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Abstract 
Breast cancer is the most common cancer of women in Sweden and globally. In the more 
affluent countries, mammography screening has been in place for a few decades and has 
successfully reduced mortality. However, there is increasing interest in enhancing the impact of 
screening by going from the current age-based screening system to a risk-based system. There 
are two risk components that must be taken into account – the underlying breast cancer risk 
and the risk of delayed detection. Mammographic density, the amount of dense tissue in the 
breast, has been shown to be a risk factor for both. In this thesis, my aim was to identify novel 
determinants of delayed breast cancer detection by studying observed cases of interval cancer 
or large cancer at diagnosis. The potential risk factors for delayed detection were based on 
negative mammograms and other data that can be determined before diagnosis. Study I to III, 
were based on a retrospective case-only population, while Study IV was based on a prospective 
cohort. 

In Study I, we developed an estimate of the longitudinal fluctuation in mammographic percent 
density between screenings. Based on our results, we concluded that women that were 
subsequently diagnosed with interval cancer had higher density fluctuations than women with 
screen-detected cancer. 

In Study II, we went beyond density and examined 32 other image features which were 
computer-extracted from digitized mammograms. We identified two novel features that were 
associated with an increased risk of interval cancer compared to screen-detected cancer. One 
feature seemed to be related to the shape of the entire dense area, being flat rather than round 
increased the risk of interval cancer, possibly due to making clinical detection easier. The other 
feature seemed to be related to whether the density was more concentrated or instead was 
interspersed with fatty streaks. When density was more concentrated, the risk of interval cancer 
increased, possibly by making mammographic detection more difficult. 

In Study III, we determined risk factors for the cancer diagnosis being delayed until the cancer 
had reached a size larger than 2 cm. High density and high body mass index (BMI) were already 
known risk factors in general. Our aim was to understand if different factors were involved 
depending on the detection mode, screen-detection or interval cancer detection. We found that 
high BMI increased the risk of large cancer markedly among interval cancers and somewhat 
among screen-detected cancers. High density was associated with large cancer only among 
screen-detected cases. In survival analysis, we showed that high BMI increased the risk of disease 
progression, but only among women with interval cancer. 

In Study IV, we found that the localized density category at the site of the subsequent cancer 
was often different compared to the overall density. We examined the effect of high localized 
density, independent of overall density, and found that it was strongly associated with large 
cancer at diagnosis. In addition, it was associated with interval cancer among the less aggressive 
node-negative cases. It remains to be elucidated whether this effect is purely due to visual 
masking or also due to an association with biological characteristics of the tumor 
microenvironment. 

In conclusion, we have identified several novel determinants of delayed breast cancer detection, 
which could be further validated in trials of risk-stratified screening.  
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Abbreviations 
 
 
95%CI  95 percent confidence interval  

BI-RADS A four-category visual classification of mammographic density issued by the 
density  American College of Radiology, where ‘A’ is the least and ‘D’ the most dense 

BMI  Body Mass Index 

BRCA1/2 Breast Cancer Susceptibility Gene 1 or 2 

CAHRES Cancer and Hormone Replacement Study – one of my study populations 

cBIRADS Computer-generated score mimicking the BI-RADS density classification 

Dnr   Reference number in public archives; spelled out in Swedish: ‘diarienummer’ 

GWAS  Genome-Wide Association Studies 

HER2   Human Epidermal growth factor Receptor 2 

HRT  Hormone Replacement Therapy (mainly for menopausal symptoms) 

IC   Interval Cancer 

KARMA Karolinska Mammography cohort – one of my study populations 

LIBRO-1 Linné-Bröst study 1 – one of my study populations 

MRI  Magnetic Resonance Imaging 

OR  Odds Ratio 

p  the Probability that an observation might be explained by chance alone 

PD  Percent mammographic density = The proportion of dense tissue out of total 
breast tissue as estimated by analysing mammograms  

SDC   Screen-Detected Cancer 

SNP   Single Nucleotide Polymorphisms 

TDLU  Terminal Duct Lobular Unit 

TNM  A staging system for malignant tumors  
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“Pick a star on the dark horizon 
  And follow the light“ 

Regina Spektor 
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1. Background 

1.1 Breast Biology 

1.1.1 Development 

The development of the breast is identical in males and females during the first two years of 
life. During puberty, in females, a new development stage is initiated as the mammary tissue 
beneath the areola starts growing and a two-layer structure of the epithelium develops (1). This 
process, between age 8 and 18, is gradually controlled by the hypothalamus which in turn 
stimulates the anterior pituitary gland that increases the levels of follicle-stimulating hormone 
and luteinizing hormone. Follicle-stimulating hormone activates ovarian follicles that secrete 
estrogen. In the breast, estrogen stimulates the formation of ducts, connective tissue and blood 
vessels. Later, progesterone exposure contributes to the formation of lobular, potentially milk-
producing, structures (2). 

1.1.2 Anatomy 

The dorsal part of the breast rests on the fascia of the underlying muscles, e.g., the pectoral 
muscle. Ductal structures can appear in a large area of the thorax, from the axilla down to the 
sub-costal region, and from the fascia to very close to the skin border.  

The breast gland contains glandular, stromal and fatty tissue. The proportions of each tissue 
type vary greatly between women. The stroma consists of connective tissue, mainly collagen, 
that provides a ‘soft skeleton’ for the breast maintaining its shape and internal structure. The 
term ‘fibroglandular tissue’ is often used to refer to the glandular and the stromal tissue together.  

 

 

Figure 1. Anatomy of the fundamental glandular structures of the breast. TDLU = Terminal 
Duct Lobular Unit. 

The glandular tissue consists of the lobules, potentially milk-producing, and the ducts, leading 
to the nipple. The lining of the ducts is composed of an inner luminal layer of epithelial cells, 
and an outer basal layer of myoepithelial cells (3). These are enclosed by a surrounding basement 
membrane. The nipple contains around 10 openings, or terminal ducts, each one connected to 
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a lactiferous sinus that receives a lobar collecting duct. The lobar ducts are formed by the merger 
of ducts from many lobules (Figure 1). The lobules and their connecting terminal duct are 
together called TDLU (terminal duct lobular unit). The TDLU is the likely starting point for the 
most common form of breast cancer, ductal carcinoma (4).  

In adults, lobules can appear in different stages of development, from bud to complete 
differentiation. The earlier differentiation stages have shown to be more vulnerable to 
carcinogenic insults compared to the more differentiated stages (2). 

1.1.3 Changes over Time  

Menstrual Cycle 

The menstrual cycle is characterized by periodic changes of estrogen and progesterone hormone 
serum levels. The proportion of proliferation and apoptosis in the lobules of the breast varies 
with the stage of the menstrual cycle (5). In addition, it has been shown that certain collagen 
types in the stroma of the breast show a similar periodic variation, most pronounced near the 
basal layer and the ductules (6). A study of magnetic resonance imaging (MRI) by Fowler et al. 
(7) showed that the increased breast volume in the luteal phase was mainly caused by water 
retention and to lesser extent by other stromal and epithelial changes. 

Pregnancy 

During pregnancy, there is a hormone-induced increase of all parenchymal components, ductal 
and lobular (2). A histological study by Russo et al. showed that there is a larger proportion of 
highly differentiated lobules, less vulnerable to carcinogenic insults, in the breasts of parous 
women compared to non-parous women (8).  

Menopause 

Menopause is initiated by atresia of the ovarian follicles. Declining ovarian hormone levels, 
including estrogen, leads to involution of the breast. Ducts remain but lobules shrink. Stromal 
tissue regresses and is replaced by fat tissue (2). After involution, in the remaining smaller 
parenchyma, there can be a high proportion of less differentiated lobules in the breasts of both 
parous and non-parous women, but it is unclear whether these confer the same risk of breast 
cancer regardless of parity status (8). After menopause, the enzyme aromatase is involved in the 
local production of estrogen from peripheral fatty tissue which explains why the 
postmenopausal estrogen levels can be much higher in the breast tissue than in the plasma (9). 

1.2 Breast Cancer 

1.2.1 Cancer Development 

The pathway towards breast cancer is believed to start with carcinogenic insults to the epithelial 
cells resulting in hyperplasia of benign atypical cells, which later can become malignant non-
invasive cells and, finally, malignant invasive cells. Some mutations of the cancer genome confer 
selective advantages to the host cell in this local evolutionary process, and are thus called ‘driver 
mutations’, while other mutations are ‘passenger mutations’ (10). Nik-Zainal et al. studied the 
genome of 21 breast cancers and reconstructed their genomic history. They showed that step-
wise mutational processes evolve across the lifespan of a cancer, and that there is large diversity 
in the cellular genomes within the same tumor (11). During the evolution of the genome leading 
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to malignancy, the phenotype progressively acquire the so-called ‘hallmarks of cancer’ proposed 
by Hanahan and Weinberg: Sustaining proliferative signalling, Evading growth suppressors, 
Activating invasion and metastasis, Enabling replicative immortality, Inducing angiogenesis, and 
Resisting cell death (12). Malignant cells that have not yet acquired the invasive capability are 
called ‘in situ cancer’. 

The stroma, or connective tissue, is involved in cancer development through paracrine and 
mechanical interactions with the epithelial cells (13). Stromal changes in reorganization, cell 
types and gene expression as well as signalling cascades seem to affect tumor progression and 
patient survival. 

1.2.2 Epidemiology 

For women, breast cancer is the most common cancer globally (14). In Sweden, during 2016, 
there were 7558 women who were diagnosed with breast cancer, of which 7000 were first-time 
cancers (15). As can be seen in Figure 2 below, there has been a long-term trend of increasing 
incidence and decreasing mortality. Based on a similar mortality decrease in the U.S., Plevritis 
et al. estimated that 63% was attributable to improved treatment and 37% to improved screening 
(16).  

 

 

Figure 2. Swedish breast cancer statistics. The solid line shows breast cancer incidence per 
100,000 women. The dashed line shows age-standardized breast cancer deaths per 100,000 
women. Source: National Board of Health and Welfare. 

1.2.3 Risk Factors 

Breast cancer is a complex disease that have both genetic and non-genetic causes. The heritable 
component has been estimated to be between 25 and 27% in Scandinavia (17). The large 
environmental component is nicely illustrated by a study comparing the Japanese domestic 
population with the Japanese emigrants living in the San Francisco Bay Area in the USA. For 
the 35-64 age group, the age-adjusted incidence rates were 32, 94 and 116 for domestic, first-
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generation emigrants and second-generation emigrants, compared to 179 for Caucasian women 
in the Bay Area (18). In general, the risk is about three times higher in more developed countries 
compared to less developed ones (14). 

Female sex and increasing age are the strongest risk factors for breast cancer. After menopause 
the age-related risk increase slows down (19). Many breast cancer risk factors are linked to 
estrogen exposure(20). Risk factors associated with high endogenous estrogen exposure are: 
younger age at menarche, none or low number of childbirths, and older age at menopause (21). 
Risk factors associated with high exogenous estrogen exposure are: oral contraception pills (22) 
and hormone replacement therapy (HRT) for menopausal symptoms (23). Among lifestyle 
factors, breast cancer risk is increased by alcohol consumption and decreased by physical activity 
(24, 25). Having a diagnosis of benign proliferative breast lesions increases the risk (26). Body 
mass index (BMI) plays a dual role, high BMI increases the risk for post-menopausal women, 
but seems to decrease the risk for pre-menopausal women (27). Last, but not least, a high 
mammographic density is an important risk factor for breast cancer (28, 29). Mammographic 
density will be discussed in more detail in the ‘Breast Imaging’ section. 

In terms of genetic risk factors, there are two mutations, BRCA1 and BRCA2, that incur a very 
high risk of breast cancer to the carriers, with a cumulative risk of developing breast cancer of 
65% and 45%, respectively, by age 70 (30). Through genome-wide association studies (GWAS), 
more than 180 single nucleotide polymorphisms (SNP) associated with smaller risk increases 
have been identified (31, 32). It has been estimated that there may be around 1000 loci remaining 
to be identified (33).  

1.2.4 Staging 

Stage is one of the strongest prognostic predictors for breast cancer (34). Stage is defined based 
on the TNM system in which T concerns the primary tumor, N regional spread, and M distant 
metastasis (35). As a few examples, T1 is a tumor 2 cm or less in the greatest dimension, while 
T2 is a tumor more than 2 cm but nor more than 5 cm in the greatest dimension. Nearly all 
tumors have T stage different from T0, while only some have N stage different from N0 
(between 32 and 35 % in the study above had lymph node metastasis) and fewer have M stage 
different from M0. Thus, for the majority of patients with N0 and M0, it is the T stage, i.e., the 
tumor size (and local invasion) that differentiates the stages and consequently the prognoses. 

1.2.5 Histopathology and Molecular classifications 

In addition to stage, for therapeutic guidance, breast cancers are often classified into groups 
based on histological origin or molecular subtypes as described below. 

Histopathology 

Histological analysis, i.e., microscopy of tissue specimens, shows that the most common 
histological types of invasive breast cancer are ductal carcinoma and lobular carcinoma. In a 
study by Martinez et al, there was around 80% ductal carcinoma and 15% lobular carcinoma 
(36). The lobular carcinomas are harder to identify on mammography, and are generally larger 
at diagnosis (37). Lobular carcinoma has a better prognosis than ductal carcinoma, and is often 
homogenous of low nuclear grade with limited desmoplastic reaction in the surrounding breast 
tissue (38). Absence of such dense fibrous reaction makes them harder to detect both clinically 
and mammographically. 



 7 

Molecular Subtype 

The molecular subtype has recently become an important consideration when assigning 
appropriate oncological treatment for each woman with breast cancer. Based on a gene 
expression clustering technique Sorlie et al. defined four molecular subtypes of breast cancer: 
‘Luminal A’, ‘Luminal B’, ‘HER2-overexpressing’, and ‘Basal-like’ (39). The Luminal subtypes 
have an estrogen-driven gene expression. The HER2-overexpressing tumors have estrogen 
receptor negative status and instead has an amplified expression of the human epidermal growth 
factor receptor 2 (HER2). Finally, the basal-like tumors are negative for both estrogen receptor 
and HER2 receptor expression. Since not all hospitals have access to gene expression analysis, 
Cheang et al. defined an algorithm for how to use results from immunohistochemistry staining 
of receptors to assign proxy molecular subtypes (40). This latter approach was used in my 
studies, and the exact algorithm used has been detailed under the Patient and Methods section 
about ‘Tumor Characteristics’.  

1.2.6 Treatment and Prognosis 

The prognosis for breast cancer patients is very good compared to most other malignant 
diseases, having an overall 5-year survival of around 90% in the Nordic countries (41). Primary 
breast cancer, except at the most advanced stage, are surgically excised either by a total 
mastectomy removing the entire breast gland or by partial mastectomy removing the identified 
tumor with a small margin of normal tissue (41). Depending on patient tolerability, type of 
mastectomy, and tumor characteristics including molecular subtype, the appropriate oncological 
treatment is chosen. Treatment options include chemotherapy, anti-hormonal drugs and 
radiotherapy. It has become increasingly popular to use neoadjuvant therapy, i.e., delaying 
surgery and instead administering oncological treatment to examine how the tumor responds 
while in the breast. To determine the effect of neoadjuvant treatment, the tumor is repeatedly 
examined by clinical palpation, by histopathology, and by various radiological modalities further 
described in the ‘Breast Imaging’ section. 

1.3 Breast Imaging 

1.3.1 Mammography 

The mammographic image is formed by having an X-ray emitting tube on one side of the breast 
and a detector on the other. X-rays are electromagnetic radiation with a relatively high frequency 
and energy, which can pass through human tissue. For mammography, the X-ray photon energy 
is around 20 keV, relatively low compared to skeletal and chest x-ray imaging, which serves to 
maximize the contrast between an invasive carcinoma and adipose tissue (42). For the 
mammographic examination, a radiographer positions the breast between two plates, one 
compression plate transparent to X-rays and a larger plate containing the detector. Some X-ray 
photons pass unhindered through the tissue while others interact with the atoms of the tissue 
resulting in a decrease, or attenuation, of the x-rays. Due to a lower density and fewer electrons 
per atom, fat attenuates less of the X-rays and is thus ‘non-dense’ and depicted as dark in the 
mammogram. Fibroglandular tissue is ‘dense’ and depicted as bright pixels. Tumors are also 
dense and appear bright on a mammogram (43, 44). 

Mammography was for a long time based on analog film-screen technology but has during the 
last decades shifted to digital technology. In analog mammography, the detector consisted of an 
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intensifying screen converting x-rays to a directly proportional amount of light reaching a film, 
which was then chemically developed. Film had a rather narrow dynamic range, and once a film 
had been exposed the contrast characteristics were fixed. An automatic exposure control 
terminated the radiation exposure once enough photons had penetrated the tissue of interest to 
reach a pre-set intensity. Nowadays, in digital mammography, the detector is based on semi-
conductor technology and has a very large dynamic range allowing adjustment of image contrast 
and brightness in post-processing. Differences in the automatic exposure control complicates 
comparisons of automated density measurements between analog and digital mammograms(42). 

With the introduction of digital mammography, the dose could be lowered by 25 to 30 percent 
(42). The diagnostic performance was similar to film mammography overall, but better for 
younger women with more dense breasts (45). In Stockholm, digital mammography was 
gradually introduced over a few years and the transition was completed by May 2008. 

Normal mammograms of two women of the same age can look dramatically different in terms 
of the volume, organization and pattern of the dense and non-dense tissue. In addition, the 
appearance of breast cancer varies widely; examples include certain types of calcifications, 
architectural distortion, indistinct and spiculated masses (Figure 3). To increase the accuracy of 
mammographic interpretation two views are acquired per breast, ‘cranio-caudal’ view in which 
the breast is compressed horizontally and ‘mediolateral oblique’ (MLO) view in which the breast 
is compressed along an oblique line passing through the nipple towards the axillary region to 
follow the pectoral muscle and most of the glandular tissue. 
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Figure 3. Examples of tumor appearances at mammography. In addition to the four 
categories above another potential tumor sign are ‘asymmetrical densities’ in which there are 
dense areas in one breast but not in the corresponding location in the other one. 

 

1.3.2 Mammographic Density 

The amount of mammographic density, the brighter pixels in the image, is an important risk 
factor for breast cancer and also for being diagnosed with an interval cancer (IC; defined in 
section ‘Interval Cancer’ below) compared to a screen-detected cancer (SDC) (46-49). In 
addition to being a primary risk factor, mammographic density seems to mediate other risk 
factors, i.e., other risk factors affect density which in turn affects the risk of breast cancer. 
Density is a partial mediator for nulliparity, age at first birth, hormone therapy and having breast 
biopsies (50, 51). Related to this, it was determined that mammographic density mediates some 
of the non-genetic geographical differences in breast cancer incidence (52). 

In 1976, Wolfe first proposed the idea that the mammographic appearance of the healthy breast 
categorized into four different pattern groups could be associated with different levels of breast 
cancer risk (28). An alternative pattern categorization was proposed by Tabar et al. (53) Later, 
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Boyd et al. developed a semi-automated method, called ‘Cumulus’, to quantify mammographic 
density as a percentage of bright pixels out of the total breast area. This measure is called ‘percent 
density’ (PD) (29). Cumulus requires manual delineation of the relevant breast area in each 
mammogram which limits it use in large research volumes. 

A fully automated density calculation method based on the ImageJ software was developed in 
our group with the aim of mimicking Cumulus (54, 55). It has later been refined under the name 
of Stratus (56). Other methods, e.g., Volpara™ (57), Libra, Quantra and Single X-ray 
Absorptiometry, estimate volumetric density, i.e., PD per cm3. In contrast to these purely 
quantitative methods, the American College of Radiology has developed a widely used 
classification system based on visual assessment by four categories that also takes a qualitative 
aspect of detection sensitivity into account. It is often referred to as BI-RADS density, which 
stands for Breast Imaging-Reporting And Data System and includes different classification 
systems for density and for suspicious lesions. The density definitions according to the fifth 
edition of the BI-RADS guidelines are as follows from least to most dense (58): 

A. The breasts are almost entirely fatty  

B. There are scattered areas of fibroglandular density 

C. The breasts are heterogeneously dense, which may obscure small masses 

D. The breasts are extremely dense, which lowers the sensitivity of mammography 

In a study by Li et al. [11] it was shown that high PD was associated with higher total nuclear 
area, both for epithelial and for non-epithelial cells, a higher proportion of collagen, and a larger 
area of glandular structures (59). When they analysed the relative amounts of each tissue type, 
collagen was the most abundant and explained 29% of the between-individual variation in PD. 

Cross-sectional studies of mammographic density have shown that older women have lower 
mammographic density than younger women (60, 61). Part of the apparent mammographic 
density decrease with age may be an effect of later birth cohorts having higher age-adjusted 
density compared to earlier ones, as determined in a Danish study (62). Nevertheless, 
longitudinal studies have confirmed that there is a decreasing trend of mammographic density 
with increasing age - at least between age 40 and 65 (63, 64). That menopause has a density 
decreasing effect, in addition to what is explained by increasing age, was demonstrated in a study 
comparing those who transitioned from pre- to postmenopausal status with age-matched 
women who remained premenopausal (65).  

In addition to long-term trends of decrease, there has been some evidence of short-term 
fluctuations in mammographic density and the corresponding fibroglandular tissue (66-68). The 
study by Ursin et al. showed large individual differences in the magnitude of fluctuation. 
Possibly, such fluctuations in density might be related to the periodic changes in endogenous 
hormones as suggested by a study of urinary estradiol metabolites in the ovulatory phase (69). 
The previously mentioned MRI study of eight women showed that the parenchymal volume on 
average increased by nearly 40% in total, and water content by 25%, over the menstrual cycle 
(7). Examining temporal, or longitudinal, fluctuations in density in relation to IC was the focus 
of my Study I. 



 11 

A study comparing five different density measurement techniques showed that a visual-analog 
scale had a stronger association with breast cancer risk than the computer-based fully automated 
methods (70). In a study by Kerlikowske et al. it was shown that combining a risk model that 
include a visual density score with computer-based measures of density increased the ability to 
identify high-risk women (71). Applying a visual method in large retrospective research studies 
is often not feasible, but the finding shows that there are risk-relevant aspects of the image in 
addition to computer-calculated PD measure. Using computer programs to extract features of 
the parenchymal texture, in addition to density, has been gaining ground during recent years 
(72-76). The focus of my Study II was to identify computer-extracted features of the dense, 
parenchymal, tissue that would indicate an increased risk of IC compared to SDC.   

1.3.3 Supplemental Imaging Methods 

The sensitivity of mammography in detecting breast cancer is markedly reduced for women 
with high mammographic density. In a large study by Carney et al., it was shown that the 
sensitivity for detecting breast cancer was 63% in extremely dense breasts and 87% in the almost 
fatty breasts (77).  

Recently, a variant of mammography has been introduced into clinical practice – digital breast 
tomosynthesis – sometimes called ‘3D mammography’ (78). Digital breast tomosynthesis 
requires an adaptation of the regular mammography equipment. By having the detector move 
in an arc, images are acquired from various angles and the three-dimensional structure of the 
breast can be better appreciated. Tomosynthesis has a higher sensitivity compared to regular 
mammography, but its effect on recall rate is less clear (79-81). Reassuring for the ability to use 
mammographic density as a risk factor when transitioning to tomosynthesis, it has been shown 
that density measured from tomosynthesis images is highly correlated with that measured from 
regular mammographic images (82). 

In addition, there are two non-X-ray imaging modalities that are routinely used for breast 
examinations: ultrasound and MRI. The basis for ultrasound images are the sound reflection 
characteristics of different tissues in the breast. It is often performed manually by the radiologist, 
even if semi-automated equipment also exists. The basis for MRI emerges from the interaction 
between radiofrequency signals and the characteristic magnetic properties of different tissues in 
the breast. For MRI, intravenous contrast media is commonly administered to examine the 
uptake and temporal dynamics of potentially malignant lesions. It has been shown that 
ultrasound plus mammography has a higher sensitivity than mammography alone; it has also 
been shown that the sensitivity of MRI is higher than mammography alone, and higher than 
mammography plus ultrasound (83-85). 

1.3.4 Screening 

Screening mammography is effective in reducing breast cancer mortality (86-89). The current 
national recommendation in Sweden stipulates that women should be invited for screening 
starting at age 40 and ending at age 74. All women fulfilling the age criteria are invited to 
screening, and they will continue to receive invitations whether they choose to attend or not. 
The national recommendation further stipulates that the time interval between invitations for 
screening should be between 18 and 24 months, with the shorter time interval suggested for 
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younger women. There is some scientific support for having more frequent screening between 
40 to 49 years, but not for differentiating between women 50 to 74 years old (90-92).  

 

 

Figure 4. The screening process. The process until recall decision is shown in the top row. 
Around 97% are assessed to lack signs of malignancy, while around 3% are recalled for further 
assessments according to the bottom row. Around 0.5% are diagnosed with breast cancer. 

 

The first pilot study of mammography screening in Sweden was performed in 1976, and by 1997 
general screening had been established across all counties of Sweden (93). In Stockholm, general 
screening was introduced in 1989 for women aged 50 to 69 years with a 24-month interval 
between screenings. Between 2005 and 2010 women aged 40 to 49 years were gradually included 
in the screening program with an interval of 18 months between screenings; later changed to 24 
months in 2014. The participation rate in Stockholm exceeds 70% (94). For women with a 
known high penetrance genetic mutations or strong family history of breast cancer, there are 
special screening regimens, often called surveillance. These women may start screening at an 
earlier age, have shorter time intervals between screenings, and be examined with other 
radiological modalities such as ultrasound and MRI as well as clinical breast examination.  

The screening process is described in Figure 4 above. Double-reading means that two 
radiologists independently assess each case and identify suspicious findings which are ‘flagged’ 
for consensus discussion. Interpreting screening mammograms requires a substantial amount 
of experience and visual cognitive ability; specialized breast radiologists recall fewer women and 
find more cancers per 1000 women screened compared to general radiologists (95). To improve 
accuracy, the radiologist compares the current mammogram with prior ones. Comparison 



 13 

improves specificity, while the effect on sensitivity is less evident (96, 97). After double-reading, 
the flagged cases are brought up in a consensus discussion, for arbitration, to ensure that the 
specificity remains high while sensitivity increases compared to a single reader (98). If a lesion 
cannot confidently be considered benign, the woman is recalled for further assessment. Another 
reason for recall is if the woman reports breast symptoms at the time of screening and especially 
if the symptom is a lump in the breast. 

 

 

Figure 5. Illustrative graph of mode and opportunities of cancer detection. Interval cancer 
denotes a cancer clinically diagnosed after a negative screening. The cancer grows over time 
(solid black curve). Various opportunities of detection are marked (thumb icons). At periodic 
intervals, there are screening rounds when mammographic detection is possible (dashed lines).  

In my studies, I have used observed cases of interval cancer and large cancer as proxies for 
delayed detection (Figure 5). Interval cancers are breast cancers clinically detected after a 
negative screening (further described in the ‘Interval Cancer’ section below). For studies I and 
II, the focus was on comparing IC with SDC. For study III, the focus was on comparing large 
(> 2cm) to small cancers. In Study IV, both comparisons were examined. 

Risk-stratified Screening 

In current population-based screening systems all women of a certain age are invited to 
screening with the same time interval between screenings and often using the same radiological 
method, e.g., mammography in Sweden. This one-size-fits-all approach for breast cancer 
screening is increasingly being questioned, and alternative risk-stratified systems have been 
proposed (99, 100). An accurate breast cancer risk estimation is important. Recently, models 
which take a broad range of risk factors, including mammographic density and genetics, into 
account have been proposed (101, 102). However, to accurately identify women at risk of 
interval cancer it is important to combine a general breast cancer risk model with a model for 
the risk of delayed detection, or mammographic masking, as shown by Kerlikowske et al. (103) 
Women with a high breast cancer risk and a high risk of mammographic masking had the highest 
incidence of interval cancer. As has been thoroughly discussed in a review article by Onega et 
al., it is important that the development of risk-stratified screening systems is accompanied by 
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systems to continuously evaluate individual benefits and harms, best practices for shared 
decision-making and comparative measures for different imaging methods (104). 

1.4 Interval Cancer 

1.4.1 Definitions 

IC is defined according to the European Union guidelines as “primary breast cancer, which is 
diagnosed in a woman who had a screening test, with/without further assessment, which was 
negative for malignancy, either: before the next invitation to screening, or within a time period 
equal to a screening interval for a woman who has reached the upper age limit for screening” 
(105). Simplified, an IC is breast cancer that is clinically detected in the interval after a negative 
screening. 

For each diagnosed breast cancer, the ‘detection mode’ should be determined: IC, SDC, or ‘non-
attender’ (women who did not attend the prior screening). In a pooled analysis of six European 
countries, including Sweden, published in 2010, IC constituted 28% of IC and SDC cancers 
(106). The IC rate for the first 12 months after screening was 5.9 per 10,000 women and another 
12.6 per 10,000 women the following 12 months. According to a review of several interval 
cancer studies, , by Houssami et al., the proportions are generally between 17% and 30% (107). 
In one study of annual screening it was 15%, and in a few studies of 3-year intervals it was 32% 
to 38%.  

Most ICs are clinically detected due to the woman noticing a breast-related symptom. In one 
American study, cancer was diagnosed in 6.2% of 372 women seeking primary care for breast 
symptoms (108). The most common symptom that led to a diagnosis of cancer was palpation 
of a mass (88% of cancer cases). The most common symptoms that did not lead to a diagnosis 
of cancer were pain (42% of false alarms) and skin changes or nipple discharge (13% of false 
alarms). 

When analysing ICs for quality control of mammographic screening, the following classification 
is often used. It is based on comparing the current positive mammogram with the prior negative 
mammogram (see Figure 6 on the next page). In my studies, this classification was applied in 
Study IV. 

 

1. True: The prior screening mammogram was normal; there was no reason for 
assessment. This category may include occult ICs, which were not mammographically 
visible even at the time of diagnosis. 

2. Minimal sign: There is a possible subtle abnormality on the prior screening 
mammogram, which would not necessarily have warranted further assessment. 

3. False negative (missed): An abnormality is clearly visible in the prior screening 
mammogram and should have warranted further assessment. 

4. Occult: A category sometimes included in ‘True’. Denotes a cancer that was not visible 
on mammography even at the time of diagnosis. 



 15 

 

Figure 6. Pairs of prior and diagnostic mammogram for three review categories for interval 
cancer: True negative prior (left), Minimal sign (middle), and Missed or false negative (right). 

In a Norwegian study of 231 ICs, the proportions were: 42% true, 23% minimal sign, and 35% 
false negative (109). There is large variation in the estimation of the false negative proportion. 
In a review from the UK, of IC classification in 15 different screening centers using film 
mammograms, the false negative rate ranged from 4% to 56% depending on whether the criteria 
was that all, a majority, or at least one of the reviewing radiologists were required to identify the 
prior abnormality (110). A Swedish study has shown that the proportion of examinations that 
were classified as ‘missed’ in a single dataset was 7% or 34% depending on whether the review 
was performed in a mix of cases and healthy women or in cases only. It has been shown that 
recalling a higher proportion of women for further assessment lowers the number of ICs (111). 

1.4.2 Prevention 

Preventing an IC does not mean that the woman will not have breast cancer at all, but that the 
cancer will instead be screen-detected, preferably at the prior rather than the subsequent 
screening. Preventive measures have been suggested: increasing the screening frequency to 
enable earlier detection of fast-growing tumors, and using supplemental imaging methods in 
addition to mammography, e.g., MRI or ultrasound, for increased screen-detection of otherwise 
masked tumors as described above in the ‘Supplemental Imaging’ section. 

1.4.3 Determinants 

High mammographic density increases the risk of IC. One mechanism is through masking, i.e., 
making it hard to visualize an incident cancer in the mammogram (112, 113). Table 1 below 
shows a summary of potential interval cancer risk factors. Three of the included studies focused 
on comparing IC to healthy women: ‘JTL’ by JT Lowery et al., ‘MP’ by M Pollán et al., and ‘KK’ 
by K Kerlikowske et al. (103, 114, 115). Four studies focused on comparing IC to SDC cases: 
‘JTL’ by JT Lowery et al., ‘JB’ by Jordi Blanch et al., ‘JH’, by J Holm et al., and ‘JL’ by J Li et al.  
(115-118). 
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Table 1. Interval cancer determinants. Positive and negative associations as identified in six 
different studies are summarized. 

 
 

In summary, the risk factors consistently associated with increased risk are: high mammographic 
density, use of HRT, positive family history of breast cancer and prior breast biopsy. HRT is 
known to reduce the mammographic sensitivity, which is partly mediated by an increase in 
mammographic density (77). Recently, there was a study by Hofvind et al. confirming the 
association between prior false positive findings and subsequent IC (119). The following risk 
factors were identified in at least one of the studies: low BMI, high age at menopause, previous 
false positive screening, and less use of early recall after screening. 

1.4.4 Prognosis 

Women with IC have worse prognosis than women with screen-detected breast cancer (120, 
121). In the latter study, by Eriksson et al. from our group, the higher hazard ratio for women 
with non-dense compared to dense breasts suggest that the proportion of intrinsically aggressive 
IC is highest among women with non-dense breasts. My Study III, shed further light on 
prognostic determinants for ICs and SDCs separately. 

1.5 Tumor Size 

1.5.1 Definitions 

The tumor size is defined as the largest tumor diameter as measured at histopathological 
microscopy in the surgically excised breast specimen. The specimen is prepared and cut in thin 
slices, which need to be pieced together to contain the largest diameter of a cross-section of the 
entire tumor. Without using several large sections demonstrating the tumor on different levels 
there is a risk that the tumor size is underestimated (122).  

Risk%factor Examined%outcome%and%Association%per%study%(identified'by'first'author'initials'below)

Interval%Cancer%vs.%Healthy Interval%Cancer%vs.%Screen@detected%Cancer

JTL MP KK JTL JB JH JL

Mammographic%density ! ! ! ! ? !

BMI "

Age ! "

Age%at%menarche

Age%at%first%birth !

Parity !

Age%at%menopause ! !

Hormone%replacement%therapy ! ! !

Family%history ! ! ! ! !

Previous%breast%biopsy ! !

Previous%false%positive%screening !

Early%recall "

Breast%cancer%risk%by%BCSC%model !

Hispanic%vs.%Non@hispanic%white " !

Genetic%susceptibility%(PRS) "

! Positive%association ! No%significant%association
" Negative%association (empty) Not%examined
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Size is a continuous measure and there is no general agreement when the cancer should be 
considered large. However, having a size above 2.0 cm (20 mm) is used as a cut-off between 
stage T1 and T2 in the TNM staging system (123). In Study III and IV, we used the term ‘large 
cancer’ for cancers above 2.0 cm; for women with multiple tumor foci the size was measured 
on the largest invasive focus. 

1.5.2 Prevention 

Analysis of the Swedish two-county trial by Tabar et al. (89) showed that by participating in 
screening, women could expect the cancer size at diagnosis to be smaller than for non-
participants. In a study from 2016 by Welch et al., it was shown that the cancer size at diagnosis 
became markedly smaller after the introduction of screening programs, and that this was due to 
a sharp increase in small-sized cancers, but only a modest decrease in large-sized cancers (124). 
An intervention that enhances the chance of self-detection would prevent large cancers. 
However, it would at the same time nominally increase the number of ICs by making a cancer 
clinically detected before the next planned screening where it would otherwise have been screen-
detected. 

1.5.3 Determinants 

For women who participate in screening, having high compared to low mammographic density 
is a risk factor for large cancer size (125). In addition, having high BMI is a risk factor for large 
cancers, in general, according to previous studies (126, 127). These studies were not stratified 
by detection mode, and it is conceivable that the mechanism for reduced detectability, or 
‘masking’, differ between mammography and clinical examination.  

1.5.4 Prognosis 

In one of the largest studies of the association between tumor size and survival among 24,740 
breast cancer cases, published in 1989, it was estimated that the 5-year survival rate was 80 
percent for women with cancers between 2.0 and 4.9 cm compared to 93 percent for tumors 
less than 2.0 cm (128). A later modelling study, by Michelson et al., based on three different 
study populations showed that there is very high correlation between tumor size and survival 
(129). The authors noted that not only did the introduction of screening decrease cancer size 
among screen-detected tumors, but there was also a decrease in cancer size among clinically 
detected ones. 
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2. Aims and Hypotheses 
My overall aim of the thesis work has been to contribute to future trials of risk-stratified 
screening. The focus of my studies has been on identifying determinants of delayed detection 
by studying observed outcomes of interval cancer and large cancer at diagnosis. Interval 
cancer is breast cancer clinically diagnosed after a negative screening. Mammographic density 
was already known to be an important risk factor for both outcomes. To improve our 
understanding of density and to identify novel determinants, the specific aims of my four 
studies were: 
 

I. To examine whether large fluctuations in mammographic density were 
associated with an increased risk of IC compared to SDC. 
Our hypothesis was that large fluctuations might increase the relative risk of IC by 
making it harder to notice a subtle tumor when the background of normal breast tissue 
changes markedly between examinations. 
 
 

II. To identify novel computer-extracted image features, beyond mammographic 
density, associated with an increased risk of IC compared to SDC. 
Our hypothesis was that it should be possible to extract more information from the 
mammogram than a single density measure related to the risk of IC compared to SDC.   
 
 

III. To identify risk factors, for SDC and IC separately, of having a large cancer at 
diagnosis and to examine long-term prognostic implications. 
Our hypothesis was that there would be different risk factors for the tumor being large 
depending on the mode of detection. We thought mammographic density might be a 
more pronounced risk factor for tumor size among SDC cases and that other 
characteristics might be more pronounced among the mostly clinically detected IC cases. 
 
 

IV. To examine the effect of mammographic density, localized at the site of 
subsequent cancer, on the risk of being diagnosed with IC or large cancer. 
Our hypothesis was that density localized at the site of the subsequent cancer would be 
strongly associated with both IC and large cancer, especially for the slower growing less 
aggressive cancers.  
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3. Patients and Methods 

3.1 Underlying Study Populations 

The descriptions below refer to the original study populations from which the specific study 
populations for each of my studies were then selected based on criteria stated in the ‘Results’ 
section for each study I-IV. 

3.1.1 LIBRO-1 

In Study I-III, the underlying study population was based on the Linné-Bröst1 (LIBRO-1) 
cohort which was originally created by identifying all 11,696 female breast cancer cases incident 
in Stockholm from 2001 to 2008 (118). After exclusions due to being outside the age range 40 
to 72 years at diagnosis, being deceased or without contact address, 9348 women remained. 61% 
gave informed consent after receiving an invitation sent by mail in early 2009, resulting in 5715 
women being included in the final LIBRO-1 study population. Information on BMI, HRT use, 
and other socio-demographic, anthropometric, hormonal, and lifestyle factors was obtained 
through questionnaires. The median time between diagnosis and enrollment was 4.8 years 
(interquartile range: 3.0 to 6.6 years). BMI was calculated from self-reported length and weight. 

Images 

After exclusions of women without mammography screening within a regular screening interval, 
or without information on detection mode, 2901 women with IC or SDC remained in the 
underlying cohort. Both digital and analog mammograms were retrieved. The analog ones were 
digitized with a 12-bit dynamic range.  

3.1.2 CAHRES 

In Study I and II, the validation population was selected from the Cancer and Hormone 
Replacement Study (CAHRES) (130). In summary, CAHRES was based on women 50 to 74 
years old when diagnosed with breast cancer, 1993 to 1995, and reported to any of the six 
Swedish Regional Cancer Registries. They were asked to participate through their physicians 
shortly after diagnosis. 84% consented to participate. A similar number of healthy control 
women were randomly selected, age-matched, from the Swedish population register. After 
exclusions, 2818 cases and 3111 controls remained in the underlying study population. 

Images 

Mammograms were retrieved for around 75% of participants (125). The mammograms were 
originally analog film-screen and were digitized as described above for LIBRO-1. After 
exclusions for poor image quality, lack of extended written consent and lack of postmenopausal 
images, 1747 cases of incident breast cancer remained in the underlying cohort. Descriptive 
statistics did not differ between the ones included and excluded, except for an age difference of 
less than one year. 

3.1.3 KARMA 

In Study IV, the main study population was based on the Karolinska Mammography (KARMA) 
cohort. KARMA is a prospective cohort created by inviting all women attending mammography 
at any of the recruiting mammography departments in Stockholm and Skåne between 2011 and 
2013. In total, 210,233 women were invited and 70,877 (34%) gave informed consent to 
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participate (131). The age range was 21 to 95 years. The consent rate was highest, 39%, in the 
65-69 age group and lowest, 30% in the 40-44 age group. Participants were asked to report on 
reproductive history, use of oral contraceptives and hormone replacement therapy, previous 
benign breast disease and family history of breast cancer. BMI was calculated based on self-
reported height and weight. Baseline blood samples were collected. 

Images 

Mammograms were retrieved for 70,785 (99.8%) of the participants. All images were full-field 
digital mammograms in raw (a few initial ones missing) and processed format. 

3.2 Data  

3.2.1 Register Data (all Studies) 

Population-based registers have a centuries-old tradition in Sweden, and national personal 
identity numbers have been in use since 1947. The personal number is assigned at birth, and 
can only be changed under very rare circumstances. For my studies, data were retrieved by 
linking personal numbers to following registers: 

• The Swedish Cancer Register which contains information on type of cancer, date of 
diagnosis, invasiveness, TNM stage, and histological type. Already in 1978, 98% of all 
breast cancer diagnoses were reported (132). 

• The Breast Cancer Quality Register which contains additional data on tumor receptor status, 
histological grade, et cetera. 

• The Cause of Death Register which contains data on the cause of death for each individual 
since 1952. 

• The Screening Register at Regional Cancer Centre Stockholm-Gotland which contains data on 
participation status and recall decisions for each screening mammography. 

3.2.2 Cancer Detection Mode (all Studies) 

Detection mode was ascertained using the population-based Screening Register at the Regional 
Cancer Centre Stockholm-Gotland. The cancer was defined as screen-detected if the woman 
was recalled from screening and diagnosed during the following diagnostic work-up. The cancer 
was defined as IC if it was clinically diagnosed within a normal screening interval after a negative 
screening. Remaining cancer cases were defined as diagnosed outside regular screening. At the 
time of the studies, the common regular interval between screenings was 24 months. 

3.2.3 Mammograms and Density (all Studies) 

For Study I-III, based on the cohorts CAHRES and LIBRO-1, analog film mammograms were 
collected from radiology departments and digitized with an Array 2905HD Laser Film Digitizer 
(Array Corp, Tokyo, Japan). For Study I-III, PD was measured using an automated validated 
method developed in our group (54). Briefly, the method mimics the gold standard PD 
measurement method Cumulus, which is based on a semi-automated thresholding procedure 
(133). In LIBRO-1 there were both digitized film-based mammograms as well as full-field digital 
mammograms. For Study I-II, in which the focus of investigation were features of the 
mammographic images beyond baseline PD, we included only digitized film-based 
mammograms. 
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For Study IV, overall mammographic density was assessed on a percent-scale using the validated 
automated Stratus software (56). It was then categorized on PD scale cut-points (2%, 18%, 
49%) into four groups (cBIRADS) reflecting the definitions by the American College of 
Radiology Breast Imaging Reporting and Data System (BI-RADS) lexicon, fifth edition (58), see 
definitions in a previous section on ‘Mammographic Density’. Localized density was assessed 
by visual assessment and categorized according to the BI-RADS standard based on two 
radiologists’ consensus decision. First, the radiologists localized the tumor in the mammogram 
from the diagnostic time-point and then the corresponding location in the prior negative 
screening mammogram was assessed. 

3.2.4 Image Feature Extraction and Selection (Study II) 

In Study II, we examined a panel of 32 different image features that had previously been 
identified in a study from our group focusing on density prediction (134). We defined the dense 
area from which they would be extracted by three alternative thresholding methods. Before 
further analyses, we performed a global test of association to conclude whether there were any 
association with the outcome of IC vs. SDC status (further described under the section 
‘Methodological Considerations’). The features with the strongest associations with IC vs. SDC 
status were included in a multiple logistic regression model adjusted for age, BMI and use of 
hormone replacement therapy. 

3.2.5 Tumor Characteristics (all Studies) 

Data on tumor characteristics were obtained from the registers described above. In addition, 
missing data on tumor characteristics required to assign surrogate subtypes were retrieved from 
medical records.  

For Study III, the surrogate subtype was defined based on the consensus of the 13th St Gallen 
International Breast Cancer Conference (2013) Expert Panel (135). The tumor was assigned the 
luminal subtype if it was estrogen receptor (ER) or progesterone receptor (PR) positive (or 
both), and if it was HER2 negative. For these luminal cancers, if both ER and PR were positive 
and the proliferation measure Ki-67 was < 14% we assigned it to Luminal A subtype, otherwise 
to Luminal B subtype. The tumor was assigned to HER2-overexpressing subtype if it was ER 
and PR negative and HER2 positive, and assigned to Basal-like subtype if it was ER, PR, and 
HER2 negative. 

3.3 Epidemiological Study Design 

The ideal research study would be having each study person simultaneously subject to different 
levels of the exposure of interest (e.g., having high and low BMI), and then evaluate the 
outcome. The influence of all other factors would be the same, and the outcome would then 
only depend on the exposure of interest. Since this counterfactual experiment is not possible, 
there are various epidemiological study types that aim to mimic the ideal situation as closely as 
possible. In the sections below, I will briefly describe and discuss the study designs used in my 
studies. 

3.3.1 Cohort Study (part of Study III and IV) 

A cohort study involves the observation of a study population over time, with different 
individuals having different levels of exposure of a potential risk factor (136), e.g., BMI or 
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mammographic density. The occurrences of the outcome of interest, e.g., breast cancer or 
progression of a disease, are continuously monitored. In a cohort study, the risk can be 
expressed “per person” or “per person-time”. Person-time involves counting the individual time 
that each person is at risk of obtaining the outcome. The latter alternative is preferable when 
there are large differences between study persons regarding the time they are at risk. A person 
is not at risk when the potential outcome can no longer be monitored e.g., by the person moving 
abroad, dying, or otherwise becoming unavailable. It is called ‘censoring’ when such 
unobservable person-time is excluded and there are special statistical methods to handle this. 

In my thesis, parts of Study III and Study IV were cohort studies. In Study III, cohort design 
was used for the follow-up of future breast-cancer events after diagnosis. In Study IV, cohort 
design was used to model the risk of interval cancer, and large cancer, compared to healthy 
women. Cohorts can rely on retrospectively collected data, e.g., when a study person is asked to 
remember smoking habits 10 years ago, or on prospectively collected data such as the 
mammograms in my studies that were recorded and stored as they were acquired and later 
collected for the studies. One advantage of prospectively collected data is to lower the risk of 
information bias, described in the section below on ‘Bias and Confounding’ in ‘Methodological 
Considerations’. 

3.3.2 Case-control Study (all Studies) 

Sometimes a cohort design is not practically feasible, e.g., when a disease or outcome is rare. 
Performing a ‘case-control study’ makes the collection of exposure information more efficient 
since it can be limited to the individuals with the outcome of interest and only a limited number 
of healthy controls. The starting point for a case-control study is the collection of individuals 
who have obtained the outcome of interest. Then, controls without the outcome are sampled 
from the source population i.e., the individuals originally at risk. An important consideration is 
that the probability of being included in the sample should not depend on the exposure of 
interest otherwise there will be selection bias resulting in an incorrect estimation of the 
association between exposure and outcome.  

The odds ratio (OR) is an often-used risk measure in case-control studies. The OR is defined as 
the ratio of exposed to non-exposed individuals among individuals with the outcome divided 
by the corresponding ratio among individuals without the outcome. Simplified, the OR shows 
how over- or under-represented the exposure is among those who obtained the outcome. 

The term ‘case-case study’ is sometimes applied when the disease or outcome itself can be 
subdivided and analysed by different categories, e.g., breast cancer divided into SDC and IC. In 
principle, it is a type of case-control study but using the term case-case study highlights the fact 
that it is a comparison between two different categories of a disease rather than between 
diseased and healthy individuals. Studies I and II, and parts of Studies III and IV were case-case 
studies comparing IC with SDC, or small with large cancer. 

3.4 Statistical methods 

3.4.1 Linear Regression (Study II and III) 

To examine the potential association between a determinant and an outcome, regression analysis 
is commonly applied. An advantage of a regression model is that it can be adjusted for, or take 
into account, multiple risk factors in a single model. In linear regression, a continuous outcome 
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is assumed to be a linear function of the determinants. For each determinant, a coefficient is 
estimated based on the line that best fits the observed data. If a coefficient is 0.5 it means that 
for every one unit change in the corresponding determinant, the outcome increases by 0.5. If 
the confidence interval of a linear regression coefficient includes both positive and negative 
numbers, i.e., that the ‘true’ slope of the regression line might be downward as well as upward, 
there is no statistically significant association. 

Linear regression modelling was used in Study II and III with tumor size as the outcome, 
stratified by SDC and IC status. 

3.4.2 Logistic Regression (all Studies) 

Logistic regression is similar to linear regression, but is used when the outcome is binary, i.e., 
that it can have only two different values. This is particularly popular in medical research where 
regression models are used to examine or predict patients having vs. not having a certain disease 
or condition. When presenting the result in a medical context, the result is often presented as 
the estimated OR rather than the actual model coefficients. If the confidence interval of the OR 
includes 1, there is no statistically significant association. 

Logistic regression modelling was used in all studies, either for the outcome of IC compared to 
SDC (Study I-IV) or for the outcome of large compared to small cancer (Study III-IV). Analyses 
were generally carried out crude and adjusted for age, BMI, HRT and other breast cancer risk 
factors as specified. In Study III, multinomial logistic regression, having the ability to handle 
multiple outcomes, was used for the analysis of tumor subtypes. 

3.4.3 Mixed Effects Model – Mammographic Density Fluctuation (Study I) 

For Study I, the long-term trend of mammographic density for each individual was estimated 
by a mixed effects model. A mixed effects model explicitly distinguishes two sources of 
variation, between individuals and between time points within each individual. Based on model 
estimation, one example from Study I of estimated and model-predicted PD measures is shown 
in Figure 7 below. 
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Figure 7. Example from one study person. The dashed line corresponds to the model-
estimated PD values. The dots correspond to observed values at repeated mammogram 
examinations. 

The model used in Study I, had both random intercepts and random slopes which lends the 
most flexibility to fit the line to each individual. As the second stage in Study I, the fluctuation 
measure for each individual was calculated as the root-mean-square of the absolute difference 
between each observed and model-estimated PD (i.e., the distance between each dot and the 
dashed line in the Figure above). 

3.4.4 Cox Regression (Study III) 

When analysing time-to-event data there is often a need for censoring, i.e., to take into account 
that some study subjects might leave, and re-enter, the study population at certain time-points. 
An outcome taking place during such absence would not be properly observed. These 
circumstances can be handled by Cox regression, a proportional hazards model, by which the 
ratio of one hazard to another can be estimated. In the basic model, the ratio is assumed to be 
constant regardless of time. In Study III, when examining the progression-free survival, the 
outcome of interest was defined as the first occurrence of either local recurrence, distant 
metastasis or death due to breast cancer. Patients were followed from the date of diagnosis until 
a breast cancer-event, death by other cause, emigration, or end of study period (December 31, 
2015) whichever came first. 

4. Results 

4.1 Study I 

In the primary study population, LIBRO-1, there were 1064 women with three or more digitized 
film-based mammograms, 178 women with two mammograms, and 172 women with one 
mammogram, among postmenopausal women without prior breast surgery. In total, there were 
385 IC and 1029 SDC cases included. Women with IC had a higher average mammographic 
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density fluctuation than women with SDC, 0.44 and 0.41 respectively (p=0.031). There were no 
significant differences between IC and SDC cases regarding the following potential 
confounders: total number of mammograms per person, average time between mammograms, 
mean age at mammography or time from first to last mammogram. 

Mammographic density fluctuation was, after multiple adjustments, associated with the risk of 
interval compared to screen-detected breast cancer with an estimated per-standard deviation 
OR of 1.17 (95% CI = 1.03 to 1.33). In the independent validation cohort, CAHRES, the 
corresponding OR was 1.19 (95% CI = 1.04 to1.38). After categorizing the fluctuation into 
quartiles, we estimated the probability of IC for each quartile (Figure 8). The probability of IC, 
compared to SDC, was 27% in the top quartile and 19% in the bottom quartile of PD 
fluctuation. 

 

 

Figure 8. Proportion, or probability, of IC for each quartile of mammographic density 
fluctuation. Quartile 4 includes women with highest fluctuations and quartile 1 women with 
lowest fluctuations. Women in quartile 1 have a lower probability of being detected as interval 
cancer than women in the other three quartiles. 

4.2 Study II 

In the primary study population, LIBRO-1, there were 1403 women without prior cancer or 
benign breast surgery who had at least one pre-diagnostic digitized film-based mammogram. 
There were 394 IC and 1009 SDC included. Two image features, ‘skewness of the intensity 
gradient’ and ‘eccentricity’, were associated with the risk of interval compared to SDC. The two 
features were validated in the independent study population CAHRES (p=0.05, p=0.038). In 
secondary analyses, the first feature was associated with the tumor size at screen-detection 
(p=0.00001), while the second feature was associated with the tumor size at interval detection 
(p=0.018). In Figure 9 below there are examples of mammograms with high and low values of 
each feature. 
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Figure 9. Example mammograms to illustrate high and low values of each of the two identified 
image features. 

 

4.3 Study III 

There were 2012 women in the study population that had information on PD, cancer size and 
detection mode and were over 50 years of age. There were 546 IC and 1466 SDC. Among ICs, 
there were 185 (34%) large cancers, and among SDCs there were 281 (19%) large cancers.  

Overall, BMI and PD were the only factors associated with cancer size at diagnosis. Stratified 
by detection mode: the multiple adjusted OR for BMI (≥ 25 vs. < 25 kg/m2) was 1.37 (95%CI: 
1.02-1.83) and 2.12 (95%CI: 1.41-3.18), for screen-detected and ICs respectively. The 
corresponding OR for PD (≥ 20 vs. < 20 %) was 1.72 (95%CI: 1.29-2.30) and 0.60 (95%CI: 
0.40-0.90). Model-predicted probabilities for being diagnosed first after the cancer had become 
large, as a function of BMI, are shown in Figure 10.  

Among IC, women with high BMI (solid line in Figure 11 below) had worse prognosis than 
women with low BMI (hazard ratio 1.70; 95% CI: 1.04-2.77). Among SDC, BMI was not 
associated with prognosis. PD was not associated with prognosis among IC or among SDC 
cases. 
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Figure 10. Model-estimated probability of being diagnosed with a large cancer, among screen-
detected cancers (left) and among interval cancers (right), as a function of BMI. 

 

 

Figure 11. Cumulative Hazard function for disease progression in terms of local recurrence, 
distant metastasis or breast-cancer death. Screen-detected caners (top panels) and interval 
cancers (bottom panels) by levels of BMI (left-side) and PD (right-side). 
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4.4 Study IV 

There were 63,130 women in the underlying study population KARMA who were within the 
screening age range 40 to 74 years, had information on detection mode, had at least one 
mammogram between study entry and before any breast cancer diagnosis, and who had no prior 
breast cancer. At the time of study inclusion, there were 891 women with breast cancer, and 386 
for whom images were available allowing assessment of localized density. In total, there were 
246 IC and 250 large cancers. There was a modest correlation between overall and localized 
density, r = 0.42. The probability of having concordant density categories was 0.35 (95%CI: 
0.21 to 0.49), 0.60 (95%CI: 0.52 to 0.68), 0.38 (95%CI: 0.30 to 0.45) and 0.32 (95%CI: 0.18 to 
0.46) for category ‘A’, ‘B’, ‘C’ and ‘D’ density respectively. Figure 12 below shows the 
distribution across categories of overall and localized mammographic density of the 386 cases 
for which local density assessment was performed. 

 

 

Figure 12. Distribution of the 386 cases across categories of overall and localized 
mammographic density. Markers in the graph were jittered for visibility. 

For the outcome of IC compared to SDC: for women with localized density category ‘D’ 
compared to category ‘A’ the estimated OR was 3.1 (95%CI: 0.8 to 11.5) with p=0.076 for the 
linear trend after multiple adjustments including overall density. Among women with lymph 
node negative cancers the corresponding OR was 5.3 (95%CI: 1.3 to 21) with p=0.031 for the 
linear trend. For the outcome of large cancer compared to small cancer: the corresponding ORs 
were 10.3 (95%CI: 2.7 to 38.9) with p<0.001 for the linear trend overall, and 19.1 (95%CI: 4.4 
to 82) with p<0.001 for the linear trend among lymph node negative cancers only.  
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5. Discussion 

5.1 Study I 

We found that large fluctuations in mammographic density were associated with an increased 
risk of IC compared to SDC. To what extent this association is related to inconsistencies in 
image acquisition, reduced mammographic detectability or a marker of growth-promoting 
biology remains to be elucidated in future research. In addition to different positioning, also 
differences in breast compression can affect the density measurement (137). Another study 
showed some evidence for fluctuations in mammographic density correlated with phases in the 
menstrual cycle (138). Future research should try to validate the findings in a screening cohort 
of healthy women. For such validation, it might be beneficial to use an image processing pipeline 
that realigns images and reduces the influence of technical variations, to more accurately 
appreciate true biological change (56). 

5.2 Study II 

We identified two novel features that were associated with the risk of IC compared to SDC, 
independently of PD. A high value of one feature, ‘Eccentricity’, was associated with decreased 
size at IC detection, suggesting a breast anatomy making clinical detection easier. A high value 
of the other feature, ‘Skewness of the intensity gradient’, was associated with an increased size 
at screen-detection, suggesting a breast anatomy making mammographic detection more 
difficult. Previous studies of novel image features, in relation to IC, have focused on identifying 
pre-malignant changes and not on features of the normal breast (139, 140).  

5.3 Study III 

On an overall level, we found that women with high BMI or high PD had an increased risk of 
being diagnosed with a large compared to a small cancer. Both findings are supported in prior 
research (141). Conclusions after stratification for detection mode are reported below. 

High BMI was associated with having a large cancer among both SDCs and ICs, with a higher 
point estimate among ICs. This suggests more difficult clinical detection with high BMI, which 
might ‘spill over’ to larger sizes also at mammographic detection. The association with low BMI 
might to some extent be related to having smaller breasts facilitating symptomatic clinical 
detection (142).  

High PD was associated with having a large cancer among SDCs only, and actually showed an 
opposite association among ICs. This suggests that high PD makes only mammographic 
detection, but not clinical detection, more difficult. In the studies cited above, there is ample 
support for high PD being associated with masking, requiring the tumor to be larger before it 
becomes visible. There is no prior study showing that high PD makes clinical detection easier. 

In supplementary analysis, we found that that among women with IC having high BMI is 
associated both with larger tumors and with a larger proportion of HER2-overexpressing 
tumors. Not contradicting our results, a recent study by Musolino et al. showed that early stage 
HER2-overexpressing breast cancer had a lower survival if detected as IC compared to as SDC 
(143). 
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High BMI was associated with worse prognosis, but only if the cancer was detected as an IC. 
This effect of BMI among clinically detected cancers is supported by a prior Swedish study 
suggesting that the prognostic value of BMI was higher before, compared to after, the 
introduction of population-wide screening programs (144). High PD, on the other hand, was 
not associated with prognosis. These results agree with a recent study of density and breast-
cancer specific survival by van der Waal et al. which showed no significant association, but a 
lower hazard ratio point estimate for SDC compared to IC (145). One can speculate that the 
‘clinical masking’ provided by high BMI is worse, in terms of prognosis, compared to the 
‘mammographic masking’ provided by high PD. To reduce the effect of potential clinical 
masking, women with high BMI should perhaps be especially encouraged to participate in 
screening and shorter screening intervals might be considered. 

5.4 Study IV 

High localized density was strongly associated with having a large rather than small cancer at 
diagnosis, and to some extent also with being diagnosed with IC rather than SDC. No prior 
studies were identified. To elucidate whether these associations were caused by mammographic 
masking or by biological differences affecting tumor growth was not the aim of this study. 
However, the stronger association among the less aggressive, node-negative, cancers suggests 
that masking is the more important mechanism. Before clinical implementation of localized 
density assessment our visual approach should be replaced by a computerized method - perhaps 
an adaptation of the breast-density map method used in a recent study by Holland et al. (146). 
As expected, high overall density was associated with both large cancers and with IC, both when 
comparing with healthy women and in case-case analysis. 
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6. Methodological Considerations 

6.1 Bias and Confounding 

Sampling Bias 

It is important to always consider the possibility of sampling bias, i.e., that the sampling of cases 
and controls were not independent of the exposure of interest. The percentages of responders 
were 84%, 61% and 34% for the CAHRES, LIBRO-1 and KARMA cohorts respectively. 
CAHRES and LIBRO-1 were based on cases, and there is no obvious reason why the response 
rate would depend differently on any of the studied exposures when comparing women with IC 
to women with SDC. For the KARMA cohort which was based on all women attending 
mammography units, healthy women with self-perceived high risk of breast cancer might be 
more prone to participate in the cohort. This might attenuate the association between breast 
cancer and family risk, but would not affect the comparison of SDC and IC cases. 

In addition, there is potential sampling bias in the LIBRO-1 cohort related to survival since 
study inclusion was performed between one to eight years after diagnosis. Women with the 
most advanced, aggressive, tumors are generally less likely to be alive at later time points, and 
should thus have been less likely to be included in the cohort. If this imbalance constitutes a 
relevant sampling bias or not depends on how survival is related to the outcomes of interest (IC 
vs. SDC). Since ICs are generally more aggressive than SDCs, the bias has most likely lead to an 
attenuation (“bias towards the null”) of differences between IC and SDC in terms of 
characteristics related to tumor aggressiveness. 

Lead Time and Length Bias 

Lead time and length bias are central concepts in evaluations of screening efficacy (147). Lead 
time is the difference between the time when the cancer was actually detected at screening and 
the time when it, in the absence of screening, would have been detected clinically (148). In 
screening, the aim is to detect cancer as long before it becomes clinically detectable as possible, 
i.e., to maximize the lead time with the aim to increase survival. However, in research studies of 
survival time, the lead time becomes a bias in so far that it is added to the survival time of the 
screen-detected cancers only. The theoretical concept ‘sojourn time’ is closely related to lead 
time. Sojourn time is the time between when a tumor becomes detectable on screening and the 
time when it is clinically detectable. For a particular case, the sojourn time starts when a cancer 
becomes screen-detectable. Later, the starting point for lead time is when the cancer is actually 
screen-detected (if at all). Based on data from clinical trials on breast cancer early detection, it 
has been estimated that the average breast cancer sojourn time is around 2 years, with some 
dependence on age (148, 149).  

The source of length bias, on the other hand, is that tumors that are intrinsically less aggressive 
have a longer sojourn time are more likely to become screen-detected, and less likely to be 
clinically detected. Length bias should be considered when comparing tumor characteristics 
between SDC and IC with the aim to make conclusions about survival. Obviously, the length 
bias is potentially stronger when the time between screenings is long and the follow-up time in 
the research study is short, and should disappear in a theoretical situation with daily screening 
and be attenuated when the follow-up time is long. 
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Information Bias 

Information bias arises if exposure measurements are acquired in a way that makes them 
systematically different depending on the outcome of interest. In my studies, it would arise if 
exposures would be measured differently for women with IC compared to SDC or for women 
with large compared to small cancer. However, there is no obvious reason why the main risk 
factors in my studies, age, mammographic density, BMI and HRT should be affected. Related 
to the survival analysis in Study III, potential bias due to the timing of BMI measurements is 
discussed in the section on ‘Study III’ below. 

Confounders 

A confounder is a risk factor that is associated with both the outcome and the exposure of 
interest, and might distort the modelled association between them. There are two fundamentally 
different ways of deciding which potential confounders to include in an analysis. The first is a 
technical approach in which any parameter is considered a potential confounder, and its 
inclusion or exclusion is decided on statistical grounds. The other is an approach in which the 
parameters are selected based on prior knowledge about potential biological mechanisms. In 
our study, we have generally chosen the latter approach. However, for Study II forward-
selection was used for novel image features since we had no a priori knowledge of connections 
between any image feature and biological mechanisms. 

6.2 Study I 

In Study I, we first examined the possibility to use standard deviation as a measure of fluctuation. 
However, as shown in Figure 13 below, a high standard deviation might be related to a large 
long-term decrease and not necessarily to fluctuations around the trend line. Therefore, we 
decided to use mixed effects modelling, as the first stage, to define the long-term trend line on 
the model-estimated PD for each woman over time. 

The overall individual fluctuation measure was then calculated as the root-mean-square of all 
deviations between observed and model-estimated PD. As the second stage, we fitted logistic 
regression models to examine the association between the fluctuation and the outcome of 
interest, i.e., IC compared to SDC. 

From a statistical standpoint, an issue with the two-stage approach in our study was that the 
uncertainty in estimating PD fluctuation at the first stage was not carried over to the second 
stage. After fitting an alternative single-stage model in which this issue would not arise, we could 
confirm the conclusion that PD fluctuation was higher for IC than SDC cases. A limitation of 
the study is that it was based on a case-only cohort, from which conclusions on screening among 
healthy women cannot be made. 
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Figure 13. Observed PD values, with connecting lines, for the 10 women who had the highest 
standard deviation. Standard deviation did not appear to be a good measure to distinguish 
fluctuation from a long-term trend. 

6.3 Study II 

Due to the high correlation between feature values, we applied a global test of association with 
IC vs. SDC status before examining each feature separately. For the global test, we first carried 
out tests of association for each of the 32 features for each of the 3 definitions of dense area. 
These tests were based on fitting logistic regression models with IC vs. SDC status as the 
outcome and using continuous PD as an adjustment variable. Then, we performed a global test 
of association testing the null hypothesis that none of the features were associated with IC vs. 
SDC status by examining the number of test results that were significant at the 5 % level (global 
test statistic). An empirical (global) level of significance was obtained by permuting IC vs. SDC 
status over a large number of simulations (10,000), and calculating the fraction of (global) test 
statistic values based on permuted data that were larger than the test statistic value obtained for 
the non-permuted data set. This global test is similar to Wilkinson’s test but accounts for the 
correlation of the features. After we had concluded that there was a global difference between 
the features of IC and SDC, we continued to identify individual features as described above in 
the section on ‘Image Feature Extraction and Selection’. 

A limitation of our study was that we extracted features from digitized analog mammograms 
and not from digital mammograms. The same feature calculation methods can be used for both 
types of mammograms, but our results would need to be validated among digital mammograms. 

6.4 Study III 

In the other studies, BMI was used as an adjustment. In Study III however, it was a key exposure 
of interest. Therefore, we examined the possibility that the identified associations with BMI 
could be biased by the fact that it was measured at time of study inclusion which could be years 
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after diagnosis. We had to consider the possibility of reverse causality – that having a large tumor 
would cause an increase in BMI. However, this did not seem biologically plausible. To examine 
the influence of the time difference between diagnosis and measurement, we conducted a 
sensitivity analysis based on three separate regression models, with tumor size as the outcome: 
less than 3 years, from 3 and less than 6 years, 6 years and more. The analysis showed similar 
effect sizes of the association between BMI and tumor size across all three time-delay categories. 
Furthermore, meta-analysis had shown that higher BMI was associated with worse outcome 
regardless of the time when it was ascertained (150); before or after diagnosis, more or less than 
12 months after diagnosis. 

Even though we thought that potential survival bias would confer a ‘bias towards the null’, we 
carried out a sensitivity analysis by introducing a term for the time between diagnosis and study. 
An additional sensitivity analysis was performed by limiting the survival analysis to the 20% of 
cases diagnosed closest to study entry. The hazard ratio point estimate was somewhat higher in 
this group than in the entire study sample. The results of these analyses showed no evidence for 
survival bias affecting the conclusions of our study. 

Finally, having a categorical cut-off at a certain tumor size is to some extent arbitrary, even if 
our definition has been used in several other publications and systems. Therefore, it was 
reassuring that linear regression modelling confirmed the corresponding associations with BMI 
and PD. 

6.5 Study IV 

In Study IV, there was potential uncertainty in the assessment of localized density. The 
radiologist had to localize the tumor in the current mammogram and then identify the 
corresponding location in the prior mammogram. The degree of uncertainty depended on the 
tumor appearance and on the similarity between the two mammograms from different time 
points. A potential bias in Study IV was that high localized density actually was an early 
manifestation of cancer. It was reassuring that limiting the analysis to cases that did not show 
cancer signs at retrospective review did not markedly affect the estimated effect. Even if this 
potential bias could not have explained our findings, it cannot be ruled out that certain increased 
densities corresponded to subtle cancer.  
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7. Ethical Considerations 
Research ethics at Karolinska was recently brought into the spotlight of public debate and it was 
evident that ethics must be an important and integral part of conducting research. Even if these 
incidents concerned questionable surgical procedures, ethics is naturally relevant for all research 
whether it is observational or interventional. As researchers, we must protect study participants 
against the risk of physical injury and violation of integrity. They must have the right to be fully 
informed of any potential risks before actively choosing through ‘informed consent’. The 
European Council has developed a ‘Convention on Human Rights and Biomedicine’, which 
requires legal regulation of the ethical process and how the ethical review boards should operate. 
The Ethical Review Act (2003:460) addresses the handling of sensitive personal data, the 
collection of biological samples, and informed consent: 

http://www.epn.se/media/45159/the_etical_review_act.pdf 

For the CAHRES cohort, women with incident breast cancer were invited shortly after 
diagnosis as well as a similar number of healthy control women selected from the population 
register. For the LIBRO-1 cohort, participants with incident breast cancer during 2001 to 2008 
were asked to participate. For the KARMA cohort, all women attending mammography were 
asked to participate in a prospective cohort. All three cohorts required biological samples, access 
to hospital records and images, as well as questionnaire data.  

Ethical approval was granted by the regional ethical review board in Stockholm for each of the 
studies included in this thesis: 

• CAHRES Dnr 155/93 with extensions Dnr 99-338 and Dnr 2005/360-32 

• LIBRO-1 Dnr 2009/254-31/4 with extension Dnr 2011/2010-32 

• KARMA Dnr 2010/958-31/1 

Use of register-based data is one of the few areas in medical research, which is sometimes 
exempted from the requirement of informed consent by the decision of the regional ethics 
review board. However, for the three cohorts of my studies written informed consent was 
obtained from each participant. Participants were informed that they could withdraw at any 
time. They gave explicit informed consent to allow for matching to registers such as the Cancer 
Register, the In-and Outpatient Register and Cause of Death Register. The personal numbers 
of study participants were exchanged for an anonymous study participant id number. Only a 
small number of study personnel had access to the linking key. 
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8. Concluding Remarks 
The work in this thesis has been carried out with the main aim to contribute to future trials of 
risk-stratified screening. The focus has not been on breast cancer risk per se, but on the risk of 
delayed detection in terms of interval cancer and large cancer at diagnosis. In LIBRO-1, the 
study population mostly used in my studies, the proportion of those two outcomes together was 
around 40% (table below).  

 

 
 

For risk-stratified screening to be successful, women at elevated risk of delayed detection must 
be identified as precisely as possible. Women who are predicted to have a low risk but actually 
have a high risk, would be wrongfully assigned a less intense screening program potentially 
leading to delayed detection and increased mortality. Conversely, women who are predicted to 
have a high risk but actually have a low risk, would need to go through an unnecessary amount 
of examinations and procedures. When starting my research studies, it was already known that 
mammographic density was associated with interval cancer and large cancer. The results from 
each of my studies has contributed understanding of further determinants and independent risk 
factors:  

• In Study I, we estimated the individual magnitude of density fluctuation over time and 
found that high fluctuation was a determinant of IC compared to SDC. 
 

• In Study II, we extracted novel image features and identified two features that were 
determinants of IC compared to SDC. 

 
• In Study III, we identified high PD and high BMI as determinants of having a large 

cancer, and we showed that these associations differed between detection modes. In 
addition, we showed that for women who were diagnosed with IC, having a high BMI 
was a determinant of worse prognosis. 

  
• In Study IV, we found that the localized density in the prior negative mammogram at 

the location of the subsequent cancer development was a determinant of future tumor 
size and also of being diagnosed with IC among the less aggressive node-negative 
cancers. 

How our understanding of these determinants can be applied, and further validated, will be 
outlined in the next section ‘Future Perspectives’.   
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9. Future Perspectives 
Taking the next step in improving breast cancer screening through risk-stratified screening 
assigning individual time intervals between screenings and individual choice of radiological 
method require precise risk assessments (101). As a next step in the scientific exploration, I 
would suggest to set up a trial based on a combination of a general breast cancer risk model 
(102) and a delayed detection model. The latter model could benefit from the results of my 
studies. 

Determinants for interval cancer could be used to identify women that might benefit from 
shorter time intervals between screenings or from a more sensitive radiological method. 
Determinants for large cancers are to some extent different depending on mode of detection. 
In Study III, BMI was found to be associated with larger tumors and worse prognosis among 
interval cancers, suggesting that women with high BMI should be offered shorter time intervals 
between screenings. In Study III, overall density was associated with large cancer among screen-
detected cases, suggesting that women with high density should be offered a more sensitive 
radiological modality. Future research should study the effect of these different criteria for the 
individual choice of time interval and of radiological method. I am personally aiming to 
contribute by studying the effects of offering MRI-based screening for a selected group of 
women at elevated risk of breast cancer and of delayed, or reduced, mammographic detection. 

Overall density has previously been shown to be associated with reduced mammographic 
detection. In Study IV, we identified localized density as a further determinant of large cancer 
and interval cancer independently of overall density. Since visual assessment of localized density 
is not feasible in a screening setting, a suggestion is to develop computer-calculated ‘minimal 
detectable tumor size’ maps and summary measure for each mammogram.  

In all of my studies the algorithms for calculating image characteristics, including density, were 
specified by regular computer programming. The current rise of machine learning and 
specifically deep learning which enables classification directly from image pixel data shows great 
promise for breast imaging (151-153). I plan to contribute to this discovery process by 
examining how deep learning can be applied to improve different aspects of breast cancer 
screening including early detection and a more efficient radiological workflow. 

In summary, based on the findings of novel determinants and increased understanding of 
interval cancers and large cancers, there are several promising avenues for future research that 
I hope will lead to further improvement of breast cancer screening and reduced breast cancer 
mortality.  
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Svensk sammanfattning (abstract in Swedish) 
Bröstcancer är den vanligaste cancerformen för kvinnor, både i Sverige och globalt. I många 
höginkomstländer har mammografiscreening i ett par decennier framgångsrikt bidragit till 
minskad dödlighet. På senare tid har intresset ökat för att prova att ersätta dagens åldersbaserade 
system med ett riskbaserat system. I ett riskbaserat system avgörs, för varje individ, ett lämpligt 
tidsintervall mellan screening-tillfällen och en lämplig radiologisk undersökningsmetod. För att 
göra detta krävs en bra modell för att individuellt avgöra risken för bröstcancer samt risken för 
fördröjd upptäckt. Mina studier i denna avhandling har varit inriktade på att bidra till det 
sistnämnda. Mammografisk täthet är ett mått på hur mycket tät bröstvävnad som finns, och är 
en känd riskfaktor för fördröjd upptäckt. Mitt mål har varit att identifiera och förstå ytterligare 
riskfaktorer genom att fokusera på kvinnor med intervallcancer samt stora cancrar och jämföra 
dessa med screeningupptäckta respektive små cancrar. Intervallcancer är cancer som upptäcks 
efter en negativ screening i tidsintervallet fram till nästa screening. Mammografierna som 
datoranalyserades var de negativa, som alltså saknade påvisad tumör. Studie I till III baserades 
på retrospektiva fall, medan studie IV baserades på en prospektiv kohort. 

I Studie I utvecklade vi ett mått på fluktuationer i mammografisk täthet över tid. Vi kunde 
konstatera att de kvinnor som diagnostiserades med intervallcancer hade högre täthets-
fluktuationer än de vars cancer upptäcktes vid screening. 

I Studie II undersökte vi 32 datorberäknade bildegenskaper i det täta området i mammografin, 
och fann att två av dessa skilde sig åt mellan intervallcancrar och screeningupptäckt cancer. Den 
ena bildegenskapen var relaterad till formen på det täta området. När detta var mer platt än runt 
ökade risken för intervallcancer, möjligen på grund av att klinisk upptäckt underlättades. Den 
andra bildegenskapen föreföll vara relaterad till om tätheten var koncentrerad eller om den var 
uppbruten av mindre täta stråk. När värdet indikerade mer koncentrerad täthet var risk för 
intervallcancer högre, möjligen på grund av att mammografisk upptäckt försvårades. 

I Studie III identifierade vi riskfaktorer för att cancern hunnit bli större än 2 cm innan diagnos. 
Det var redan känt att hög mammografisk täthet liksom högt BMI ökade risken för detta. Vi 
undersökte om riskfaktorerna skilde sig åt beroende på upptäcktsmetod – kvinnor med 
screeningupptäckt cancer respektive kvinnor med kliniskt upptäckt intervallcancer. Högt BMI 
var associerat med större tumörstorlek oberoende av upptäcktssätt, medan hög täthet bidrog till 
stora cancrar endast bland de screeningupptäckta. En långtidsuppföljning visade att bland 
kvinnor med intervallcancer var högt BMI relaterat till ökad risk för lokalrecidiv, metastas och 
bröstcancerspecifik död. 

I Studie IV fann vi att den lokaliserade tätheten på platsen för framtida cancer ofta skilde sig åt 
jämfört med den generella tätheten i bröstet som är det mått som brukar användas. Vi 
undersökte effekten av den lokaliserade tätheten, och upptäckte att den var starkt kopplad till 
risken att ha en stor cancer vid diagnos. Den var också kopplad till risken för intervallcancer 
bland de mindre aggressiva bröstcancrar som var lymfkörtelnegativa. Dessa associationer 
existerande även efter att vi tagit hänsyn till skillnader i generell täthet. 

Sammanfattningsvis har vi identifierat nya riskfaktorer för fördröjd upptäckt av bröstcancer, 
vilka bör valideras i framtida studier där riskstratifierad screening testas.  
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