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ABSTRACT 

Drug-induced liver injury (DILI) is a major cause of post-marketing drug withdrawals and 

restricted-use warnings. In addition, unexpected adverse hepatic drug reactions occurring in 

the clinical phases of development are a major reason for drug attrition. Currently, there is an 

unmet need for reliable in vitro models to faithfully study the impact of drugs on the human 

liver. 

In this thesis, we developed and extensively characterized a novel three-dimensional (3D) 

spheroid culture system comprised of primary human hepatocytes (PHH). We found that the 

proteomes of PHH in 3D spheroid culture closely resemble those observed in the liver in 

vivo, whereas in conventional two-dimensional (2D) monolayer cultures PHH rapidly lose 

their mature phenotype due to dedifferentiation. 

PHH spheroids retain stable molecular phenotypes and liver-specific functionalities for 

multiple weeks in culture. These features allow prediction of DILI events, including those 

that may be delayed in onset, in a more phenotypically adequate system. Moreover, the PHH 

spheroid system was found suitable to detect the liability of drugs to induce cholestasis and to 

identify concomitant toxicity mechanisms. 

Our results also indicate that PHH spheroids can be used to screen drugs for cytochrome 

P450 3A4 (CYP3A4) induction. Importantly, PHH in 3D spheroid culture could identify a 

clinically relevant atypical mechanism of CYP3A4 induction that was not possible to detect 

in the corresponding 2D monolayer cultures. 

In conclusion, the PHH spheroid system presented here constitutes a versatile in vitro model 

to study liver biology and to assess the metabolic and toxicological profiles of drugs and drug 

candidates. 
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1 INTRODUCTION 

1.1 ADVERSE DRUG REACTIONS 

Novel drugs for prevention, treatment, or cure of diseases are constantly being developed, 

optimized, and tailored to patient-specific needs. Undoubtedly in the vast majority of cases 

the benefits of drug therapy outweigh the associated side effects and risks. Nevertheless, the 

occurrence of adverse drug reactions (ADRs) remains a significant problem in clinical 

practice, in part due to the increased complexity of therapeutic regimes associated with the 

rise in global multimorbidity (1). ADRs are suspected to directly cause or contribute to  

5-18% of all in-hospital deaths (2-4) and are ranked as the seventh most common cause of 

death in the general population of Sweden (5). Approximately 5% of all hospital admissions 

are associated with ADRs and it is estimated that 5-10% of all hospitalized patients 

experience an ADR (6-11). As such, a significant economic burden is placed on healthcare 

systems, with reported annual costs of 30.1 billion USD in the United States due to increased 

hospitalization rates and prolonged hospital stays (12). The incidence and burden of ADRs 

may however significantly exceed the reported numbers since ADRs are notoriously under-

reported, which is a major challenge in pharmacovigilance worldwide (13-16). 

Bringing a new drug from concept to market is a highly protracted and costly process, taking 

on average 13-15 years with associated costs estimated at 1.3 billion USD (17, 18). Since the 

1990s, the performance of the pharmaceutical industry has been alarming, with low numbers 

of new drug approvals by the Food and Drug Administration (FDA) (19-23). However, 

AstraZeneca recently reported a marked improvement in their project success rates from 

candidate drug nomination to phase III completion from 4% in 2005-2010 to 19% in 2012-

2016 (24), suggesting productivity may be on the rise again. In addition, the FDA approved 

46 new drugs in 2017, the highest number since 1996 (25).  

Still, a major challenge the pharmaceutical industry currently faces is to address and reduce 

the high attrition rates in drug development. While in the early 1990s adverse 

pharmacokinetic and bioavailability profiles were the most common reason for attrition, the 

contribution of these factors has significantly decreased in recent years. Instead, lack of 

efficacy and safety issues are now two of the most frequent causes of attrition (22, 26, 27). 

Analysis of 605 compounds terminated from development between 2000 and 2010 revealed 

that non-clinical toxicology and clinical safety issues accounted for over 50% of all failures 

(27). In the same period, 32% of newly FDA-approved therapeutics were affected by post-

market safety events, including withdrawals, restricted-use warnings, and issuance of safety 

communications (28). Thus, unexpected ADRs are of major concern for public health and 

remain a key challenge for the pharmaceutical industry during both pre- and post-marketing 

stages of drug development. 
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1.2 DRUG-INDUCED LIVER INJURY 

1.2.1 Epidemiology  

Between 1953 and 2013, 462 medicinal products were withdrawn from the pharmaceutical 

market in one or more countries because of severe ADRs, including death which was 

documented as the reason for a quarter of these cases. Hepatotoxicity was reported as the 

most frequent reason for withdrawal, accounting for 18% of all cases (29). Indeed, drug-

induced liver injury (DILI) continues to be a major concern for public health, surpassing viral 

hepatitis as the most common cause of acute liver failure (ALF) in the United States (30). 

Almost 50% of ALF cases are due to intentional or accidental acetaminophen (APAP) 

overdose while approximately 11% are due to idiosyncratic drug reactions (31). The latter 

cause of ALF is often more severe and associated with poor outcome, having a mere 27% 

transplant-free survival rate (31, 32). Fortunately, the incidence of idiosyncratic DILI is rare, 

crudely estimated at ~19 cases per 100,000 individuals annually (33). However, this is likely 

an underestimation due to serious under-reporting because of the lack of surveillance systems 

and the concomitant challenges in its recognition and diagnosis (34). Despite its infrequency, 

the clinical outcomes can be severe. One in five patients will develop chronic liver injury and 

in nearly 10% of all cases it is, directly or indirectly, the cause of fatality or need for liver 

transplantation (35-37). 

1.2.2 Classification 

Conventionally, DILI has been classified into either having an underlying intrinsic or 

idiosyncratic mechanism of toxicity. DILI is referred to as intrinsic when the toxicity is 

clearly dose-dependent and occurs in a predictable and reproducible manner. On the other 

hand, idiosyncratic DILI is often delayed in onset and is the result of a complex interplay 

between drug properties, individual sensitivity factors, and environmental factors (38). Other 

than APAP, there are few drugs currently used in the clinic known to pose the risk of intrinsic 

liver injury, because this type of drug liability can normally be detected in drug development, 

resulting in either drug termination, changing the route of drug administration, or 

continuation of the drug but at doses well below the toxicity threshold (39). In recent years 

however, intrinsic and idiosyncratic DILI have thought to be coinciding rather than existing 

as two separate entities, where it is hypothesized that other factors such as inflammatory 

stress can sensitize certain individuals towards intrinsic hepatotoxins, ultimately resulting in 

idiosyncratic liver injury (40, 41). Evidence substantiating this hypothesis is provided by the 

finding that pharmacological doses of APAP in patients hospitalized for acute viral hepatitis 

can provoke serious liver injury (42). Further supporting this notion is the fact that in around 

10% of ALF cases linked to APAP toxicity occurs at the recommended dose (43, 44).  
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1.2.3 Clinical presentation 

Clinical symptoms of idiosyncratic DILI are often vague and nonspecific (e.g. lethargy, 

nausea, vomiting, and abdominal pain). In more serious cases liver-specific symptoms such 

as jaundice and encephalopathy may be present (45). Because of the diverse disease 

representation, idiosyncratic DILI can phenotypically mimic virtually all primary liver 

diseases, in particular acute viral hepatitis. As such, this inevitably leads to frequent 

misdiagnoses that can negatively impact on patient care (46). Currently, reliable and 

objective biomarkers of DILI are scarce, making it a diagnosis of exclusion based on 

reviewing the patient’s history to exclude competing etiologies and relying on blood tests, 

hepatobiliary imaging, and occasionally liver biopsies (47).  

Biochemically, the pattern of DILI can be subdivided into hepatocellular, cholestatic or a 

mixed pattern based on the ratio of elevation of baseline alanine aminotransferase (ALT) to 

baseline alkaline phosphatase (ALP) (48-50). In case of hepatocellular injury, ALT is 

markedly elevated while ALP elevations are modest. However, generally, the degree of ALT 

elevation poorly correlates with the severity of disease and often underestimates the degree of 

injury (51). Compared to other patterns of DILI, the hepatocellular type is more likely to 

progress to ALF (52). Cholestasis and mixed patterns are frequently observed in the clinic, 

accounting in some reports for up to half of all DILI cases (33, 53). While mortality rates are 

lower for cholestatic and mixed patterns of injury, normalization of liver function tests is 

protracted and the risk for chronic injury is higher (54). Other less commonly observed 

patterns of DILI include steatohepatitis, granulomatous hepatitis, neoplasms, and vascular 

abnormalities (55). 

An important feature that aids in making the diagnosis of DILI is recognition of specific 

patterns of liver injury and the concomitant latencies that are characteristic for certain drugs. 

Drug classes frequently associated with DILI include antimicrobials (in particular 

amoxicillin-clavulanate), cardiovascular agents, central nervous system agents, and 

antineoplastics (56). Moreover, reports of idiosyncratic liver injury from herbal products and 

dietary supplements have been on the rise in recent years (57). Ongoing efforts to more 

confidently and rapidly recognize DILI in the clinic are aimed at identification of novel DILI-

specific biomarkers by analyzing blood and tissue samples from idiosyncratic DILI cases. 

Emerging examples include microRNA-122, high mortality group box 1, and keratin 18. 

Though before such markers can be implemented into the clinic, further characterization is 

needed regarding the sensitivity and specificity of these markers as well as their stability in 

body fluids for reliable detection (58, 59). 

1.2.4 Risk factors 

A plethora of factors have been proposed to affect the susceptibility to idiosyncratic DILI and 

the subsequent outcomes. These include characteristics of the drug, environmental factors, 

and genetic and non-genetic factors of the host. Drug-specific risk factors include high 
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lipophilicity (60), high daily oral doses (60, 61), and the propensity to cause interactions with 

other drugs (62, 63). Extensive hepatic metabolism has also been identified as a risk factor in 

the pathogenesis of DILI (64, 65). Reactive drug metabolites can covalently bind to proteins, 

forming drug-protein adducts that could induce direct toxicity or elicit an immune response 

(66). In addition, the liability of drugs to inhibit certain bile acid transporters, including the 

bile salt export pump (BSEP) (67) and multi-drug resistance proteins (MRP) 2-4 (68), is 

considered a risk factor for liver injury. Specifically, the potency to inhibit BSEP was higher 

among drugs causing cholestatic or mixed patterns of liver injury than among drugs causing 

hepatocellular injury (67).  

A variety of non-genetic host risk factors have been proposed including age, gender, 

comorbidities, and concomitant drug use. Although it is well recognized that aging induces 

pharmacokinetic and pharmacodynamic changes, agedness has not univocally been identified 

as a risk factor for idiosyncratic DILI (69). However, DILI with persistent or chronic hepatic 

abnormalities are more often seen in older patients, possibly due to the age-related reduction 

in tissue repair capacity (70, 71). Conversely, young patients under the age of two appear to 

be at increased risk for hepatotoxicity induced by valproic acid (72). It is considered 

controversial as to whether females in general are at higher risk to develop DILI, though 

strong evidence is provided that female patients presenting with DILI are more likely to 

progress to ALF (73). Age and gender differences are also found in the clinical phenotype of 

DILI: where cholestasis was more frequent in male patients over the age of 60, hepatocellular 

injury was more frequent in younger female patients (74), though due to the limited study 

size further validation of this observation is needed. Underlying chronic viral infections, e.g. 

with hepatitis C or human immunodeficiency viruses, have been associated with an increased 

risk of liver injury caused by antituberculosis drugs (75, 76). Lifestyle factors that are thought 

to play a role in the pathogenesis of idiosyncratic DILI include diet, alcohol consumption, 

and the gut microbiome, but these are not currently recognized as bona fide risk factors (77).  

Genetic variation in drug-metabolizing enzymes (DMEs) and drug transporters may result in 

an imbalance between formation and detoxification of reactive drug metabolites or impaired 

hepatic transport, ultimately predisposing the patient to specific drug hepatotoxicities. 

Genetic studies on idiosyncratic DILI are challenging, due to its rare incidence, the number of 

different drugs implicated in DILI, and the wide range of liver injury phenotypes (78). 

However, significant progress has been made in recent years, employing both genome-wide 

association studies (GWAS) and candidate gene association studies using a priori 

information. A well-established example is the association between certain N-

acetyltransferase 2 (NAT2) genotypes and isoniazid-induced liver injury, which has been 

observed in multiple independent studies (79-81). Possession of the *2 allele of uridine 

diphosphate-glucuronosyltransferase 2B7 (UGT2B7) appears to constitute a risk factor for 

diclofenac-induced liver injury (82, 83). Several polymorphisms in ABCB11, which encodes 

BSEP, have been proposed to increase the risk of liver injury from different drugs (84-86). 
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However, conflicting reports exist (87) and additional studies in larger and varied populations 

are needed to validate these findings.  

Certain human leukocyte antigen (HLA) alleles may also constitute important risk factors for 

idiosyncratic immune-mediated DILI reactions since the major histocompatibility complex 

proteins mediate antigen presentation essential for T cell immune responses. To date, only 

few drug-specific HLA risk alleles have been uncovered by GWAS. Examples include  

HLA-B*57:01 with flucloxacillin (odds ratio (OR) = 80) (88), HLA-DQA1*02:01 with 

lapatinib (OR = 9) (89), and HLA-B*35:02 with minocycline (OR = 29.6) (90). Further 

characterization of the heterogeneity of the genetic risk factors predisposing a patient to 

idiosyncratic DILI is awaited. In particular, whole genome sequencing could provide novel 

insights into the role of rare variants (91). However, given that especially HLA genes are 

hyperpolymorphic and the fact that additional risk factors may be required, prospectively 

predicting idiosyncratic DILI events prior to drug prescription remains extraordinarily 

challenging. 

1.3 DRUG-INDUCED PHARMACOKINETIC ALTERATIONS 

1.3.1 Drug-drug interactions 

Drug-drug interactions (DDIs) are highly concerning in the clinic with regard to unfavorable 

therapeutic responses and occurrence of ADRs. While the list of potential DDIs is extensive, 

many are not necessarily clinically relevant (92). Still, clinically important DDIs frequently 

occur and are a major source of ADRs (93), including cases of fatality (94, 95), and have 

been the reason for multiple restricted-use warnings and post-marketing drug withdrawals 

(96). DDIs are expected to only become a bigger clinical issue as drug prescription and multi-

drug therapies are steadily on the rise, which is in part driven by the high rates of 

comorbidities and the growing aging population (97-99). Analysis of drug use in the United 

States between 2007 and 2010 revealed that 47.5% of the population take at least one 

prescription drug, while 10.1% take five or more simultaneously (100). Elderly patients are 

especially at an increased risk to develop DDI-related ADRs due to the increased prevalence 

of polypharmacy and age-related changes impacting on drug pharmacokinetics (101-104). 

This growing problem is also recognized by regulatory agencies and accordingly the 

European Medicines Agency (EMA) recently issued a strategy to report ADRs and to identify 

common DDIs or drug-disease interactions in the elderly (105). In theory, DDIs could be 

considered predictable and preventable (106-108), yet medication prescription errors still 

frequently occur, in part due to inadequate knowledge about DDIs of healthcare providers 

(109, 110). In addition, various factors are known to influence the likelihood of DDI 

occurrence including age, genetic background, and disease and nutritional statuses, which 

make accurately predicting patient-specific clinical outcomes highly complex (111). 
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1.3.2 Cytochrome P450-mediated drug interactions 

DDIs influencing pharmacokinetic parameters result in changes in the absorption, 

distribution, metabolism, and excretion (ADME) profile of the affected drug, characterized 

by altered plasma drug concentration-time profiles (112). The vast majority of DDIs are 

metabolism-mediated and involve induction or inhibition of DMEs or transporters. The 

clinical consequences may include 1) reduced or loss of intensity or duration of drug effects 

due to decreased systemic drug exposure, 2) enhanced efficacy due to increased systemic 

drug exposure, or 3) development of ADRs due to either increased systemic drug exposure or 

increased formation of reactive drug metabolites (113, 114). The majority of clinically 

significant DDIs documented in the literature are mediated via changes in the activity of 

cytochrome P450 (CYP) enzymes (115-117). This is not surprising given that they are 

responsible for the metabolism of ~75% of all drugs (118). In one report, the prevalence of a 

potential CYP-mediated DDI in elderly patients taking 5 or more drugs was estimated at 

80%, and the probability of at least one CYP-mediated DDI was 50% when taking 5-9 drugs, 

which increased to 100% when taking 20 or more drugs (119). The impact of CYP-mediated 

DDIs has long been recognized and both the FDA and EMA provide extensive guidelines on 

approaches to evaluate potential clinical DDIs through CYP induction or inhibition studies in 

drug development (120). 

The CYP superfamily is involved in many important biological processes including 

cholesterol homeostasis as well as the metabolism of steroids, fatty acids, and prostaglandins 

(121, 122). CYPs are however predominantly known for catalyzing the oxidative metabolism 

of drugs and other xenobiotics (123). Although 57 putatively functional human CYP enzymes 

exist (124), only 8 isoenzymes are considered to be clinically important (i.e.  CYP1A2, 

CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) (125). 

Significant inter-individual differences in basal CYP expression and activities exist, owing to 

a wide variety of factors including age, gender, genetic polymorphisms, epigenetic changes, 

disease state, and diet (126, 127). Likewise, tremendous inter-individual variabilities in 

response to CYP induction and inhibition are observed due to both environmental and 

physiological factors (128). 

CYP-mediated DDIs arise more frequently from CYP inhibition than from CYP induction 

and the clinical outcomes are often more serious (129, 130). Inhibition of CYP metabolism is 

an instantaneous and direct reaction that can be either reversible or irreversible in nature and 

may result in increased plasma concentrations of the affected drug, leading to toxicity (131). 

A classic example is the ketoconazole-mediated inhibition of CYP3A4-mediated metabolism 

of terfenadine leading to prolonged electrocardiographic QT intervals (132), increasing the 

risk for torsades de pointes. CYP induction is considered to be less of a safety issue but can 

result in therapeutic failures due to increased metabolic clearance of the victim drug and 

therefore is an undesirable property that should be considered during drug development 

(133). Though not as common, CYP induction can also result in toxicity due to increased 
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formation of reactive drug metabolites. In addition, toxicity may arise if clinicians do not 

recognize the need to reduce the dose of the induced medication upon discontinuation of the 

inducing agent, as can be the case when patients self-medicate with the CYP3A4 inducing 

agent St John’s wort (134, 135). CYP induction is a much slower and indirect process, most 

commonly occurring through increased gene transcription or rarely through stabilization of 

the mRNA or protein (as is the case for CYP2E1 (136)). These processes involve a multitude 

of molecular players, and CYP induction responses are consequently subject to large inter-

individual differences (137). Besides impacting on other medications, drugs can also 

unfavorably induce their own metabolism (i.e. auto-induction), which is also pertinent to 

consider during drug development. This is exemplified by the case of AZD1208, a PIM 

kinase inhibitor developed for the treatment of acute myeloid leukemia (138). This compound 

was recently terminated from development because of its unfavorable pharmacokinetic 

profile observed in the clinic, which was attributed to the acceleration of its own metabolism 

through CYP3A4 induction leading to unstable plasma concentration profiles (139, 140). 

1.3.3 Molecular mechanisms of CYP3A4 induction 

DDIs involving CYP3A4 are especially important to consider, as it is the predominant CYP 

isoform expressed in the human liver and intestine and is implicated in the metabolism of 

many marketed drugs (141). Various drugs currently used in the clinic are known to induce 

CYP3A4 (e.g. rifampicin (142), phenobarbital (143), and phenytoin (144)). On a molecular 

level, CYP3A4 induction is thought to predominantly occur via activation of the nuclear 

receptor (NR) pregnane X receptor (PXR; NR1I2) (145). Upon activation, PXR forms a 

heterodimer with the retinoid X receptor (RXR) in the nucleus. The PXR/RXR complex then 

binds to distinct responsive elements within the promoter region of the CYP3A4 gene to 

regulate its transcription (146, 147). Expression of CYP3A4 is also under the control of the 

constitutive androstane receptor (CAR; NR1I3) (148). Upon activation, CAR translocates 

from the cytoplasm to the nucleus to form a heterodimer with RXR that binds to specific 

responsive elements in the promoters of its target genes to control their transcription. It is 

noteworthy to mention that significant species differences exist in the response to CYP 

inducers, owing to cross-species variations in the ligand-binding domain sequences of PXR 

and CAR (149). For example, rifampicin is a potent human PXR activator but has little effect 

on mouse PXR (150). Reciprocally, TCPOBOP is a potent mouse CAR ligand but does not 

activate human CAR (151). These prominent differences represent a challenge in drug 

development since evidently animal models cannot be employed to screen for human CYP 

induction (152). 

In humans, PXR and CAR can be activated by a variety of structurally diverse compounds, 

some of which act both on PXR and CAR (e.g. phenobarbital) (153, 154). Moreover, in 

addition to CYP3A4, PXR and CAR regulate the expression of a largely overlapping set of 

target genes, including CYP2B6, CYP2C9, CYP2C19, and CYP3A5 (155). However, 

differences in their preference of gene regulation exist. PXR displays strong binding to all 
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functional responsive elements in the promoters of both CYP2B6 and CYP3A4, whereas CAR 

only weakly binds to the ER6 motif in CYP3A4, but strongly binds to the DR4 motif in the 

phenobarbital responsive element module (PRBEM) in the promoter region of CYP2B6, 

explaining its preferential induction of CYP2B6 over CYP3A4 (156, 157). Furthermore, an 

important difference between these NRs is that CAR can constitutively transactivate target 

genes in the absence of activators, while PXR cannot (158). CAR activity is normally 

restrained through cytosolic sequestration (159) but upon stimuli, either through direct ligand 

binding or indirect activation, CAR translocates to the nucleus to regulate the expression of 

its target genes (160-163). On the other hand, PXR activation is conventionally thought to 

depend on direct ligand binding. However, reports of indirect regulation of PXR-mediated 

induction of CYP3A4 by protein kinase A (PKA) (164) and protein kinase C (PKC) (165) 

exist, possibly through altering the phosphorylation status of PXR. Therefore, it can be 

anticipated that additional ways of indirect PXR activation resulting in CYP3A4 induction 

exist. 

Besides PXR and CAR, other NRs reported to be directly or indirectly involved in the 

regulation of CYP3A4 expression include the vitamin D receptor (VDR) (166) and the 

glucocorticoid receptor (GR) (167). In addition, the liver-enriched transcription factor 

hepatocyte nuclear factor 4 alpha (HNF4α) has been shown to regulate PXR- and CAR-

mediated transcriptional activation of CYP3A4 (168). Various NRs are known to share the 

same responsive elements in the promotors of their target genes and to compete for common 

coactivators and corepressors, which are necessary for the tuning of the transcriptional 

response (169, 170). For example, PXR and CAR share several coactivators, including the 

peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and the 

steroid receptor coactivators 1 and 2 (SRC1-2) (171). As such, a complex cross-talk between 

these NR signaling pathways is created. 

1.4 PRECLINICAL LIVER MODELS 

Clinical safety issues are currently one of the primary reasons for the attrition of drug 

candidates in phases I and II (24, 27, 172, 173). A recent review of AstraZeneca’s 

productivity remarkably indicated that for compounds terminated in the clinical phase due to 

safety issues the level of confidence in their preclinical safety profile was low, whereas when 

confidence levels were high no compounds were terminated in the clinical phase because of 

safety issues but rather due to efficacy issues (173). Adding to this observation, Morgan et al. 

(2018) note that ‘…there remain continued instances of idiosyncratic or unexplained toxicity. 

We and others continue to explore new in vitro and in vivo models to improve translation to 

the clinic’ (24). The introduction of drug metabolism and pharmacokinetic studies in drug 

development has led to increased understanding of the pharmacokinetic/pharmacodynamic 

(PK/PD) properties of drug candidates. Still, analysis of AstraZeneca’s attrition data from 

2005 to 2010 revealed that unfavorable PK/PD profiles were the cause of 15% of all project 

closures in phase I (173). 
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The liver is persistently being reported as one of the major organ systems associated with 

(late-stage) closures of drug development programs and post-marketing withdrawals (173, 

174). Recent examples include the attrition of fasiglifam, which was terminated only in phase 

III due to concerns about liver safety (175, 176), the termination of AZD1979 due to 

unexplained ALT elevations in the clinic (24), and the restricted-use warnings of flupirtine, 

pazopanib, and temozolomide due to signs of hepatotoxicity that remained unnoticed during 

drug development (177). Not surprisingly, the EMA and FDA recognize the problem of drug 

hepatotoxicity and accordingly have issued guidelines to aid in the assessment and 

interpretation of DILI signals during the preclinical stage of development (178). The recent 

termination of AZD1208 because of its unfavorable PK profile in humans (i.e. CYP3A4 auto-

induction) that was not identified in the preclinical phase of development (139, 140) also 

underlines the shortcomings of the current preclinical models to accurately predict drug PK 

profiles. Undeniably, refinements of the preclinical strategies to predict the metabolic and 

toxicological profiles of drug candidates need to be made. In the following paragraphs 

conventional preclinical models and emerging novel models to assess the impact of drugs on 

the human liver are discussed. 

1.4.1 Animal models 

Safety tests in two or more different animal species are required before a drug candidate can 

proceed to being tested in the clinic (179). Preclinical assessments in animals could provide 

essential information regarding the PK/PD and toxicological profiles of drug candidates. 

Retrospective analyses, however, indicate that the concordance between animal and human 

toxicity is poor, with true positive human toxicity concordance rates of 63% and 43% for 

non-rodent and rodent models, respectively (180). Furthermore, animals may show increased 

sensitivity towards toxicity of drugs at doses that are considered safe for humans (e.g. APAP 

(mice) and ibuprofen (dogs)) (39). With specific regard to DILI, the presence of toxicity in 

animal models does not typically halt the progression of drug candidates into clinical 

development unless clear dose-dependent indicators are seen (181), due to the fact that 

preclinical prediction of clinical hepatotoxicity is notoriously poor (182, 183). This may stem 

from the apparent and significant inter-species variation in xenobiotic metabolism (184), 

explained by differences in the structure, substrate affinities, catalytic activities, and induction 

of DMEs (185, 186). Consequently, the use of animal models to predict drug metabolism and 

hepatotoxicity events in humans is limited. 

The case of fialuridine is an excellent example of how inter-species differences can cause 

detrimental effects in the clinic. This drug, a nucleoside analogue developed for the treatment 

of chronic hepatitis B virus infection, showed great promise concerning its toxicity profile in 

preclinical in vivo studies in mice, rats, and cynomolgus monkeys (187). Clinical phase I 

studies in patients were promising, resulting in significant suppression of serum hepatitis B 

virus DNA levels (188) and hence a subsequent phase II trial with 15 patients was started in 

1993. Unexpectedly, however, in the 13
th

 week of treatment, one patient developed liver 
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failure and lactic acidosis, leading to the termination of the study. Severe hepatotoxicity with 

progressive lactic acidosis was observed in seven patients, resulting in the death of five and 

two others requiring emergency liver transplants. An additional three patients displayed mild 

hepatotoxicity. Analyses of the hepatic tissues revealed fat accumulation in the hepatocytes 

and abnormal mitochondria (189). Additional follow-up experiments confirmed the absence 

of toxicity in rodents after 10 weeks of treatment at 1,000-fold concentrated doses compared 

to those used in humans (187). Later mechanistic evaluations in vitro indicated that species 

differences in the subcellular expression pattern of the equilibrative nucleoside transporter 1 

(ENT1), for which fialuridine is a substrate, may account for the observed human-specific 

toxicity of fialuridine. Besides expression on the plasma membrane, this transporter was 

found to be exclusively expressed on the human, but not mouse, mitochondrial membrane. 

The ENT1-mediated uptake of fialuridine in human mitochondria may explain its selective 

mitochondrial toxicity exerted in humans (190, 191). Indeed, fialuridine-induced 

hepatotoxicity could exclusively be detected in chimeric mice with humanized livers (192). 

1.4.2 Conventional in vitro models 

Recommendations for toxicity testing made by the U.S. National Academy of Sciences in 

2007 urged a paradigm shift from extensive usage of in vivo models to in vitro systems 

employing human primary cells or cell lines to not only decrease animal usage but also to 

obtain increased efficiency and better mechanistic understanding of human ADRs (193). To 

date, a multitude of different human liver-derived in vitro models have been developed. 

Immortalized human liver cell lines, such as the HepG2 or HepaRG cell lines, are often 

employed to obtain an initial indication of the crude DILI risk of drug candidates using 

supraphysiological drug concentrations (194-197). Though these cell lines are well-

established, cheap, easy to handle, and allow generation of reproducible data in a high-

throughput setting, they are limited by their immature phenotypes. CYP activities and 

expression of DMEs and hepatic transporters are drastically lower in these cell lines 

compared to primary human hepatocytes (PHH) (198-200), which is also reflected in their 

reduced sensitivity towards drug hepatotoxicity compared to PHH and the lack of CYP 

inducibility in the case of HepG2 cells (200, 201). To overcome the limited liver-specific 

functionalities, cell lines overexpressing specific DMEs or NRs have been established for 

improved toxicity prediction and assessments of CYP enzyme induction (202-204), yet the 

overall molecular phenotypes still remain drastically different from the human liver in vivo. 

PHH have long been considered the gold standard cell source to create in vitro liver models 

(205). When kept in suspension, gene expression patterns are well maintained and are 

comparable to those observed in the liver of origin (206). PHH suspension cultures are 

mainly useful for the prediction of metabolic clearance and CYP inhibition-mediated DDIs 

(207-210), while assessments of drug hepatotoxicity and CYP induction are not feasible due 

to their limited life span (i.e. a couple hours) (211). When seeded on a layer of rat-tail 

collagen as two-dimensional (2D) monolayers, PHH can be kept viable for several days in 



 

 11 

culture. However, the plating on a rigid substratum induces major morphological and 

functional alterations (212). Cells flatten, cell-cell contacts are reduced, and the loss of 

polarity hampers formation of bile canalicular networks and leads to a rapid reduction in 

DME expression and decline in metabolic activities (206, 212-214). Nevertheless, PHH 2D 

monolayers are still widely used for drug hepatotoxicity studies (215). Reports on their 

sensitivity towards DILI vary greatly but in general are not considered satisfactory (200). In 

addition, they are often also the model of choice to evaluate drugs for their CYP induction 

liability (216, 217). Yet, the recent case of the termination of AZD1208 from development 

due to unexpected CYP3A4 auto-induction observed in vivo, which was not identified in 

preclinical studies employing 2D monolayer cultures of three different PHH donors (140), 

questions the robustness of this model to make accurate predictions of clinical CYP 

induction. 

1.4.3 Emerging novel in vitro models 

A relevant in vitro liver model should possess a variety of characteristics to study liver 

biology and to assess the metabolic and toxicological profile of drugs. We (218) recently 

formulated that a system should: 

 Closely reflect in vivo liver physiology and morphology 

 Remain viable and functionally stable for multiple weeks in culture  

 Allow co-culturing of all liver cell types, i.e. parenchymal and non-parenchymal cells  

 Allow taking genetic predispositions into consideration 

 Be compatible with higher throughput applications 

 Use low cell numbers to reduce costs and minimize material usage 

In recent years, much emphasis has been placed on moving from the conventional simple 2D 

hepatocyte culture systems to more organotypic culture systems that include both hepatic 

parenchymal and non-parenchymal cell (NPC) types. This enables cells to adopt a more 

tissue-like structure, where homo- and heterotypic cell contacts and interactions with the 

environment can be made. Accordingly, these improvements positively impact on the cellular 

phenotypes in vitro (219, 220). Hepatocytes in vivo are highly polarized epithelial cells that 

form thin branching hepatic plates, usually of only one cell thickness, which are separated 

from the hepatic sinusoidal vascular network by the space of Disse. In the liver sinusoids, 

different NPC types reside including Kupffer cells, liver sinusoidal endothelial cells (LSECs), 

as well as various lymphocytes (221). Hepatocytes contain distinct canalicular-apical 

domains that are separated from the sinusoidal-basolateral domains by tight junctions. The 

basal membranes of hepatocytes are in contact with extracellular matrix (ECM) components 

and hepatic stromal stellate cells in the blood plasma-filled space of Disse. The lateral 

membranes of hepatocytes are used to establish contact with neighboring hepatocytes. During 

liver development, hepatocytes form apical domains enclosed by tight junctions at the lateral 

membrane between two adjacent cells which merge together to form a complex bile 
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canalicular network later in development (222-225). Hepatocyte polarity is critical for proper 

liver function and loss of polarity is associated with major pathophysiological changes 

including liver diseases such as cholestasis and hepatocellular carcinoma (226). 

One of the first attempts made to reestablish hepatocyte polarity in vitro is based on culturing 

hepatocytes within two layers of ECM components (most commonly collagen or Matrigel®), 

termed sandwich cultures (227). In this configuration, cell spreading and formation of stress 

fibers are reduced, cell-cell contacts are improved, hepatocytes secrete a variety of ECM 

proteins, and importantly hepatocyte polarity is reestablished (228, 229). These changes 

positively impact on the viability and functionality of hepatocytes (230). Importantly, over 

the course of several days functional bile canalicular networks are created (231), which is a 

critical aspect for assessments of drug PK profiles (232). PHH sandwich cultures are 

therefore often the model of choice for studies of hepatobiliary drug transport and drug-

induced cholestasis (233, 234). A large toxicity study in PHH sandwich cultures using 200 

DILI-positive and 144 DILI-negative compounds screened at 100xCmax levels impressively 

detected no false positives, yet only 51% sensitivity was achieved (235). This rather low 

sensitivity may be due to the acute 24 hour drug exposure setting as well as the fact that 

sandwich culturing cannot prevent hepatocyte dedifferentiation, as typical patterns of 

epithelial-to-mesenchymal transition (EMT) are observed after two weeks of culture (236). 

Moreover, expression of DMEs has been reported to be unstable over time (237) and 

activities of important CYPs are gradually lost during the first days of culture (238). 

Substantial advances have also been made with regard to the fabrication of functional 

microscale liver subunits where the microenvironment can be precisely controlled, which has 

been shown to positively impact on the stability and functionality of cells (239-241). A 

notable example is the development of micropatterned co-cultures of PHH and supportive 

cells. In this model, PHH are cultured on 2D collagen-coated islands that are surrounded by 

supportive stroma (i.e. mouse embryonic 3T3-J2 fibroblasts), thereby allowing the 

establishment of important heterotypic interactions between the hepatocytes and stromal 

cells, which are of importance for hepatocyte functionality (242). Accordingly, expression of 

DMEs, CYP activities, secretion of albumin and urea, and functional bile canalicular 

networks could be retained for several weeks in culture, and hepatotoxicity was predicted 

with 66% sensitivity and 90% specificity in a screen of 35 DILI-positive and 10 DILI-

negative compounds tested at 100xCmax levels (242, 243). This model has since been used for 

various applications, including studies of drug metabolism (244-246), host-pathogen 

interactions (247), and nutritional state changes (248). Further improvements were recently 

made by establishing co-cultures of PHH with Kupffer cells to study the impact of pro-

inflammatory cytokines on hepatic functionality (249). However, the use of mouse 

embryonic non-liver-derived cells as stroma to support hepatocyte longevity and 

functionality, as well as the use of rat-tail collagen rather than liver-specific ECM reduce the 

human relevance. Furthermore, the 2D monolayer format of the hepatocyte islands limits the 
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physiological relevance of this model to mimicking hepatic cords rather than advanced 

hepatic sinusoidal structures (250).  

Numerous efforts have focused on further improving the physiological relevance in vitro by 

creating three-dimensional (3D) organotypic cultures, including scaffold-based or scaffold-

free multi-well plates and perfusion bioreactors (251-253). In 3D spheroid culture, 

hepatocytes spontaneously aggregate into tissue-like structures over the course of several 

days. Currently, the value of such systems has predominantly been illustrated with human 

liver cell lines. In relation to the respective 2D monolayer cultures, enhanced molecular 

phenotypes and liver-specific functionalities have been observed when HepG2 or HepaRG 

cells are cultured as 3D spheroids, which may lead to improved drug toxicity responses (254-

259). Though PHH are considered the most relevant cell source to mimic the human liver, 

few studies have evaluated their behavior in 3D spheroid culture. In a perfusion bioreactor, 

PHH spheroids formed functional bile canalicular networks, displayed stable CYP expression 

during 2 weeks of culture, and were in a long-term setting responsive towards 2 CYP 

inducers (260). In another study, responsiveness to drug toxicity of PHH spheroids cultured 

in a microscale bioreactor was shown using APAP as a model hepatotoxin (261). In these 

perfusion bioreactor set-ups, in vivo hemodynamics can be mimicked, physiological 

parameters (e.g. pH and oxygen levels) can be tightly controlled, and a continuous nutrient 

supply and removal of metabolic by-products is established (262). However, large cell 

numbers are required and the bioreactor set-up approach impedes higher throughput 

applications including drug toxicity screening. 

A static scaffold-free 96-well hanging drop system was developed a few years ago that 

represents a higher throughput approach requiring substantially fewer cells (263). In this 

system, randomly organized spheroid co-cultures of PHH and non-parenchymal Kupffer and 

endothelial cells showed stable viability and albumin production for 5 weeks in culture. 

Using 3 hepatotoxins it was shown that repeated-dose toxicity studies could be performed for 

up to 14 days (263). Using a set of 69 DILI-positive and 41 DILI-negative compounds, DILI 

was predicted with 59% sensitivity and 80% specificity in this system (264), indicating no 

substantial improvements compared to reports in PHH sandwich cultures and the 

micropatterned co-culture system mentioned earlier. In another study, PHH spheroids 

generated in a 384-well magnetic 3D culture system were evaluated as a novel high-

throughput model to assess CYP induction and inhibition (265). While basal CYP activities 

of PHH were higher in 3D spheroid culture compared to the corresponding 2D monolayer 

cultures, the response to a set of 6 prototypical CYP inducers and inhibitors was similar in 

both culture formats (265). Taken together, these studies provide proof-of-concept that PHH 

in 3D spheroid culture may have enhanced phenotypes and functionalities, whereas thorough 

evaluation of their responses to drugs has not been performed. 

Microfluidic liver-on-a-chip approaches open up the possibility to create highly organized 

hepatic microenvironments with tightly controllable dynamic flow conditions (266, 267). A 
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3D-configured microfluidic chip was recently constructed that enables configuring four 

relevant murine liver cell types (i.e. hepatocytes, stellate, Kupffer, and endothelial cells) into 

liver sinusoidal structures. This model was found suitable to study primary immune responses 

seen by neutrophil recruitment in the chip upon lipopolysaccharide (LPS) stimulation (268). 

Also promising is the construction of multiple organs-on-a-chips that allow studying delicate 

interactions between the liver and other organs. Interesting examples include, amongst others, 

a gut-liver chip to reproduce the first pass metabolism of drugs (269, 270), a liver-pancreatic 

islet chip as a type 2 diabetes mellitus model (271), a liver-kidney chip for assessment of drug 

nephrotoxicity dependent on hepatic metabolism (272), a skin-intestine-liver-kidney chip for 

long-term systemic drug toxicity testing (273), an intestine-liver-cancer-connective tissue 

chip for evaluating anti-cancer drug therapies (274), and an impressive proof-of-concept of 

13-organs-on-a-chip (275). The integration of 3D printing into these microfluidic chips is 

expected to further facilitate the establishment of micro-livers in vitro, since cells and ECM 

can be assembled in a layer-by-layer process and the spatial distributions of materials and 

cells can be tightly controlled in an automated manner (276-279). The downscaling enabled 

by these innovative technologies substantially reduces the number of cells needed, though 

also makes it more complex to control the culture environment. Furthermore, many of the 

microfluidic chips to date have relied on hydrophobic poly(dimethylsiloxane) (PDMS) 

scaffolds, although these can bind to lipophilic drugs and their metabolites which confounds 

drug exposures (280). In addition, the associated costs are high and the complexity of these 

systems affect the throughput and the ability to perform diverse biochemical analyses, 

limiting their current use in drug development (281, 282). 

An alternative source of liver cells that could overcome certain limitations of PHH (e.g. 

shortage of donors, originating from diseased livers, and the inability to be expanded in vitro 

(283)) are hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) 

(284, 285). Any somatic tissue can in principle be used to generate iPSCs and hence this 

enables retrospectively identifying underlying genetic risk factors that confer a patient 

susceptible towards idiosyncratic DILI. In addition, HLCs may be valuable to obtain a better 

understanding of disease processes and allow the potential identification of new therapeutic 

interventions (286, 287). However, with the current differentiation protocols HLCs do not 

reach mature hepatocyte phenotypes (288, 289). Instead, they display immature, fetal-like 

characteristics and expression of DMEs and activities of CYPs are drastically lower in 

comparison to PHH (290-293) and high expression of alpha-fetoprotein (AFP), a fetal 

hepatocyte biomarker, is frequently observed in these cultures (294). Like other liver cells, 

when maintained in 3D culture, the phenotypes of HLCs are improved, as seen by enhanced 

expression of DMEs, increased CYP activities, improved CYP induction responses, and 

formation of bile canalicular networks (295, 296). Recent studies showcased the utility of 

HLCs to assess inter-individual differences regarding CYP metabolism (297) and drug 

toxicity sensitivity (298, 299). Furthermore, their value in studying the mechanisms 

underlying idiosyncratic DILI was recently demonstrated. HLCs derived from iPSCs 
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generated from patients presenting with pazopanib-induced hepatotoxicity displayed greater 

sensitivity towards the toxicity of this drug in vitro compared to HLCs from patients 

insensitive to pazopanib hepatotoxicity (300). 

Collectively, it is evident that complex organotypic liver models are a major research interest 

and consequently the progress in the field is rapid. Ample evidence has been provided that 

the physiology and functionality of liver cells cultured in these systems more closely 

resemble the liver in vivo. However, most studies have employed human liver cell lines or 

primary rat hepatocytes as cell sources. While HLCs derived from iPSCs are a promising 

avenue, improved differentiation protocols are needed and as such primary human liver cells 

remain the preferred cell source to model the human liver in vitro. Comprehensive 

characterization of primary human liver cells with regard to their molecular phenotypes and 

functionalities as well as their drug responses in these complex 3D culture systems is awaited.  
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2 AIMS 

The overall aim of this thesis was to develop and characterize a novel in vitro 3D spheroid 

culture system comprised of PHH for assessments of drug metabolism and hepatotoxicity. 

 

The specific aims were to: 

 

I. Study the early changes of the dedifferentiation process of PHH in 2D monolayer 

culture 

 

II. Characterize the molecular phenotypes and functionalities of PHH in 3D spheroid 

culture and assess the long-term stability  

 

III. Assess the suitability of PHH 3D spheroid cultures as a screening model for DILI, 

with emphasis on reactions that may be delayed in onset 

 

IV. Assess the suitability of PHH 3D spheroid cultures to detect and study drug-induced 

cholestasis  

 

V. Study the differences between PHH in sandwich and 3D spheroid culture for 

prediction of drug-induced cholestasis 

 

VI. Assess the suitability of PHH 3D spheroid cultures to detect the liability of drugs to 

induce CYP3A4
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3 RESULTS AND DISCUSSION 

3.1 ALTERATIONS OF THE LIVER ARCHITECTURE MAJORLY IMPACT ON 

HEPATOCYTE PHENOTYPES IN VITRO (STUDIES I AND II) 

PHH rapidly lose their liver-specific functionalities when cultured as 2D monolayers in vitro 

due to the hepatocytes undergoing dedifferentiation (213, 214). This greatly hampers the 

ability to accurately study liver biology as well as to predict drug responses. In-depth 

characterization of this dedifferentiation process is needed to formulate strategies to improve 

hepatic phenotypes in vitro and to increase the overall understanding of hepatocyte plasticity.  

In study I, we characterized the dedifferentiation process of PHH during the first 24 hours of 

cultivation as 2D monolayers using comprehensive transcriptomic and proteomic analyses. In 

this period, 4,042 differentially expressed transcripts were identified (Fig. 1A). The 

transcriptional changes could be grouped into an early (< 4 hours) and late  

(> 16 hours) response. Pathway analyses of the differentially expressed genes and proteins 

revealed early changes in immunity and energy balance, whereas changes in major metabolic 

pathways occurred later. Already 16 hours after cultivation, changes in the expression 

patterns of important ADME genes were observed, including downregulation of various 

CYPs and NRs (Fig. 1B).  

 

             

Figure 1. PHH rapidly dedifferentiate within the first 24 hours in 2D monolayer culture. (A) Heatmap 

showcasing differentially expressed genes in PHH from five different donors (indicated by number).  

(B) Heatmap showcasing average expression patterns of ADME genes in PHH from three different donors. 

Reproduced from paper I. 

We also observed that changes in the expression of non-coding RNAs preceded the changes 

in the expression of coding RNAs. Additional mechanistic investigations revealed an 

important role for microRNAs in driving hepatocyte dedifferentiation. The results from study 

I, as well as other studies (214, 301), clearly demonstrate that in 2D monolayer culture PHH 

rapidly lose their mature phenotype. The reduced physiological relevance of the 2D 

monolayer culture format is thought to be a key reason for the rapid dedifferentiation of PHH. 
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Current efforts are therefore focused on better mimicking the structural organization of the 

liver in vivo using diverse 3D culture strategies. Preliminary indications suggest that PHH in 

3D spheroid culture may have improved phenotypes, but extensive characterizations had not 

been performed to date.  

In study II we aimed to comprehensively characterize 3D spheroid cultures of PHH with 

regard to molecular phenotypes and drug responses. Because the 96-well Gravity PLUS
TM

 

Hanging Drop System had previously been successfully used to generate multi-liver cell type 

spheroids (263), we first employed this platform to generate 3D spheroid cultures of PHH. 

However, despite extensive optimization efforts, this system was not deemed feasible in our 

hands, amongst others due to the technique being extremely laborious and recurrent batch-to-

batch variations of the plates affecting data reproducibility. Therefore, we employed 

Corning® Costar® 96-well Ultra-Low Attachment plates for spheroid formation. These 

plates are coated with a hydrophilic, neutrally charged hydrogel that prevents cells from 

attaching and forces them in suspension, thereby allowing spontaneous aggregation of the 

cells into spheroids. Using this platform, PHH robustly formed a single spheroid per well of 

consistent size (1,500 cells/well, ~200 µm diameter) after 4-5 days in culture and were 

deemed mature from day 7 (Fig. 2). 

 

 

Figure 2. PHH spontaneously self-aggregate into compact 3D spheroid structures during the first week of 

culture. Scale bar = 100 µm. Reproduced from paper II. 

We then compared the proteomes of PHH in 3D spheroid culture (day 7 after seeding when 

spheroids had formed) to 1) the proteomes found in the human liver in vivo and 2) the 

proteomes of PHH when cultured as 2D monolayer after short-term (24 hours) and long-term 

(7 days) culture. The proteomes of PHH in 3D spheroid culture closely clustered together 

with the proteomes of the liver in vivo, whereas the proteomes of PHH in 2D monolayer 

culture were already drastically different after 24 hours (Fig. 3A). In line with the findings 

from study I, pathway analyses revealed major changes in metabolic pathways in PHH 2D 

monolayer culture, whereas few changes were observed in PHH 3D spheroid culture. 

Furthermore, using whole proteome analyses we found that PHH in 3D spheroid cultures 

retained their inter-individual variability, since 3D spheroid cultures from PHH clustered 

more closely together with the respective liver of origin than with the livers or 3D spheroid 

cultures from PHH from other donors (Fig. 3B). 
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Figure 3. PHH in 3D spheroid culture, but not in 2D monolayer culture, closely resemble the human liver in vivo 

at the proteome level. (A) Heatmap showcasing differentially expressed proteins (n = 574). (B) Whole proteome 

analyses of PHH in 3D spheroid cultures and the respective liver of origin. Reproduced from paper II.  

3.2 MOLECULAR PHENOTYPES OF PHH ARE STABLY MAINTAINED IN 3D 

SPHEROID CULTURE FOR MULTIPLE WEEKS (STUDY II) 

Having confirmed that PHH in 3D spheroid culture closely reflect the human liver in vivo, we 

investigated in study II the stability of the system during long-term culture regarding 

morphology, viability, and liver-specific functionalities. H&E staining demonstrated long-

term preservation of spheroid morphology, though spheroids were noticeably smaller at day 

35 compared to day 8 (Fig. 4A). This was associated with both a gradual increase in spheroid 

compaction as well as a small measure of continuous cell death. Using three different donors, 

we found that PHH in 3D spheroid culture could be maintained viable for at least four weeks 

after aggregation. Albumin secretion, an important liver-specific function, was stable during 

this period too, with a noticeable decline only at day 35. Interestingly, we found evidence of 

hepatic zonation patterns in the PHH spheroids, seen by the marginal overlap of CYP3A4 and 

albumin protein stainings (Fig. 4B). CYP3A4 is predominantly expressed in the perivenous 

region of the liver, whereas albumin is predominantly present in the periportal region (302). 

We hypothesize that different hepatocytes within a spheroid retain the phenotype and 

functionality according to which area in the liver they initially originated from.  

Reactive drug metabolite formation is considered an important mechanism of DILI (303). 

Hence, a reliable DILI screening model should amongst others display activity of important 

DMEs. Results from study II indicate that metabolic activities of CYP1A2, CYP2C9, 

CYP2D6, and CYP3A4 remain stable during four weeks of culture relative to the activities 

observed in PHH spheroids at day 8. Metabolic activity of CYP2C8 gradually decreased over 

time; the reason for this decline remains to be elucidated, though we consistently observed 

this trend with 3D spheroid cultures from different PHH donors, excluding inter-donor 

variability as the cause. Notably, remarkable variations in CYP activity between single 

spheroids formed from the same PHH donor were observed, indicating a certain degree of 
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heterogeneity of the system. This could be resulting from different ratios of perivenous vs. 

periportal hepatocytes within different spheroids, transdifferentiation of the cells, or variable 

oxygen levels across the culture plate. 

 

                       

Figure 4. PHH spheroids have stable phenotypes during four weeks of culture after aggregation. (A) H&E 

staining of spheroid morphology. (B) Immunohistochemical analysis of CYP3A4 and albumin protein 

expression. Scale bars = 100 µm. Reproduced from paper II.  

3.3 PHH SPHEROIDS ARE A SUITABLE SYSTEM TO SCREEN FOR DRUG-

INDUCED LIVER INJURY (STUDIES II AND III) 

There is currently an unmet but urgent need for novel preclinical DILI screening models. 

Since PHH in 3D spheroid culture possess in vivo-relevant phenotypes which can be stably 

maintained for several weeks, we assessed the potential of the system to retrospectively 

identify drugs with reports of causing liver injury in vivo. Since it is well known that DILI 

may be delayed in onset we specifically focused in study II on assessing the differences in 

sensitivity between acute (single 48 hour exposure) and chronic treatment (7 or 28 days of 

repeated exposure). Strikingly, the sensitivity of PHH in 3D spheroid culture towards the 

toxicity of all five hepatotoxins tested (amiodarone, bosentan, diclofenac, fialuridine, and 

tolcapone) markedly increased upon prolonging the drug exposures. While EC50 values for all 

drugs except tolcapone exceeded 30xCmax levels after a single 48 hour exposure, they 

decreased to 1-30xCmax levels (amiodarone, bosentan, and diclofenac) or below 1xCmax 

(fialuridine and tolcapone) after 7 days of repeated exposure. A further decrease in the EC50 

values of all drugs was observed after 28 days of exposure (Fig. 5A). Similar results were 

obtained in study III, where a decrease in the EC50 values of all hepatotoxins tested (i.e. 

acetaminophen, bosentan, chlorpromazine, tetracycline, and troglitazone) was observed when 

the exposures were extended from 8 to 14 days. 

An interesting finding of study II was the remarkable toxicity pattern of fialuridine upon 

prolonged exposure. A single 48 hour exposure at concentrations up to 100xCmax levels (Cmax 

= 1 µM) did not induce any toxicity. However, when PHH spheroids were repeatedly 

exposed for 7 or 28 days, fialuridine toxicity could be clearly detected at physiologically 

relevant concentrations (EC50 = 0.1 µM at 28 days) (Fig. 5B). Hepatotoxicity exerted by 
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fialuridine appeared only after multiple weeks of treatment in vivo (189), presumably due to 

the gradual depletion of mitochondrial DNA leading to mitochondrial structural defects and 

lipid accumulation in hepatocytes (304, 305). This is an exemplar case of DILI that is delayed 

in onset. Such toxicity manifestations would likely be missed during the preclinical phase of 

development, as most currently used in vitro DILI screens are focused on acute drug toxicity 

assessments using a single exposure. Our findings therefore strongly argue to also assess the 

risk of delayed onset DILI events using a physiologically relevant and stable system, such as 

the PHH spheroid system presented here.  

 

 

          

Figure 5. PHH spheroids are a suitable platform to assess DILI events that may be delayed in onset. (A) EC50 

values of five hepatotoxins observed in PHH spheroids after a single 48 hour exposure or repeated exposures for 

7 or 28 days. (B) Toxicity profile of fialuridine in PHH spheroids after 48 hours (green), 7 days (red), and 28 

days (blue). Reproduced from paper II.  

3.4 CLINICAL PATTERNS AND MECHANISMS OF DRUG-INDUCED LIVER 

INJURY ARE REFLECTED IN PHH SPHEROIDS (STUDIES II AND III) 

The clinical phenotypes of DILI are extremely heterogeneous and may mimic virtually all 

primary liver diseases. In studies II and III we assessed whether specific patterns of DILI, 

including drug-induced steatosis and cholestasis, could be identified in the PHH spheroid 

system. In study II, we observed that upon a single 48 hour exposure to cyclosporine A 

(CsA), known to induce steatosis in vivo (306), neutral lipids were rapidly enriched in PHH 

spheroids. Interestingly, co-exposure to the antioxidant α-tocopherol (α-TOH) prevented the 

CsA-induced lipid accumulation (Fig. 6). This is in agreement with previous reports that 

antioxidants may have a beneficial role in mitigating CsA-induced liver injury (307, 308). 

Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide and 

its prevalence is rapidly increasing (309). Yet, currently no FDA-approved drug therapies 

exist for the treatment of non-alcoholic steatohepatitis (NASH), the more aggressive form of 

NAFLD (310). These preliminary findings suggest that the PHH spheroid system could be 

used to study hepatic steatosis, which if further characterized may be used as a model to 

screen for compounds that prevent, inhibit the progression, or reverse steatosis. 
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Figure 6. PHH spheroids reflect patterns of drug-induced steatosis. Cyclosporine A (CsA, 30 µM) rapidly 

induces neutral lipid accumulation after a single 48 hour exposure, a process that is prevented in the presence of 

the antioxidant α-tocopherol (α-TOH, 10 µM). Reproduced from paper II. 

In order to constitute a relevant system for cholestatic liver disease, the presence of bile 

canalicular networks with functional bile acid (BA) transporters is essential. Accordingly, in 

study III we evaluated the protein expression of multi-drug resistance protein 2 (MRP2) and 

the bile salt export pump (BSEP), two major canalicular BA transporters whose functional 

inhibition is often associated with drug-induced cholestasis (311), and evaluated their 

responsiveness towards a mixture of five human BAs (Fig. 7A). MRP2 was abundantly 

expressed in PHH spheroids, confirming our findings from study II which indicated stable 

MRP2 expression in PHH spheroids during four weeks of culture after aggregation. The basal 

expression of BSEP was low but could accordingly be induced by the BA mixture (30x 

concentrated compared to average human plasma levels), presumably through activation of 

the farnesoid X receptor (312). 

 

 

 

Figure 7. PHH spheroids can be used as a model for drug-induced cholestasis. (A) Immunohistochemical 

analysis of MRP2 and BSEP protein expression in the presence and absence of a 30x concentrated BA mixture 

for 8 days. (B) Assessment of BA accumulation using the fluorescently-labelled BA derivative tauro-nor-THCA-

25-DBD upon exposure to increasing chlorpromazine (CPZ) concentrations after 8 days of repeated treatment. 

Scale bars = 100 µm. Reproduced from paper III. 
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We then focused on recapitulating patterns of drug-induced cholestasis in the PHH spheroid 

system using the model cholestatic compound chlorpromazine (CPZ) (313). Repeated 

exposure to CPZ for 8 days induced a dose-dependent accumulation of the fluorescently-

labelled BA derivative tauro-nor-THCA-25-DBD (Fig. 7B). Further mechanistic 

investigations revealed that CPZ inhibits ABCB11 mRNA expression (encoding BSEP) and 

disrupts the F-actin cytoskeleton which is of importance for proper insertion of BA 

transporters. These data are in line with previous observations in HepaRG cells (314). 

Interestingly, when PHH spheroids were exposed to CPZ in the presence of the BA mixture, 

patterns indicative of a synergistic increase in oxidative stress and BA toxicity were 

observed, seen by induction of mRNA expression of the Nrf2 target sulfiredoxin 1 (SRXN1) 

(315) and death receptor 5 (DR5) (316), respectively. The proposed mechanisms of CPZ-

mediated cholestatic hepatotoxicity are illustrated in Fig. 8. 

 

Figure 8. Currently identified mechanisms associated with chlorpromazine (CPZ)-induced cholestatic 

hepatotoxicity. Oxidative stress is rapidly observed upon CPZ exposure which has been associated with the 

disruption of the F-actin cytoskeleton (314). In combination with the inhibition of ABCB11 mRNA expression, 

BAs accumulate at toxic levels which pose additional oxidative stress and likely activate death receptor 

signaling, evident from the induction of death receptor 5 (DR5) mRNA expression. Reproduced from paper III. 

3.5 PHH SPHEROIDS CAN IDENTIFY THE LIABILITY OF DRUGS TO INDUCE 

CHOLESTATIC LIVER INJURY (STUDIES III AND IV) 

Cholestatic and mixed hepatocellular/cholestatic liver injuries are two serious clinical 

manifestations of DILI with high incidence rates (317). Currently, preclinical prediction of 

the liability of drug candidates to induce cholestasis is mainly aimed at assessing the potency 

to inhibit BSEP, which is achieved using either membrane vesicles or sandwich-cultured 

hepatocytes (318). However, the underlying mechanisms may be more complex and likely 

involve a multitude of players mediating BA homeostasis including NRs, BA conjugating 

enzymes, and other BA transporters (311). Furthermore, drug-induced cholestasis is often 

delayed in onset and subject to adaptive responses, making it challenging to predict (319). 

Therefore, there is a need for models that assess the risk for drug-induced cholestasis in a 

holistic manner with a focus on capturing toxicity events that may be delayed in onset. 
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In study III we assessed whether PHH spheroids could represent a suitable model to screen 

for the liability of drugs to induce cholestasis. To this end, we used a drug and concentrated 

BA mixture co-exposure strategy that was previously successfully employed in hepatocyte 

sandwich cultures (320). The risk of cholestasis is determined based on the drug’s ability to 

interfere with the disposal of an added BA mixture that is otherwise non-toxic to the cells. 

We observed a synergistic increase in toxicity upon co-exposure to a 30x concentrated BA 

mixture for hepatotoxins reported to be associated with cholestasis in vivo (bosentan, 

chlorpromazine, and troglitazone) (317), while this was not the case for the non-cholestatic 

hepatotoxins tested (acetaminophen and tetracycline). This indicates that the cholestatic drugs 

exclusively interfere with the disposal of the added BAs resulting in an increase in toxicity, a 

phenomenon that was more pronounced when the exposures were prolonged from 8 to 14 

days (Fig. 9A-B). Most notably, the cholestatic liability of chlorpromazine was only evident 

after 14 days of repeated exposure. Further validation of the model with 7 cholestasis-positive 

and 4 cholestasis-negative hepatotoxins in 3D spheroid cultures formed from a pool of 10 

PHH donors resulted in the correct classification of the cholestatic risk of all drugs after 14 

days of exposure with the exception of ticlopidine. The risk for developing ticlopidine-

induced cholestasis has been associated with an idiosyncratic immune-mediated component 

(321), which evidently cannot be captured in the PHH spheroid system. 

 

 

Figure 9. PHH spheroids can identify the liability of drugs to induce cholestasis after 14 days of repeated 

exposure. (A) Increased toxicity in the presence of an otherwise non-toxic 30x concentrated BA mixture is 

selectively observed for hepatotoxins with reports of causing cholestasis in vivo (bosentan, chlorpromazine, and 

troglitazone), (B) but not for hepatotoxins with no such reports (acetaminophen and tetracycline). Reproduced 

from paper III.  
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Since PHH sandwich cultures are considered the preferred model for studies of hepatobiliary 

transport and cholestasis (233), we sought to compare the PHH spheroid system to the current 

benchmark for assessing drug-induced cholestasis. The findings in study IV indicate that 

PHH sandwich cultures are indeed a robust model to detect the cholestatic risk of 

compounds, though remarkable differences between different PHH donors were apparent 

with regard to their sensitivity towards the cholestatic toxicity of certain drugs (i.e. bosentan, 

chlorpromazine, and troglitazone). Interestingly, a direct comparison of sandwich cultures 

and 3D spheroid cultures from the same PHH donor revealed that prolonged exposures in 3D 

spheroid culture could increase the sensitivity to detect the cholestatic risk of certain 

compounds. Chlorpromazine showed no cholestatic liability after a single 48 hour exposure 

in PHH sandwich cultures, nor after 72 hours exposure in 3D spheroid cultures of the same 

PHH donor. However, the synergistic toxicity of chlorpromazine and BAs could be unraveled 

when the exposures were extended in 3D spheroid culture, with the most pronounced effect 

visible after 14 days (Fig. 10A-C). The implications of this observation remain to be further 

investigated as the sandwich-3D spheroid comparison was only performed with one PHH 

donor, since other PHH donors either did not aggregate into spheroids or could not be stably 

maintained for extended culture periods. Additional comparative studies are needed to 

comment on the suitability and sensitivity of both systems for the prediction and study of 

drug-induced cholestasis. 

 

 

Figure 10. The cholestatic liability of chlorpromazine becomes increasingly apparent when the BA co-exposures 

are prolonged in 3D spheroid cultures of PHH. After 72 hours (A) and 7 days (B) no clear indications are 

evident, whereas after 14 days (C) chlorpromazine and BAs clearly pose synergistic toxicity. Adapted from 

manuscript IV. 

3.6 CLINICALLY RELEVANT CYP3A4 INDUCTION EVENTS ARE DETECTED 

IN PHH SPHEROIDS (STUDY V) 

CYP3A4 is involved in the metabolism of many clinically used drugs (141). Changes in its 

enzymatic activity, e.g. via induction, can therefore have detrimental outcomes including 

DDI-mediated therapeutic failures or development of ADRs. As such, early assessment of the 

liability of drug candidates to induce CYP3A4 during the preclinical phase of development is 

crucial. PHH 2D monolayer cultures are often the preferred model for CYP induction studies. 

However, the applicability of this model is questionable, as we previously observed in study 

I that PHH in 2D monolayer culture rapidly dedifferentiate and that expression of NRs, 
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important for mediating CYP expression, is drastically decreased within 24 hours. Therefore, 

in study V we examined whether the PHH spheroid system could constitute a more relevant 

and sensitive model to predict drug-mediated CYP3A4 induction. Induction of CYP3A4 

mRNA expression of a panel of 11 drugs with reports of inducing CYP3A4 activity in vivo 

could be clearly detected in PHH spheroids at physiologically relevant concentrations (at or 

below 1xCmax) and with magnitudes comparable to those found in vivo. In contrast, no 

induction of CYP3A4 mRNA expression was observed for a set of 13 drugs with no reports of 

inducing CYP3A4 in vivo (Fig. 11A-B). Applying the recommendations issued by the EMA 

to classify the liability of drugs to induce CYPs (322), the PHH spheroid system impressively 

achieved 100% sensitivity and 100% specificity. 

 

 

Figure 11. PHH spheroids correctly detect clinical CYP3A4 induction. (A) CYP3A4 mRNA expression is 

induced upon exposure to drugs reported to induce CYP3A4 activity in vivo, (B) whereas this is not the case 

upon exposure to drugs not known to induce CYP3A4 in vivo. All drugs were screened at 1xCmax levels, except 

probenecid (0.2xCmax). Reproduced from manuscript V. 

 

A crucial finding of this study was that PHH only when maintained in 3D spheroid culture, 

but not in 2D monolayer culture, could detect the CYP3A4 induction capacity of AZD1208 

(at 0.2xCmax) on mRNA and protein level at levels which were comparable to the magnitude 

of change observed for the prototypical inducer rifampicin (Fig. 12A-B). AZD1208 had 

eluded preclinical CYP3A4 induction screens employing HepaRG cells and 2D monolayer 

cultures of PHH from three different donors, but showed unexpected CYP3A4 auto-induction 

in the clinic leading to its termination (140). We hypothesized that AZD1208 induces 

CYP3A4 via an indirect mechanism rather than direct NR ligand binding since the latter 

mechanism can normally be identified in PHH 2D monolayer culture. Using gene 

knockdown experiments, we found that AZD1208 requires PXR and is partially dependent on 

CAR to exert its CYP3A4 induction. Preliminary indications suggest that ERK signaling is 

involved in this indirect pathway leading to CYP3A4 induction, which appears to be sensitive 

towards the presence of epidermal growth factor (EGF). Not surprisingly, ERK signaling is 

drastically altered in PHH 2D monolayers during hepatocyte dedifferentiation (212) which 

could explain the absence of AZD1208-mediated CYP3A4 induction in 2D monolayer 

culture. Collectively, our data suggest that the PHH spheroid system can robustly detect drug-
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mediated CYP3A4 induction at clinically relevant concentrations, and as such may constitute 

a valuable novel preclinical model to screen drug candidates for CYP3A4 induction. 

 

 

Figure 12. Detection of AZD1208-mediated CYP3A4 induction in PHH is dependent on the culture format. (A) 

PHH in 3D spheroid culture, (B) but not in 2D monolayer culture, can detect AZD1208-mediated induction of 

CYP3A4 mRNA expression at levels comparable to rifampicin. Percentages indicate the extent of induction 

relative to rifampicin. Reproduced from manuscript V.
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4 SUMMARY 

The findings in this thesis can be summarized as follows: 

 PHH dedifferentiation in 2D monolayer culture is a rapid process involving major 

changes on transcript and protein level during the first 24 hours, limiting the in vivo  

relevance of this model (study I). 

 

 In the 3D spheroid system developed here PHH are cultured under serum-free and 

defined chemical conditions. Unlike in 2D monolayer culture, PHH in 3D spheroid 

culture possess relevant hepatic phenotypes comparable to those found in the human 

liver in vivo and inter-individual variability can be retained (study II). 

 

 PHH in 3D spheroid culture remain viable, form bile canalicular networks, and have 

stable liver-specific functionalities for several weeks in culture. These features allow 

screening for drug responses and toxicity events that may be delayed in onset  

(study II). 

 

 PHH spheroids can be used to identify the liability of compounds to induce 

cholestasis and to study mechanistic aspects thereof. The PHH spheroid system may 

have additional sensitivity over PHH sandwich cultures due to the ability to assess 

chronic drug-induced cholestasis events (studies III and IV). 

  

 The propensity of drugs to induce CYP3A4 can be accurately assessed in PHH 

spheroids at clinically relevant concentrations. PHH in 3D spheroid culture, but not in 

2D monolayer culture, are able to detect an atypical mechanism of CYP3A4 induction 

of clinical importance (study V). 
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5 GENERAL DISCUSSION AND FUTURE PERSPECTIVES 

Unexpected adverse hepatic drug events are a significant threat to patient safety and 

negatively impact on the productivity of the pharmaceutical industry. If liver safety concerns 

are not recognized in the preclinical stage of drug development, human safety is put at risk. 

DILI is a major cause of post-marketing drug withdrawals and restricted-use warnings and is 

one of the major reasons for drug attrition during the clinical phases of development. Hence, 

it is clear that a translational gap between preclinical predictions of drug behavior and clinical 

outcomes currently exists. 

Post-marketing DILI events predominantly occur due to idiosyncratic reactions, often only 

occurring in isolated cases and several years post-marketing. Inherent to its definition, the 

nature of idiosyncratic type of drug reactions is multifaceted, requiring a complex interplay 

between various risk factors including drug properties, the environment, and genetic and non-

genetic factors of the patient. As such, it is highly unlikely that the risk for idiosyncratic liver 

injury events is recognized during drug development which in its current state merely aims to 

estimate the risk of ADR occurrence in the general population.  

A clear paradigm shift from a one-size-fits-all strategy to a new era of personalized medicine 

is ongoing where pharmacogenetic testing is slowly gaining appreciation in the clinic (323). 

In recent years, GWAS analyses have associated some common genetic variants with 

idiosyncratic DILI (e.g. certain HLA alleles). However, when used to prospectively predict 

patient-specific liver injury risks prior to drug prescription, these tests would have a high 

negative predictive value, yet a low positive predictive value due to the low incidence of 

idiosyncratic DILI (324). Instead, such tests serve more value as a diagnostic tool where liver 

injury patterns can be linked to particular drugs, thereby allowing effective continuation of 

other co-medicated drugs (325). Unless it is made possible to comprehensively assess patient-

specific drug responses in vitro using suitable patient’s material, it is unlikely that the 

majority of idiosyncratic drug reactions will be predictable prior to prescription. 

Adverse liver safety profiles during the clinical phase of drug development often appear in 

several subjects. This implies that the mechanism of hepatotoxicity is intrinsic in nature and 

thus in theory should have been predictable, highlighting the ongoing existence of a 

translational gap between preclinical liver safety prediction and clinical outcome. Animal 

models lack predictive power due to important inter-species differences, exemplified by 

various cases of unexpected toxicities in the clinic with serious injuries or fatalities as a result 

(e.g. fialuridine (189), TGN1412 (326), and BIA 10-2474 (327)). Therefore, contemporary 

research places much emphasis on developing novel human-based in vitro models to improve 

the preclinical drug toxicity testing strategies (24). 

PHH in 2D monolayer cultures have long been the preferred in vitro system to model the 

human liver. However, there is an increased recognition that in this culture format PHH 

rapidly lose their mature phenotype due to dedifferentiation (214). The results from this thesis 
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substantiate this, where we observed that PHH in 2D monolayer culture very rapidly lose the 

expression of crucial hepatic genes. Consequently, accurately predicting clinical drug 

metabolism and toxicity profiles is impeded. It is now recognized that a major reason for the 

rapid decline of hepatocyte functionality is the lack of physiological relevance of such simple 

2D culture systems. The liver in vivo has a complex 3D organization where hepatocytes are 

highly polarized which is of vital importance for proper hepatocyte functionality. 

Accordingly, various novel 3D culture platforms have been proposed to create more 

physiologically relevant in vitro liver models, ranging in complexity from sandwich cultures 

to complex microfluidic chips, each with unique advantages and shortcomings.  

To constitute a suitable model to be implemented in drug development, several characteristics 

should be considered. These include the robustness, versatility, throughput, and cost-

effectiveness of the system. In this regard, 3D spheroid cultures generated in multi-well plates 

constitute an attractive approach. In this thesis, we developed and characterized a scaffold-

free 96-well PHH spheroid system, using only 1,500 cells per well to generate a single 

spheroid of a defined size. In contrast to a previously constructed multi-liver cell type 

spheroid system where media conditions were not disclosed (263, 328), PHH spheroids in our 

system are maintained in chemically defined and serum-free conditions, thus allowing wide-

spread use of this model among researchers and industry.  

Our results indicate that the PHH spheroid system is a highly phenotypically relevant in vitro 

model, closely resembling the human liver in vivo. Importantly, we found indications that 

inter-individual variability is retained in PHH 3D spheroid culture, opening up the possibility 

to study inter-individual differences in drug response and toxicity (329). Because molecular 

phenotypes and liver-specific functions of PHH are largely stable for multiple weeks in 3D 

spheroid culture, this system is a valuable model to assess DILI events that may be delayed in 

onset. This was exemplified by the striking toxicity pattern of fialuridine that required 

prolonged exposures to exert its toxicity. Furthermore, since PHH form bile canalicular 

networks in 3D spheroid culture, the system can be used to predict and study chronic drug-

induced cholestasis. Recent reports from our lab indicate that the PHH spheroid system could 

predict DILI with 69% sensitivity and 100% specificity using a panel of 70 DILI-positive and 

53 DILI-negative compounds after two weeks of repeated exposure (330). Remarkably, the 

system outperformed other proposed DILI screening models employing PHH (235, 243), 

including also the multi-liver cell type spheroid system mentioned earlier (264), despite 

relying on lower drug concentrations (20xCmax compared to 100xCmax). The discrepancy 

between these two spheroid models might be related to differences in the choice of 

compounds, inter-donor variabilities, inclusion of NPCs, or differences in media composition. 

Furthermore, the PHH spheroid system was also recently shown to detect and reflect drug 

toxicity patterns in a more appropriate manner than other conventionally used models, 

including 2D cultures of HepaRG cells or HLCs (331), as well as PHH sandwich cultures 

(332). 
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In addition to showing promise for assessments of drug hepatotoxicity, the PHH spheroid 

system may represent a suitable platform to screen drugs for CYP3A4 induction. PHH in 3D 

spheroid culture stably express important NRs and CYPs at levels comparable to those found 

in the liver in vivo (333). Furthermore, we found that clinical CYP3A4 induction patterns 

were accurately reflected at physiologically relevant concentrations. We convincingly 

showed that 3D spheroid cultivation of PHH is necessary to identify an atypical mechanism 

leading to CYP3A4 induction. This was exemplified by the detection of AZD1208-mediated 

induction of CYP3A4 exclusively in PHH 3D spheroid culture, but not in 2D monolayer 

cultures from the same donor, indicating that activity of signaling pathways of importance for 

CYP induction are drastically altered upon cultivation of PHH as 2D monolayers. As such, 

the PHH spheroid system may constitute a promising novel preclinical model to predict 

CYP3A4 induction liabilities of drug candidates. 

While our results are encouraging and provide a step forward in establishing a more relevant 

in vitro human liver system, certain observations and limitations should be noted. We 

observed significant donor-to-donor variation of PHH fractions with regard to the ability to 

aggregate into compact spheroids, as well as differences in the long-term viability and 

stability of hepatic phenotypes. Though not specific to the chosen 3D spheroid culture 

system, this necessitates extensive initial screenings to find suitable PHH donors that perform 

well in 3D spheroid culture. Furthermore, in this thesis, we mainly focused on 3D spheroid 

cultures consisting of solely PHH. While it is true that parenchymal hepatocytes are the main 

cell type of the liver, hepatic NPCs are known to support hepatocyte function and play crucial 

roles in certain liver diseases. Our preliminary investigations suggest that spheroid co-

cultures of PHH with crude primary hepatic NPC fractions can be generated and that the 

Kupffer cells are responsive to LPS stimulation. Further characterization of the long-term 

stability of each cell type in these spheroid co-cultures is needed. It will be tremendously 

interesting to observe whether complex diseases with crucial roles for hepatic NPCs (e.g. 

NAFLD (334) and fibrosis (335)) can be reflected in such co-cultures. Indeed, 3D spheroid 

co-cultures of HepaRG cells and hepatic stellate cells were recently presented as a potential 

drug-induced fibrosis model (336). 

While the 3D spheroid culture system employed here has several features attractive for drug 

development (e.g. few cells needed for drug toxicity screenings and a higher throughput 

compared to other complex systems), perfusion is lacking and as such various physiological 

parameters cannot be controlled that could be of importance for hepatic functionality. 

Integration of PHH spheroids into microfluidic chips is therefore considered a promising 

avenue in which the microenvironment can be more tightly regulated and potential 

interactions with other organs can be generated. It is anticipated that such organotypic in vitro 

models will increase our understanding of human bodily functions, are of value for disease 

modelling and screening of novel therapeutic interventions, and may aid in enhancing safety 

assessments in drug development (337-340). 
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