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ABSTRACT 

One of the major hurdles for therapeutic applications is the efficient delivery of bioactive 

molecules to the site of action. The high flexibility and biosafety of lipid-based nanoparticles 

has greatly enhanced their employment as delivery systems not only for synthetic but also for 

natural molecules such as proteins and nucleic acids. This thesis was brought about to 

investigate the nucleic acid delivery potential of synthetic lipid-based nanoparticles as well as 

to look into the composition and delivery patterns of their natural counterparts, extracellular 

vesicles (EVs), in order to set ground for future lipid-based therapeutic interventions.  

Firstly, in Paper I we explored the potency of a lipid-based delivery agent, Lipofectamine 

2000 which after being frozen and thawed showed orders of magnitude higher nucleic acid 

delivery efficiency in vitro and in vivo than the non-frozen counterpart. This effect was 

consistent across different cryo-manipulations, cell lines and also various types of nucleic 

acid. Further analysis with different methodologies revealed that the underlying potency 

plausibly relies on the elevated sedimentation and spreading of the complexes and/or relates 

to the specific structure or composition of the carrier. These findings illustrate that a simple 

freeze-thawing procedure allows to drastically reduce the amount of transfection reagent for 

cellular nucleic acid delivery, whilst not losing the desired activity. 

Secondly, we shifted our focus to natural lipid-based carriers, EVs in order to shed light on 

the vesicular and non-vesicular (non-EV) small RNA patterns and their relation to the EV 

proteome (Paper II and III). Though the studies exploited different EV enrichment methods 

the relative depletion of vesicular small RNAs was confirmed in both instances. A detailed 

analysis of the secretory repertoire of small RNAs showed a significant depletion of 

microRNA (miRNA) sequences, matching well with the depletion of “miRNA related” 

proteins in EVs. The relative expression level of cellular, EV and non-EV miRNAs correlated 

well and though some differentially expressed (DE) miRNAs were detected, these had a 

relatively low expression in both the source cells as well as in the secretory fractions. We also 

quantified the total level of selected miRNAs in EVs and non-EV fraction investigating both 

the basal as well as overexpressed levels and could verify that the vast majority of mature 

miRNA is secreted to the non-EV portion of the secretome. 

Paper IV was brought about to gain a comprehensive overview of the biodistribution of 

exogenous EVs. This study confirmed that fluorescent lipophilic dyes are suitable for 

membrane labelling and in vivo tracking of EVs. The general biodistribution pattern of EVs 

was seen to follow a common mononuclear phagocytic system (MPS) uptake pattern with the 

majority of EVs accumulating in the liver, spleen and lungs. Nevertheless, depending on the 

cell source, administration route, dose and the presence of targeting moieties this distribution 

could be altered. 

The present findings are important to gain a thorough understanding of the nucleic acid 

delivery capacity of lipid-based nanoparticles, especially EVs and thereby progress their 

employment as therapeutic nucleic acid carriers.  
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INTRODUCTION 

The first reports describing the utility of nucleic acids in modulating gene expression were 

published in late 1970s [1,2]. Though the range and function of nucleic acids was at first 

rather narrow, a remarkable progress in the discovery of new RNA species  together with 

their novel molecular functions has now been made [3–8]. This in turn has urged the 

development of a series of natural or chemically modified nucleic acid molecules, which can 

be harnessed as stand-alone therapeutic entities. Yet, the size and negative charge of nucleic 

acids hinders their passage through the cell membrane, implying to the need of advanced 

carrier systems tailored for their delivery into cells. 

Delivery systems for nucleic acids can broadly be divided into viral and non-viral. The latter 

hold several advantages over viral systems including a higher level of biosafety and an 

improved flexibility to desired modifications. These conditions are met by non-viral lipid-

based delivery systems, many of which are based on natural phospholipids providing a good 

biocompatibility, biodegradability and low immunogenicity compared to viral systems. The 

first generation of lipid-based nucleic acid delivery systems used either anionic or neutral 

lipids, which however were difficult and time consuming to produce [9]. Hence the interest 

was turned towards their cationic versions, which were found to significantly enhance the 

stability of the nucleic acid material as well as, owing to their positive charge, provide an 

improved interaction with the cell membrane [10]. 

Cationic lipids are often mixed with negatively charged nucleic acids to obtain delivery 

complexes known as lipoplexes. Yet, they are more frequently employed for creating 

structured lipoplexes, such as liposomes [11]. To date, a myriad of different cationic lipid-

based transfection reagents have been developed mainly for in vitro screening purposes. The 

discovery of Lipofectin [12] greatly enhanced the use of cationic lipids for nucleic acid 

delivery and ignited the studies of lipid-based nanocarriers also for human gene therapy 

applications [13]. 

In addition to synthetic lipid-based nucleic acid delivery systems, recently an increasing 

interest has been paid to nucleic acid delivery properties of naturally occurring membrane-

enclosed vesicles, called extracellular vesicles (EVs). Though earlier reports of plasma 

membrane derived vesicles exist [14], the first studies on vesicles of endosomal origin were 

published in 1980s [15–17]. Initially, they were thought to purely represent ‘garbage bins’ to 

discard cellular waste [15]. However, a decade later evidence of EV mediated signalling was 

presented [18], opening a brand new research field of intercellular communication. During 

the years thereafter the EV biology field has witnessed an explosive growth, constantly 

revealing new pivotal roles of EVs, disclosing their potential as disease biomarkers as well as 

natural nanoparticles for therapeutic macromolecule delivery. 

This literature review will give a brief overview of lipid-based nucleic acid delivery systems, 

by briefly covering synthetic cationic lipid-based delivery vectors and having an emphasis on 

their natural counterparts, EVs. 
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1 Synthetic cationic lipid-based delivery systems 

1.1 General overview and composition 

The size and negative charge of DNA and RNA hinder their passage through the plasma 

membrane and thereby precludes their naked usage as stand-alone therapeutic compounds. 

Moreover, nucleic acid polymers are susceptible to nucleases present in the biological fluids, 

causing their degradation within minutes [19–21]. Shorter nucleic acid stretches are also 

subject to rapid clearance by renal filtration, significantly decreasing their bioavailability in 

target sites where they additionally face plasma-, endosomal and nuclear membrane barriers 

[22]. As systemic administration of unmodified nucleic acid can furthermore stimulate Toll-

like receptors (TLRs) and thereby activate innate immune response [23], sophisticated 

delivery vehicles that would enhance the bioavailability of nucleic acids are needed.  

The use of cationic lipids for nucleic acid delivery was first described by Felgner et al. in 

1987 [12], reporting a log scale improvement in transfection efficiency as compared to 

conventionally used calcium phosphate or  diethylaminoethyl (DEAE)-dextran mediated gene 

delivery. The general complexation rationale of cationic lipid mediated delivery relies on the 

formation of electrostatic interactions between the positively charged hydrophilic head group 

of the lipid and negatively charged phosphate group of the nucleic acid, whereby neutralizing 

or increasing the overall charge of the complex to aid cellular delivery. Depending on the 

complexation parameters, cationic lipids form highly structured entities or complexes with 

irregular morphology, referred to as liposomes and lipoplexes, respectively [24,25]. In the 

lipoplex, the complexed material is partially condensed and their structure does not resemble 

that of liposomes. Instead, the lipoplex appears as a multilamellar liquid crystal consisting of 

hydrated DNA layers alternating with cationic lipid bilayers [24]. Also, other molecular 

configurations, such as columnar hexagonal phase structures have been described [26]. 

Though the dynamics of lipoplex assembly are poorly understood, it has been shown that 

lipid packaging parameters dictate the organization of the structure [27]. Schematic 

illustration of a lipoplex and a liposome are depicted on Figure 1. 

 

 

 

Figure 1 - Illustration of a multilamellar lipoplex (left) and a spherical liposome (right) encapsulating nucleic 

acid. 
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The first discovery and description of liposomal structures dates back more than 50 years 

when Bangham and colleagues described “bangosomes” [28]. These artificial spherules 

rapidly gained interest and a few years later received a more descriptive term “liposomes” 

[29]. Liposomes are spherical vesicles of 20 nm to a few micrometers in diameter that are 

composed of one or multiple phospholipid bilayers, entrapping a solute of interest. Unlike 

lipoplexes, which most often have an irregular structure, the lipids in liposomes are organized 

in a spherical manner, providing a capsule for the therapeutic moiety. The lipid core protects 

the content from degradation, decreases its cellular toxicity as well as enhances its solubility 

and stability in vivo [30]. In addition, owing to their lipid architecture, liposomes are 

amenable to surface engineering, being beneficiary not only to enhance their uptake, but also 

to introduce specific ligands for improved tissue targeting [31,32]. 

In addition to the aforementioned, cationic lipids are also increasingly used to form lipid 

nanoparticles (LNPs), both for academic studies as well as clinical applications [33,34]. LNPs 

have a similar composition as liposomes, constituting of cationic lipids and helper lipids, yet 

often have a solid, lipophilic core region. The encapsulation of nucleic acids into LNPs is 

usually performed by microfluidic mixing, generating lipid nanostructures containing inner 

inverted micelles of cationic lipids complexed with the nucleic acids [35]. Owing to the 

highly efficient nucleic acid encapsulation, providing the formulation a good potency [36], 

LNPs are one of the most widely used and efficient gene delivery vehicles both for in vitro as 

well as in vivo applications. Moreover, as these nanoparticles allow to simultaneously exploit 

the therapeutic benefits of nucleic acids and encapsulated lipophilic drugs [37], they are also 

at lead among all non-viral delivery vehicles that are used for clinical purposes [34,38]. 

The lipids that are used to form the aforementioned structures can be anionic, neutral or 

cationic. Considering the polyanionic nature of nucleic acids, the use of anionic lipids has 

rather been directed towards the delivery of other therapeutic macromolecules [39]. Well-

characterized and widely used cationic lipids for cellular delivery purposes include [1,2-bis 

(oleoyloxy)-3-(trimethylammonio)propane] (DOTAP) [40], N-[1-(2,3-dioleyloxy)propyl]-

N,N,N-trimethylammonium chloride (DOTMA) [12] and 3β[N-(N′, N′-

dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) [41]. Occasionally, these lipids are 

used as solitary nucleic acid carriers, although most often they are mixed with neutral helper-

lipids (e.g. 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE), 

dioleoylphosphocholine (DOPC) and cholesterol) [12,42] to enhance membrane fusion and 

aid endosomal escape[42]. Though the basic structure of these lipids mimics chemical and 

physical attributes of biological lipids, structural differences in the size of the head group and 

length of the hydrocarbon tail give distinct characteristics to the complex, affecting cellular 

association and uptake. 
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1.2 Uptake and cargo release 

For the complexes to be efficiently taken up by the cells, a high extent of condensation as 

well as a net positive charge is preferred. The interaction of anionic liposomes with cell 

membrane is somewhat unclear, however it has been demonstrated that the uptake will take 

place once a certain threshold of cell-to-liposome charge ratio is exceeded [43]. Cationic 

complexes are known to electrostatically interact with the negatively charged glycoproteins 

and proteoglycans on the cell membrane, thereby facilitating cellular interaction and 

membrane transversal via endocytosis [44,45].  

It is known that larger lipoplexes enter the cells more easily than smaller ones due to their 

improved sedimentation [46], facilitated membrane contact/fusion and easier dissociation of 

the complex after successful endocytosis [47,48]. By increasing the cationic lipid nucleic acid 

ratio, larger lipoplexes with a higher positive net charge can be created.  Yet, too high 

concentration of lipids interferes with the functions of the cellular and subcellular 

membranes, thereby compromising cellular integrity and causing cytotoxicity [49]. In 

addition, even at non-cytotoxic concentrations, the surface charge of the complexes itself can 

cause genotoxic events and lead to the significant formation of micronuclei in cells [50,51]. 

In order to result in successful nucleic acid delivery, the complexes face a rate-limiting step 

of endosomal escape and cargo release from the lipid material. Firstly, it must be noted that 

the majority of the endocytosed material gets targeted to lysosomal degradation [52,53], the 

remainder needs to cause a transient destabilization of the bilayered lipid structure of the 

endosome and reach the site-of-action. The cargo release is often promoted by the 

incorporation of helper-lipids, which not only facilitate interaction with the cell membrane 

but owing to their fusogenic properties also mediate endosomal escape [42,54,55]. In 

addition, it has been hypothesized that the buffering capacity of nanoparticles prevents 

acidification of endosomal vesicles, thereby activating the influx of protons and counterions, 

causing osmotic swelling and rupture of the endosome and cargo release into the cytoplasm. 

However, the so-called “proton sponge” effect is still a matter of active debate [56]. The 

dissociation of nucleic acid from cationic lipoplexes in not fully understood, though it has 

been suggested that charge neutralization and structural changes (phase evolution of lipoplex 

lipids) induced by the interaction with cellular anionic lipids are decisive for a successful 

outcome [57–59].  

Larger lipoplexes are generally only beneficial for in vitro settings, as an improved in vivo 

delivery is commonly obtained with small particles being less prone to clearance by the MPS 

responsible for the elimination of foreign material [60]. Also, the positive surface charge, 

being beneficiary for improved cellular delivery, could lead to a reduction in circulation half-

life and thereby inversely affect the transfection efficiency in vivo [61,62].  This is partly 

attributed to aggregation of the complexes with negatively charged serum proteins as well as 

hemagglutination with erythrocytes [63] leading to their fast clearance from the circulation 

and limiting their usage beyond vascular endothelial cells [64]. To avoid these processes, the 

surface of liposomes and LNPs is often shielded by polymers, such as polyethylene glycol 
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(PEG) or glycolipids (e.g. gangliosides) which provide a neutral hydrophilic layer avoiding 

vesicle aggregation, thereby increasing the circulation time and decreasing immune response 

in vivo [65–68]. Formation of this hydrating layer by the association of the ethylene glycol 

units of PEG and water molecules hinders protein adsorption and subsequent clearance of the 

complexes by the MPS, providing the complexes a so-called “stealth” behaviour [67,69]. 

 

1.3 Commercial lipid-based delivery agents 

Owing to the rapid, scalable and highly reproducible manufacturing process, long shelf-life 

and ease of handling, commercial lipid based reagents have proved themselves as robust 

means of gene delivery, especially for in vitro screening purposes. Their applicability has 

prospered largely owing to the accompanying development of assay-based reporter gene 

systems providing a quick and easy readout to the biological questions of interest. 

The pioneering commercial reagents consisted of well-known lipids (e.g. DOTAP, DOTMA, 

DC-Chol), exhibited rather good transfection efficiencies in different cell models, yet were 

relatively ineffective for in vivo applications (reviewed in [70]). One of the earliest and most 

widely used transfection reagent to date is Lipofectin [12]. This proprietary blend of 

DOTMA/DOPE at 1:1 molar ratio was launched in late 1980s and is considered as one of the 

first lipid-based transfection reagents, which boosted the employment of lipid-based 

nanocarriers not only for in vitro but also for in vivo purposes. Lipid mixtures have thereafter 

been constantly improved, by modifying the head group size or hydrocarbon tail length, 

giving distinct characteristics to the lipoplex regarding association and uptake into the cell. 

To date, a series of transfection reagents have been launched, tailored for the transfection of 

specific types of nucleic acids or cells, formulated for improved gene delivery in vivo or 

serving as broad spectrum delivery agents. The majority of them are proprietary lipid-based 

blends, which can form complexes with the nucleic acid via a simple co-incubation. Since 

commercial lipid mediated transfection gives highly reproducible results and high 

transfection efficiency [71], initial screening purposes are now devoid of the need for specific 

instruments and specialized personnel hampering the wide-spread employment of earlier lipid 

formulations.  

The choice of a commercial reagent largely depends on the delivered macromolecule (DNA, 

RNA or protein) and the type of cell that needs to be transfected (adherent, suspension, 

primary). The vast majority of commercial reagents have been developed for the delivery of 

exogenous nucleic acids, with a range of distinct formulations fine-tuned for each of their 

subtypes (plasmids, oligonucleotides, messenger RNA (RNA), small interfering RNA 

(siRNA) etc.). Yet, broad spectrum transfection reagents (e.g. Lipofectamine 2000 (LF2000)) 

in terms of cell- and macromolecule type are generally more popular, excluding the need to 

handle diverse protocols. 

Owing to the vast number of commercial lipid-based reagents available, detailed dissection of 

their types and properties is out of the scope of this review. The choice of the reagent depends 
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on the research question and specific experiments in mind. Depending on the required 

transfection efficiency or sensitivity of the downstream analysis, screening of many products 

for optimal results might be required. Nevertheless, due to the high cost, such experiments are 

mostly limited to small-scale in vitro screenings, leaving extensive in vitro as well as in vivo 

studies still relying on the usage of custom-made formulations. 
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2 Natural delivery vectors - extracellular vesicles 

 

Despite the vast developmental efforts, the transfection efficiency of synthetic lipid-based 

systems still succumbs to natural carriers. Though synthetic vectors commonly need novel 

interventions to overcome cellular barriers, natural delivery systems have already developed 

several of these merits during the course of their evolution. 

EVs are known for their native ability to cross biological barriers. Owing to their high 

potency to enter cells together with the susceptibility to membrane- or content modifications, 

EVs have drawn increasing attention as natural delivery vectors for different biologics. The 

first report, later acknowledged as describing EVs, outlined the isolation of a “clotting factor” 

in plasma which pelleted at high-speed centrifugation and modulated the clotting time [72]. 

Yet, it took more than two decades until additional studies on cell-derived vesicles were 

published [14,73,74]. At first, these vesicles were collectively referred to as “exosomes”, a 

term initially proposed by Trams et al. in 1981 [75]. Yet, at the time the subcellular origin of 

these vesicles was still unclear. The endolysosomal EV biogenesis pathway was elucidated a 

couple of years later when two groups, investigating the recycling of transferrin receptor, 

demonstrated the release of EVs from multivesicular bodies (MVBs) in two papers published 

only a week apart from each other [15,76].  Thereafter, the term “exosomes” was revived [17] 

and gained a wider acceptance in the scientific community. Nevertheless, EV research was 

largely neglected until 1996 when Raposo et al. [18] described the communication between B 

cell-derived EVs and T cells, indicating to the functional role of EVs in cell-to-cell 

communication. The next big milestones in EV-research denote the discoveries of EV-

mediated transfer of functional RNA between cells [77,78] as well as across the blood-brain-

barrier [79]. The latter further escalated the interest in EVs and opened novel avenues for 

their employment as therapeutic nucleic acid carriers. 

 

2.1 EV terminology and classification 

EVs have attracted interest in disparate research fields, which on one hand has allowed a 

quick reveal of a myriad of biological roles, on the other hand, led to a “stretched” 

terminology as well as lack of standardization and consensus among researchers [80]. 

Several different names for EVs have been proposed, relating them to their specific functions 

(e.g. “tolerosomes” that induce immunological tolerance to dietary antigens [81] or 

“oncosomes” [82] shedded by tumours), or the cell of origin like “prostasomes” [83] (prostate 

epithelial cell vesicles) and “epididymosomes” (deriving from epididymal epithelial cells) 

[84]. As these are only suitable within specialized research fields, commonly a definition 

based on biogenesis, distinguishing between exosomes, microvesicles (MVs) and apoptotic 

bodies, is used. Exosomes are referred to as vesicles that are generated via intraluminal 

budding of the early endosome and secretion to the extracellular space by the fusion of the 

MVB with the plasma membrane. Microvesicles, on the contrary, are mostly referred to as 
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vesicles that directly bud from the cell membrane [85]. In addition to biogenesis, these 

subtypes also differ in size, exosomes ranging from 30-120 nm and microvesicles typically 

between 100-1000 nm [86]. Moreover, also apoptotic bodies are considered as one of the 

subgroup of EVs [87]. These vesicles are typically bigger than MVs (1000-5000 nm), 

originate from plasma membrane budding and/or endoplasmatic reticulum (ER) and often 

contain nuclear fragments [88–90]. 

In addition to aforementioned, also physical characteristics such as density and/or necessary 

pelleting force are used to distinguish the different EV classes [80,91–93]. Yet, all these 

approaches should rather be considered complementary to each other and demand additional 

biochemical analysis in order to provide a detailed characterization of the preparation. 

Considering the disorder in the nomenclature, together with the evidence of size, density and 

surface marker overlap between the EV subgroups [94,95], it has now been widely 

acknowledged that secreted membrane vesicles should collectively be referred to as 

extracellular vesicles [80]. Furthermore, an increasing number of studies are characterizing 

different EV subpopulations with inherent physical characteristics, RNA content and protein 

repertoire [96–99], indicating to the need of an even more sophisticated nomenclature to 

cover the differences. All this contributes to confusion in data interpretation and comparison 

between studies, yet important steps towards an improvement in the nomenclature and 

experimental settings have been made [80,100]. Here, I use the generic term EV to refer to all 

cell-derived membrane enclosed vesicles (except for apoptotic bodies). Depending on the 

importance to the specific context, exosomes and MVs might be named separately. 

 

2.2 EV isolation 

EVs are most commonly purified from conditioned cell culture medium or from biological 

fluids such as urine, blood, cerebrospinal fluid or saliva with the composition of the material 

greatly outlining the obstacles and choice of EV isolation methodology. All these fluids are 

highly complex and in addition to EVs, also contain non-vesicular macromolecules (proteins, 

nucleic acids), cell debris as well as apoptotic- and lipoprotein particles. Hence, the isolation 

of EVs is technically challenging not only due to their size and heterogeneity but also due to 

the multifaceted nature of the surroundings. 

2.2.1 Consideration of the starting material  

For cell culture derived material, the biggest concern is the presence of “additional” vesicles, 

originating from apoptotic cells, fetal bovine serum (FBS) or arising from other media 

supplements. These co-purifying vesicles might mimic the effect of cell derived EVs and 

thereby pose a risk of introducing false positive results. 

Cell debris and apoptotic particles are largely removed by sequential centrifugation steps at 

300 × g and 2,000-3,000 × g, respectively. To minimize the number of FBS-derived particles, 

it is advised to propagate the cells either in serum free conditions or in EV-depleted FBS 
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[101], through phenotypic changes of the source cells must also be considered [102]. Of note, 

in addition to particulate matter, FBS also contains a vast amount of proteins as well as 

diverse repertoire of RNA species, which cannot fully be eliminated and might lead to 

misinterpretation of the data [103,104]. Hence, even though the cell culture environment is 

rather defined, several different factors can affect the final outcome of the study, emphasizing 

the need of controlling and tailoring also in vitro conditions. 

Biological fluids are even more complex than the defined environment of cell culture 

material, demanding individual approaches to yield EV preparations largely free from 

contaminating particulates, proteins and RNA. For example, in plasma, it has been estimated 

that as much as 95-99% of that extracellular RNA is not bound to EVs but rather to proteins 

(e.g. Argonaute 2 (AGO 2) [105]) and lipoprotein particles [106,107] representing potential 

co-isolates for EV preparations [108,109]. In addition, blood borne material is viscous and 

rich in “sticky” proteins such as albumin, posing further challenges to obtain a clean 

preparation and emphasizing the importance of tailored EV enrichment methods. 

Below, a brief overview of the most widely applied EV isolation methods is provided with an 

emphasis on ultracentrifugation (UC) and size exclusion chromatography (SEC) owing to 

their employment in the constitutive papers. 

2.2.2 Ultracentrifugation 

To date, the method with the longest track record and widest application for EV isolation is 

UC. This involves a series of centrifugation steps, whereby the cell debris and apoptotic 

particles are first pelleted at 300 × g and 2,000-3,000 × g, respectively followed by an 

optional centrifugation at 10,000-20,000 × g to remove bigger EVs, often referred to as MVs. 

In order to further enrich for the presence of smaller vesicles the latter step can be substituted 

or followed by a sterile 0.22 µm filtration continued by UC at 100,000-120,000 × g to collect 

particles usually referred to as exosomes [110]. The purity of the preparation can further be 

enhanced by an additional wash step or density gradient separation that separates EVs based 

on their buoyant density and helps to additionally reduce protein contamination [111]. Yet, 

the process is time consuming, unsuitable for high-throughput analysis and is most practical 

as a follow-up method, since particles with a similar density to EVs cannot be discriminated 

[109]. 

Despite the wide employment of UC purification for cell culture derived- as well as 

biological material [112], recent evidence outlines a number of shortcomings (e.g. 

compromised purity, aggregation, decreased vesicle intactness) related to the methodology, 

resulting in a decreased functionality [113] and altered biodistribution in vivo [114]. 

Therefore, increasing efforts have been made to develop “milder” purification strategies with 

improved capacity to retain the biophysical properties of EVs. 
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2.2.3 Size exclusion based methods 

The employment of SEC for EV purification is increasingly practiced and promoted by the 

EV community. The principle of SEC relies on the fractionation of particles by size, 

transiently trapping smaller molecules in porous beads, whereas larger ones bypass the matrix 

and elute earlier [115,116]. Owing to the lack of high g force and extended sample handing 

time, SEC results in improved integrity, purity and functionality of the vesicles compared to 

UC [113,117,118], is less operator dependent as well as shows consistent recovery rates 

across isolations [114]. In addition, SEC allows a fine fractionation of the whole secretome 

[119], remaining largely out of reach with centrifugation based approaches. Also, the method 

can be tailored by the type of gel matrix, pore size and column length to either perform 

routine vesicle preparations up until sophisticated studies on EV subpopulations [98,120]. As 

the pre-packed gravity flow columns are also commercially available, SEC has gained 

increasing popularity as a rapid EV isolation technique. Yet, the methodology is still 

somewhat constrained in its scalability, limiting its employment for large-scale in vivo studies 

as well as engagement in clinical applications. To overcome this drawback, SEC is often 

combined with filtration-based techniques [114], enabling the processing of large sample 

quantities while retaining the benefits of SEC regarding the yield, purity and biophysical 

properties of EVs. 

Another size exclusion based techniques that has rapidly gained popularity is a commercially 

available tangential flow filtration (TFF) system. The TFF method is based on a cross-flow 

filtration process through a semi-permeable membrane filtration unit which has a fixed 

molecular weight cut-off (MWCO) limit. The pores allow the passage of small molecules 

through the membrane, while the larger ones are entrapped and remain in the circulation. 

Simultaneously with the size separation, the method allows to obtain a highly concentrated 

EV sample, being especially valuable for downstream applications such as SEC [121].  

2.2.4 Alternative EV isolation approaches 

In addition to centrifugation and size-based isolation methods a large variety of approaches 

making use of the molecular, biophysical or biochemical characteristics of EVs have been 

developed. Some utilize the surface markers of EVs, such as immunoaffinity capture-based 

techniques and have proven to be useful if only a subtype of EVs is aimed to be investigated 

[103,122]. Others employ polyanions, such as heparin to capture the full diversity of different 

EV types [123]. In addition, several magnetic isolation techniques [124] as well as a plethora 

of lab-on-chip devices have been developed [124,125], with newer approaches opening 

avenues for cancer diagnostics [126]. To prepare EV samples in a simple and quick manner, 

some methodologies take advantage of the change in EV solubility and employ hydrophilic 

polymer solutions such as PEG or commercial polymer-based preparations (e.g. 

ExoQuick™). As the purity of such isolates is rather poor [127], the usage of these methods 

beyond rapid EV assessment is rather limited. Yet, in clinical settings the purity and essence 

of the active component might be less important, permitting a successful employment of 

precipitation based protocols for EV therapeutics [128]. 
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In conclusion, the complexity and variety of EV sources is the main driving force for the 

development of novel isolation methodologies. Biological samples are much more complex, 

heterogeneous and in limited quantities compared to cell-culture derived material, restraining 

the choice of potential purification methods and often resulting in a low amount of EVs. On 

the other hand, cell-culture preparations are more uniform, but need scalable isolation 

methods and might be influenced by culture additives which could skew the biological 

outcome. Hence, the type of purification method to use is highly dependent on the origin of 

the sample as well as the type and extent of downstream analysis. 

 

2.3 EV characterization 

The insufficient understanding of basic EV biology is a major limiting factor for describing 

the identity of the isolated vesicles. Therefore, the International Society for Extracellular 

Vesicles (ISEV) has released a number of position papers providing guidelines and 

describing the minimal experimental requirements for the definition of vesicular preparations 

[100,129,130]. These suggest the characterization of EV size and density, vesicle 

morphology as well as the analysis of EV-associated proteins as discussed hereafter. 

2.3.1 Physical characterization  

The most basic parameters for the characterization of EV preparations include the description 

of size and morphology of the vesicles. In the early studies, these characteristics were 

evaluated by transmission electron microscopy (TEM) [17], which is still the most widely 

used methodology for morphological characterization and is at times operated at cryogenic 

conditions to better preserve the native state of the material [131]. Newer microscopy 

techniques such as atomic force microscopy (AFM)  are less used, yet also allow to measure 

the sample in their native condition, output a three dimensional topography of the material 

and are able to yield quantitative information on surface proteins [132].  

Though microscopy techniques also enable the determination of particle size, the process of 

obtaining such data is rather tedious and limited in the number of representative events. 

Hence, several newer methodologies such as nanoparticle tracking analysis (NTA) [133] and 

tunable resistive pulse sensing (TRPS) [134] have been developed. However, the outcome of 

such technologies greatly relies on the EV isolation methods as contaminating particulate 

material (e.g. lipoproteins) cannot be discriminated from EVs. 

In addition to size and morphology, it is advised that EVs are also characterized by their 

density, ranging around 1.13- 1.19 g/ml in sucrose or iodixanol gradients [135]. Owing to the 

capability to form iso-osmotic solutions at a wide range of densities together with the 

decreased sedimentation time for separation [135], iodixanol (commercially known as 

OptiPrep™) is increasingly employed for density based EV analysis. Yet, the lack of 

standardization of density gradient centrifugation protocols causes slightly variable results 

between different studies. In addition, the method does not allow for the distinction of certain 
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contaminants e.g. high-density lipoproteins from EVs [109], illustrating the importance of 

tailored EV isolation approaches.  

2.3.2 Molecular characterization 

In addition to physical parameters, EVs are known to possess a range of molecular signatures, 

mostly featuring characteristic enrichment patterns in certain proteins and lipids. Since the 

current knowledge of the EV proteome has yet not allowed to determine any EV-specific 

markers, the community rather adheres to experimental guidelines suggesting the verification 

of a relative abundance/depletion of different proteins [100]. To evaluate the composition of 

EV-associated proteins, easily accessible assays such as western blot (WB) and other 

immunoblot methods (e.g. dot-blot [136]) are commonly used. However, the mere probing 

for a selected set of EV markers is increasingly replaced with the employment of high-

throughput proteomic technologies allowing a closer look on the overall EV protein content 

[99,114,137]. The detection of surface markers can also be achieved by flow cytometry 

approaches using multiplex bead-based platform, investigating tens of different surface 

markers simultaneously [122]. 

It is known that the EV membrane composition largely reflects that of its source cell. Yet, 

similarly to the enrichment of certain proteins, distinct lipids (e.g. sphingolipids and 

cholesterol) are still known to be overrepresented [138]. The relatively late discovery related 

to the biological activity of vesicular lipids [139] somewhat delayed the interest in the lipid 

composition of EVs. Presently, more studies employ chromatography and/or mass 

spectrometry based methods to perform solitary lipidomic or combined omics analysis on 

EVs [140,141] and constantly improve our understanding of the molecular composition and 

sorting of vesicular lipidome. 

In addition to proteins and lipids, EVs are also, as aforementioned known to contain nucleic 

acids. The presence of vesicular DNA is largely disputed [129,142] and often considered as 

contaminants in the EV preparations. The EV RNA content is enriched in short molecules 

[143,144] which are either encapsulated in EVs or reside on their surface, where they are also 

considered as an isolation method-derived impurity. Hence, to ensure the reliability of 

downstream EV nucleic acid analysis (e.g. sequencing, microarrays, quantitative reverse 

transcription PCR (RT-qPCR)), enzymatic treatment of the preparations with DNase and/or 

RNase combined with detergent treatments is advised [130]. Nevertheless, considering that 

the relative quantity of a distinct nucleic acid molecule per EV is low and other co-isolates 

such as lipoprotein particles remain untouched by the enzymatic treatment, a reliable 

detection and quantification of EV RNA still remains a challenge. In addition, depending on 

the sample type, the EV preparations contain a combination of DNA and RNA molecules 

affecting the downstream analysis of one or the other. Though a few methods (e.g. Qubit HS 

RNA assay) efficiently discriminate between these nucleic acid types, others (e.g. Nanodrop, 

Agilent Bioanalyzer chips) measure a combination of both, being a subject to fluctuation and 

misinterpretation of the final data. Attention must also be turned to nucleic acid isolation 
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methods as well as deep sequencing protocols allowing a clean preparation of a single nucleic 

acid type, thereby avoiding the acquisition of mixed molecular signatures. 

The small size, heterogeneity and our poor knowledge of EV biology make their 

characterization particularly challenging. The availability of public online databases has 

greatly expanded our understanding of the diversity of EV features. Yet size, morphology, 

buoyant density and surface marker detection are still most commonly investigated 

characteristics. Emerging new methods, among others measuring the optical- and surface 

charge properties or tracking single vesicles [145–147] underpin the progress in EV 

characterization with new exciting techniques yet to be unveiled. 

 

2.4 EV biogenesis and secretion 

The presence of “coagulant material in minute particulate form“ originating from platelets 

was already described in 1967 [14], followed by the description of plasma membrane 

outward budding mechanism a few years later [148]. Based on the current knowledge, this 

biogenesis mechanism is rather attributed to MVs (and apoptotic bodies), whereas the 

classical exosome biogenesis differs considerably from this process and follows the routes of 

endolysosomal recycling pathway [80]. A schematic overview of EV biogenesis is depicted 

on Figure 2. 

 

 

 

Figure 2 - Illustration of EV biogenesis. 
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2.4.1 EVs derived from the endolysosomal pathway  

2.4.1.1 General overview of biogenesis  

The endolysosomal pathway is known to consist of numerous membrane compartments 

responsible for the catabolism and recycling of material retrieved via extracellular 

endocytosis or intracellular autophagy [149,150]. This knowledge was later complemented 

with the observations of Dr. Rose Johnstone, describing the presence and release of vesicular 

structures via late endosomes and  exposing a new role of the pathway in cellular biogenesis 

[15,17].  From then onwards, a number of studies have concentrated on understanding the 

degradation “escape” routes of the endolysosomal system and revealed a number of different 

components responsible for the biogenesis of endolysosomally-derived EVs, commonly 

referred to as exosomes. 

The endocytosis of extracellular material results in the formation of early endosomes, which 

will either be recycled back to the plasma membrane, or mature to late endosomes [149,151]. 

The membrane invagination activity on the late endosome gives rise to the formation of 

intraluminal vesicles (ILVs), forming MVBs which either fuse with the lysosomes to degrade 

the content [150] or will head towards the periphery of the cell, merge with the cellular 

membrane and give rise to exosomes in the extracellular space [149]. 

 

2.4.1.2 Biogenesis pathways 

For exosome biogenesis, mainly two types of pathways have been described: endosomal 

sorting complex required for transport (ESCRT) dependent [152] and -independent pathway 

[153]. The former starts with the initial clustering of ESCRT-0, -I and -II protein complexes 

at tetraspanins-enriched membrane microdomains [154]. These complexes sort 

ubiquitinylated proteins to the endosomal membrane and initiate the formation of 

intraluminal buds. With the involvement of ESCRT-III, the membrane abscission is 

completed resulting in the generation of MVBs containing tens of ILVs [155–157]. 

The involvement of the ESCRT machinery was first found through proteomic studies [158] 

and its role in exosome biogenesis has thereafter been extensively studied. One possible 

mechanism how ESCRT dependent MVB formation can occur was described in a study by 

Baietti et al. [152], outlining how the expression levels of ALG-2-interacting protein X 

(ALIX; ESCRT-III associated protein), syntenin as well as syndecan modulate ILV formation 

and subsequent exosome release. Later, it was revealed that this process is regulated by a 

small GTPase ARF6 (adenosine diphospate-ribosylation ribosylation factor 6) and 

phospholipase D2 (PLD2) [159] and is activated by heparanase,  trimming the heparan sulfate 

chains on syndecans [160]. Studies have also shown a clear linkage between the ESCRT-0 

protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) and exosome 

secretion [161,162]. Yet, the production of the aforementioned syntenin exosomes requires 

only certain ESCRT components but is independent of others [152]. Additionally, 

inactivation of four proteins representing different ESCRTs has been found not to inhibit the 
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formation of MVBs [163], suggesting the existence of an alternative, ESCRT-independent 

mechanisms. In the light of the aforementioned, a HRS competing, CD63-dependent 

formation of ILVs was reported [164], indicating to the possible coexistence of mixed EV 

populations in a single MVB. Additionally, higher order oligomerization of membrane 

proteins has been found sufficient for the formation of human immunodeficiency virus (HIV) 

Gag ILVs [165], a mechanism corroborating with data on syntenin exosomes [152], requiring 

syndecan clustering for their biogenesis. 

It has also been observed that the lipid composition of exosomes is remarkably similar to that 

of lipid rafts, showing high enrichment in sphingolipids and cholesterol [138], the latter 

facilitating the budding process by providing proper membrane curvature [166]. The same 

mechanism of action has been described for lipid metabolism enzymes, neutral 

sphingomyelinase [153] and PLD2 [159] that act through generating ceramide and 

phosphatidic acid in the MVB membrane, thereby inducing negative curvature of the MVB 

and favouring intraluminal budding of the limiting bilayer. 

 

2.4.1.3 EV secretion mechanisms 

While most of the MVBs are destined to degradation through fusion with the lysosomes, 

some are directed to the cell membrane to release their content to the extracellular space. 

Their release is believed to be a regulated process requiring specific stimuli. For example, it 

has been proposed that similarly to lysosomal secretion, the intracellular calcium levels could 

play a role in plasma membrane fusion leading to exosome secretion from certain cell types 

[167]. However, the specific fusion machinery remains undefined. Additionally, several 

proteins are suggested to be involved in EV secretion (reviewed in [168]) with small GTP 

binding proteins of the Rab family ( e.g. RAB11 [169], RAB27 A/B [170] and RAB 35 

[171]) being important players in vesicle budding, mobility or tethering to the cell membrane. 

MVB fusion with the plasma membrane is potentially also aided by SNARE proteins [162], 

however the precise mechanisms of action has not yet been verified. 

Accumulating evidence also suggests the presence of MVB subclasses with potential 

differences in their composition and fate [120,172–174]. Certain lipid content has been seen 

as a determinant for MVB subpopulation trafficking. For example, in case of B lymphocytes, 

cholesterol-rich MVBs appear to preferentially be directed towards the plasma membrane for 

subsequent fusion and exosomal release [175].  In contrary, lysobisphosphatidic acid (LBPA) 

a cone-shaped phospholipid which is generally absent on exosomes [138], resides in 

morphologically distinct MVB subpopulations destined for lysosomal degradation [176]. 

Exosomes with different molecular characteristics have also been detected at the basal and 

apical membranes of epithelial cells [177]. This type of intracellular trafficking and secretion 

is potentially modulated by V0-ATPase activity [178], yet the precise molecular mechanism 

of MVB polarized sorting remains to be established. 
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Thus, the secretion of specific MVBs is potentially dependent of several proteins as well as 

lipids. The existence of different MVB subclasses adds an additional layer of complexity to 

exosome biogenesis as these by themselves can contain an intermixed population of ILVs. 

 

2.4.2 Plasma membrane derived EVs 

In contrast to the endolysosomal pathway, subtypes of EVs (apoptotic bodies and MVs) are 

shed directly from the cell membrane. Though the generation of apoptotic bodies via plasma 

membrane blebbing has been known for decades [179] (and will not be discussed further), the 

mechanisms of MV release have just started to be unravelled. As opposed to exosomes, MVs 

arise via direct budding of the plasma membrane through a process that is activated by 

external factors such as extracellular calcium levels [180] and hypoxia [181]. Following 

induction, the calcium-dependent enzymatic machineries rearrange the phospholipids of 

plasma membrane, driving the exposure of phosphatidylserine (PS) on the cell surface. The 

latter causes restructuring of the actin cytoskeleton, a physical bend in the membrane and 

subsequent budding of MVs [182]. Notably, it has been found that the MV biogenesis might 

still take place even if the lipid asymmetry of the membrane does not change [183], 

indicating to a potential role of other lipid domains, such as cholesterol lipid-rafts [184] in the 

process. Recent finding suggests that a change in membrane curvature could also be aided by 

proteins [185]. Namely, the local protein “crowding” has been verified to generate lateral 

pressure through protein-protein interactions, thereby contributing to membrane bending at 

the cell periphery. 

A successful biogenesis also demands well-regulated cytoskeletal dynamics, often mediated 

via RHO GTPases [186,187]. In addition, several alternative budding mechanisms including 

proteins such as ARF6 [188]; ESCRT component TSG101 (tumour susceptibility gene 101) 

together with arrestin domain-containing protein 1 (ARRDC1) [189], myosin-1a [182] and 

hyaluronan [190] have been implicated in the shedding of MVs, illustrating the richness of 

different pathways depending on the cell type and potentially the catalytic purpose that the 

shed MVs serve. 

In summary, based on the current knowledge, multiple pathways seem to be responsible for 

the generation of EVs directly budding from the plasma membrane as well as the ones 

originating from the endolysosomal pathway. Whether there is a coexistence of different 

mechanisms, dependence on the cell type or whether different pathways are responsible for 

the production of distinct MVB, exosome or MV subtypes, is still to be elucidated.  

 

2.5 Composition and loading of EV cargo 

EVs have been recognized as vehicles of intercellular communication containing a significant 

amount of proteins, nucleic acids and lipids. This material largely reflects the molecular 

profile of their source cells and can be transmitted long distances to directly alter the 
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functional state of the recipient. Hereafter, the protein and RNA composition of EVs will be 

discussed in more detail, as the respective biomolecules were of central importance in the 

constitutive papers. 

 

2.5.1 Protein composition of EVs 

Proteins are the major bioactive components of the vesicular cargo, providing the bulk mass 

to density of EVs. The protein-rich composition is often exploited for characterization 

purposes in order to verify the type and purity of EVs. Nevertheless, as no exclusive proteins 

for the verification of exosomes or MVs exist, the enrichment relies on the testing of a 

combination of surface and luminal markers. 

Due to the endosomal origin, almost all exosomes, independently of the cell of origin contain 

proteins related to MVB biogenesis (e.g. ALIX, TSG101, CD63, CD81, CD9) as well as 

membrane transport and fusion proteins (e.g. Rab GTPases, flotillin) [191,192]. These are 

however not exclusive exosome markers and some of them (e.g. CD63, CD81, CD9) are 

regularly also observed in MVs [140]. Due to the cytoplasmic biogenesis of both vesicle 

types, the purity of EV preparations is usually estimated by the depletion of membrane-

binding extracellular proteins (e.g. fibronectin) and cellular proteins originating from the ER, 

Golgi and mitochondrial membranes [100]. Nevertheless, nuclear markers, such as histones 

or ER-derived chaperons (e.g. heat shock proteins (HSPs)) are still frequently detected in 

EVs, potentially aiding the EV-binding to heparin sulphate proteoglycans (HSPGs) or 

reflecting a general physiological phenomenon of tumour-derived vesicles [119,193–196].  

Regardless that the protein content in exosomes and MVs is highly similar, it has been noted 

that the protein patterns of exosomes are more likely to differ from their source cells than the 

components of MVs [140]. Yet, the cargo of MVs still does not seem to be a random 

sampling of cellular components as several proteins such as ARF6 [188] and Rab22 [181] are 

postulated as potential components of the selective recruitment process. The incorporation of 

exosomal protein cargo has been studied more extensively, mostly relating it to the action of 

ESCRT components. The ESCRT machinery is known to detect and sequester 

ubiquitinylated (Uq)  proteins to the endosomal membrane [197]. Even though the majority 

of ILVs with Uq proteins should be directed towards lysosomal degradation [198] ~60% of 

exosomal proteins still possess the degradation signal [199,200], hence making it logical to 

believe that the ESCRT components would be responsible for their enrichment in exosomes. 

Nevertheless,  it has been seen that to a certain extent ESCRT components are unselective to 

ubiquitin binding, and also interact with non-Uq proteins such as transferrin [201]. This 

strengthens later findings that the binding to whichever ESCRT component might be enough 

for ubiquitin-independent cargo sorting [202]. The system becomes even more complex, as 

also the ESCRT components themselves can be Uq. This, however does not seem to be a 

critical aspect for their function, as a protein with a single ubiquitin moiety is sufficient to 

direct its sorting into MVBs [163].  
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Evidence of the involvement of ESCRT machinery in shaping the vesicular proteome can 

also be obtained from RNA inteference screenings, where the knockdown of HRS, TSG101 

and STAM1 (signal transducing adapter molecule 1) affect the targeting of certain proteins to 

MVBs [174]. This supports an earlier study where the depletion of key subunits from the four 

ESCRTs caused perturbation in the MVB biogenesis and also prevented sorting of the 

epidermal growth factor receptor (EGFR) [163]. The involvement of the machinery is further 

supported by the fact that its components are constantly detected in EV preparations 

[140,158,200]. Still, protein cargo sorting is rather an intermixed process as only certain 

ESCRT components are known to affect the loading of a confined pool of proteins, 

suggesting the existence of alternative, ESCRT-independent mechanisms. For example, 

sorting machineries such as tetraspanin-enriched domains have been proposed to modulate 

the vesicular proteome [203]. The latter mechanism being especially intriguing considering 

that tetraspanins interact with a variety of transmembrane and cytosolic signalling proteins 

[204–206] and are highly abundant in exosomal protein profiles.  

Thus, it is evident that the ESCRT machinery is involved in loading of at least certain 

proteins into EVs whereas parallel cargo sorting pathways are likely to contribute. Still, the 

precise loading mechanisms and their extent in shaping the protein signature of EVs remains 

obscure and might depend on the type of cell and/or vesicle being produced. 

 

2.5.2 Nucleic acid composition of EVs 

In addition to proteins, EVs also contain various types of nucleic acid. Findings on DNA 

include the detection of double stranded- and mitochondrial DNA [142,207,208] as well as 

retrotransposable elements [209]. As the presence of encapsulated DNA is still under active 

debate, the nucleic acid content will hereafter focus on different types of RNA and their 

loading mechanisms into EVs. 

EVs incorporate a variety of RNA species including mRNA, transfer RNA (tRNA), 

mitochondrial RNAs (mtRNAs), long non-coding RNA and different types of small RNAs 

(miRNA, small nuclear RNA, small nucleolar RNA) [210–212]. Additionally, vault RNA 

(VT-RNA) an Y RNA fragments and mRNA degradation products have been identified 

[212,213]. Many studies are also reporting a strong predominance of ribosomal RNA (rRNA) 

fragments [214–217], often denoted as impurities in EV preparations. Yet, considering the 

precise cleavage pattern and overrepresentation of certain transcript regions in EVs 

[216,218], biological importance might still exist. 

Packaging of EV RNA is much less understood than the loading mechanisms of vesicular 

proteins. Early studies suggested that the incorporation is a purely passive event [219], 

relating to the co-localization of miRNAs, Trinucleotide repeat-containing gene 6A protein 

(TNRC6A, also known as GW182) and AGO proteins within the MVBs [220]. EV miRNA 

association with RNA-induced silencing complex (RISC) proteins has also been investigated 

later, revealing an active and finely regulated signalling cascade responsible for miRNA 
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sorting via AGO2 [221,222]. The evidence supporting an active cargo loading arouse from in 

silico analysis [223] defining  mRNA “zipcodes” which were later verified as YB-1 (Y-box 

binding protein 1) and NSUN2 [tRNA (cytosine(34)-C(5))-methyltransferase] recognition 

sites for exosomal mRNA and miRNA enrichment [224,225].  The presence of a similar 

zipcode has been also proposed for MVs [226], though the sequence is longer (25 

nucleotides) and contains a different core string. The vesicular packaging of miRNAs could 

also be driven by hnRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), which 

binds to specific “EXOmotifs” (GGAG or CCCU) [227]. Furthermore, other factors such as 

non-templated nucleotides at the 3’ end of the miRNA [219] and ceramide-dependent 

packaging of miRNA have been suggested [228,229]. Non-random miRNA loading 

mechanism is also supported by the poor correlation of vesicular and cellular miRNA profiles 

(for some cell lines), the overrepresentation of certain miRNA molecules in EVs and altered 

levels of specific miRNAs in the serum of diseased individuals (which cannot be explained 

by pure passive secretion) [217,230,231]. Yet, some reports rather support passive secretion, 

indicating that the endogenous levels of natural miRNA targets modulate their secretion into 

EVs [232] and implying that some of the miRNA-binding proteins (e.g. AGO2) are relatively 

depleted in EV preparations [126,220, Paper II]. Thus, the mechanisms of vesicular RNA 

loading are rather inconclusive and suggest that parallel mechanism possibly coexist. 

It has been suggested that the loading of RNA into exosomes starts at the endosomal 

membrane, where the RNA resides due to the membrane affinity determined by the RNA 

hydrophobicity, nucleotide sequence and lipid structure/composition of the site [233–235]. 

Considering the relative depletion of AGO2 in exosome preparations together with the 13-

fold excess of miRNAs as compared to AGO2 [236], the membrane binding of “excess” 

miRNA might be plausible. On the other hand, other RNA binding protein (e.g. 

hnRNPA2B1) could also drive the miRNAs to the lipid raft regions owing to their affinity to 

ceramide-rich regions [227]. In terms of hydrophobicity, several RNAs are known to possess 

modifications (e.g. tRNA isopentenylation [233] and miRNA methylation [237]) which could 

potentially increase their affinity to raft-like membrane regions. Both miRNAs as well as 

tRNA-derived fragments are highly enriched in EV preparations [212,217,238]. Whether the 

hydrophobicity of these RNA stretches is also responsible for their sorting into ILVs or if the 

loading is rather mediated by RNA-binding proteins such as hnRNPA2B1 or YB-1[225] has 

not been fully addressed. 

How exactly the selection and loading of RNA into exosomes occurs, remains debatable. The 

versatility of the proposed mechanisms is implying that the loading could be cell-type, 

physiological condition and even RNA-dependent, all this making it plausible that the 

observed mechanisms may coexist. The wider availability of next generation sequencing 

techniques greatly facilitates nucleic acid research, thus improved understanding of the 

composition and molecular secretion mechanisms of extracellular RNAs into EVs it is well 

on its way. 
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2.6 EV uptake 

In addition to verifying the mechanisms of macromolecule loading, increasing attention is 

paid on EV uptake mechanisms, being of high importance for the development of therapeutic 

interventions. 

2.6.1 Methods to track EV uptake 

The monitoring of EV uptake in vivo generally relies on the exploiting of lipophilic 

fluorescent dyes giving an overall distribution and relative quantification of cell-incorporated 

material [239]. This strategy is however prone to pitfalls including unspecific labelling of 

other membrane limited particles, lateral transfer of the dye between cells and extended half-

life beyond that of EVs [240,241]. Single EVs, on the other hand are commonly tracked by 

surface engineering of EV-enriched markers with fluorescent proteins [147]. However, as the 

heterogeneity of EVs limits the tracking of all vesicle subpopulations by this methodology, 

general membrane labelling strategies using palmitoyl-fluorescent protein fusions have 

successfully been exploited [242]. The latter strategy labels the inner leaflet of the EV 

membrane, hence impact on EV binding and uptake is expected to be minimal. In in vivo 

settings, EV uptake has also been tracked with the Cre-loxP system [243]. Though this 

methodology demands the generation of donor- and recipient reporter cells, it represents a 

highly sensitive approach for tracking the functionality of EVs in physiological conditions. 

2.6.2 Mechanisms and influence of surface molecules 

EV uptake occur via multiple routes, including a direct fusion with the cellular membrane 

[244], as well as EV internalization via lipid raft-, clathrin- and calveolae-dependent 

endocytosis, micropinocytosis and phagocytosis [147,184,245,246]. The exact mechanism 

likely depends on the specific lipid/protein composition of the EVs and cell membranes, the 

local microenvironment (e.g. acidic versus basic) and potentially also on the EV subtype 

[247].  

It has long been postulated that EVs, depending on the composition of their surface 

molecules, possess an inherent cellular homing ability. Implications for such a behaviour 

have been observed with unmodified dendritic cell (DC) EVs (Paper IV) as well as tumour-

derived EVs [248,249], exposing an organotropic behaviour in vivo. Cell-pairing has also 

been noted in vitro (personal communication with Dr. Nicole Meisner-Kober and Dr. Wolf 

Heusermann), nonetheless at times contradicting with the evidence from in vivo screenings 

[250] and thereby indicating to the need of further investigation. 

Various complexes are known to use HSPGs to gain entry to the cell, EVs not being an 

exception [251]. Treating the cells with heparin sulfate (HS) mimetics (e.g. heparin, dextran 

sulfate) has been seen to block EV transfer to recipient cells, whereas the presence of HSPGs 

on EVs has no apparent effect on their internalization [251–254]. Owing to the polyanionic 

nature of HS mimetics, the inhibition of the cell entry is potentially an intermixed process and 

could also include binding to scavenger receptors (SRs). For example, SR-mediated effect 

has been observed for high density lipoprotein (HDL) nanoparticles [250], which in contrast 
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to the competitive binding mechanism of HS, deplete cholesterol from the cell membrane, 

induce SR clustering and thereby inhibit EV uptake. In addition, many studies have reported 

the importance of C-type lectins on EV uptake [255,256]. Importantly, in in vivo context, 

healthy pancreatic tissue near pancreatic ductal adenocarcinoma (PDAC) is known to release 

a specific type of lectin, which binds to tumour-derived EVs (tEV), interferes with  their 

uptake in vivo and inhibits metabolic changes in cancer cells [250]. Moreover, protein and 

integrin signatures are known to be important for EV uptake [248,257,258], illustrating the 

variety of molecules potentially affecting internalisation of EVs to recipient cells. 

2.6.3 Factors influencing EV uptake in vivo 

Despite a lack of understanding on the secretion and uptake mechanisms of physiologically 

produced EVs, it is evident that these processes are finely regulated to evade systematic 

clearance of naturally produced EVs. Yet, due to the complexity of monitoring EV secretion 

and uptake in physiological settings (e.g. using xenografts), a great majority of in vivo studies 

are based on exogenously produced vesicles. The curiosity in vesicle in vivo uptake 

mechanisms and surface molecules has largely been driven by the therapeutic potential of 

EVs, as by modulating EV trafficking, one could enhance targeted biomolecule delivery or 

block the transfer of EVs carrying malignant features. 

Intravenously administered EVs have an in vivo half-life between 2 minutes to 24 hours  

[259–263]. In the body, the EVs are constantly patrolled by a network of cells constituting the 

MPS, the system responsible for detecting and clearing foreign material. The scope of this 

clearing machinery can be illustrated by the common biodistribution pattern of exogenously 

administered EVs, which follow a signatory MPS clearance with EV accumulation in spleen, 

liver and lungs [259,262,264]. The extent by which tissue resident macrophages clear 

systemically injected EVs is impressive, as macrophage-depleted mice are able to clear only 

< 2% of EVs as compared to control animals [265]. Similarly to liposome clearance 

[266,267], MPS elimination pattern can potentially be attributed to SR activity [268], 

representing one of the mediators of EV uptake, as discussed earlier. The blockade of SRs 

with dextran sulfate has been shown to decrease liver uptake, significantly increase the 

amount of circulating EVs in plasma and promote vesicle accumulation in breast cancer 

tumours [269]. The SRs on the surface of macrophages may also become activated by the 

exposed  PS on the outer leaflet of the EV membrane [270–272]. Owing to the membrane 

curvature, the enrichment of PS might only be apparent and result from the high membrane 

curvature of the vesicles, rendering two thirds of the lipids to be placed in the outer leaflet 

[273]. Though contradicting thoughts about the precise exposure time, mechanism and 

physiological purpose of PS in the EV membrane remain (reviewed in [273]), PS is known to 

play a key role in phagocytosis and could thereby also affect the circulation time of EVs in 

the body.  

Another major factor affecting the uptake and biodistribution of exogenous EVs is vesicle 

aggregation. This can arise from high g forces used in the ultracentrifugation-based protocols 

or result from EV enrichment methods affecting the natural surface signature of the vesicles 
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(e.g. protein corona [274]), leading to decreased molecular shielding and aggregation of EVs 

[114]. The aggregation is known to modulate the EV uptake routes, cause notable differences 

in the biodistribution and from a therapeutic point of view, could decrease the efficacy of the 

preparation [114]. It has also been suggested that EVs can aggregate in the biological fluids 

due to calcium-mediated cross-linking of PS, similarly to observations with liposomes [275], 

to my present knowledge, studies exploring this possibility on EVs have thus far not been 

conducted. To (re)shield the EV surface, polymers such as PEG can be exploited [275]. The 

hydrophilicity and biocompatibility of PEG make it an excellent tool to simultaneously 

decrease vesicular aggregation and increases EV circulation half-life by shielding them from 

interactions with plasma proteins. Nevertheless, due to the physical blocking of protein-

protein interactions, PEG might dampen the EV-mediated response, unless surface-extended 

targeting moieties are employed [275]. 

The body is a rather hostile environment for exogenously administered EVs with a multitude 

of clearance mechanisms preventing the vesicles from reaching its target. Only through 

obtaining a detailed knowledge of the physiological EV uptake and clearance mechanisms in 

vivo, one would be able to hijack the inherent pathways and aid the progress of EV-mediated 

therapies. 

 

2.7 Biological role of EVs 

EVs have been found in all analysed biological fluids and in the conditioned medium of 

cultured mammalian cells [276–278]. Nonetheless, the universal cellular secretion of EVs 

extends far beyond eukaryotic multicellular organisms, also covering simple organisms such 

as bacteria and archaea [279,280] and thereby suggesting an evolutionarily conserved 

mechanism of cellular communication [281]. 

2.7.1 EVs from prokaryotic organisms 

Though this review concentrated on EVs derived from mammalian (mostly human) cells, it is 

important to note that the production of EVs already existed in prokaryotic organisms. 

While EV secretion by archaea has been studied relatively little, these organisms are known 

to secrete membrane vesicles of 50-230 nm in size, originating from the cytoplasmic 

membrane [282,283]. The precise role of archaeal EVs has not been fully elucidated, 

nevertheless EVs from monoderm archaea are known to convey antimicrobial activity by 

carrying proteins which inhibit the growth of related archaea species [279,282]. Moreover, 

the molecular content of EVs from the archaea family Thermococcales also includes DNA 

[284]. Considering the extreme conditions these hyperthermophilic archaea live in, the 

vesicles provide an excellent protection for the nucleic acid against thermodenaturation and 

furthermore, similarly to eukaryotes, mediate its transfer between different archaea species 

[283]. Interestingly, also archaea possessing a double membrane secrete EVs and are often in 
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close association to other organisms, making it possible that the secreted vesicles deliver 

essential components (e.g. lipids) between the two symbionts [285]. 

In bacteria, EVs act as potent virulence factors [284]. By containing DNA, toxins, 

immunomodulatory compounds and adhesins, bacterial outer membrane vesicles (OMVs) are 

known to contribute to the colonization and successful transmittance of virulence factors to 

the host organism. Notably, the production of EVs by bacteria is not only limited to infection, 

but also carries on during and after the transition to bacterial biofilms [286]. There, the 

vesicles contribute to the biofilm nucleation, nutrient acquisition, defence and bacterial 

communication, thereby serving as potential targets to therapeutic interventions. EVs 

containing DNA, RNA and proteins have also been isolated from bacteria in the natural 

environment, such as the marine ecosystem [287], where the vesicles act as an organic carbon 

source to other marine bacteria, serve as external protein receptors to tackle phage infection 

or again, plausibly constitute vectors for horizontal gene transfer. Hence, most the basic 

biological mechanisms attributed to vesicles date back further beyond the arrival of 

eukaryotes, which nonetheless have attained a spotlight in EV research and will be discussed 

hereafter. 

2.7.2 EVs from eukaryotic organisms 

The initial lack of interest in EVs was dependent on the knowledge which considered them as 

means of disposing unwanted material from cells. 40 years after their initial discovery, the 

vesicle field was rediscovered thanks to the work of Raposo et al. [18] describing the 

communication between B cell-derived EVs and T cells and indicating to the functional role 

of EVs in cell-to-cell communication. From then onwards EVs have been purified from 

different eukaryotic organisms including plants (e.g. carrots, ginger, lemon, grapes, 

grapefruit, watermelon and olive pollen grains [288–293]), fungi [288] and animals [294–

296]. In plants, EVs have been shown to mediate interspecies communication for example by 

modulating the expression of genes such as anti-inflammatory cytokines that are crucial for 

maintaining intestinal homeostasis [289,290] or transferring cross-kingdom dietary miRNAs 

[291]. In fungi, similarly to bacteria, the EVs are known to mostly transport virulence 

associated components [297–299], enhancing pathogenesis even across the blood-brain-

barrier [291]. Most of the vesicular studies concentrate on EVs from animals, especially 

humans and common model organisms such as mice with the bulk number of studies being 

performed in cell-cultures [112]. Due to the variety of EV origins, the discussion of their 

biological roles is unfortunately out of the scope of this review and will instead give a brief 

overview of the role of EVs derived from mammalian, mostly human and mouse cells. 

EVs have been isolated from a range of body fluids including, among others, blood 

components, saliva, amniotic fluid, breast milk and urine [276,278,300]. Their role in the 

body includes a range of physiological processes such as fertilization, development, tissue 

regeneration, stem cell maintenance and immunomodulation which are all achieved by 

protein interactions with cell surface receptors and delivery of bioactive RNA-, protein- and 

lipid cargo (reviewed in [301]). These features are also exploited by EVs derived from 
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diseased cells, such as tEVs which use the potency of vesicular signalling to promote immune 

escape, stimulate growth and support disease spreading, thereby serving as good candidates 

for therapeutic interventions [302]. 

EVs play and important role already at the early stages of development. At fertilization, EVs 

are known to promote sperm-egg fusion [303] and thereafter modulate migration and 

implantation of the early embryo [304]. Subsequently, thanks to the encapsulated 

morphogens (e.g. Wingless (Wnt) and Hedgehog) EVs play an active role in establishing the 

body plane and tissue organization and thereafter support the physiological processes 

throughout the lifecycle of the organism [162,305]. 

One of the most widely explored fields of EV communication relates to various functions of 

the immune system. For example, the role of EVs has been implicated in the induction of T-

cell activation and differentiation modulation towards T helper 1 phenotype, thereby 

enhancing in vivo immunogenicity [306–308]. EVs also aid in maintaining an immune-

privileged site at pregnancy by suppressing T-cell signalling components  [309], mediate 

immune activation in response to allogeneic organs and tissues [310] and participate as pro-

inflammatory mediators in the pathophysiology of arthritis [311], preeclampsia [312] and 

sepsis [313]. Tumour cells are known to secrete anti-inflammatory tEVs by carrying ligands 

which induce T-cell apoptosis or suppress their cytotoxicity and thereby facilitate the 

generation of tumour-promoting immunity [314]. Interestingly, the treatment with anticancer 

drugs induces the secretion of tEVs carrying HSPs, which in contrast are able to generate 

CD8+ T-cell and/or natural killer cell dependent antitumor effect [315,316]. Apart from 

immunomodulation, tEVs play an important role in the generation of an extended tumour 

microenvironment by stimulating angiogenesis, promoting cell migration and inducing 

vascular leakiness [317,318]. All these processes modulate the local physiological conditions 

for tumour thriving and furthermore, aid its dissemination, again with the help of tEVs that 

pre-condition distant sites for metastatic lesions [41,319,320].  

The majority of the aforementioned biological roles of EVs depend on the interactions 

between the vesicular and cellular macromolecules, mostly proteins. Protein transfer in 

physiological settings has been implicated in a recent study investigating the tissue crosstalk 

of EVs during exercise, showing that physical exercise provokes the secretion of EVs with 

altered protein cargo which is mostly directed to the liver [321]. Notably, these proteins also 

included several novel candidate myokines, providing evidence of a new mechanism of 

myokine secretion. Owing to the high efficiency of this macromolecular communication 

system, vesicular trafficking also affects the course of pathogenesis for many diseases. For 

example, EVs have been implicated in the progression of several neuronal conditions like 

Alzheimer’s disease and Parkinson’s disease by spreading pathogenic proteins α-synuclein 

[322] and amyloid-β [323,324].  

The list of functions attributed to EVs also includes the encapsulation and delivery of nucleic 

acids. As the majority of vesicular RNA content does not exceed 200 nucleotides [143,144], 

many of the physiological roles are related to the transfer effects of short RNAs, especially 
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miRNAs. For instance, the majority of miRNA in blood is known to originate from adipose 

cells and circulates in association with EVs [325]. Some of these miRNAs have been shown 

to play an important role in metabolism regulation by improving glucose tolerance via gene 

expression modulation in liver via fibroblast growth factor 21 (Fgf21) [325]. Furthermore, 

EVs derived from adipose tissue macrophages are able to transfer insulin resistant traits from 

obese subjects to lean mice by carrying miR-155 which contributes to the phenotypic changes 

[326].  According to recent studies, EV miRNAs are also means of controlling the ageing of 

stem cells, directing the balance of cellular differentiation, inducing cellular repair programs 

and repressing apoptotic genes [327–331]. At the immune synapse, T cell-derived EVs 

release vesicles that contain miRNA and are able to modulate gene expression in antigen 

presenting cells (APCs) [303]. The exchange of miRNA cargo has also been noted between 

DCs and DC EVs [303] as well as regulatory and helper T cells [303]. MiRNAs in tEVs are 

known to promote tumour progression by modulating metabolism and immune response, 

promoting angiogenesis,  inducing metastasis and conferring resistance to therapy [332–338]. 

The role of many other EV RNA species such as tRNA fragments, Y RNAs, circular RNAs 

and long noncoding RNAs (lncRNAs) has been less studied and their physiological role is yet 

to be established. Nevertheless, EV associated lncRNAs have been implicated in the 

enhancement of cell viability, tumour growth and progression [339,340], tRNA halves in 

maintaining stem cell potency to differentiation [341] and Y RNA fragments in 

cardioprotection via modulation of interleukin-10 (IL-10) expression [213]. 

The fact that all cells tested from the three domains of life produce EVs indicates to their 

indispensable role in supporting physiological processes. Different cell types are continuously 

exchanging EVs over short and long distances in vivo, making it a rich source of information 

for the surveillance of health and disease and serving as basis for therapeutic interventions. 

 

2.8 Therapeutic potential of EVs 

Owing to the surrounding lipid bilayer, the content of EVs is well protected from nuclease 

and protease degradation, enabling long distant transport of macromolecules to exert remote 

extracellular communication. Though this could also be achieved by other delivery vehicles, 

such as liposomes, EVs hold features that stay beyond the reach of synthetic carrier systems, 

such as native biological components serving as a rich source of intrinsic therapeutic and 

biomarker-based potential. Potentially more importantly, they have an intrinsic ability to 

cross several biological barriers that their synthetic counterparts are unable to do. 

The first reports describing the potential of EVs in ameliorating diseased conditions arose 

from studies employing the conditioned medium (CM) of hypoxic MSCs to relieve acute 

myocardial infarction [342,343]. Thereafter, many studies have employed the inherent 

therapeutic potential of MSC EVs to treat a variety of conditions including therapy-refractory 

graft-versus host disease (GvHD), radiation damage and kidney injury [92,128,344–347]. The 

healing potential of MSC EVs has been postulated emanate from the delivery of 
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proteins/RNA to promote angiogenesis and suppress apoptosis, generation of energy needed 

for cell survival  and immunomodulatory properties [253,347–349]. The administration of 

stem cell-derived EVs has been confirmed safe in humans as well as in all tested animal 

models [128,344,350–352], yet clinical results in humans have only been conducted on two 

instances [128,350]. Currently, allogenic unmodified MSC EVs from cord blood are 

undergoing Phase II/III clinical trial of Type-1 diabetes (NCT02138331), but the results of 

that trial are yet not published. Considering the successful employment of MSC-derived EVs 

in experimental animal models, more trials are expected in the near future. 

Another vesicle source often used in therapeutic setting is DCs, which are commonly used for 

the generation of EV-based cancer vaccines. For example, tumour-associated antigen pulsed 

DC EVs have been used in cancer immunotherapy against non-small-cell lung cancer 

[353,354], colorectal cancer [355] as well as metastatic melanoma [356], all these clinical 

studies implicating to a safe and well-tolerated T-cell mediated antitumor response. In other 

settings, vesicle-based vaccines have been derived from bacteria and yeast cells [357,358]. 

Wild type OMV-based vaccines from bacteria were developed already more than 20 years 

ago [359] and are known to exhibit a remarkable immunomodulatory potential. Though no 

fungal vaccines have yet reached to the clinic, currently four licensed OMV vaccines from 

Neisseria meningitidis serogroup B are available [357,359,360]. 

In addition to vaccines, EVs have gained increasing interest as vehicles for nucleic acid 

delivery. Due to the inefficient loading of larger stretches of RNA [361], the majority of 

studies rather exploit the therapeutic potential of short RNA molecules. For instance, MSC 

and fibroblast EVs loaded with short RNAs against oncogenic KRAS have been reported to 

efficiently target pancreatic cancer in multiple mouse models and significantly increase the 

overall survival of the animals [362,363]. The potential of EV miRNAs also arises from 

studies showing that EV-encapsulated miRNAs are able to enhance the therapeutic effect of 

MSC EVs in ameliorating liver fibrosis [364], inhibiting myeloma-related angiogenesis [365] 

and supporting liver protection in experimental autoimmune hepatitis [366]. Similar 

therapeutic effect has been achieved by using EVs loaded with mRNA/protein. An interesting 

solution to antitumor therapy was reported by Mizrak et al. [367] where MVs were 

engineered to carry a suicide gene mRNA/protein which was able to convert a nontoxic 

prodrug 5-fluorocytosine to an anticancer agent 5-fluorouracil and thereby efficiently induce 

tumour regression upon systemic treatment with the prodrug.  

Irrespective of the efficiency of the bioactive RNA molecule, it is of utmost importance that 

the majority of the cargo reaches to the site of interest. To escape the highly efficient EV 

clearance mechanisms in vivo, EV surface has been modified with PEG molecules or ligands 

such as CD47, which acts as a “don’t eat me“ signal for phagocytic cells and enhances EV 

circulation half-life in blood [362,368]. The therapeutic effect of EV-loaded cargo can further 

be improved by modifying the repertoire of surface molecules. Though the employment of 

targeting moieties is often not necessary to gain a biological effect, surface engineering 

strategies greatly reduce off-target events and enhance uptake specificity. Surface 

modification of EVs has for example been used to target EGFR expressing breast cancer cells 
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with let-7a miRNA [263] and to direct vesicular siRNA delivery to the brain by using  rabies 

virus glycoprotein (RVG)-targeted EVs [79]. Avoiding off-target effects is especially 

important for some synthetic drugs, such as chemotherapeutic agents. By employing an 

arginine-glycine-asparagine targeting peptide, doxorubicine-loaded EVs have been reported 

to selectively accumulate in breast cancer xenografts and reduce tumour growth [369]. At 

times, chemotherapeutics (doxorubicin, curcumin or paclitacel) have also been transferred via 

untargeted EVs resulting in successful inhibition of cancer growth and amelioration of septic 

shock in mouse models [369–373].   

In addition to targeted therapeutics, EVs could be employed as diagnostic (and prognostic) 

biomarkers. The largest medical area possibly benefiting from EV-based non-invasive 

disease monitoring relates to cancerous conditions. Altered expression patterns of several EV 

miRNAs are known to contribute to the pathogenesis and metastasis of a range of tumours 

[334,374–381] as well as to neurological disorders [338,382]. Specific protein composition of 

EVs has also been associated with the transfer of metastatic potential to non-cancerous cells 

and plausible serves as a determinant of metastatic organotropism [41,248,319]. As many 

cancers are not easily accessible for histological analysis, the sampling of EVs and profiling 

of their macromolecule content allow non-invasive diagnostics for primary tumours, 

metastasis, cancer relapse as well as response to therapy [383,384]. Currently, implications 

for EV miRNA-based prognostics have only been reported for prostate- and ovarian cancer 

[375,377]. 

The natural therapeutic properties together with infinite opportunities of EV modifications 

have paved the way for an explosive interest in EVs as biomarkers, gene expression 

regulators and macromolecular drug delivery vehicles. The progression from bench to 

bedside is somewhat hampered due to the lack of standardization in isolation and 

characterization methods as well as insufficient knowledge about their in vivo biodistribution, 

stability and clearance. Additionally, sufficient expertise on their biological role is still 

needed before translation into clinics can be achieved.  

 

2.9 EVs versus synthetic lipid-based delivery systems 

Lipid-based delivery systems have been employed for drug delivery already for decades  

whereas the employment of EV-based therapeutics in clinical setting is still in its infancy 

[385]. Both of these delivery systems share a range of common features in their composition, 

uptake and biodistribution as well as exploit common methodologies for isolation and 

characterization. Despite the high resemblance to one another, these natural and synthetic 

vesicles have a range of dissimilarities which could be exploited to further improve both 

systems. 

Lipid-based formulations are the most studied for drug delivery with numerous approved 

products mostly to deliver chemotherapeutics [386,387]. The number of clinical studies 

performed with cell-derived EVs is much more sparse and clinically approved EV-
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therapeutics do not yet exist [351,388]. One of the major hurdles in translation of EVs to 

clinical use is the development of well-controlled, standardized, high-yield production, which 

is achievable for synthetic vehicles, such as liposomes [389], but considerably more complex 

in case of biological systems [389]. Apart from that, EV-based therapeutics are often difficult 

to define in terms of the mode of action underlying the suggested effect. This results from the 

highly complex macromolecule composition of EVs, serving as a rich source of therapeutic 

potential, yet making it virtually impossible to define and constantly reproduce the set of 

active components. Such hurdles are largely unfamiliar to highly defined synthetic carriers, 

which however could greatly benefit from molecular characteristics of EVs to improve their 

performance. 

Despite the synthetic or natural origin of the aforementioned carriers, both delivery systems 

can be considered as nanoparticles allowing many of the technologies that have been in use 

for lipid-based delivery systems (liposomes) to also be exploited in EV research. This applies 

for example to the generation of artificial EVs via extrusion through filters or by using 

microfluidic system [370,390]; purification methods such as ultrafiltration, UC and SEC 

[114] as well as to analytical methods measuring the size, surface charge and concentration of 

the nanoparticles [391]. Similar lines in the two carrier systems can also be seen in the range 

and strategies of cargo loading. Both EVs and liposomes are lipid bilayered vesicles with an 

aqueous core, serving as a suitable environment for the encapsulation of hydrophilic small 

molecules as well as macromolecules, as already discussed. The encapsulation of 

hydrophobic molecules is somewhat more difficult for EVs [392], whereas the preparation 

procedure of synthetic liposomes seems tailored for such purpose, allowing integration of 

hydrophobic cargo into the bilayer during assembly [389]. In terms of cargo loading 

strategies, some loading (e.g. endogenous overexpression and microfluidic mixing) are 

characteristic to natural or synthetic nature of the nanoparticles and can therefore not be 

cross-applied. On the other hand, simple co-incubation with the cargo of interest can be used 

for both EVs and liposomes [371,393,394].  

In addition to various similarities in the range and strategies in cargo loading, EVs and 

liposomes are both amenable to modifications that allow the cargo to reach its target in a 

more specific manner. Whereas EVs already hold a wide selection of surface molecules, 

potentially acting as combinatorial targeting moieties, liposomal surface ligands need to be 

selectively tailored for the purpose. In return, liposomal formulation procedure allows 

controlling the affinity, avidity as well as receptor density on the surface [395]. This makes 

targeted liposomal delivery more predictable than the transfer via EV-mediated systems, 

which suffer from heterogeneity and undefined representation of the ligands [396]. It has 

been observed that in head-to-head studies liposomes often succumb to EV-mediated delivery 

[264,394,397].  Yet, many studies seem to lack fair grounds for the presented comparisons as 

the liposomal formulations are often inadequately chosen or poorly described [396]. Hence, 

the potential superiority of EVs over synthetic carriers perhaps cannot be ascertained as the 

benefits of both systems are highly dependent on the macromolecule and disease context. 
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Despite apparent differences in the abundance, complexity and pattern of surface molecules, 

these ligands affect the in vivo fate of both liposomes as well as EVs. For example, one of the 

lipid components of EVs, PS is commonly employed also in liposomal formulations and 

might partially determine the circulation half-life of both nanoparticles. Physiologically, PS is 

known to trigger phagocytosis of apoptotic cells, and as illustrated by the biodistribution 

pattern of both EVs and liposomes, also acts as a mediator of MPS-driven nanoparticle 

clearance, rendering the majority of the material to accumulate in liver and spleen [259,398–

400]. This accumulation pattern could in part also be attributed to the similar size range of 

EVs and liposomes, where smaller particles (up to 100 nm) accumulate in the liver and larger 

ones (> 200 nm) are removed from the circulation by splenic filtration [401,402]. 

Nevertheless, lipid composition and size represent just a part of the biophysical properties 

that liposomes and EVs hold, as also surface charge, -hydrophobicity and protein 

composition are major effectors of successful delivery. 

In order to evade clearance by biological surveillance mechanisms, the surface of liposomes 

is often modified by PEGylation [403].  Coating with polymers has successfully also been 

applied for EVs and provided an effective means of prolonging circulation time in vivo [368]. 

EVs are postulated to also escape clearance owing to the highly heterogeneous protein 

decoration, simultaneously promoting extended circulation time and acting as ligands to 

enhance specific uptake by target cells [399]. Liposomes, in contrast, generally do not have 

surface proteins or possess only one specific targeting ligand, limiting the variety of specific 

ligand-receptor interactions and often forcing them to solely rely of surface PEGylation to 

avoid removal from circulation.  

The benefit of using biological systems as delivery vehicles includes their high versatility in 

the diversity and characteristics of natural molecules. This heterogeneity serves as an inherent 

source of potential therapeutics, yet makes it often hard to define and reproducibly generate 

the active component in the future. Liposomes represent a more controllable system in terms 

of their size, composition and biophysical properties, yet suffer from the lack of innate 

combinatory targeting potential and higher toxicity. An increased understanding of the 

components and gateways that EVs use for signalling and cell entry would hence open new 

avenues for the delivery of bioactive cargo which could be hijacked by lipid-based delivery 

systems offering a defined environment for the biologics. 
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AIMS  

Lipid-based delivery vectors are one of the most widely exploited nanoparticles for the 

encapsulation of nucleic acids. This thesis firstly investigates the nucleic acid delivery 

potential of synthetic cationic lipid-based nanoparticles and thereafter concentrates on the 

composition and content dynamics of their natural counterparts, EVs, in order to shed light on 

the potential of lipid-based entities for therapeutic nucleic acid delivery. The individual 

objectives of the constituent papers were set to serve the wider aim of this thesis and are the 

following: 

3 Paper I 

 To evaluate the extent by which cryo-manipulation affects the nucleic acid delivery 

efficiency of cationic lipid-based reagents. 

 To shed light on the mechanisms contributing to the elevated potency of the cryo-

manipulated formulations. 

 To understand the applicability of freeze-thawing on the delivery potential of a wider 

range of commercial formulations.  

 

4 Paper II 

 To investigate the cell line dependant differences in the small RNA and protein 

composition of EVs. 

 To examine the interplay of vesicular RNA and protein content with a special focus 

on RNA/miRNA binding proteins and the respective RNA species. 

 

5 Paper III 

 To investigate the overall small RNA content in EVs and non-vesicular secretome. 

 To verify the extracellular profile and quantity of secretory miRNAs at their basal 

level as well as upon genetic overexpression. 

 To describe the differential sorting patterns of secretory miRNAs and their 

importance to the biological activity of EVs. 

 

6 Paper IV 

 To investigate how the dose and route of administration affects the biodistribution of 

EVs in vivo. 

 To investigate cell source dependent tissue distribution and inherent homing capacity 

of EVs. 

 To explore the effect of a targeting moiety on the general EV biodistribution and local 

accumulation to the tissues of interest.  
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METHODOLOGY 

7 Methodological considerations 

Detailed descriptions of the employed methodologies can be found in the constitutive papers. 

The following chapters aim to give a concise overview of the most important materials and 

methodologies used. 

 

7.1 Cell sources  

HEK293T (human embryonic kidney cells), Neuro2a (mouse neuroblastoma cells), human 

spinal muscular atrophy fibroblasts (GM03813), HepG2 (human hepatocellular carcinoma 

cells),  C2C12 (immortalized mouse myoblasts) and hTERT-MSCs (human telomerase 

reverse transcriptase immortalized bone marrow mesenchymal stem cells) [404] were 

included in Paper I to evaluate the nucleic acid delivery efficiency of synthetic lipid-based 

transfection reagents. The small RNA and protein content of EVs (Paper II) was investigated 

in HEK293T, RD4 (human skeletal muscle cells), Neuro2a, C17.2 (immortalized mouse 

neural progenitor cells) and C2C12 cell lines.  Paper III focused on human derived cell 

sources and exploited the fractionation of the extracellular material derived from HEK293T 

cells and hTERT-MSCs. Paper IV employed the conditioned medium of murine bone 

marrow derived DCs (strain C57BL/6J), hTERT-MSCs, rat oligodendrocytes (OLN-93), 

C2C12 cells and mouse melanoma cells (B16F10) to evaluate the in vivo biodistribution of 

EVs in C57BL/6J mice. The culturing conditions of the aforementioned cell types are 

outlined in the respective papers. 

 

7.2 EV enrichment techniques 

Paper II and IV include ultracentrifugation as the chosen method for EV enrichment. Briefly, 

the cell culture CM was first subjected to differential centrifugation steps whereby the 

clearance of floating cells and cell debris was achieved at 300 × g and 2000 × g, respectively. 

Thereafter, in order to enrich for smaller vesicles the supernatant was cleared through 0.22 

µm filter followed by pelleting of the EVs at ~120 000 × g and a subsequent wash spin of the 

phosphate buffered saline (PBS) reconstituted pellet at 120 000 × g. The final EV pellet was 

brought to a desired volume with PBS. In order to allow improved fractionation of the 

extracellular secretome in Paper III, we employed size exclusion liquid chromatography 

methodology[114]. The workflow included the aforementioned differential centrifugation 

steps as well as a 0.22 µm filtration step, resulting in cell culture media largely deprived of 

larger particles. The cleared CM was then ultrafiltrated by using 100 kDa MWCO filters 

(Amicon, Merck Millipore) at 3500 × g. The resulting retentate was loaded onto HiPrep 

16/60 Sephacryl S-400 HR column (GE Healthcare, PA, USA) by employing the ÄKTA 

pure/prime chromatography system (GE Healthcare, PA, USA) equipped with a 280 nm UV 
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detector. The EV and non-vesicular samples were pooled based on the resulting absorbance 

profile and concentrated using the 10 kDa MWCO Amicon Ultra spin filters (Merck 

Millipore). In order to cover a wide range of extra-vesicular material, the non-vesicular 

sample also included the flow through from the 100 kDa ultrafiltration step. 

 

7.3 Nanoparticle characterization  

7.3.1 Nanoparticle Tracking Analysis 

To measure the size distribution and concentration of particles, all constitutive papers 

employed Nanoparticle Tracking Analysis (NTA) on the NanoSight NS500 instrument 

(Malvern Ltd, UK) equipped with a 488 nm laser and a 500 nm long pass filter. The specific 

settings in terms of camera gain, shutter setting and detection threshold are described in the 

individual papers. Generally, five 30-60 seconds long videos per sample were recorded and 

analysed with NTA 2.3 analytical software (Malvern Ltd, UK). For the quantitation of 

fluorescent particles, the sample was under a constant flow in order to decrease the bleaching 

of the fluorescent signal.  

7.3.2 Western blot 

The EVs in Paper II, III and IV were evaluated for the enrichment of EV markers with WB. 

Briefly, an equal number of particles (5E9-1E10) were mixed with the sample buffer 

containing 0.5M dithiotreitol (DTT), 0.4 M sodium carbonate (Na2CO3), 8% sodium dodecyl 

sulfate (SDS), 10% glycerol and thereafter heated at 65ºC for 5min. The cell samples were 

scraped from 2D cell culture plates, counted for viability with Trypan Blue Exclusion test 

(Thermo Fisher Scientific, MA, USA), pelleted and lysed with an appropriate volume of 

radioimmunoprecipitation assay (RIPA) buffer, kept on ice and vortexed every 5 min for half 

an hour. Subsequently, the samples were spun at 12 000 × g for 12 minutes at +4ºC; the 

supernatant was collected, mixed with the sample buffer and heated as described above. The 

samples were run on NuPAGE Novex 4-12% Bis-Tris Gel (Invitrogen, Life Technologies) at 

120V and transferred to an iBlot nitrocellulose membrane with the iBlot system (both 

Invitrogen, Life Technologies). The membranes were blocked with Odyssey blocking buffer 

for 60 minutes at room temperature with gentle shaking. Thereafter, the membranes were 

probed with primary antibody solutions described in the respective papers, followed by 

IRDye 800CW and 680LT secondary antibody solutions (LI-COR Biosciences, NE, USA). 

Between the aforementioned steps, the membranes were washed every 5 min for half an hour 

with washing buffer (1 × PBS with 0.1% Tween 20; Sigma Aldrich, Saint-Louis, MO, USA). 

Washing steps including a final rinsing of the membrane with 1 × PBS were also performed 

before imaging. The membranes were visualized on the Odyssey infrared imaging system and 

further analysed by using Image Studio Lite Version 5.2 (both from LI-COR Biosciences, 

NE, USA). 
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7.3.3 Total Internal Reflection Fluorescence Microscopy 

The physical characteristics of lipoplexes in Paper I were evaluated with Total Internal 

Reflection Fluorescence (TIRF) microscopy on a Zeiss Laser TIRF 3 system (Carl Zeiss AG, 

Germany).  The deposition of Alexa-568-labeled duplex RNA complexes with freeze-thawed 

or non-frozen LF2000 (Thermo Fisher Scientific, MA, USA) on P35G-1.5-14-C glass inserts 

(MatTek Ashland, MA, USA) were recorded at 37 °C in preheated Opti-MEM Reduced 

Serum medium (Thermo Fisher Scientific, MA, USA). The time dependent complex 

deposition on the glass surface was expressed as increase in the relative fluorescence over the 

basal background. 

7.3.4 Transmission Electron Microscopy 

TEM was utilized to characterize the lipoplexes in Paper I as well as EV morphology in 

Papers II, III and IV.  In all cases, 2% uranyl acetate solution (Sigma-Aldrich, Saint-Louis, 

MO, USA) was used to stain the material spotted onto glow discharged electron microscopy 

grids. In some experiments of Paper I, a biotinylated nucleic acid (Label IT Nucleic Acid 

Labelling Kit, Biotin, Mirus Bio LLC) and 10 nm colloidal gold labelled neutravidin were 

used to visualize the formed complexes for their identification. The imaging was performed 

by using a FEI Tecnai G2 Spirit BioTWIN microscope (FEI, OR, USA) run at 120 kV (Paper 

I), with a FEI Tecnai 10 TEM (FEI, OR, USA) at an accelerating voltage of 100 kV (Paper II, 

III) or JEOL 1010 TEM (JEOL, Peabody, MA, USA) (Paper IV). 

 

7.4 Methods to evaluate nucleic acid loading and delivery 
efficiency 

7.4.1 Luciferase assay 

Transfection efficiencies of different synthetic delivery vectors in Paper I were assessed by 

using the Luciferase Assay System (Promega Corporation, WI, USA) and luminescence of 

firefly luciferase was measured with GloMax-96 Microplate Luminometer (Promega 

Corporation, WI, USA). When applicable, the luciferase activity was further normalized to 

the amount of total protein in each sample, as measured by a Protein Assay (Bio-Rad 

Laboratories, Hercules, CA). 

7.4.2 RT-qPCR 

Paper I and III included RT-qPCR analysis to either determine the potency of nucleic acid 

delivery vehicles or quantify the miRNA content of the secretory fractions. In Paper I, the 

recipient cells (HeLaLuc705[405]) were treated with splice-correcting minicircle plasmids or 

oligonucleotides to restore the correct splicing and generate a functional firefly luciferase in 

the aforementioned reporter cells. In Paper III, RT-qPCR was employed to either monitor the 

mature miRNA level of overexpressed let-7a and let-7b in the different fractions of the 

HEK293T secretome or to quantify the basal expression of a selected set of miRNAs in 

HEK293T and hTERT-MSC EVs and non-vesicular fraction. In both papers, total RNA was 
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extracted following the standard phenol-chloroform extraction protocol by using either Trizol 

or Trizol LS solutions (both from Thermo Fisher Scientific, MA, USA) followed by cDNA 

synthesis using the TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, CA, 

USA). U7asLuc705 small nuclear RNA and small nucleolar RNA C/D box 24 (RNU24) 

quantitation were performed using the Custom TaqMan Small RNA Assays and TaqMan Fast 

Universal PCR Master Mix No AmpErase UNG (Applied Biosystems, CA, USA) according 

to the manufacturers’ instructions. The miRNA quantitation in Paper III was performed by 

using the TaqMan Gene Expression Master Mix together with the respective TaqMan 

MicroRNA Assays (both from Applied Biosystems, CA, USA). All the samples were run on 

the Step-One Real-Time PCR instrument (Thermo Fisher Scientific, MA, USA). The cycle 

threshold (Ct) values were obtained from the StepOne Software (Applied Biosystems, CA, 

USA); the PCR efficiency of each reaction was calculated with LinRegPCR program[406] or 

obtained from the StepOne Software. ΔΔCt (Paper I) or efficiency (E)^-Ct (relative to cel-

miR-39 RNA extraction control level; Paper III) methods were used to express the levels of 

the targets under study. 

 

7.5 Next generation sequencing of small RNAs 

7.5.1 Sample preparation and sequencing 

Paper II and III include small RNA sequencing of cells, vesicles and non-vesicular secretome. 

The RNA from the aforementioned samples was extracted by following a standard phenol-

chloroform extraction protocol using either Trizol or Trizol LS solutions (both from Thermo 

Fisher Scientific, MA, USA). Improved RNA precipitation was gained by adding 2 µl of 

PolyAcryl Carrier PC 152 polymer (Molecular Research Center Inc., OH, USA) per reaction. 

The RNA integrity of the cell samples was verified on Bioanalyzer RNA 6000 Pico Total 

RNA Kit (both Agilent Technologies, UK) and the RNA concentration for all samples was 

measured with the Qubit 2.0 Fluorometer by using the Qubit RNA HS Assay Kit (Thermo 

Fisher Scientific, MA, USA). Either 60 ng (Paper II) or 250 ng (Paper III) of total RNA was 

subjected to small RNA library preparation by using the NEBNext Multiplex Small RNA 

Library Prep for Illumina (NEB, MA, USA) kit according to the manufacturer’s instructions. 

The barcoded samples were size selected on a 6 % Novex TBE PAGE gel (Thermo Fisher 

Scientific, MA, USA), the fragments corresponding to microRNA range were cut out and 

subjected to purification with the NucleoSpin Gel and PCR Clean-up kit (Macherey-Nagel, 

Germany). Thereafter, the products were quantified by using the KAPA Library 

Quantification Kit (Kapa Biosystems, UK) and pooled at equimolar ratio. In Paper II, two 

libraries (technical replicates) were generated in parallel, each eventually containing a pool of 

12 barcoded samples. In Paper III, 18 barcoded samples (biological replicates) were pooled. 

In both cases, the readymade libraries were checked on the High Sensitivity D1000 

ScreenTape (Agilent Technologies, UK) and quantified using the KAPA Library 

Quantification Kit (Kapa Biosystems, UK) to enable precise loading of the flow cell. The 

clusters were generated by using the cBot and sequenced one replicate per lane on either one 
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(Paper II) or two (Paper III) flow cells on the HiSeq2500 (Illumina Inc., CA, USA) with a 

1x51 setup in RapidRun mode. 

7.5.2 Data analysis 

Small RNA sequencing data was analysed in a similar manner for both Paper II and Paper III. 

Briefly, raw sequencing reads were quality controlled by FastQC [407] analysis and 

subjected to adapter removal by Cutadapt/1.9.1 [408]. All reads with an adapter and a length 

of 17-35 bases (filtering with BBMap release 35.40 [409]) were subjected to subsequent 

mapping on the Ensembl 38.85 releases of the mouse and the human genome by using 

Bowtie1 (release 0.12.6) [410] in -v1 alignment mode and best alignment stratum reporting 

option. Annotation was performed in a stepwise manner with HTSeq (release 0.6.1) [411] in 

stranded mode by following a stepwise annotation procedure allowing the discrimination of 

‘small RNAs’, followed by ‘ribosomal RNA’ and ‘other RNAs’. Gene biotype classification 

followed the classification details in Vega Genome Browser release 68; details of the 

included RNA biotypes can be found in Paper II. The annotations of different RNA biotypes 

were retrieved from miRBase  release 21 [412], Ensembl 38.85 [413], piRNAbank [414] and 

UCSC Table Browser hg38/mm10 entries [415]. 

For data visualization, MultiQC v1.3 [416] and the online analysis software Morpheus 

(available from the Broad Institute; https://software.broadinstitute.org/morpheus; Paper II) as 

well as Multiple Experiment Viewer (Version 4.9.0) [417] and R-studio software [418] (R 

version 3.4.2; Paper III) were used.  Differential expression analysis of miRNAs was 

performed by using the R package DESeq2 [419]. All statistical analyses (except for 

differential expression statistics) were performed using GraphPad Prism Version 6 or 7 

(GraphPad Software, Inc., CA, USA). 

 

7.6 Proteomic analysis 

The proteomic analysis of EVs in Paper II exploited liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) as described previously [114]. The analysis covering Gene 

Ontology (GO) term enrichment  and -overrepresentation was performed by using the Protein 

ANalysis THrough Evolutionary Relationships (PANTHER) software [420]. In addition, the 

study included an in-depth analysis of the ‘RNA binding’ proteins (GO:0003723), obtained 

via the QuickGO browser (http://www.ebi.ac.uk/QuickGO/) and Vesiclepedia [421] database. 

The list of ‘miRNA related’ proteins was created by manual curation of the ‘RNA binding’ 

proteins. All proteomic analysis was based on unique protein identifiers, thereby taking into 

account different protein isoforms. 

 

https://software.broadinstitute.org/morpheus
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7.7 In vivo techniques 

7.7.1 In vivo delivery of nucleic acid complexes 

In Paper I, in order to evaluate the potency of LF2000 lipoplexes, 5 µg of firefly luciferase 

expressing plasmid (PT2/C-fluc plasmid; Addgene plasmid 20203; Addgene, MA, USA) was 

used either on its own, or complexed with 12.5 µg freeze-thawed or non-frozen LF2000. The 

complexes were formed in OptiMEM serum free medium and a total volume of 50 µl was 

used for contralateral intramuscular (i.m.) injections in mice. The luminescence was imaged 

24 hours post-injection using the IVIS Imaging System (PerkinElmer, MA, USA).  

7.7.2 Tracking and tissue distribution of EVs 

Paper IV assessed the tissue distribution of EVs from different cell lines using intravenous, 

intraperitoneal or subcutaneous injection to NMRI or C57BL/6 mice. In order to track the 

EVs in vivo, a near-infrared fluorescence dye, DiR (1,1-dioctadecyl-3,3,3,3-

tetramethylindotricarbocyanine iodide; D12731, Invitrogen, Life Technologies) was used. To 

label the EVs, the filtered CM was co-incubated in the presence of 1 µM of DiR at room 

temperature for 15 minutes. Thereafter, the EVs were purified by following the EV 

enrichment protocol by UC, as described above. The same procedure was employed for 

unconditioned medium, serving as the control to determine the extent of unspecific tissue 

distribution. The biodistribution of the EVs was evaluated with the IVIS Imaging System 

(PerkinElmer, MA, USA) with or without organ dissection. The dosage of EVs was based on 

NTA particle quantification and was optimized within the study to 1E10 particles/gram of 

body weight in order to ensure sufficient fluorescence detection and minimal signal saturation 

in the investigated organs. The tissue distribution of CD63-eGFP positive EVs in explanted 

organs was also evaluated immunohistochemically. 
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RESULTS AND DISCUSSION 

8 Paper I 

Paper I outlines the effect of cryo-manipulation of a cationic lipid-based formulation, 

LF2000, which, after being frozen and thawed, showed orders of magnitude higher nucleic 

acid delivery in vitro and in vivo than the non-frozen counterpart. 

The preliminary observations of the increased potency were made with luciferase-encoding 

plasmid delivery. As a result, a log-scale improvement in nucleic acid transfection efficiency 

throughout eight different cell lines, including hard-to-transfect cells such as human 

fibroblasts and mouse myotubes, was observed. The effect was most prominent at lower 

nucleic acid doses and was witnessed with different batches of LF2000. To better quantify the 

cell viability as well as the number of cells with successful plasmid delivery and expression, 

we employed flow cytometry analysis. These results further confirmed the significantly better 

performance of freeze-thawed LF2000 over non-frozen with up to 45% increase in the 

number of transfected cells. A decrease in cell viability with flow cytometry as well as cell 

proliferation assay (WST-1) was observed at the highest plasmid concentration for the freeze-

thawed formulation. Yet, this was valid only for Neuro2a cells. 

To exclude the possibility that the potency was a result of a specific plasmid, expression 

cassette and/or type of promoter used, the non-frozen and freeze-thawed LF2000 were tested 

in a splice-correction assay using U7 snRNA construct [422] or different splice-correcting 

oligonucleotides in a HeLa Luc 705 cell line [405]. Consistent with the previous results, cells 

transfected with freeze-thawed LF2000 displayed significantly higher luciferase signals than 

those transfected with non-frozen reagent, confirming that the effect was consistent 

regardless of the plasmid organization or the chemical composition of the nucleic acid. 

As it is known that conditions optimized for in vitro transfections are often not applicable to 

efficient in vivo delivery [423], we further evaluated whether freeze-thawing of LF2000 has 

an impact on nucleic acid delivery in vivo. Indeed, i.m. injection in mice of a luciferase 

plasmid complexed with non-frozen or cryo-manipulated LF2000 confirmed the in vitro 

results where a log-scale higher luminescence in the muscle treated with freeze-thawed 

reagent was observed. 

We next became interested whether the effect could persist over a longer period of time 

and/or could be obtained by other ways of cryo-manipulation. After overnight freezing, 

thawing and storage for two weeks+4ºC the reagent still showed improved transfection 

efficiency over non-frozen LF2000. Repeated freeze-thawing cycles and snap-freezing in 

liquid nitrogen also exhibited higher transfection efficiencies than the non-frozen counterpart. 

Yet, the best overall potency was seen with the reagent that was used immediately after 

overnight freezing. 

By studying the physical characteristics of non-frozen and freeze-thawed LF2000 complexes, 

we saw that the latter formed a much more heterogeneous population of particles, with a 
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slightly smaller size, yet with no apparent differences in their morphology or nucleic acid 

release potency. Nonetheless, by exploiting TIRF microscopy, we observed that the freeze-

thawed complexes dispersed more readily on a glass surface and sedimented to a higher 

degree than the non-frozen LF2000. These properties are likely to underlie the increased 

cellular uptake of freeze-thawed LF2000 lipoplexes as well as elevated cellular activity. 

To find further explanations to the phenomena, we explored the effect of freeze-thawing on a 

handful of other lipid-based and non-lipid based transfection reagents. As a result, we saw a 

similar increase in transfection efficiency for Lipofectamine RNAiMAX reagent, allowing us 

to speculate that the outstanding transfection efficiency relates to the specific structure or 

composition of both Lipofectamine products. 

In conclusion, this study reveals that simple cryo-manipulation is able to significantly 

increase the nucleic acid delivery potency of a commercial cationic lipofection reagent and is 

likely to be applicable for an even wider range of lipid-based delivery agents. Importantly, 

our results illustrate that freeze-thawing allows to drastically reduce the amount of 

transfection reagent needed for cellular transfection, while retaining the desired activity. 

 

9 Paper II 

EVs mediate their native biological effects by transferring or displaying their cargo to target 

cells. While certain broad-spectrum EV mediated effects reflect their protein cargo 

composition, others have been attributed to individual EV-loaded molecules such as specific 

miRNAs [338,424]. In this work, we investigated the cell line dependent differences and 

interplay of small RNA and protein cargo in unmodified EVs. 

Firstly, we performed small RNA sequencing on UC-purified EVs as well as their source 

cells of human (HEK293T, RD4) and mouse (C2C12, Neuro2a and C17.2) origin. By size-

selecting the libraries and length-restricting data analysis to sequences of 17–35 nucleotides 

in length, we were able to see that the majority (~80%) of the cellular RNA did represent 

“small RNA” sequences, of which a great majority (73-93%) represented miRNAs, 

confirming the reliability of the applied methodology. Across different cell lines, the EVs had 

considerably less miRNA and more sequences derived from piwi-like RNA (piRNA) loci 

than their source cells. Hierarchical clustering analysis of miRNA signatures revealed that all 

the EV samples clustered together with their parental cells as opposed to EVs from other cell 

sources. Though the number and relative expression of EV miRNA sequences was in good 

correlation with the cellular background, for piRNA sequences, no clear correlation between 

the vesicular and cellular expression level was found. Due the lack of proof of the association 

of piRNA sequences with piRNA proteins, together with the evidence of a relative scarcity of 

characteristic piRNA features (e.g. length of 27-35 nucleotides, 5’ uracil bias), these RNA 

stretches rather represent sequences derived from piRNA loci than bona fide piRNAs.  
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Though, as mentioned earlier, the majority of cellular sequences represented “small RNAs”, 

it is noteworthy to mention that the “small RNA” content of EV samples was highly variable 

across the tested cell types. On average only ~22% of the sequences were derived from 

“small RNA” loci, while the reads derived from rRNA loci were more prominent and covered 

36-94 % of all annotations in EVs. In addition, both cells and EVs had a large number of 

tRNA and Y RNA sequences, corroborating with earlier EV-based studies also employing 

short read-length sequencing [212,217,238,425]. For all RNA categories (“small RNAs”, 

“rRNAs” as well as “other RNAs”), a small number of highly abundant sequences covered 

the bulk RNA content within each category, illustrating the relatively low diversity of the 

RNA mass. The prominence of individual RNA species was explicitly evident from the list of 

overall top-ranking RNA genes, where the EV samples were dominated by highly abundant 

“rRNA” and “other rRNA” sequences, whereas the cells samples were rather enriched in 

miRNAs.  

Next, we set out to explore whether the EV proteome, particularly the repertoire of RNA-

binding proteins would correspond to our observations about the RNA species in EVs. This 

part of the study was performed on HEK293T and C2C12 EVs given their disparate ‘small 

RNA’ (and thus also miRNA) content. In both proteomes, we detected ~2000 proteins, of 

which ~60% overlapped with entries in the Vesiclepedia database [421]. Similarly to 

transcriptomic results in which a relatively small number of RNA sequences contributed to a 

large proportion of total detected RNA reads, a small number of highly abundant proteins 

(~200 identifications) covered the bulk content (~75%) of both EV proteomes. Also, in line 

with the finding of a high abundance of ribosomal, coding and tRNA fragments in the 

sequencing, we discovered high levels of rRNA-, poly(A)- and tRNA binding proteins in the 

proteomic datasets of both EV types. GO analysis revealed that ~20-30% of the identified 

proteins in EVs were “RNA binding” (GO:0003723), correlating well with the mean reported 

frequency (21 %) of RNA binding proteins in Vesiclepedia database [421]. Similarly to the 

results of the bulk proteome, the “RNA binding” proteins that contributed most to the EV 

proteome described poly(A)- and rRNA binding proteins, double- and single-stranded RNA 

binding proteins as well as translation-related protein sets.  

In order to further understand which RNA-binding protein classes are represented in the data 

sets and how these correspond to the small RNA sequencing results, we created a custom 

curated GO list of “miRNA related” proteins. Thereby, we were able to define that ~1 % of 

the HEK293T and C2C12 EV proteins were relevant to the molecular function, biological 

processes or cellular components of miRNAs. Most of them represented proteins with very 

low expression level, resulting in their contribution to the total EV protein mass by only ~0.9 

% for both samples. Though C2C12 EVs were substantially richer in miRNAs than 

HEK293T EVs, we were unable to detect any major differences in the miRNA-related 

proteome, precluding us from further speculations of whether specific miRNA binding 

proteins drive the miRNA sorting into EVs. In addition, even though EVs showed a high 

number of piRNA sequences, we were unable to detect any “piRNA binding” proteins, 
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aligning well with our observation that the sequences annotated as piRNAs in this study 

rather represent reads mapping to piRNA loci. 

In conclusion, this study investigated the vesicular RNA and protein cargo composition and 

interplay in a handful of cell types. The present data is particularly useful for future work in 

unravelling the biological mechanisms underlying vesicular RNA and protein sorting and 

serves as an important guide in developing EVs as carriers for therapeutic RNA interventions.  

 

10 Paper III 

Proceeding from the results of Paper II, we became increasingly interested in exploring the 

wider composition of the cellular secretome and decided to concentrate more on the specific 

miRNA profiles. To look into the composition of the EV secretome as well as investigate the 

non-EV material, we decided to exploit SEC [114] enabling to discriminate and fractionate 

both secretory portions. 

Owing to earlier reports [105,107], it is known that a large amount of miRNA is secreted 

outside of EVs. To investigate by which extent miRNAs of interest get released to the 

extracellular space, we transiently overexpressed pri-let-7a and pri-let-7b in HEK293T cells, 

and quantified respective mature miRNA levels in the secretome. As a result, we could see 

that upon overexpression the amount of non-EV miRNA exceeds tens of folds the miRNA 

level seen in the EVs. Though similar evidence has already been seen by centrifugation-based 

studies [426,427], we hereby provided additional insights and profiled the miRNA abundance 

across the secretome. 

Given the log-scale differences in the miRNA amount between the EV and non-EV fractions, 

we became interested whether the global pool of miRNAs follows a similar secretion profile. 

The subsequent small RNA sequencing analysis was performed on the HEK293T cells and 

hTERT-MSCs as well as their EV and non-EV secretory fractions, separated identically to 

the preliminary overexpression studies. 

When looking in detail into the small RNA secretome, the bulk secretory material consisted 

predominantly of miRNAs and piRNA-like sequences. The total miRNA efflux to the 

extracellular environment was comparable for EVs and non-EV samples. Also, we observed 

that the expression levels of EV-, non-EV and cellular miRNAs were well correlated, apart 

from some DE miRNAs in the EVs and non-EV fraction, which exceeded several fold the 

levels in their source cells. Irrespectively, a vast majority of all the DE hits represented 

miRNAs with relatively low expression in both the source cells as well as in the secretory 

fractions, fitting with the correlation of the samples’ miRNA levels, indicating that the bulk 

of the secretome does rather resemble the cell of origin and suggesting that the majority of the 

miRNA follows a passive secretion mechanism. 

To reflect on the total miRNA content of the secretome, we decided to quantify the total 

amount of candidate miRNAs in the EV and non-EV fractions by using RT-qPCR from an 
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equal volume of starting material. As a result, we could see that the total amount of non-

vesicular miRNA exceeded tens to hundreds of folds the basal miRNA amount in EVs. 

Taking into account the distinct miRNA quantities at their basal level in both secretory 

fractions, above 90% of the total extracellular miRNA got secreted to the non-vesicular 

fraction, coinciding with our preliminary observations of overexpressed non-EV miRNA 

levels. 

In summary, this study outlines that the bulk miRNA content in cells, EV and non-EV 

fraction is highly alike, whereas the majority of DE miRNAs represent low-abundant 

molecules and miRNAs both at their overexpressed and basal level are predominantly found 

in the non-EV portion of the secretome. This information is valuable in order to gain a 

thorough understanding of short RNA sorting mechanisms into EVs and thereby progress the 

employment of EVs as therapeutic nucleic acid carriers. 

 

11 Paper IV 

In order to develop EVs as carriers for therapeutic RNA interventions, it is of utmost 

importance to have a clear understanding of their body-wide distribution. Thus, Paper IV was 

brought about to gain a comprehensive overview of the biodistribution of exogenous EVs, its 

dependence on the administration route, cell source, dosing as well as on the potential of 

targeted tissue distribution. 

Firstly, in order to track the EVs in vivo we set out to validate the labelling of EVs 

incorporating the near-infrared lipophilic dye (DiR). Lipophilic DiR dyes are known to 

possess a low level of autofluorescence, give high fluorescence output once incorporated in 

membranes and offer good tissue penetrance owing to their near-infrared spectrum. Yet, the 

incorporation of unbound dye into cell membranes as well as its transfer between neighboring 

cells results in unspecific fluorescence events [428], emphasizing the need of proper 

background controls. To evaluate the performance of the labelling strategy, the labelling of 

DiR EVs was evaluated against a free DiR dye control on a density gradient separation. As 

expected, the free DiR dye displayed a lower buoyant density and fluorescence than the DiR 

labelled EV samples, indicating the presence of free dye, devoid of lipid membranes. The 

density and fluorescence profile of DiR labelled EVs across the gradient as well as the co-

localization of EV marker ALIX indicated successful labelling. After UC purifying the DiR 

labelled unconditioned medium and additional monitoring of free DiR dye in vivo, we could 

confirm that any excess dye would be lost during EV isolation, allowing us to proceed with 

the chosen labelling strategy. 

In order to see whether and how the dose could affect the distribution of exogenous EVs, we 

conducted a dose titration study; 0.25 × 1010 - 1.5 × 1010 particles per gram (p/g) of body 

weight were intravenously (i.v.) injected into mice, followed by organ harvesting 24 hours 

post-injection. Notably, even though at increasing doses the overall tissue distribution pattern 

did not change, the relative fluorescence values in the liver were decreased. This was 
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interpreted as a potential saturation of the MPS, leading us to choose the intermediate dose of 

1.0 × 1010 p/g for subsequent experiments. 

Due to employment of lipophilic EV labelling strategy, we also evaluated the kinetics of EV 

biodistribution in order to rule out the tracking of free- as opposed to EV-bound DiR dye and 

found that the overall biodistribution up until 24 hours remained largely unchanged. Yet, we 

did observe an initial pulmonary accumulation of EVs at 5 minutes post-injection, plausibly 

representing the primary exposure of administered EVs to the capillaries of the lung. At the 

48 hours’ time point we observed increased changes in the tissue distribution profile (e.g. 

high accumulation in pancreas), potentially representing EV redistribution events, a later EV 

uptake phase or an artefact due to the long half-life of the dye [240]. 

The most common administration route for EV-based in vivo studies is i.v. injection. Yet, it is 

important to assess how different administration routes affect the distribution of EVs as well 

as whether different routes can be used to boost a desired therapeutic outcome. To estimate 

the effect of EV administration routes, we investigated the biodistribution differences 

between i.v., intraperitoneally (i.p.) and subcutaneously (s.c.) injected vesicles. Thereby, we 

could see that the i.v. injected EVs accumulated significantly more in the liver and spleen as 

opposed to i.p. or s.c. injected EVs. The s.c. route also resulted in significantly lower 

fluorescence values in the ex vivo imaged organs, plausibly indicating to the retention of EVs 

in the adipose tissue. These results highlight the importance of the choice of EV 

administration route in order to either obtain a favourable biodistribution pattern or a desired 

pharmacokinetic profile. 

The intrinsic tissue tropism of EVs has been a matter of intense debate in the field. To 

explore the organotropic preferences, we investigated the biodistribution patterns of EVs 

derived from 3 mouse (C2C12; B16F10; primary immature bone-marrow derived DCs), 1 rat 

(OLN-93) and 2 human cell types (HEK293T; primary human MSCs) 24 hours post i.v. 

injection. Generally, the highest accumulation of EVs was seen in liver, followed by spleen 

and lungs. Yet, the distribution pattern of DC EVs deviated significantly from this 

accumulation profile, exhibiting strong fluorescence from the spleen and weak signal from 

the liver as compared to other tested EV sources. Considering earlier reports dissecting the 

integrin-dependent EV organotropism [248], we hypothesize that the observed distribution 

pattern could also be caused by a unique repertoire of molecules displayed on the surface of 

DC EVs. In light of a great potential of EV tropism for targeted therapies, further studies are 

needed to unravel the extent and specific mechanisms of the phenomenon. 

Lastly, to evaluate the impact of EV surface engineering on targeted tissue delivery, we 

employed DC-derived EVs expressing a chimeric Lamp2b-RVG on their surface. RVG is 

known to bind to the acetylcholine receptors [429] and enhance brain targeting of EVs, as 

evidenced by earlier studies [79]. Indeed, a small, but significant 2-fold increase in the brain 

accumulation of targeted EVs was detected thereby leaving the overall biodistribution of EVs 

largely unaltered. This exemplifies the sensitivity of the EV labelling strategy employed 



 

 43 

throughout the study as well as indicates the potential of using targeting moieties on the EV 

surface. 

In conclusion, this study showed that DiR labelling is a suitable methodology for tracking 

EVs in in vivo assays with high specificity and sensitivity. In addition, even though the 

majority of EVs accumulate in liver and spleen, the distribution pattern could be affected by 

the cell source, administration route, dose and the presence of targeting moieties on the EVs. 
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