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ABSTRACT 

Alzheimer’s disease (AD) is the most common form of dementia. One of the earliest and most 

distinct features of AD is memory loss, followed by difficulties in learning and a decline in 

cognitive abilities. People afflicted with AD usually develop symptoms in their late seventies, 

but we know today that the very first signs of pathology can be detected decades before 

symptom onset. A considerable part of AD research today is focused on the detailed 

characterization of this asymptomatic “silent” phase of AD. 

The main pathological hallmarks of AD are amyloid plaques – abnormal extracellular deposits 

of the amyloid-β (Aβ) protein and intracellular neurofibrillary tangles (NFTs) – aggregates of 

the phosphorylated tau protein. AD is also characterized by progressive neurodegeneration – a 

deterioration of the structure and function of neurons, which leads to loss of brain tissue. 

Atrophy first takes place the medial temporal lobe (the entorhinal cortex and the hippocampus) 

and subsequently propagates to other areas of the brain. Magnetic resonance imaging (MRI) is 

a powerful method used to assess the extent of atrophy of the whole brain or specific structures. 

Another useful tool for studying AD pathology is magnetic resonance spectroscopy (MRS). 

This method allows quantification of certain brain metabolites in vivo. The most relevant MRS 

metabolites in the context of AD are myo-inositol – an organic osmolyte and N-acetyl-aspartate 

– a marker of neuronal integrity. 

The overall aim of this thesis is to further characterize structural and metabolic changes 

associated with incipient AD pathology.  

Study I assesses a common methodological issue of volumetric MRI studies related to inter-

individual differences in intracranial volume (ICV). In a study setting where regional brain 

volumes are analyzed, it is often of interest to compare groups, e.g. control vs patient, in order 

to quantify atrophy due to pathology. This type of group comparison is confounded by the fact 

that people with larger ICV usually have larger brain structures, making it difficult to isolate 

disease-related atrophy. This work examines multiple procedures that can be used to 

compensate for ICV in volumetric studies, highlighting that the choice of ICV normalization 

approach may have profound effects on the interpretation of study results.  

Study II examines brain morphology from a network perspective. Here, the brain is 

represented as a graph – a set of nodes interconnected by edges – where the nodes are based on 

anatomical regions and the edges are measures of the “connection” (i.e. structural co-variance) 

between these regions. We examine global and local network properties in cognitively healthy 

elderly with evidence of amyloid pathology. Study II reveals that the changes in cerebral 

network topology in asymptomatic individuals at risk for AD occur before to any detectable 

cortical thinning.  

Studies III and IV explored whether brain metabolites measured with MRS may be useful 

biomarkers of ongoing amyloid-related pathological processes. Previous MRS studies have 

found that in a typical AD spectrum, mI is elevated and NAA is decreased. However, relatively 



little is known about the time course of these changes as well as the interplay between MRS 

and established biomarkers/risk-factors for the disease. In Study III, MRS spectra of non-

demented individuals at varying degrees of risk for AD was examined in conjunction with 

information about Aβ, tau and APOE ε4 carriership – the main genetic risk factor for AD. Our 

findings highlight the very early involvement of brain mI in AD. We show that this metabolite 

is changed already at presymptomatic disease stages, and that elevated mI is linked to a higher 

Aβ plaque load. Study IV is an extensive follow-up of Study III, and the first longitudinal MRS 

study, taking into account individual amyloid status. We demonstrate that during a four-year 

follow-up, non-demented individuals with pathological baseline Aβ accumulate mI at a higher 

rate, suggesting that mI may have the ability not only to detect but also to track ongoing Aβ 

pathology. Ultimately, we hope that non-invasive cost-efficient MRS markers may be useful 

for early patient screening and evaluation of disease-modifying strategies. 

  



 

 

SAMMANFATTNING PÅ SVENSKA 

Alzheimers sjukdom är den vanligaste formen av demenssjukdom. Personer som lider av 

Alzheimer drabbas av en försämrad minnesfunktion, inlärningssvårigheter och nedsatt kognitiv 

förmåga.  

Forskning har visat att de tidigaste patologiska processerna kopplade till Alzheimers sjukdom 

inträffar 10-20 år innan de första symptomen uppträder. De inledande förändringarna i hjärnan 

uppstår när proteinet β-amyloid ansamlas i hjärnbarken i så kallade amyloida plack. Det andra 

kännetecknet på Alzheimer är spridningen av ansamlingar av det patologiska proteinet tau. 

Alzheimer är en neurodegenerativ sjukdom där nervceller förtvinas och så småningom dör, 

vilket leder till att vissa områden i hjärnan minskar i volym. De områden som först drabbas av 

nervsönderfall är de mediala temporalloberna (entorhinalcortex och hippocampus) och med 

tiden sprider sig atrofin genom hela hjärnan. Även subtila förändringar i hjärnvolym går idag 

att mäta tack vare avancerade bildgivande metoder, framförallt magnetresonanstomografi 

(MRT). Förutom att studera atrofi går det även att undersöka förändringar av vissa kemiska 

ämnen i hjärnan. Metoden som möjliggör detta heter magnetresonansspektroskopi (MRS) och 

kan tillämpas i samband med en rutinundersökning med MR. Metaboliternas koncentrationer 

avspeglar det allmänna hälsotillståndet hos hjärncellerna, ämnesomsättning i hjärnan och 

eventuellt även amyloid-patologi in vivo. 

Idag finns inga botemedel mot Alzheimer, däremot finns symptomlindrande läkemedel som 

oftast är effektiva i början av sjukdomsförloppet. Att kunna upptäcka sjukdomen i ett tidigt 

skede är en förutsättning för att så småningom lyckas utveckla en framgångsrik behandling.  

Därför går en stor del av Alzheimerforskning idag ut på att hitta och validera nya 

sjukdomsmarkörer samt avbilda de allra tidigaste patologiska förändringar i hjärnan. 

Avhandlingens syfte är att bidra till kartläggningen av strukturella och metaboliska 

förändringar i hjärnan vid begynnande Alzheimer.  Därför har vi företrädesvis arbetat med data 

från individer med tidiga tecken på kognitiv svikt samt friska personer i riskzonen för 

Alzheimer, snarare än patienter med fastställd demensdiagnos. I avhandlingen ingår fyra 

delarbeten, de två första är inriktade på hjärnans anatomi/morfologi och de två sista undersöker 

hjärnans metabolism. 

Studie I behandlar en viktig metodologisk aspekt av volymmätningar av olika hjärnstrukturer. 

I studier där regionala hjärnvolymer analyseras är det ofta intressant att jämföra dessa strukturer 

mellan grupper (t.ex. friska och sjuka) för att kvantifiera volymminskningen orsakad av 

sjukdomen. Dessa gruppjämförelser försvåras av att människor med större huvuden oftast även 

har större hjärnstrukturer. För att komma fram till ett pålitligt resultat måste en kompensation 

för den intrakraniella volymen (ICV, från eng. intracranial volume) tillämpas. Studien redogör 

för de olika normaliseringsmetoderna och belyser för- och nackdelar med samtliga. Arbetet 

belyser att det sätt man använder för att ta hänsyn till ICV kan vara direkt avgörande för 

tolkningen av resultat i volymetriska studier. 



I Studie II använder vi oss av det matematiska konceptet grafteori för att studera strukturella 

förändringar i hjärnans nätverk. Grafteori är en kraftfull metod som bland annat undersöker 

förmågan hos nätverken att snabbt integrera information från avlägsna områden i hjärnan, samt 

stå emot anfall. En graf är en mängd punkter, kallade noder, sammankopplade med linjer, 

kallade kanter. I en strukturell MR studie definierar man noderna utifrån de olika 

hjärnregionerna och kanterna utifrån associationerna mellan dessa regioner. Studien 

undersökte globala och lokala förändringar i nätverken hos friska individer med avvikande β-

amyloid värden i ryggmärgsvätskan, då dessa personer anses löpa högre risk för att utveckla 

Alzheimer. Vår studie avslöjar att nätverksförändringar hos denna grupp kan påvisas redan 

innan enstaka volymförändringar kan detekteras.  

Studier III och IV har som mål att undersöka huruvida vissa hjärnmetaboliter detekterade med 

MRS återspeglar en patologisk process specifik för Alzheimers sjukdom. Tidigare MRS studier 

har visat att ett Alzheimer-typiskt spektrum karakteriseras av en ökning i myoinositol (en 

organisk osmolyt) och en minskning av N-acetylaspartat (en neuronmarkör). Däremot finns det 

relativt lite kunskap kring samspelet mellan dessa förändringar och kända 

biomarkörer/riskfaktorer för Alzheimer. I Studie III undersöker vi det spektrala mönstret hos 

olika grupper som omfattar allt från friska äldre med normala β-amyloid värden till personer 

med lätta kognitiva störningar och avvikande β-amyloid (s.k. prodromal Alzheimer). Studien 

visar att koncentrationerna av myoinositol är förhöjda i det allra tidigaste skedet av det 

patologiska förloppet, dvs redan hos friska personer med lågt (avvikande) β-amyloid. Studie 

IV är till stor del en uppföljning av det föregående arbetet och den första longitudinella MRS 

studien där även β-amyloid analyseras. Studie IV påvisar att kopplingen mellan β-amyloid och 

myoinositol kvarstår över tid. Individer med ursprungligt låga β-amyloid värden ackumulerar 

myoinositol i en påtagligt högre takt. Sambandet mellan myoinositol och amyloidrelaterade 

patofysiologiska processer är ett spännande fynd som förhoppningsvis leder till att MRS kan 

få en bredare användning i samband med demensundersökningar och kliniska prövningar. 
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1 INTRODUCTION 

 “Our memory is our coherence” wrote the revolutionary film-maker Luis Buñuel, "our reason, 

our feeling, even our action." (Buñuel, 1983). Our memories are so intricately intertwined with 

our identity, that any assault on these memories feels like a threat to our essence, our 

fundamental nature. Indeed, “I have lost myself” was the response frequently given by Auguste 

Deter, the first patient diagnosed with Alzheimer’s disease (AD), to questions she could no 

longer answer (Maurer et al., 1997). Today, more than a hundred years later, it is still this 

vanishing sense of self that makes AD so frightening for patients and their loved ones. What’s 

more, our ability to recall the past also plays a role in how well we can imagine the future. 

Being unable to retrieve past experiences compromises our ability to simulate potential future 

scenarios. This “imagination impairment” is a less talked about burden associated with AD 

(Schacter et al., 2012). 

AD is the most common form of dementia, accounting for over two thirds of all dementia cases 

worldwide. One of the earliest and the most noticeable features of AD is the impairment of 

episodic memory – the memory system responsible for our ability to recall specific events of 

our past (Gold and Budson, 2008). As the disease progresses, cognitive decline becomes more 

prominent and starts to interfere with activities of daily living. People afflicted with AD usually 

develop symptoms in their late seventies, but we know today that the very first signs of 

pathology can be detected decades before symptom onset (Bateman et al., 2012; Buchhave et 

al., 2012). Since the asymptomatic “silent” phase of AD spans over many years, there is a great 

interest in characterizing the earliest disease stages. The studies included in this thesis aim to 

provide new insights on the changes taking place early on in the course of AD pathology. 

1.1 ALZHEIMER’S DISEASE NEUROPATHOLOGY 

The main hallmarks of AD were identified by Alois Alzheimer in 1906, when he described the 

characteristic silver-staining deposits in the cortex, and fibrillar bundles located at the site of 

disintegrated neurons (Stelzmann et al., 1995). These features would later become known as 

amyloid plaques and neurofibrillary tangles and are today considered essential for a definitive 

AD diagnosis.  

The main constituent of the extracellular amyloid plaques is the fibrillar amyloid-β (Aβ) protein 

(Glenner and Wong, 1984; Masters et al., 1985). Aβ is derived through the cleavage of the APP 

protein by β- and γ-secretase enzymes. This pathway is sometimes referred to as 

amyloidogenic, or “pathological”, as opposed to the non-amyloidogenic (physiological) 

pathway, during which no Aβ is generated. The 42-amino-acid-long isoform of Aβ (Aβ42) is 

the species most prone to fibrillization; it aggregates into oligomers, protofibrils, fibrils and 

finally forms Aβ plaques. An imbalance between the production and clearance of Aβ is thought 

to be a central event in AD (Hyman et al., 1993). Amyloid-β accumulation starts in the 

neocortex, propagating inward to allocortical structures, the diencephalon and the basal ganglia 

(Brettschneider et al., 2015). Although amyloid plaques are a trusted predictor of AD, their 

distribution does not correlate well with disease severity (Holmes et al., 2008). Instead, 
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overwhelming evidence places the toxic soluble Aβ oligomers at the core of AD pathogenesis 

(Benilova et al., 2012; Haass and Selkoe, 2007), suggesting that Aβ plaques are probably not 

harmful in and of themselves. 

Neurofibrillary tangles (NFTs) are composed of the hypophosphorylated microtubule-

associated protein tau (Grundke-Iqbal et al., 1986). In physiologic conditions, tau protein 

stabilizes axonal microtubules; the abnormal aggregation of tau into NFTs disrupts axonal 

transport and compromises synaptic activity (Iqbal et al., 2005). The NFTs are deposited inside 

the neurons, but when the neurons disintegrate completely, the NFTs remain at the site as 

“ghost tangles”. In AD, the regional and temporal distribution of the NFTs is well described 

(Braak et al., 2006; Braak and Braak, 1991). Tangle deposition starts in the transentorhinal and 

entorhinal cortices, progressing to the hippocampus, finally spreading to the neocortex (Braak 

et al., 2006). Tau pathology follows a predictable pattern and is closely associated with the 

extent of neuronal loss and cognitive symptoms (Arriagada et al., 1992; Giannakopoulos et al., 

2003; Gómez-Isla et al., 1997). Whether tangles actively contribute to neuronal death, or 

whether the formation of the NFTs constitutes the neurons’ protective response to pathology, 

is not fully understood (Morris et al., 2011).  

1.2 RISK AND PROTECTIVE FACTORS 

1.2.1 Genetics 

Familial AD – the hereditary form of the disease, usually strikes people before the age of 65 

and is responsible for approximately 1-6% of AD cases. This form of autosomal dominant AD 

is caused by mutations in three genes: the presenilin 1 (PSEN 1) and presenilin 2 (PSEN 2) 

genes, and the β-amyloid precursor protein (APP) (Lynn et al., 2010). APP is located on 

chromosome 21, a trisomy of which is the cause Down’s syndrome. Due to overexpression of 

APP, people with Down’s syndrome develop typical characteristics of AD brain pathology 

(amyloid plaques and neurofibrillary tangles) by mid-life (Wiseman et al., 2015).  Studies 

involving families afflicted with the familial form of AD, as well as individuals with Down’s 

syndrome have been instrumental to our knowledge of AD pathogenesis. 

The far more prevalent form of AD is the sporadic kind. Carriership of the ε4 allele of the 

APOE gene is the main known genetic risk factor for sporadic AD (Liu et al., 2013). APOE e4 

affects the age of onset and the prevalence of the disease in a gene dose-dependent manner 

(Corder et al., 1993; Farrer et al., 1997). The risk of developing AD is 3-fold in heterozygous 

and 12-fold in homozygous ε4 carriers (Farrer et al., 1997). The e3 allele does not seem to be 

linked to AD pathogenesis, whereas the less common ε2 allele is in fact protective against the 

disease (Farrer et al., 1997). It is thought that APOE ε4 contributes to disease pathogenesis 

through promoting Aβ aggregation and deposition, as well as through Aβ-independent 

mechanisms such as compromised synaptic integrity and enhanced neuroinflammation 

(Kanekiyo et al., 2014; Liu et al., 2013). Neuroimaging studies have revealed that cognitively 

normal carriers of the ε4 allele display reduced hippocampal volumes, decreased glucose 
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metabolism and higher fibrillar Aβ burden compared to ε4 non-carriers (Reiman et al., 2009; 

Reiman et al., 1998). 

1.2.2 Life style factors 

Although genetics and heredity studies are invaluable for our understanding of the disease, 

recent research suggests that lifestyle settings and choices may play a bigger role in AD than 

what was previously thought. Areas where constructive changes can potentially be made, the 

so-called modifiable risk factors of AD, are strikingly similar to known cardiovascular risk 

factors and include obesity, hypertension, diabetes mellitus, high cholesterol and smoking 

(deBruijn et al., 2015; Kivipelto et al., 2005) Indeed, many of the recent lifestyle, nutrition and 

exercise interventions are proving evidence for the “good for your heart, good for your brain” 

hypothesis (Ngandu et al., 2015; Sindi et al., 2015).  

1.2.3 Cognitive reserve 

The concept of cognitive reserve is based on the evidence that some people can tolerate more 

pathological brain changes than others until they develop symptoms. This can perhaps be 

attributed to actual inter-individual differences in brain size, but it is more likely that this 

“resilience” to neurodegenerative processes stems from educational and occupational 

experiences (Stern, 2012). It has consistently been demonstrated that complex patterns of 

mental activity throughout life are associated with lower incidence of dementia (Valenzuela 

and Sachdev, 2006). Furthermore, a longitudinal study showed that an intellectually enriched 

lifestyle may have the potential to delay dementia onset (Vemuri et al., 2014). 

1.3 FROM NORMAL AGEING TO ALZHEIMER’S DISEASE 

1.3.1 Normal ageing  

As we get older, our brain is subjected to structural and functional changes. Understanding the 

effects of healthy ageing on the brain and cognition is important to identify and isolate the 

contribution of pathology. As the brain ages, it suffers from volume loss, with annual decreases 

in gross brain volume at a rate of approximately 0.5% per year (Fjell et al., 2014). Notably, the 

typical changes associated with AD pathology, such as cortical thinning and reductions in 

hippocampal volume also belong to the most prominent changes associated with healthy 

ageing. Reductions in cortical thickness seen in normal ageing most probably arise from the 

loss of synapses and compromised dendritic structure, rather than neuronal death (Harada et 

al., 2013).  

When it comes to the main areas of cognitive decline associated with normal ageing, these are 

related to processing speed (the speed with which one carries out mental tasks), as well as 

memory and executive function (Deary et al., 2009). Episodic memory, one of the domains  

affected very early in AD, also deteriorates in healthy ageing (Fjell et al., 2014).  
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1.3.2 Subjective cognitive decline 

The subjective cognitive decline (SCD) framework was established to identify the very first 

clinical manifestations of AD, in cases where no objective cognitive deficit is detected (Jessen 

et al., 2014). Elderly people frequently report a worsening of cognitive abilities. This self-

perceived cognitive decline over time together with normal performance on 

neuropsychological tests (adjusted for age and education level) warrant the clinical diagnosis 

of SCD (Jessen et al., 2014). It has been shown that SCD is associated with a higher risk of 

developing mild cognitive impairment and conversion to dementia (Mitchell et al., 2014). 

Although SCD may represent the earliest stage of disease, it is important to recognize that the 

term SCD deals with a fundamentally heterogeneous population. This is due in part to the 

subjective nature of the “self-report”, and in part to the overlap between SCD and some aspects 

of depression and anxiety (Hill et al., 2016). 

1.3.3 Mild cognitive impairment 

Mild cognitive impairment (MCI) denotes the intermediate clinical state between normal 

ageing and a dementia diagnosis (Petersen et al., 1999). MCI can manifest itself as amnestic– 

associated with memory impairment, and non-amnestic – characterized by decline in non-

memory domains (Petersen, 2004). In 2011 the National Institute on Aging and Alzheimer’s 

Association (NIA-AA) workgroup set out to establish a set of clinical and research criteria for 

“MCI due to AD”, in order to better characterize the symptomatic predementia stage of AD 

(Albert et al., 2011). The clinical criteria are designed to be used broadly in all clinical settings 

and do not require access to specialized procedures or biomarkers. The research criteria 

incorporate the use of AD biomarkers, namely markers reflecting cerebral amyloidosis and 

neuronal injury, allowing for an “MCI due to AD” diagnosis to be made with different degrees 

of certainty.  

MCI is an important diagnostic entity for AD research for several reasons: 1) it encompasses a 

large population, with a prevalence of 15%-20% among people above 65 (Mariani et al., 2007; 

Petersen et al., 2010), 2) it identifies individuals at high risk of progressing to dementia, with 

conversion rates of 10-15% per year in clinical studies and 5-10% per year in population-based 

studies (Mariani et al., 2007) and 3) neuropathologically, it represents a stage intermediate 

between physiological ageing and AD (Petersen et al., 2006). 

1.3.4 Alzheimer’s disease clinical features and diagnostic criteria 

Clinical progression of AD can be divided into three stages – mild, moderate and severe. The 

mild stage is accompanied by a deterioration of episodic memory, mood changes and a decline 

in reasoning and judgement. During the moderate stage, the impairment of other cognitive 

abilities such as language, attention and orientation advances along with the progressive loss 

of memory. In severe AD, speech and vision become compromised (McKhann et al., 2011). 

The clinical manifestation of AD as well as the speed at which the disease progresses vary 

somewhat between patients. There is also evidence of there being distinct clinicopathological 

subtypes within the diagnosis of AD (Ferreira et al., 2017; Murray et al., 2011). The 
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phenomenon of AD subtypes may at least in part explain the heterogeneity of the clinical 

picture of the disease. 

For a clinical diagnosis of probable AD, the most commonly used criteria were defined by the 

National Institute of Neurological and Communicative Disorders and Stroke and Alzheimer’s 

Disease and Related Disorders Association (NINCDS-ADRDA) (McKhann et al., 1984). In 

2011, a new set of criteria was presented by the NIA-AA, where the use of biomarkers was 

incorporated into the diagnostic criteria (McKhann et al., 2011). Although the prevailing view 

is that a definitive diagnosis of AD can only be made using histopathological evidence at 

autopsy, it is important to recognize that a combination of family/informant history, 

neuropsychologic battery, imaging and fluid biomarkers can support an AD diagnosis to a high 

degree of certainty. 

Another major set of diagnostic criteria was proposed by the International Working Group 

(IWG) in 2007 and revised in 2014 (IWG-2) (Dubois et al., 2014). According to the IWG-2 

criteria objective memory impairment and positive biomarker evidence are mandatory for an 

AD diagnosis. In routine clinical practice, AD is usually diagnosed using the 4th edition of the 

Diagnosis and Statistical Manual of Mental Disorders (DSM-IV) and the 10th edition of the 

International Classification of Diseases (ICD-10). 

1.4 ALZHEIMER’S DISEASE BIOMARKERS: DETECTING AND TRACKING 
PATHOLOGY 

The term biomarker refers to a measurable indicator, signaling the presence of a medical 

condition. Such indicators are widely used in research and in the clinic to distinguish between 

normal physiological processes and pathology, as well as to evaluate the response to therapeutic 

interventions (Strimbu and Tavel, 2010). AD biomarkers provide scientists across the field with 

a common framework for conducting research and reporting findings. This universal language 

is also essential for defining disease staging and establishing inclusion/exclusion criteria for 

clinical trials (Hampel et al., 2010; Jack et al., 2011; Jack et al., 2016). In the field of AD, as 

well as in other areas of medical research, biomarkers must first of all be accurate and 

reproducible. Other qualities that one strives for in a successful biomarker are non-

invasiveness, cost-efficiency, and the ability to detect the disease at the earliest possible stages. 

In fact, a recently proposed “research framework to investigate the Alzheimer’s disease 

continuum” puts forward the idea that an AD diagnosis should be based entirely on biomarkers, 

irrespective of clinical symptoms (Jack et al., 2016). 

1.4.1 Neuroimaging 

Advanced imaging modalities such as magnetic resonance imaging (MRI) and positron 

emission tomography (PET) allow researchers to investigate brain morphology, function and 

pathology in vivo. Neuroimaging is increasingly being used in disease diagnosis, for 

monitoring treatment effects, and will undoubtedly play an important role in the emerging field 

of personalized medicine. The choice of brain imaging technique is influenced not only by the 



 

16 

primary research (or medical) question, but also by more practical factors, such as cost, 

complexity and availability of the technique. 

Basic principles of magnetic resonance  

The phenomenon of nuclear magnetic resonance (NMR) arises from the magnetic properties 

of certain atomic nuclei.  

Due to the intrinsic spin of the proton, hydrogen atoms in an external magnetic field precess 

about B0 with a characteristic Larmor frequency:  

𝜔 = 𝛾𝑩0      (1.1)  

where γ is the gyromagnetic ratio. The protons in a magnetic field assume one of two possible 

orientations, occupying the lower energy spin up level, parallel with B0 (β state) or the higher 

energy spin down level, antiparallel with B0 (α state). The energy difference between these 

states is ΔE; the frequency associated with this energy lays in the radio frequency (RF) band 

(Figure 1). 

Nuclear spins do not populate the available energy levels evenly. Slightly more spins occupy 

the lower energy state α and the population follows the Boltzmann distribution:  

𝑁𝛼

𝑁𝛽
= 𝑒(𝐸𝛽−𝐸𝛼)/𝑘𝑏𝑇    (1.2) 

When an RF pulse near the Larmor frequency is transmitted to the spin system, the spins 

transition from level α to level β. The energy emitted during the spin relaxation generates the 

MR signal. The intensity of the signal is proportional to the ratio of the number of protons in α 

and β states. 

Macroscopically, the excess in the number of spins in the lower energy α state compared to the 

number of spins in the β state creates a net magnetization M, aligned with the direction of B0. 

Resonance condition is achieved when an electromagnetic RF pulse is applied perpendicularly 

to Mz, to match the energy ∆E. When this 90° pulse is applied, the bulk magnetization vector 

M is tipped onto the transverse xy-plane, such that Mtotal = Mtransverse. After the transmission is 

stopped, relaxation begins, and the magnetization vector splits into a transverse and a 

longitudinal component. Longitudinal relaxation (T1), also known as spin-lattice relaxation, 

describes the return of the longitudinal magnetization Mz after a perturbation. Transverse 

relaxation (T2), describes the loss of coherence by the spins, and is also known as spin-spin 

relaxation. Another relaxation process is described by T2
* - the transverse relaxation time which 

takes into account inhomogeneities in B0 that further speed up the dephasing of the spins. 

(Figure 1). The precession of the net magnetization vector generates an oscillating 

electromagnetic field, which induces a current in the receiver coil. This signal, the Free 

Induction Decay, decreases as a result of the loss of phase coherence. Finally, this observable 

time domain signal is converted into the frequency domain using the Fourier transform (Figure 

1).  
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Depending on their local chemical environment, hydrogen atoms of different molecules 

experience slightly different magnetic fields. This happens because the electrons, surrounding 

the hydrogen nuclei shield them slightly from the external magnetic field. The extent of this 

shielding depends on the structure and conformation of the molecule generating the signal. As 

a result, the effective magnetic field “felt” by the protons amounts to B0(1 − σ), where σ is the 

shielding constant; and the associated frequency is  

𝜔𝑠 = 𝛾𝐵0(1 − 𝜎)   (1.3) 

 

Figure 1 | Illustration of the principles of MR spectroscopy 

Since different molecules resonate at slightly different frequencies, we can identify the 

constituents of organic compounds from their distinct spectral “fingerprints”. From Equation 3 

follows that the frequency shift between nuclei in different chemical environments becomes 

greater at increasing magnetic field strengths, leading to more spatially resolved resonance 

peaks. MRS is a technique which benefits greatly from being conducted at higher field 

strengths, since the improved resolution allows identification of a larger number of metabolites. 

In Figure 2, an example of a high-resolution spectrum collected from the rat brain and its 

constituent individual metabolite profiles is presented. 

MR spectra can be acquired using different localization techniques. In single-voxel-

spectroscopy (SVS), the signal is acquired from a single volume in the brain. The selection of 

the voxel of interest (typically ≈1-2 cm3) is achieved by applying mutually orthogonal slice 

selective gradient pulses, so that only the signal from the protons within this restricted volume 
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is picked up. This method allows for a 

selection of a physiologically relevant 

volume of interest, and the optimization of 

the homogeneity of the magnetic field 

across this volume. Another localization 

technique involves collecting signal from 

multiple voxels (≈5 mm3) at a time. This 

method, referred to as MRS imaging 

(MRSI), generates spectra from a 

multidimensional array of regions, 

creating spatial maps of different 

metabolites. MRSI has the advantage of 

being able to characterize an entire object, 

rather than a selected volume of interest. 

However, it is also a more 

methodologically demanding technique, 

as homogeneity of the B field is more 

difficult to achieve and the inherent 

acquisition times are longer. 

The process of how an MR image is 

created is not covered in detail in this 

thesis. In brief, the generation of a two-

dimensional MR image is based on the 

phenomenon of NMR relaxation 

described earlier. T1 and T2 relaxation 

times differ depending on the chemical composition or physiological status of biological 

tissues, allowing T1 and T2 weighted images to reveal contrast between different types of matter 

in the brain. Using the gradient coils of an MRI scanner, local variations in the magnetic field 

are generated in any linear combination of the x, y and z directions. The slice selective, 

frequency encoding and phase encoding gradients allow for a 2D image to be reconstructed 

from a one-dimensional signal.  

MRI in Alzheimer’s disease: Imaging atrophy 

Neurodegeneration is a general term used to describe progressive deterioration of the structure 

and function of neurons. Macrostructurally, the loss of brain tissue (atrophy) can be tracked 

using structural MRI. Assessing the extent of brain atrophy, particularly in the medial temporal 

lobe, is an important part of the diagnostic work up in patients with dementia.  

The pattern of brain atrophy overlaps with the topography of tangle deposition (Whitwell et 

al., 2008) and largely reflects the extent and progression of cognitive deficits (Frisoni et al., 

2010). The earliest and most severe atrophic changes occur in the entorhinal cortex and the 

Figure 2 | Decomposing the MR spectrum. From the 
top, MRS of the rat brain at 14.1 T, followed by the 
LCModel fit, the residual spectrum and the fits of 
individual metabolites. Reproduced from Mlynárik 
et al (Mlynárik et al., 2008) with permission from 
Elsevier 
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hippocampus, propagating to the temporoparietal association cortices and then to the 

neocortical areas (Thompson et al., 2003).  

There are several ways in which structural MR information can be used as a disease biomarker. 

Hippocampal volumes and whole-brain atrophy rates can – independently or together with 

other AD biomarkers – help identify individuals who are likely to progress to dementia 

(Apostolova et al., 2006; Jack et al., 1999; Spulber et al., 2010; Walhovd et al., 2010). Structural 

information is also an integral part of differential diagnosis.  Dementias of etiologies other than 

AD include: Lewy bodies and vascular dementia, where medial temporal lobe atrophy is almost 

absent; fronto-temporal lobe dementia, characterized by atrophy in the frontal lobe; semantic 

dementia, where the medial temporal lobe atrophy is clearly asymmetrical (Vemuri and Jack, 

2010). Further, MRI measures are useful for clinical trials, for 1) screening for 

inclusion/exclusion criteria, 2) quantifying disease progression and the effect of disease-

modifying interventions (Fox et al., 2000; Vemuri and Jack, 2010). 

 

Figure 3 | Medial temporal lobe atrophy in an older cognitively normal individual (CN), a patient 
with amnestic MCI (aMCI) and Alzheimer’s disease (AD). As originally published by Biomed 
Central in (Vemuri and Jack, 2010). 

MRS in Alzheimer’s disease: Exploring biochemistry 

N-acetyl-aspartate (NAA) is a marker of neuronal integrity that is decreased in patients with 

AD compared to cognitively healthy older adults (Kantarci, 2013).  In vivo brain NAA levels 

are closely linked to neuronal energetics, where NAA has been proposed to reflect impaired 

mitochondrial function, in addition to being a marker of neuronal cell density (Bates et al., 

1996; Jessen et al., 2011; Murray, M. E. et al., 2014). A decrease in NAA levels is often not 

seen in early stages of AD, but progresses with increasing disease severity (Adalsteinsson et 

al., 2000). NAA levels have also been shown to decrease proportionally to the extent of damage 

to the brain, for example in traumatic brain injury (Signoretti et al., 2008). In patients with MCI 

or AD, NAA declines with progressing dementia severity (Huang et al., 2001; Kantarci, 2013). 

Myo-inositol (mI) is emerging as probably the most relevant MRS metabolite in the context 

of AD. The physiological role of mI is that of an organic osmolyte (Kwon et al., 1992); 

intracellular mI concentrations increase as a response to extracellular hypertonicity (Lee et al., 

1994) and decrease in hypotonic conditions (Videen et al., 1995). Furthermore, mI elevation 
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seems to be related to Aβ plaque pathology, i.e. higher baseline levels of mI are associated with 

increased Aβ accumulation over time (Nedelska et al., 2017). Brain mI is elevated at pre-

dementia stages of Down syndrome (Huang et al., 1999) and familial AD (Godbolt et al., 2006), 

and ante-mortem mI levels are associated with post-mortem cored and diffuse amyloid plaques 

(Murray, M. E. et al., 2014). It has been suggested that mI may be a potential marker of glial 

proliferation (Bitsch et al., 1999), however the utility of mI as an indicator for the degree of 

inflammation in AD is unclear (Maddock and Buonocore, 2012; Murray, Melissa E. et al., 

2014). 

Choline (Cho) is composed of phosphorylcholine and glycerophosphorylcholine – both 

products of cellular membrane breakdown (Klein, 2000). Although Cho is known to indicate 

membrane turnover, its significance in AD pathology is not fully understood. 

Total creatine (Cr), a resonance peak composed of creatine and phosphocreatine is essential 

of energy storage and transfer (Rackayova et al., 2017), and is often used as an internal 

reference in spectroscopy studies.  

 

Figure 4 | Illustration of MRS in AD. Voxel placement in the precuneus / posterior cingulate. 

Intracranial volume in volumetric MRI 

In volumetric studies of neurodegeneration, the intracranial volume (ICV) provides an estimate 

of premorbid brain size. The assumption is that the ICV, unlike total brain volume, remains 

unchanged in both normal and pathological ageing (Blatter et al., 1995).  

Although the relationship between premorbid brain volume and the onset of disease in later life 

has been studied explicitly (Graves et al., 1996; Jenkins et al., 2000; Tate et al., 2011), for most 

imaging studies of neurodegeneration ICV is a nuisance variable that may complicate 

interpretation of the results. Regional brain volumes scale with head size, therefore inter-

individual variability of the ICV may mask or exaggerate true structural differences.  

Several approaches can be used to account for the effects of ICV on regional brain volumes. 

There is no unified approach for ICV correction in morphological MRI studies and the choice 

is usually one of the following methods: 1) describing each volume as a proportion of the ICV, 
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2) using the residuals of a linear regression to remove all association between regional volumes 

and the ICV, 3) including the ICV as a covariate in an analysis of variance model. These 

approaches are addressed in more detail in the Methods section. 

Positron emission tomography 

Amyloid positron emission tomography (PET) allows in vivo quantification of Aβ burden. 

Amyloid-specific tracers used clinically and in research (Pittsburgh Compound B, 

Flutemetamol etc) are compounds characterized by having a high affinity for the insoluble 

fibrillar Aβ deposits. Cortical retention of an amyloid tracer follows the pattern of regional 

distribution of Aβ plaques, with higher plaque density in the frontal and anterior cortex, 

cingulate gyrus and precuneus (Ikonomovic et al., 2008). However, plaque distribution does 

not correlate well with disease severity (Holmes et al., 2008). 

Recent advances in the development of tau-specific PET tracers have yielded the possibility of 

imaging tau pathology in vivo. The pattern of pathological tau aggregation is related to the 

clinical presentation of AD (Ossenkoppele et al., 2016). Future findings from tau PET studies 

may be able to answer important questions about fundamental disease mechanisms. 

Another application of PET in the context of AD, is imaging metabolic activity through 

measuring regional glucose uptake using the [18F]fluoro-2-deoxy-D-glucose (FDG) tracer, 

allowing indirect quantification of neuronal activity and synaptic density (Mosconi, 2013).  

1.4.2 Cerebrospinal fluid markers 

CSF levels of Aβ42, total tau (T-tau) and phosphorylated tau (P-tau) are routinely measured in 

AD, both in order to identify the disease at its earliest stage as well as for differential diagnosis 

(Olsson et al., 2016). These markers reflect the fundamental aspects of AD pathogenesis – the 

formation of plaques, neuronal degeneration and tangle formation (Blennow and Hampel, 

2003). Reductions in CSF Aβ42 levels can be detected up to 15 years before symptom onset 

(Bateman et al., 2012), making Aβ42 the earliest biomarker to become abnormal in AD. 

Importantly, early changes in Aβ42 alone are not specific to AD, however when detected 

together with increases in T-tau and P-tau are said to constitute the “AD signature” (Blennow 

et al., 2015). CSF t-tau reflects the extent of neuronal and axonal degeneration in the brain, 

with high levels of t-tau being linked to a steeper disease progression (Blom et al., 2009; 

Samgard et al., 2010), whereas levels of p-tau are likely to indicate tau phosphorylation and 

tangle formation (Blennow et al., 2015).  

Apart from Aβ42, other isoforms of Aβ, such as Aβ40 and Aβ38 are present in the CSF. There 

is evidence supporting the use of Aβ42/Aβ40 ratio as an AD biomarker, since it has been shown 

to be a superior predictor of cortical amyloid accumulation and performed better in 

discriminating AD from other neurodegenerative disorders such as dementia with Lewy bodies 

and Parkinson’s disease dementia (Janelidze et al., 2016). 
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1.4.3 Graph theory 

A graph is a mathematical description of interconnected elements. Applying the graph 

theoretical framework to brain networks implies representing the anatomical regions as nodes 

and the connections between these nodes as edges. In the context of structural MR, the nodes 

of a network may be represented by segmented/parcellated brain regions, and the connections 

are the structural covariance measures between them. A set of network properties is commonly 

assessed in neuroimaging graph theory studies. Global efficiency is a measure of integration 

that provides information about the network’s ability to rapidly incorporate information from 

distinct nodes of a network. Clustering, transitivity and modularity are segregation measures 

that indicate how strongly a network is locally interconnected or organized into different 

modules. Hubs are the central regions of a network that regulate the flow of information 

(Rubinov and Sporns, 2010) (See Figure 5 for an overview).  

Network-based techniques are being successfully applied to neuroimaging data to uncover 

information about normal and pathological conditions undetectable by conventional 

morphometric studies. Several studies have explored disruptions in structural and functional 

networks occurring in AD (Dai and He, 2014; He et al., 2008; Pereira et al., 2015; Tijms et al., 

2013; Yao et al., 2010). The most consistent findings in AD involve a decline in the ability to 

integrate information and a decrease in the number of hubs (Dai and He, 2014). 

 

Figure 5 | Overview of basic graph theoretical concepts.  
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2 AIMS 

This thesis aims to advance the characterization of the earliest stages of AD and provide new 

insights on the role of magnetic resonance spectroscopy as a potential disease biomarker. 

Studies I and II address the phenomenon of structural covariance in MR imaging. Studies III 

and IV explore the relationship between magnetic resonance spectroscopy markers and the 

pathological hallmarks of AD. Specifically: 

In Paper I we investigate the implications of intracranial volume adjustment approaches on 

multiple regional MRI volumes in cognitively normal elderly, individuals with MCI and AD.  

In Paper II, we examine whether the changes in the organization of structural brain networks 

are associated with amyloid pathology in cognitively normal elderly. 

In Paper III, we investigate whether the levels of MRS metabolites are changed during 

preclinical AD, putting these alterations into the context of amyloid and tau pathology. 

In Paper IV, we explore the association between longitudinal changes in MRS metabolites 

and amyloid pathology in non-demented individuals. 
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3 PARTICIPANTS AND METHODS 

3.1 ETHICAL CONSIDERATIONS 

All studies were conducted according to the Declaration of Helsinki and subsequent revisions. 

Study I was approved by the regional ethics committee in Uppsala, Sweden. The ADNI ethical 

approval was granted by the institutional review boards of the participating centers. Studies II-

IV were approved by the regional ethics committee in Lund, Sweden. [18F]-flutemetamol PET 

imaging in Study III was approved by the Swedish Medicines and Products Agency and the 

local Radiation Safety Committee at Skåne University Hospital, Sweden. 

3.2 PARTICIPANTS 

A general overview of the cohorts and participant groups used in this thesis is presented in 

Figure 6 and Panel 1 of the Methods section. 

 

Figure 6 | Overview of the participant groups and research cohorts used in this thesis. 

3.2.1  Study I participants 

Data from two research cohorts, the PIVUS and the ADNI were used. 

1) PIVUS: healthy controls, N=406 

2) ADNI: healthy controls, N=223 

3) ADNI: MCI, N=325 

4) ADNI: AD, N=176 
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The PIVUS (Prospective Investigation of Vasculature in Uppsala Seniors) cohort (Lind et al., 

2006) is a single-center community-based cohort of individuals residing in Uppsala, Sweden, 

primarily aimed at studying cardiovascular health. The neuroimaging aspect of the PIVUS 

study is unique in that the MRI scans were acquired at age 75 for all participants. The PIVUS 

study was approved by the local ethics committee. More information about the PIVUS cohort 

can be found on the study homepage http://www.medsci.uu.se/pivus/.  

Table 1 | Demographics of the single-center epidemiological PIVUS cohort 

 Female Male All 

Number of participants 193 213 406 

ICV, mm3 1440320 (121240) 1638419 (140237) 1544249 (140237) 

MMSE 28.8 (1.3) 28.5 (1.5) 28.7 (1.4) 

Education 

  < 9 years 

9-12 years 

> 12 years 

 

58% 

18% 

24% 

 

58% 

20% 

22% 

 

58% 

19% 

23% 

Age 75 

Values are reported as mean (SD); ICV= Intracranial volume; MMSE= Mini-Mental State Examination.  

The ADNI (The Alzheimer’s Disease Neuroimaging Initiative) is a multi-center study, 

launched in 2003 across North America with the overall goal to validate biomarkers for early 

detection and monitoring of AD pathology. Patients were diagnosed as having probable AD or 

MCI according to established criteria (McKhann et al., 1984; Petersen et al., 1999). More 

information about the ADNI can be found on at adni.loni.usc.edu. 

Table 2 | Demographics of the subset of the multi-center ADNI cohort  

 CTL MCI AD 

 Female Male All All All 

Number of 

participants 

107 116 223 325 176 

ICV, mm3 1444626 

(120830) 

1617014 

(134231) 

1534299 

(157978) 

1565894  

(166451) 

1532681  

(175643) 

MMSE 29.2 (1.0) 29.0 (1.0) 29.1(1.0) 27.1(1.8) 23.3(2.0) 

Education 

< 9 years 

9-12 years 

> 12 years 

 

2% 

15% 

83% 

 

2% 

4% 

94% 

 

2% 

9% 

89% 

 

2% 

17% 

81% 

 

5% 

27% 

68% 

Age 76.1 (4.8) 75.8 (5.3) 75.9 (5.1) 74.5 (7.1) 75.1 (7.3) 

Data for ICV, MMSE and age presented as mean (standard deviation); ICV= Intracranial volume; MMSE=Mini-

Mental State examination 

3.2.2  Study II-IV 

In studies II-IV, data from the BioFINDER cohort was used. The Swedish BioFINDER 

(Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably) study is a 

prospective longitudinal multi-center study aimed at discovering novel AD biomarkers. The 

BioFINDER is composed of cognitively healthy participants (CTL), individuals with 

subjective cognitive decline (SCD) and mild cognitive impairment (MCI). More information, 

http://www.medsci.uu.se/pivus/
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such as the details of inclusion/exclusion criteria is available on the study homepage 

www.biofinder.se and papers II-IV. 

Study II participants 

In Study II, only participants with no form of cognitive complaints (the CTL subset) of the 

BioFINDER were included. The groups contrasted in this study were based on a CSF 

Aβ42/Aβ40 (cut-off at 0.1) and included:  

1) healthy controls with normal (negative) CSF Aβ42/Aβ40, N=233  

2) healthy controls with abnormal (positive) CSF Aβ42/Aβ40, N=66 

Table 3 | Demographics of the study sample used in Study II 

 

CSF Aβ- 

Aβ42/Aβ40 > 0.1 

N =233 

CSF Aβ+ 

Aβ42/Aβ40 ≤ 0.1 

N = 66 

Gender (female/male) 137/96 44/22 

Age, years 72.9 (5.0) 74.9 (4.8) 

APOE genotype  

(% ε4 carriers) 
19% 46% 

Years of education 12.2(3.4) 12.2(4.7) 

Cognitive measures   

MMSE 29.0 (1.0) 29.0 (0.8) 

AQT 66.5 (13.1)  66.8 (12.8) 

ADAS-cog 
 

CSF Aβ42/Aβ40 

1.9 (1.8) 
 

0.14 (0.03) 

2.6 (2.4) 
 

0.07 (0.01) 

ADAS-cog = Alzheimer’s Disease Assessment Scale–cognitive; AQT = A Quick Test of Cognitive Speed; 

MMSE = Mini-Mental State Examination. Values are reported as mean (SD).  

Study III participants 

In Study III, we aimed to select participant groups that mimic the hypothetical course of AD 

progression, based on their CSF Aβ42 (cut-off at 530 ng/L) levels. This resulted in the 

following four groups:  

1) healthy controls with normal (negative) CSF Aβ42, N=156 

2) healthy controls with abnormal (positive) CSF Aβ42, N=59   

3) individuals with SCD with abnormal (positive) CSF Aβ42, N=49 

4) individuals with MCI with abnormal (positive) CSF Aβ42, N=88 

  

http://www.biofinder.se/
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Table 4| Demographics of the study sample used in Study III 

 ADAS-cog = Alzheimer’s Disease Assessment Scale–cognitive; AQT = A Quick Test of Cognitive Speed; MMSE = 

 Mini-Mental State Examination, PCC=Posterior Cingulate Cortex. Values are reported as mean (SD). 

Study IV participants 

In Study IV, we were interested in data from individuals for whom baseline CSF was 

available, and who had at least one MRS follow-up. This resulted in the following groups: 

1) healthy controls, N=137 

2) individuals with SCD, N=83 

3) individuals with MCI, N=74 

 
Table 5 | Demographics of the study sample used in Study IV. 

MMSE = Mini-Mental State Examination Values are reported as mean (SD).  

 

 
CTL Aβ42- 
CSF Aβ42 > 530 ng/L 

N =233 

CTL Aβ42+ 
Aβ42 ≤ 530 ng/L 

N =59 

SCD Aβ42+ 
Aβ42 ≤ 530 ng/L 

N =49 

CSF Aβ42+ 
Aβ42 ≤ 530 ng/L 

N =88 

Gender (female/male) 95/61 36/23 27/22 43/45 

Age, years 72.6 (4.7) 72.7 (4.7) 70.7 (5.7) 71.7 (5.2) 

APOE genotype  

(% ε4 carriers) 
18% 61% 71% 74% 

Years of education 12.1(3.7) 11.7(3.8) 12.1(3.8) 11.6(3.3) 

Cognitive measures     

MMSE 29.1 (0.9) 29.2 (0.9) 28.0 (1.6) 26.9 (1.7) 

AQT 66.1 (12.5) 66.1 (11.6) 76.2 (18.5) 90.1 (31.1) 

ADAS-cog 1.6 (1.6) 2.2 (2.3) 3.9 (2.1) 7.1 (1.9) 

CSF Aβ42, ng/L 753 (127) 416 (75) 384 (79 359 (84) 

CSF tau, ng/L 125 (63) 164 (103) 231 (95) 209 (100) 

CSF p-tau, ng/L 51 (15) 58 (25) 77 (31) 74 (36) 

PET (PCC/precuneus) 1.26 (0.15) 1.74 (0.41) 1.96 (0.40) 2.19 (0.47 

 
CTL 

N = 137 

SCD 

N = 83 

MCI 

N = 74 

Sex (male/female) 57/80 36/47 41/33 

Age, years 72.8 (4.7) 70.2 (5.5) 69.9 (4.9) 

CSF Aβ42 status:  

Normal/abnormal (< 530 ng/L) 

 

98/33 

 

51/30 

 

25/48 

APOE genotype:  

(% of ε4 carriers) 

 

30% 

 

40% 

 

54% 

Years of education 12.3 (3.6) 13.1 (3.6) 11.6 (3.4) 

MMSE (baseline)  29.0 (1.0) 28.5 (1.5) 27.5 (1.8) 

MMSE 2 year follow-up  28.9 (1.7) 28.4 (2.7) 25.3 (3.5) 

MMSE 4 year follow-up  28.6 (1.7) 27.3 (4.3) 23.5 (3.9) 
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3.3 METHODS 

3.3.1 MRI image acquisition and processing (Studies I-II) 

Image acquisition: MRI protocol  

T1-weighted MR images were acquired as part of all the constituent studies. However, 

structural data was used explicitly only in studies I and II. 

PIVUS: MR images were acquired on a 1.5 Tesla MRI scanner (Philips Healthcare, Best, The 

Netherlands) and included a sagittal T1-weighted 3D gradient echo sequence (echo time: 

4.0ms, repetition time: 8.6ms, resolution: 0.94×0.94×1.2mm3). All images were reviewed 

according to previously published quality control criteria (Simmons, 2011; Simmons et al., 

2009).  

ADNI: MR images were collected from several 1.5 Tesla systems, including a high resolution 

sagittal 3D T1-weighted MPRAGE sequence (echo time 4.0 ms, repetition time: 9ms, 

resolution 1.1×1.1×1.2mm3). The quality of the MPRAGE images was assessed by the ADNI 

MRI quality control center at the Mayo Clinic (Rochester, MN) according to standardized 

criteria.  

BioFINDER: MR images were collected on a single 3 Tesla systems (Trio, Siemens, Germany) 

and included a 3D T1-weighted MPRAGE sequence (echo time 3.4 ms, repetition time: 1950 

ms, 1.1×1.0×1.0mm3). 

Image processing: FreeSurfer pipeline 

The FreeSurfer pipeline estimates regional cortical thickness and volumetric measures from T1 

3D brain MRI scans. The software is documented and freely available at 

http://surfer.nmr.mgh.harvard.edu/. In the cortical (surface-based) stream, Freesurfer models 

the boundary between white matter and gray matter, as well as the boundary between gray 

matter and the pial surface, to estimate cortical thickness and describe cortical folding patterns. 

In the subcortical (volume-based) stream, automatic segmentation is performed to label deep 

gray matter volume structures (Fischl et al., 2002; Fischl et al., 2004), such as the hippocampus, 

amygdala, caudate, putamen, ventricles etc.  

In brief, the processing steps are: removal of non-brain tissue (skull-stripping) (Segonne et al., 

2004), Tailarach transformation, segmentation of the subcortical white matter and deep gray 

matter volumetric structures (Fischl et al., 2002; Fischl et al., 2004), intensity normalization 

(Sled et al., 1998), tessellation of the gray-white matter boundary, correction of topology 

(Segonne et al., 2007) and an adjustment of the localization of tissue borders (Fischl and Dale, 

2000). Upon the creation of cortical models, each subject surface is registered to a spherical 

atlas based on the individual cortical folding patterns (Fischl et al., 1999). This is followed by 

parcellation of the cerebral cortex into cortical regions specified by an atlas, from which cortical 

thickness and volume measures can be extracted. The Desikan altas (68 cortical regions) has 

been used throughout this thesis (Desikan et al., 2006). 

http://surfer.nmr.mgh.harvard.edu/
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Intracranial volume in Freesurfer 

The image most commonly used in the Freesurfer pipeline is a T1-weighted image, due the 

high contrast between GM and WM. However, CSF and bone are both dark in a T1 image, 

making it difficult to precisely identify the volume inside the skull. Total ICV was found to 

correlate well with the determinant of the transformation matrix (atlas scaling factor) used to 

register the image to an atlas (Buckner et al., 2004). Therefore, instead of performing 

segmentation, Freesurfer uses this relationship to estimate the ICV as follows, 

𝑒𝑇𝐼𝑉 =
𝐼𝐶𝑉𝑎𝑡𝑙𝑎𝑠

𝑎𝑡𝑙𝑎𝑠 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟
   (3.1) 

where eTIV stands for Estimated Total Intracranial Volume and is the nomenclature used by 

Freesurfer. For consistency, the term ICV is used throughout this thesis. The ICV estimated by 

Freesurfer is in good agreement with reference “gold-standard” segmentation (Nordenskjöld et 

al., 2013) and remains the preferred method for ICV estimation in large-scale imaging studies. 

3.3.2 MRS acquisition and analysis (Studies III-IV) 

Single-voxel MRS was performed on a Siemens TrioTim scanner at 3 Tesla, using the PRESS 

(Point RESolved Spectroscopy) sequence, at an echo time (TE) of 30 ms and repetition time 

(TR) of 2000 ms.  

The 2×2×2cm3 voxel was placed midsagittally in the posterior cingulate/precuneus (Figure 4). 

The posterior cingulate/precuneus region is highly involved throughout the course of AD 

pathology (Braak and Braak, 1991; Lehmann et al., 2010; Minoshima et al., 1997) and has 

recently been demonstrated as the earliest site for amyloid accumulation (Palmqvist et al., 

2017). This region has also been used previously in large-scale MRS studies (Gomar et al., 

2013; Nedelska et al., 2017) and was recommended for MRS studies in AD by the MRS 

consensus group (Öz et al., 2014). 

In MRS, the obtained spectrum can be seen as a superposition of individual signals from 

separate compounds (Figure 2). The contributions from individual metabolites are isolated by 

fitting a linear combination of model spectra to the acquired in vivo MRS spectrum. Throughout 

this thesis, spectral analyses were performed using the LCModel software (Provencher, 1993, 

2001). Model spectra (the basis set) are simulated using information about the sequence, field 

strength and acquisition parameters and subsequently adjusted to precisely fit the obtained 

MRS spectrum.  

All MRS spectra were visually inspected for quality and artefacts. Only spectra with FWHM 

(full width at half maximum) ≤ 11 Hz were considered. Standard error estimates generated by 

the LCModel (Cramér-Rao lower bounds, %SD) were used as reliability indicators for 

metabolite concentrations. The value of %SD < 20% is often used as a limit for acceptable 

reliability. In this thesis, %SD was at or below 7% for all metabolites of interest. 
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3.3.3 Data analysis 

Volume normalization 

There are different ways to account for the effect of the total ICV in volumetric studies. The 

need for normalization arises from the fact that regional brain volumes are positively associated 

with the ICV and this association is assumed to be approximately linear. This section will 

present an overview of the most established methods of ICV adjustment. 

The proportion approach calculates the ratio between the volume of interest and the total ICV, 

producing values between 0 and 1. 

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑑𝑗 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑎𝑤

𝐼𝐶𝑉
 (3.2) 

This method is easy to use and can be applied to data from an individual subject without being 

influenced by the study cohort. It is important to keep in mind that this approach is appropriate 

only when the percentage of the cranial cavity occupied by a certain region is of particular 

interest. Bluntly comparing proportional volumes between two groups with different ICV will 

produce biased results.   

The residual approach estimates the linear association between regional volumes 

(𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑎𝑤) and ICV to predict the ICV-adjusted volumes (𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑑𝑗). It may be 

described as: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑑𝑗 𝑖 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑎𝑤 𝑖 − 𝛽(𝐼𝐶𝑉𝑖 − 𝐼𝐶𝑉𝑚𝑒𝑎𝑛)  (3.3) 

where β is the slope of the regression line between the ICV and the volume of interest. The 

adjusted volumes are obtained from the residuals of this linear regression and are therefore 

statistically uncorrelated with the ICV: 

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑑𝑗 𝑖 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑎𝑤 𝑖 − 𝛽(𝐼𝐶𝑉 𝑖 − 𝐼𝐶𝑉𝑚𝑒𝑎𝑛) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑑𝑗 𝑖 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑟𝑎𝑤 𝑖 − 𝛽 ⋅ 𝐼𝐶𝑉𝑖⏟              
                                         Volumei−E(Volume)=residualsi

+   𝛽 ⋅ 𝐼𝐶𝑉𝑚𝑒𝑎𝑛⏟      
mean volume

 (3.4) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑑𝑗 𝑖 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑚𝑒𝑎𝑛 + 𝜀𝑖   (3.5) 

where 𝜀 is the residual term, i.e. the random variation not explained by the linear association. 

This approach requires a reliable cohort from which the linear association is to be estimated. 

Also, in a group comparison setting, the choice has to be made whether the 𝛽 from one or both 

groups should be used to estimate the Volume-ICV association. A common approach when 

comparing patients to controls is to use the 𝛽 from the control group only to adjust both groups. 

The assumption being that the control group 𝛽 represents the “normal” relationship between 

Volume and ICV.  

The covariate approach is one of the most common methods for accounting for the ICV. As 

the name suggests, the ICV is included as a covariate in a linear regression model. For example, 
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in a volumetric study investigating gender differences, a linear regression model may take the 

following form: 

𝑉𝑜𝑙𝑢𝑚𝑒 = 𝛽0 + 𝛽1𝐴𝑔𝑒 + 𝛽2𝐺𝑒𝑛𝑑𝑒𝑟 + 𝛽3𝐼𝐶𝑉 + 𝜀 (3.6) 

Where 𝛽0, 𝛽1… 𝛽𝑛 are regression coefficients - parameters which estimate the extent of 

variance in Volume associated with the variables Age, Gender or ICV. This model works well 

when the association between Volume and ICV is the same for both genders, i.e. when their 

slopes are parallel. Otherwise an interaction term is included in the model. 

Analysis of brain connectivity  

Cortical thickness measurements generated by the FreeSurfer pipeline using the Desikan atlas 

were used to define the network nodes (Desikan et al., 2006). The 68 thickness values (34 for 

each hemisphere) were adjusted for the effects of age and gender using linear regression. The 

graph edges were defined as the Pearson correlations between every pair of regions. They were 

computed and recorded in a 68×68 connectivity matrix. These matrices were binarized, such 

that the correlations above a certain value are set to one and those below the threshold are set 

to zero. A range of threshold densities (Smin=30% to Smax=50%, sampled in steps of 0.5%)  was 

applied to each group’s respective correlation matrix, ensuring that the two groups had the 

same number of edges. Negative correlations were excluded from the analyses. The graph 

properties in Study II were selected to cover the major aspects of network topology: integration, 

segregation and centrality.  

Global efficiency is a measure of network integration, assessing how well information is 

exchanged across the system.  The global efficiency measure is based on the inverse path length 

between nodes (Latora and Marchiori, 2001).  

Clustering is the most frequently reported segregation measure, reflecting the extent to which 

the nodes surrounding a certain node are also neighbours with each other (Watts and Strogatz, 

1998). Transitivity is similar to clustering. The clustering coefficient is normalized at a nodal 

level, whereas the transitivity is normalized at a network level (Newman, 2003). Transitivity 

may be a more appropriate measure to use in networks with poorly connected nodes.  

Modularity reflects the presence of nodal groups or communities within the network. Networks 

with high modularity have a structure characterized by a high number of within-module 

connections and a low number of between-module connections (Newman, 2006). 

The presence of hubs was also assessed. Hubs are nodes in a network characterized by having 

a large fraction of shortest paths run through them. Network hubs are network regions of extra 

importance for information transmission (Rubinov and Sporns, 2010). 

Group comparisons were performed using non-parametric permutation testing with 1000 

replications (Bassett et al., 2008; He et al., 2008). Network measures and group differences 

were computed in BRAPH – a graph theory software for the analysis of brain connectivity 

(Mijalkov et al., 2017), freely available at www.braph.org. 
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Mixed effect models  

Linear mixed effect (LME) models are a powerful tool with a broad range of applications. LME 

models have many advantages over conventional data analysis methods, particularly when 

modeling longitudinal or repeated measures data. The main feature of LME models is that they 

incorporate fixed and random effects. Usually, if all possible levels of a factor are present in 

the experiment (e.g. gender, APOE genotype) they are modelled as fixed effects. If the 

experimental setup only contains a random sample of possible levels (e.g. subjects) the effect 

is modelled as random. In study IV, models with subject-specific intercepts and fixed slopes 

were constructed. 

If some variable 𝑦𝑖𝑗 is measured in a group of individuals at several time points, the simplest 

form to model 𝑦𝑖𝑗 is: 

𝑦𝑖𝑗 = 𝛽 + 𝑒𝑖𝑗  (3.7) 

where 

𝑦𝑖𝑗 is the outcome measure for subject i at time point j, 

𝛽 is the mean value of the outcome variable for all subjects at all time points, 

𝑒𝑖𝑗 is the error, assumed to be independently distributed  𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎
2). 

To incorporate the subject-specific effect, the model can be expressed as  

𝑦𝑖𝑗 = 𝛽𝑖 + 𝑒𝑖𝑗  (3.8) 

where 𝛽𝑖 is now the mean value of the outcome variable for subject i. 

Model (3.8) only models a specific subset of subjects in the experiment and does not make 

inference on the population. A random-effect model (3.9), models the individual subject effect 

as 𝛽 + 𝑏𝑖, rather than a constant value. Here, the 𝛽 is the mean value across subjects and 𝑏𝑖 is 

a random variable representing a deviation from a population mean and following the 

distribution 𝑏𝑖 ∼ 𝑁(0, 𝜎𝑏
2).  

The mixed effect model takes the form: 

𝑦𝑖𝑗 = 𝛽 + 𝑏𝑖 + 𝑒𝑖𝑗  (3.9) 

where 

𝛽 is the mean value of the outcome variable across the sampled population, 

𝑏𝑖 is the deviation from the population mean of the ith subject, 𝑏𝑖 ∼ 𝑁(0, 𝜎𝑏
2). 

𝑒𝑖𝑗 is the error, representing the deviation of the outcome value for subject i at time j from the 

mean value for subject i, where 𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎
2) 

Observations made on the same individual share the same random effect 𝑏𝑖 and their covariance 

is accounted for through 𝜎𝑏
2.  
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4 STUDY SUMMARY AND MAIN FINDINGS 

This section describes the most important findings of the studies included in this thesis. Study 

I and Study II are discussed separately. Studies III-IV are assessed together. 

4.1 STUDY I: INTRACRANIAL VOLUME ADJUSTMENT IN VOLUMETRIC MRI 

Inter-individual differences in ICV may confound the results of volumetric MRI studies. There 

is little agreement regarding the appropriate method for ICV normalization of regional brain 

volumes in imaging studies of neurodegeneration. Study I highlights the implications of 

working with 1) unadjusted volumes 2) volume-to-ICV fractions (proportional approach) and 

3) volumes from which the ICV effect has been regressed out (residual approach). Freesurfer-

generated cortical and subcortical volumes from the PIVUS cohort (N=406) and the ADNI 

cohort (N=724) were examined (See Table 1 and Table 2 for demographics) 

In the PIVUS cohort (healthy elderly aged 

75) all unadjusted regional structures 

correlated positively with the ICV. 

Expressed as fractions of the ICV, the 

correlation direction was reversed for all 

gray matter structures. Third ventricle and 

lateral ventricles maintained a positive 

association with ICV even after division. 

The residual method, by definition, created 

residuals that were statistically 

uncorrelated with the ICV (Figure 7 and 

Figure 8). When the adjustment strategies 

were applied to the CTL, MCI and AD 

groups of the ADNI cohort, the results 

were qualitatively similar to the PIVUS 

findings. The positive association between 

regional volumes and ICV was reversed for 

all region-to-ICV gray matter fractions, but 

not for the ventricular fractions.  

Further, we investigated the role of the different normalization approaches in a group 

comparison setting. Selected results of the gender comparisons in the PIVUS cohort are 

presented below. 

Subcortical volumes were significantly greater in males than females (p<0.05) (although 

cerebellum WM and hippocampus did not survive the Bonferroni correction for multiple 

comparisons). When expressed as fractions of ICV, the majority of GM structures appeared to 

be significantly greater in women (p < 0.05), except for the lateral and third ventricles which 

remained larger for men even after dividing with ICV. The residual approach led to the removal 

of any significant volume differences between females and males.  

Figure 7 | Correlation patterns for individual 
regional subcortical volumes in the PIVUS cohort 
using different ICV adjustment approaches. 



 

36 

In brief, the results of Study I indicate that: 

1) The proportion approach does not completely remove the effect of ICV from a regional 

brain volume. 

2) Although larger brains contain larger structures, they also contain proportionally more 

CSF than smaller brains. 

3) Regressing out the ICV from volumetric measures removes all detectable differences 

in regional volumes between men and women. 

 

Figure 8 | Correlation patterns for individual regional subcortical volumes in the PIVUS cohort 
using different ICV adjustment approaches. 

4.2 STUDY II: STRUCTURAL NETWORK ORGANIZATION   

Global and local network changes were assessed in a cohort of cognitively healthy individuals 

(N=299), the CTL subset of the BioFINDER study. Structural networks were constructed based 

on 68 Freesurfer-generated cortical thickness values specified by the Desikan atlas. Group 

demographics can be found in Table 3, where participants with abnormal values of CSF 

Aβ42/Aβ40 (≤ 0.1) were considered amyloid-positive. 

The CSF Aβ+ group was significantly older and had a higher percentage of ε4 carriers than the 

CSF Aβ- group. There were no differences in the average or regional cortical thickness between 

the groups at p=0.05. 

Figure 9 represents the analysis flow. Weighted correlation matrices were constructed, 

binarized at a set density threshold, allowing for calculation of the network property of interest 
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for both groups. Group differences were obtained for each density by non-parametric 

permutation testing. 

 

Figure 9 | Graph theory analysis flow. For each subject group weighted correlation matrices 
were computed and binarized. The network property of interest was calculated at all density 
values. Group differences were investigated for each density by non-parametric permutation 
testing. 

CSF Aβ- and CSF Aβ+ groups displayed significant 

differences in global network properties at the 

density range 30%-50%. The CSF Aβ+ group had 

reduced global efficiency and reduced modularity 

across most densities after permutation testing. 

Transitivity and clustering tended to be elevated in 

the CSF Aβ+ group, although the results were less 

stable. When APOE ε4 carriers were compared to 

non-carriers, no significant differences were 

detected.  

Furthermore, we detected a loss of network hubs in 

the CSF Aβ+ group. Network hubs are nodes that 

have a large number of shortest paths between pairs of nodes passing through them. In this 

study, hubs were defined as regions with betweenness centrality greater than 1.5 standard 

deviation from the group average. The most noteworthy hubs lost in the Aβ+ group were the 

precuneus and the right posterior cingulate – regions belonging to the DMN and therefore of 

relevance in the earliest AD stages. 

In brief, the results of Study II suggest that: 

Figure 10 | Loss of hubs in the Aβ+ group 
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1) Gray matter network changes in asymptomatic Aβ-positive elderly precede 

detectable cortical thinning.  

2) Evidence of amyloid pathology is linked to reduced global efficiency, modularity and 

loss of hubs. 

4.3 STUDIES III-IV: MAGNETIC RESONANCE SPECTROSCOPY IN 
PRECLINICAL ALZHEIMER’S DISEASE  

In Study III, high quality MRS data was obtained from 352 elderly individuals and analyzed 

in conjunction with known dynamic AD biomarkers CSF Aβ and tau levels, amyloid PET, 

resting state fMRI and the genetic risk-factor APOE. Four study groups were chosen to mimic 

the hypothetical continuum of pre-dementia AD. The groups were: 1) cognitively healthy 

elderly with normal CSF Aβ42 (CTL Aβ-), 2) cognitively healthy elderly with abnormal CSF 

Aβ42 (CTL Aβ+), individuals with SCD and abnormal CSF Aβ42 (SCD Aβ+) and 

individuals with MCI and abnormal CSF Aβ42 (MCI Aβ+).  

This study highlights the very early involvement of brain myo-inositol in AD progression. 

Elevated levels of mI/Cr were detected in the CTL Aβ+ group compared to the CTL Aβ- 

group (p<0.05). Furthermore, in the entire control group, an elevation in mI/Cr (and not a 

decrease in NAA/Cr) was associated with a decline in Aβ42 concentration in the CSF (β̂ = -

0.21, p = 0.002) and a higher Aβ load on PET imaging (β̂ = 0.32, p<0.001). Reduced NAA/Cr 

was associated with an increase in CSF total tau in the MCI Aβ+ group (β̂ = -0.24, p = 0.02). 

Both measures reflect the extent of neuronal injury and are therefore expected to change at 

the MCI stage. 

Another noteworthy finding of Study III was in participants with no cognitive decline or 

biomarker abnormalities. In the CTL Aβ42- group, mI/Cr levels were higher in APOE ε4 

carriers compared to the non-carriers (p<0.001).  

The main results of Study III suggest that: 

1) Brain mI levels are changed already at asymtpomatic stages of AD. 

2) APOE ε4 carriers with normal biomarker levels display elevated brain mI. 

Study IV expands upon the results of Study III, by investigating for the first time the link 

between the changes in MRS metabolites over time and amyloid pathology. In Study IV, 

serial MRS data from 294 participants (CTL, SCD and MCI) was collected over a period of 

up to four years, resulting in 670 individual high-quality spectra. Furthermore, we took a 

particular interest in the NAA/mI ratio, due to the emerging evidence of the relevance of this 

measure in AD (Nedelska et al., 2017; Schreiner et al., 2018). 
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Table 6 | Visit time and number of acquired spectra in Study IV 

 Time from baseline  

Years, mean (SD) 

All subjects CTL SCD MCI 

Visit 1 0 294 137 83 74 

Visit 2 2.28 (0.38) 294 137 83 74 

Visit 3 4.10 (0.19) 82 24 34 24 

 

As opposed to Study III where we prioritized including individuals with abnormal CSF Aβ42 

levels, in Study IV, all subjects with multiple MRS were included irrespective of amyloid 

pathology evidence (Table 5).  

Using linear mixed effect models to estimate the rates of change in the ratios mI/Cr and 

NAA/mI, we demonstrate that the trajectory of longitudinal changes in mI differs significantly 

depending on the presence of underlying amyloid pathology. An example of a mixed model 

used in Study IV is presented in  (Table 7). This model assesses whether baseline Aβ status 

affects the rate of change in mI/Cr and NAA/mI, accounting for age, sex and APOE ε4 

carriership. The primary predictor of interest is the interaction between Aβ status and visit 

number. 

  

Figure 11 | Estimated rates of change of MRS measures mI/Cr and NAA/mI in different 
biomarker and diagnostic groups 
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In Aβ+ individuals mI/Cr increased at an estimated yearly rate of 1.9%, whereas in the 

Aβ- group the rate of change was negligible at 0.3%/year. NAA/mI declined at a rate of 

2.0%/year in the Aβ+ group. Additional models were built to: 1) explore the role of 

diagnosis-by-visit interaction and 2) investigate whether the Aβ-by-visit interaction is a 

relevant predictor when only the MCI group is considered. Figure 11 presents the 

estimated trajectories of metabolite measures mI/Cr and NAA/mI as well as the 

annualized rates of change in various diagnostic and biomarker groups. Perhaps 

unsurprisingly, the greatest MRS variation was detected in the Aβ+ MCI group, where 

NAA/mI decreased at a rate of -3.6% per year. 

Table 7 | Example of a mixed model used to estimate the rate of change of mI/Cr and NAA/mI 

The finding linking APOE ε4 carriership to higher mI concentrations in Aβ-negative 

individuals (Study III) did not uphold in the longitudinal follow-up. We found no 

evidence that ε4 carriers accumulate mI at a faster rate than ε4 non-carriers. 

Since longitudinal MMSE 

data was available for Study 

IV participants, we explored 

whether baseline levels of 

NAA/mI were associated 

with the rate of future 

cognitive decline. We found 

that in the Aβ+ group, the 

trajectory of MMSE decline 

was significantly different for 

those with low baseline 

NAA/mI compared to those 

with high baseline NAA/mI ratio. Aβ+ individuals with baseline NAA/mI<1.5 lost a total 

of 6.3 MMSE points, whereas Aβ+ individuals with baseline NAA/mI≥1.5 lost a total of 

2.2 MMSE points in four years. In the Aβ- group the MMSE showed negligible 

variability during the four year time period.  

 Outcome measure: mI/Cr Outcome measure: NAA/mI 

Fixed effects Estimate (SE) P value Estimate (SE) P value 

Intercept 0.10 (0.08) < 0.001 1.43 (0.20) <0.001 

Aβ  

Visit 2 

0.02 (0.02) 

-0.01 (0.01) 

0.18 

0.21   

-0.04 (0.04) 

0.07 (0.37) 

0.29 

0.001 

Visit 3 0.02 (0.01) 0.24 0.05 (0.02) 0.15 

Age -0.00 (0.00) 0.09 0.00 (0.00) 0.20 

APOE  0.02 (0.01) 0.16 -0.07 (0.03) 0.045 

Gender  -0.03 (0.01) <0.01 -0.07 (0.33) 0.05 

Aβ × Visit 2 0.05 (0.01) <0.001 -0.16 (0.03) <0.001 

Aβ × Visit 3 0.04 (0.02) <0.05 -0.16 (0.05) <0.01 

Figure 12 | Estimated rates of change of MRS measures 
mI/Cr and NAA/mI in different biomarker and diagnostic 
groups. 



 

 41 

The main results of Study IV indicate that: 

1) Longitudinal changes in mI are largely governed by the presence of amyloid 

pathology. 

2) Stratifying Aβ+ individuals based on baseline NAA/mI values may reveal 

subgroups with markedly different rates of cognitive decline over time.  
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5 DISCUSSION 

5.1 WHAT DOES IT MEAN TO BE “AMYLOID-POSITIVE”? 

A substantial part of this thesis deals with cognitively healthy individuals with evidence of 

amyloid pathology, i.e. a population believed to be at higher risk for AD. Although evidence 

of brain amyloid accumulation is the earliest AD hallmark, it is still unclear exactly how 

abnormal levels of Aβ are related to brain atrophy and cognitive decline. About 20-30% of 

older people show evidence of elevated brain amyloid (Aizenstein et al., 2008; Jansen et al., 

2015; Mattsson et al., 2015). The question is, are all these people heading towards an AD 

diagnosis? What does it mean to be amyloid-positive? First of all, it is important to recognize 

that harbouring amyloid might be a natural process related to ageing. It has been found that 

12% of healthy 60 year-olds are amyloid-positive, among 70 year-olds it is 30%, and among 

cognitively normal 80 year-olds approximately half show evidence of Aβ accumulation (Rowe 

and Villemagne, 2011). Villemagne and colleagues have also shown that for someone who has 

just reached the amyloid-positive threshold, the signs of mild cognitive impairment are 

expected to appear about 14 years later, and a dementia diagnosis is decades away (Villemagne 

et al., 2013). This means that cerebral amyloid accumulation in the very old should perhaps not 

be seen as alarming, since the “silent” phase of preclinical pathology might be so long that it 

may not be relevant. 

Nevertheless, the involvement of amyloid in processes detrimental to the brain cannot be 

refuted. There is substantial evidence from longitudinal studies of increased brain atrophy rates 

in cognitively normal amyloid-positive elderly (Andrews et al., 2013; Chételat et al., 2011; 

Schott, J. et al., 2010; Villemagne et al., 2013). In functional MR studies, Aβ accumulation has 

consistently been linked to alterations within the DMN (Mormino et al., 2011; Sheline et al., 

2010), which seems sensible, since the DMN and the regions of amyloid deposition have a 

largely overlapping topography (Buckner et al., 2005). Although the relationship between 

amyloid plaques and the severity of cognitive decline in AD is not straightforward, longitudinal 

studies have demonstrated that in cognitively normal elderly, amyloid-positivity is associated 

with steeper cognitive decline (Fagan et al., 2007; Resnick et al., 2010). A recent study 

assessing cognition in middle-aged adults (age 40 to 59), demonstrated a detectable decline in 

vocabulary within the amyloid-positive group (Farrell et al., 2017).   

The link between Aβ pathology and the harmful structural, functional and cognitive processes, 

together with the increasing availability of CSF and amyloid PET data, have motivated many 

researchers to focus their attention on the group of cognitively normal Aβ-positive people, 

taking this group to represent the very first stage of the AD continuum, as per the definition of 

preclinical AD (Sperling et al., 2011). In studies II-IV this framework was employed to explore 

whether network organization, or MRS metabolites are altered in amyloid-positive non-

demented elderly. Indeed, older Aβ-positive asymptomatic individuals exhibited changed 

global and local network parameters. Among others, they presented with significantly lower 

global efficiency, higher clustering, a loss of hubs and a reorganization of network modules, 

demonstrating that brain networks are sensitive to underlying amyloid pathology. Brain 
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metabolites evaluated with MRS, specifically measures containing myo-inositol measured in 

the posterior cingulate/precuneus region, also showed substantial cross-sectional and 

longitudinal changes in asymptomatic at-risk individuals. Neither graph theory (study II) nor 

MRS (studies III-IV) belong to the realm of established AD biomarkers, and relatively little is 

known about their interplay with other markers of pathology. Exploring these more 

“unconventional” biomarkers of AD, and demonstrating their sensitivity to ongoing brain 

amyloidosis, can be considered one of the connecting themes of this thesis. 

5.2 BRAIN ARCHITECTURE  

Brain structure and function are determined by a constellation of genetic and environmental 

factors, age and pathology. Understanding the changes taking place in the brain during normal 

ageing is essential for identifying and characterizing disease-related phenomena. Several 

conceptual and methodological factors have moved structural MRI studies towards working 

predominantly with multiple volumetric and cortical thickness measures rather than with a 

priori selected brain regions. Such, in the field of AD, seminal studies regarding the early 

atrophy of the hippocampus and the entorhinal cortex (Fox et al., 1996; Scheltens et al., 1992) 

are being complemented by research on distinct patterns of brain atrophy and the probable 

existence of distinct disease subtypes (Ferreira et al., 2017; Poulakis et al., 2018). This shift 

towards multiple brain region analysis has been made possible by the availability of 

sophisticated computerized segmentation techniques.  

Exploring structural covariance is one of the two main themes of this thesis. Notably, in Studies 

I and II, this phenomenon is addressed in conceptually distinct manners. In Study I, where the 

interrelationship of regional brain volumes and the total ICV is assessed, the existence of 

structural co-variance is largely interpreted as an obstacle, something that confounds the 

interpretation of the results, or as Barnes and colleagues refer to it, “a necessary nuisance” 

(Barnes et al., 2010). On the other hand, in Study II, the phenomenon of structural co-variance 

is made the most of - it is the foundation for graph construction subsequent detection of 

otherwise indiscernible patterns. 

Evidence from neuroimaging studies reveals that the ageing brain decreases in total volume 

(Barnes et al., 2010; Courchesne et al., 2000; Scahill et al., 2003), gray matter volume 

(Courchesne et al., 2000; Good et al., 2001) and cortical thickness (Sowell et al., 2007). 

Longitudinal studies estimate annual brain volume decline to be approximately 0.5% per year 

(Fjell et al., 2009). The independent effect of age has been the focus of many neuroimaging 

studies of neurodegeneration since age variability often interferes with evaluating the extent of 

“true” pathology. Another common confounder in cross-sectional volumetric studies is the ICV 

–  an estimate of the maximal brain volume. Larger brains tend to contain larger structures, so 

for example, when two people of the same age and gender, yet substantially different head sizes 

have similar-sized hippocampi, a disease-specific atrophic process might already be underway 

in the person with the larger ICV.  
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In Study I we worked with MRI images from a unique cohort of over 400 healthy individuals 

all scanned at age 75 using a single MR system. Thus, in this dataset, age - a major source of 

between-subject variability – was eliminated by design, creating an ideal setup for investigating 

the implications of ICV adjustment. Men generally have larger cerebra than women (Blatter et 

al., 1995; Coffey et al., 1998; Gur et al., 1991; Raz et al., 2004); in line with this evidence we 

too report that uncorrected regional volumes are greater in males than females. Assessing 

gender dimorphism per se was not the main objective of the study, but nevertheless provided 

an illustrative example of a group-comparison setting where ICV may obscure or exaggerate 

true differences. We found that regressing out the effect of ICV from the data removed any 

detectable structural differences between males and females. The more interesting finding 

emerged from looking at region-to-ICV fractions: GM structures were greater in women, 

whereas ventricular structures were greater in men. If age-related atrophic changes have 

progressed further in men than women by the age of 75, it implies that volumetric decline 

commences at an earlier stage and/or progresses at a faster rate in men. The observation of 

faster age-related volumetric decline, and ventricular expansion is supported by several studies 

(Barnes et al., 2010; Blatter et al., 1995; Coffey et al., 1998; Gur et al., 1991; Raz et al., 2004). 

Study I was designed to describe the relationship between regional volumes and ICV, and to 

bring to light how this relationship changes depending on the choice of ICV normalization 

strategy. Several studies discuss the statistical reliability of the various ICV-adjustment 

strategies, pointing out the relative sensitivity to error of the proportional method (Arndt et al., 

1991; Sanfilipo et al., 2004). However, experience tells us that the choice of how to adjust for 

ICV is more likely to be influenced by a particular research question or the conventions existing 

within the research field. An idea seldom expressed in the context of brain volumetric studies, 

is whether it may in some cases be useful to report both adjusted and unadjusted volumes, since 

the absolute volume of a structure and its size relative to the total brain volume essentially 

provide complimentary information. Of note, when it comes to cortical thickness regions, ICV 

adjustment is probably not required (Barnes et al., 2010; Westman et al., 2013). 

Another way of working with gray matter morphological measures is by looking at them from 

a network perspective. In network modeling, the brain is represented as a graph: a set of nodes 

interconnected by edges. Within the domain of brain topology, graphs can be built using data 

from most of the major imaging modalities. In diffusion tensor imaging, edges of a graph are 

the probable axonal connections between pairs of gray matter regions.  In f-MRI, an edge 

represents a functional connection – two regions that demonstrate similar dynamics of 

activation over time. In Study II, brain networks were constructed from structural MRI, and the 

edges defined by structural co-variance between pairs of gray matter regions. We aimed to 

investigate whether individuals at risk for AD display detectable alterations in brain 

connectivity metrics based on cortical thickness data. Cortical thickness measures were used 

since they are known to be sensitive to the very early changes of the pre-dementia AD 

pathology (Dickerson et al., 2009). Longitudinal studies have shown that cortical thinning 

predicts steeper cognitive decline later in life (Dickerson and Wolk, 2012; Pacheco et al., 2015) 

and conversion to AD dementia (Bakkour et al., 2009). The results of our study suggest that 
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structural connectivity changes occur before any cortical thinning can be detected. Individuals 

harbouring amyloid pathology did not display more cortical atrophy in any isolated region, yet 

they exhibited substantially different global and local network parameters. For example, global 

efficiency – the ability to rapidly integrate information was compromised in amyloid-positive 

individuals before the onset of symptoms or gray matter loss. Furthermore, we detected a loss 

of hubs in the at-risk group, in regions pertaining to the DMN. The involvement of the DMN 

in amyloid-related pathological processes has been demonstrated previously, particularly in a 

recent study by Palmqvist et al, where DMN regions (posterior cingulate and precuneus) were 

found to be the earliest sites of Aβ accumulation (Palmqvist et al., 2017).  

An appealing aspect of network modeling is its ability to reduce a complex system to a set of 

concepts that, albeit abstract, are generalizable across a wide variety of fields. It is exciting to 

explore how patterns of brain topology compare to the complex systems of language, markets, 

sociology etc. At the same time there is a pressing need for a common language within the field 

of neuroscience – one which would address the interdependence between structure and 

function. The DMN is a good example of an abstract concept that is consistently detected by 

several imaging techniques and shows a striking overlap across structural and functional 

modalities (Greicius et al., 2009). The discovery and characterization of more of this type of 

ubiquitous phenomena may be one of the major prospective applications of graph theory. 

5.3 ALZHEIMER’S DISEASE NEUROMETABOLIC SIGNATURE 

The most consistent brain metabolic changes related to evolving AD pathology are an increase 

in mI and a decrease in NAA. Many studies have reported results for the composite ratio 

mI/NAA (or NAA/mI), demonstrating it to be more useful than MRS metabolites in several 

contexts. Such, mI/NAA is superior in discriminating between AD and controls (Kantarci et 

al., 2002; Martínez-Bisbal et al., 2004), predicting the onset of MCI (Kantarci et al., 2013) and 

accumulation of brain amyloid (Nedelska et al., 2017) in cognitively normal elderly 

individuals. 

The results of this thesis also highlight the relevance of mI/NAA as a standalone measure and 

suggest that it should be reported in all MRS studies. In Study IV, where the longitudinal 

evolution of mI/NAA is presented alongside mI/Cr, it is evident that the difference in the MRS 

signature between the amyloid-positive and the amyloid-negative groups is amplified when the 

mI/NAA is used. As will be discussed below, the change observed in the composite ratio is 

likely to be driven by either mI or NAA depending on the stage of the disease. 

We know from longitudinal studies that the mI elevation is an early event in AD pathology 

detectable already at asymptomatic pre-dementia stages, whereas the decrease in NAA occurs 

at a later time in the disease progression. There is no evidence of a reversal in mI levels at more 

advanced disease stages, and both mI and NAA are abnormal in established AD. The findings 

presented in this thesis locate the rise in mI at the very first stages of detectable pathology. 

Brain mI/Cr in cognitively normal controls with abnormal CSF Aβ42 is already changed and 

correlates with higher plaque deposition on amyloid PET imaging (Study III). This is in line 
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with evidence from quantitative histopathological assessment of the posterior cingulate region, 

which demonstrated a significant association between ante-mortem mI/Cr levels and post-

mortem plaque density (both diffuse and cored) (Murray, M. E. et al., 2014). The authors found 

no relationship between Aβ plaque burden and NAA/Cr. Brain NAA was in turn associated 

with synaptic vesicle immunoreactivity and p-tau (Murray, M. E. et al., 2014). Also, in this 

thesis, no association between NAA and amyloid pathology has been established, but NAA/Cr 

was found to correlate with an increase in t-tau in amyloid-positive MCI (Study III). Taken 

together, this evidence suggests that mI and NAA are markers of different pathological 

processes –  both hallmarks of AD.  

Although we suggest that there exists an MRS metabolic “signal” of AD, picked up most 

reliably by the mI/NAA ratio, the practical usefulness of such a marker will depend on several 

factors. Evidence from murine models suggests that mI is able to detect the reduction in plaque 

deposition brought about by passive immunization targeting Aβ (Marjańska et al., 2014). 

However, although Aβ-modifying immunotherapies have shown great promise in animal 

models, their benefits in human studies are yet to be demonstrated (Wisniewski and Goñi, 

2015). Since we assume that the association between mI and AD pathology is driven by Aβ, 

when mI is put forward as a potential marker of treatment efficacy, it is implied that the 

employed treatment strategy somehow affects brain Aβ load. Although trials explicitly aimed 

at removing plaques have not had a positive outcome (Salloway et al., 2014), it is probable that 

other types of disease-modifying therapies will indirectly influence the process of plaque 

aggregation or deposition (i.e. by targeting Aβ oligomers). So, conceptually mI is a relevant 

candidate for use in a clinical setting or a trial design. But what about the practical aspects? To 

be able to monitor treatment efficacy, the intra-individual variability in mI measurements must 

be minimal relative to the treatment effect. The test-retest reproducibility of single-voxel MRS 

in the posterior cingulate has been examined in a setup where healthy volunteers underwent 

weekly scans using clinical hardware at 3T, demonstrating minimal between-session 

coefficients of variance for the metabolites mI, NAA, Cho and Cr, as well as high 

reproducibility of the voxel placement (Terpstra et al., 2016). But when the time interval 

between two consecutive MRS exams is large enough for atrophic changes to take place, even 

a topographically consistent voxel placement may introduce intra-individual variability due to 

an altered voxel composition. However, the error introduced by partial volume effects is 

minimized when ratio-based quantification is performed. As for successful disease-modifying 

strategies and how they will manifest themselves in the spectroscopic signal, this remains to be 

elucidated. Schott and colleagues have previously discussed this matter in a longitudinal MRS 

study (Schott, J.M. et al., 2010). The authors speculate that if future treatment brings about a 

reverse of the AD-typical metabolite trajectories, then MRS will be a good response biomarker. 

However, if the treatments merely slow down the progression of metabolite abnormality, these 

effects may be confounded by within-subject measurement variance  (Schott, J.M. et al., 2010). 

In any case, standardized protocols and clear guidelines for voxel placement in multi-center 

studies will aid in exploring the potential of MRS metabolites for monitoring treatment effects. 



 

48 

The type of brain cells giving rise to the total observed MRS signal cannot be determined easily. 

NAA is synthesized exclusively in the neuronal mitochondria, therefore is some consensus of 

NAA being a suitable marker of mitochondrial and neuronal integrity (Dautry et al., 2000; 

Moffett et al., 2007). However, the reductions in NAA can sometimes be reversed following a 

period of recovery or treatment (Maddock and Buonocore, 2012; Westman et al., 2007). The 

fact that NAA seems to pick up transient damage to neuronal function limits the usefulness of 

this metabolite as a standalone marker in AD.  

When it comes to the biological mechanisms behind mI alterations in the early stages of AD, 

they are not fully understood. The mI signal has often been linked to glial activation and 

proposed as an in vivo marker or neuroinflammation, however whether mI is preferentially 

present in glial or neuronal cells is not clear. High mI concentrations have been detected in 

cultured astrocytes, but not in neurons (Brand et al, 1993), prompting the assertion of a glial 

source of this metabolite. However, this widely cited paper has a number of methodological 

limitations, which restrict its generalizability (discussed in full detail elsewhere (Maddock and 

Buonocore, 2012)). Briefly, cultured neurons and astrocytes used in the study were at widely 

distinct stages of development and neither were able to synthesize mI from glucose as is the 

case in vivo. However, when mI was added to the culture environment, it was taken up more 

readily by mature astrocytes than embryonic neurons. Fisher et al. reviewed several other 

studies addressing mI concentrations in cultured neuronal and/or glial cells, revealing that mI 

levels are comparable in both types of brain cells (Fisher et al., 2002). In the study assessing 

post-mortem neuropathologic correlates of the ante-mortem MRS signal. Murray et al. did not 

detect any significant association between mI and the microglial or astrocytic burden, once 

more putting into question the relationship between mI and gliosis in AD (Murray, M. E. et al., 

2014).  

One of the most important physiological functions of mI is that of an organic osmolyte (Kwon 

et al., 1992). Under osmotic stress the volume of the cell must be preserved so as not to disrupt 

important intracellular processes. In response to extracellular hypertonicity (such as 

hypernatremia) mI enters the cells (Lee et al., 1994) and effluxes the cell in hypotonic 

conditions (Videen et al., 1995). A recent study demonstrated that intracellular accumulation 

of mI in response to hypertonic stress increases the levels of polyphosphoinositide, thereby 

modulating neuronal activity via phosphoinositide-dependent ion channels (Dai et al., 2016). 

Dai and colleagues were the first to show that mI elevation due to osmoregulation affects 

electrical signaling of excitable cells (Dai et al., 2016). This suggests that the behavior of mI in 

pre-dementia AD may be reflecting the cells’ attempt to endure homeostatic aberrations, and 

that mI may be linked to altered synaptic function independently of Aβ. More basic research 

of similar caliber to the Dai et al. study is needed to elucidate the mechanistic linkage between 

mI and the pathogenesis of AD. The lack of a clear understanding of the biological processes 

behind the MRS changes is one of the most apparent obstacles to broader use of this cost-

efficient and non-invasive technique.  
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6 CONCLUDING REMARKS  

The general aim of this work was to advance the characterization of structural and metabolic 

changes associated with incipient AD pathology. Study I addressed a common methodological 

issue of volumetric MRI studies related to inter-individual differences in ICV. This work 

demonstrates that the choice of ICV normalizations approach affects the interpretation of study 

results, highlighting the importance of a clear and transparent ICV adjustment strategy in 

volumetric MRI studies. Study II examined the organization of structural networks in 

cognitively healthy elderly with evidence of amyloid pathology, revealing aberrations in 

cerebral network topology in absence of detectable cortical thinning. Study III situated 

changes in the MRS profile within the context of existing clinical, pathologic and functional 

AD biomarkers, highlighting the involvement of brain mI at very early stages in the disease 

progression. Study IV, presented evidence that mI may have the ability to track AD-specific 

pathological processes. The results revealed that amyloid-positive individuals accumulate mI 

at a higher rate than people no evidence of amyloid pathology.  

Throughout this thesis, early biomarker characterization has been addressed largely from the 

perspective of the research community, and therefore treated as something fundamentally 

positive. It should be recognized, however, that being able to assess a person’s risk of 

developing an incurable disease, gives rise to obvious ethical challenges. Although detecting 

“amyloid-positivity” or APOE ε4 carriership among healthy elderly is important for clinical 

trials, disclosing such information in the clinic may be damaging to individuals and family 

members. Apart from the potential psychological risks involved, individuals may be subjected 

to unfair treatment in the workplace or the insurance market. This “genetic or biological” 

discrimination is one of the general risks associated with the emerging field of precision 

medicine (Hampel et al., 2016). More research is needed to guide the practical implementation 

of biomarker evidence of AD.  

Another conceptual shift likely to advance medical research and aid the neuroimaging 

community in particular is related to the rapid advances in automated image recognition 

techniques. The total quantity of neuroimaging data is growing quickly, as is our capacity for 

information storage. Machine learning approaches, including deep learning are permeating the 

field of medical image analysis and becoming the method of choice for classification, object 

detection, segmentation etc. (Litjens et al., 2017). Today, these state-of-the-art methods are 

being applied mostly to high resolution imaging data. However, their potential is largely 

overlooked when it comes to the existing data of the scientific archives. A myriad of scans 

collected since the advent of medical imaging have been put on the shelf and deemed obsolete 

as new and improved imaging methods emerged. Incidentally, this “outdated” data may be 

particularly useful for research since it is likely to contain valuable follow-up information. In 

simple terms – new methods do not necessarily require new data to uncover novel information. 

Present day machine learning techniques can and should be applied to already existing 

imaging/spectroscopic data which has previously only been inspected visually. 
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As a final remark, I would like to acknowledge the immense importance of dedicated long-

term care for dementia patients. In his 1985 book “The man who mistook his wife for a hat”, 

Oliver Sacks recounts writing to A.R. Luria to seek his advice regarding a patient whose 

memory loss was beyond repair (Sacks, 1985). “There are no prescriptions in a case like this. 

Do whatever your ingenuity and your heart suggest.” Luria writes. “But a man doesn’t consist 

of memory alone”, he goes on, “He has feeling, will, sensibilities, moral being – matters of 

which neuropsychology cannot speak. And it is here, beyond the realm of interpersonal 

psychology, that you may find ways to touch him, and change him. And the circumstances of 

your work especially allow this, for you work in a Home, which is like a little world, quite 

different from the clinics and institutions where I work.” Luria’s message is clear - when 

science and medicine are rendered powerless, it is the empathy and the immense 

resourcefulness of those who care for patients day after day, that can make all the difference. 
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