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SEQUENCES OF RANK-1 PROJECTIONS AND GABOR TIGHT FUSION

FRAMES

Brian Tuomanen

Dr. Stephen Montgomery-Smith, Dissertation Supervisor

ABSTRACT

This dissertation provides new results in two different areas. The first con-

cerns properties inherited by sequences of orthogonal rank-1 projections (ie, the

outer product sequences such as {fif ∗i }Mi=1 ) within the Hilbert space of symmet-

ric operators (sym(HN×N) ) from their inducing unit-norm vector sequences {fi}Mi=1

within a Hilbert space HN ; notably, we show the cases where quantitative Riesz and

frame bounds of {fi}Mi=1 are inherited by the induced projections {fif ∗i }Mi=1. We then

show that the family of unit norm frames which yield independent outer product se-

quences is open and dense (in a Euclidean-analytic sense) within the topological space

⊗Mi=1SN−1, where M 6 dim sym(HN×N). We then give a full geometric characteriza-

tion of the particular sequences that produce dependent sequences of projections.

The second part concerns a new method to construct so-called tight fusion frames.

As tight frames are a very important topic within standard frame theory, tight fusion

frames are similarly important; however, only trivial examples of tight fusion frames

are hitherto known. Here we apply ideas from Gabor analysis to demonstrate a non-

trivial construction of tight fusion frames. We then use this construction to further

show their applicability in some cases for the retrieval of signals modulo phase.

vi



Chapter 1

Introduction

1.0.1 A Statement of Authorship

This dissertation is based on two papers of the author. The first paper, Riesz Outer

Product Hilbert Space Frames: Quantitative Bounds, Topological Properties, and Full

Geometric Characterization ([31]), was initiated by the author in the Summer of 2012,

and then finished with co-author Eric Pinkham over the course of 2013-2014. The

second paper, Gabor Tight Fusion Frames: Construction and Applications in Signal

Retrieval Modulo Phase ([32]), was written with co-author Mozhgan Mohammadpour

over the course of Summer and Fall of 2015. These papers also attribute Pinkham’s

and Mohammadpour’s advisors as authors, who provided editing and feedback for

the drafts, but did not contribute any original material.

The author wishes to indicate that a significant portion of this dissertation is his

original work; however, there are some pertinent discoveries of the co-authors that are

being included for the sake of completion. There are also many “gray areas” where a

theorem or example was co-developed.

While this is not an exhaustive lemma-by-lemma, theorem-by-theorem, proof-by-

proof, example-by-example list, the author will now indicate which of the significant

portions are due to each respective author. (Generally speaking, the less interesting
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small lemmas, remarks and examples that are not listed here were written by both

authors.)

From Riesz Outer Product Hilbert Space Frames: Quantitative Bounds, Topological

Properties, and Full Geometric Characterization:

• The so-called Riesz Transference Theorem of section 3.1 was originally discov-

ered by the author in July of 2012; the original proof is included here. Pinkham

later discovered a more terse proof, which is not included here but can be seen

in our paper.

• The theory of optimal Frame-To-Riesz bound transference in section 3.2 was

entirely developed by Pinkham; the examples that follow in that section were

co-developed with him in the Summer of 2014.

• The characterization of the dependent sequences of rank-1 projections (outer-

products), which ultimately culminates in theorem 4.14, is entirely the origi-

nal work of the author. This answers a long-standing question in frame the-

ory. Again, shorter proofs of the necessary theorems were later discovered by

Pinkham, but they are not included here.

• The theory of topological density of rank-1 projections, as seen in section 4.1,

was co-developed with Pinkham in the Summer of 2014.

From Gabor Tight Fusion Frames: Construction and Applications in Signal Re-

trieval Modulo Phase:

• The original idea of using Gabor Analysis as a tool to construct Tight Fusion

Frames was conceived by Mohammadpour.
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• The construction of Gabor Tight Fusion Frames, as in Proposition 6.1 and

theorem 6.2, was co-developed with Mohammadpour in the Summer of 2015.

• The original idea to use Gabor Tight Fusion Frames for Signal Retrieval Modulo

phase was conceived by the author. Theorem 6.8, which indicates the cases when

this is possible, was co-developed with Mohammadpour in the Fall of 2015.

• Example 6.9 was originally given by Mohammadpour.

1.0.2 A Basic Background in Hilbert Space Frame Theory

At its root, this dissertation concerns sequences of vectors in Hilbert spaces. A

(very broad) distinction of the sequences of interest is made into two classes: Riesz

bases, and frames. A Riesz basis is a basis for a Hilbert space with quantitative

lower and upper bounds that are known as Riesz bounds. Hilbert space frames are a

similar notion where we have complete sequences with redundant vectors, with similar

bounding properties.

Frames were first explicitly defined and introduced by Duffin and Schaefer in their

study of nonharmonic Fourier series in 1952 [8], although some might contend that

this field was originally founded by Dennis Gabor (the celebrated “Father of Holog-

raphy”) in his seminal 1946 paper [16], which laid the foundations for time-frequency

analysis. The field of Frame Theory gained a renewed interest in the 1980’s due to its

applicability in wavelets and digital signal processing [13]. Frames, being overcom-

plete, allow for an infinite number of representations of a single signal; this of great

value due to their robustness to noise [13] and erasures [14].

We precisely define Hilbert space frames and Riesz sequences below:
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Definition 1.1. Let H be any separable Hilbert space. A countable sequence of

vectors {φi}i∈I ⊂ H is a frame for H provided there exists 0 < A 6 B <∞ such that

A‖ψ‖2 6
∑
i∈I

| 〈φi, ψ〉 |2 6 B‖ψ‖2

for all ψ ∈ H. A and B are called the lower and upper frame bounds respectively.

Definition 1.2. Let H be any separable Hilbert space. A countable sequence of

vectors {φi}i∈I ⊂ H is a Riesz basis for H provided there exists 0 < A 6 B < ∞

such that for any sequence of scalars (ai)i∈I we have:

A‖a‖2 6

∥∥∥∥∥∑
i∈I

aiφi

∥∥∥∥∥
2

6 B‖a‖2

A and B are called the lower and upper Riesz bounds respectively.

This brings us to the following remark:

Remark 1.3. While H can denote a finite or infinite dimensional Hilbert space, we

will specifically denote an N -dimensional Hilbert space as HN .

In the finite dimensional setting, a frame is just a spanning set; that is to say, the

statement that {φi}Ni=1 is a frame forHM is tautological with saying that span{φi}Ni=1 =

HM . For a proof, see [9].

It should be noted, that there are many frame bounds for a given frame. The

largest lower frame bound and the smallest upper frame bound are the optimal frame

bounds. We characterize several classes of frames of particular interest by their frame

bounds. If A = B the frame is said to be a tight frame, and if A = B = 1 it is a

Parseval frame. These classes are particularly useful for reasons we will see below.

There are several important operators which go along with the study of frames.
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Definition 1.4. Let Φ = {φi}Mi=1 be a frame for HN .

1. The synthesis operator of Φ is

T : `M2 → HN T : (ai)
M
i=1 7→

M∑
i=1

aiφi.

Its matrix representation is

T =

 | | |
φ1 φ2 · · · φM
| | |

 .
2. The analysis operator of Φ is the Hermitian adjoint of T ,

T ∗ : HN → `M2 T ∗ : ψ 7→ (〈ψ, φi〉)Mi=1.

3. The frame operator of Φ is S = TT ∗ so that

S : HN → HM S : ψ 7→
M∑
i=1

〈ψ, φi〉φi.

4. The Gram matrix of Φ is

G(Φ) = T ∗T = [〈φi, φj]Mi,j=1.

It follows that the non-zero eigenvalues of S and G(Φ) are equal and so the largest

smallest non-zero eigenvalues of G(Φ) are the lower and upper frame bounds of Φ.

The frame operator exhibits great utility in understanding frame properties.

Theorem 1.5. Let {φi}Mi=1 be a frame for HN . Then the frame operator S is self-

adjoint, positive, and invertible. Furthermore, the largest and smallest eigenvalues of

S are precisely the optimal upper and lower frame bounds of {φi}Mi=1 respectively.
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Reconstruction is carried out by

ψ = SS−1ψ =
M∑
i=1

〈ψ, φi〉S−1φi =
M∑
i=1

〈
ψ, S−1φi

〉
φi.

This provides useful representations of any vector in our Hilbert space through the

frame operator. For applications, we want the frame operator to be as well conditioned

as possible for stability of the representation. This means that frames which are close

to being tight are more desirable than those with arbitrarily small lower frame bounds.

Particularly useful frames for encoding and decoding as above are tight frames. Tight

frames have the important property that their frame operator is a multiple of the

identity and hence inverting them is trivial. This is especially useful when our space

has very high dimension as is common in applications.

Again when dealing with finite dimensional vector spaces, these objects have a

very simple characterization: a set is Riesz if and only if it is linearly independent.

We will use independent and Riesz nearly interchangeably in this dissertation. We

will use Riesz when we are particularly concerned with not only the independence

but also the Riesz bounds.
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Chapter 2

Preliminaries in Outer-Product
Tensors

Before we can study the properties of projections and outer-products, we need to

precisely define them:

Definition 2.1. For φ, ψ ∈ HN , define the outer product of φ and ψ by φψ∗ in terms

of standard matrix multiplication. For any vector φ ∈ HN , we define the induced

outer product of φ as φφ∗. Note that if φ is a unit norm vector, then this will be

a rank one orthogonal projection; in this case, we may refer to this as the induced

projection of φ.

Much of the following work will be in the space of N × N matrices over the real

or complex fields. We will denote these spaces as HN×N , and as needed clarifying

the base field. In the case that we are restricting our attention to the symmetric or

self-adjoint matrices we will use sym(HN×N); we may equivalently use notation such

as sym(H) for brevity. To further simplify notation, given S ∈ HN×N we will use S∗

for both the Hermitian adjoint and transpose understanding that the underlying field

determines which is at play.

Remark 2.2. The ambient space of outer products is the space of self-adjoint matri-
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ces on HN . It has dimension N(N + 1)/2 if H is real. If H is complex, the space of

self-adjoint matrices does not form a complex vector space but instead a real vector

space, as such it has dimension N2.

For φ, ψ ∈ HN we will denote the ith entry of φ by φ(i). For a matrix S we will

denote the (i, j)th entry by S[i, j].

We will equip these vector spaces with the Frobenius matrix inner product.

Definition 2.3. Let S, T ∈ HN×N . The Frobenius inner product is

〈S, T 〉F = Tr(S∗T ) =
N∑
i=1

N∑
j=1

S[i, j]T [i, j].

We may drop the subscript F when no confusion will arise.

For given φ, ψ ∈ HN we will use the usual `2 inner product

〈φ, ψ〉 =
N∑
i=1

φ(i)ψ(i).

Throughout this dissertation we will use IN to be the N ×N identity matrix and

1N ∈ HN to be the vector 1N to be the vector of all 1’s.

2.1 Some Basic Calculations

We start with a simple calculation.

Lemma 2.4. For any vectors φ1, φ2 ∈ HN we have

〈φ1φ
∗
1, φ2φ

∗
2〉F = |〈φ1, φ2〉|2.

Proof. We compute:

〈φ1φ
∗
1, φ2φ

∗
2〉F = Tr(φ2φ

∗
2φ1φ

∗
1)

8



= Tr(φ2 〈φ2, φ1〉φ∗1)

= Tr(〈φ1, φ2〉 〈φ2, φ1〉)

= | 〈φ1, φ2〉 |2.

Corollary 2.1.1. φ1 ⊥ φ2 in HN if and only if φ1φ
∗
1 ⊥ φ2φ

∗
2 in sym(HN×N).

One of the main tools in examining the outer products of a collection of vectors

will be the Gram matrices of our vectors. When dealing with a Riesz sequence, or a

linearly independent collection of vectors, the Gram matrix will be positive-definite.

Furthermore, the largest and smallest eigenvalues of this matrix represent the upper

and lower Riesz bounds of our sequence respectively. In the case of redundant frames,

the Gram matrix is singular. However, the largest and smallest non zero eigenvalues

give the upper and lower frame bounds respectively. We will need the the Gram

matrix of outer products.

Theorem 2.5. Let {φi}Mi=1 be a sequence of vectors in HN . Then the Gram matrix

of {φiφ∗i }Mi=1 is

G = [| 〈φi, φj〉 |2].

Moreover,

1. If {φiφ∗i }Mi=1 is a Riesz sequence, then the optimal Riesz bounds are the largest

and smallest eigenvalue of G.

2. If {φiφ∗i }Mi=1 is a frame then the frame bounds are the largest and smallest non-

zero eigenvalues of G.

9



The Gram matrix of the induced outer products can be represented in terms of

the Gram matrix of the original vectors by using the Hadamard product.

Definition 2.6. Given two matrices A = [aij] and B = [bij] in HM×N the Hadamard

product of A and B is

A ◦B = [aijbij].

The following is a well known theorem about Hadamard products, see [11] for

example.

Theorem 2.7. Let A and B be Hermitian with A = [aij] positive semidefinite. Any

eigenvalue λ(A ◦B) of A ◦B satisfies

λmin(A)λmin(B) 6 [min
i
aii]λmin(B)

6 λ(A ◦B)

6 [max
i
aii]λmax(B)

6 λmax(A)λmax(B).

Remark 2.8. We see that if G is the Gramian of a frame {φi}Mi=1 for HN , then the

Gramian of its induced outer-products {φiφ∗i }Mi=1 is G ◦G.

2.2 Duals of Outer Products

Lemma 2.9. Given a vector φ in HN and operators T1, T2 acting on HN with T2

symmetric, we have

(1) T1(φφ∗) = (T1φ)φ∗.

(2) T1(φφ∗)T2 = (T1φ)(T2φ)∗.

10



Proof. (1) We compute for x ∈ HN

T1(φφ∗)(x) = T1(〈x, φ〉φ)

= 〈x, φ〉T (φ)

= (T1φ)φ∗(x).

(2) We compute for x ∈ HN

(φφ∗)T2(x) = 〈T2x, φ〉φ

= 〈x, T2φ〉φ

= φ(T2φ)∗(x).

Proposition 2.10. If {φi}Mi=1 is a Riesz sequence in HN with biorthogonal vectors

{φ̃i}Mi=1, then the biorthogonal vectors for {φiφ∗i }Mi=1 are {Pφ̃iφ̃∗i }Mi=1 where P is the

orthogonal projection onto the span of {φiφ∗i }Mi=1.

Proof. We compute:

〈
φiφ

∗
i , P φ̃jφ̃

∗
j

〉
F

=
〈
Pφiφ

∗
i , φ̃jφ̃

∗
j

〉
F

=
∣∣∣〈φi, φ̃j〉∣∣∣2 = δij.

So the vectors {Pφ̃iφ̃∗i }Mi=1 are biorthogonal to {φiφ∗i }Mi=1.

Remark 2.11. Projecting is necessary in the above proposition. For example, take

{φ1, φ2} to be a non-orthogonal Riesz basis for R2. Then φ̃1 ⊥ φ2 so take any ψ1 ⊥ φ2

with norm 1 and scale φ̃1 so that
〈
φ1, φ̃1

〉
= 1 i.e. φ̃1 = 1

〈ψ1,φ1〉ψ1. Then the Gram

matrix of the induced outer products of {φ1, φ2, φ̃1} is 1 | 〈φ1, φ2〉 |2 1
| 〈φ1, φ2〉 |2 1 0

1 0 1


11



which has determinant −| 〈φ1, φ2〉 |4. Since we have chosen φ1 6⊥ φ2 this matrix is

invertible. Hence these outer products are Riesz. But then φ̃1φ̃
∗
1 is not in the span of

the other two. Hence the projections are necessary.
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Chapter 3

Transference of Riesz and Frame
Bounds to Induced Riesz
Sequences of Projections

In this section, we study the transference of bounds of Riesz bases and frames to

their outer products; in other words, if we know that a frame or Riesz basis {φ}i∈I

has bounds of A and B within a Hilbert space H, then what are the bounds for the

corresponding sequence of induced rank-1 projections, {φφ∗}i∈I within sym(HN×N)?

We start with a simple result that could be considered the cornerstone of this

topic: the Riesz transference theorem. We first see a short example illustrating the

underlying concept: that the Riesz bounds actually improve when we take the pro-

jections.

3.1 Transference of Riesz Bounds

Before we start our first theorem, we first need a small lemma:

Lemma 3.1. Given operators S = (bij)
N
i,j=1 and T = (aij)

N
i,j=1 on HN we have

〈T, S〉F =
N∑

i,j=1

aijbij,

13



Moreover,

‖S‖2
F =

N∑
i,j=1

a2
ij =

N∑
i=1

‖Ri‖2 =
N∑
i=1

‖Ci‖2,

where Ri (resp. Ci) is the ith-row vector of S (resp. ith-column vector of S).

Proof. Note that

Tr(S∗T ) = Tr



b11 b21 · · · bN1

b12 b22 · · · bN2
...

... · · · ...
b1N b2N · · · bNN



a11 a12 · · · a1N

a21 a22 · · · a2N
...

... · · · ...
aN1 aN2 · · · aNN




= Tr


∑N

i=1 bi1ai1 ∗ · · · ∗
∗

∑N
i=1 bi2ai2 · · · ∗

...
...

. . .
...

∗ ∗ · · ·
∑N

=1 biNaiN


=

N∑
i,j=1

aijbij.

For the moreover part, we have S∗S = (aji)(aij) has diagonal elements
∑N

j=1 a
2
ij

for i = 1, 2, . . . , N .

Theorem 3.2. (The Riesz Transference Theorem) Let {φi}Ni=1 be a unit norm

Riesz sequence in HN with Riesz bounds A,B. Then {φiφ∗i }Ni=1 is also Riesz, also

with bounds A,B.

Proof. Given scalars (ai)
N
i=1, we have that the (i, j)-entry of

S =
N∑
i=1

aiφiφ
∗
i ,

is

N∑
k=1

ckφk(i)φk(j).

So the jth-column vector is

Cj =
N∑
k=1

ckφk(i)φk.

14



So by our lemmas,

‖S‖2 =
N∑
j=1

‖Cj‖2

=
N∑
j=1

‖
N∑
k=1

ckφk(j)φk‖2

> A

N∑
j=1

N∑
k=1

|ck|2|φk(j)|2

= A

N∑
k=1

|ck|2
N∑
j=1

|φk(j)|2

= A
N∑
k=1

|ck|2.

The upper bound is done similarly.

It may not be surprising that unit norm Riesz sequences produce Riesz outer

products–but what is surprising is that the same Riesz bounds hold! That is, Riesz

bounds cannot worsen when moving to the outer product space. A natural question

to ask at this point is whether the Riesz bounds of the induced outer products can

be better than the Riesz bounds of the original vectors. The answer is yes.

Example 3.3. Let φ1 = [0, 1]T , φ2 = [
√
ε,
√

1− ε]T for 0 < ε < 1/2. Then {φi}2
i=1

is Riesz with Riesz bounds 1−
√
ε and 1 +

√
ε while {φiφ∗i }2

i=1 is Riesz with bounds

1− ε and 1 + ε.

Proof. The Gram matrix of {φ1, φ2} is[
1
√
ε√

ε 1

]
while that of {φ1φ

∗
1, φ2φ

∗
2} is[

1 ε
ε 1

]
.

The eigenvalues of these matrices are as required.
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3.1.1 Non-Transference of Tight Frame Bounds

This is certainly an encouraging start–the logical question to ask is, in which cases

do frame bounds carry over to their induced projections? We begin to answer this

question cynically, showing that for any tight, overcomplete frame (i.e, tight frame

whose cardinality is greater than the dimensionality of its ambient space), that its

frame bounds will never carry over to its induced outer products within real Euclidean

spaces.

Here, we only show the case of non-transference of real tight frames; the complex

case is proven entirely analogously, and we omit this case without loss of generality.

We first remember the fact that sym(RN×N) is an N(N + 1)/2 dimensional real

Hilbert space, and make a concrete connection between these spaces in the following

remark:

Remark 3.4. In the proof of this lemma, for a given vector v ∈ RN , we use v(k : `)

(with 0 6 k < ` 6 N) to mean the adridged sub-vector of v, with components k

through `; e.g., for v =


10
20
30
40
50

, v(2 : 4) would be

20
30
40

.

Let φ ∈ RN , and consider φφ∗. We will now construct a vector ϕ ∈ RN(N+1)/2 to

be the vector corresponding to φφ∗ ∈ sym(RN×N):

φ→ ϕφ =



φ ◦ φ√
2φ(1)φ(2 : N)√
2φ(2)φ(3 : N)

...√
2φ(N − 1)φ(N − 3 : N − 2)√

2φ(N)φ(N − 1)


(3.1)

We include the “
√

2”s to cover for the repetition of the off-diagonal values in
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the symmetric matrix under the Frobenius inner product: for any x, y ∈ RN , we

will have 〈xx∗, yy∗〉Fr = 〈ϕx, ϕy〉`2 . We see this is effectively a vectorization of a

one-dimensional projection in sym(RN×N).

Lemma 3.5. If {φi}Mi=1 is a tight, overcomplete frame for RN with M > N , then

{φiφ∗i }Mi=1 is not tight within the space that it spans.

Proof. Let {φ1, . . . , φM} be a frame for RN , with corresponding outer products {φiφ∗i }Mi=1

that span sym(RN×N). We denote the isomorphic vectors in RN(N+1)/2 in the sense

of (3.4) as {ϕi}Mi=1. We can write the synthesis matrix as:

[ϕ1, ϕ2, . . . , ϕM ]

We note that if we abridge this matrix to the first N rows, we have:

[φ1 ◦ φ1 φ2 ◦ φ2 · · ·φM ◦ φM ] (3.2)

We know from [9] that a frame is tight if and only if the vectors comprising the rows

of its synthesis matrix are equal-norm and orthogonal. Yet, the only possibility for

(3.2) to be a matrix consisting of orthogonal rows is if each vector in {φi◦φi}Mi=1 has `0-

norm of 1, since every element in each vector φi◦φi is non-negative. However, this will

leave us with each φi being a multiple of some element in the standard orthonormal

basis {ei}Ni=1 for RN . But then, that would mean that M = N , contradicting our

assumption. The conclusion follows.

3.2 Optimal Frame-to-Riesz Bound Transference

In the following section we will examine more closely the Riesz bounds of the induced

outer products. Here, we give the “optimal” induced Riesz bounds in sym(H) that

may arise from a frame in H, and sufficient conditions to achieve them.
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The following is immediate by Lemma 2.4.

Proposition 3.6. Let {φi}Mi=1 be vectors in HN . The sequence {φiφ∗i }Mi=1 is orthonor-

mal if and only if {φi}Mi=1 is orthonormal.

Since a redundant frame can not produce a Riesz sequence with tight Riesz bounds,

one might ask how close we can get. Before computing the optimal Riesz bounds of

a set of rank one projections we need to introduce the frame potential.

Definition 3.7. Let {φi}Mi=1 be a frame in HN . The frame potential is

FP({φi}Mi=1) =
M∑
i=1

M∑
j=1

| 〈φi, φj〉 |2.

Proposition 3.8. The frame potential of a unit norm tight frame with M elements

in HN is M2/N , which is a minimum over all unit norm frames.

See [4, 9] for a proof of the above result.

Theorem 3.9. If {φi}Mi=1 is a unit norm frame for HN , then the upper Riesz bound

of {φiφ∗i }Mi=1 is at least M/N . Moreover, we have equality if and only if {φi}Mi=1 is a

unit norm tight frame.

Proof. If {φi}Mi=1 is a unit norm frame whose outer products have Gram matrix G.

Then

M

N
6

1

M
FP({φi}Mi=1)

=
1

M

∥∥∥∥∥∥
(

M∑
i=1

| 〈φi, φj〉 |2
)M

j=1

∥∥∥∥∥∥
`1

6
1

M

√
M

∥∥∥∥∥∥
(

M∑
i=1

| 〈φi, φj〉 |2
)M

j=1

∥∥∥∥∥∥
`2

18



=

∥∥∥∥∥∥
(

1√
M

M∑
i=1

| 〈φi, φj〉 |2
)M

j=1

∥∥∥∥∥∥
`2

=

∥∥∥∥∥G
(

1√
M
, . . . ,

1√
M

)T∥∥∥∥∥
`2

6 ‖G‖

= λ1

where λ1 is the largest eigenvalue of G.

For the moreover part, if λ1 = M
N

then we have that M2

N
= FP ({φi}Mi=1) so that

{φi}Mi=1 is a unit norm tight frame. If on the other hand we have that {φi}Mi=1 is a

unit norm tight frame, then

M

N
=

1

M
FP ({φi}Mi=1)

=
1

M

∥∥∥∥∥∥
(

M∑
i=1

| 〈φi, φj〉 |2
)M

j=1

∥∥∥∥∥∥
`1

=
1

M

∥∥∥∥(MN , . . . ,
M

N

)∥∥∥∥
`1

=
1

M

√
M

∥∥∥∥(MN , . . . ,
M

N

)∥∥∥∥
`2

=

∥∥∥∥ 1√
M

(
M

N
, . . . ,

M

N

)∥∥∥∥
`2

=

∥∥∥∥G( 1√
M
, . . . ,

1√
M

)∥∥∥∥
`2

= ‖G‖

= λ1.

Now we will compute the optimal lower Riesz bounds for outer product frames.

Theorem 3.10. If {φi}Mi=1 is a unit norm frame for HN , then the lower Riesz bound
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of {φiφ∗i }Mi=1 is at most
M(N − 1)

N(M − 1)
.

Proof. Let G be the Gram matrix of {φiφ∗i }Mi=1 with eigenvalues λ1 > λ2 > · · · > λM .

Then Tr(G) = M gives

M∑
i=2

λi = M − λ1,

Also,

(M − 1)λM 6
M∑
i=2

λi,

and so

λM 6

∑M
i=2 λi

M − 1
.

Finally, we have

λM 6
M − λ1

M − 1
6
M − M

N

M − 1
=
M(N − 1)

N(M − 1)
.

In the next theorem, we see that the above bounds are sharp.

Theorem 3.11. Let {φi}Mi=1 be a unit norm equiangular frame for HN with M > N

and let c := | 〈φi, φj〉 |2 for i 6= j. Then {φiφ∗i }Mi=1 is a Riesz sequence whose Gram

matrix has two distinct eigenvalues, both of which are non-zero:

λ1 = 1 + (M − 1)c and λi = 1− c for all i = 2, 3, . . . ,M.

Moreover, if {φi}Mi=1 is also a tight frame, then c = M−N
N(M−1)

and {φiφ∗i }Mi=1 is a Riesz

sequence with Riesz bounds M(N−1)
N(M−1)

, M
N

.
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Before proving the above result, we need a well known theorem (see e.g. [10]).

Theorem 3.12 (Sylvester’s Determinant Theorem). Let S and T be matrices of size

M ×N and N ×M respectively. Then

det(IM + ST ) = det(IN + TS).

Proof of Theorem 3.11. Let G be the Gram matrix for {φiφ∗i }Mi=1. Then

G[i, j] =

{
1 if i = j
c otherwise

Then we can write G = (1− c)IM + c1M1∗M and expand using Sylvester’s determinant

theorem with S = 1M and T = 1∗M :

det ((1− c)IM + c1M1∗M − λI) = det ((1− c− λ)IM + c1M1∗M)

= (1− c− λ)M det

(
IM +

c

1− c− λ
1M1∗M

)
= (1− c− λ)M det

(
I1 +

c

1− c− λ
1∗M1M

)
= (1− c− λ)M−1(1− c− λ+ cM).

Setting the above equal to zero and solving for λ we get the solutions λ = 1 − c

occurring (M − 1)-times and λ = 1 + (M − 1)c occurring once.

If c = 0, then {φiφ∗i }Mi=1 are orthonormal and hence so are {φi}Mi=1 contradicting

the assumption that M > N . If c = 1 then φi = αijφj with |αij| = 1 for all i and j

contradicting the fact that this is a frame. Hence, 0 < c < 1 and the outer products

are Riesz.

For the “moreover” part, we compute:

1− c = 1− M −N
N(M − 1)

=
NM −N −M +N

N(M − 1)
=
M(N − 1)

N(M − 1)
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and

1 + (M − 1)c = 1 + (M − 1)
M −N
N(M − 1)

=
N +M −N

N
=
M

N
.

3.2.1 Sparsity and Vectorized Outer Products

Definition 3.13. Let φ ∈ HN . Define the vectorization of φφ∗ as the vector obtained

by stacking the columns on top of each other. That is, the vectorization of φφ∗ is
φ(1)φ

φ(2)φ
...

φ(N)φ


where φ(k) is the kth entry of φ.

Proposition 3.14. Let {φi}Mi=1 be a frame for HN with no zero vectors. For k =

1, . . . , N define Ik = {i : φi(k) 6= 0}. If {φi}i∈Ik is independent for all k, then

{φiφ∗i }Mi=1 is independent.

Proof. Let {φi}Mi=1 be a frame with the properties as stated. Let Ci be the vectoriza-

tion of φiφ
∗
i . Now consider the synthesis operator of {Ci}Mi=1:

φ1(1)φ1 φ2(1)φ2 φ3(1)φ3 · · · φM(1)φM
φ1(2)φ1 φ2(2)φ2 φ3(2)φ3 · · · φM(2)φM

...
...

...
...

φ1(N)φ1 φ2(N)φ2 φ3(N)φ3 · · · φM(N)φM

 .
Notice that since 0 /∈ {φi}Mi=1 we have that each φi contains at least one nonzero entry,

say φi(k) 6= 0. Then since φi(k)φi is part of Ci we have that Ci 6= 0 for all i.

Now suppose that there exists scalars ai (not all zero) such that

M∑
i=1

aiCi = 0.
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Then there is at least one l such that alCl 6= 0. Then by hypothesis, there is a row k

such that
∑

i aiφi(k)φi = 0 but alφl(k)φl 6= 0. Then

∑
i∈Ik

aiφi(k)φi = 0

which contradicts that {φi}i∈Ik is linearly independent.

Remark 3.15. The conditions of the above proposition are fairly constrictive but,

in certain cases, this can be useful. It will be used to verify a later example quickly.

Corollary 3.16. Let {φi}Mi=1 be a frame for which every subset of size k is linearly

independent. If the rows of the analysis operator are k-sparse then the induced outer

products are linearly independent.

3.3 Concrete Constructions of Riesz Bases of Outer

Products

Up to now, we have provided no concrete constructions of Riesz outer product se-

quences. We rectify this with the following examples.

Example 3.17. Let {ei}Ni=1 be an orthonormal basis for RN and define {Eij} as

follows

Eij =

{
ei if i = j

1√
2
(ei + ej) if j > i

for i = 1, · · · , N and i 6 j. Then {EijE∗ij} is a Riesz basis for the space of symmetric

operators in sym(RN×N).

Proof. This follows immediately from Proposition 3.14 in the prior subsection.
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The following example provides an extension of the above to the complex case. It

also provides a second (more intuitive) method of verifying that the above example

is independent.

Example 3.18. Take Eij as before, and add the following

E ′ij =
1

2
(ei +

√
−1ej)(ei +

√
−1ej)

∗

for j > i. Then the resulting sequence is Riesz.

Proof. Note that E ′ij is a matrix with 1 in the (i, i) and (j, j) entry and −
√
−1 in the

(i, j) entry and
√
−1 in the (j, i) entry. Then we know that

∑
i,j aijEij+

∑
i,j a

′
ijE
′
ij =

0 if and only if the real and complex parts are 0. We will do the real part and the

complex part will follow immediately. Eij with i 6= j is the square matrix with 1’s in

the (i, i), (i, j), (j, i), and (j, j) entry. Specifically, it is the only element in the sum

for which the entries (i, j) and (j, i) could possibly be non-zero. Hence aij = 0 for all

i 6= j. The remaining terms Eii are orthonormal and hence aii = 0 for all i. Thus the

real part is independent and the complex part follows by the same argument.

We know that the optimal Riesz bounds for a Riesz basis of outer products are

(N + 1)/(N + 2) and (N + 1)/2. Using unit norm tight frames we can always achieve

the upper bound. The lower bound is then the problem. Here we give a class of unit

norm tight frames which produce nice lower bounds as well.

Example 3.19. Let {φi}N+1
i=1 be the usual simplex equiangular tight frame for RN .

Then consider the outer products

Φij =

(
φi + φj
‖φi + φj‖

)(
φi + φj
‖φi + φj‖

)∗
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for j > i. Then Φij is Riesz provided N 6= 3 and has Riesz bounds 1
2

and N+1
2

for

N > 7.

Proof. Barg et al. showed in [1] that the frame

φi + φj
‖φi + φj‖

is a unit norm tight frame. Hence by Theorem 3.9 the upper Riesz bound of the

induced outer products is

N(N + 1)

2

1

N
=
N + 1

2
.

For the lower bound, we can consider the simplex in RN as
{

Pei
‖Pei‖

}N+1

i=1
for where

{ei}N+1
i=1 is an orthonormal basis for RN+1, P = IN+1 − ff ∗, and f = 1√

N+1

∑N+1
i=1 ei.

Then we have

φi =
Pei
‖Pei‖

=

√
N + 1

N

(
− 1

N + 1
, . . . ,− 1

N + 1
, 1− 1

N + 1
,− 1

N + 1
, . . . ,− 1

N + 1

)

and

〈φi, φj〉 =
N + 1

N

(
N − 1

(N + 1)2
− 2

N + 1

(
1− 1

N + 1

))
= − 1

N
.

Now, ‖φi + φj‖2 = 2N−1
N

for i 6= j and so we can compute the the Gram matrix of

{Φij}ij,

GΦ[ij, kl] = 〈Φij,Φkl〉 =


1 if i = j and k = l
(N−3)2

4(N−1)2
if i = k or i = l or j = k or j = l

4
(N−1)2

if no indices are equal

.
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Consider the collection of unit norm vectors

Eij =
1

2
(ei + ej)(ei + ej)

∗ for j > i

and {ei}N+1
i=1 is an orthonormal basis for RN+1. Now its Gram matrix is

GE[ij, kl] =


1 if i = j and k = l
1
4

if either i = k or i = l or j = k or j = l
0 if no indices are equal

.

This gives us the decomposition

GΦ =

(
1− 4

(
(N − 3)2

4(N − 1)2

))
IN(N+1)/2

+ 4

(
(N − 3)2

4(N − 1)2
− 4

(N − 1)2

)
GE

+
4

(N − 1)2
1N(N+1)/21∗N(N+1)/2.

Some inequalities,

(N − 3)2

4(N − 1)2
− 4

(N − 1)2
> 0

if N > 7 and

1− 4

(
(N − 3)2

4(N − 1)2

)
> 0

if N > 2. The matrices
(

1− (N−3)2

(N−1)2

)
IN(N+1)/2 and 4

(
(N−3)2

4(N−1)2
− 4

(N−1)2

)
GE are

positive-definite and 4
(N−1)2

1N(N+1)/21∗N(N+1)/2. is positive-semidefinite so

λmin[GΦ] > λmin

[(
1− (N − 3)2

(N − 1)2

)
IN(N+1)/2

]
+ λmin

[
4

(
(N − 3)2

4(N − 1)2
− 4

(N − 1)2

)
GE

]
+ λmin

[
4

(N − 1)2
1N(N+1)/21∗N(N+1)/2

]
=

(
1− (N − 3)2

(N − 1)2

)
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+ 4

(
(N − 3)2

4(N − 1)2
− 4

(N − 1)2

)
λmin [GE] + 0 (3.3)

We need to know λmin(GE).

As in Example 3.17, we will break up the sum. Let Eij = 1
2
(ei+ej)(ei+ej)

∗. Then∥∥∥∥∥
N+1∑
i=1

∑
j>i

aijEij

∥∥∥∥∥
2

=
1

4

N+1∑
i=1

∣∣∣∣∣∑
j>i

aij +
∑
j<i

aji

∣∣∣∣∣
2

+ 2
∑
j>i

|aij|2


>
1

2

∑
j>i

|aij|2

=
1

2

for aij which square sum to 1.

Then (3.3) becomes

1− (N − 3)2

4(N − 1)2
+ 2

(
(N − 3)2

4(N − 1)2
− 4

(N − 1)2

)
=
N2 + 2N − 23

2(N − 1)2
>

1

2

for N > 6.

Since these inequalities only hold for N > 7, we have computed the lower Riesz

bounds for N = 2, 3, . . . , 6 manually:

N lower bound

2 3/4
3 0
4 5/36
5 3/8
6 63/100

Remark 3.20. When N = 3 we get another example of the strangeness of this

problem. In this example we get that Φ14 = Φ23 thus producing a dependent sequence.
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Chapter 4

Full Topological and Geometric
Characterization of Riesz
Sequences of Rank-1 Projections

In this section we give topological and geometric conditions for independence (and

dependence) of sequences of rank-1 projections in sym(HN×N). We specifically show

the precise necessary and sufficient conditions required on a set of vectors {φi}Mi=1 ⊂

HN so that {φiφ∗i }Mi=1 may be dependent or independent in sym(HN×N), as well as

give a point-set topological proof of the density of independent outer-products within

the topological space ⊗Mi=1SN−1.

4.0.1 Some Necessary and Sufficient Conditions

This chapter heavily relies on the following theorem, which will be proven in Sec-

tion 4.2.1.

Theorem 4.1. Let T be a N × N positive semi-definite matrix. Let {ei}Ni=1 be the

eigenvectors of T with the corresponding eigenvalues {λi}Ni=1. Let I+ ⊂ {1, . . . , N} be

the index for the eigenvectors with positive eigenvalues, i.e., i ∈ I+ ⇔ λi > 0.

Let {ai}i∈I+ be a sequence of scalars such that
∑

i∈I+ |ai|
2 = 1. Then, for the vector

v =
∑

i∈I+ ai
√
λiei , we will have:
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rank

[
T v
v∗ 1

]
= rank T

Likewise, the converse is true: if we have rank

[
T v
v∗ 1

]
= rank T , then v =∑

i∈I+ ai
√
λiei for some collection of scalars indexed by I+, {ai}i∈I+ where

∑
i∈I+ |ai|

2 =

1.

Proposition 4.2. Let {φi}Mi=1 ⊂ HN be unit norm, and add an additional unit norm

vector φM+1. Assume the set of induced outer products is {φiφ∗i }Mi=1 is independent,

and that M + 1 6 dim sym(HN×N).

Let Gop be the Gram matrix of the induced outer products for the original sequence,

that is the Gram matrix of {φiφ∗i }Mi=1, and denote the eigenvectors of Gop as {e′i : 1 6

i 6M} and the associated eigenvalues {λ′i : 1 6 i 6M}.

We consider the analysis operator T for {φi}Mi=1 acting on φM+1. This is

TφM+1 =


〈φM+1, φ1〉
〈φM+1, φ2〉

...
〈φM+1, φM〉



Consider the following second order elliptic function:

f(x1, x2, . . . , xM) =
∑

16i6M

|xi|2

λ′i
(4.1)

Let y1e
′
1 + y2e

′
2 + · · ·+ yMe

′
M = TφM+1 ◦ TφM+1 be the representation of TφM+1 ◦

TφM+1 within {e′1, . . . , e′M}. Then we will have that f(y1, . . . , yM) = 1 if and only if

{φiφ∗i }M+1
i=1 is a dependent set.
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Proof. This follows directly from Theorem 4.1 and the identity of Gop = G ◦G. If we

add the additional vector φM+1 to our basis then the (M + 1)th column of the Gram

matrix for the outer products {φiφ∗i }M+1
i=1 is[

TφM+1 ◦ TφM+1

1

]
,

while the (M + 1)th row is [(TφM+1 ◦ TφM+1)∗ 1]. We know that the dimension

spanned by a frame is exactly the rank of its Gram matrix; Theorem 4.1 implies

that TφM+1 ◦TφM+1 must precisely meet the criteria of this proposition to have the

condition that the rank of the Gram matrix does not increase, and thereby does not

increase the dimension spanned by the set {φiφ∗i }M+1
i=1 , i.e., this collection of outer

products produces a dependent set.

Remark 4.3. The previous theorem yields a quartic algebraic variety/manifold that

will come in handy. Let {e′i}Mi=1 be as in the theorem. Consider the quartic equation

for v ∈ HM :

M∑
i=1

|〈v ◦ v, e′i〉|2

λi
= 1 (4.2)

We use the notation M4
{φi}Mi=1

to signify this quartic manifold embedded in HM .

Note that v = TφM+1 satisfies this equation if and only if φM+1 satisfies the criteria

for the previous theorem. Thus, if we are to consider the fourth order algebraic variety

for all v ∈ HM that satisfy this equation, then the collection of all TφM+1 such that

φM+1 satisfy the criteria for the previous theorem are contained entirely within this

variety.

Without loss of generality, we order every frame in this section such that {φ1, . . . , φN}

is a basis for its Hilbert space HN , and {φ1, . . . , φM0} with M0 6 M such that
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{φ1φ
∗
1, . . . , φM0φ

∗
M0
} is an independent sequence within the induced set of outer prod-

ucts {φiφ∗i }Mi=1. Unless otherwise noted, we assume M 6 dim sym(HN×N). By

default, T will be the analysis operator for the frame {φi}Mi=1, while SN−1 is be the

unit sphere in HN .

We start with some necessary lemmas.

Lemma 4.4. Let SN−1 be the unit sphere in HN . TSN−1 is an ellipsoid embedded

within HM with a Euclidean surface of dimension N − 1; moreover, T is injective

from SN−1 7→ TSN−1.

Proof. By lemma 3.24 of [9], we know that T is injective on HN ; limiting its domain

to SN−1 retains injectivity. If we limit the codomain to the range of T , so that we

have the mapping T : HN 7→ Range T , then we have that TSN−1 is an ellipsoid in

an N -dimensional subspace of HM (see chapter 7 of [9]). If we expand the codomain

to HM , we have an N − 1 dimensional ellipsoidal manifold embedded in HM .

Remark 4.5. We use the notation “T−1” to indicate the inverse of the bijection

T
∣∣
SN−1 , as above.

Lemma 4.6. Let G be the Gram matrix of our frame. Arrange the eigenvalues of

G so that λ1 > λ2 > · · · > λN > 0 and λj = 0 for N < j 6 M , and denote the

corresponding eigenvectors with {ei}Mi=1. Then the ellipsoid TSN−1 is the set of vectors

v = v1e1 + · · · vNeN where
∑N

i=1
|vi|2
λ1

= 1.

Proof. This again follows from the Lemma 4.6 and Theorem 4.1.
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Remark 4.7. For a given frame, we denote the quartic manifold given by the Gram

matrix of outer products implicitly stated in theorem 4.2 and explicitly stated in

the following remark 4.3 as M4
{φi}Mi=1

; denote the second order (elliptic) manifold in

lemmas 4.4 and 4.0.1 as M2
{φi}Mi=1

.

4.1 Topological Properties of Independent Outer

Product Sequences

We claim that “almost every” unit norm frame with a cardinality within a particular

bound induces a set of independent outer products; here we will show what this means

in a rigorous sense.

In this section, we will consider the family of unit norm frames with cardinal-

ity M 6 dim sym(HN×N). We see that we can identify this family with the topo-

logical space
⊗M

i=1(SN−1). We will use the standard metric for frames, d(Φ,Ψ) =√∑M
i=1 ‖φi − ψi‖2, which is compatible with the subspace topology of the Euclidean

topology with regards to
⊗M

i=1(SN−1). Results of this kind are often done in frame

theory using algebraic geometry which might give a slightly stronger result that the

unit norm M -element frames which produce independent outer products form an open

dense set in the Zariski topology in the family of all unit norm M -element frames.

We have chosen not to do this because only a fraction of the field knows enough

algebraic geometry to appreciate such results. Instead, we will give a direct, analytic

construction for the density of of the frames giving independent outer products.

Lemma 4.8. If {φi}Ni=1 is a Riesz sequence in HN with Riesz bounds A,B and

N∑
i=1

‖φi − ψi‖2 < ε2 < A,
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then {ψi}Ni=1 is Riesz with Riesz bounds (
√
A− ε)2, (

√
B + ε)2.

Proof. For any {ai}Ni=1 we compute:

‖
N∑
i=1

aiψi‖ 6 ‖
N∑
i=1

aiφi‖+ ‖
N∑
i=1

ai(ψi − φi)‖

6 B1/2

(
N∑
i=1

|ai|2
)1/2

+
N∑
i=1

|ai|‖ψi − φi‖

6 B1/2

(
N∑
i=1

|ai|2
)1/2

+

(
N∑
i=1

|ai|2
)1/2( N∑

i=1

‖ψi − φi‖2

)1/2

6 (B1/2 + ε)

(
N∑
i=1

|ai|2
)1/2

.

The stated upper Riesz bound is immediate from here. The lower Riesz bound follows

similarly.

Lemma 4.9. If ‖φ‖ = ‖ψ‖ = 1, then

‖φφ∗ − ψψ∗‖2
F 6 2‖φ− ψ‖2.

Proof. We compute

‖φφ∗ − ψψ∗‖2
F = ‖φφ∗‖2

F + ‖ψψ∗‖2
F − 2〈φφ∗, ψψ∗〉F

= 1 + 1− 2|〈φ, ψ〉|2

= 2(1− |〈φ, ψ〉|2)

= 2(1− |〈φ, ψ〉|)(1 + |〈φ, ψ〉|)

= (2− 2|〈φ, ψ〉|)(1 + |〈φ, ψ〉|)

6 (2− 2Re〈φ, ψ〉)(1 + |〈φ, ψ〉|)
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= (‖φ‖2 + ‖ψ‖2 − 2Re〈φ, ψ〉)(1 + |〈φ, ψ〉|)

= ‖φ− ψ‖2(1 + |〈φ, ψ〉|)

6 2‖φ− ψ‖2.

Proposition 4.10. Let {φi}Mi=1 are unit norm vectors in HN with {φiφ∗i }Mi=1 a Riesz

sequence having Riesz bounds A,B. Given 0 < ε < A/2, choose a unit norm set of

vectors {ψi}Mi=1 so that

M∑
i=1

‖φi − ψi‖2 < ε <
A

2
.

Then {ψiψ∗i }Mi=1 is Riesz with Riesz bounds

(√
A−
√

2ε
)2

and
(√

B +
√

2ε
)2

.

Proof. Assume the hypotheses. It follows from our Lemma 4.9 that

M∑
i=1

‖φiφ∗i − ψiψ∗i ‖2
F 6 2

M∑
i=1

‖φi − ψi‖2 < 2ε

Now by Lemma 4.8 we have that {ψiψ∗i }Mi=1 is Riesz with Riesz bounds

(√
A−
√

2ε
)2

,
(√

B +
√

2ε
)2

.

The above proposition says that the set of frames with cardinalityM 6 dim sym(HN×N)

is open in
⊗M

i=1(SN−1). In the remainder of this section we will show that this set is

also dense. While other authors have studied the density of outer products in terms

of commutative algebra [2], here we show this fact constructively and quantitatively

using only standard analytic and Euclidean topological notions.
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Lemma 4.11. Let S be an invertible operator and suppose {φi}Mi=1 are vectors in HN .

Then {φiφ∗i }Mi=1 is independent if and only if {Sφi(Sφi)∗}Mi=1 is independent.

Proof. Let {ai}Mi=1 be scalars, not all zero. We have

0 =
M∑
i=1

aiφiφ
∗
i

if and only if

0 = S

(
M∑
i=1

aiφiφ
∗
i

)
S∗ =

M∑
i=1

ai(Sφi)(Sφi)
∗.

Now we construct a large family of bases of outer products.

Lemma 4.12. Given a unit norm vector ψ ∈ HN , ε > 0, there is a unit norm basis

for sym(HN×N) consisting of outer products {φiφ∗i }di=1 with d = dim sym(HN×N),

such that ‖φi − ψ‖2 < ε for all i = 1, . . . , d.

Proof. First, we will assume that we have a unit norm basis {ψiψ∗i }di=1 of sym(HN×N)

with 〈ψ, ψi〉 > 0 for all i and ψ = e1 for an orthonormal basis {ej}Nj=1 of HN . We

can see that such a basis exists by a unitary transformation of Example 3.17 or

Example 3.18. Choose δ > 0 with the following property: If

S = diag(1, δ, δ, . . . , δ),

then for all i = 1, 2, . . . , d we have

N∑
j=2

|Sψi(j)|2 = δ2

N∑
j=2

|ψi(j)|2 6
ε

2
|ψi(1)|2 6 ε

2
‖Sψi‖2. (4.3)

Let

φi =
Sψi
‖Sψi‖

for all i = 1, 2, . . . , d,
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and observe that ‖φi‖ = 1 and Equation 4.3 imply

φi(1) > 1− ε

2
.

Now we compute for all i = 1, 2, . . . , d

‖ψ − φi‖2 = |1− φi(1)|2 +
N∑
j=2

|φi(j)|2 6 ε.

Since {ψiψ∗i }di=1 is linearly independent, by Lemma 4.11, the {φiφ∗i }di=1 are also inde-

pendent.

For the general case, given ψ and {ψi}di=1 with independent outer products, choose

a vector φ so that 〈φ, ψi〉 6= 0 for all i = 1, 2, . . . , d. By replacing φ by ciφ with |ci| = 1

if necessary, we can assume these inner products are all strictly positive. By the above,

we can find {φi}di=1 with their outer products independent and

‖φ− φi‖2 < ε.

Choose a unitary operator U so that Uφ = ψ and we have

‖ψ − Uφi‖2 = ‖Uφ− Uφi‖2 = ‖φ− φi‖2 < ε.

This completes the proof.

With the above lemmas we are ready to prove the following.

Theorem 4.13. The set of all frames {φi}Mi=1 with M 6 dim sym(HN) which produce

independent outer products is open and dense in the family of M-element frames.

Proof. This set was already shown to be open by Proposition 4.10. All that remains

to show is that this set is also dense. We let {φi}Mi=1 be any sequence of unit-norm

vectors, and we will construct a new sequence, {φ′i}Mi=1 that is arbitrarily close to this
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whose corresponding outer products produce a basis for sym(HN×N). Let φ′1 = φ1

and proceed by induction. Assume that we have a collection of vectors {φ′i}
M0
i=1 such

that ‖φ′i − φi‖ < ε/M for all i = 1, . . . ,M0 and {φ′i(φ′i)∗}
M0
i=1 is independent. Then by

Lemma 4.12 there exists a unit norm basis {ψi}dim sym(HN×N )
i=1 such that ‖φM0+1−ψi‖ <

ε/M for all i. Since dim span {ψiψ∗i }
M0
i=1 = M0, we can choose φ′M0+1 = ψk such

that ψkψ
∗
k /∈ span({φ′i(φ′i)∗}

M0
i=1). Then the set {φ′i}

M0+1
i=1 induces independent outer

products with ‖φ′i−φi‖ < ε/M for all i. By induction, we have obtained a set {φ′i}Mi=1

such that

M∑
i=1

‖φ′i − φi‖ < ε

and which induces independent outer products.

4.1.1 A Characterization of All Frames That Yield Depen-
dent Outer Products with Cardinality less than dim sym(HN×N)

Theorem 4.14. Let M < dim sym(HN×N). If {φiφ∗i }Mi=1 is independent, the set of

vectors in SN−1 that will yield a dependent set of outer products will be T−1(M2
{φi}Mi=1

∩

M4
{φi}Mi=1

), which will be compact in the Euclidean topology.

Proof. Remembering the notation from remark 4.7, we see thatM2
{φi}Mi=1

∩M4
{φi}Mi=1

are

exactly the portion of the image of T that corresponds to the dependent outer prod-

ucts. Since the manifoldsM2
{φi}Mi=1

andM4
{φi}Mi=1

are closed and bounded within a Eu-

clidean space, they are compact and likewise their intersectionM2
{φi}Mi=1

∩M4
{φi}Mi=1

is

compact. By the injectivity of T on SN−1 and remark 4.5, we see that T−1(M2
{φi}Mi=1

∩

M4
{φi}Mi=1

) forms a compact subset of SN−1.
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4.1.2 A Geometric Result

While it is beyond the scope of this dissertation to fully analyze this, we find that

carrying this on for frames with induced outer product sets of dimensionality equal

to dim sym(HN×N) yields a possibly interesting geometric result due to the loss of

independence in the induced outer products.

Proposition 4.15. Suppose that {φi}Mi=1 is a unit norm frame forHN where dim span{φiφ∗i }Mi=1 =

dim sym(HN×N). Then M2
{φi}Mi=1

⊆M4
{φi}Mi=1

.

Proof. We already know that if we expand the frame {φi}Mi=1 to the point where any

additional vector v ∈ SN−1 induces a dependent outer product sequence {φiφ∗i }Mi=1 ∪

{vv∗}, we will have Tv ∈M4
{φi}Mi=1

. But this implies that T−1(M2
{φi}Mi=1

∩M4
{φi}Mi=1

) =

T−1(M2
{φi}Mi=1

) = SN−1. The conclusion follows.

Remark 4.16. This gives us an instance where an elliptic manifold with a surface that

is locally Euclidean of dimension (N − 1) embedded within HM , which is contained

entirely within a fourth order manifold of dimension (M − 1) also embedded within

the same HM , where M > N .

4.2 Expanding Positive Semi-Definite Matrices While

Preserving Rank

4.2.1 Main Theorem on Positive Semi-Definite Matrices

Now we prove Theorem 4.1. We prove this Theorem in the form of two propositions

(“forwards” and “converse”). Likewise, we prove several lemmas for each proposition.
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4.2.2 Necessary Lemmas for “Forwards” Proposition

Lemma 4.17. Let T be an N × N positive semi-definite matrix with eigenvector ei

and associated eigenvalue λi > 0. Then we will have

rank

[
T

√
λiei

(
√
λiei)

∗ 1

]
= rank T

.

Proof. By the spectral theorem, we know that T has N eigenvectors {ej}Nj=1 with real-

valued eigenvalues {λj}Nj=1, and we have the representation T =
∑N

j=1 λjPj, where Pj

is the projection onto ej. Since by the hypothesis λi > 0, we have T
(
(1/
√
λi)ei

)
=

√
λiei This means that

√
λiei ∈ Range T . Thus, rank T = rank

[
T

(
√
λiei)

∗

]
.

To complete the lemma, we show that the existence of a vector w such that[
T

(
√
λiei)

∗

]
w =

[√
λiei
1

]
. We set w =

√
λiei; this yields

[
T

(
√
λiei)

∗

]
w =

[√
λiei
1

]
So we have that

[√
λiei
1

]
∈ Range

[
T

(
√
λiei)

∗

]
; this implies that

rank

[
T

√
λiei

(
√
λiei)

∗ 1

]
= rank

[
T

(
√
λiei)

∗

]
.

By our prior result we can conclude:

rank

[
T

√
λiei

(
√
λiei)

∗ 1

]
= rank T.
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Lemma 4.18. Let T be an N ×N positive semi-definite matrix, with distinct eigen-

vectors ei and ej with positive eigenvalues. Then, for any two scalars a, b such that

|a|2 + |b|2 = 1, we will have:

rank T = rank

[
T a

√
λiei + b

√
λjej

(a
√
λiei + b

√
λjej)

∗ 1

]

Proof. We proceed as in the prior theorem. First, we check that rank T = rank [T (a
√
λiei+

b
√
λjej)]. We see that T

(
(a/
√
λi)ei + (b/

√
λj)ej

)
= (a
√
λiei + b

√
λjej) ∈ Range T ,

which yields

rank T = rank [T (a
√
λiei + b

√
λjej)] = rank

[
T

(a
√
λiei + b

√
λjej)

∗

]

We can now see that

[
T

(a
√
λiei + b

√
λjej)

∗

](
(a/
√
λi)ei + (b/

√
λj)ej

)
=

[
(a
√
λiei + b

√
λjej)

1

]

which implies

[
(a
√
λiei + b

√
λjej)

1

]
∈ Range

[
T

(a
√
λiei + b

√
λjej)

∗

]

and so we have

rank

[
T

(a
√
λiei + b

√
λjej)

∗

]
=

rank

[
T a

√
λiei + b

√
λjej

(a
√
λiei + b

√
λjej)

∗ 1

]

the conclusion directly follows.

4.2.3 First proposition

This is the “forwards” implication of theorem (4.1) (“⇒”).
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Proposition 4.19. Let T be a N×N positive semi-definite matrix. Let {ei}Ni=1 be the

eigenvectors of T with the corresponding eigenvalues {λi}Ni=1. Let I+ ⊂ {1, . . . , N} be

the index for the eigenvalues with positive eigenvectors, i.e., i ∈ I+ ⇔ λi > 0.

Let {ai}i∈I+ be a sequence of scalars such that
∑

i∈I+ |ai|
2 = 1. Then, for the vector

v =
∑

i∈I+ ai
√
λiei , we will have:

rank

[
T v
v∗ 1

]
= rank T

Proof. This is just an extension of lemma (4.18) to an arbitrary number of eigen-

vectors. Let {ai}i∈I+ be a collection of scalars such that
∑

i∈I+ |ai|
2 = 1. We

first see that T
(∑

i∈I+ ai
1√
λi
ei

)
=
∑

i∈I+ ai
√
λiei. This means that rank T =

rank [T
∑

i∈I+ ai
√
λiei] = rank

[
T(∑

i∈I+ ai
√
λiei

)∗].

We see that [
T(∑

i∈I+ ai
√
λiei

)∗]∑
i∈I+

ai
1√
λi
ei



=

 T
(∑

i∈I+ ai
1√
λi
ei

)〈(∑
i∈I+ ai

√
λiei

)
,
(∑

i∈I+ ai
1√
λi
ei

)〉

=

[(∑
i∈I+ ai

√
λiei

)
∑

i∈I+ aiai
√
λi√
λi

]
=

[(∑
i∈I+ ai

√
λiei

)
1

]

This implies that the vector

[(∑
i∈I+ ai

√
λiei

)
1

]
is within the range of the matrix[

T(∑
i∈I+ ai

√
λiei

)∗]. This will give us

rank

[
T(∑

i∈I+ ai
√
λiei

)∗] = rank

 T
(∑

i∈I+ ai
√
λiei

)(∑
i∈I+ ai

√
λiei

)∗
1


The conclusion will follow.
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4.2.4 Necessary Lemmas for Converse Proposition

Observation 4.2.1. Let T be a positive semi-definite matrix on HN . By the spectral

theorem, T =
∑N

i=1 λiPi, where Pi is a projection onto the eigenvector ei with the

associated real eigenvalue λi.

We can partition HN into two orthogonal subspaces, V0 and V+, where V+ =

span {ei : λi > 0, 1 6 i 6 N }, and V0 = span {ei : λi = 0, 1 6 i 6 N}.

Notice the orthogonality of the eigenvectors transfers to these spaces: HN = V0 ⊕

V+.)

Lemma 4.20. Let T be a positive-semi-definite matrix on HN , and let V0 be as in

observation ( 4.2.1). Let v ∈ HN .

If PV0v 6= 0, then rank

[
T v
v∗ 1

]
> rank T .

Proof. Since HN = V0 ⊕ V+, we have that V ⊥0 = V+.

We note that ker T = V0, and Range T = V+. If v ∈ HN , then v = PV+v+PV0v; if

PV0v 6= 0, then PV0v /∈ Range T and hence v /∈ Range T . It follows that rank [T v] >

rank T , and that rank

[
T v
v∗ 1

]
> rank [T v] > rank T .

Lemma 4.21. Let T be a positive semi-definite matrix on HN , and let V0 be as in

observation ( 4.2.1). Let v ∈ HN .

If PV−v 6= 0, then rank

[
T v
v∗ 1

]
> rank T .
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Proof. Since PV−v 6= 0, there must be some ei, λi < 0, such that ci = 〈v, ei〉 6= 0.

Let us first consider only the vector ciei. ciei is in the range of T ; its preimage is

{(ci/λi)ei + ν : ν ∈ Null T}. So we have that rank

[
T

(ciei)
∗

]
= rank T .

We know

[
ciei
1

]
is in the range of

[
T

(ciei)
∗

]
. We proceed by contradiction. We

know that any solution w for the following equation:

[
T

(ciei)
∗

]
(w) =

[
T (w)

(ciei)
∗w

]
=

[
ciei
〈w, ciei〉

]

is of the form w = (ci/λi)ei + ν for some ν ∈ Null T . Yet, we see that in the

N + 1th slot in the above vector, we have 〈(ci/λi)ei + ν, ciei〉 = |ci|2/λi = 1, i.e.,

|ci|2 = λi < 0. This is a contradiction.

This will suffice to show that for any eigenvector ei with negative eigenvalue,

if we let Pi be the one dimensional projection onto this vector and if Piv 6= 0, then

rank

[
T Piv

(Piv)∗ 1

]
> rank T . It follows that if PV−v 6= 0, then rank

[
T PV−v

(PV−v)∗ 1

]
>

rank T . We extend this idea:

The preimage of PV−v =
∑

i∈I− ciei with regards to T is T−1(PV−v) = {
∑

i∈I−
ci
λi
ei+

ν : ν ∈ Null T}. Thus, for

[
PV−v

1

]
to be in the range of

[
T

(PV−v)∗

]
, we must have

[
T

(PV−v)∗

]
(
∑
i∈I−

ci
λi
ei + ν) =

[
T (
∑

i∈I−
ci
λi
ei + ν)

(PV−v)∗(
∑

i∈I−
ci
λi
ei + ν)

]

=

[ ∑
i∈I− ciei∑

i∈I− |ci|
2/λi

]
=

[
PV−v

1

]

but this would mean that |ci|2/λi = 1, when |ci|2/λi is a negative number.
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Lemma 4.22. With the notation above, let {ai}i∈I+ where I+ is the index of eigen-

vectors with positive eigenvalues. Let

v =
∑
i∈I+

ai
√
λiei. (4.4)

Assume that

rank

[
T v
v∗ 1

]
= rank T

then
∑

i∈I+ |ai|
2 = 1.

Proof. Let v be of the form as in (4.4). We assume that rank

[
T v
v∗ 1

]
= rank T .

Then v is in the range of T , so

[
T
v∗

]
is of the same rank as T . The preimage of v

is T−1(v) = {
∑

i∈I+
ai√
λi
ei + ν : ν ∈ Null T}. If we let ν be arbitrary, then

[
T
v∗

]
(
∑
i∈I+

ai√
λi
ei + ν) =

[
T (
∑

i∈I+
ai√
λi
ei + ν)

〈(
∑

i∈I+
ai√
λi
ei + ν), (

∑
i∈I+ ai

√
λiei)〉

]

=

[
v∑

i∈I+ |ai|
2

]
This will force

∑
i∈I+ |ai|

2 = 1.

Corollary 4.23. Let ei be an eigenvector with positive eigenvalue. Then rank

[
T cei

(cei)
∗ 1

]
=

rank T if and only if |c| =
√
λi.

Proof. (“⇐”) This is shown in the prior section.

(“⇒”) Apply lemma (4.22) with ai = 1, and aj = 0, for j 6= i.
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Proposition 4.24. Let v be a vector such that rank

[
T v
v∗ 1

]
= rank T for a positive

semi-definite matrix T . Let {ei}Ni=1 be the eigenvectors for T with associated eigen-

values {λi}Ni=1. We use I+ ⊂ {1, . . . , N} as the index of the positive eigenvalues, i.e.,

λi > 0⇔ i ∈ I+.

Let v ∈ HN . If

rank

[
T v
v∗ 1

]
= rank T

then v ∈ spani∈I+ei, where v =
∑

i∈I+ ai
√
λiei for some collection of scalars

{ai}i∈I+ such that
∑

i∈I+ |ai|
2 = 1.

Proof. We start with the assumption rank

[
T v
v∗ 1

]
= rank T . By lemmas (4.20)

and (4.21), we have v ∈ spani∈I+ei. By lemma (4.22), we have the conclusion.

4.2.5 Proof of theorem 4.1

Proof. (“⇒”) This is shown by proposition (4.19).

(“⇐”) This is shown by proposition (4.24).
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Chapter 5

Overview of Gabor Analysis and
Fusion Frames

5.1 Introduction

Fusion frame theory has recently garnered great interest among researchers who work

in signal processing. Fusion frames extend the notion of a frame (i.e., an overcomplete

set of vectors) within a Hilbert space H to a collection of subspaces {Wi}i∈I (with

orthogonal projections {Pi}i∈I) in H with an associated collection of weights {νi}i∈I .

This concept was originally introduced by Gitta Kutyniok in [23].

A tight fusion frame is one such that we have the identity
∑

i∈I Pi = CIN×N , i.e.,

the sum of the projections is a multiple of the identity, with every weight set to 1.

Such tight fusion frames are of interest for two reasons. First, they guarantee a very

simple reconstruction of a signal; and second, tight fusion frames are robust against

noise [21] and also remain robust against a one-erasure subspace when the rank of

projections are equal to each other [27].

A fusion frame is defined as follows:

Definition 5.1. Consider a Hilbert space H, with a collection of subspaces {Wi}i∈I

and an associated set of positive weights {νi}i∈I . The associated orthogonal projec-
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tions are likewise denoted as Pi : H 7→ Wi. Then we call {(Wi, νi)} a fusion frame

if there are positive constants 0 < A 6 B <∞ such that for any x ∈ H we have the

following:

A‖x‖2 6
∑
i∈I

ν2
i ‖Pix‖2 6 B‖x‖2

Definition 5.2. A tight fusion frame is a fusion frame as in 5.1 where A = B

and νi = 1 for all i ∈ I. That is to say, we have the following for any x ∈ H:

∑
i∈I

‖Pix‖2 = A‖x‖2

Or, equivalently:

AI =
N∑
i=1

Pi

Now, consider an orthonormal basis for the range of Pi, that is {ei,`}ni=1. We know

that:

Pix =
n∑
`=1

〈x, ei,`〉ei,`

for all x ∈ CN . Summing these equations over i = 1, · · · , N together

Ax =
N∑
i=1

Pix =
N∑
i=1

n∑
`=1

〈x, ei,`〉ei,`

5.2 Necessary Background in Gabor Analysis

In this section, we provide a brief summary of Gabor frames which is used to construct

our tight fusion frames. These concepts were originally introduced in Gabor’s classic
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paper [16]; we will, however, be giving a modern treatment of those ideas here. (See,

e.g., [6])

We index the components of a vector x ∈ CN by {0, 1, · · · , N − 1}, i.e., the cyclic

group ZN . We will write x (k) instead of xk to avoid algebraic operations on indices.

Gabor analysis concerns the interplay of the Fourier transform, translation oper-

ators, and modulation operators; we will review these concepts in this section. A

reader who is familiar with these concepts may skip this section.

The discrete Fourier transform is fundamental for Gabor analysis. It is defined as

Fx (m) = x̂ (m) =
N−1∑
n=0

x (n) e−2πim n
N .

The most important properties of the Fourier transform are the Fourier inversion

formula and the Parseval formula [22]. The inversion formula shows that any x can be

written as a linear combination of harmonics. This means the normalized harmonics

{ 1√
N
e2πim

(.)
N }N−1

m=0 form an orthonormal basis of CN :

x =
1

N

N−1∑
m=0

x̂ (m) e2πim n
N x ∈ CN .

Moreover, the Parseval formula states:

〈x,y〉 =
1

N
〈x̂, ŷ〉 x,y ∈ CN ,

which results in:

N−1∑
n=0

|x (n) |2 =
1

N

N−1∑
m=0

|x̂ (m) |2,

where |x (n) |2 quantifies the energy of the signal x at time n, and the Fourier co-

efficients x̂ (m) indicates that the harmonic e2πim
(.)
N contributes energy 1

N
|x̂ (m) |2 to

x.
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We now define some necessary concepts in Gabor analysis that will be necessary

in our construction. The cyclic translation operator T : CN → CN is given by

Tx = T (x (0) , · · · ,x (N − 1))t = (x (N − 1) ,x (0) , · · · ,x (N − 2))t .

The translation Tk is given by

Tkx (n) = T kx (n) = x (n− k) .

The operator Tk alters the position of the entries of x modulo N . The modulation

operator M` : CN → CN is given by

M`x =
(
e−2πi` 0

N x (0) , e−2πi` 1
N x (1) , · · · , e−2πi`N−1

N x (N − 1)
)t
.

Modulation operators are implemented as the pointwise product of the vector with

harmonics e−2πi` .
N .

Translation and modulation operators are referred to as time-shift and frequency

shift operators. The time-frequency shift operator π (k, `) is the combination of trans-

lation operators and modulation operators:

π (k, `) : CN → CN π (k, `) x = M`Tkx.

Hence, the short time-Fourier transform Vφ : CN → CN×N with respect to the window

φ ∈ CN can be written as

Vφx (k, `) = 〈x, π (k, `)φ〉 =
N−1∑
n=0

x (n)φ (n− k)e−2πi` n
N x ∈ CN .

The short time-Fourier transform generally uses a window function φ, supported at

neighborhood of zero that is translated by k. Hence, the pointwise product with x
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selects a portion of x centered at k, and this portion is analyzed using a Fourier

transform. The inversion formula for the short time-Fourier transform is [22]

x (n) =
1

N‖φ‖2
2

N−1∑
k=0

N−1∑
`=0

Vφx (k, `)φ (n− k) e−2πi` n
N

=
1

N‖φ‖2
2

N−1∑
k=0

N−1∑
`=0

〈x, π (k, `)φ〉π (k, `)φ (n) x ∈ CN .

So it can be easily seen that for all φ 6= 0, the system is a N‖φ‖2 tight Gabor frame.
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Chapter 6

Gabor Tight Fusion Frames

6.1 A Tight Fusion Frame Construction For Finite

Dimensional Signals

In this section, we show our method to construct Gabor tight fusion frames. The key

idea is to start with a general approach for the construction of tight fusion frames,

which has certain conditions that must be satisfied. We then show that these condi-

tions are indeed satisfied using methods from the Gabor frame theory.

We begin by showing the following proposition, which is the generalization of our

approach with certain conditions:

Proposition 6.1. Consider a collection of frame sequences {{fij}Li=1}Mj=1 within the

finite dimensional Hilbert space CN , and denote Wi := span{fij}Mj=1. Suppose there

exists an index i0 such that {fi0j}Mj=1 is a B-tight frame for Wi0 and also a set of

coisometry operators {Ui}Li=1 from CN to CN such that for each j = 1, ...,M , we have

{fij}Li=1 = {Uifi0j}Li=1.

Furthermore, the set {fij}Li=1 is a Aj-tight frame in CN for every j = 1, · · · ,M .

Then we will have that {(Wi, 1)}Li=1 is a tight fusion frame.

Proof. Consider x ∈ Wi. The set {Uifi0j}Mj=1 is a B-tight frame for Wi over i =
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1, · · · , L, because

M∑
j=1

|〈x,Uifi0j〉|2 =
M∑
j=1

|〈U∗i x, fi0j〉|2

= B‖U∗i x‖2

= B‖x‖2

Hence we have, for any x ∈ CN :

L∑
i=1

‖Pix‖2 =
L∑
i=1

1

B

M∑
j=1

|〈Pix, fij〉|2

=
L∑
i=1

1

B

M∑
j=1

|〈x, fij〉|2

=
1

B

M∑
j=1

L∑
i=1

|〈x, fij〉|2

=
1

B

M∑
j=1

Aj‖x‖2

=

∑M
j=1 Aj

B
‖x‖2,

where Pi is the orthogonal projection on Wi. The equality holds since {fij}Li=1 is a

A-tight frame for CN for j = 1, · · · ,M .

In the following, we explain the method to construct tight fusion frame based on

the Theorem 6.1 and Gabor frames on finite dimensional signals [22].

This theorem will form the cornerstone for our construction of Gabor tight fusion

frames; however, we need some further concepts related to Gabor analysis and Gabor

filters before we can continue with our construction.

6.1.1 Modeling Subspaces with Matrices

Every subspace W can be modeled by a matrix whose rows are an orthonormal basis

for W . On the other hand, every subspace of dimension M can be represented by a
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matrix N ×N whose first M rows are an orthonormal basis for W , since CN×M can

be embeded in CN×N . For example if the subspace W is generated by {e1, · · · , eM},

then, the matrix associated to this subspace is as follows:

[e1, · · · , eM , 0, · · · , 0]∗

Moreover, a signal x of length N can be represenetd by a matrix of N ×N since CN

can be embeded in CN×N .

X̃ = [x, 0 · · · , 0]∗

Based on the notation stated above, we define CN×N -valued inner product on CN×N

as follows:

〈X,Y〉 = XY∗

The translation and modulation operators for the space of complex valued square

matrix of dimension N are defined as follows: Consider l ∈ ZN . The translation

operator T̃` : CN×N → CN×N is defined as follows:

T̃` (e1, · · · , eN)∗ = (T`e1, · · · , T`eN)∗

In fact the translation operator T̃` alters the position of each row of the matrix X.

The modulation operator M̃` : CN×N → CN×N is given by

M̃` (x1, · · · ,xN)∗ = (M`x1, · · · ,M`xN)∗

Modulation operators are implemented as the pointwise product of each row of the

matrix X with harmonics e−2πil .
N . The translation and modulation operator on CN×N

are unitary operators and the following properties can be concluded(
T̃`

)∗
=
(
T̃`

)−1

= T̃N−land
(
M̃`

)∗
=
(
M̃`

)−1

= M̃N−l.
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The circular convolution of two spaces X,Y ∈ CN×N is defined by the convolution

of functions, which defined on the space ZN × ZN or can be written as:

X ∗Y =

(
N−1∑
i=0

xi ∗ y0−i, · · · ,
N−1∑
i=0

xi ∗ yN−1−i

)

Hence, if X̃ = (x, 0, · · · , 0), the convolution of X̃ and Y is given by

X̃ ∗Y = (x ∗ y0, · · · ,x ∗ yN−1)

Moreover, the circular involution or circular adjoint of X ∈ CN×N is given by

X∗ = (x∗1, · · · ,x∗N)∗

where x1, · · · ,xN ∈ Cp and x∗i (`) = x (N − `). Note that the complex linear space

CN×N equipped with `1-norm, the circular convolution and involution defined above

is a Banach ∗-algebra.

The unitary discrete Fourier transform of X ∈ CN×N is defined by

X̂ = (FN (x1) , · · · ,FN (xN))

where x1, · · · ,xN ∈ CN and the Fourier transform xi is given by

FN (xi) (`) =
1√
N

N−1∑
k=0

xi (k)ω` (k) =
1√
N

N−1∑
k=0

xi (k) e−2πi` k
N

The Fourier transform is a unitary operator on the CN×N with the Frobenius norm.

In fact, for all X ∈ CN×N :

‖〈X̂, X̂〉‖ = ‖〈X,X〉‖

We also have the following relationships.

̂̃T`X = M̃`X̂
̂̃M`X = T̃N−`X̂ X̂∗ = X̂ X̂ ∗Y = X̂.Ŷ
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for X,Y ∈ CN×N and ` ∈ ZN . The inverse Fourier formula for X ∈ CN×N is given

by

X = (x1, · · · ,xN)∗ =
(
F−1
N (x1) , · · · ,F−1

N (xN)
)∗

Translation operators are refered as time shift operators and modulation operators are

refered as frequency shift operators. Time-frequency shift operators π (k, l) combines

translations by k and modulation by l.

π (k, `) X = M̃`T̃kX

The Gabor Fusion transform VY of a signal x ∈ CN with respect to the window

Y ∈ CN×N is given by

VYx (k, `) = 〈x, π (k, `) Y〉 =
(
Vy0x (k, `) , · · · , VyN−1

x (k, `)
)∗

(6.1)

Now consider Y ∈ CN×N and Λ ⊂ {0, · · · , N − 1} × {0, · · · , N − 1}. The set

(Y,Λ) = {π (k, `) Y}(k,`)∈Λ

is called the Gabor Fusion System which is generated by Y and Λ. A Gabor Fusion

System which spans CN is a fusion frame and is referred to as a Gabor Fusion Frame.

6.2 Construction of Gabor Tight Fusion Frames

We now have all of the ingredients necessary for our construction; the next theorem

explains the necessary conditions such that a set {M̃`T̃kY}N,N`=1,k=1 will be a tight fusion

frame.

Theorem 6.2. Assume x ∈ CN and {y1, · · · ,yM} is a B-tight fusion frame for

WN,N = span{y1, · · · ,yM}. Consider also Wk,` = span{TkM`yj}Mj=1 for k, ` =

1, · · · , N . Then, the set {Wk,`}N,Nk=1,`=1 constitutes a
N

∑N
i=1 ‖yi‖22
B

tight fusion frame.
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Proof. All that has to be done is to verify that
{
{TkM`yi}Nk,`=1

}M
i=1

satisfies the criteria

of proposition 6.1. First, for a given value of j, we have that {TkM`yj}Nk,`=1 is a

Aj = N‖yj‖2 tight frame in CN by the elementary Gabor theory (this can be seen

the prior section). It should clear by its nature that the time-frequency shift operator

TkM` is a co-isometry for a set k, `, since it was mentioned before Tk and M` are both

unitary operators for every k, `. Finally, we know by the assumption that {yj}Mj=1 is

B-tight on its ambient space W0,0. Seeing that the conditions for the proposition are

satisfied, we have the conclusion that {(Wk,`, 1)}N−1
k,`=0 is a

N‖Y‖22
B

-tight fusion frame on

CN .

6.3 Gabor Fusion Frames and Signal Retrieval Mod-

ulo Phase

In this section, we are looking for some conditions such that the tight Gabor fusion

frame allows for signal reconstruction modulo phase; we precisely define what this

means in the following subsection.

6.3.1 Basic Background in Signal Retrieval Modulo Phase

Signal reconstruction modulo phase, (also known as phaseless reconstruction or phase

retrieval) is a field that has gathered interest in the mathematical community in

the last decade. Phaseless reconstruction is defined as the recovery of a signal mod-

ulo phase from the absolute values of fusion frame measurement coefficients arising

from a fusion frame [19]. This is known to have applications to a disparate array of

other scientific and applied disciplines, including X-ray crystallography [24], speech

recognition[17, 28, 30], and quantum state tomography[29].
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In the case of phase retrieval, the signal must be recovered from coefficients of

dimension higher than one. Here, in the context of fusion frames, the problem is to

recover x ∈ HM “up to phase” from the measurements {‖Pix‖}Ni=1.

There are few publications about the phase retrievability of projections. The paper

[20] used semidefinite programming to develop a reconstruction algorithm for when

{Wi}Ni=1 are equidimensional random subspaces. In [19] the authors characterized

the phase retrieval fusion frames. Moreover, they show the relationship between the

phase retrievality of fusion frames and the usual phase retrieval problem with families

of measurement vectors.

Here a new method is demonstrated for the construction of tight fusion frames.

There are hithero few examples of tight fusion frames except trivial ones made up of

orthogonal subspaces, so this is a relevant and interesting advance. Moreover, there

are few examples of phase retrieval fusion frames. Here, a condition that makes this

structure allow phase retrieval is presented.

One can recover the signal modulo phase from fusion frame measurements. In this

senario, consider we are given subspaces {Wi}Ni=1 of M -dimensional Hilbert space HM

and orthogonal projections Pi : HM → Wi. We want to recover any x ∈ HM (up to a

global phase factor) from the fusion frame measurements {‖Pix‖}Ni=1. To fix notation,

denote T = {c ∈ C; |c| = 1}. The measurement process is then given by the map:

A : CM/T→ CN , Ax (n) = ‖Pnx‖

We say {Wi}Ni=1 allows phaseless reconstruction or allows phase retrieval if

A is injective; we call a frame (or fusion frame) with this property a phase retrieval

frame. In the case where dimWi = 1 for i = 1, · · · , N , the problem will be referred
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to as the classical phaseless reconstruction problem. In section 4, we will provide a

novel structure of tight fusion frames where under particular conditions, will allow

phaseless reconstruction.

6.3.2 A Brief Overview of Circulant Matrices

We will need to review a few key concepts of circulant matrices before we continue

to the next section.

Definition 6.3. A circulant matrix is a matrix of the following form:

C =


c0 cn−1 . . . c2 c1

c1 c0 cn−1 c2
... c1 c0

. . .
...

cN−2
. . . . . . cN−1

cN−1 cN−2 . . . c1 c0

 .

Remark 6.4. We denote the jth division of unity as

ωj = exp

(
2πij

N

)
We will need the following theorem; a proof is given in [33]

Theorem 6.5. Let C be an N ×N circulant matrix.

Then det(C) = ΠN−1
j=0

(
c0 + c1ωj + c2ω

2
j + · · ·+ cN−1ω

N−1
j

)
.

Lemma 6.6. Let C be a matrix as in 6.3 with c0, c1, . . . , cn−1 = 1 and cn, cn+1, . . . , cN−1 =

0 for some 0 < n < N . Then C is singular if and only if there is some value j,

1 6 j 6 N − 1, such that N divides into jn.

Proof. By 6.5, we know that C is singular if and only if there is some j where 0 6

j 6 N − 1 and
∑N

k=0 ckω
k
j =

∑n−1
k=0 ω

k
j = 0. We notice that for j = 0, we have∑n−1

k=0 ω
k
0 =

∑n−1
k=0 1 = n, so we will only consider the values 1 6 j 6 N − 1.
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Consider
∑n−1

k=0 ω
k
j . The geometric series gives us that this is equal to

1−wn
j

1−wj
; this

is zero if and only if wnj = exp
(

2πijn
N

)
= 1. But this will only happen exactly when

jn
N

is an integer, that is to say, when N divides into jn.

6.3.3 Phase Retrieval Properties of Gabor Tight Fusion Frames

To state these conditions, we provide some theorems should be necessary to explain

the main result. The next lemma shows that if we add a vector to a phase retrieval

frame, the new frame also allows so-called phase retrieval.

Lemma 6.7. Let {φi}Ni=1 be a frame for CN that allows phaseless reconstruction. If

we add a vector φN+1 to {φi}Ni=1, then {φi}N+1
i=1 , this will also allow phaseless recon-

struction.

Proof. Consider that for x1, x2 ∈ CN , we have {|〈x1, φi〉|}N+1
i=1 = {|〈x2, φi〉|}N+1

i=1 .

Hence, we have {|〈x1, φi〉|}Ni=1 = {|〈x2, φi〉|}Ni=1. So, x1 = cx2 where |c| = 1 since

{φi}Ni=1 allows phase retrieval for CN . Thus {φi}N+1
i=1 also allows phase retrieval.

The prior lemma is important in the construction of phase retrieval frames. If we

have a phase retrieval frame for CN , then we can construct a new frame that also

allows phase retrieval by adding a vector to the frame vector set. On the other hand,

to show the phase retrievability of a frame, it is enough to show that a subset of the

frame vectors that spans the ambient space allows phaseless reconstruction.

In [18] the conditions on the window function such that the generated Gabor frame

allows phaseless are given; we now present a method to produce a phase retrieval

Gabor fusion frame. The following theorem demonstrates the relationship of the
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phase retrievability of the Gabor fusion frames and the phase retrievability of the

frame vectors which spans subspaces.

Theorem 6.8. Let {ei}Ni=1 be an orthonormal basis for CN with the property Tkei =

ei+k mod N . Let {ei}ni=1 ⊂ {ei}Ni=1 span the n-dimensional subset W0,0 ⊂ CN . Moreover

Wk,` = span {TkM`ei}ni=1 for k, ` = 0, 1, · · · , N − 1. If there exists an i0 such that

{TkM`ei0}N−1
k,`=0 is a phase retrieval frame for CN , then {Wk,`}N−1

k,`=0 is a phase retrieval

fusion frame if and only if for all values 1 6 j 6 N − 1, we have that N does not

divide into jn.

Proof. We assume that {TkM`ei0}N−1
k,`=0 is a phase retrieval frame. We show that the

derived fusion frame inherits this property:

We consider some x ∈ CN . Notice that we have |〈x, TkM`ei〉|2 = |〈x,M`Tkei〉|2 =

|〈x,M`ei+k mod N〉|2. This gives us the following:

‖Pk,`x‖2
2 =

n∑
i=1

|〈x, TkM`ei〉|2 =
n∑
i=1

|〈x,M`Tkei〉|2 =
n∑
i=1

|〈x,M`ei+k〉|2. (6.2)

To show that there is an injective mapping from the fusion frame measurements,

{‖Pk,`x‖2
2}N−1
k,`=0, to the vector x modulo phase (i.e., the equivalence class {cx : |c| =

1}), we can just show that we can derive the values of the original frame measurements

{|〈x, TkM`ei0〉|2}N−1
k,`=0 from the fusion frame measurements. We can see this in the

following way:

For each ` ∈ {0, · · · , N − 1}, consider the vector:

v` = [|〈x, T0M`ei0〉|2, |〈x, T1M`ei0〉|2, · · · , |〈x, TN−1M`ei0〉|2]T

Now, consider the operator S : RN 7→ RN , where S is the circulant matrix such
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that the jth row is Tj−1([1, · · · , 1, 0, · · · , 0]), where the area of support in each row is

n, and all nonzero values are 1:

S =



1 1 1 · · · 1 1 0 0 · · · 0
0 1 1 · · · 1 1 1 0 · · · 0
... · · · · · ·
1 0 0 · · · 0 · · · 0 1 · · · 1
1 1 0 · · · 0 · · · 0 0 · · · 1
... · · · · · · ...
1 1 1 · · · 1 0 0 0 · · · 1


By lemma 6.6, it can be seen that S is not singular.

Now consider the vector Sv`. We will get the following output, based on equation

6.2 with regard to the fusion frame measurements:

[‖P0,`x‖2
2, ‖P1,`x‖2

2, · · · , ‖PN−1,`x‖2
2]T = Sv`

This tells us that for a Gabor fusion frame to allow phase retrieval is tantamount

to S being nonsingular, which we have already seen.

We shall end with a brief example of a Gabor fusion frame that allows phase

retrieval, as an application of the prior theorem:

Example 6.9. Consider the orthogonal unit vectors e1 = 1{1,2,4}/
√

3 and e2 = 1{3}

in the space C7. By the Proposition 2.2 in [18], {TkMle1}6
k,l=0 is a phase retrieval

Gabor frame for C7. Suppose that Yk,l = span {TkMlei}2
i=1 for k, l = 0, · · · , 6. Since

e1 and e2 are orthogonal, they then comprise a tight frame for the subspace W0,0. As

a result we fullfill the requirements of the Theorem 6.8 and the Gabor fusion frame

{Yk,l}6
k,l=0 allows phase retrieval.
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[20] M.Ehler, M. Gräf, F.Király, Phase Retrieval Using Random Cubatures and Fu-

sion Frames of Positive Semidefinite Matrices, Waves, Wavelets and Fractals -

Advanced Analysis, vol. 1, no. 1 (2015).

[21] P.G. Casazza, M. Fickus, D. Mixon, Y. Wang, Z. Zhou, Constructing tight fusion

frames,Appl. Comput. Harmon. Anal. 30 (2011) 175187.

[22] P. Casazza, G. Kutyniok, Finite Frames, Theory and Applications, Springer,

2013.

[23] P. Casazza, G. Kutyniok, Frames of Subspaces, Wavelets, Frames and Operator

Theory, Contemp. Math., vol. 345, Amer. Math. Soc., Providence, RI, 2004, pp.

87113 . MR MR2066823 (2005 e :42090)

[24] J. Drenth, Principles of protein x-ray crystallography, Springer, 2010.

[25] A. G. Farashahi, M. Mohammadpour, A Unified Theoretical Harmonic Analy-

sis Approach to the Cyclic Wavelet Transform (CWT) for Periodic Signals of

Prime Dimensions, Journal of Sahand Communications in Mathematical Anal-

ysis (SCMA), vol. 1, no. 2, pp. 1-17, Jan. 2014.

64



[26] A. G. Farashahi, Cyclic Wave Packet Transform on Finite Abelian Groups of

Prime Order, International Journal of Wavelets, Multiresolution and Information

Processing, vol. 12, no. 6, 2014.

[27] G. Kutyniok, A. Pezeshki, R. Calderbank, T. Liu, Robust Dimension Reduction,

Fusion Frames, and Grassmannian Packings, Appl. Comput. Harmon. Anal. 26,

no.1, 64-76. 2009.

[28] L. Rabiner and B. H. Juang, Fundamentals of speech recognition. Prentice Hall

Signal Processing Series (1993).

[29] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, Symmetric Infor-

mationally Complete Quantum Measurements. J. Math. Phys., 45, pp. 2171-2180,

2004.

[30] J. G. Proakis, J. R. Deller and J. H. L. Hansen, Discrete-Time processing of

speech signals. IEEE Press (2000).

[31] E. Pinkham, B. Tuomanen, et al. Riesz Outer Product Hilbert Space Frames:

Quantitative Bounds, Topological Properties, and Full Geometric Characteriza-

tion. J. Math. Anal. Appl., 441 (2016) 475-498.

[32] M. Mohammadpour, B. Tuomanen, R. Gol, Gabor Tight Fusion Frames: Con-

struction and Applications in Signal Retrieval Modulo Phase.

[33] R. M. Gray, Toeplitz and Circulant Matrices: A Review.

65



VITA

Brian was born in Bellingham, WA. He got his Bachelor of Science in Electrical

Engineering from the University of Washington in Seattle, and worked at companies

such as IBM and Honeywell as a Software Engineer for several years before switching

to Mathematics for Graduate School. He completed a Master of Science in Mathe-

matics at Western Washington University and completed graduate coursework at the

Free University of Berlin in Germany and the University of Jyäskylä in Finland before
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