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HIGH-THROUGHPUT VISUAL KNOWLEDGE ANALYSIS AND 

RETRIEVAL IN BIG DATA ECOSYSTEMS 

HONGFEI CAO 

  Dr. Chi-Ren Shyu, Dissertation Supervisor 

ABSTRACT 

Visual knowledge plays an important role in many highly skilled applications, such as 

medical diagnosis, geospatial image analysis and pathology diagnosis. Medical 

practitioners are able to interpret and reason about diagnostic images based on not only 

primitive-level image features such as color, texture, and spatial distribution but also their 

experience and tacit knowledge which are seldom articulated explicitly. This reasoning 

process is dynamic and closely related to real-time human cognition. Due to a lack of visual 

knowledge management and sharing tools, it is difficult to capture and transfer such tacit 

and hard-won expertise to novices. Moreover, many mission-critical applications require 

the ability to process such tacit visual knowledge in real time. Precisely how to index this 

visual knowledge computationally and systematically still poses a challenge to the 

computing community.  

My dissertation research results in novel computational approaches for high-

throughput visual knowledge analysis and retrieval from large-scale databases using latest 

technologies in big data ecosystems. To provide a better understanding of visual reasoning, 

human gaze patterns are qualitatively measured spatially and temporally to model 

observers’ cognitive process. These gaze patterns are then indexed in a NoSQL distributed 

database as a visual knowledge repository, which is accessed using various unique retrieval 

methods developed through this dissertation work. To provide meaningful retrievals in real 
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time, deep-learning methods for automatic annotation of visual activities and streaming 

similarity comparisons are developed under a gaze-streaming framework using Apache 

Spark.  

This research has several potential applications that offer a broader impact among the 

scientific community and in the practical world. First, the proposed framework can be 

adapted for different domains, such as fine arts, life sciences, etc. with minimal effort to 

capture human reasoning processes.  Second, with its real-time visual knowledge search 

function, this framework can be used for training novices in the interpretation of domain 

images, by helping them learn experts’ reasoning processes. Third, by helping researchers 

to understand human visual reasoning, it may shed light on human semantics modeling. 

Finally, integrating reasoning process with multimedia data, future retrieval of media could 

embed human perceptual reasoning for database search beyond traditional content-based 

media retrievals.    
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Motivation 

Domain experts observe visual phenomena and amass visual knowledge [1, 2] over 

time. That visual knowledge developed by experts allows them to understand the 

implications of domain images. It also can be used in image database design to help user 

retrieve results in a smarter and better way by visual query, visual clues [3, 4].  

For example, in the radiology domain, a radiologic technologist is often given a task, 

such as “What is the projection of the femur in this X-ray image”. An expert will likely 

check the image label (if provided) or some particular regions of interest (ROI) to get the 

candidate answer and then confirm by matching obtained visual phenomena with the tacit 

knowledge in their memory. This systematic image ROI checking and confirmation lets 

experts make the diagnosis or answer the question efficiently and precisely. To be sure, 

there are some different strategies to help experts to answer the same question. Experts 

may even come up with different visual strategies or different results for the same image. 

Therefore, the visual tacit knowledge is hard to articulate and share by current 

computational approaches, let alone to search and exchange. To capture and evaluate this 

visual tacit knowledge, several methods are used. The straightforward method is to ask 

experts to type or speak out their thoughts during analysis by think-aloud protocol. Then 

the think-aloud audio is transcribed afterwards for detecting the strategies the expert was 

using. This protocol is limited in its ability to explain real-time cognitive processes as it is 

based on the expert’s awareness of thought processes and the expert’s verbalization of 

those processes. Because the experts may not be aware of some aspects of their processing 
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and may not choose to share all of their thoughts, think-aloud protocol results are less than 

comprehensive. Another method of capturing and evaluating visual tacit knowledge is 

functional MRI, but the imaging environment is not conducive to domain expert’s image 

interpretation. Therefore, the compromise method we used is gaze tracking [5-7], which 

captures the real-time human reaction and unexplained tacit knowledge through visual 

stimulus. Gaze tracking has been widely used to identify image salient regions [8-10], assist 

content based image retrieval [11], compare user behaviors by mining common gaze 

patterns [12-14], and assist computer-human interaction. By index of cognitive approach – 

average of changes in pupil dilation per second [15, 16] -- it is also used to measure users’ 

cognitive workload. Moreover, the approach [17] identifies and compares subjects’ 

cognitive strategies. In addition, it has been successfully used to reveal observers’ cognitive 

process [18] through the sequence of visual attention driven by human cognition, despite 

several issues, such as ‘peripheral encoding’ [19, 20] and gaze fixation/saccade 

misdetection [21, 22]. Although it is easy to collect gaze tracking data by gaze tracker, the 

complexity of the dataset increases the difficulty of analysis, summarization and indexing 

for future use, search and learning.  

In order to better search and exchange gaze tracking data, we index and store it using 

the case-based reasoning (CBR) system, a technique in artificial intelligence used in 

learning and problem-solving systems for knowledge acquisition and storage [23-27]. 

Case-based reasoning [28-30] was first introduced in AI by Roger Schank [31] in his work 

on dynamic memory and memory organization packets (MOPs) theory of learning and 

reminding based on prior experience. According to the cognitive science of these theories, 

people typically solve problems based on concrete past experiences rather than 
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approaching each new problem from scratch. A CBR system allows people to learn 

vicariously through indexed cases and provides a basis for decision-making in situations 

where the observer has little prior experience. CBR has also been used to implement 

knowledge-based methods for automated problem solving [32, 33]. Michael Richter 

presented knowledge containers [34] which introduced two fundamental issues of CBR: 

how to represent knowledge in a systematic way and how to improve the system over time. 

There are many different applications of CBR system used in problem solving. An example 

of CBR system is the knowledge innovation for technology in education (KITE) [35] which 

seeks to assist teachers in the integration of technology into their teaching. Another 

problem solving CBR is Déjà vu, a Hierarchical CBR system aimed at automating plant-

control software design [36]. It deals with complex plant-control design tasks by its 

hierarchical structure and multiple-case reuse method. An image segment system was 

implemented based on case-based reasoning [37]. By retrieving similar images from the 

case library and adapting its’ segment parameters, new computed tomography (CT) images 

are segmented efficiently.  

Due to the massive amount of streaming gaze tracking data, it is hard to provide real 

time visual knowledge analysis and reasoning in traditional platform. Therefore, a big data 

ecosystem (Hadoop & Spark) – including the Hadoop [38, 39]. Ecosystem which offers a 

substantial library of tools, such as Spark [40], Spark GraphX [41, 42], Spark Streaming 

[43], Spark MLlib [44], HBase [45-47], Hive [48], and MapReduce [49-51] is used to 

process high-throughput human gaze tracking data. Spark is an in-memory computing data-

analytics framework that works on top of the Hadoop Distributed File System [52] and 

YARN [53], which provides ability to process streaming data. All the data processing tasks 
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utilize the Spark in-memory distributed computing framework that allows for processing 

of large datasets in parallel. 

1.2 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 introduces visual knowledge 

reasoning for image analysis in various applications. It also contains a pyramid visual 

knowledge structure designed for our experiment along with the visual knowledge case-

based reasoning architecture. Chapter 3 discusses data management in big data ecosystems 

– Hadoop and Spark and a general case-based reasoning (CBR) system for indexing, 

reusing and retaining. Chapter 4 describes two different types of representation of gaze 

tracking, spatial model (subgraph matching) and temporal model (Markov Chain, 

Conditional Random Field, and Markov Decision Process model). Each individual case is 

made up of a gaze tracking pattern (a sequence of fixation) along with visual medium and 

domain knowledge. In Chapter 5, a novel visual computational searching method designed 

for gaze tracking retrieval based on Markov Chain (MC) and graph models is described. 

The use of an MC model for gaze tracking analysis has been addressed in previous studies 

for exploring visual scanning patterns [54, 55]. Chapter 6 discusses the real time gaze 

tracking streaming analysis in big data ecosystem – Spark. In addition, two experiment 

configurations’ case studies and the statistical significance finding within and across 

knowledge groups are reported. A gaze tracking application –storytelling based gaze 

tracking authentication is described in Chapter 7. Finally, the dissertation then ends with 

conclusions and future directions in Chapter 8. 
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CHAPTER TWO 

2. VISUAL KNOWLEDGE CHARACTERIZATION USING GAZE 

TRACKING 

Visual knowledge [56] is reasoned by observers based on the observed visual 

phenomena and tacit knowledge. An image analyst, such as a radiologic technologist, 

makes decisions based on domain images (e.g. X-ray) through systematic checks of 

relevant regions and visual features in an image. The decisions include, but are not limited 

to the image quality, image orientation, image contrast, part position, central ray direction 

and shape distortion, etc. Thus, for a radiologic technologist, a set of relevant regions needs 

to be checked and verified before answering any question or making any decisions. For 

example, in Figure 1, in order to answer the question “How do you orient yourself to this 

image?” based on a femur X-ray image, an expert will likely start by checking the 

acetabulum -- the joint space between the femurs to determine Anterior and superior 

locations on the image. If the acetabulum cannot be seen clearly which means the image 

does not have enough penetration, the expert may go back to use different aspects image. 

However, it is often difficult for both novices and practitioners to describe all the important 

information in an image.  Due to the highly complex visual knowledge, current approaches 

are not up to the task of capturing it.  
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Figure 1: A sample X-ray image of femur with highlighted anatomic regions that are 

relevant to answer the question “How do you orient yourself to this image?” 

 

2.1 An Overview of Image Reasoning  

Image reasoning systems have been used to reason knowledge automatically through 

image content extraction and retrieval. Typical content-based image retrieval (CBIR) 

systems [57-59], following three steps below, can help us mine image content from domain 

images so the computers can understand high-level semantics from image. The first step is 

image feature extraction, which maps the image from image space to vector space by 

representing images as a set of image feature vectors. The second step is to generate high-

level information by machine learning or data mining method from those features and get 

low-level knowledge models. At this point, domain knowledge is used to help create a 

high-level knowledge model. There is a significant gap between low-level and high-level 

knowledge models. In order to fill the gap, domain experts usually need to be involved and 

provide feedback or extra knowledge to assist image reasoning systems to create the model. 
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While the CBIR approach can achieve of high-level semantic understanding, it is still a 

long journey to index and mine the visual knowledge. However, many studies show that 

gaze tracking reasoning may be applied to this task. The gaze tracking analysis, in medical 

domain, has been used to differentiate patterns between children with autism and without 

[60, 61], identify relevant region in pathology images [62] and other medical images [63, 

64]. Furthermore, visual reasoning is used in intelligent database retrieval, picture indexing 

and so on [65-67]. By reasoning on domain experts’ gaze tracking data, we built a general-

purpose model to capture this visual knowledge and make it searchable through a gaze-

tracking CBR system. The system is designed to bridge the gap between experts and 

novices on how they look at domain images by the hierarchical CBR system and make 

gaze-tracking data searchable and adaptable for future using.  

2.2 Levels of Abstraction for Visual Knowledge 

We adapted a conceptual framework for visual knowledge indexing [68] which groups 

image features from low level (syntactic) to high level (semantic). This model has been 

tested and verified to be a robust instrument for indexing medical image [69]. In the 

framework, the knowledge is indexed by a 10-level pyramid as shown in Table 1. The first 

four levels refer to syntactic knowledge and the other six refer to semantic understanding. 

It shows that high levels (semantic) need more knowledge and information to index than 

low levels (syntactic). Syntactic levels (Level 1 to 4) are the most basic levels and focus 

on visual elements (e.g., dark spots, line, texture, and density) without considering the 

meaning of their arrangement. Thus, it does not involve much knowledge to describe these 

visual elements and no interpretation takes place at these four levels. On the other hand, 

semantic levels (Level 5 to 10) deal with the meaning of visual elements and require 
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domain knowledge, experiences, and interpretation [69]. In order to elicit and capture the 

visual reasoning process from gaze tracking data, in the experiment, we designed 10 

questions each refers to one knowledge level in 10-level knowledge pyramid. For example, 

a question like “What body parts does this image demonstrate?” was used to elicit visual 

reasoning processing when image analysts attempt to identify “Generic Objects” (Level 5). 

Table 1 shows the entire pyramid with 10 experimental visual knowledge levels and its’ 

examples. The questions designed by the 10-level knowledge structure help us define 

relevant regions in each domain image and specified different image features captured by 

observers. These 10 questions were asked before observers looked at image.  

Table 1: 10-Level knowledge structure with correlated experiment questions (levels 1-

4 are syntactic 5-10 are semantics).  

Level 
Original Visual Knowledge 

Pyramid 
Definitions and Examples 

1 
Type Technique Visual knowledge required to recognize the techniques and modalities 

used to produce the image (e.g., CT, X-ray, MRIs). 

2 
Global Distribution Visual knowledge about the overall image characteristics such as “high 

or low contrast”. 

3 
Local Structure Visual knowledge required to identify the basic visual elements (e.g., 

dot, line) and local details (e.g., shadow”). 

4 
Global Composition Visual knowledge required to analyze the image as a whole but use the 

basic elements (e.g., symmetry, collimation”) 

5 
Generic Objects Visual knowledge required to identify the most general level of object 

description with everyday knowledge (e.g., left leg, marker). 

6 

Generic Scene Visual knowledge required to identify scenes at the most general level 

of description such as patient position or projection (e.g., AP position, 

oblique). 

7 

Specific Objects Specific visual knowledge required to identify and name objects that 

are the primary subject of the overall image or local objects (e.g., 

lumbar spine, ET tube), 

8 
Specific Scene Specific visual knowledge required to make judgment of the quality of 

the image (e.g., proper central ray position”). 

9 

Abstract Objects Specific and interpretative visual knowledge required to summarize 

the information gleaned from the image (e.g., male patient, pediatric 

patient). 

10 

Abstract Scene Specialized and interpretative knowledge required to carry out 

diagnostic or pathology judgments such as “fracture”, “bowel 

obstruction”. 
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2.3 Visual Knowledge Case-Based Reasoning 

In our visual knowledge case-based reasoning system (VK-CBR), the overall 

architecture shown in Figure 2 includes four components: case raw data, case library, gaze 

distance measurements and a full CBR cycle [70]. During the data collection, subjects’ 

gaze trackings were recorded by GazeTracker an open source infrared gaze tracker [71, 

72]. A concurrent think-aloud protocol was used to solicit verbalized observations from the 

domain image and answers to the task questions. In VK-CBR system, each case consists 

of two parts: problem description and solution. The problem description includes gaze 

tracking data and the region of interest (ROI) in domain image. The case solution is the 

text description transcribed by observers’ think-aloud audio. In the case library, system 

stores and indexes each gaze case and models them in two different representations – 

spatial and temporal (See also section 3). Then, system uses two different components to 

measure the distance between cases based on their spatial and temporal distance 

components. To measure the spatial distance by graph representation, we used a subgraph 

distance tool -- SAGA [73]. Three sub-components were designed to measure the gaze 

properties (gaze graph structure, total number of fixation and fixation duration) shown in 

Figure 2. For the temporal distance component, the system applies several Markov Chain 

comparison methods such as Markov forward algorithm to measure the temporal pattern. 

The overall distance combines both spatial and temporal distances as the final ranking 

results (See also section 4). Through a full CBR cycle with four processes, namely retrieve, 

reuse, revise and retain, after collecting and indexing each gaze case, similar cases will be 

retrieved and returned to the user. In the retrieval step, the CBR system allows user to 

retrieve similar gaze tracking cases with the domain knowledge to help them better 
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understanding and interpreting domain images. Then, they can further adapt the retrieved 

results if necessary by temporal representation through the CBR reuse and adaptation 

process. Furthermore, a simulated ROI observation sequence is generated as the system 

recommends results. Last, by retaining, the system returns the new case with its solution to 

the user and stores them to the case library for future using. 

 

 

Figure 2: The overall Visual Knowledge CBR architecture and case base management. 
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CHAPTER THREE 

3. CASE-BASED REASONING SYSTEM IN BIG DATA 

ECOSYSTEM  

3.1 Overview 

The visual knowledge developed by domain experts helps them to interpret or diagnose 

domain images. This tacit knowledge seldom articulates explicitly and is hard to capture 

and transfer in real time. In this dissertation, a distributed case-based reasoning (CBR) 

system was designed using a conditional random field (CRF) [74] to automatically label 

visual activities from gaze tracking streaming data, the  reinforcement learning – Markov 

Decision Process (MDP) [75] and Spark graph model to capture human visual knowledge 

temporally and spatially on domain images (medical image, X-ray, Geospatial images, 

etc.). CRF is an undirected probabilistic graphic model for sequence data segmentation and 

labeling. Compared to a hidden Markov Model (HMM) [76, 77] or Markov Chain model 

(MC) [78], CRFs relax the independency assumption between hidden states (y1, …, yn). 

Moreover, generative models such as HMMs or MCs are unable to represent multiple 

interacting features or long-range dependencies of the observations (mixed-ordered 

sources). To solve the above issue, non-generative finite-state models such as Maximum 

entropy Markov models (MEMMs) have been designed [79]. MEMMs have another 

weakness - label bias problems. The transition weight in the model could have a bias 

calculation for some edges whose end state has fewer outgoing transitions. In contrast, 

conditional models - CRFs are able to model mixed-order sources and prevent modeling 

label bias issues. Researchers used a CRF model to capture human visual strategies in 

various applications. The CRF is used to model general reading strategies among readers 
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[80]. By training the CRF model using all users’ gaze data, the accuracy of predicted 

reading strategies using CRF model can reach 94.62%. In addition, researchers use CRF to 

track user behavior in eye movement challenge problems [81]. The accuracy of 

classification is about 73%, which shows the difficulty of the task. Traditional prediction 

models were compared to CRF model as well, for example – Logistic model, Naïve 

Bayesian and SVM.  

After generating gaze action from the CRF model, we used a Markov Decision Process 

model (MDP) to capture visual knowledge temporally. MDP models also known as 

reinforcement learning are designed for incremental learning processes. For gaze tracking 

analysis, it is able to capture visual knowledge’s temporal characteristics. Through gaze 

actions and reward functions, MDP models can be trained to favor the desired visual 

reasoning pattern (domain experts).  

As the size of the dataset grows, a traditional case based reasoning system fails to 

analyze gaze-tracking data due to the large volume. Moreover, the fast streaming speed of 

online dataset presents significant challenges to normal CBR systems, which analyze data 

at lower latencies. Through Apache Spark, a distributed computing framework, and 

MapReduce programming model, a distributed CBR system can capture and index the 

visual knowledge from humans in real time. The system allows us to efficiently partition 

data into different machines in a cluster and cache them in memory for fast processing. 

Furthermore, using Spark’s GraphX component, the system can analyze gaze spatial 

patterns. In this dissertation, we proposed a probabilistic model (Markov Decision Process 

model) for real time gaze tracking and an online Expectation Maximization (EM) learning 

algorithm for training the parameters in the proposed model. 
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3.2 Discretized Streams  

In order to stream gaze-tracking efficiently, analyze data in real time and run ad-hoc 

queries interactively, a distributed computing framework – Apache Spark - was used. One 

of the advantages of Spark is the built-in streaming component using Discretized Streams 

(D-streams) [43]. Through D-streams, Spark keeps the data in memory for operation and 

stores the streaming data reliably across the cluster on Hadoop Distributed File System 

(HDFS).  

D-streams, such as Spark Streaming, [82] are distributed large-scale stream models 

designed for real-time data processing. Similar to MapReduce [83] in Hadoop, D-streams 

can read multiple resources from different nodes in a big data cluster. They can also read 

from various inputs/datasets, such as HDFS, web sockets (TCP/IP), plain text file, etc. 

Aside from the MapReduce computing model in Hadoop, users can also create general 

workflow on D-streams in Spark using operations such as filter, flatMap, sample, union, 

intersection, reduceBy, aggregateBy, sortBy, groupBy, and join. The results from the D-

stream can be stored in multiple output resources and formats. For example, 

saveAsTextFile for plain text output, saveAsSequenceFile for sequence output and 

saveAsObjectFile for object output.  

The streaming gaze tracking is first stored as D-streams and Spark performed a series 

of deterministic batch computations on D-streams within small time intervals. The input 

data can be stored on to HDFS periodically. Using Spark standard operations such as filter, 

reduceBy and groupBy, the received D-streams data are transformed into Resilient 

Distributed Datasets (RDDs) – a distributed storage that keeps the data in memory [84] 

across the cluster. The advantages of RDDs include in-memory computing, scalability and 
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fault-tolerance. The data in RDD format can be distributed across cluster and caching in 

memory. It is extremely helpful in the analysis of data in real time since the gaze tracking 

data can be processed in memory on different nodes simultaneously. Meanwhile, RDDs 

allow Spark Streaming to reconstruct missing data when a node fails in cluster. Using D-

streams in Spark Streaming, the system is able to achieve scaling, reliable and fault-tolerant 

in a commodity hardware cluster. In addition, Spark allows users to query streaming 

component interactively through defined D-Streams API. Thus, users can retrieve similar 

visual attention at any time of their image scan. It makes the Visual knowledge Case Based 

Reasoning interactively and response to users’ searches in real time.  

3.3 Raw Sequence Processing 

Through a TCP/IP connection, gaze tracking raw sequence data is first sent to the Spark 

Streaming Component. Then, the data is stored on HDFS in different size of blocks. 

HDFS provides fault tolerant storage by default; three replications are created for each 

chunk of data. Next, using a sliding window approach, the system calculates fixation 

points and saccades from raw gaze stream in real time.   

Figure 3 is the diagram for the processing input of the raw gaze tracking sequence. The 

input streaming gaze-tracking sequence is processed using a sliding window scan. In a time 

t window, we calculate potential fixation points using a velocity-based method [85]. The 

size of the window is defined in real time by streaming frequency and fixation duration. 

For example, the sample frequency of infrared gaze-tracker we used is gaze_frequency=34 

fps. According to previous study, human fixation threshold is often defined as 

fixation_threshold=100-200ms. In this experiment, we choose 150ms. The sliding window 

size can be calculated as fixation_threshold * gaze_frequency = 0.15 (s)*34=5.1, which 
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means we can set the window size to 6 to ensure each time only one fixation point is inside 

the sliding window.  

After obtaining the fixation sequence in real time from the raw input, we can then map 

each fixation point into predefined region of interested (ROI). For now, we asked domain 

experts to manually label each ROI in an image. Other approaches include image 

processing methods such as image segmentation and labeling, which allow us to 

automatically obtain this ROI data. Since fixation-ROI mapping also needs to be done on 

the fly, it requires that each machine in the distributed cluster maintains its own copy of 

the ROI data (best in memory). One of issues of using this “broadcast” type of solution is 

the capacity of machine memory. If the ROI region data is too big, each machine/node in 

the cluster will quickly exhaust all of the memory resources to process the gaze-tracking 

data. In our case, the ROI data can be loaded into RAM and each time I can limit the 

number of images used. More details about mapping fixations to ROI regions will be 

discussed in Section 4.1. 

 

Figure 3: Preprocessing of gaze tracking data. 
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3.4 Gaze Feature Generation 

The next step, after obtaining fixation and the corresponding ROI sequence, is to 

generate features for both gaze temporal and spatial representation. For a temporal model 

– linear chain Markov decision process, this includes a set of actions, a set of states with 

rewarding function and a sequence of observations. We used a Conditional Random Field 

(CRF) [86] model to automatically segment and annotate the gaze tracking activities. Three 

activities are defined from the streaming ROI sequence: read, scan and focus. In order to 

build this gaze tracking label CRF model, we first collect training data. Each visual action 

is manually labeled on collected gaze tracking data. Then, five fixation features are used 

for training CRF model: fixation duration, fixation dispersion, angle speed, pixel speed, 

and acceleration. Since training the CRF model requires iterative learning algorithms such 

as Viterbi, Belief Propagation, which is hard to learn in real time, it is better to train this 

CRF model offline. Equation 1 represents the CRF model in mathematic format, where Y 

is a set of actions as we defined above and observation X is the sequence of region of 

interested generated by the raw data processing. 

𝑃(𝑌|𝑋) = (1/𝑍𝜃(𝑥)) × exp⁡(𝜃 ∙ ∑ 𝑓(𝑋, 𝑌, 𝑖)𝑖 )              (1) 

The learning problem can be stated as: given observation X, the most likely sequence 

of Y is calculated by Equation 2. Since the CRF model has a convex cost function, the 

training solution is global optimal. 

Y * = argmaxY P(Y | X)             (2) 

To evaluate the CRF predicted label results, the system simulates a gaze action label 

based on a simple threshold classification by Equation 3. Using the generated label, the 
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system then evaluates the CRF prediction results. In Equation 3, dispersion is the maximum 

distance between current fixation and its neighbors in a range of 𝜃.        

𝐴 = {

𝑓𝑜𝑐𝑢𝑠: 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 < 𝜃𝑑

𝑟𝑒𝑎𝑑: 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 > 𝜃𝑑 ⁡⋀⁡𝑎𝑛𝑔𝑙𝑒_𝑠𝑝𝑒𝑒𝑑 < 𝜃𝑎

𝑠𝑐𝑎𝑛: 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 > 𝜃𝑑 ⁡⋀⁡𝑎𝑛𝑔𝑙𝑒_𝑠𝑝𝑒𝑒𝑑⁡ > 𝜃𝑎

                            (3) 

For spatial representation G={V,E}, the gaze tracking graph is defined as vertex set 

V={ROI} and edge set E={eij | transition between node i and j}. The feature for spatial 

representation is generated from the sequence ROIs. Each ROI represents a vertex in the 

graph and the edge between node i and j is the transition between ROIs. 

3.5 Learning from streaming 

In order to retrieve similar gaze tracking cases in real time, the system must learn both 

temporal and spatial models on the fly. To accomplish this, we use an online learning 

approach to train the models. The first step is to split the entire observation time into fixed 

number of slots (f). Each time slot’s length equals to 𝑡𝑠𝑙𝑜𝑡 = 𝑡𝑡𝑜𝑡𝑎𝑙/𝑓. For example, if the 

total time is 15s and number of slots is 3, 𝑡𝑠𝑙𝑜𝑡 =
𝑡𝑡𝑜𝑡𝑎𝑙

𝑓
= 5𝑠. Then, the online learning 

approach buffers each streaming data point into the memory until current time slot is 

completed. Thus, the system updates both temporal and spatial models incrementally. The 

Markov decision process (MDP) is represented in Equation 4, where the state S is a set of 

ROIs, and action A is the CRF predicted visual actions results. The transition matrix is 

calculated by Equation 5. Finally, the reward function R maps each state to an action. The 

MDP model is then trained to maximize the expected value 𝑉𝜋(𝑠) = 𝐸[𝑅(𝑆0) + 𝛾𝑅(𝑆1) +

𝛾2𝑅(𝑆2) + ⋯ |𝜋] where 𝜋 is the mapping function which maps state to action. Finally 𝛾 is 

the reward parameter.  
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For real time visual knowledge analysis, a new set of MDP parameters 𝜋 is trained in 

Equation 6.    

𝑉∗(𝑠) = 𝑚𝑎𝑥𝑉𝜋(𝑠)⁡⁡⁡
𝑉𝜋(𝑠) = 𝑅(𝑠) + 𝛾 ∑ 𝑃𝑠𝜋(𝑠′)𝑉𝜋(𝑠′)𝑠′∈𝑆

                          (6) 

Similarly, the gaze spatial model is updated on each node automatically, since the 

whole data is processed on the Spark Cluster. The system requires each node to maintain a 

copy of its Spatial and Temporal Model locally, so syncing the model periodically between 

nodes is necessary. In the system, we setup the sync time as 𝑡𝑠𝑙𝑜𝑡, which is same to the 

buffer length. The system tracks the node updates the temporal or spatial model and 

distributes the new model from that node to the rest of cluster. 

The average number of fixation points within 𝑡𝑠𝑙𝑜𝑡 buffer is around 7-8. After obtaining 

the new fixation points, Equation 5 is used to update existing MDP model when the new 

knowledge (gaze points) is available. Thus, different user’s temporal and spatial gaze 

tracking models can be updated at the same time across the cluster. Based on Equations 5 

and 6, the new transition matrix is calculated. Similar to the temporal model, the graph 

model is updated by Equations 9-12. The system updates node, structure and gap distance 

based on new coming fixation points. 
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3.6 System architecture 

Traditional MySQL or Oracle database driven CBR is not designed for large scale 

streaming computing. Thus, a distributed CBR for visual knowledge using HBase and 

HDFS is designed in this dissertation. HBase is a column oriented distributed database on 

top of HDFS which allows users to randomly access large amounts of data (read and write) 

in real time in a key-value format. The gaze tracking data is indexed and retrieved in real 

time by its temporal and spatial characteristics. The whole system architecture is shown in 

Figure 4. The streaming gaze tracking data is first sent to a Spark Streaming component 

for fixation segmentations. Then, the sequence of fixation is further annotated by a linear-

chain Conditional Random Field to obtain visual activities (Focus, Read, and Scan) for 

each time stamp. The system then generates a Markov Decision Process model based on 

the annotated visual action and associated ROI sequence. The MDP model will be used for 

gaze temporal pattern retrieval in Distance Measurement component. All the generated 

MDP models and raw sequence gaze data are stored in HBase – a distributed database on 

the top of Hadoop Distributed File System. To achieve large scale re-ranking during the 

retrieval in real time, the system uses the Mean Shift clustering results for shuffling.  
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Figure 4: Distributed visual reasoning system architecture. 

 

Similar to gaze-tracking raw sequence processing, the distributed CBR also 

automatically partitions data into different machines in a cluster. Each gaze-tracking case 

is represented in the form of a ROI sequence, temporal model, and spatial model. Gaze-

tracking cases are stored in different machines across the cluster using HBase. Using Solr 

[87], an in-memory indexing open software from Apache, HBase indexes data in memory 

and eventually achieves real time query. Table 2 shows HBase table schema for gaze 

tracking raw sequence. Similar schema are used for table fixation-ROI as well. 

Table 2: HBase Table Schema for Gaze Tracking Raw Sequence. 

RowID CF: coordinate CF:fixation CF:ROI 

Case1 (X,Y) Fixation1 ROI1 

Case2 (X,Y) Fixation2 ROI8 
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To avoid the issue of data skew, where a small number of nodes store the majority of 

data, we can presplit each table before the data comes in. This rowID presplit approach 

balances data loading and insertion across different machines in the cluster. Since each 

gaze tracking case has same duration ~ 𝑡𝑡𝑜𝑡𝑎𝑙, by presplitting the data in each table we can 

avoid an unbalanced data problem.  

3.6.1 Distributed CBR Cycle  

In a distributed CBR retrieval process, we proposed two models for gaze tracking: 

conditional random field (CRF) and Spark GraphX model. These two models represent the 

gaze tracking’s temporal and spatial characteristics. The conditional random field builds a 

gaze temporal model from a raw ROI sequence. Since different users may have different 

ways to look at the same domain image, it is hard to model this mixture order of sources. 

Thus, CRF is a good temporal model for these types of the data due to the loose of 

independent assumption.  

After obtaining similar gaze cases from the case base, the next step is adapting the 

retrieved result to a query gaze case. Because of the distributed framework, all results are 

split and sent to different nodes across the whole cluster. In order to auto-learn and re-rank 

retrieved results based on query case, the system needs to maintain a query on each node 

using a Spark broadcast function. Then, the CBR Revise step can generate a new CRF and 

spatial models using both query and retrieval cases.  

In the CBR revise step, users first evaluate the adapted result, then they can change the 

transition weights between gaze fixations. The system regenerates the CRF and Spatial 

models using new weights provided by the users. Finally, after users have accepted the 
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adapted solution, the distributed CBR system stores the results with the query case together 

in HBase for future use.  

3.7 Evaluation  

To evaluate the whole real time visual analysis Spark system, a combination of online 

think-aloud and offline user rating protocol were designed for this research. In the think-

aloud section, the system asks users to speak out their reasoning process while they look at 

the domain images. This reasoning process will were recorded and translated into text data 

for later evaluation. In order to evaluate each gaze tracking result queried from visual 

knowledge database, the system uses Jaccard similarity to measure think-aloud data 

between the query and retrieved results. In addition, an offline user-rating web page is 

designed to record user satisfaction with retrieved results. In the rating web page, each user 

is asked to give a rating (from 1 to 5) for each retrieved result. This rating will be used to 

update CBR adaptation process later see in Section 5.3.  

More specifically, for temporal model retrieval results evaluation, the system uses 

Longest Common Substring distance [88, 89]. The similarity is calculated between the 

query and retrieval results’ fixation sequences. The LCS distance is used to validate the 

temporal MDP retrieval results.  
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CHAPTER FOUR 

4. GAZE TRACKING CASE REPRESENTATION  

After collecting gaze tracking data and region of interest in domain images, the system 

is ready to represent the case. The first process in this phase of the system is case 

generation. Given the gaze tracking raw data, a set of attributes of gaze tracking such as 

gaze coordinates, durations, saccade lengths and angles are calculated automatically. Based 

on different fixation definitions, a fixation point is defined as the centroid (x, y) of a set of 

gaze points within a time period such as 100ms or 150ms. Time periods for fixation vary 

throughout the literature with most fixation lengths defined between 50 and 200ms [90]. In 

our experiment, we set 100ms as minimum dwell time to calculate fixation points. Figure 

5 shows the gaze tracking on a domain image where the gaze fixation points are marked in 

solid green dots and the saccades (jump between two fixation points) are marked with a 

red straight line. Another attribute for gaze tracking is duration (dwell time) which 

measures how long a fixation point dwells on the image region. Figure 6 shows a sample 

of Lumbar Spine X-ray image with the raw sequence gaze data on the left and 

corresponding fixation data on the right. In Figure 5, note that solid dot increases in size 

with increased duration of the fixation. Next, each gaze fixation is mapped to ROIs based 

on their spatial relationship. Both spatial and temporal representations were then generated 

for each gaze case in the VK-CBR system.  



24 

   

Figure 5: A sample of Eye-tracking fixation sequence on the X-ray femur image.  

 

Figure 6: A sample of Lumbar Spine X-ray raw gaze tracking (left) and fixation 

sequence (right) results. 
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4.1 Mapping fixation to Region of Interest (ROI) 

Based on ROIs defined by domain experts, the VK-CBR system first maps fixation 

points to the corresponding ROIs. Figure 7 shows a set of highlighted ROIs marked as 

polygons in an X-ray image. Each fixation point can fall into zero (undefined region), one 

or multiple regions of interest. Based on the following three rules, the system assigns each 

fixation point to a unique ROI when given the fixation data. (1) If the fixation point falls 

into an unmarked region (non-ROI), the system will assign this gaze point to the closest 

ROI. The distance is defined as the ROI exhibiting minimum distance between the fixation 

and the nearest region boundary. (2) When the fixation point is within one ROI, the system 

assigns the fixation to this region. (3) When the fixation falls into an overlapping region of 

multiple ROIs, the system assigns the fixation to the ROIs with a minimal area, which is 

likely to be relevant for the reasoning. Table 3 shows an example of fixation-ROI mapping 

result. Each fixation point was mapped to one unique corresponding ROI.  Based on above 

rules, the system transfers the gaze tracking data from a fixation sequence to an ROI 

sequence. Next, the CBR system represents the gaze temporal characteristics using a 

Markov Chain representation, as well as the graph representation was generated to capture 

spatial feature. 
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Figure 7: A sample X-ray image with gaze tracking and correlated graph mapping result. 

 

Table 3: Sample of Eye-tracking Gaze Point with Corresponding ROI. 

Fixation X Y Duration ROI ROI Name 

1 726 217 0.166 R1 X MARKER 

2 

972 96 0.226 R2 FEMORAL 

HEAD 

3 

1041 57 0.156 R3 SHAFT OF 

FEMUR 

… … … … … … 

      

4.2 The Temporal Representation  

4.2.1 Markov Chain model 

After obtaining the corresponding ROI sequence for gaze tracking, VK-CBR system 

generates two different representations for each gaze tracking case – temporal and spatial. 

In this section, we discuss how to generate temporal representations in CBR system. The 

description of a temporal behavior is an nth-order Markov Chain (MC) model with m finite 

states (here n is up to 5 and m is the number of ROIs in one image). The MC model is 
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defined by its initial vector π and the transition matrix contains the transition probability 

between each pair of states. The initial vector π defines the probability of any ROI 

occurring first when the user looks at the image. The transition matrix defines the 

probability between two states (ROIs) that user will look at them consecutively. Based on 

this MC model, the system captures temporal patterns for gaze activities. Further, the MC 

model is used to generate an adapted solution for the user by combining both query and 

retrieved cases during CBR adaptation process (See more detail in Section 4.3).  

In order to generate the nth-order MC model, we assume that gaze tracking has the 

Markov property that the future observation only depends on past n fixation points. 

Specifically, for a first-order MC model, it means that the future observation is independent 

of past fixation points when given a current observation. In our cases, the nth-order MC 

model assumption means current visited ROI only depends on past n regions of interest 

(ROI) checked by user.  Let ROIi be the state Xi, at time t, the nth-order Markov property 

is described as Equation 7 and first order Markov Property shown in Equation 8: 

𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋1 = 𝑥1)

= 𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡, 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋𝑡−𝑛−1 = 𝑥𝑡−𝑛−1)⁡𝑓𝑜𝑟⁡𝑡 > 𝑛 + 1 

(7) 

 

𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡 , 𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋1 = 𝑥1)

= 𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡)⁡ 

(8) 

We demonstrate how to generate a first-order MC model for a gaze tracking case. Then, 

higher order MC models can be obtained in a similar way.  The first step for generating an 

MC model is to count the number of transition between each pair of adjacent fixation points 

with corresponding regions of interest. Next, the system calculates the Markov Chain 

transition matrix A by iteratively calculating the weighted probability for each pair of states 
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by Equation 9. The weight w is calculated by Equation 10, where 𝐷𝑇(𝑅𝑂𝐼𝑗) is defined as 

total duration w the j-th ROI. Table 4 shows a sample of the transition matrix for the first-

order Markov Chain model with transition count and probability listed in each cell. 

𝑃(𝑥𝑖|𝑥𝑗) = 𝑤𝑗 ×
𝐶𝑜𝑢𝑛𝑡⁡𝑜𝑓⁡𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑓𝑟𝑜𝑚⁡𝑥𝑗 ⁡𝑡𝑜⁡𝑥𝑖

𝐴𝑙𝑙⁡𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛⁡𝑠𝑡𝑎𝑟𝑡⁡𝑓𝑟𝑜𝑚⁡𝑥𝑗
=

𝑤𝑗 × c𝑥𝑗𝑥𝑖

∑ c𝑥𝑗𝑥𝑖𝑥𝑖

 
(9) 

𝑤𝑗 =
𝐷𝑇(𝑅𝑂𝐼𝑗)

∑ 𝐷𝑇(𝑅𝑂𝐼𝑗)j
 

(10) 

Table 4: Sample transition count/probability result for first-order Markov Chain Model. 

 Right 

Marke

r  

X 

Mark

er  

Shaft of 

Femur  

Great

er 

Troch

anter  

Ischiu

m  

Femoral 

Head  

Acetabulu

m  Right Marker 4/0.25

00 

4/0.25 1/0.06 4/0.25 0/0.00 1/0.06 2/0.13 

X Marker 2/0.40 1/0.2 2/0.40 0/0.00 0/0.00 0/0.00 0/0.00 
Shaft of 

Femur 

4/0.23

5 

0/0.00 8/0.47 4/0.23

5 

1/0.06 0/0.00 0/0.00 

Greater 

Trochanter  

1/0.07

7 

0/0.00 2/0.15 4/0.30

8 

1/0.07

7 

5/0.38 0/0.00 

Ischium  0/0.00 0/0.00 1/0.10 1/0.10 5/0.50 3/0.30 0/0.00 
Femoral Head 3/0.15

8 

0/0.00 3/0.16 1/0.05

3 

1/0.05

3 

8/0.42 3/0.16 

Acetabulum  1/0.16

7 

0/0.00 1/0.17 0/0.00 2/0.33

2 

1/0.17 1/0.17 

 

Meanwhile, the system determines the initial vector π for MC model by the gaze 

corresponding ROI sequence. For example, in Table 4, region R1 is the first ROI that the 

observer checked. Then, the initial vector π was assigned to (0,0,…,1,0,..0) where ‘1’ 

corresponds to the first visited region R1. After obtaining the transition matrix A and initial 

vector π, the first order MC model is represented in the VK-CBR system. Figure 8 shows 

a sample of gaze tracking case with corresponding first-order MC model. Each node is an 

ROI with label name listed at bottom. The directed edge between node R2 (Femoral Head) 

and node R3 (Pelvis) with 0.33 weights indicates that there is a 33% chance that an observer 
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will look at the region Femoral Head followed by Pelvis. The self-loop on node R3 suggests 

that observers checked region R3 continually within two gaze points. The VK-CBR system 

generates this temporal MC model for gaze tracking cases from each individual observer. 

Similarly, the system also constructs higher-order Markov Chain models using Equations 

9 and 10 where c𝑥𝑗𝑥𝑖
 is the transition count between past n consecutive ROIs (xj) and 

current ROI (xi). 
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Figure 8: An example of gaze tracking case (Case662) with corresponding customized 

first-order MC Model. 

 

4.2.2 Conditional Random Field  

Besides a Markov Model temporal representation, the gaze tracking data is also 

presented as linear-chain Conditional Random Field (CRF). Through the CRF model, the 

gaze tracking data is auto segmented and mapped to visual action {X->Y}. Figure 9 shows 

an example of CRF model, where X is streaming gaze tracking fixation feature and Y is 

visual action, which includes {Read, Scan, Focus}. The fixation features include fixation 

duration, dispersion, angle speed, pixel speed, and acceleration. Duration of a fixation point 

is the dwell time [91] for measuring how long a user focus on the image. Fixation 

dispersion is the maximum distance between current fixation and its neighbors in a range 

of⁡𝜃. It measures the spatial distribution between fixations. The angle speed is the angle 

changes per second which measures the fixation spatial relationship as well. The pixel 

speed and acceleration measure the user attention shifts frequency. 
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One of advantages of CRF model is it works well when the true data distribution’s 

order is higher than the model (e.g. Hidden Markov Model). For normal visual task, it is 

usually true that users’ current visual attention is depended on multiple previous fixations 

based on their short term memory. Thus, CRF model for visual action segmentation and 

prediction is preferred in this project.   

A fully-labeled data set is required to train a CRF model. In our project, the data was 

manually labeled by expert for three visual actions {Focus, Read, Scan}. After obtaining 

the training data, a CRF model was learned based on Equation 2 using Stochastic Gradient 

Descend (SGD) with L1/L2 regularization method by Wapiti - a discriminative sequence 

labeling toolkit with linear-chain CRF model [92]. With L1 regularization, the training 

process can perform feature selection to reduce the model size but not as stable as L2. In 

this project, we chose L1 regularization since it allows us to handle large scale CRF model 

with hundreds of label output Y and billions of observation X. As a result of Wapiti, it 

suggests that SGD is recommended for most large scale application due to its quick 

converge speed even though it does not guarantee to find the optimal one.  

 

Figure 9: An example of linear-chain CRF model for visual action segmentation. 
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4.2.2.1 CRF Training 

In order to train a CRF for visual activities segmentation, a fully-annotated training 

dataset is required. The input raw gaze tracking sequence is further segmented and 

annotated with defined uniform time period in the range of 450-600ms for three different 

visual actions {read, scan, focus}. This range can be customized later for different users 

and visual actions. Therefore, we can define the sliding window length as visual action 

duration (period time) divided by fixation sample rate (=34), as Equation 11 shows:    

𝑠𝑤 =
𝑈𝑛𝑖𝑓𝑖𝑒𝑑⁡𝑉𝑖𝑠𝑢𝑎𝑙⁡𝐴𝑐𝑡𝑖𝑜𝑛⁡𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑠𝑎𝑚𝑝𝑙𝑒⁡𝑟𝑎𝑡𝑒
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

In our case, the sliding window length is in the range of (13-17) for a raw gaze tracking 

sequence, which was used in training set generation. After collecting the raw gaze tracking 

data, the first step is to generate a sequence of fixation by clustering temporal and spatial 

closed raw data points. Then, we generated five different fixation features, fixation duration, 

dispersion, anglespeed, speed and acceleration. The fixation duration is defined as dwell 

time for the current fixation obtained by gaze tracker, in our case is 150ms. Equations 12-

15 show the formulae to calculate dispersion, anglespeed, speed and acceleration for 

fixation j based on previous adjacent fixation i. In Equation 12, dispersion of fixation j is 

the maximum distance between j to its neighbor fixation in a range with j as centroid and 

window size 𝜃, where in our case, 𝜃 is equal to 5.       

𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛𝑗 = max𝑖 (√(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
),⁡ 

⁡𝑤ℎ𝑒𝑟𝑒⁡𝑖⁡𝑖𝑠⁡𝑗′𝑠⁡𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟⁡𝑖𝑛⁡𝑡ℎ𝑒⁡𝑟𝑎𝑛𝑔𝑒⁡𝜃⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 
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𝑎𝑛𝑔𝑙𝑒𝑠𝑝𝑒𝑒𝑑𝑗 =

cos−1 |𝑥𝑖 − 𝑥𝑗|

√(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2

|𝑡𝑖 − 𝑡𝑗|

⁄
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

𝑠𝑝𝑒𝑒𝑑𝑗 =
√(𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2

|𝑡𝑖 − 𝑡𝑗|
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑗 =
𝑠𝑝𝑒𝑒𝑑𝑗 − 𝑠𝑝𝑒𝑒𝑑𝑖

|𝑡𝑖 − 𝑡𝑗|
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

Thus, the training dataset is obtained by calculating the fixation features for each 

timestamp in one gaze tracking case. Table 5 shows an example of training data for CRF 

model with input fixation features and output label. Two patterns were defined for training 

after generating fixation features as well – unigram and bigram. Since the CRF model is 

trained offline for unigram pattern, it is reasonable to consider current observation fixation 

with both its previous and future fixation in each timestamp, within the range of sliding 

window length (34-68). The current fixation is in the center of the window. For bigram 

patterns, the data feature is generated combining the adjacent two fixation points’ features 

(total 10). Through defined unigram and bigram patterns, the CRF model is trained using 

Stochastic Gradient Descent (SGD) with L1 regularization. Equation 16 shows the formula 

for SGD with L1 regularization, where 𝐽(𝜃) is the cost function shown as Equation 1.   

𝜃𝑗 = 𝜃𝑗 − 𝛼
𝑑

𝑑𝜃𝑗
(𝐽(𝜃) + 𝜆∑𝜃𝑗

𝑛

𝑗=1

)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

One of the advantages of using SGD is its quick converge to find a local optimal result. 

L1 regularization can avoid overfitting (high variance) for model training and at the same 

time, generate sparse result for built feature selection. Thus, it can significantly reduce the 
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complexity of the CRF model. Section 6.2.2 shows the training model and annotation 

results for CRF model.  

Table 5: An example of CRF training data file with duration, dispersion, anglespeed, 

speed, and acceleration as features and Focus, Read, and Scan as labels output.   

ID Duration 

(ms) 

Dispersion 

(pixel) 

AngleSpeed 

(𝑑𝑒𝑔𝑟𝑒𝑒/𝑠) 

Speed 

(𝑝𝑖𝑥𝑒𝑙/𝑠) 

Acceleration 

(𝑝𝑖𝑥𝑒𝑙/𝑠2) 

Label 

1 183 100 10 25.5 0.3 Focus 

2 210 140 20 30.1 4.1 Focus 

3 200 200 24 22 1.1 Read 

4 130 350 50 43 3.2 Scan 

5 170 220 7 14 2.4 Read 

4.2.3 Markov Decision Process 

In order to capture the visual strategy and knowledge in real time, we proposed to use 

a Markov Decision Process (MDP) model [93] for gaze tracking. The MDP model is 

designed to simulate human visual reasoning in a computational manner. In our case, with 

predicted visual actions by CRF model, the actions are visual actions (focus, read, and 

scan). The learner/user then defines a policy for mapping from MDP state to the visual 

actions for highest reward. The MDP model contains a state set S – anatomy regions in the 

domain images; an action set A – visual actions (Read, Scan and Focus); a probability 

transition matrix P – defines the transition probability given state 𝑠𝑖 and action a to state⁡𝑠𝑗; 

and a reward function R maps state s and action a to a real number reward. In our case, for 
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each single state (an anatomy region in the image), it can take any of three actions but with 

different rewards.  

One assumption of MDP is that current action only depends on current state. In our 

case, the states are the anatomical regions in the image, such as Sacrum or Lumbar Body, 

and visual actions are Focus, Read, and Scan. To learn and train this model, we first 

calculate the state transition matrix for the MDP states based on maximum likelihood 

estimates Equation 17 and initialize the reward function to obtain the policy based on 

Equation 18. If there is no transition between state si and sj taken action a; we estimate the 

transition probability 𝑃𝑎(𝑠𝑖𝑠𝑗) = 1/|𝑆| for uniform distribution over all states. Different 

orders of MDP are also generated and compared. In our study, we tested on order 1, 2 and 

3, due to different visual action time ranges. This MDP order can be customized later along 

with the time range for each visual action. We generated three different types of MDP 

models based on three different dataset. The first one is a single gaze tracking case, which 

each one is a single subject’s gaze tracking on a single domain image. The second type is 

for an aggregated dataset from a single subject’s gaze tracking on all eight domains images 

(total 3 visual knowledge levels + one overall question). The last type of MDP model is 

learned by the all subjects in the same knowledge group (junior and senior).   

𝑃𝑎(𝑠𝑖𝑠𝑗) =
#𝑡𝑖𝑚𝑒𝑠⁡𝑡𝑟𝑎𝑛𝑖𝑡⁡𝑓𝑟𝑜𝑚⁡𝑠𝑡𝑎𝑡𝑒⁡𝑠𝑖⁡𝑡𝑜⁡𝑠𝑗 ⁡𝑡𝑜𝑜𝑘⁡𝑎𝑐𝑡𝑖𝑜𝑛⁡𝑎⁡

#𝑡𝑖𝑚𝑒𝑠⁡𝑖𝑛⁡𝑠𝑡𝑎𝑡𝑒⁡𝑠𝑖⁡𝑡𝑜𝑜𝑘⁡𝑎𝑐𝑡𝑖𝑜𝑛⁡𝑎
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

𝑅𝑠𝑎 =
#𝑡𝑖𝑚𝑒𝑠⁡𝑡𝑜𝑜𝑘⁡𝑎𝑐𝑡𝑖𝑜𝑛⁡𝑎⁡𝑖𝑛⁡𝑠𝑡𝑎𝑡𝑒⁡𝑠

#𝑡𝑖𝑚𝑒𝑠⁡𝑎𝑐𝑡𝑖𝑜𝑛𝑠⁡𝑖𝑛⁡𝑠𝑡𝑎𝑡𝑒⁡𝑠
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

After generating Markov Decision Process models for three different types of datasets 

(single, subject level, and group level), we calculate lifetime reward by value iteration 

algorithm as Equation 19. In Equation 19, R(s) is the immediate reward which gives the 
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starting value for each state. The R(s) can be defined by domain experts and customized 

for different knowledge levels. In our case, there is no negative reward for the state / 

anatomy. The positive reward will be assigned to those salient regions which help answer 

the given question. The parameter 𝛾 is the discounted factor, which decreases the reward 

as the time increases. Thus, the model prefers to accrue positive rewards as soon as 

possible. In our study, we set 𝛾  to 0.9. The lifetime reward is the sum of all received 

rewards. Each state first initialize to zero. Then, algorithm repeat updates value for each 

state based on Bellman equations. The algorithm stops when all states have stable values, 

in other word, when the algorithm can obtain the best possible expected sum of discounted 

rewards (optimal value) 𝑉∗ for each state.  

'

( ) : 0

Re {

, ( ) : ( ) max ( ') ( ')

}

a A sas

Initialize each stateV s

peat until convergence do

For each state V s R s P s V s



  
                                        (19) 

Next, based on Equation 20, a visual reasoning process is simulated by a greedy policy 

iteration algorithm. Our goal is to maximize the expected value of the total reward: 

𝑉𝜋(𝑠) = 𝐸[𝑅(𝑆0) + 𝛾𝑅(𝑆1) + 𝛾2𝑅(𝑆2) + ⋯ |𝜋]  by choosing a visual action in each 

timestamp. The algorithm keeps finding the current best visual action a, which gains 

maximum reward, and then update the state value V until the whole state’s values are 

stable.  
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'

Re {

:

, ( ) : arg max ( ') ( ')

}

a A sas

peat until convergence do

V V

For each state s s P s V s



 



 
                                           (20) 

4.3 The Spatial Representation  

4.3.1 Graph Representation in Single Machine 

In addition to capturing gaze temporal pattern, a graph model was created in the VK-

CBR system for gaze cases. Thus, CBR can retrieve similar gaze tracking cases from the 

case base through a sub-graph matching function. This spatial representation for gaze case 

is an undirected graph with finite vertices and weighted edges. In this graph, each vertex 

represents a region of interest in the image and the edges between vertices indicate a direct 

transition from one vertex to another. The weight on each edge measures the linkage 

between two vertices. Higher weights indicate that the user more likely check the two ROIs 

together.  

The first step in generation of the spatial representation is grouping the fixation points 

corresponding to the same ROI to a single set. Then, using the corresponding ROI sequence 

shown in Table 4, the system adds edges in the graph if there is a direct transition between 

two related fixation points. Finally, the system trims off the self-loop and double edge in 

the graph to obtain an undirected simple graph. The weight on each edge was obtained, and 

equals the total dwell time of ROI, DT(Vi), weighted with count of transition, T(Vi, Vj), 

between those two vertices. Figure 10 shows a sample of our spatial representation. Similar 

to the temporal representations described previously, which characterize temporal patterns, 

the graph model represents spatial patterns for gaze tracking. In this example, the edge (R8, 
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R9) with weight 0.17 shows that there is a 17% chance that a user will look at region R8 

and region R9 consecutively. 

 

 

Figure 10: An example of eye-tracking spatial representation with ROI label. 

 

4.3.2 Graph Representation in Spark – GraphX 

With proposed distributed solution using Spark, each gaze tracking case is also 

represented as graph in Spark using GraphX [42] component. As Figure 10 shows, each 

graph {V,E} has node set V – region of interests from predefined domain image and edge 

set E – probability measurement between two nodes transition. In Spark GraphX, each 

graph is further split across different node in the cluster. The vertices are partitioned by 

vertex ID. Edges are partitioned as well, using predefined edge partition functions.  
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Figure 11 shows an example of graph representation distribute across on a cluster. In 

this way, each gaze tracking case can be represented in a distributed graph in GraphX. 

Moreover, the user can define partition function to horizontally partition the edge sets. 

Following the data locality rule – minimize data transferring across different machine - 

each machine in the cluster is tried to utilized as many as local edge set as possible. Finally, 

a routing table is designed to enable cluster quickly located partitioned edge and vertex 

subsets.  

 

Figure 11: An example of graph partition in GrpahX adapted from [42]. 
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CHAPTER FIVE 

5. SIMILARITY FUNCTION BASED ON SPATIAL AND 

TEMPROAL COMPONENTS 

In order to measure the distance between the query case and cases in the library, we 

utilize the following gaze tracking distance.  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑄, 𝑅) = ⁡𝑤𝑔 × 𝑆𝐺𝐷𝜆(𝑄, 𝑅) +⁡𝑤𝑡 × 𝑇𝐷𝜆(𝑄, 𝑅) (21) 

, where wg and wt are the weights of sub-graph distance (SGD) and temporal distance (TD), 

respectively. Observers can adjust the weights of the distance function.  

5.1 Spatial Component 

Spatial structure analysis is particularly useful for retrieving visual activities based on 

the task type of interest. It is known that visual behavior is dependent upon the task 

undertaken [94-97]. In medical imaging, understanding the orientation of the body part is 

dependent upon recognizing the relationship between two or more imaged structures. For 

example, when determining the alignment of the hips with the image receptor on an image 

of the abdomen or pelvis, the radiologic technologist will compare the symmetry of the ilia 

or wings of the pelvis. If the ilia are symmetrical, they know that the hips were equidistant 

from the tabletop and the patient was not rotated to one side or the other [98]. If rotation is 

detected, it can be confirmed by looking at the relationship of the spinous process to the 

associated lumbar vertebral body or the relationship of the sacrum and coccyx to the 

symphysis pubis. Because of this need to compare the relationship of two or more 

structures, we can expect visual behavior that transitions between those structures. It is also 

likely that matched transitions between two structures represent the same type of visual 
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task. In the example above, the task was to determine rotation of the body part; however, 

if the task was to determine the phase of the blood cycle captured by the image, the fixations 

would be more likely focused on comparing the brightness of various vascular structures – 

renal arteries and veins, hepatic arteries and veins, splenic arteries and veins, etc. A search 

for images by matching spatial transitions enables the user to retrieve images that are not 

only structurally similar, but were also analyzed by previous users on a similar task and 

therefore can provide the searcher with greater information relevant to the task at hand. 

After generating a graph model for query, CBR searches for matches among the whole 

case library using SAGA -- a sub-graph similarity method originally designed for 

biological pathways [73]. The spatial component allows user to efficiently search for sub-

graph matches through the entire gaze tracking case library. In addition to matching the 

sub-graph structure, it also measures the node distances for similar nodes and absent nodes. 

The sub-graph distance component is defined in Equation 22.  

𝑆𝐺𝐷𝜆(𝐺1, 𝐺2) = 𝑤𝑒 × 𝑑𝑠𝑡𝑟𝑢𝑐𝑡 + 𝑤𝑛 × 𝑑𝑛𝑜𝑑𝑒 + 𝑤𝑔 × 𝑑𝑛𝑜𝑑𝑒_𝑔𝑎𝑝𝑠 (22) 

, where  

𝑑𝑠𝑡𝑟𝑢𝑐𝑡 = |𝐸1 − 𝐸2|/|𝐸1| (23) 

𝑑𝑛𝑜𝑑𝑒 =⁡ ∑(𝑤𝑓 × 𝑑𝑎𝑡𝑡(𝑢, 𝜆𝑢) + 𝑤𝑑 × 𝑑𝑑𝑢𝑟(𝑢, 𝜆𝑢))

𝑢∈𝑉1

 
 

 

(24) 

𝑑𝑛𝑜𝑑𝑒_𝑔𝑎𝑝𝑠 = ∑ 𝑔𝑎𝑝𝐺1(𝑢)

𝑢𝜖𝑉1−𝑉1

/|𝑉1| 
(25) 

The sub-graph distance Equation 22 has three components, structure distance (𝑑𝑠𝑡𝑟𝑢𝑐𝑡), 

node distance (𝑑𝑛𝑜𝑑𝑒), and node gaps (𝑑𝑛𝑜𝑑𝑒_𝑔𝑎𝑝𝑠). The 𝑑𝑠𝑡𝑟𝑢𝑐𝑡 component measures the 
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structure difference between graph representations of the query and a case from the library.  

In Equation 23-25, 𝑉̂1 is a set of matched vertices/nodes between graph G1 and G2.  λ is a 

mapping function, which maps similar nodes (ROIs) from different gaze tracking cases. 

The 𝑑𝑛𝑜𝑑𝑒  is the distance between two matching nodes calculated based on their gaze 

fixations’ attention, duration and underlining semantic relationship [73] or other controlled 

vocabularies for non-radiology applications. And the 𝑑𝑛𝑜𝑑𝑒_𝑔𝑎𝑝𝑠  is the penalty for the 

absent nodes. In Equation 22, 𝑤𝑠 , 𝑤𝑛  and 𝑤𝑔  are the weights corresponding to 𝑑𝑠𝑡𝑟𝑢𝑐𝑡 , 

𝑑𝑛𝑜𝑑𝑒 and 𝑑𝑛𝑜𝑑𝑒_𝑔𝑎𝑝𝑠 components, respectively. By adjusting the above weights, this gaze 

distance function gives observers the freedom to choose emphasis between three spatial 

components for gaze spatial distance. The following examples demonstrate the reasoning 

of the various distances for each component.  

The 𝑑𝑠𝑡𝑟𝑢𝑐𝑡 component measures the structural differences in the two cases’ graphs. It 

is defined in Eq. 23 which equals to the number of unmatched edges from query graph to 

the matched graph. Figure 12 shows an example of a matched result in which the query 

case is on the left and the result case is on the right. The highlighted bold black edges are 

matched edges. Thus, 𝑑𝑠𝑡𝑟𝑢𝑐𝑡, calculated by the number of unmatched edges (marked as 

black thin edges), in this case, it equals to five. The dashed lines between two nodes 

(marked as grey nodes) in both cases indicate that those nodes are matched. In addition to 

calculating unmatched edges, nodes that are absent from the query or a case in the case 

library are also considered. In Figure 12 the query has Node 149 as white node, which is 

absent from the retrieved case. All edges linked to this node (thin edges) are mismatched 

edges and used to penalize the similarity.  In addition, if two nodes in one case are directly 

linked while these two nodes in another case are indirectly linked through multiple nodes, 
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penalty will be assigned.  For example, the unmatched edge (n144, n148) showing in the 

retrieved case but missing in the query indicates the visual reasoning process in the case 

has a consecutive visit of nodes n144 and n148, but the user looked at n144 and n148 

through other nodes, such as n145 and/or n147.  Figure 13 shows the top and Figure 14 

bottom results based on structure distance 𝑑𝑠𝑡𝑟𝑢𝑐𝑡  component. To provide an easy 

visualization and comparison, we choose the same query for different distance components 

in this subsection.  

 

Figure 12: SAGA sub-graph matching result with highlight matching edges and nodes. 
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Figure 13: Top matching results for the same query case (right side) based on structure 

distance component. 

 

 

Figure 14: The bottom matched results for the same query case (left image and gaze 

activities) based on structure distance component. 

 

Analysis of features such as duration of fixation and total dwell time are useful in 

categorizing the expertise level of the viewer. In expertise studies, it has been found that 

experts display longer and fewer fixations than novices given the same visual stimuli [99]. 

Furthermore, experts have been found to more quickly fixate on relevant areas of interest 
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and more quickly identify those patterns which are most important to the task at hand [100]. 

By retrieving scan paths with similar features, we can use demographic information to 

“locate” the viewers’ relative expertise level on a particular task. 

To capture attention differences between two reasoning processes, when a user looks 

at the same region with different duration and number of visits, we use 𝑑𝑛𝑜𝑑𝑒 component 

Equation 24 to measure the distance of corresponding nodes.  𝑑𝑛𝑜𝑑𝑒⁡ is the weighted 

summation of two components: gaze fixation attention distance and gaze duration distance, 

as defined in Equation 26-27.  

𝑑𝑎𝑡𝑡(𝑢, 𝜆𝑢) = |𝑛𝑢𝑚⁡𝑜𝑓⁡𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛(𝑢) − 𝑛𝑢𝑚⁡𝑜𝑓⁡𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛(𝜆𝑢)|

/𝑡𝑜𝑡𝑎𝑙_𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠_𝑛𝑢𝑚(𝑢)⁡ 

(26) 

𝑑𝑑𝑢𝑟(𝑢, 𝜆𝑢) = |𝐷𝑤𝑒𝑙𝑙⁡𝑇𝑖𝑚𝑒(𝑢) − 𝐷𝑤𝑒𝑙𝑙⁡𝑇𝑖𝑚𝑒(𝜆𝑢)|/∑𝐷𝑤𝑒𝑙𝑙⁡𝑇𝑖𝑚𝑒(𝑢)

𝑢

 
(27) 

The fixation attention distance 𝑑𝑎𝑡𝑡 is defined in Equation 26 as the difference in the 

total number of fixations within two matched nodes. Similarly, the gaze fixation duration 

distance 𝑑𝑑𝑢𝑟 Equation 27 is the absolute difference in fixation duration in the matched 

nodes. Figure 15 and Figure 16 show the top and bottom matched results based on node 

distance 𝑑𝑛𝑜𝑑𝑒  component. Tables 6 and 7 show the fixation attention and duration’s 

normalized distance (scale to 0-1) for each node. There are two visualization features for 

each node, namely shading and size for attention level differences. The gray-scale of each 

node indicates the difference of total number of fixations (visits) on that region between 

two corresponding nodes with darker circles mean larger differences. The duration 

differences are represented by the sizes of the nodes with larger sizes mean larger 

differences. Both contribute to the overall attention difference. 
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Figure 15: The top matched result (right) for a query case (left) based on fixation attention 

and duration. 

 

Table 6: Top matched result fixation attention and duration’s normalized distance (scale 

to 0-1).  

Node_ID ROI_7 ROI_3 ROI_5 ROI_1 ROI_6 ROI_2 ROI_4 

𝒅𝒂𝒕𝒕 0 0 0.25 0.25 1 0 0 

𝒅𝒅𝒖𝒓 0 0.021 0.325 0.574 0.81 0.893 1 

 

 

Figure 16: The bottom matched result (right) for a query case (left) based on fixation 

attention and duration. 
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Table 7: Bottom matched result fixation attention and duration’s normalized distance 

(scale to 0-1). 

Node_ID ROI_9 ROI_5 ROI_4 ROI_3 ROI_2 ROI_6 ROI_8 ROI_1 ROI_7 

𝒅𝒂𝒕𝒕 0 0 0 0.25 0 0.5 0.5 1 0.25 

𝒅𝒅𝒖𝒓 0 0.023 0.048 0.051 0.11 0.125 0.222 0.306 1 

 

Analysis of unmatched nodes is particularly useful when utilizing the case-based 

reasoning library as a learning aid. As a model of cognition, CBR makes the representation 

of experiences the primary focus and allows the user to borrow the experiences of others 

in learning to make decisions. It has been shown that experts have decreased numbers of 

fixations because they omit fixations on irrelevant structures. By showing users the things 

that experts deem important to look at, the novice learns which structures are less important 

and which should be focused on. Likewise, by alerting novices to areas they may have 

missed, the novice adds an area to their list of things to check.  

The 𝑑𝑛𝑜𝑑𝑒_𝑔𝑎𝑝𝑠 component in Equation 25 is the penalty of the unmatched nodes (gap 

nodes) in the query case. Figure 12 shows one absent node -- n149 in query graph (left 

side). This component is adapted from original SAGA method and the penalty can be set 

by domain experts for each individual node. Also, the model allows observers to choose 

the percentage of the gap nodes allowed in matching result. By setting all 𝑔𝑎𝑝𝐺1(𝑢) to ∞, 

users can let the search function display only matches without gaps. Figure 17 shows the 

least similar result based on node gaps component 𝑑𝑛𝑜𝑑𝑒𝑔𝑎𝑝𝑠 . The gap nodes are 

represented in red circle shown on the both cases.  
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Figure 17: A side-by-side display of a query case (left side) and its least similar matched 

result (right side) based on node gaps component. 

 

5.2 Temporal Component 

As described above, users can retrieve gaze tracking cases sharing similar sub-graph 

structure with query case by spatial component. By temporal representation – Markov 

Chain for gaze cases described in Section 3, the system captures temporal similarity. The 

distance between the query and database cases is calculated using temporal component. 

Four different distance measurements are used in system for Markov Chain model. The 

first one is Markov model’s path probability Equation 28, calculated by forward algorithm. 

In Equation 28, (𝑋1 = 𝑥1, 𝑋2 = 𝑥2, …𝑋𝑡 = 𝑥𝑡) is the mapped ROI sequence from gaze 

tracking and 𝑃(𝑋1 ⁡= ⁡ 𝑥1)  is the initial probability assigned to 1 during calculation. The 

𝑝𝑥𝑡−1𝑥𝑡
 represents transition probability between 𝑥𝑡−1⁡and⁡𝑥𝑡  in transition matrix A. The 

ROI_seq is the query case’s gaze fixation sequence. 𝑥𝑖𝑥𝑗 is the pair of adjacent ROI in 

matching case’s ROI_seq. According to Equation 28, the path probability equals to the 

multiplication of each transition probability⁡𝑝𝑥𝑖𝑥𝑗
.  
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𝑃𝑎𝑡ℎ⁡𝑃𝑟𝑜(𝐴, 𝑅𝑂𝐼_𝑠𝑒𝑞) = ⁡𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, …𝑋𝑡 = 𝑥𝑡)

= ⁡𝑃(𝑋1 = 𝑥1) × 𝑝𝑥1𝑥2
× 𝑝𝑥2𝑥3

× …× 𝑝𝑥𝑡−1𝑥𝑡
 

(28) 

𝐴 = (

𝑝𝑥1𝑥1
𝑝𝑥1𝑥2⁡ ⋯ 𝑝𝑥1𝑥𝑚⁡

𝑝𝑥2𝑥1
𝑝𝑥2𝑥2

⋯ 𝑝𝑥2𝑥𝑚⁡

⋯ ⋯ ⋯ ⋯
𝑝𝑥𝑛𝑥1

𝑝𝑥𝑛𝑥2
⋯ 𝑝𝑥𝑛𝑥𝑚

) 

(29) 

Moreover, considering the query and retrieved gaze Markov Chain models as two 

vectors, 𝑀1
⃗⃗⃗⃗  ⃗⁡and⁡𝑀2

⃗⃗ ⃗⃗  ⃗, in a vector space, system computes the temporal distance by k-Norm 

distance Equation 30, angle Equation 31 or Kullback-Leibler Divergence Equation 32. In 

this way, system measures the temporal similarity between query and database cases. 

Computational results using Markov Forward and Kullback_Leibler distance will be 

reported in Section 5.   

‖𝑀1
⃗⃗⃗⃗  ⃗ − 𝑀2

⃗⃗ ⃗⃗  ⃗‖
𝑘

= √∑|𝑀1
⃗⃗⃗⃗  ⃗(𝑠) − 𝑀2

⃗⃗ ⃗⃗  ⃗(𝑠)|
𝑘

𝑠

𝑘
 

(30) 

𝐴𝑛𝑔𝑙𝑒(𝑀1
⃗⃗⃗⃗  ⃗, 𝑀2

⃗⃗ ⃗⃗  ⃗) = cos−1(
〈𝑀1
⃗⃗⃗⃗  ⃗, 𝑀2

⃗⃗ ⃗⃗  ⃗〉

√〈𝑀1
⃗⃗⃗⃗  ⃗, 𝑀1

⃗⃗⃗⃗  ⃗〉 × 〈𝑀2
⃗⃗ ⃗⃗  ⃗, 𝑀2

⃗⃗ ⃗⃗  ⃗〉

) 
(31) 

𝐻(𝑀1
⃗⃗⃗⃗  ⃗, 𝑀2

⃗⃗ ⃗⃗  ⃗) = ∑𝑀1
⃗⃗⃗⃗  ⃗(𝑠) log

𝑀1
⃗⃗⃗⃗  ⃗(𝑠)

𝑀2
⃗⃗ ⃗⃗  ⃗(𝑠)

𝑠

 
(32) 

5.3 Case Adaptation 

By case representation and retrieval functions, users can retrieve gaze cases sharing 

similar spatial (sub-graph structure) and temporal (MC model) patterns from the case 

library. After CBR retrieval, the system allows users to either directly reuse retrieved 
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results as solutions to the current problem (such as assisting their diagnostic or image 

interpretation) or choose the best fitting case(s) for further adaptation. In the reusing and 

revising step, the retrieved gaze cases are adapted using the query case by reconstructing 

its temporal Markov Chain model. Each retrieval case’s MC model will be reformed, or 

adapted, based on the query’s MC model. 

The first step of this revising is combining the query and chosen cases’ MC transition 

matrices. By Equation 33, system calculated a new transition counting matrix for the 

adapted MC model. Once the new counting matrix was obtained, the next step is the 

normalization of the obtained counting matrix and calculation of the transition matrix by 

equations 3-4, as described in section 4.2.  

𝐴𝑑𝑎𝑝𝑡(𝐴𝑖𝑗) = 𝑄𝑢𝑒𝑟𝑦(𝐴𝑖𝑗) + 𝑅𝑒𝑠𝑢𝑙𝑡(𝐴𝑖𝑗) (33) 

Figure 18 shows an example of an adapted MC model created by combining query and 

result MC models. The two Markov Chain models for query (top) and result (bottom) cases 

are shown on the left side and the adapted result is displayed at right. By combining features 

of both MC models, CBR adapts to user-selected results to better fit the query.  
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Figure 18: An example of Markov chain model adaptation result. 

 

Once the adapted model is generated, the last step is to revise the adapted case (if 

necessary) and retain it in the case base. The CBR allows user to update the transition 

probability in adapted MC model. Finally, system retains the solution and the query cases 

to the case base for future use. In this way the CBR adapts to user needs in order to return 

more accurate results. Additionally, CBR can generate a simulated gaze sequence based on 

the adapted gaze tracking Markov Chain model, and this simulated gaze sequence is used 

to model search behavior based on user-specific tasks. 
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CHAPTER SIX 

6. HUMAN SUBJECT EXPERIMENTS AND RESULTS 

To ensure the effectiveness of the distance measurements in understanding the visual 

reasoning process for case retrievals, we conducted two human subject experiments. Both 

experiments used Radiology medical X-ray images in 10 level knowledge pyramid 

structure as shown in Table 1. Appendix A shows two image datasets for two experiments. 

For each experiment’s configuration, subjects (domain experts or students) were asked to 

first look at the question and then showed them images. At the same time, their gaze 

tracking raw sequence data was recorded through a gaze tracker device. The subjects don’t 

need to answer the question or speak aloud anything during the image scan process. After 

they finished whole images (total 13 images for experiment 1 and 8 images for experiment 

2), we asked them to speak out their thinking process through a think-aloud protocol and 

recorded the audio for later usage. Table 8 shows the 10 knowledge levels and associated 

questions in experiment configuration 1 in the following section. Comparing to experiment 

configuration 1, we selected three knowledge levels in this experiment, level 2, 5, and 8. 

Table 9 shows the question in experiment configuration 2.  
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Table 8: 10 knowledge level and associated question in experiment configuration 1.  

Level 
Original Visual 

Knowledge Pyramid 
Questions 

1 Type Technique What is the modality of this image? 

2 
Global Distribution Describe the overall photographic properties of this 

image. 

3 
Local Structure What basic textual elements do you identify on this 

image? 

4 Global Composition How do you orient yourself to this image? 

5 Generic Objects What body part does this image demonstrate? 

6 Generic Scene What is the projection of this image? 

7 Specific Objects Identify 3 foreign objects on this image 

8 Specific Scene Evaluate the positioning of this image. 

9 
Abstract Objects Describe this patient based on what you see in this 

image 

10 Abstract Scene What problem(s) do you think this patient has? 

 

Table 9: an example of question and knowledge level in experiment configuration 2. 

Level 
Original Visual 

Knowledge Pyramid 
Questions 

General 
General Please evaluate the positive and negative aspects 

of this image. 

2 
Global Distribution Was the amount of x-rays used for this image 

adequate? 

5 
Generic Objects Does the image demonstrate all of the required 

anatomy?  

8 
Specific Scene Are the relationships between the anatomical 

structures accurate? 

6.1 Experiment configuration 1 

In the first experiment, we developed a webcam based eye-tracking tool which we used 

to capture eye movement scan tracings from 39 subjects including radiologic technologists 

(15), senior students (11) and junior students (13) in radiography department. Figure 19 

shows the distribution of gaze cases on each domain image. A modified OpenGazer 

software [101] was chosen to collect a series of screen coordinates as eye-tracking raw data 
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in our tool. The OpenGazer system is unobtrusive, as the users only need to sit in front of 

the computer with center webcam and look at a domain image shown on the screen. This 

system much better mimics the natural clinical environment, enabling visual trace data 

collection without any constraints such as wearing head gear. The domain images included 

13 X-ray images with corresponding questions for data collection. Each image was chosen 

based on different questions in the modified 10-level visual structure in the work of Jaimes 

and Chang. The questions were asked before the user saw the domain image. Users were 

given 15 seconds to consider each image. During this time, users’ eye traces were captured 

by webcam and assigned coordinate positions by the OpenGazer software. 

We tested the distance model on three different knowledge groups: junior students, 

senior students, and experts. The subject study of this experiment was approved by the 

University of Missouri Health Science Internal Review Board (IRB #1172279).  Our 

hypothesis is that user’s visual reasoning process within the same knowledge group should 

have smaller variations than those in other groups using a specific distance function if such 

a function is able to provide relevant distinction across multiple groups.  We performed the 

following group comparisons: Expert vs. Expert (EE), Expert vs. Senior (ES), Expert vs. 

Junior (EJ) and Expert vs. Novice (EN).  These comparisons were performed using all-

against-all distance measurement between and within groups. The novice group combines 

junior and senior students. The Expert vs. Expert (EE) distances allow us to identify the 

level of internal consistency within the expert group. The Mann Whitney U test [102] was 

used for null hypothesis testing on combinations of these four different group comparisons 

to obtain the p-value tables. The p-value less than 0.05  indicates that two distance 

distributions are statistically different. 
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Figure 19: Distribution of gaze cases on each domain image. 

6.1.1 Spatial Component 

To test the effectiveness of the three components of the spatial distance (Eq. 6) 

individually and compositely, we tested cross expertise group comparisons. Table 10 lists 

the results for individual spatial components. Based on three separate spatial 

subcomponents - node gap, structure distance and node distance, the ratios of cases with 

statistical significance using U-test between groups are between 29% and 69%. The overall 

spatial components are essential to provide an aggregated spatial distance that can 

distinguish subjects from different knowledge group based on their gaze tracking.  From 

Table 11, we observe that experts’ visual knowledge pattern is different from novice (junior 

and senior students) based on aggregated spatial component analysis while there is no 

significant differences between junior and senior students from the novice group on most 

tasks especially when dealing with high-level tasks, such as level 10. We also see that both 

expert and novice groups do not have significant differences for image 1-2 (task 1) and 2-
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1 (task 2). For image 1-2 (task 1), one of the reasons is inefficient gaze tracking data on the 

image for statistical analysis as Figure 19 shows. For image 2-1 (task 2), the density of 

hydrogen atoms in the tissue controls the brightness of the signal, where tissues with greater 

proportions of hydrogen appear brighter or white on an image. So, when a technologist 

looks at a cross-sectional image, they should look at the subcutaneous fat and note whether 

it is dark or bright to determine if the image was created by CT or MR. Thus, from our 

results, based on spatial component, there is no difference between novice and expert group 

on image 2-1. In the junior and senior groups, we can see that at low-level knowledge tasks 

(Levels 1-4), there is differences between junior and senior students’ gaze pattern 

comparing to export’s. But for most of high-level knowledge tasks (Levels 5-10), senior 

and junior students perform similarly, which can be explained by the facts that both 

subgroups in the novice may lack of needed knowledge to answer those questions.  

Table 10: The number of tasks (13 images across 10 knowledge levels for all subjects) 

having significant differences between two knowledge groups using separate spatial 

sub-components and aggregated component. 

 EE/EN EE/EJ EE/ES EJ/ES 

Spatial 

Subcomponents 

Node Gap 3 3 3 5 

Structure 

Distance 

8 7 7 6 

Node 

Distance 

9 6 6 4 

Aggregated Spatial Component 11 10 10 4 

 



57 

Table 11: p-value for Mann-Whitney test on overall spatial distance component α=0.05. 

  Knowledge Groups 

  Image EE/EN EE/EJ EE/ES EJ/ES 
V

is
u

a
l 

T
a
sk

s 

Task_1 1-1 3.63E-09 1.22E-12 0.00266 3.83E-07 
1-2 1.00000 0.78396 0.88521 1.00000 

Task_2 2-1 0.82325 0.86489 0.81736 0.88572 

2-2 3.70E-05 2.91E-05 0.00072 0.69306 

Task_3 3-1 8.98E-05 6.69E-06 0.00610 0.01881 
Task_4 4-1 1.54E-05 9.99E-11 0.22811 5.86E-11 
Task_5 5-1 0.03406 0.07367 0.03984 0.69921 

Task_6 6-1 6.85E-16 8.95E-12 1.42E-14 0.65600 

Task_7 7-1 1.50E-05 5.86E-06 0.00039 0.09678 

Task_8 8-1 0.00077 0.00370 0.00083 0.49800 

 Task_9 9-1 6.06E-06 0.00468 3.33E-06 0.26815 

 9-2 9.04E-09 1.42E-10 0.00013 0.00061 

 Task_10 10-1 0.01110 0.01861 0.02046 0.72867 

 

6.1.2 Temporal Component 

Same as the spatial distance testing, after obtaining four different types of spatial 

distance, Mann-Whitney U test is applied to the temporal component. Table 12 is total 

number of tasks having significant differences using U test based on Markov Forward 

Distance, k-norm, Angle, and Kullback-Leibler. We found that Markov Forward distance 

fails to distinguish most tasks and concluded that fixation order is not important when 

comparing different knowledge group gaze tracking cases. However, Kullback-Leibler 

distances show the significant differences within the 10 tasks. Furthermore, 2-norm and 

Kullback-Lerbler measurements have similar results which better than angle 

measurements. Table 13 shows p-value calculated by Kullback-Leibler measurement. 

Comparing to spatial component analysis, we have similar observations from the 

experiments using temporal component. Same as Table 11, for image 1-2 (task 1), both 

expert and novice groups do not have significant differences. One of the reasons is 
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inefficient gaze tracking data on these two images for statistical analysis. Table 13, for 

image 9-1 (task 9), shows that there is no significant difference between knowledge groups 

using ROI visiting order only for both novice and expert for image understanding. The 

image is about the patient as female, lacking muscle tone with clear lungs, decreased bone 

density, indicating possible osteoporosis, and normal heart size. The decreased bone 

density and lack of muscle tone indicate that the patient is likely older. For the novice 

group, junior students who have one year less of training perform closely to the senior 

students for most of the tasks. This could be explained as ROI visiting order may not be 

important for both novice students for image understanding. On the other hand, experts 

perform differently compare to both junior and senior students. With well-trained 

knowledge, expert can quickly locate interesting regions in the images and perform quite 

differently from novice students in temporal visual activities.  

 

Table 12: The number of task (total 13 images) having significant differences between 

two knowledge groups. 

 EE/EN EE/EJ EE/ES ES/EJ 

Temporal 

Distance 

Measurement 

Markov 

Forward 

Distance 

3 3 3 3 

k-Norm 11 11 10 8 

Angle 4 5 6 7 

Kullback-

Leibler 

12 11 12 5 
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Table 13: p-value for Mann-Whitney test on temporal Kullback-Leibler component. 

  Knowledge Groups 

  Image EE/EN EE/EJ EE/ES EJ/ES 
V

is
u

a
l 

T
a
sk

s 

Task_1 1-1 3.19E-05 3.15E-06 0.00811 0.03633 

1-2 0.37553 0.54945 0.34461 0.19940 

Task_2 2-1 0.00273 0.01984 0.00214 0.51729 

2-2 0.00253 0.01066 0.00423 0.70261 

Task_3 3-1 1.87E-08 1.01E-09 1.74E-05 0.00116 

Task_4 4-1 2.71E-07 6.79E-08 8.48E-05 0.01666 

Task_5 5-1 1.13E-05 1.77E-07 0.00335 0.01216 

Task_6 6-1 9.86E-14 1.36E-08 2.29E-14 0.36494 

Task_7 7-1 3.74E-10 1.00E-11 9.47E-07 0.00903 

Task_8 8-1 3.68E-12 2.30E-10 4.54E-11 0.50250 

 Task_9 9-1 0.07199 0.09109 0.09715 0.30718 

 9-2 0.00331 0.00107 0.04968 0.14318 

 Task_10 10-1 0.02123 0.05590 0.02003 0.55283 

       

6.2 Experiment configuration 2 

After the first experiment using a webcam-based gaze tracker, we designed a new 

experiment, and collected data on lumbar spine chest X-ray images using an infrared gaze 

tracker adapted from GazeGroup lab in IT University of Copenhagen [71]. This tracker can 

be also found in their recent commercial product, THEEYETRIBE. The new infrared gaze 

tracker can reach between 0.50 − 10  accuracy with 30Hz and 60Hz sample rates. The 

latency at 60Hz is less than 20ms. When compared to the first webcam gaze tracker, the 

new infrared setup has several advantages. First, performance does not depend on ambient 

brightness, since only infrared light can pass through the lens. This makes this device useful 

even when the light conditions are bad, as may be the case in some laboratory setups. 

Second, the infrared camera can capture clearer eye pupil images than the webcam setup. 

It can produce better eye images for later use with the segmentation algorithm for pupil 
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identification. Moreover, the infrared setup can reach much higher accuracies < 50 than 

normal webcam setups, and also has better consistency.  

The infrared setup includes a high-speed camera, an infrared lens with infrared filter, 

and two infrared lighting resources. Figure 20 is a demonstration of the gaze tracker setup. 

As a key to the figure below, 1 is domain image displayed in a monitor, 2 is an infrared 

camera, 3s are two infrared lights, and 4 is a base for holding the eye tracker.  

 

Figure 20: A demonstration of infrared gaze tracker setup. 

 

In this experiment, a total 25 subjects were recruited from Radiology department 12 

junior students and 13 senior students. The subject study of this experiment was approved 

by the University of Missouri Health Science Internal Review Board (IRB #2001653). 

6.2.1 Spatial Component 

We used Spark GraphX for spatial analysis of the large-scale gaze tracking data 

collected in Experiment Configuration 2. Each gaze tracking fixation data was first mapped 

to a Region of Interested (ROI) on the domain image. Based on the spatial relationship 

between ROIs, we generated a graph model for each gaze tracking case in Spark. As  
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Figure 11 shows, each gaze tracking graph model includes a set of edges and a set of 

vertices. In this case, the vertex is each anatomical feature in the domain image, such as 

the sacrum, T12 vertebral body, pelvis, etc. Each edge represents the transition between 

two anatomical features. To improve performance, the program was tuned such that it 

caches both query and retrieval graphs in order to quickly calculate the similarities. After 

calculations are complete, the retrieval graph is removed from the RAM and the next 

retrieval graph is cached in. By default, all the graphs will be cached in RAM until memory 

limitation and force them to leave the RAM.  

6.2.2 Temporal Component 

6.2.2.1 Visual Action segment results 

The first step in a temporal model is to segment and annotate the raw fixation sequence 

into visual actions for all junior and senior knowledge groups. With a manually-labeled 

training dataset, we used linear chain CRF model and traditional classifiers (Logistic, 

Naïve Bayesian, and SVM) to auto-annotate visual actions based on five proposed gaze 

features (duration, dispersion, speed, anglespeed, and acceleration). To train the linear 

chain CRF model, we used Stochastic Gradient Descent with an L1 regularization 

algorithm. Among the traditional classifiers, we found that a logistic model gave the best 

accuracy. To evaluate the prediction results, with limited labor time, we randomly sampled 

14 gaze tracking cases as our testing dataset. Figure 21 shows the distribution of testing 

dataset across different assessment questions. The average CRF accuracy is 74.4%, which 

shows the difficulty in predicting visual actions across different task and users using a 

linear chain temporal model.  The average of logistic regression accuracy, however, is 

91.7%, which indicates that this approach provides much better prediction results.  



62 

 

Figure 21: The distribution of testing dataset across different question. 

 

Figures 23-29 show the Logistic Regression annotation case study on three different 

knowledge questions and overall questions for both junior (left side) and senior (right side) 

students. Three visual actions were highlighted in different colors on the image, visual 

action focus is green, read action is yellow, and scan action is blue. Figure 22 displays 

predicted results for the overarching question: “Please evaluate the positive and negative 

aspects of this image”. Table 14 and Table 15 are the corresponding confusion matrix for 

the annotation results in Figure 22, where Table 14 presents juniors’ results (96.8% 

accuracy) and Table 15 presents seniors’ results (88.4% accuracy).  
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Figure 22: An example of CRF model prediction results on first Overall question 

“Please evaluate the positive and negative aspects of this image”. Junior student result 

is on the left and senior’s is on the right. Each predicted visual action is marked as a 

highlight color. Action focus is marked as light blue, read action is yellow and scan 

action is blue. 

 

Table 14: Corresponding confusion matrix for visual action prediction for junior student 

on Figure 22.  

                   Predicted Label 

Ground Truth 

Focus Scan Read 

Focus 44 1 0 

Scan 0 10 0 

Read 1 0 6 
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Table 15: Corresponding confusion matrix for visual action prediction for junior student 

on Figure 22.  

                   Predicted Label 

Ground Truth 

Focus Scan Read 

Focus 28 0 1 

Scan 0 5 2 

Read 2 0 5 

 

Figure 23 with same question as Figure 22. Both junior and senior students focus on 

Marker, and Sacroiliac Joint. However, junior student focused more on the L1 and L2 

vertebral bodies, while senior student tended to focus on T12 vertebral body. Moreover, 

junior student focused more on the L4 and L5 vertebral bodies, while senior student tended 

to check the sacroiliac joints. Difference in those visual actions indicates that junior and 

senior students tend to use different strategies to interpret domain images on open general 

questions. 
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Figure 23: An example of CRF model prediction results on last Overall question “Please 

evaluate the positive and negative aspects of this image” where junior result is on the 

left and senior’s is on the right. Each predicted visual action is marked as a highlight 

color. Action focus is marked as light blue, read action is yellow and scan action is blue. 

 

The question for visual knowledge 2 – Global Distribution is designed as following: 

Was the amount of x-rays used for this image adequate for junior (left) and senior (right). 

Two Lumbar Spine X-ray images were chosen to represent two different cases: Figure 24 

represents a case where there was too much x-ray exposure, resulting in an image that is 

too dark. Figure 25 is an opposite case, in which the amount of x-rays is not enough and 
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the image is too white and grainy. As we can see from both Figure 24 & 25, instead of 

focusing on the vertebral bodies, both junior and senior students tended to check the psoas 

muscle and ascending/descending colon. In contrast to junior students, senior students 

spent more time on the sacroiliac joint. These anatomic regions need to be clear in order to 

decide whether the x-ray exposure is correct.  

  

Figure 24: An example of CRF model prediction results on knowledge level 2 – Global 

Distribution with the question “Please evaluate the positive and negative aspects of this 

image”. The junior results are on the left and senior results are on the right. Each 

predicted visual action is marked as a highlight color: action focus is light blue, read 

action is yellow and scan action is blue. 
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Figure 25: An example of CRF model prediction results on knowledge level 5 – Generic 

Objects with the question “Does the image demonstrate all of the required anatomy” 

where junior results are on the left and senior results are on the right. Each predicted 

visual action is marked as a highlight color. Action focus is light blue, read action is 

yellow and scan action is blue. 

 



68 

The question for knowledge level 5 - Generic Object is designed as “Does the image 

demonstrate all of the required anatomy”. To answer this question, students need to have 

more domain knowledge that when they completed the Level 2 question (above). As we 

can see in Figure 26, both junior and senior students were tracing on the spine column (L5-

T12). This action was found from both junior and senior but with different visual action, 

junior students scanned through the spine, whereas seniors spent more time using focus 

and read actions. Moreover, senior student (right) tended to focus on the ala of sacrum and 

the L5 vertebral body comparing to juniors (left).   

  

Figure 26: Another example of CRF model prediction results on knowledge level 5 – 

Generic Objects with the question “Does the image demonstrate all of the required 

anatomy” where junior results are on the left and senior results are on the right. Each 

predicted visual action is marked as a highlight color. Action focus is light blue, read 

action is yellow and scan action is blue. 
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The question for visual knowledge level 8 – Specific Scene is “Are the relationships 

between the anatomical structures accurate”. Students are expected to trace and compare 

the vertebral bodies (L5-T12) and the sacrum in order to answer this high visual level 

question. Demonstrated in Figure 27, senior students perform close to what was expected, 

while juniors tended to focus on lower part – Sacrum. From Figure 28, junior students have 

clear pattern on tracing and comparing vertebral bodies, while senior students tended to 

compare T12 with L1 and L3 with L4 vertebral bodies. Both students focus on the marker 

on the lower left corner.    

  

Figure 27: An example of CRF model prediction results on knowledge level 8 – Specific 

Scene with the question “Are the relationships between the anatomical structures 

accurate” where junior results are on the left and senior results are on the right. Each 

predicted visual action is marked as a highlight color. Action focus is light blue, read 

action is yellow and scan action is blue. 
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Figure 28: Another example of CRF model prediction results on knowledge level 8 – 

Specific Scene with the question “Are the relationships between the anatomical 

structures accurate” where junior results are on the left and senior results are on the right. 

Each predicted visual action is marked as a highlight color. Action focus is light blue, 

read action is yellow and scan action is blue. 

 

For further analysis, based on these basic three visual actions, we can posit that more 

actions represent more complex reasoning, such as tracing action for tracing on lines or 

comparison action for comparing different anatomies.  
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6.2.2.2 Markov Decision Process (Reinforcement learning result) 

Based on Equations 17 and 18, Markov Decision Process (MDP) models were 

generated for single gaze tracking case (single user with single image), aggregated user 

level (single user with all eight images), and aggregated group level (all users in the junior 

or senior group with all eight images). Figure 29 shows an example of a single gaze 

tracking MDP model with the order equal to 1 (meaning that the current observation is 

dependent only on the previous one). From Figure 29, we can see that each state is an 

anatomic region. In this case, we have total four states: T12 vertebral body, L1 vertebral 

body, L3 vertebral body, and L4 vertebral body. Additionally, three action nodes are 

defined:  Focus, Read, and Scan. The reward function R(s, a) is calculated using Equation 

18 on each ‘state->action’ edge. For example, on edge ‘s3->a0’, there is ‘+0.85’ reward, 

which means that the user can gain 0.85 reward if they use a Focus action on state 3 – L4 

vertebral body. Moreover, the state-action transition probabilities are calculated by 

Equation 17. The transitions between states are passing through an action node. Each 

transition probability is marked on ‘action->state’ edges. For example, from state s1 to s0 

through action a0, the transition probability is 0.67.  

To efficiently update and learn this MDP model when dealing with real time streaming 

data (new gaze tracking fixation comes in), we keep counts for both numerator and 

denominator terms in Equation 17 and Equation 18. In Spark streaming, we used a buffer 

RDD (Resilient Distributed Dataset) to keep accumulating these two counts when new 

knowledge (gaze tracking data) became available. Then, by computing the ratio of these 

counts, we were able to estimate both transition probability and reward in real time.  
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Figure 29: An example of single gaze tracking Markov Decision Process model. 

 

We ran the large scale data analysis on an elven node Spark cluster. Each node has a 

Xeon CPU – 3.2GHz with 32GB RAM and 6TB of disk spaces. The simulated cases were 

generated and stored in HBase from the original 200 cases, and for increasing numbers of 

cases (2,000, 20,000, 200,000, 2,000,000, 20,000,000, 200,000,000, and 2,000,000,000). 

HBase is a distributed database on top of HDFS. Figure 30 and Figure 31 show the running 

time and total data storage size for different numbers of cases. From these results, we can 

see that with the increased number of cases, the running time increased. Despite this, for 

samples of up to 200,000 cases, the searching can be done in real time (<5s).  
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Figure 30:  The running time on large scale simulation analysis. 

 

Figure 31: The storage size on large scale simulation analysis. 
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The simulation cases were further analyzed based on proposed similarity measurement. 

Table 16 shows the accuracy analysis on different variance of large scale simulation cases 

using proposed MDP similarity measurement. The same results are also shown in Figure 

32 which clearly demonstrates that “remove” action’s results have much lower accuracy 

than “add” actions’. From the table, we can see that with increased random difference 

(adding, removing or combining two), the accuracy decreased. On the large scale 200,000 

cases sample, even on top 3000 results, we still can reach more than 90% accuracy. For 

original 200 cases’ variance, the “remove ROI” variance gives the worst accuracy whereas 

“add state” variance can still reach 90% accuracy. In other word, the proposed similarity 

measurement is more sensitive on missing salient region than accidental observe new 

regions. The reason of it can be explained as below. For simplicity, we consider the original 

case represents as 4 dimension vector [

𝑥1

𝑥2

𝑥3

𝑥4

], where 𝑥2 = 0. The “add state” simulation case 

is represented as [

𝑥1

𝑥2
′

𝑥3

𝑥4

], where 𝑥2
′ <> 0. The “remove state” simulation case is represented 

as [

𝑥1

𝑥2

𝑥3
′

𝑥4

], where 𝑥3
′ = 0. Assuming “remove state” and “add state” variance generate the 

same difference comparing to original case, Figure 33 shows the differences of similarity 

score from two variances. From the figure, we can see that “remove state” variance’ 

distance score has larger changes comparing to “add state” due to the square root function 

derivative differences (h1>h2). Thus, the “remove state” variance has more impact on 

changing distance score and has worse accuracy than “add state” variance. 
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Table 16: The accuracy analysis on controlled variance simulation cases.   

 200 2000 20,000 200000 

  Top 10 Top 100 Top 1000 Top 1000 Top 3000 

Add One State 0.9 0.9 0.894 1 1 

Add Two States 0.9 0.87 0.85 1 0.999333 

Add Three  States 0.9 0.84 0.809 1 0.996667 

Remove One State 0.6 0.71 0.692 1 0.989667 

Remove Two States 0.6 0.65 0.639 1 0.938333 

Remove Three States 0.5 0.52 0.532 1 0.896667 

Combination 1 0.9 0.76 0.733 1 0.939333 

Combination 2 0.6 0.61 0.59 1 0.912333 

Combination 3 0.7 0.59 0.53 0.997 0.861667 

 

 

Figure 32: Simulation variance retrieval result analysis.  
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Figure 33: A demonstration on distance score changes. 

To better search across large scale cases, we used Mean Shift clustering on the original 

200 cases to group them into 4 clusters, with a goodness-of-fit coverage coefficient 

Rc=0.918766 (maximum 1). The clustering results are used for case retrieval when the new 

streaming data is available. Since re-ranking results requires shuffling current results based 

on the clustering, we can search the candidate retrieval cases from the same or neighbor 

clusters using the current top results. In this way, we can significantly reduce the search 

time, as shown in Table 17.  

Table 17: searching time comparison between clustering results and total running time. 

Running 
Time /s 

Cluster 1 Cluster 2 Cluster 3 Total 

2000000 2.283 1.729 4.427 13.36033333 

20000000 18.435 13.329 39.845 60.92966667 

200000000 113.791 61.371 325.817 536.622 
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6.3 Case Study  

As described in Section 4, the CBR system bases the returned cases on the transition 

matrix that has been refined through the CBR cycle. The transition matrix defines the 

probability between two states (ROIs) that user will look at two states consecutively. While 

we have shown that users with different levels of expertise differ significantly in spatial 

and temporal search features, we cannot evaluate whether the probabilities defined by the 

transition matrix are significant in terms of semantic knowledge from statistical analysis 

alone. In order to determine the face validity of the returned results, we have shown the top 

frequency results by temporal matching and the associated image search task to radiology 

experts to determine whether the rationale behind the matching gaze sequence patterns was 

evident. While transitions between two or three ROIs exhibited higher frequencies, the 

investigators felt that the shorter sequences could more easily be attributed to chance. 

Therefore, the radiology experts focused on high-frequency sequences of four or more 

ROIs. The following descriptions detail the rationale for some of the identified sequences. 

Examples were selected to demonstrate the appropriateness of the frequency results across 

the ten levels of the visual knowledge pyramid described in section 2.2.   

In the lowest level of the visual knowledge pyramid we asked participants, “What is 

the modality of this image?” The first case, shown in Figure 34, demonstrates two patterns 

identified in the temporal sequences for this task.  The task involves low-level knowledge 

related to the type of visual information presented (either CT or MR). The matching gaze 

sequence in the CT image (Figure 34 left image) identified a pattern in which the radiologic 

technologists look from the spleen to the splenic artery, then to the stomach and on to the 

liver with 11.1% frequency.  In this pattern, they are first comparing structures of differing 
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radiographic density. This CT scan is performed with contrast media and performed during 

the arterial phase of contrast enhancement. Contrast media has a higher atomic number and 

will block more x-rays than the soft tissue structures, causing it to be displayed as a brighter 

structure. In MR, the motion of the blood results in an increased signal, so there is no 

contrast difference between the arteries and veins. Since the blood in the splenic artery is 

displayed as bright and the vessels in the liver are not, this is an indicator that the image 

was produced by computed tomography. This is then confirmed by comparing structures 

of similar subject density. In CT, structures of similar subject density will exhibit similar 

optical brightness due to similar attenuation of the x-ray beam. This is not necessarily the 

case in MR. In this image, the stomach and the liver are displayed with similar levels of 

brightness, confirming the idea that the image was produced by CT.  Participants who 

viewed an MR image (Figure 34 right image) for this question exhibited similar comparing 

behavior. The gaze pattern in the MR image has 4.5% frequency. Participants first 

compared abdominal organs to the fat seen posterior to the spine. In CT, fat will always 

allow more transmission of x-rays through the area than the surrounding soft tissue, 

resulting in a darker image. In MR, fat is frequently brighter than the soft tissue, although 

the brightness is dependent upon the sequence used. They then compare the inferior vena 

cava to the surrounding abdominal structures. In CT, structures of similar subject density 

will exhibit similar optical brightness due to similar attenuation of the x-ray beam. In the 

case of the IVC, it will appear slightly darker than the surrounding liver tissue due to the 

slightly decreased subject density between the solid liver and the liquid blood. In MR, the 

movement of the blood typically results in increased signal and a bright image. In this way, 

they determine the modality of the image.  
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Figure 34: One example of case studies with highlight matching gaze pattern. CT image 

is at top. MR image is at bottom. 

 

In comparison to the relatively simple level 1 task, we looked for the rationale in the 

temporal patterns for level 8, where we asked participants to evaluate the positioning 
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demonstrated on the image. The pattern in Figure 35 left, which appears with 1.28% 

frequency within the data for this image, demonstrates an evaluation of the rotational 

aspects of the positioning.  Rotation in an abdominal image may occur in the upper body, 

the lower body or both. The technologists begin the evaluation of rotation by looking at the 

relative position of the spinous process within the vertebral body, as a centered vertebral 

body in the upper lumbar spine indicates that the upper body is not rotated. They progress 

to the left ilium and trace to the right ilium along the line formed by the abdominal pannus, 

ending at the sacrum. This series of fixations constitutes a comparison of the symmetry 

formed by the ilium and an evaluation of centering of the sacrum between the iliac wings. 

When the pelvis is rotated the iliac wings are no longer symmetrical and equidistant from 

the center of the sacrum. The evaluation of pelvic rotation was also seen in another retrieval 

result (Figure 35 right), with a frequency of 1.28%. 

We continued to see explainable patterns in the frequency results for level 9. In this 

level, we asked the participants to describe the patient based on the visual information 

provided. In Figure 36 (left), case three demonstrates a complex sequence, seen with 4.5% 

frequency, in which the technologists look at the right breast and a skin fold on the right 

side, followed by the right lung, left lung base, abdomen and heart. From this sequence, 

they can describe the patient as female, lacking muscle tone with clear lungs, decreased 

bone density, indicating possible osteoporosis, and normal heart size. The decreased bone 

density and lack of muscle tone indicate that the patient is likely older.   

Finally, explainable patterns are seen in the highest level of visual knowledge as well.  

This question is in level 10 which requires them have more knowledge in order to answer. 

Participants were asked to determine the problems the patient in the image is exhibiting. In 
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this case, shown in Figure 36 (right), the technologists look from the oval artifact caused 

by the backboard handle to the humeral shaft, then up to where the humeral shaft is impact 

fractured into the humeral head and over to the scapula. In this sequence of fixations, the 

radiologic technologist can determine that the patient has been involved in a traumatic 

event, like a fall or a motor vehicle accident, the patient has a fractured humerus of a type 

consistent with putting your arm forward to catch yourself, and the humeral head is not 

laterally displaced from the glenoid fossa of the scapula. This sequence of fixations 

occurred with 14.1%, which is much higher than the others. 

Overall, the complex sequences with the highest frequencies demonstrated explainable 

patterns in relationship to the task undertaken. While the frequencies reported are relatively 

low, they do not account for instances of the same pattern with gaps or interruptions in the 

sequence, nor do they take into account instances where the sequence might occur in the 

reverse order. As the system is improved to account for gaps and reverse sequences, the 

frequencies of these identifiable patterns are likely to improve.  
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Figure 35: Second and third case study with highlight matching gaze pattern. 

 

 

Figure 36: Fourth case study with highlight matching gaze pattern. 
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CHAPTER SEVEN 

7. SUMMARY AND FUTURE WORK 

7.1 Summary of Existing Work  

This dissertation work proposes a new computational method to index and model the 

tacit and hard-won visual knowledge, and provides a framework for retrieving large scale 

cases in real time for computer science community. The visual activities are first addressed 

in the dissertation, especially for auto-segmentation and annotation. The proposed 

framework can be scaled to hundreds of millions of cases, as reported in the experimental 

results, using commodity hardware. Using real-time gaze tracking framework, we can 

computationally capture and index human visual knowledge in real time. This framework 

can be also used to assist image search such as satellite image and biomedical image 

retrieval. 

This dissertation presents a case-based reasoning system for visual knowledge gaze 

tracking and image-based anatomical information. We have developed a new approach to 

represent an eye-tracking case using graph model and Markov Chain (MC) model to 

capture both spatial and temporal features. A graph distance function was used in a case-

based reasoning (CBR) system to retrieve similar cases from the case library. By spatial 

and temporal pattern mining and comparisons, we find that experts (radiological 

practitioners and professionals) and novices (junior and senior-year students) tend to use 

different visual patterns to solve the same high-level tasks. For most low-level tasks, 

however, there are no significant differences between junior and senior students compared 

to experts’ visual patterns. In the novice group, we observed that junior and senior students 
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have no significant differences when dealing with high-level tasks. One of reasons could 

be that both subgroups lack of needed knowledge to answer the questions.  

We tested our proposed framework on 200 human visual reasoning cases from 12 

junior and 13 senior students from MU Radiography training program. An innovative 

approach was proposed and implemented to analyze human gaze patterns spatially (Sub-

graph Matching) and temporally (Markov Decision process) in an attempt to model 

human cognitive process. To computationally mimic human reasoning, in addition to the 

analysis of low level gaze features (fixation, duration, saccades) in our previous work, we 

proposed three visual actions (focus, read and scan) for temporal representation of the 

human gaze. These three visual actions were then segmented and annotated using a linear-

chain conditional random field model.  

Finally, employing a big data ecosystem, we developed a novel indexing and retrieval 

framework for real-time case ranking over hundreds of millions of visual 

knowledge cases. The proposed framework was implemented on a Hadoop Distributed File 

System - HDFS, Spark (Streaming, SQL and GraphX) and HBase. To analyze the 

scalability of the proposed framework, we randomly generated up to 200 

million simulation cases with controlled variation. The results show both the accuracy and 

the speed of our proposed Spark framework. 

7.2 Potential Applications 

The traditional text-based or content-based search cannot take users’ visual reasoning 

into consideration when they search on those media. With the recent availability of 

inexpensive gaze trackers, more and more gaze tracking streaming data are expected to be 

collected in the near future. Our proposed framework is designed not only for similar gaze 
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tracking searches, but also for the following applications: 1. Quality control – during 

domain experts’ image analytic processes, the proposed real-time gaze matching system 

can evaluate practitioners’ gaze tracking performance and remind them if they miss a 

salient region in the image; 2. Training – the proposed gaze tracking framework can also 

be used as training system for novices, who can learn from the domain experts’ gaze pattern 

and summarize this tacit visual strategy; 3. Searching – users can query similar gaze 

tracking visual activity from the case library in real time. This visual knowledge search can 

assist them in analyzing the image and help them interpret the domain image.  

7.3 Future work 

7.3.1 Development of Retrieval Algorithms for Other Domain 

We expect to see multiple follow-up research endeavors and studies using the proposed 

framework. One potential future goal is to apply the existing computing framework to other 

image domains, such as geospatial intelligence, fine arts, etc. The challenge here would be 

how to define salient regions for each domain, and how to design questions capable of 

testing various levels of visual knowledge in a way that best allows us to encode human 

visual strategies. Moreover, some other domains, such as journalism and education may 

require multimedia data for study (video, flash animation, cartoons, etc.). Thus, for those 

domains, challenges arise from the dynamic nature of content from videos, animations, and 

zoom in/out operations.   

7.3.2 Expanded Existing Visual Action Dictionary 

Though the proposed computation model for visual knowledge was developed in this 

dissertation, research on adding more visual activities such as tracing or comparison based 
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on the existing three basic actions {Focus, Read, Scan} could still be performed. First, the 

new computational approach could be utilized to model more complex visual strategies 

through the proposed searching framework. Second, for certain domains, we can design 

specific visual actions designed to most accurately and efficiently analyze domain images. 

7.3.3 Large Scale Streaming and In Memory Computing and Indexing  

Today we live in a big data world. It is not sufficient to store, index and search large 

scale images, text, video, audio or other type of media data. Using this proposed big data 

ecosystem environment, we can easily scale database or streaming data to the GB or even 

TB level. Thus, approaches allowing system better load and balance the data caching are 

still needed. We can expand our retrieval engine in multiple ways. First, we could design 

better streaming modules and scale the retrieval cases in real time. Second, a load balance 

algorithm can be used to preload candidate cases into memory for faster searching. Third, 

in situations with limited RAM space, we can expand the caching area to the hard disk 

using an off-heap caching Tachyon. Finally, in addition to proposed indexing method – 

Mean Shift clustering – we can extend the indexing structure to tree indexes in future, such 

as Metric Tree [103, 104] or kd-Tree [105]. Using the Spark GraphX component, it is 

possible to build and customize the indexing tree in a distributed computing framework. 

This new tree indexing structure can be preload into memory and distributed across cluster 

for large scale retrieval.  
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Appendix A 

A.1 Ten Level Images 

   
 

(a) Level 1 - What is the modality of this image? 

 

   
 

(b) Level 2 - Describe the overall photographic properties of this image. 

 

 
 

(c) Level 3 - What basic textual elements do you identify on this image? 

 



97 

 
 

(d) Level 4 - How do you orient yourself to this image? 

 

 
 

(e) Level 5 - What body part does this image demonstrate? 

 

 
 

(f) Level 6 - What is the projection of this image? 
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(g) Level 7 - Identify 3 foreign objects on this image. 

 

 
 

(h) Level 8 - Evaluate the positioning of this image. 

 

   
 

(i) Level 9 - Describe this patient based on what you see in this image. 
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(j) Level 10 - What problem(s) do you think this patient has? 
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A.2 Three Level Images 

     

(a) Please evaluate the positive and negative aspects of this image. 

    

(b) Level 2: Was the amount of x-rays used for this image adequate? 
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(c) Level 5: Does the image demonstrate all of the required anatomy? 

   

(d) Level 8: Are the relationships between the anatomical structures accurate? 
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A.3 Domain Anatomy Marker Images 

  

(a) Domain anatomies on images for overall question: Please evaluate the positive and 

negative aspects of this image.  

  

(b) Domain anatomies on images for Level 2: Was the amount of x-rays used for this 

image adequate? 
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(c) Domain anatomies on images for Level 5: Does the image demonstrate all of the 

required anatomy? 
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(d) Domain anatomies on images for Level 8: Are the relationships between the 

anatomical structures accurate? 
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