly, our model proposal is an extension to naive two-stage model based proposals in the literature
for longitudinal and survival data. Those näive techniques consist of modeling all the longitudinal
biomarkers independently and incorporate them as covariates into the survival process. Incorporations
of the multiple longitudinal biomarkers as separate covariates into the survival model may lead to
multicollinearity problems because of the possible high correlations between them. The approach of
Fieuws and Verbeke (2006) takes into account the correlation between the multiple longitudinal data.
We use this latter approach for the multiple longitudinal data to furthermore incorporate them into
the survival model. To show the importance of the multivariate longitudinal model in our case study,
a comparison study is conducted between a survival model including the estimations from separate
linear-mixed models for each longitudinal biomarker and a survival model including the estimations
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from multivariate-mixed model. As we can observe in Appendix 1, the estimations and the significant
levels of the associations are different for the two models. This shows the importance of multivariate
modeling in our particular case.

Besides, an univariate study is conducted to see whether the bias cause of the unignorable censoring
is considerable comparing the two-stage approach and joint models. Separate joint models for each
longitudinal biomarker and survival process is fitted and compare with two-stage approaches. We
observed that the bias was minimal and the models are similar in terms of −2loglikelihood values
(see Appendix 1). The bias was also minimal in a conducted simulation study based on the real
data. However, the informative censoring is still an important key to take into account in case of
having internal repeated measurements. The internal longitudinal measurements are taken when the
drop-out process is started, thus, the censored patients are producing missingness on the longitudinal
biomarkers after the event has happened. For this reason, our model proposal only guaranteed to
provide valid results in this special case but generally can be used for external longitudinal biomarkers
and time-to-event processes where the repeated measurements are taken before the follow-up study
has started to avoid possible bias estimations. As an example of this particular situation, Murawska
et al. (2012) have proposed a two-stage model based approach for nonlinear bivariate longitudinal and
survival where the longitudinal responses do not constitute an endogenous time-dependent variable
measured at the same period as the time to event. In particular, the longitudinal measurements are
collected prior to transplantation, occurrence of an event (i.e., graft failure after transplantation) does
not cause nonrandom dropout in the longitudinal outcome.

On the other hand, as a future aspect to study, in order to reduce bias estimations for internal
longitudinal measurements the model proposal could be extended. A regression calibration approach
can be used to account for informative drop-out in the longitudinal part as Albert and Shih (2010)
presented in their approach. Albert and Shih (2010) considered a model, in which a discrete event time
distribution is modeled as a linear function of the random slope of the longitudinal process estimated
from the linear-mixed model. The bias from informative dropout was reduced by using the conditional
distribution of the longitudinal process given the dropout time to construct the complete dataset. To
account for the measurement error in the mean of the posterior distribution of the random effects, the
variance, that incorporates the error in estimating the fixed effects in the longitudinal model, was used.

In this paper, the proposed model is only applied to Gaussian multivariate longitudinal biomarkers.
However, in practice, these outcomes can have different distributions such as binomial, Poisson,
or mixture of these. For instance, in the peritoneal dialysis program log(PTH) levels was assumed to
follow a normal distribution, however, PTH levels of the patients, during the analysis. This longitudinal
outcome has a mixture distribution of binomial and Gaussian. Therefore, the proposed model need
to be extended to account for the situation of joint modeling of generalized multivariate longitudinal
and survival (Faes et al., 2008)

Acknowledgments This research was supported by the Spanish Ministry of Economy and Competitiveness
MINECO grant MTM2014-52975-C2-1-R. The authors appreciate all the valuable comments and suggestions
made by two anonymous referees and an associated editor, that improved a lot the manuscript.

Conflict of interest
The authors have declared no conflict of interest.

Appendix: Comparison study

We have conducted a comparison study between a survival model including the estimations from
separate linear-mixed models explained in Section 4.1.1 for each longitudinal biomarker and a survival
model including the estimations from multivariate-mixed model. The Table A1 shows the results of
such comparison on our motivating database OLT.
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Table A2 shows the results of joint models and two-stage models comparison for each longitudinal
biomarker. The fitted joint models are based on the shared random effects framework as explained in
Section 3 with the association structure showed in 3.2 of the longitudinal biomarker calcium, PTH,
creatinine, and phosphorus, respectively. Then, a two-stage model is fitted to study the association
between each longitudinal biomarker and survival separately.

Table A1 Results of comparison study of survival model including the estimations from separate
linear-mixed models for each longitudinal biomarker (SM 1) and a survival model including the
estimations from multivariate mixed model (SM 2).

SM 1 SM 2

Coef (Std.Error) p-value Coef (Std.Error) p-value

Fixed effects Gender (Male) (β1) −0.77 (0.37) 0.04 −0.19 (0.32) 0.04
Age (β2) 0.007 (0.01) 0.54 0.01 (0.01)) 0.11

Calcium α1 −0.79 (0.66) 0.23 −0.42 (0.66) 0.51
log(PTH) α2 −0.51 (0.20) 0.009 −0.35 (0.14) 0.01
Phosphorus α3 0.41 (0.49) 0.40 1.21 (0.47) 0.01
Creatinine α4 −0.12 (0.06) 0.07 −0.38 (0.06) <0.01

-2(Loglikelihood) 338.01 297.44

Table A2 Results of comparison study of joint models (JM) and two-stage models (TS) for each
longitudinal biomarker.

JM TS

Coef (Std.Error) p-value Coef (Std.Error) p-value

Fixed effects Gender (Male) (β1) −0.32 (0.28) 0.25 −0.39 (0.31) 0.20
Age (β2) 0.01 (0.01) 0.28 0.009 (0.01) 0.38

Calcium α1 −0.97 (0.33) 0.03 −0.71 (0.64) 0.27
-2(Loglikelihood) 659.7894 715.642

Fixed effects Gender (Male) (β1) −0.32 (0.28) 0.25 −0.33 (0.30) 0.24
Age (β2) 0.01 (0.01) 0.28 0.006 (0.01) 0.30

log(PTH) α2 −0.41 (0.40) 0.01 −0.35 (0.41) 0.01
-2(Loglikelihood) −2002.567 −1922.694

Fixed effects Gender (Male) (β1) −0.32 (0.28) 0.25 −0.35 (0.30) 0.24
Age (β2) 0.01 (0.01) 0.28 0.008 (0.01)) 0.44

Phosphorus α3 0.24 (0.26) 0.36 0.20 (0.30) 0.94
-2(Loglikelihood) −849.378 −804.9905

Fixed effects Gender (Male) (β1) −0.32 (0.28) 0.25 −0.67 (0.36) 0.06
Age (β2) −0.007 (0.01) 0.54 0.01 (0.01)) 0.98

Creatinine α4 −0.12 (0.03) 0.45 −0.09 (0.05) 0.11
-2(Loglikelihood) −4777.621 −4390.806
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