
Distributed Frequent Hierarchical Pattern Mining for Robust and

Efficient Large-Scale Association Discovery

a Dissertation

presented to

the Faculty of the Graduate School

at the University of Missouri-Columbia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

MICHAEL PHINNEY

Dr. Chi-Ren Shyu, Dissertation Supervisor

May 2017

	

	

	

	

	

	

	

	

	

	

	

© Copyright by Michael Phinney 2017	
All Rights Reserved	

The undersigned, appointed by the Associate Vice Chancellor of the Office of Research
and Graduate Studies, have examined the dissertation entitled

DISTRIBUTED FREQUENT HIERARCHICAL PATTERN MINING FOR ROBUST
AND EFFICIENT LARGE-SCALE ASSOCIATION DISCOVERY

presented by Michael Phinney,

a candidate for the degree of doctor of philosophy,

and hereby certify that, in their opinion, it is worthy of acceptance.

Professor Chi-Ren Shyu

Professor Jeffrey Uhlmann

Professor Prasad Calyam

Professor Guilherme DeSouza

Dedication

This dissertation is dedicated to my family and many friends.

Without their love and support, this work would not have been possible.

Acknowledgments

This dissertation would not have been possible without the guidance of my

research advisor, Dr. Chi-Ren Shyu. In addition, my doctoral committee mem-

bers, Dr. Jeffrey Uhlmann, Dr. Prasad Calyam, and Dr. Guilherme DeSouza,

influenced the direction of this research. Furthermore, my collaborators were

integral at each step of the research process: Sean Lander, Matt Spencer, Dr.

Hongfei Cao, Yan Zhuang, Dr. Lincoln Sheets, Devin Petersohn, Kurt Bognar,

Ali Raza, Blake Anderson, Andi Dhroso, Dr. Jerry Parker, and Dr. Philip S. Yu.

The research in this dissertation was funded by the USDeportment of Educa-

tion Graduate Assistance in Areas of National Need (GAANN) Fellowship under

grant number P200A100053, Paul K. and Dianne Shumaker Endowment for

Biomedical Informatics, and National Science Foundation CNS-1429294.

ii

Contents

List of Figures v

1 Introduction 1

1.1 Background and General Terminology 2

1.2 Classic Algorithms . 4

1.3 Cartesian Operations . 11

1.4 Real-World Applications . 14

1.5 Distributed Computing . 16

1.6 Dissertation Organization . 20

2 Cartesian Operations and the Distributed Apriori Algorithm 21

2.1 Cartesian Scheduler . 21

2.2 Experimental Results and Validation 33

2.3 Conclusion and Future Work . 48

3 Frequent Hierarchical Pattern Mining 51

3.1 Related Work . 53

3.2 FHPTree: Frequent Hierarchical Pattern Tree 56

3.3 FHPGrowth: Frequent Hierarchical Pattern Growth 69

3.4 Performance Evaluation . 80

iii

3.5 Conclusion and Future Work . 91

4 Distributed Computing and Frequent Hierarchical Pattern Mining 94

4.1 Parallelizing FHPGrowth . 95

4.2 Performance Evaluation . 103

4.3 Conclusion and Future Work . 111

5 Conclusion 114

5.1 Distributed Cartesian Operations and The Apriori Algorithm 115

5.2 Frequent Hierarchical Pattern Mining 116

5.3 Distributed Frequent Hierarchical Pattern Mining 117

5.4 Contributions in Computer Science and Applications in Biomedicine118

5.5 Limitations and Future Work . 119

References 121

Vita 134

iv

Listing of figures

1.1 Visualization of the exponential nature of frequent itemsets. 3

1.2 A high-level visual overview of the Apriori algorithm. 5

1.3 A high-level visual overview of the FPGrowth algorithm. 10

1.4 A simple example of a cluster computing environment. 18

2.1 Visualization of the overall Cartesian Scheduler architecture. 23

2.2 Visualization of Cartesian product between data partitions. 23

2.3 Visualization of Virtual Partitions with an ideal data distribution. . 24

2.4 Visualization of VP Pairs and Sharding Factor. 29

2.5 Graph demonstrating distribution of vectors follows a power law

distribution. 34

2.6 HistogramofVirtual Partitioning achieving auniformly distributed

workload. 36

2.7 Graph of runtimes collected for small Sharding Factor analysis. . . 37

2.8 Graph of runtimes collected for large Sharding Factor analysis. . . 39

2.9 Graph of minimum viable sharding factor as the data size increases. 40

2.10Graph of horizontal scalability analysis. 41

2.11 Graphof runtime analysis ondocument similarity using small Reuters

documents on commodity cluster. 44

v

2.12Graphof runtime analysis ondocument similarity using small Reuters

documents on high performance cluster. 45

2.13Graphof runtime analysis ondocument similarity using largeReuters

documents on high performance cluster. 46

2.14Graph of runtime analysis of Apriori using Cartesian Scheduler . . 47

3.1 High-level overall architecture for the FHPTree and FHPGrowth.

The first phase is constructing the FHPTree data structure. Next,

frequent patterns are extracted using FHPGrowth. 56

3.2 An example FHPTree produced for a simple transaction database.

Each leaf node corresponds to an item. Each node also contains

two transaction sets: The set to the left of a node is the exact trans-

action set and to the right is the candidate transaction set. 59

3.3 An example FHPForest where x and y do not cooccur in any trans-

action for x ∈ {A,B,C,D} and y ∈ {E,F}. 64

3.4 A new node, E, is inserted into an FHPTree. The highlighted nodes,

edges, and transaction IDs are created or modified as part of the

operation. 66

3.5 A item, A, is deleted from an FHPTree. The highlighted nodes,

edges, and transaction sets are removed as part of the operation. . . 68

3.6 Leaf nodes correspond to an item from the transaction database.

Each non-leaf node contains two sets; to the left of the node is the

exact transaction set and to the right is the candidate transaction set. 74

3.7 AnFHPGrowth traversal to detect the frequent pattern, {A,B,C,D,G,H} 77

vi

3.8 When searching for patterns involving item c, at least one of the

highlighted nodes must be present in each state of FHPGrowth. . . 78

3.9 The runtime for Tree Construction on the following dataset and

min_support combinations: chess (1%), connect (1%), pumsb (1%),

and mushroom (0.01%) . 82

3.10The memory footprint for the FHPTree and FPTree on the follow-

ing dataset and min_support combinations: chess (1%), connect

(1%), pumsb (1%), and mushroom (0.01%). The vertical axis is a

log-scale and is measured in KB. 83

3.11 The time required to perform insert and delete operations on FH-

PTrees of various sizes. These operations are fast and scalable. . . 84

3.12The runtime comparisonbetweenFHPGrowth, FPMax, andCHARM-

MFI based onmin_support using the chess dataset. 86

3.13The runtime comparison of FHPGrowth, FPMax, andCHARM-MFI

based on the number of maximal patterns in the chess dataset. . . . 86

3.14The runtime comparisonbetweenFHPGrowth, FPMax, andCHARM-

MFI based onmin_support using the connect dataset. 87

3.15The runtime comparisonbetweenFHPGrowth, FPMax, andCHARM-

MFI based onmin_support using the pumsb dataset. 88

3.16The runtime comparisonbetweenFHPGrowth, FPMax, andCHARM-

MFI based on the number of maximal patterns detected using the

pumsb dataset. 88

3.17 The runtime comparisonbetweenFHPGrowth, FPMax, andCHARM-

MFI based onmin_support using the mushroom dataset. 89

vii

3.18The performance comparison between the search and scan opera-

tions. There was a lot of variance in the runtimes of search oper-

ation depending on the query item, so the minimum, maximum,

and median search runtimes are reported as well. 91

4.1 High-level overall architecture for the distributed FHPGrowth al-

gorithm. The process involves copying the data structure to each

compute node and performed a collection of targeted search oper-

ations. 95

4.2 Illustrating the number of results returnedwhen searching for each

item and the impact of the iterative search and delete process. By

deleting ’previously’ search items, redundant computation is re-

duced. 98

4.3 A horizontal scalability analysis demonstrating how the number of

compute nodes affects the runtime. 104

4.4 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and minimum support threshold

on the chess dataset. 105

4.5 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and number of pattern results on

the chess dataset. 106

4.6 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and minimum support threshold

on the connect dataset. 106

viii

4.7 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and number of pattern results on

the connect dataset. 107

4.8 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and minimum support threshold

on the pumsb dataset. 108

4.9 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and number of pattern results on

the pumsb dataset. 109

4.10A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and minimum support threshold

on the mushroom dataset. 110

4.11 A comparisonbetween the single server FHPGrowth anddistributed

FHPGrowth relative to runtime and number of pattern results on

the mushroom dataset. 110

4.12An analysis comparing targeted search maximum, minimum, and

median runtimes with the full scan. 111

ix

DISTRIBUTED FREQUENT HIERARCHICAL PATTERNMINING FOR

ROBUST AND EFFICIENT LARGE-SCALE ASSOCIATION DISCOVERY

Michael Phinney

Dr. Chi-Ren Shyu, Dissertation Supervisor

ABSTRACT

Frequent patternmining is a classic datamining technique, generally applicable

to a wide range of application domains, and a mature area of research. The fun-

damental challenge arises from the combinatorial nature of frequent itemsets,

scaling exponentially with respect to the number of unique items. Apriori-based

and FPTree-based algorithms have dominated the space thus far. Initial phases

of this research relied on the Apriori algorithm and utilized a distributed com-

puting environment; we proposed the Cartesian Scheduler to manage Apriori’s

candidate generation process. To address the limitation of bottom-up frequent

pattern mining algorithms such as Apriori and FPGrowth, we propose the Fre-

quent Hierarchical Pattern Tree (FHPTree): a tree structure and new frequent

pattern mining paradigm. The classic problem is redefined as frequent hier-

archical pattern mining where the goal is to detect frequent maximal pattern

covers. Under the proposed paradigm, compressed representations of maximal

patterns are mined using a top-down FHPTree traversal, FHPGrowth, which

detects large patterns before their subsets, thus yielding significant reductions

in computation time. The FHPTree memory footprint is small; the number of

nodes in the structure scales linearly with respect to the number of unique items.

Additionally, the FHPTree serves as a persistent, dynamic data structure to in-

dex frequent patterns and enable efficient searches. When the search space is

x

exponential, efficient targeted mining capabilities are paramount; this is one of

the key contributions of the FHPTree. This dissertation will demonstrate the

performance of FHPGrowth, achieving a 300x speed up over state-of-the-art

maximal pattern mining algorithms and approximately a 2400x speedup when

utilizing FHPGrowth in a distributed computing environment. In addition, we

allude to future research opportunities, and suggest various modifications to

further optimize the FHPTree and FHPGrowth. Moreover, the methods we of-

fer will have an impact on other data mining research areas including contrast

set mining as well as spatial and temporal mining.

xi

Chapter 1

Introduction

In this dissertation, we focus on a few classic problems in computer science:

frequent pattern mining (FPM), association rule mining (ARM), and Cartesian

products. Throughout the discussion, algorithms, optimizations and applica-

tion are presented. With an algorithm design perspective, our focus is algo-

rithm performance and scalability. All algorithms proposed in this dissertation

were analyzed based on horizontal and vertical scalability and designed for dis-

tributed computing environments.

The general outline of this introduction is as follows. First, we introduce the

general concepts and terminology of FPM and ARM. Next, we provide a survey

of related work in FPM. A classic FPM algorithm, Apriori, relies on an iterative

Cartesian Product at it’s core; in the Cartesian Operations section, we briefly

discuss the history of the Cartesian Product and highlight challenges faced in

distributed computing environments. Then, we discuss several real-world appli-

cations of FPM and ARM. Finally, we provided a general overview of distributed

computing and outline the remaining dissertation organization.

1

1.1 Background and General Terminology

ARM is a widely used andmature area of research in computer science and a key

area of data mining [1]. The concept originated as part of market basket analy-

sis. The high-level task was to identify cases where if a customer buys product

i1, i2, and i3; they will also buy product i4 with probability p [2, 3]. The first

step in ARM and identifying these association rules is FPM, finding all of the

items that cooccur frequently. From this collection of frequent patterns, we

may calculate conditional probabilities between itemsets, yielding association

rules. The general concept of ARM is to identify patterns that exist in arbitrary

transaction datasets. These transaction data are composed of events containing

specific items or metrics involved in each event. These events can be anything

from a doctors visit, a trip to the grocery store, taking an exam, or playing chess,

among others.

One example of an interesting use-case isworkingwith clinicians and adatabase

containing electronicmedical records [4–6]. In this scenario, transactions could

be individual patient visits. Within each transaction (hospital visit), many mea-

surementsmay be collected, such as height, weight, temperature and blood pres-

sure. In this context, these measurements would make up the items for each

transaction. Patient demographics such as race, age, and gender could also be

considered in addition to those collected metrics. Each are considered an item

within the patient transactions as well. In addition to thosemeasurements, each

transaction might contain high-level information about patient health, such as

whether they are healthy, sick, or severely sick. ARM could help identify which

2

patient attributes seem to correlate with specific outcomes [6, 7]. For example,

if the majority of men over the age of fifty are likely to have high blood pres-

sure, ARM would be able to programmatically identify that rule. In the medi-

cal domain, this sort of predictive power is invaluable; it may enable clinicians

and physicians to implement preventive medical treatments to improve patient

health before a traumatic event occurs [8].

One of themajor challenges associated with ARM arises from the complexity

of FPM. The worst-case scenario, a dataset containing k items has O(2k) sub-

sets. Suppose all of those subsets are frequent patterns. Regardless of which

algorithm is selected to tackle the problem, the results will yield O(2k) patterns,

as shown in Figure 1.1.

Figure 1.1: Visualization of the exponential nature of frequent itemsets.

Efficient algorithmsbegan to gain popularitywithAgrwawal in 1993 [9]. This

area of research has been around for several decades; the traditional terminol-

ogy used is defined as follows: Let I = i1, i2, .., im be the set of all items. D be

3

a database of transactions where each transaction T ⊂ I. A collection of items

X ⊂ I is referred to as an itemset. X is contained in T if, and only if, X ⊂ T. An

association rule is a direct implication following the form of Ra => Rc, where

Ra ⊂ I is considered the rule antecedent, Rc ⊂ I is the rule consequent, and

Ra ∩Rc = emptyset. A rule is said to have support s if and only if s% of all trans-

actions in D contain Ra ∪ Rc. Similarly, a rule has confidence c if and only if

c% of the transactions containing Ra also contain both Ra and Rc. Confidence is

the conditional probability of Rc given Ra. We say an itemset is frequent if and

only if its corresponding support is greater than or equal to some user defined

minimum support threshold, min_support. An itemset of size k is referred to

as a k − itemset. We say an association rule is confident if and only if its con-

fidence is greater than or equal a user defined minimum confidence threshold,

min_confidence [10].

1.2 Classic Algorithms

Since the introduction of ARM by Agrwawal in 1993 [9], dozens of follow-up

methods and incremental improvements have been proposed. Of the many con-

tributions made, most can be generalized as Apriori-based or growth-based [11].

The Apriori-based approaches all utilize a candidate generation step followed by

a filtering step to remove candidates that do not satisfy the minimum support

criteria [12]. The growth-based approaches do not generate candidates; they

construct a graph structure, and frequent patterns are identified by traversing

the graph [13]. Both classes of algorithms contain approaches for identifying

maximal and closed frequent patterns.

4

1.2.1 Apriori

The general workflow of the Apriori algorithm is given in Figure 1.2. The Apri-

ori algorithm begins by scanning a database of transactions. Each transaction is

then split into individual items, which are then counted. The items and frequen-

cies are piped into a pruning step, which filters the data using the user-defined

minimum support criteria, removing those relatively-infrequent items. If the

resulting set of frequent items is non-empty, the data is passed to the candi-

date generation phase. This step uses those results to generate itemsets one size

larger. This is possible because of a theorem stating: “All subsets of a frequent

itemsets, must also be frequent,” a concept referred to as downward closure.

This notion allows us to take a bottom up approach to identifying frequent item-

sets.

Figure 1.2: A high-level visual overview of the Apriori algorithm.

Once candidates have been generated, we screen the results through the sup-

port filter, which will remove all of the candidates that do not exceed the mini-

mum support threshold. This process continues until the result of the support

filter is empty at which point we will find no larger frequent itemsets. This gen-

eral computing template has been studied, and a collect of efficient algorithms

have been developed based upon it.

5

Avariety ofApriori-based approaches have beenproposed over the past decades,

all of which are similar in that they iteratively utilize a candidate generation step

followed by a filter based on the min_support threshold. The AIS algorithm it-

eratively scans a transaction database, generates candidates, and determines

the support [9]. The candidate generation step is performed by augmenting fre-

quent itemsets from the previous iteration, with items that occur in the same

transaction. The disadvantage to this approach is that a large number of candi-

dates are generated.

SETM differs from AIS in one significant way: During each pass, the list of

transactions associated with each candidate itemset are stored, and the support

for an itemset is determined by aggregating its corresponding transaction list

[14]. The overhead from the transaction lists can be substantial and may be-

come a bottleneck. The Apriori algorithm addresses several of the limitations

of AIS and SETM by using only the frequent itemsets generated in the previ-

ous pass and does not reference the database of transactions when generating

the candidates [12]. Rather, the candidate generation step is a self-join with

the previous iteration’s frequent itemsets. The database is then scanned to ac-

quire the support counts for each candidate, and those that are not frequent

are deleted. Similarly, Apriori-TID generates candidate using a self-join tech-

nique, but it provides an incremental improvement over Apriori by eliminating

database scans from the support filter after the first pass [12]. As a result, it

incurs more overhead and may perform worse than Apriori on the first few iter-

ations. This fact inspired the Apriori-Hybrid algorithm, which utilizes Apriori

for the initial passes and transitions into Apriori-TID when the estimated over-

6

head is manageable [12].

Hashing techniques have also been applied to offer substantial improvements

overApriori on the candidate generation phase. TheDHPAlgorithmcan achieve

improvements orders of magnitude over Apriori in the size of intermediate can-

didate generation [15]. CHARM focuses specifically on identifying closed fre-

quent itemsets is able to prune more intermediate itemsets, which results in an

improved runtime [16]. A-CLOSE is another Apriori-based algorithm designed

to identify closed frequent itemsets [17]. Repetitive database scans are also re-

moved in the BORDERS algorithmby keeping track of the list of transactions for

each candidate itemset [18]. All subsequent support counts and candidate gen-

eration steps are performed without revisiting the transaction database. This

frequent pattern mining approaches proposed in this research utilizes a similar

technique. MAFIA prunes large amounts of intermediate itemsets by narrowing

the search-space and focusing onmaximal itemsets [19]. Additional approaches

utilize concepts of computational optimization such as Apriori GA, which uti-

lizes a genetic algorithm to extract frequent itemsets [20]. Another probabilistic

method, Fuzzy Apriori, was proposed and implements fuzzy logic to determine

frequent patterns [21].

Another alternative approach is Reduced Apriori Algorithm with Tag, which

improves upon the efficiency of the pruning operation and reduces the burden

of candidate generation [20]. Several other algorithms were proposed that fo-

cus on closed itemsets, and are able to prune and reduce the data a faster rate,

yielding quicker runtimes [22–24]. A variety of flavors and combinations of

tuning mechanisms provide incremental improvements to the underlying logic

7

workflow of candidate generation and support filtration.

In response to these readily available cluster-computing packages, a new

suite of association rule mining algorithms are being produced. There is a push

for existing algorithms to be rethought and slightly reformulated to work on

distributed computing environments. A few years ago, shortly after Hadoop

was released, a MapReduce implementation of Apriori was released [25, 26].

This approach enabled massive transaction databases to be processed, but suf-

fered from the bottlenecks inherent of theMapReduce framework, disk IO. A few

years later, soon after the introduction of Spark, an in-memory Apriori imple-

mentation was contributed [27]. It addressed the issues of the existing MapRe-

duce implementation. Asmentioned previously, this techniquewas not optimal;

many improvements have been made to the basic Apriori algorithm. Another

approach was proposed: Yet Another Frequent Itemset Mining (YAFIM), which

takes advantage of Spark’s broadcast variables feature [28]. The filter step was

highly optimized by broadcasting the results of the previous iteration to each

node in the cluster.

1.2.2 FPGrowth

Twoof themain limitations ofApriori, candidate generation and repetitive database

scans, can be addressed using an FP-Tree [13]. To alleviate the need to rescan

the database and generate large intermediate collections of candidate itemsets,

a tree structure is constructed and traversed in order to identify frequent item-

sets. As a result, the approach requires exactly two database scans.

The first database scan counts the support for each item in the collection.

8

Then, the second database scan iterates over each transaction, and the frequent

items are sorted in support-descending order. Next, we begin populating the

FP-Tree. We first initialize a root node with the empty set as its label. Each

transaction is then inserted into the FP-Tree. Each node in the FP-Tree has two

labels: (1) the item it represents, and (2) a frequency counter. The first item i

in the transaction will be the most frequent; if a child of the root node is labeled

i, its corresponding frequency count is incremented. Otherwise a new node is

created and given label i for the item and 1 for the initial frequency count. In

addition to adding this new node to the tree, we add a link between i and the

last node created with label i. This allows us to create linked lists between nodes

with the same label and will help with calculating the item support. The process

for inserting the second item from the transaction is very similar. However, the

starting position for the graph traversal is the previous updated or inserted node.

This process is typically recursively defined, and performed for all transactions

within the database.

Once the tree has beenpopulatedwith all of the transactions from thedatabase,

we can extract the frequent itemsets. This is accomplished by constructing con-

ditional FPTrees. A conditional tree in constructed for each frequent item by

isolating on those transactions that contain that specific item. This corresponds

to a subtree of the FPTree, and after removing the item itself from this subtree,

we refer to it as a conditional FPTree. From this point, the conditional FPTrees

are traversed in a recursive manner to extract frequent patterns.

In many cases, FP-Growth is significantly faster than Apriori. In fact, the

performance of FP-Growth andApriori are largely dependent on the dataset and

9

Figure 1.3: A high-level visual overview of the FPGrowth algorithm.

the support threshold set [11]. The major strong suit of the FP-Tree is its level

of compression on the dataset. In a dense dataset, containing a small collection

of items that occur over a massive set of transactions, FP-Growth has distinct

advantages over Apriori. When the dataset is sparser, and the number of items

increases, the FP-Tree can actually have an inflating effect on the data. Both of

these approaches have been successful for a variety of reasons; however, both

have limitations. Apriori is ideal for sparse datasets where themaximal frequent

itemsets are not large. FPGrowth is great for dense datasets but suffers when the

dataset becomes sparse and the number of items becomes large.

Fewer algorithms have been proposed on top of FP-Growth when compared

to Apriori. A collection of algorithms were developed that focus on mining only

maximal closed itemsets, including FPMax and CLOSET [29–31]. The FP-Tree

10

is not an ideal structure for handling dynamic transaction data. To address this

issue a modified data structure called the CATs Tree was proposed [32]. To ap-

ply taxonomy to the itemsets, FP-tax was introduced [33]. The QFP-Growth

algorithm was created to reduce the overhead associated with the FP-Tree as

well as the number of conditional FP-Trees generated [34]. Pfp, a parallel im-

plementation of FP-Growth was also proposed to allow the work in creating and

populating the FP-Tree to be distributed on multicore environments [35].

In addition to FPM, sequential pattern mining (SPM) generalizations exist

for the Apriori and FPGrowth algorithms discussed. The fundamental differ-

ence between FPM and SPM is item order. SPM considers the order of items

important, while FPM focuses entirely on cooccurrence. The iterative discovery

of increasingly long patterns is fundamentally unchanged.

1.3 Cartesian Operations

A naive Apriori implementation relies on a Cartesian product to be performed it-

eratively on increasingly large itemsets. This Cartesian product is the bottleneck

for the Apriori algorithm; the candidate generation step scales proportionally to

O(n2). As a result, we are interested in optimizing this operation to improve

performance. By utilizing a distributed computing environment, we are able to

extend the scalability by introducing additional hardware resources.

TheCartesianproduct (CP)wasnamedafter Frenchphilosopher, ReneDescartes

(1596-1650) [36]. The CP A × B is defined as the set of all pairs (a, b) such that

a ∈ A and b ∈ B. This century-old concept has been referred to as all-against-all

or pairwise comparisons.

11

CPs, also referred to as pairwise comparisons, are expensive operations. Hav-

ing complexity O(n2), the class of algorithms that rely on a CP operations are

not generally scalable. We are still interested in extending the reach of CP op-

erations. As a result, we may turn to distributed computing. By increasing the

amount of available computing resources, we may handle more data. Distribut-

ing a CP operation introduces new types of complexity. When performing a dis-

tributed Cartesian product, it is important to note that each individual compari-

son, (a, b) where a ∈ A and b ∈ B, must take place on a single physical machine.

This notion is what creates a challenge. At some point each pair of data points

must exist on the same physical machine in our computing cluster in order for

each comparison to bemade. As a result, one of the main challenges of perform-

ing a CP in a distributed environment is facilitating the shuffle, coordinating

where and when each individual comparison is performed. Apache Spark pro-

vides a built-in mechanism for facilitating this shuffle.

ApacheSpark is an open source in-memory cluster computing framework [37].

It was introduced as an alternative or replacement to Hadoop MapReduce. A

key component of Spark is the concept of resilient distributed datasets (RDDs),

distributed, lazy execution-based, persistent data structures. Lazy execution im-

plies that the evaluation of an expression is delayed until its value is needed. In

effect, this strategy operates like the composition of functions and allows mul-

tiple expressions to be performed at once to avoid repeated evaluations. Also,

since RDDs are persistent data structures, they can be cached which promotes

efficient access to data that will be used repeatedly. Themajority of our method-

ology is composed of and described as RDD transformations and actions [38].

12

A key challenge in distributed computing is ensuring a uniform distribution

of data. Previous studies have been conducted on straggler detection, in particu-

lar, the causes of stragglers. In distributed computing, a straggler is a task or job

that takes significantly longer than its concurrently running sibling tasks or jobs.

For example, if a job is partitioned into 10 tasks to be processed in parallel, each

of those 10 tasks should execute in a similar amount of time. If one task takes

10 times longer than the others, it would be considered a straggler. One of the

main sources of stragglers is an imbalance in data that causes a single node to

be burdened with the majority of work [39]. Randomization plays an important

role in the Cartesian Scheduler and has been shown in the past to perform well

under circumstances that require uniformly binning data points [40].

One of the most common use cases for CPs is search. Query languages like

SQL, VSM, Cypher, SparQL, and XPath require pairwise combining and com-

parison operations [41–45]. It is most common to find these technologies in

use on single machine environments.

In recent years, many query languages have gained support in distributed

computing environments. For example, VSM acquired an extension into the

distributed computing space [46]. Google announced F1, a scalable distributed

relational database system [47]. In addition to database management systems,

SQL-like language interfaces are continually becoming more common in dis-

tributed systems [48,49].

Another search-based application for CPs is document similarity. Pairwise

document similarity has been useful in information filtering, information re-

trieval, indexing and document ranking [50–52]. All-against-all comparisons

13

can be performed on large collections of documents using distance metrics such

as cosine similarity and semantic similarity [53].

One of the most recent contributions to CPs in a distributed computing envi-

ronment is Apache Spark’s RDD method, Cartesian [37,38]. The key contribu-

tion of Spark’s CP is in the way they partition the problem, breaking the global

CP into a collection of small, local CPs. After performing these local CPs, the

results will be aggregated and are equivalent to the global CP. This approach

is limited in the granularity and initial distribution of the partitions which be-

comes more noticeable as the data becomes larger and imbalanced. It can also

lead to unsatisfactory performance for CP operations.

1.4 Real-World Applications

In this section, we provide a few examples of real world applications of frequent

pattern mining and association rule mining. We provide a wide range of do-

mains to express the generality of this data mining technique. In addition to

FPM,wediscuss applications of sequential patternmining aswell, sincemethod-

ologically, both concepts are quite similar. All of the examples discussed are

oversimplified and are merely used as conceptual guidelines.

1.4.1 Market Basket Analysis

Every time we checkout at the grocery store, barcodes are scanned and data is

logged somewhere. This information is stored in a transactional format, and

has a direct correlation to the consumer. When leveraged with data mining, this

can be incredibly useful for marketing. For example, if the store knows that

14

most customers that buy bread also buy milk, the products could be physically

relocated to be closer to reduce store congestion or further apart to increase the

amount of time browsing in the store. This is one simple example for the usage

of this associative product information.

1.4.2 Electronic Medical Records

With the technological shift in healthcare, options for datamining drivenperson-

alized medicine are becoming possible. Electronic medical records are tracking

vast amounts of information from patient demographics to morbidities. This

information can be used to learn common trends and associations between de-

mographics, diseases, and health outcomes. For example, If you have high blood

pressure and a genetic history of heart disease, what is the likelihood of cardiac

arrest? Having the ability to answer questions such as this could dramatically

improve health outcomes on a global level.

1.4.3 Bioinformatics and Genomics

For decades, biologists have been working to answer questions such as ”What

are commonalities between the genetic information in humans, mice, or other

animals” and ”Can this genetic correlation tell us more about the evolutionary

timeline of Earth?” Information about phylogeny can be drawn from direct asso-

ciationbetweenDNAsequence data. Stronger associations could suggest stronger

evolutionary relationships. This is a simple example of how the concept of fre-

quent patternmining canbeused to uncover information about our evolutionary

history.

15

1.4.4 Stock Market

This technology could be used to analyze statistics in stock market trends as

well. For example, correlations between companies might exist such that if the

value of one stock shifts, the value of another could be affected. In this way,

recommendations could be made to investors based on the status of 3rd party

stocks.

1.4.5 Web Log Analysis

Recommendation systems are commonplace on the Internet today. Online gi-

ants like Netflix, Amazon, and Google are constantly analyzing user access pat-

terns andmaking recommendations based on what others like you have done in

the past. In the case of Netflix, after watching amovie, the system suggests other

similar movies. How does Netflix know which movies are most similar? Movies

are annotated with genres, casts, directors, release dates, and listings for users.

This information can be used to identify correlations between movies and used

as guidelines for recommendations.

1.5 Distributed Computing

Cluster computing is the concept of utilizing multiple computer machines to-

gether to solve a computational problem. Conceptually, a cluster can be inter-

acted with as if it were a single machine with a single massive file system with

a shared disk pool; the fundamental difference is that this cluster framework al-

lows for the file system to scale horizontally by connecting more machines. In

many scenarios, the cluster will have a master node and a collection of slave

16

nodes. All of these machines are connected and can communicate over a high-

speed network. Themaster plays the role of the conductor and is responsible for

task allocations and job scheduling. Themaster also usually acts as a gateway to

the slave nodes. That is to say, all instructions are passed directly to the master

node, and it will partition the work and distribute individual tasks to the slave

nodes.

A distributed in-memory computing framework is designed to provide not

only a shared disk pool, but a distributed memory space as well. Since disk

operations are significantly slower than those that are performed in-memory,

bringing this sort of concept to large-scale cluster computing frameworks can

really a huge effect on performance and overall throughput. Systems like this

are designed to allow data to persist in memory and to be shared between vari-

ous computational workloads. The jobs need not be running simultaneously, or

even in tandem. A wide array of applications have been built on top of Apache

Spark, including Tachyon, a reliable memory centric distributed storage system.

Figure 1.4 demonstrates the high-level conceptual layout of an in-memory clus-

ter computing framework.

The figure above shows data being loaded onto the cluster, passing through

the master node to be evenly distributed across the slave nodes where it will be

either written to disk or persisted in memory. It is important to mention that

these systems are designed to be fault tolerant. Each piece of data is replicated

multiple times and stored onmultiplemachines to ensure that if a machine goes

down data will not be lost.

One of the fundamental challenges of cluster computing relates to data local-

17

Figure 1.4: A simple example of a cluster computing environment.

ity. Repetitively transferring data across the network can be expensive and, at

times, unnecessary. Data that will need to be compared with one another must

be on the same machine, so if this data can be loaded to the same machine ini-

tially, unnecessary expensive operations in the future can be prevented. This is

one of the major contributions of Spark. Unnecessary shuffling of the data com-

mon to the MapReduce programming model were reduced significantly if not

completely eliminated.

Although clusters can be interacted with in a manner similar to a single file

system, limitations can necessitate a clear distinction. In a cluster, the memory

pool is disjointed, so data on one node cannot be accessed directly from another

node. This is why in many languages designed for cluster computing are func-

tional: They are based on lambda calculus. All operations can be thought of as

a series of transformations on the data. This makes manipulating the data, al-

18

though it physically partitioned across many machines, naturally parallelizable.

Since we utilize this type of infrastructure, the methods we propose are natu-

rally horizontally scalable, fault tolerant, and memory centric. As a result, we

can develop higher throughput, and reliable computational pipelines that are

appropriate for large-scale data analytics.

With the ubiquity of distributed computing frameworks such asApacheMapRe-

duce and Apache Spark, it has become significantly more affordable for people

to ingest, transform, and visualize large amounts of data. Frameworks such as

Hadoop and Spark are completely open-source and have strong communities

providing support and advancements on a regular basis. Part of the appeal of

these frameworks is that they are open-source, but can also run on commodity

hardware. Creating a big data ecosystem is now as easy as setting up cluster of

relatively-inexpensive nodes connected over an Ethernet network.

In recent years, advancements have been made in the in-memory cluster

computing space, in particular, the Apache Spark project. These frameworks

quickly becameknown throughout the big data community after setting theworld

data sorting record at the annual Terasort competition. In 2013, a Hadoop clus-

ter of 2,100 nodes (2 2.3Ghz hexcore Xeon E5-2630, 64 GB memory, 12x3TB

disks) set the record for sorting 102.5 terabytes of data in 4,328 seconds, approx-

imately 1.42 terabytes per minute. In 2014, Apache Spark surpassed this record

with a runtime of 1,406 seconds, approximately 4.27 terabytes per minute, and

used a fraction of the hardware resources: 207 nodes (32 vCores - 2.5Ghz Intel

Xeon E5-2670 v2, 244GB memory, 8x800 GB SSD).

19

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we

will discuss one of the bottleneck for the original Apriori algorithm, the Carte-

sian Product. Our research focused on optimizing Cartesian operations in dis-

tributed computing environments. InChapter 3, wepropose anovel FPMparadigm.

We redefine the problem as frequent hierarchical pattern mining and propose

the FHPTree, a data structure designed to efficiently identify long frequent pat-

terns. In Chapter 4, we present advances to the frequent hierarchical pattern

mining paradigm including extensions to distributed computing environments.

In Chapter 5, the dissertation is concluded and the contributions are summa-

rized. Lastly, a brief overview of the Author is given.

20

Chapter 2

Cartesian Operations and the Distributed Apriori

Algorithm

The classic Apriori algorithm relies on a Cartesian product to be performed itera-

tively on increasingly large itemsets. This Cartesian product, the candidate gen-

eration step, scales proportional to O(n2) and is a major bottleneck for the Apri-

ori algorithm. Our goal was to implement the Apriori algorithm in a distributed

computing environment, and we found that the performance of Cartesian op-

erations on distributed datasets posed an issue. In this section, we discuss a

technique designed to optimize Cartesian products on distributed computing

environments. As a result, we are able to extend the scalability of Cartesian op-

erations by introducing additional hardware resources.

2.1 Cartesian Scheduler

The first step for the Cartesian Scheduler is to provide a mechanism for parti-

tioning the workload of a CP. As shown in Figure 2.1, we utilize a randomized

virtual partitioning technique to uniformly distribute the data across a collec-

tion of compute nodes. Next, we collocate all virtual partitions in preparation

for a series of partial CPs. This is accomplished by following the virtual partition

21

pairing protocol. For each virtual partition pair, we perform a CP. By following

the proposed protocol, we guarantee the aggregation of all partial CPs is equiv-

alent to a full CP on the original data. In the following theorem, we prove that

performing all of the partial CPs defined by our VP pairing protocol is equivalent

to performing the full CP between the two original RDDs.

Theorem 1 (Partial Cartesian Products). Every Cartesian product between

two RDDs can be represented as a collection of partial Cartesian products.

Proof. We show that every comparison performed in the full CP also exists in

one of the partial CPs. For x ∈ RDD1 and y ∈ RDD2, let (x, y) be an arbitrary

single comparison performed in the full CP. Suppose we partition the data; we

are guaranteed that x and y are each contained within a partition. Without loss

of generality, suppose x ∈ P1 and y ∈ P2. Then, a comparison (x, y) will occur

when performing the partial CP between P1 andP2. Thus, every comparison that

occurs in the full CP also occurs in at least one of the partial CPs. Furthermore,

since Pi ∩ Pj = ∅ for all i ! j, we are guaranteed comparison (x, y) will occur in

exactly one of the partial CPs. Therefore, the global CP can be represented as an

equivalent set of partial CPs. !

Theorem 1 solidifies the logic utilized by the Apache Spark framework. We

consider this the basic and classic distributed Cartesian product approach. Sim-

ilar to the classic approach, the concept is to split the steps involved in a full CP

into a functionally equivalent collection of partial CPs. Figure 2.2 demonstrates

this concept as a graph where the nodes are partitions of data, and edges are a

representation of partial CPs.

22

Figure 2.1: Overall architecture for the Cartesian scheduler. The first phase is randomized
virtual partitioning. The results are fed through virtual partition pairing protocol. Finally,
partial Cartesian products are performed on the virtual partition pairs, and the results are
aggregated.

Figure 2.2: Each node in the pairwise graph (left) corresponds to a partition of one of the
RDDs involved in the Cartesian product. The solid color nodes belong to one RDD, and white
nodes belong to the other. The selfwise graph (right) demonstrates the differences between
the full pairwise and selfwise comparisons. Each edge in a graph corresponds to one of the
partial CPs also refered to as VP pairs.

The Cartesian Scheduler incorporates an added layer of partitioning logic,

and addresses several limitations of the classic approach. The fundamental dis-

tinctions of this work are randomized virtual partitioning and the virtual par-

tition pairing protocol. Both of these concepts and commensurations for opti-

mizations in implementations are discussed in detail in subsequent sections.

23

2.1.1 Randomized Virtual Partitioning

Virtual partitioning is one of the key components of the Cartesian Scheduler.

A virtual partition (VP) is an added abstraction layer of partitioning logic on

a dataset. That is, in addition to the physical partitioning scheme, we intro-

duce another variable-grouping paradigm that provides control over the size

and granularity of physical partitions. We require the virtual partitions to be

uniform with respect to dimensionality distribution and size to ensure balanced

workloads. Our goal is to ensure each VP contains proportional collections of

vectors. If one VP acquires all vectors with the largest dimensionality, it will

likely incur greater runtime delays. As a result, we would not achieve a balanced

workload. Figure 2.3 demonstrates an ideal data distribution.

Figure 2.3: The main goal of virtual partitioning is achieving a uniform distribution of data.
The distribution of data on each VP should be proportional to the global data distribution.

We design a randomized virtual partitioning scheme to ensure a uniformly

24

distributed workload. By definition, randomness provides a uniform distribu-

tion. To argue that randomization is a proper solution, we focus on the proba-

bility of encountering the worst case. In this domain, the worst case would be

all data points getting allocated to the same virtual partition. The probability of

this occurring is 1
kn where k is the number of virtual partitions in the cluster and

n is the size of the RDD. As the RDD becomes large, this probability becomes

negligible. There are numerous near-worst-case scenarios that we also want to

avoid; one VP has most of the data. More generally, a single VP acquires more

data than other VPs, hence increasing the likelihood of stragglers. To account

for near-worst-case scenarios, we generalize the probability function as follows:

n∑

k= nk+β

(k − 1)n−m
kn

=
1 − (k − 1) n(k−1)

k +β+1

(2 − k)kn
(2.1)

where k is the number of nodes in the cluster, n is the size of the RDD,m is

the size of an arbitrary VP; VP0, and β represent the degree to which VP0 differs

from the average, expected size of a VP.

Suppose our data points are not uniform; that is, each data point need not

be the same size or dimensionality. Reusing the variable length vector example,

a case that we must avoid is where all of the largest vectors are added to the

same VP. In this case, the computations involving this VP will take much longer

than the average case. By randomly allocating the vectors to VPs, we are able to

reduce the potential of encountering this case; thus, the probability is 1
kx where

x is the number of abnormally large vectors in the dataset.

An additional important benefit to utilizing a randomization, no additional

communication overhead is required to facilitate the balancing of VPs. The VP

25

assignments are determined independently of one another which lends itself to

the distributed computing paradigm.

Algorithm 1 Randomized Virtual Partitioning
RDD.map(
a→ (Random.nextInt(NumVP), a)
).groupByKey

Thepseudocode for this randomizedpartitioning logic is given inAlgorithm1.

We perform a map transformation on RDD that randomly assigns each data-

point, a, to a VP. The total number of VPs is denoted by NumVP. The partition-

ing is performed by constructing a key-value pair; the key is the VP identifier,

and the value is the original datapoint, a. As a post-processing step, a group-

ByKey action is performed to aggregate and physically relocate data based on

VP assignment. Furthermore, for any two VPs, VP1 and VP2, we are guaranteed

that VP1 ∩ VP2 = ∅

The theoretical discussion in this section relies on true randomness. As a

result, performance is dependent on the random function implementation of

the underlying programming language. In our case, we rely on the performance

of Java’s standard library Random function.

2.1.2 Virtual Partition Pairing Protocol

Next, we perform an all-against-all comparison between the VPs from opposing

RDDs. This is similar to the classic approach; however, we are operating on the

VPs as opposed to the physical partitions. In addition, we collocate all VP pairs

before performing the partial Cartesian products. That is, we shuffle the data

to ensure the VPs from a VP pair are colocated on a single physical machine.

26

Thus, there will be no additional shuffling performed once the partial Cartesian

products have begun. Each comparison between VPs consists of a partial CP.

That is, we perform a full CP between the data of one VP and the data of another

VP.

The proof of Theorem 1 applies to VPs the same way as physical partitions.

We are able to focus our attention on effective scheduling where and when each

partial CP is performed. The pseudocode for this phase is in Algorithm 2. The

first step is performing a transformation on each virtual partition for both RDDs

(line 8). This transformation is accomplished by first passing each VP through

the pairVPs function. This function takes three parameters: a VP ID, the num-

ber of VPs in the opposing RDD, and a flag that denotes which RDD the VP came

from. Suppose VP1 from RDD1 is passed through this function. The output will

be a collection of tuples denoting the VP ID mapping for all VP comparisons in-

volving VP1. To clarify, the output collection is {(VP1, x) | x is a VP from RDD2}.

After all VP IDs from both RDDs are passed through pairVPs, union the results

and perform a groupByKey operation to aggregate and collocate VPs. The re-

sulting RDD is a collection of virtual partition pairs awaiting partial CPs to be

performed.

Next, we provide an example walkthrough of Algorithm 2. Suppose we have

datasets, a = [1, 2, 3, 4, 5, 6] and b = [7,8, 9, 10, 11, 12], and a and b are both virtu-

ally partitioned into 2 parts. Equation 2.2 provides the list of VPs generated.

VPa,1 = [1, 2, 3],

VPb,1 = [7,8, 9],

VPa,2 = [4, 5, 6]

VPb,2 = [10, 11, 12]
(2.2)

27

Algorithm 2 Virtual Partition Pairing
1: function pairVPs(VPID,numVP,isRDD1)
2: if isRDD1 then
3: return (0 until numVP).map(i→ (VPID, i))
4: else
5: return (0 until numVP).map(i→ (i, VPID))
6: end if
7: end function
8: RDD1.flatMap(vp→
9: pairVPs(vp.ID,numVP2,true)
10: .map(a→(a,vp.data))
11:).union(RDD2.flatMap(vp→
12: pairVPs(vp.ID,numVP1,false)
13: .map(a→(a,vp.data))
14:)).groupByKey

To clarify, the format of Equation 2.2 is VPID = DATA. Line 8 shows that for

each VP, we perform amap transformation. The first step in transforming VPa,1,

line 9, is generating VP.ID pairs, corresponding to the VP Pairs involving VPa,1.

Equation 2.3 provides the result.

VPa,1 → [(VPa,1,VPb,1), (VPa,1,VPb,2)] (2.3)

On line 10, we package the data from VPa,1 with the newly constructed VP.ID

pairs. Continuing on from Equation 2.3, Equation 2.4 provides the result.

[((VPa,1,VPb,1), [1, 2, 3]), ((VPa,1,VPb,2), [1, 2, 3])] (2.4)

By letting the VP.ID pairs form the key of a tuple, we are able to perform a

groupByKey operation to aggregate data and formVP pairs. One of the resulting

VP pairs is given in Equation 2.5.

((VPa,1,VPb,1), ([1, 2, 3], [7,8, 9])) (2.5)

28

Referring back to Figure 2.2, theVPpair defined inEquation 2.5 corresponds

to one edge in the pairwise graph.

2.1.3 Number of Virtual Partitions

Determining an appropriate number of virtual partitions is a key challenge of

the Cartesian Scheduler. The number of VPs directly determines the number of

partial CPs that will be performed. Recall that our goal is to provide amethod of

moderating the granularity and size of the physical partitions. Since the number

of physical partitions is predefined, define the number of VPs to remain propor-

tional to the number of physical partitions. Since the all-against-all comparison

between the virtual partitions from opposing RDDs, a ∗ b VP pairs (partial CPs)

will be formed, where a is the number of VPs in RDD1, and b is the number of

VPs in RDD2.

Figure 2.4: The number of VP pairs should be proportional to the number of physical parti-
tions. As a result, each partition should have the same number of VP pairs.

29

To preserve the number of partitions requested by the user,m and n are the

size ofRDD1 andRDD2, respectively, and choose a and b such that the following

equation is satisfied.

a ∗ b = k(m + n) (2.6)

Since the number of VP pairs is evenly divisible by the number of physical

partitions, each physical partition can acquire the samenumber of VPpairs. As a

result, each physical partition can house the same number of partial CPs, which

promotes a uniform workload. Figure 2.4 provides a visual representation of

this logic. This constraint, however, is not strong enough to provide us with

values for a and b; there are infinitelymany solutions to Equation 3.2. To further

constrain the formulation, consider the following constraint.

a
b
=
m
n (2.7)

The goal is to scale the partitions of opposing RDDs by the same factor. Thus,

the ratio of a and bmust be consistent withm and n.

Consider the task of choosing k, the sharding factor, which directly deter-

mines the number of partial CPs that will be performed on each physical parti-

tion. As a result, the sharding factor also determines the size of each partial CP.

In the current status of the Cartesian Scheduler, various empirically evaluated

sharding factors are considered, and a selection is made based on runtime. The

variables required to determine an appropriate sharding factor are cluster size

and input data size. By adding more nodes to a cluster, the sharding factor may

be reduced. Larger datasets require a larger sharding factor. For each of our ex-

30

periments, we provide the sharding factor used to achieve the given runtimes.

2.1.4 Partial Cartesian Operations

Once we have formed the VP pairs, we may begin performing the partial CPs.

As part of the Cartesian Scheduler API, we request a user defined function be

provided as the comparator between the elements from one VP and the oppos-

ing VP. Each partial CP will take place on one of the nodes in our cluster, i.e.,

the same node that received the corresponding VP pair during the VP Pairing

Protocol. We then perform a traditional pairwise comparison. The logic for this

is given in Algorithm 3.

Algorithm 3 Partial Cartesian Product
1: function partialCartesian(VP1,VP2,function)
2: return VP1.flatMap(a→
3: VP2.map(b→ function(a, b))
4:)
5: end function
6: VPPairRDD.flatMap(a→
7: partialCartesian(a._1,a._2)
8:)

The partial CP is performed using a VP pair as shown on lines 6−8. The CP is

perform using a nested for-loop to perform each comparison between opposing

VPs. Since we are utilizing a functional programming language, this translates

into nested maps as shown on lines 2 and 3.

2.1.5 Selfwise Cartesian Product

There is an important special case of the Cartesian product to mention, the self-

wise Cartesian product. As shown in Figure 2.2, the number of required com-

parisons is halved; the full Cartesian between an RDD of size n and itself is n2,

31

but the selfwise Cartesian product only requires n(n−1)
2 . Using the Spark API,

we must compute the full pairwise comparison, and filter out the redundant

comparisons as a post-processing step. We optimize our approach to negate

redundant computation, effectively, halving the runtime for selfwise cartesian

products. The pseudocode given in Algorithm 4 details the logic for handling

this special case. Notice the subtle differences compared to Algorithm 2.

Algorithm 4 Selfwise VP Pairing
1: function pairVPs(VPID,numVP)
2: return (0 until numVP).map(i→
3: if i < VPID then (i,VPID)
4: else (VPID,i)
5: end if
6:)
7: end function
8: RDD.flatMap(vp→
9: pairVPs(vp.ID,numVP)
10: .map(a→(a,vp.data))
11:).groupByKey

The logic defined in Algorithm 4 aligns with that of Algorithm 2. We begin by

transforming the RDD of VPs using the pairVPs function. This function takes

two parameters: a VP, the total number of VPs in the RDD. Suppose we pass

VP1 from RDD through this function. The output collection is {(x, y) | x < y,

x and y are VP IDs from RDD, and x or y is the ID for VP1 }. After all VP IDs

pass through pairVPs, we perform a groupByKey operation to aggregate and

collocate VPs. Just like the full pairwise case, the resulting RDD is a collection

of virtual partition pairs awaiting partial CPs to be performed.

32

2.2 Experimental Results and Validation

The Cartesian Scheduler is evaluated on uniformness, runtime, and scalability.

In addition, we conducted an analysis focused on characterizing the sharding

factor. The goal is to demonstrate the impact it has on the overall performance of

the Cartesian Scheduler. To determine the advantages and potential limitations,

five experiments were conducted. First, we considered a heterogeneous dataset

to validate the uniform distribution properties of virtual partitioning. Second,

we took a closer look at the sharding factor and demonstrated its impact on the

overall performance of the Cartesian Scheduler. As an extension of the second

experiment, our third evaluated a pairwise difference between two large RDDs

of integers to demonstrate the control, in terms of parallelism, gained by the

sharding factor. Next, we performed a horizontal scalability analysis, character-

izing the effect additional compute nodes have on runtime. Finally, we achieved

a pairwise vector distance benchmark by performing a document similarity anal-

ysis on Reuters-21578, Distribution 1.0 [54]. For this experiment, we collected

runtimes for both the Cartesian Scheduler and the classic Cartesian approach

packaged in the Apache Spark 1.3.0 release.

We ran the following experiments on a standalone Spark 1.3.0 computing

cluster. The cluster used in these experiments was composed of eight nodes;

each node consisting of an 8-core processor and 80 GB of RAM. One of these

nodes is the designated master of the cluster, and the remaining seven are com-

pute nodes. We will refer to this hardware as Cluster 1. Throughout the course

of these experiments, we utilize 56 physical partitions, one partition per CPU

33

core in the cluster, to promote full resource utilization.

2.2.1 Validation Criteria

Accuracy tests are conducted during each experiment that compares the Carte-

sian Scheduler and the classic algorithm implemented in Spark. We ensure that

the output from the Cartesian Scheduler is identical to that of Spark’s Cartesian

function during every test that is conducted. This validation check is performed,

and both methods consistently yield identical results. In addition to verifying

the accuracy, we validate our approach based on its ability to achieve a uniformly

distributed workload. By ensuring a relatively similar number of data points fall

into each VP, we achieve a uniform distribution. When the dataset is a collec-

tion of vectors that vary in dimensionality, the task becomes more challenging;

however, we show that a randomized paradigm addresses this case as well.

Figure 2.5: Dataset 1 follows a roughly power law distribution of vectors with respect to di-
mensionality. Few vectors have high dimensionality, and many vectors have low.

Dataset 1 is a generated heterogeneous dataset that exhibits a power law dis-

tribution with respect to dimensionality. Figure 2.5 characterizes Dataset 1 and

34

is used to empirically evaluate the overall effectiveness of our randomization

technique in achieving a uniformly distributed workload. It is important to note

that the vertical axis in Figure 2.5 uses a log scale. Dataset 1 follows a power law

distribution which poses a greater potential for imbalanced workloads in com-

parison to a random distribution. This simple fact is why a dataset with a power

law distribution is used in this experiment.

As shown in Figure 2.6, the distribution with respect to data size is relatively

uniform across all of the executors in the cluster. When analyzing Dataset 1, the

Cartesian Scheduler produces 56 tasks, which are then distributed to one of the

7 executors. Through experimentation and based on the size of the computing

cluster, we empirically determine 40 to be an effective sharding factor. We con-

duct this experiment 100 times, utilizing a sharding factor of 40, and evaluate

the uniformness with respect to data size and runtime on each executor in Clus-

ter 1. Recall that the sharding factor is the number of partial cartesian products

that will be performed within each physical partition. In this experiment, the

number of physical partitions was equivalent to the number of cores in the clus-

ter, 56 partitions, so the sharding factor defined the number of partial cartesian

products that are performed on each core.

In addition, Figure 2.6 shows runtime and data distribution are relatively

uniform across all executors. The average data size for each task is around 3.5

MB with a standard deviation of 0.37 MB. The standard deviation with respect

to runtime is 24 seconds, which is small relative to the average executor runtime,

405 seconds. Although this could be considered a small example, recall that by

the probability function defined in the Virtual Partitioning section, we see the

35

Figure 2.6: The graph on the left details the average runtime for each task; the vertical axis
corresponds to runtime. The graph on the right details the average datasize for each task; the
vertical axis corresponds to the data size. In addition, both graphs include the standard devia-
tion acquired by each experiment. Runtimes were collected using Cluster 1.

probability of imbalance decreases as the input data size increases. Since the

variance in runtime and data distribution between executors from the same jobs

is low, we consider this evidence to support our claim of achieving a uniformly

distributed workload.

2.2.2 Sharding Factor Analysis

In this experiment, we conduct a study on Dataset 2 which contains two RDDs

of 200,000 integers. The operation we used to compare each pair of integers

was subtraction. That is to say, compute the difference r1 − r2 of every r1 ∈ R1

with every r2 ∈ R2. Consider the following demonstration of this task. Let

R1 = [4, 2, 3] and R2 = [1, 2, 6]. The result of a pairwise difference R1
!

diffR2 =

[3, 2,−2, 1,0,−4, 2, 1,−3]. Thus, our experiment consisted of approximately 40

billion individual comparisons. The psuedocode for this test is provided in Al-

gorithm 5.

The goal was to demonstrate the importance of selecting an effective shard-

36

Algorithm 5 Pairwise Difference
1: function diff(a,b)
2: return a − b
3: end function
4: // data0 = RDD[Int]
5: // data1 = RDD[Int]
6: var cs = new CartesianScheduler();
7: cs.run(data0,data1,diff);

ing factor. The sharding factor offers the ability to fine tune the distribution of

the data to ensure a balanced workload. It determines the number of partial

Cartesian products (virtual partition pairs) that will get mapped to each physi-

cal partition. In addition, the sharding factor controls the degree of redundancy

introduced into the data, which helps promote full cluster utilization. We con-

sider a variety of sharding factors when analyzing Dataset 2, beginning at 30

and increasing to 200,000.The results from 30 to 400 are represented visually

in Figure 2.7.

Figure 2.7: Runtimes collected from the pairwise difference experiment with various shard-
ing factors. In this case, larger sharding factors yield faster runtimes.

37

When conducting the pairwise difference between large Integer RDDs, the

Cartesian Scheduler will redundantly copy data points to several machines to

reduce network dependencies in the computational pipeline. As shown in Fig-

ure 2.7, the degree of redundancy has a notable impact on performance. As the

sharding factor increases, redundancy increases, and hence the level of paral-

lelism can be increased. As a result, larger sharding factor can achieve shorter

runtimes. However, there can be a point where the amount of redundancy be-

comes a burden; we may eventually exceed the resource capacity by creating

too much redundancy. A sharding factor of 200,000 introduces the maximum

amount of redundancy allowedby ourCartesianScheduler implementation. The

memory footprint was approximately
√
200,000
400 = 22 times greater in compari-

son to a sharding factor of 400. Cluster 1 is still able to fit this inflated version

of Dataset 2 in memory, roughly 50MB per worker node; however, the runtimes

were equivalent.

Notice that the initial improvement from sharding factor 50 to 60 is dramatic

relative to the improvement gainedwhen incrementing the sharding factor from

140 to 150. Eventually, the percentage of computation spent on actually cpu

cycles approaches 100% for each executor. At this point, we were not able to

gain further improvements on runtime by increasing the sharding factor. As

mentioned above, increasing the sharding factor further merely increases the

storage overhead without yielding notable runtime improvements.

Next, we consider a study on how the input data size influences the sharding

factor. We utilize integer RDDs, the same format as Dataset 2. The size is varied

from 50,000 integers up to 300,000, and sharding factors ranging from 25 up

38

Figure 2.8: Runtimes collected from the pairwise difference experiment with various shard-
ing factors. Integer RDD data size is varied from 50,000 integers up to 300,000. The order of
the legend corresponds to the order of the curves.

to 600 were tested for each data size.

For each data size, the minimum viable sharding factor was determined us-

ing the runtimes displayed in Figure 2.8. For each curve, the minimum viable

sharding factor is the smallest sharding factor at which increasing the sharding

factor by 50 yields performance gains less than 10 percent. Further performance

improvements can be made by increasing the sharding factor. This measure

focuses on establishing a lower bound for the sharding factor. If the sharding

factor is lowered, the method will suffer significant performance losses.

The key take-away is that the minimum viable sharding factor appears to

scale quadratically as the input data size increases. Since the Cartesian product

39

Figure 2.9: Minimum viable sharding factor as the data size increases.

is a quadratic operation, it is natural that the sharding factor scales proportion-

ally. This is a demonstration of the Cartesian Scheduler’s ability to control the

granularity of the distributed CP. By identifying the ideal size for a partial CP,

the Cartesian Scheduler can efficiently perform CPs in a distributed setting.

A recommendation for repetitive Cartesian analyses, as shown in this experi-

ment, is to invest time in determining an effective sharding factor. Furthermore,

this experiment introduces a new challenge, developing an automated method

for determining the optimal sharding factor. We highlighted in this experiment

that the size of the dataset has a dramatic impact on the minimum viable shard-

ing factor. A variety of key factors must also be considered when identifying an

appropriate sharding factor such as the size of the cluster, size of each data point,

memory and storage limitations.

40

2.2.3 Horizontal Scalability

In this experiment, we vary the number of compute nodes in our Spark cluster

from 3 nodes up to 18 nodes. The 18 nodes used to conduct this experiment

have the same resources were nodes in Cluster 1. Similar to the last experiment,

we considered Dataset 2 for the benchmark. It is important to mention that for

each experiment with k nodes, we consider various sharding factors and report

the fastest runtime achieved.

Figure 2.10: Runtimes collected from the pairwise difference experiment on 200,000 inte-
gers. The number of compute nodes in the cluster is varied from 3 to 18 nodes.

From Figure 2.10, we see that the Cartesian Scheduler is horizontally scal-

able. When the number of nodes is doubled, the Cartesian Scheduler achieves a

2x speed boost, halving the overall runtime. This is shown when increasing the

number of nodes from 3 to 5; the runtime was improved from 174 seconds to 84

seconds. Since a Spark cluster has a master node which does not perform com-

putation, a three node cluster has two compute nodes, and a five node cluster

41

has four. With twice the compute resources, the runtime is halved. The runtime

trend is characterized by runtime(ck) = runtime(k)
c , where k is the initial number

of nodes, and c is the multiple by which to increase the number of nodes in the

cluster. This formula will eventually become inaccurate as the number of nodes

in the cluster approaches the number of data points involved in the CP.

2.2.4 Pairwise Vector Distance Analysis

A common application for pairwise vector distances is information search and

retrieval. When searching for the highest similarity between objects in a collec-

tion, the obvious solution is to compare each object with every other object and

to pick out the two objects with the highest similarity. This approach is com-

monly referred to as brute force but is nothing more than a modified Cartesian

product. In particular, it is a Cartesian product where the comparison operation

performed between each data point is a distance function.

In this experiment we compare the classic Cartesianmethod as implemented

inApache Spark against theCartesianScheduler and considerDataset 3, Reuters-

21578, a corpus of approximately 19,000 articles. To conduct a full document

similarity analysis, we generate feature vectors for each article in Dataset 3 and

compute the distance between each pair of articles. The documents that have

a relatively small distance are likely to be similar. The features are represented

as binary vectors that associate terms with documents. That is, if some term t

occurs in document d, the bit stored in column t of document d’s feature vec-

tor would be set to 1. Before constructing these feature vectors, we determine

which terms to consider relevant. Stop words are ignored, and we discard terms

42

that occur in at least five but nomore than 5,000 articles; those discarded terms

may not providemuch information to support a correlation between documents.

Each articles had 8,873 features.

Algorithm 6 Pairwise Vector distance
1: function vectorDistance(a,b)
2: return (0 until a.size)
3: .map(i→ (a[i] − b[i]) ∗ (a[i] − b[i]))
4: .reduce(_+_)
5: end function
6: // data = RDD[Vector[Int]]
7: var cs = new CartesianScheduler();
8: cs.run(data,vectorDistance);

To conduct scalability tests, we use random sampling to produce varying

sizes of datasets. We considered eight data sizes beginning with 2,500 arti-

cles and incrementing by 2,500 each time until we reach 19,000. Algorithm 6

presents the pseudocode for this experiment. Notice on lines 3 and 4, we define

a metric that is equivalent to the square of the Euclidean distance. Since the

goal of this document similarity analysis was to rank documents, we remove the

square root; it is a monotonic function.

We do not focus time on interpreting the results of this analysis relative to

research domains such as text mining or journalism. Our interests are purely

computational, focusing on scalability and reducing runtime. Before sharing

the results of this analysis, we reflect on results reported in previous work [55].

Figure 2.11 provides a visual aid for the previous results.

In our previous work [55], we compare the classic Cartesian approach as

implemented in Apache Spark 1.3.0 against the Cartesian Scheduler on a com-

modity Spark cluster consisting of nine nodes. Each node was equipped with 32

GB RAM and a 3.2 GHz Intel Xeon quad-core processor. We will refer to this

43

Figure 2.11: Runtimes collected from the document similarity experiments on Dataset 3
using Cluster 2.

hardware as Cluster 2. The Cartesian Scheduler consistently outperformed the

native Cartesian method. In the example containing 5,000 articles, we outper-

form the native method by a factor of 6, and in the examples containing more

than 12,500 documents, the native method failed to complete. Figure 2.12 char-

acterizes the overall runtime differences between the Cartesian Scheduler and

the classic approach when conducting these experiments. For the large datasets,

the native method would crash after more than 20 hours of computation.

The results are consistent throughout this experiment. The Cartesian Sched-

uler performs the computation approximately twice as fast compared to the clas-

sic approach. This held true regardless of the size of the data. The greatest con-

trast in runtime occurred when processing the dataset of 10,000 articles; the

Cartesian Scheduler required 1560 seconds (26 min) compared to the classic

approach’s 3575 seconds (60 min).

44

Figure 2.12: Runtimes collected from the document similarity experiments on Dataset 3
using Cluster 1.

We extend this experiment further and utilize a more powerful computing

cluster running Apache Spark. Also, in addition to Dataset 3, we consider a

larger Reuters dataset, Dataset 4. Themaximumnumber of documents remains

consistent at 19,000. However, we relax the constraint on stopwords to increase

the number of terms represented in each feature vector. The resulting feature

vectors have a dimensionality of 16,244, roughly twice that of Dataset 3. This

increases the complexity of each distance metric calculation that must be per-

formed at each step of the Cartesian product. In addition to Spark version 1.3.0,

we compare to Spark 1.6.0 on Cluster 1. The underlying cartesian implementa-

tion is consistent between version 1.3.0 and 1.6.0, so the performance is consis-

tent between versions. We clarify the version to increase transparency in our

experiments.

As shown in Figure 2.13, the difference in performance is consistent with that

45

Figure 2.13: Runtimes collected from the document similarity experiments on Dataset 4
using Cluster 1. The Cartesian Scheduler consistently outperforms the built-in method. Also,
the difference in performance of Spark 1.3.0 and 1.6.0 is negligible.

of the previous experiment shown in Figure 2.12. In addition, the performance

difference between Spark 1.3.0 and 1.6.0 is negligible. This should not come as

a surprise since the underlying Cartesian product execution plan remains un-

changed. The amount of work required for each comparison is greater, which

helps to highlight another advantage of the Cartesian Scheduler. The Carte-

sian Scheduler integrates the user-defined comparison operation into the Vir-

tual Partition Pairing Protocol. That is, the comparison operation is performed

immediately, whereas Spark’s implementation of the classic approach simply

accumulates all object pairs into a collection of tuples. The user-defined opera-

tion is then performed as a post-processing step on the collection of tuples. The

Cartesian Scheduler consistently achieved at least a 2x speedup over the classic

approach.

46

2.2.5 Potential Limitations

There are a few limitations of the Cartesian Scheduler. One is fundamental to

all Cartesian operations, the underlying complexity. Since a Cartesian Product

has complexity O(n2), any algorithm that uses it will be limited in scalability.

Another potential limitation is imbalanced data. In this dissertation, we dis-

cussed the probability of this occurring approaches 0 as the data size increases;

however, it is not impossible. There is also notable overhead associated with

the Cartesian Scheduler. There is no redundant computation performed by the

Cartesian Scheduler, we merely duplicate data across many machines. This is

the tradeoff we accept to ensure that all computations, individual comparisons

within the Cartesian product, are independent of one another, and that all of the

network communication is performed as a preprocessing step to the sequence

of partial Cartesian products. The magnitude of this overhead is influenced by

the number of nodes in the cluster, virtual partitions, and sharding factor.

Figure 2.14: Runtimes collected from the frequent pattern mining experiments on using
Cluster 2.

47

FPGrowth consistently outperforms both Apriori implementations on Acci-

dent_20 and chess. This is expected since both of those datasets are relatively

dense datasets. However, the retail datasets is much more sparse, and we see

the proposed Apriori Cartesian Scheduler approach is competetive with the FP-

Growth approach.

There are a few limitations of the Cartesian Scheduler. One is fundamental

to all Cartesian operations, the underlying complexity. Since a Cartesian Prod-

uct has complexityO(n2), any algorithm that uses it will be limited in scalability.

Another potential limitation is imbalanced data. In this dissertation, we dis-

cussed the probability of this occurring approaches 0 as the data size increases,

however, it is not impossible. There is also notable overhead associated with

the Cartesian Scheduler. It is important to clarify, there is no redundant compu-

tation performed by the Cartesian Scheduler, we merely duplicate data across

many machines. This is the tradeoff we accept to ensure that all computations,

individual comparisons within the Cartesian product, are independent of one

another, and that all of the network communication is performed as a prepro-

cessing step to the sequence of partial Cartesian products. Themagnitude of this

overhead is influenced by the number of nodes in the cluster, virtual partitions,

and sharding factor.

2.3 Conclusion and Future Work

High-level goals for any distributed computing pipeline are to ensure a uniform

distribution of the data andworkload,maximize CPUutilization, and tomitigate

continual network communication. These goals are also the limitations of the

48

classic Cartesian product (CP) approach. The philosophy we adopted is to pre-

compute and execute all shuffle operations simultaneously as a preprocessing

step, eliminating continual network communication and leaving the remaining

time for uninterrupted computation. As a result, we must introduce redundant

copies of data to ensure that every worker node has its own copy of the neces-

sary data. However, data redundancy poses the challenge of preventing redun-

dant comparisons in the CP. In this work, we propose virtual partitioning and

the virtual partition pairing protocol to manage the degree of redundancy while

guaranteeing no redundant computation is performed.

Virtual Partitioning is a variable grouping paradigm we proposed that gives

control over the granularity of the partial CPs. A Virtual Partition (VP) functions

as an irreducible building block for partial CPs, so redundant copies of VPs are

created and copied to relevant compute nodes. Since partial CPs are performed

between VPs, the size and number of partial CPs ismanaged by the VP size. This

is valuable since the size of each partial CP affects how well the hardware can ex-

ecute the instructions. The Virtual Partition Pairing Protocol preprocesses and

schedules all of the partial CPs necessary to be equivalent to a global Cartesian

product. This protocol facilitates the introduction of redundancy while guaran-

teeing no comparisons are redundant. By construction, the protocol prevents

redundant comparisons, so additional filtering or duplicate checks are not nec-

essary.

We have shown that the Cartesian Scheduler addresses several limitations

and outperforms the classic approach by notable margins. Apache Spark does

not provide a mechanism for introducing data redundancy without taking on

49

redundant computation. Preprocessing the shuffle operations and introducing

data redundancy allowed us to increase throughput and reduce runtimes. In

our experiments, we were able to achieve up to a 40x speedup when compared

to Spark on a small commodity cluster. When the comparison is made on a

high performance cluster, the advantage becomes less drastic, achieving a 2x

speedup over the classic approach. In addition, the uniform distribution analy-

sis demonstrated how well the Cartesian Scheduler handles heterogeneous data

by achieving a balanced workload.

In addition to Cartesian operations, similar workloads that require massive

amounts of data shuffling may benefit from this concept. Our experiments sug-

gest preprocessing shuffle operations and introducing data redundancy can in-

crease throughput and reduce runtimes. We intend to share this work with the

community by making our open source software distribution available on Git-

Lab [56]. In addition to our library’s source code, we will distribute the code

used to conduct all of the experiments detailed in this dissertation.

Future work includes automating the sharding factor selection process. This

variable plays a great role in determining the overall runtime performance for

the Cartesian Scheduler. Automating this selection would release a burden off

of users. It would also be interesting to see the performance on a larger cluster,

containing tens or hundreds of nodes. We are also seeking a generalized Carte-

sian Scheduler that supports n-fold Cartesian products, performing a Cartesian

product between n collections of data. In addition, we will attempt to submit

the Cartesian Scheduler for integration into a future release of Apache Spark.

50

Chapter 3

Frequent Hierarchical Pattern Mining

In this chapter, we propose a data structure, Frequent Hierarchical Pattern Tree

(FHPTree), that does not suffer from the large candidate generation issue asso-

ciated with the Apriori algorithm, and the number of nodes in the tree structure

is linearly dependent on the number of unique items in the database. In addi-

tion, this data structure enables us to discover frequent patterns in a top-down

fashion, locatingmaximal itemsets before any of their subsets. In contrast to ex-

isting top-downmethods, the FHPTree allows a collection of items to be pruned

simultaneously.

The FHPTree also serves as a persistent data structure that can be used as

an index for frequent pattern databases, making targeted pattern mining and

reoccurring data mining studies more efficient. Frequent pattern mining work-

flows tend to be an iterative discovery process. That is to say, the minimum

support threshold and additional filtering criteria may be varied iteratively, and

the pattern mining algorithm would execute repeatedly. It is advantageous to

reuse the data structure. Search is also a critical component of the FHPTree.

The proposed data structure offers an inclusive search features that, in general,

eludes bottom-up approaches. This search technique discovers only those pat-

51

terns that contain a set of items of interest. TheFHPTree supports insert,update,

anddelete operations, enabling the underlying transaction database to evolve. It

may not be necessary to rebuild the entire data structure if a new item is intro-

duced into the dataset or when new transactions are created. Apriori and the

FPTree are not ideal for dynamic data and struggle with the inclusive search fea-

ture [32]. Thus, they may not be well suited to serve as or utilize persistent data

structures.

A brief overview of the traditional terminology: Let I = i1, i2, .., im be the set

of all items. D is a database of transactions where each transaction T ⊂ I. Ti is

the set of all transactions containing i. A collection of items X ⊂ I is referred

to as an itemset. X is contained in T if, and only if, X ⊂ T. An itemset is said

to have support s if and only if s% of all transactions in D contain Ra ∪ Rc. We

say an itemset is frequent if and only if its corresponding support is greater than

or equal to some user defined minimum support threshold, min_support. An

itemset of size k is referred to as a k − itemset [57].

Enumerating all frequent pattern is NP-hard [58]. The worst-case scenario,

a dataset containing k items has O(2k) subsets. Suppose all of them cooccur

frequent. Regardless of which algorithm is selected for the problem, the result-

ing set will consist of O(2k) patterns. We propose a top-down frequent pattern

mining paradigm that focuses on detecting maximal frequent patterns without

enumerating non-maximal patterns. As shown in Figure 3.1, the proposed algo-

rithm consists of two parts: FHPTree and FHPGrowth. In the FHPTree section,

we define the tree structure utilized throughout this research. In Related Work,

an overview of existing solutions and prior art is discussed. In FHPGrowth, we

52

discuss how to extract frequent patterns from the FHPTree. In Performance

Evaluation, we detail the experiments used to benchmark the FHPTree and FH-

PGrowth. We conclude the chapter and allude to future research opportunities

in Conclusion and Future Work.

3.1 RelatedWork

3.1.1 Apriori-based approaches

Many optimizations and extensions have been proposed for the Apriori algo-

rithm. The GSP algorithm is a generalization of Apriori to sequential pattern

mining [59]. Algorithms that manage transaction sets, such as SETM, can ben-

efit by utilizing diffsets to reduce the memory footprint [60]. Hashing tech-

niques have also been applied to offer substantial improvements over Apriori

on the candidate generation phase. The DHP Algorithm can achieve improve-

ments orders of magnitude over Apriori in the size of intermediate candidate

generation [15]. The BORDERS algorithm traverses and itemset lattice to iden-

tify a bounding region for frequent itemsets [18]. A-CLOSE is an Apriori-based

algorithm designed to identify closed frequent itemsets [17]. CHARM focused

specifically on identifying closed frequent itemsets was able to prunemore inter-

mediate itemsets, which resulted in an improved runtime [16]. Max-Miner was

designed to focus on maximal itemsets [61]. A depth-first traversal on the enu-

meration tree was proposed as an advancement over Max-Miner [62]. MAFIA

prunes large amounts of intermediate itemsets bynarrowing the search-space [63].

CHARM-MFI is an post-processing technique for CHARM to identify closed and

maximal patterns [64]

53

Methods have also be proposed to handle streaming data [65]. Probabilis-

tic methods such as Fuzzy Apriori have been proposed and use fuzzy logic to

determine frequent patterns [21]. High-utility pattern mining is gaining atten-

tion and has Apriori-based solutions [66]. Frequent pattern mining on uncer-

tain datasets has a wide range of applications and has roots in the Apriori algo-

rithm [67]. Apriori implementations have been ported to distributed computing

environments [68].

3.1.2 Growth-based approaches

Similar to Apriori, many optimizations and extensions have been proposed for

FPGrowth. PrefixSpan is a generalization of FPGrowth to sequential pattern

mining [69]. The FPTree is not an ideal structure for handling dynamic trans-

action data. To address this issue a modified data structure called the CATs

Tree was proposed [32]. The QFPGrowth algorithm was created to reduce the

overhead associated with the FPTree and the number of conditional FPTrees

generated [34]. Pfp, a parallel implementation of FPGrowth allows the work

in creating and populating the FPTree to be distributed on multicore environ-

ments [35].

FPMax is an algorithm designed to focus on maximal frequent itemsets dis-

covery [30]. CLOSETandan extension, CLOSET+, areGrowth-based approaches

used to identify closed itemsets [29]. TFP offer performance improvements

and also extracts closed itemsets [70]. In recent years, high-utility pattern min-

ing has become a popular data mining technique; UP-Growth [71] and TKU al-

gorithm [72] are Growth-based solutions. Extracting frequent patterns from

54

steaming datasets has also been addressed by Growth-based approaches [73].

Another popular topic is data uncertainty [74]; tool kits have been developed

because of its wide range of applications [75,76]. Another popular topic is data

uncertainty; tool kits have been developed to tackle this problem because of its

wide range of applications [76].

3.1.3 Top-down approaches

Most of the algorithms discussed are bottom-up approaches; subset patterns

are discovered before superset patterns. As the length of a pattern increases,

bottom-up approaches begin to experience delays. The complexity to discover a

single pattern is proportional to it’s length. In many cases, such as Apriori, the

relationship is 2length.

Top-down approaches discover superset patterns before subset patterns. As

a result, the complexity to discover a single pattern is inversely proportional

to it’s length. For example, Carpenter is a top-down mining approach from an

item perspective; however, it builds the support by aggregating transactions in

a bottom-up fashion [22]. The TD-Close algorithm utilizes the reverse enumer-

ation tree to discover frequent patterns [77]. The approach begins with the set

of all items and removes one item at a time until a frequent pattern is detected.

Max-Clique is another top-down approach that focuses on maximal pattern de-

tection and employs a probabilisitic strategy to improve performance [78]. The

algorithm we propose in this chapter, FHPGrowth, is a frequent pattern mining

paradigm similar to that of TD-Close. Both approaches begin the traversal with

the set of all items, the reverse enumeration tree removes a single item at a time,

55

Figure 3.1: High-level overall architecture for the FHPTree and FHPGrowth. The first phase
is constructing the FHPTree data structure. Next, frequent patterns are extracted using FHP-
Growth.

while the FHPTree allows multiple items to be pruned simultaneously.

3.2 FHPTree: Frequent Hierarchical Pattern Tree

This section is organized as follows. First, we discuss the motivation for the

the FHPTree. Next, we provide a formal definition for the proposed data struc-

ture. Then, in Tree Construction we discuss a strategy used to build an FHPTree.

Insert, Update, and Delete provide details about their corresponding FHPTree

operations.

3.2.1 Motivation

The conceptual overview for our proposed algorithm can be described as follows.

Suppose we bifurcate I into two equal sets, I1 and I2. Consider I1 and I2 as items

such that TI1 =
⋃Ti for all i ∈ I1 and TI2 =

⋃Ti for all i ∈ I2. TI1 and TI2 can

be thought of as candidate transaction sets. We ask the question, is {I1, I2} a

frequent itemset based on this candidate transaction support? If the answer is

no, then the itemset {i, j} cannot possibly be frequent for any i ⊂ I1, j ⊂ I2, where

i and j are nonempty. This conditional statement, TI1
⋂TI2 >= min_support,

can reduce our search space by 2|I1 |+|I2 | − 2|I1 | − 2|I2 |. For example, with 10 items

56

the search space is reduced from 1024 by 210 − 25 − 25 = 960; only 64 potential

patterns remain. If the answer is yes, then {i, j} may be a frequent itemset for

any i ⊂ I1, j ⊂ I2, so we continue our search by bifurcating I1 or I2, potentially

yielding I1, I3, and I4. We then check if {I1, I3, I4} is a frequent itemset where

TIα =
⋃Ti for all i ∈ Iα. If no, then {i, j, k} cannot possibly be frequent for any

i ∈ I1, j ∈ I3, and k ∈ I4, reducing our search space by the amount defined in

Equation 3.1.

2|I1 |+|I2 |+|I3 | − (2|I1 |+|I2 | − 2|I1 | − 2|I2 |)

− (2|I1 |+|I3 | − 2|I1 | − 2|I3 |)

− (2|I2 |+|I3 | − 2|I2 | − 2|I3 |)

− 2|I1 | − 2|I2 | − 2|I3 |

(3.1)

This filtering technique can yield an exponential reduction in the search space.

Equation 3.2 characterizes the potential reduction in search space. Let A be a

set of sets of items, referred to as a hierarchical pattern, resulting from the re-

cursive bifurcation of I. P(A) is the power set of A.

z(A) = 2
∑
a∈A |a| −

∑

A′∈P(A)−A
z(A′) (3.2)

This recursive bifurcation process is also referred to as agglomerative clus-

tering [79] and is a way to define the structure of an FHPTree. Notice that each

step in the traversal attempts to increase the hierarchical pattern length by one.

The FHPTree is used to aggressively grow frequent patterns while quickly prun-

ing the search space.

57

A fundamental advantage of the FHPTree is its ability to represent multiple

items as a single node in the tree. By evaluating combinations of FHPTree nodes,

a hierarchical pattern, we effectively evaluate the support of many itemsets si-

multaneously, which enables multiple itemsets to be filtered at once. The FHP-

Growth section of Figure 3.1 demonstrates how the FHPTree can be leveraged

to find large itemsets by considering few nodes in the tree.

3.2.2 Definitions

One of the main contributions offered by the FHPTree, the structure of the tree

is not dependent on the data distribution. The number of nodes in an FHP-

Tree increases linearly relative to the number of unique items in the transaction

database. However, the size of each node may increase as the number of trans-

actions increases.

First, each node consists of u and Tu, the label of the node and a set, respec-

tively. Tu can be a set, or a set of sets. Second, the FHPTree topology is bound

by Tu = f(TC), where C is the set of children of u; child nodes determine the

set stored in their parent node. From that perspective, it is natural to build an

FHPTree from the bottom-up.

We let the frequent single items form the leaf nodes. cTu is referred to as

the item’s candidate transaction list, and xTu is the exact transaction set. This

dissertation presents several traversal schemes, and some only make use of can-

didate transactions, while others leverage both candidate and exact transaction

sets. We consider the exact transactions as an optional feature for the FHPTree.

58

Figure 3.2: An example FHPTree produced for a simple transaction database. Each leaf node
corresponds to an item. Each node also contains two transaction sets: The set to the left of a
node is the exact transaction set and to the right is the candidate transaction set.

Definition 1 (FHPTree). A Frequent Hierarchical Pattern Tree (FHPTree) is

a recursively defined tree structure having nodes of the form (u, cTu, xTu), com-

posed of a label, u, and two sets, cTu and xTu. The edge set is defined such that

for every u, cTu =
⋃

c∈C cTc and xTu =
⋂

c∈C xTc where C is the set of children

of u.

There are a few points to make using Definition 1. The set union and set

intersection operations constrain the candidate and exact transaction sets, re-

spectively. As a result, each node or collection of nodes will have a candidate

frequency and an exact frequency. If a collection of nodes is said to be candidate

frequent, that implies the candidate frequency exceeds the minimum support

threshold. If nodes are referred to as frequent, that references the exact support.

Candidate frequency is always greater than or equal to the exact frequency, so

59

if a collection of nodes is not candidate frequent, it cannot be frequent. Also,

xTu = cTu for all leaf nodes, so it is only necessary to store one copy. Further de-

tail regarding the candidate and exact transaction sets and their distinct usage

is provided in the scan portion of the FHPGrowth section. Figure 3.2 provides

an example FHPTree.

Another key point to notice is the similarity between this recursive bifurca-

tion strategy discussed previously and the FHPTree. From a top-down perspec-

tive, the FHPTree is defined such that nodes are bifurcated to form children.

This is what allows the FHPTree to aggressively grow frequent patterns while

quickly filtering the search space. Mining efficiency using an FHPTree is possi-

ble because of Theorem 2. Let U be the set of all FHPTree nodes.

Theorem 2 (FHPTree Property). If a hierarchical pattern V ⊂ U is candidate

frequent, then for any A = {ancestor(V1), ancestor(V2), ..., ancestor(Vk)}where

k = |V|, must also be candidate frequent.

Proof. Let V ⊂ U be a candidate frequent hierarchical pattern and Ai be an

ancestor of Vi. Then, cTVi ⊂ cTAi for all i ∈ [1, |V|], by the FHPTree defini-

tion. Since V is candidate frequent, | ⋂
v∈V

cTv | >= min_support_count. Thus,

| ⋂
a∈A

cTa | >= min_support_count, and therefore, A is candidate frequent. !

We rely on the contrapositive of this theorem as a filtering criteria. Corol-

lary 1 is a trivial result of Theorem 2 and is defined as follows.

Corollary 1 (Subtree Filtering). If V ⊂ U is not candidate frequent, then none

of it’s descendants are candidate frequent.

To clarify the meaning of descendant, a descendant of V ⊂ U is a set C ⊂ U

60

such that Ci is a member of the subtree rooted at Ai for every i ∈ [1, |V|]. The FP-

Growth section of Figure 3.1 demonstrates an example of a descendant-ancestor

relationship. The highlighted leaf nodes are descendants of the highlighted non-

leaf nodes. Corollary 1 allows us to prune the search space during the mining

process. If a hierarchical pattern is not candidate frequent, there is no need to

consider any of its descendants.

3.2.3 FHPTree Construction

Before we begin building data structures or mining data, we set the user de-

fined minimum support threshold, min_support. Next, we scan the database,

D, and calculate the support for each unique item, i. We discard any i where

support(i) < min_support. It is important to note that thismin_support thresh-

old will serve as a lower bound for any frequent pattern mining analysis. That is

to say, this tree can bemined for frequent patterns at any higher support thresh-

old. Let F be the set of all frequent items, and let the frequent items in F form

the leaf nodes of an FHPTree.

The pseudocode for this generalized construction procedure is provided in

Algorithm 7. In this example and throughout the remainder of this dissertation,

we focus on binary FHPTrees. To form the next layer in the tree, we arrange

all of the nodes formed by F into
⌈ |F|
2

⌉
non-overlapping pairs. Each pair (i, j) is

merged to form a node u, calculating the new candidate transactions union of

their sets, cTu = cTi ∪ cTj. This merge, also forms two edges connecting i and

u as well as j and u. In the case where there are an odd number of nodes, we

cannot form a set of non-overlapping pairs that covers all nodes at a given level

61

of the tree, so we simply move the single odd node up to the next level of the

FHPTree. This process is executed recursively until one node remains. LetU be

the set of all nodes in the FHPTree.

Algorithm 7 FHPTree Construction
1: while current layer of tree Li, |Li | > 1 do
2: for a : from 0 until |Li | by 2 do
3: Merge nodes Li(a) and Li(a + 1) and add to Li+1
4: end for
5: i + +
6: end while

There are a few points to emphasize. The construction process requires only

1 database scan. The number of nodes in the tree scales linearly as the number

of distinct frequent items in the transaction database; given n frequent items,

there are (2n − 1) nodes in the FHPTree. The min_support threshold defined

when building the tree sets an absolute minimum support threshold for mining

frequent patterns. That is to say, we are able tomining for frequent patterns hav-

ing anymin_support value greater than this absoluteminimum support defined

during construction.

Correlation-based FHPTree

What does an ineffective FHPTree look like? Let n be a node that has two chil-

dren x and y with transaction sets that differ significantly. In the worst case,

suppose cTx
⋃ cTy = T and cTx

⋂ cTy is nonempty. Then, cTn = T and the can-

didate support of n is 100%, while the support is 0%. As a result, every itemset

containing n or an ancestor of n is guaranteed to be frequent, however the like-

lihood of x and y being part of a frequent itemset is nil. This is the worst case

scenario, as all comparisons involving n are wasted computation. An FHPTree

62

should be constructed to ensure that sibling nodes, such as x and y, are similar

in terms of their transaction sets.

To accomplish this, we utilize an agglomerative or hierarchical clustering

technique [79]. Similar to the classic hierarchical clustering techniques, we

build the FHPTree from the bottom up. When constructing the next level in the

tree, our goal is to identify pair clusters such that each cluster consists of two

nodes and a node cannot belong to more than one cluster. Each cluster forms a

node in the next level of the FHPTree. To clarify, for node n with children x and

y, n was formed by the pair cluster containing x and y.

Algorithm 8 FHPTree Correlation-based Construction
1: while current layer of tree Li, |Li | > 1 do
2: for a : node in Li do
3: Find most similar b ∈ Li, a ! b
4: Merge nodes a and b
5: Remove a and b from Li
6: end for
7: i + +
8: end while

In practice we utilize the Jaccaard Index as a similarity measure between

transaction sets, as shown in Equation 3.3. Since we have both candidate and

exact transaction sets, we utilize a linear combination of both Jaccaard indices.

JaccaardDistance(Tx,Ty) = 1 − |(Tx ∩ Ty) |
|(Tx ∪ Ty) |

Similarity(x, y) = c1 ∗ J(cTx, cTy)

+ c2 ∗ J(xTx, xTy)

(3.3)

Other similarity measures were considered such as intersection cardinality, Eu-

clidean distance, Hamming distance, and Sorensen-Dice coefficient as well. Al-

63

though other measures may potentially achieve better FHPTrees, the Jaccaard

indexprovedmost useful thus far, improving scan and searchperformance. Correlation-

based construction is essential for the FHPTree to be useful in any case. Even

though we discussed binary FHPTrees in this example, other schemes can be

applied to define the connectivity of the FHPTree.

FHPForest

We have shown that connecting similar nodes is advantageous. In this section,

we extend that concept a step further. Nodes that never cooccur should not be

apart of the same tree. That is to say, non-overlapping clusters of items that

never cooccur, should not be a part of the same tree. As a result, the tree con-

struction process may yield an FHPForest, a collection of FHPTrees.

Figure 3.3: An example FHPForest where x and y do not cooccur in any transaction for x ∈
{A,B,C,D} and y ∈ {E,F}.

Figure 3.3 provides an example FHPForest. Sparse datasets and datasets

that are composed of multiple subpopulations will benefit from this technique

as unnecessary computation is reduced during the frequent pattern extraction

process.

64

3.2.4 Insert

We consider the insert operation as the addition of a new node to an FHPTree.

A new node is created when a novel item is detected in the transaction database,

or the minimum support threshold used to build the tree is reduced. Let u ∈ I

be a new item. To integrate u into the FHPTree, we define a new node, (u,Tu).

The primary goal is to preserve the existing connections while pairing uwith the

most mutually-similar node. Figure 3.4 provides a visual representation of an

insert operation performed on an FHPTree.

The pseudocode for the insert operation is provided in Algorithm 9. To en-

sure the new node u is paired with its most mutually-similar node, we perform

a top-down insertion. We traverse the tree beginning at the root, and evalu-

ate the correlation between it’s children, C. Let C′ = {c ∈ C|Distance(u, c) <

Distance(c,C − c)}. If C′ is not empty, we perform a recursive call on the c ∈ C′

with the minimum Distance. Otherwise, if C′ is empty, we pair u with the last

node visited, node. The details of the Pair function are illustrated through color

in Figure 3.4, however, are omitted from Algorithm 9 for readability. Similarly,

UpdateAncestorTransactions is not detailed, but the logic consists of a travers-

ing the path from node to the root node, updating the transaction sets along the

way.

65

Figure 3.4: A new node, E, is inserted into an FHPTree. The highlighted nodes, edges, and
transaction IDs are created or modified as part of the operation.

Algorithm 9 FHPTree Insert Operation
1: newNode is required
2: function checkPair(node)
3: C = node.children, C′ = []
4: for c ∈ C do
5: if Dist(newNode, c) < Dist(c,C − c) then
6: C′+ = c
7: end if
8: end for
9: if C′ is not empty then
10: minNode = c ∈ C′ with minimum distance
11: checkPair(minNode)
12: else
13: Pair(node)
14: UpdateAncestorTransactions(node)
15: end if
16: end function

An alternative solution for building an FHPTree may be sequentially insert-

ing items. It is important to note that this insert operation is greedy, and the in-

66

sertion order influences the quality of the tree. That is to say, under this scheme,

it is not guaranteed that the insert operation will yield the best tree. As a result,

after a series of insert operations, it may be advantageous to rebuild the tree.

3.2.5 Update

We consider the update operation as the modification of an existing node. This

operation does not modify the underlying structure of the FHPTree. Situations

that would utilize an update operation include the addition of a new transaction

containing existing items, the removal of a transaction, or changing the label of a

node. Changing the label is trivial. Updating the transactions sets requiredmore

effort and is a bottom-up approach. When adding or deleting a transaction, each

item in the transaction is a leaf node in the FHPTree; each of those nodes will be

updated by modifying the transaction set accordingly. Next all of the ancestors

of the modified nodes must be updated as well.

This can be an expensive operation depending on the size of the transaction

added or removed. The requirement of updating the ancestors introduces over-

head. In the worst case, all nodes will be modified. With this in mind, it is

important to note that multiple update operations may be performed simulta-

neously. Updates should be buffered and executed at once to reduce the impact

of ancestor overhead.

There is also a case where new transactions can boost the support of an item

such that it becomes frequent. This newly frequent item is not currently in the

FHPTree, so it needs to be inserted. We store a hash map to track infrequent

items and their corresponding transaction sets. If a new transaction causes an

67

item to surpass themin_support threshold, we call the insert operation.

3.2.6 Delete

The delete operation is the inverse of the insert operation. That is to say, the

removal of a node from an FHPTree. Figure 3.5 provides a visual representation

of the delete operation.

Figure 3.5: A item, A, is deleted from an FHPTree. The highlighted nodes, edges, and trans-
action sets are removed as part of the operation.

This is a bottom-up approach. If the node has multiple siblings, we simply

delete the node. If the node has a single sibling, we delete the node and parent.

The sibling node assumes the role of its former parent. The pseudocode for the

delete operation is given in Algorithm 10.

Algorithm 10 FHPTree Delete Operation
1: function removeNode(node)
2: if node.siblings.size == 1 then
3: grandParent = node.parent.parent
4: node.sibling.parent = grandparent
5: delete(node.parent)
6: end if
7: UpdateAncestorTransactions(node.sibling)
8: delete(node)
9: end function

Similar to the insert operation, deleting nodes also affects the transaction

sets of their surviving ancestors. As a result, we must update the transaction

68

sets for those surviving ancestors using the logic defined in Tree Construction.

3.3 FHPGrowth: Frequent Hierarchical Pattern Growth

The structure of the FHPTree scales linearly relative to the number of distinct

items, it serves as a persistent data structure, and supports insert, update, and

delete operations. FHPGrowth is a general term used to denote the process of

frequent patternmining using anFHPTree. The algorithmsdescribed in this sec-

tion, Scan and Search, are instances of FHPGrowth. We will start by providing

a base traversal scheme and incrementally apply two optimization techniques.

Finally, we walk through an example of the optimized approach.

3.3.1 Scan

Scan is the familiar task of extracting all frequent patterns. The traversal paradigm

we employ is a recursive depth-first strategy where each state of the traversal

consists of a collection of nodes A ⊂ U that are currently visited. With this in

mind, we define the traversal as a transition between states and define each state

as Ai ⊂ U, the set of nodes visited during the ith step of the traversal.

Next, we define how transitions are performed. That is to say, we define

a mapping g such that g(Ai) = Ai+1. However, each transition on a FHPTree

traversal yields three states {Ai+1,Aj,Ak}, so we write the mapping as g(Ai) =

{Ai+1,Aj,Ak}. Ai+1 is referred to as a descendant state of Ai. Furthermore, any de-

scendant state of Ai+1 is also a descendant of Ai. The mechanism to determine

these states selects a non-leaf node α ∈ Ai and analyzing its children. Equa-

69

Algorithm 11 FHPGrowth: Scan 1
1: function fhpg(A: Array of nodes in U)
2: cT = ⋂

a∈A
cTa

3: if cT.size <min_support then
4: return
5: end if
6: leaves = {a | a ∈ A & a.children.size = 0}
7: nonLeaves = A − leaves
8: if nonLeaves.size > 0 then
9: splitNode = nonLeaves.head
10: rNodes = (nonLeaves − splitNode) + leaves
11: fhpg(rNodes + splitNode.children)
12: fhpg(rNodes + splitNode.rightChild)
13: fhpg(rNodes + splitNode.leftChild)
14: else
15: save(A.itemset)
16: end if
17: end function

tion 3.4 defines the transitioning mechanism:

Ai+1 = (Ai − α) ∪ children(α)

Aj = (Ai − α) ∪ leftChild(α)

Ak = (Ai − α) ∪ rightChild(α)

(3.4)

Aj andAk are not visited immediately. They are visited during a backtracking

phase. The order in which these states are visited determines whether frequent

patterns are discovered in a top-down fashion or bottom-up. By visiting the

state containing the longer hierarchical pattern, Ai+1, first, we guarantee maxi-

mal itemsets are discovered before their subsets.

Before considering a transition to stateAi+1, we check the support ofAi, which

is defined as | ⋂
v∈V

cTv |. If it meets themin_support threshold and Ai contains at

least one non-leaf node, we continue on to state Ai+1. If all α ∈ Ai are leaf-nodes

or Ai does not meet themin_support threshold, then the descendants of Ai are

70

pruned, and the traversal begins backtracking. In all cases, the traversal begins

at the initial state, A0 = {root}, and continues until all states have been visited

or pruned.

Maximal Frequent Itemset Detection

Since all non-maximal frequent itemsets are subsets of and therefore a direct

implication of some maximal frequent itemset, non-maximal itemsets can been

viewed as redundant andunnecessary information. TheFHPGrowth strategywe

demonstrated enables us to identifymaximal itemsets before their subsets. Now,

the task is preventing the discovery of non-maximal frequent itemsets. Before

a branch of the FHPTree is traversed, we check if the branch has already been

”covered.” The followdefinitions describe the relationship between apattern and

a cover.

Definition 2 (Pattern Cover). Let V ⊂ U be a frequent pattern. C ⊂ U is a

cover of V if and only if for every v ∈ V, there exists a c ∈ C such that v is a

descendant of c.

The trivial pattern cover in an FHPTree is the root node. Since every node is a

descendant of the root, any combination of those nodeswill also be a descendant

of the root.

Definition 3 (Perfect Pattern Cover). Let V ⊂ U be a frequent pattern, and

C ⊂ U be a cover of V. C is a perfect cover if and only if for every c ∈ C, there

exists a v ∈ V such that c is an ancestor of v and for every c1, c2 ∈ C, c1 is not a

descendent of c2.

71

Aperfect pattern cover has an added constraint that the cover cannot contain

extraneous items. This reduces the number of covers; the trivial cover is only a

perfect cover for the pattern containing all items.

Definition 4 (Maximal Perfect Pattern Cover). Let V ⊂ U be a frequent pat-

tern, and C ⊂ U be a perfect cover of V. C is maximal if and only if there exists

no perfect cover of V, S ⊂ U, such that S ! C and S is a perfect cover of C.

Each pattern has a unique maximal perfect pattern cover (MPPC). In addi-

tion, eachMPPC has a unique frequent pattern. In order to prevent unnecessary

traversal steps in FHPGrowth, we must store the MPPC.

Algorithm 12 FHPGrowth: Scan 2
11: fhpg(rNodes + splitNode.children)
12: if splitNode.rightChild not covered then
13: fhpg(rNodes + splitNode.rightChild)
14: end if
15: if splitNode.leftChild not covered then
16: fhpg(rNodes + splitNode.leftChild)
17: end if
18: else
19: saveMPPC(A.itemset)
20: save(A.itemset)
21: end if

Algorithm 12 is an extension of Algorithm 11. On line 19 of Algorithm 12, in

addition to saving frequent itemsets, MPPCs for said patterns are also saved. As

shown on lines 12 and 15, the next state in the FHPGrowth traversal cannot be

covered to proceed. It is only necessary to check when traversing to individual

children; both children cannot possibly be covered or the previous state would

have been covered.

72

Frequent MPPC Mining

There is a one-to-one mapping from maximal frequent patterns to MPPC. As

a result, patterns may be considered functionally equivalent to their respective

MPPCs. We can simplymine forMPPCs and reduce the traversal depth required

during FHPGrowth. In addition to utilizing cT, the candidate transactions, at

each node, this requires utilizing the exact transactions, xT. Using xT, for any

collection of nodes in an FHPTree, we know the exact support for frequent pat-

tern it represents.

Algorithm 13 FHPGrowth: Scan 3
2: cT = ⋂

a∈A
cTa, xT =

⋂
a∈A

xTa
3: if cT.size < min_support then
4: return
5: end if
6: if xT.size >=min_support then
7: saveMPPC(A.itemset)
8: save(A.itemset)
9: return
10: end if
11: leaves = {a | a ∈ A & a.children.size = 0}

Algorithm 13 is an extension of Algorithms 11 and 12. By adding lines 5-9 in

Algorithm 13, we are able to identify maximal frequent itemsets using MPPCs.

Referring back to the FHPGrowth section of Figure 3.1, theMPPC is represented

by the two highlighted non-leaf nodes. The corresponding maximal frequent

itemset is represented by the six highlighted leaf nodes.

Example

We provide examples to demonstrate how frequent patterns can be discovered

using the FHPTree. Consider the transaction dataset defined below.

73

TID Items

1 A B C D G H

2 A B C D

3 A B C D G H

4 E F G H

Suppose we build the tree with amin_support threshold of 25%. Since there

are four transactions in total, this implies that all items are frequent, and F =

{A,B,C,D,E,F,G,H}. We build the FHPTree from the bottom up where F is the

set of leaf nodes. Each node contains a candidate transaction set and an exact

transaction set. Figure 3.6 provides a visual of the resulting FHPTree.

We will mine the FHPTree with a min_support threshold of 50%, so a pat-

tern must occur in two transactions to be frequent. Now, to identify frequent

itemsets, we begin the traversal following the pseudocode in Algorithm 13. This

procedure is detailed visually in Figure 3.7.

Figure 3.6: Leaf nodes correspond to an item from the transaction database. Each non-leaf
node contains two sets; to the left of the node is the exact transaction set and to the right is the
candidate transaction set.

The initial state of the traversal (a) is A0 = I. First, we consider the candi-

date support, which exceeds themin_support threshold, so the exact support is

74

considered. The exact transaction set for the root node is empty, which implies

that no transactions contain all items in F. Since the current state is candidate

frequent, the traversal will continue by splitting a node. Using the traversalmap-

ping, g, to determine the next state in the traversal. g(A0) = {A1,Aj,Ak}. Equa-

tion 3.5 provides more details about the next descendant states.

A1 = {ABCD,EFGH}

Aj,1 = {ABCD}

Ak,1 = {EFGH}

(3.5)

Before proceeding, we check that the next state has not been covered. No

patterns have been detected yet, so it cannot be covered. Recall that A1 is the

next state and Aj,1 and Ak,1 will be visited during backtracking. The next step is

to analyze the candidate support of A1. The candidate support of A1 is |{1, 2, 3} ∩

{1, 3, 4}| = 2, which exceeds themin_support threshold. Check the exact support

of A1, |{1, 2, 3}∩ {4}| = 0; we have not discovered a frequent pattern. A1 contains

non-leaf nodes, so the traversal continues, g(A1) = {A2,Aj,2,Ak,2}. More detail

about the next descendant states is given in Equation 3.6.

A2 = {ABCD,EF,GH}

Aj,2 = {ABCD,EF}

Ak,2 = {ABCD,GH}

(3.6)

The candidate support of A2 is |{1, 2, 3} ∩ {4} ∩ {1, 3, 4}| = 0 fails to meet the

min_support threshold, so we halt the traversal and consider state Ak,2 next.

Ak,2 hasn’t been covered yet, and the candidate support is |{1, 2, 3}∩{1, 3, 4}| =

75

2, passing the min_support threshold. The exact support of Ak,2 is |{1, 2, 3} ∩

{1, 3, 4}| = 2, meeting themin_support threshold and implying that we have dis-

covered a frequent pattern. We save the itemset {A,B,C,D,G,H} and the MPPC

{ABCD,GH}. Next, the algorithmwould continue to stateAj,2 where it would fail

themin_support checks and backtracking would begin. This process is contin-

ued until all states are visited and all maximal patterns have been detected.

76

Figure 3.7: An FHPGrowth traversal to detect the frequent pattern, {A,B,C,D,G,H}

77

3.3.2 Search

The search operation takes a query item or items as input. The result is the

collection of all frequent patterns containing the query item or items. Bottom-

up approaches struggle with this feature andmay perform it as a post processing

technique. From a top-down perspective, if the current state does not contain

our query item, then its subsets, descendant states, do not either. In contrast,

descendant states in bottom-up approaches contain new items and may not be

capable of this sort of on-the-fly inclusive filter.

Our mission is to prevent the enumeration of all frequent patterns as an in-

termediate step and provide a targetedmining feature. Fortunately, the logic for

this approach is the quite similar as that of the scan operation. The fundamental

difference involves restricting the traversal of FHPGrowth.

Figure 3.8: When searching for patterns involving item c, at least one of the highlighted
nodes must be present in each state of FHPGrowth.

Figure 3.8 highlights the ancestors of a query item, c. All states of the FHP-

Growth traversal must include at least one of the ancestors of c. This enables us

to detect all patterns containing the query items, while ignoring unrelated items.

The pseudocode for Search is provided in Algorithm 14, and is a extension

78

Algorithm 14 FHPGrowth: Search
1: query = item(s)
2: ancestors = ancestors of query
3: function fhpg(A: Array of nodes in U)
4: if A ∩ ancestors.size == 0 then
5: return
6: end if
7: cT = ⋂

a∈A
cTa, xT =

⋂
a∈A

xTa
8: if cT.size <min_support then
9: return
10: end if
11: if xT.size >=min_support then
12: saveMPPC(A.itemset)
13: save(A.itemset)
14: return
15: end if
16: leaves = {a | a ∈ A & a.children.size = 0}
17: nonLeaves = A − leaves
18: if nonLeaves.size > 0 then
19: splitNode = nonLeaves.head
20: rNodes = (nonLeaves − splitNode) + leaves
21: fhpg(rNodes + splitNode.children)
22: if splitNode.rightChild not covered then
23: fhpg(rNodes + splitNode.rightChild)
24: end if
25: if splitNode.leftChild not covered then
26: fhpg(rNodes + splitNode.leftChild)
27: end if
28: else
29: saveMPPC(A.itemset)
30: save(A.itemset)
31: end if
32: end function

79

of the logic defined in the Scan section. This pseudocode provides the complete

pseudocode for the Scan operation with the addition of two if conditions. The

if-conditions require that at each state of the traversal the nodes cover the items

provided in the query.

3.4 Performance Evaluation

We conducted a series of experiments to evaluate the performance of FHPTrees

and FHPGrowth. Evaluations are based on runtime and scalability. The Tree

Construction, Insert, Delete, Scan, and Search methods described in this chap-

ter are considered in the following experiments. For Scan, existing frequent

pattern mining algorithms, CHARM-MFI and FPMax, are considered as base-

lines for performance. The algorithms we compare to are distributed in the Java

Open-Source Pattern Mining Library (SPMF), a large suite of frequent pattern

mining and sequential pattern mining algorithms [80]. Currently, the most effi-

cientmaximal patternmining algorithms distributed in SPMF are CHARM-MFI

and FPMax. CHARM-MFI is Apriori-based and an extension of the CHARM al-

gorithm; first closed patterns are detected and a post-processing filter identifies

those that are also maximal. FPMax, an extension of FPGrowth, utilizes the FP-

Tree and directly identifies maximal frequent patterns.

Throughout the experiments, we use five datasets: chess, chainstore, con-

nect, pumsb, and a series of synthetic datasets. Chess and chainstore are clas-

sic datasets commonly used for benchmarking frequent pattern mining algo-

rithms [80]. Chess consists of 75 distinct items across 3196 transaction that

have an average size of 37 items. Chainstore contains digital customer trans-

80

actions from a retail store. There are roughly 46,000 distinct items, 1.1 million

transactions, and each transaction has an average size of seven items. Connect is

composed of spacial information collected from the connect-4 game. This data

contains 67,557 transactions and 129 distinct items. Pumsb consists of census

data for population and housing. It is composed of 49,000 transactions with

more than 2,100 distinct items. The synthetic datasets are simulated transac-

tion databases of increasing size and are used for the Insert and Delete exper-

iments. All experiments are conducted on a single-core server with 120 GB of

RAM.

3.4.1 Tree Construction

In this experiment we benchmark the runtime for building the FHPTree using

the chess, connect, pumsb, andmushroom datasets. In addition, we discuss the

factors that determine the size of FHPTrees and evaluate the memory footprint.

The goal is to illustrate the worst case performance and discuss the critical fac-

tors that determine the runtime. The most expensive operation in the tree con-

struction approach is the iterative pairwise comparison. When searching for the

most similar pair of items, all cooccurring items are evaluated in order to find

the best matches. In the worst case, all items cooccur, and n(n−1)
2 comparisons

are performed when forming each layer of the tree, where n is the number of

nodes in the current layer of the tree. As a result, our concern is the scalability

as the number of distinct items increases.

81

Figure 3.9: The runtime for Tree Construction on the following dataset andmin_support
combinations: chess (1%), connect (1%), pumsb (1%), and mushroom (0.01%)

Each recursively defined layer requires O(n2) comparisons, each layer has

roughly half the items from the previous layer, and there are log(n) layers. Equa-

tion 3.7 defines an upper bound for the number of comparisons required to build

an FHPTree from n leaf nodes.

n2 ×
log(n)∑

k=0

(
1
2

)2k
< n2 + n2

3
(3.7)

It is important to recall that the number of nodes in an FHPTree is not de-

pendent on the distribution of the data. Given k distinct items, there will always

be 2k − 1 nodes and 2k − 2 edges in the FHPTree. Also, in practice, we utilize a

BitSet data structure to represent transaction sets, so the footprintmay be small.

This notion makes it easy to estimate the size of an FHPTree and thus, easier to

estimate hardware requirements. Figure 3.10 provides a comparison between

the FHPTree and FPTree in terms of their memory footprint.

82

Figure 3.10: The memory footprint for the FHPTree and FPTree on the following dataset
andmin_support combinations: chess (1%), connect (1%), pumsb (1%), and mushroom
(0.01%). The vertical axis is a log-scale and is measured in KB.

The FHPTree has a small footprint, up to 10x smaller than the FPTree for

these select datasets. At each node, the candidate transactions may contain re-

dundant information since the exact transactions are a subset, which suggests

that the footprint could be reduced further.

The performance difference between chess and connect in Figure 3.9 sug-

gests the runtime is impacted by the distribution of data and the number of trans-

actions. Similarly there is a noticeable impact on the memory footprint. The

chess and connect datasets FHPTrees have nearly the same number of nodes;

however, the density and transaction count make connect more computation-

ally intensive. Since the FHPTree serves as a persistent data structure, this does

not have to be a reoccurring challenge. Future tree building strategies may em-

ploy a k-nearest neighbor search to reduce the complexity.

83

3.4.2 Insert and Delete

To evaluate the performance of insert and delete operations, we built FHPTrees

of various sizes andperform insert anddelete operations. The runtime is recorded

when performing 10 of the respective operations. The goal is to characterize the

impact the FHPTree size has on performance.

Figure 3.11: The time required to perform insert and delete operations on FHPTrees of vari-
ous sizes. These operations are fast and scalable.

Even on the largest tree, consisting of 200,000 nodes, the overall runtime

required for 10 insert or delete operations is less than 50 ms. The number of

traversal steps for either operation is proportional to log(n), where n is the num-

ber of leaves in the FHPTree. The four datasets discussed previously were also

considered. Each tree was built while excluding an item. Then, the excluded

item was inserted into the tree. Every item was excluded and inserted, and the

average runtime was collected. For each dataset, the average insert time was

approximately 1 ms. Results were consistent for the delete operation as well.

Runtimes this fast suggest that an alternative solution for building an FHP-

84

Tree may be sequentially inserting items. One of the main drawbacks is that the

approach may not yield an effective FHPTree; the order in which the items are

inserted can affect the topology of the tree.

3.4.3 Scan

Since this is the classic problem of frequent patternmining, we compare the per-

formance of FHPGrowth with existing approaches: FPMax and CHARM-MFI

[80]. These approaches are implemented in Java; this implementation of FHP-

Growth was written in Scala, which compiles to Java. It is important to mention

that the runtimes reported for the scan operation do not include the time re-

quired for tree construction as the tree is a persistent structure, i.e., it is only

built once and used by all scans. The first test is extracting maximal frequent

patterns from the chess dataset. Figure 3.12 characterizes the runtime relative

to the min_support threshold. At high support values, FPMax is fastest by a

narrow margin, but as the min_support threshold becomes small, the number

of maximal frequent patterns increases, and FPMax begins to slow. At 40% sup-

port, both FPMax and FHPGrowth are more than 300x faster than CHARM-

MFI. At the lowest support value of 15%, FHPGrowth is 14x faster than FPMax.

We also consider the runtime relative to the number of frequent patterns de-

tected, shown in Figure 3.13.

85

Figure 3.12: The runtime comparison between FHPGrowth, FPMax, and CHARM-MFI
based onmin_support using the chess dataset.

Figure 3.13: The runtime comparison of FHPGrowth, FPMax, and CHARM-MFI based on
the number of maximal patterns in the chess dataset.

The chess dataset used in this experiment is quite small. Its density, high de-

gree of connectivity between items, is what makes the dataset challenging. The

CHARM-MFI algorithm wasn’t able to survive below 35% support. FPMax and

FHPGrowth were comparable in performance until around 45% support where

86

FHPGrowth begins to gain a significant advantage. FHPGrowth was able to de-

tect the top onemillion patterns faster the FPMax could detect the top 500 thou-

sand.

Next, we consider the connect dataset shown in Figure 3.14. This dataset is

larger than chess in terms of transactions. Connect contains fewer but longer

maximal frequent patterns.

Figure 3.14: The runtime comparison between FHPGrowth, FPMax, and CHARM-MFI
based onmin_support using the connect dataset.

At high support values, FPMax is the fastest, but oncemin_support drops be-

low 35%, CHARM-MFI and FHPGrowth take the advantage. At the lowest sup-

port value, FHPGrowth is roughly 20% faster than CHARM-MFI and 2x faster

than FPMax.

In the next performance comparison, we utilize the pumsb dataset. This

dataset contains the most maximal patterns of any dataset we consider in this

study. Shown in Figure 3.15, as themin_support value decreases, FHPGrowth

became increasingly faster than FPMax and CHARM-MFI. At 55% support, FH-

87

PGrowth is 60x faster than FPMax. CHARM-MFI had performance woes for

min_support below 70%, and FPMax becomes significantly slower than FHP-

Growth for min_support below 60%. We also consider the runtime relative to

the number of frequent patterns detected, as shown in Figure 3.16.

Figure 3.15: The runtime comparison between FHPGrowth, FPMax, and CHARM-MFI
based onmin_support using the pumsb dataset.

Figure 3.16: The runtime comparison between FHPGrowth, FPMax, and CHARM-MFI
based on the number of maximal patterns detected using the pumsb dataset.

88

FHPGrowth detected the top one million patterns faster than FPMax could

detect the top 500 thousand. This sort of dense dataset is appropriate for the FH-

PGrowth paradigm. The last dataset we consider is mushroom, which is much

more sparse in comparison to chess, connect, and pumsb.

Figure 3.17: The runtime comparison between FHPGrowth, FPMax, and CHARM-MFI
based onmin_support using the mushroom dataset.

As shown in Figure 3.17, FPMax and CHARM-MFI outperform FHPGrowth

on this sparse dataset. The FHPTree is not able to effectively make use of the hi-

erarchical node structure, and the performance suffers. That is to say, there are

many hierarchical patterns that are candidate frequent but were not frequent.

As a theoretical evaluation of our performance and method of reflection, we

consider the number of states in a traversal and compare it with the ideal case

having the minimum number of states required to extract all maximal frequent

patterns. A direct traversal from root to pattern of size kwill requireO(k∗log(n))

steps for an FHPTree with n leaves. If there are p patterns of size less than or

equal k, then we may suggest p ∗ k ∗ log(n) steps are required. However, our

89

method does not start at the root before discovering each item. Item detection

is a chain of events occurring along the traversal. Moreover, 1-off patterns may

only be separated by a single state. At this point p ∗k ∗ log(n) may begin to seem

like a conservative estimate for the minimum number of required steps. Fur-

thermore, since a k-itemset may only require j ≤ k nodes, due to the nature of

pattern covers in the FHPTree, p ∗ k ∗ log(n) can be reduce to p ∗ j ∗ log(n). As

an example, using the connect dataset, the current FHPGrowth implementation

utilizes 378,000 states to discover 2,103 itemsets; the longest itemset consists

of 20 items. Assuming all items are of length 20 and utilizing the conservative

estimate of p ∗ k ∗ log(n), we find 294,420 states could identify all 2,103 item-

sets. The Scan experimental results suggest the FHPTree is efficient and can

effectively prune the search space; this discussion suggests there is still room

for improvement.

3.4.4 Search

We evaluate the performance of search using the chess dataset. In this experi-

ment, our goal is to find the maximal frequent itemsets containing an item of

interest. Similar to the scan experiments, we vary the min_support threshold

and evaluate the effect on runtime.

90

Figure 3.18: The performance comparison between the search and scan operations. There
was a lot of variance in the runtimes of search operation depending on the query item, so the
minimum, maximum, and median search runtimes are reported as well.

Figure 3.18 provides an overview of the search performance. The number of

maximal frequent patterns containing some item x varies significantly for differ-

ent x. The maximum search time was consistently less than the full scan oper-

ation. The median search time at 25% support was 11 seconds, a 20x reduction

in runtime compared to the full scan. These results suggest the search approach

is favorable to a post-processing technique to identify patterns containing the

query item.

3.5 Conclusion and Future Work

In this chapter, we proposed the FHPTree, a hierarchical cluster tree of items,

and FHPGrowth, a top-down mining scheme for extracting frequent patterns.

The number of nodes required for the FHPTree scales linearly as the number of

distinct items, while the FPTree is highly dependent on the distribution of the

91

data and can scale exponentially in certain scenarios. Furthermore, we achieved

a 10-fold reduction in thememory footprint over the FPTree. In addition, for re-

occurring pattern mining analyses, utilizing a persistent data structure reduces

redundant computation. Since the FHPTree supports insert, update, and delete

operations, it is not necessary to continually rebuild before each analysis or

when the transaction database is updated. FHPGrowth was competitive when

compared to existing state-of-the-art approaches, CHARM-MFI andFPMax. FH-

PGrowth outperformed both approaches on dense datasets, achieving up to a 60-

fold reduction in runtime. In addition, the search operation enables targeted

pattern mining analyses to be conducted efficiently. The median runtime for

search was a dramatic reduction in runtime compared to a full scan.

Experimental results are promising and a testament to the frequent hierar-

chical pattern mining paradigm. Furthermore, there are many optimizations to

further improve and refine the concept. We have conjectured several potential

improvements to the FHPTree structure, FHPTree construction process, FHP-

Growth Scan, and FHPGrowth Search. During the Scan discussion of the Perfor-

manceEvaluation section, weprovide evidence that the efficiency has significant

room for improvement. FHPGrowth could also benefit frommultithreading and

GPU acceleration; the transaction set operations may be a starting place for par-

allelization.

The next phase of this researchmay include defining optimal FHPTrees, con-

trast set mining, and sequential pattern mining. In this chapter, we proposed

an effective strategy for construction FHPTrees; however, it is certainly not the

optimal strategy. The question remains, what does a perfectly choreographed

92

traversal, FHPGrowth, look like? Wedefine an optimal FHPTree such thatwhen

scanned, the traversal will extract all maximal frequent patterns in the mini-

mum number of steps. Are there efficient strategies to ensure FHPTree opti-

mality? Datasets may be packaged into an optimal FHPTree and shared among

researchers. In this way, much of the mining process can be preserved, encoded

into the small footprint of an FHPTree, and therefore negated in subsequent

computations.

93

Chapter 4

Distributed Computing and Frequent Hierarchical

Pattern Mining

In the previous chapter, we demonstrated promising results for the FHPTree

and FHPGrowth when compared to the current state of the art maximal fre-

quent pattern mining algorithms. In this chapter, we will explore a few of those

opportunities including an iterative search and delete process, and a distributed

computing strategy.

We have discussed the efficiency of the FHPGrowth traversal and pointed

out that there is room for improvement. Specifically, the number of required

states in the traversal may be notably less than the number used by the current

traversal. On the other hand, we saw the power of the search operation, and

how it efficiently prunes the search space and demonstrated promising runtime

performance. Our hypothesis is that the advantages of the search operation can

be used to optimize the full scan.

Since frequent pattern mining is a computationally intensive task, paralleliz-

ing FHPGrowth has the potential to improve performance and significantly re-

duce runtimes. In this way, hardware and computing clusters can be scaled in

order to achieve desired performance. We will propose a mechanism for per-

94

Figure 4.1: High-level overall architecture for the distributed FHPGrowth algorithm. The
process involves copying the data structure to each compute node and performed a collection
of targeted search operations.

forming a full scan as a collection of targeted search operations. In addition, we

will demonstrate how this can be used to devise a distribution strategy appropri-

ate for distributed computing environments.

The remainder of this chapter focusses on how to perform a full scan opera-

tion as a collection of targeted search operations. In Parallelizing FHPGrowth,

we present the algorithm details of this process and discuss how it can be paral-

lelized and distributed for cluster computing environments. Performance Eval-

uation provides a variety of experimental results to characterize the runtime per-

formance of our proposedmethods. In Conclusion, we summarize our contribu-

tions and allude to future research opportunities.

4.1 Parallelizing FHPGrowth

The first component to consider for distributing the approach is the underlying

data structure. Whendistributing theFHPTree, wehave 2 choices: duplicate the

data structure on eachmachine, or partition the data structure anddistribute the

resulting collection of subtrees onto various machines. The traversal scheme of

95

FHPGrowth would not lend itself nicely to the latter as each state may involve

many nodes in the tree, which could create significant network overhead. Thus,

we adopt the strategy of copying or broadcasting the data structure onto each

machine. It is important to recall that the memory footprint is relatively small

for the FHPTree.

Another goal is to define amechanism for partitioning theFHPGrowth traver-

sal; it comprises the majority of the workload. We will do this by using the FHP-

Tree’s efficient inclusive search filter. By performing a search for each individual

item, we are guaranteed to find all maximal frequent patterns. Based on the re-

sults from the previous chapter, we are interested in knowingwhether searching

for each item individually could be faster than the typical full scan; it certainly

presents a distribution strategy. We would be able to search for different items

on specific CPUs or physical machines, in parallel. In the previous study, we

demonstrated how individual search operations are faster than a full scan. Thus,

if the computing environment is large enough and all search operations can be

performed simultaneously, this distribution technique will provide improves in

runtime.

There are a few limitations to this approach. First, searching for an itemwith

high support may take significantly longer than for a low support item. This

may cause the distributed workload to become imbalanced, leading to straggler

tasks. Second, duplicate patterns will be detected. For example, {A,B,C} will be

detected when searching for A, B, and C. Our proposed method will ensure a

balanced workload and eliminate discovery of duplicate results.

The remainder of this section details the search and scan operations. Since

96

we broadcast the FHPTree to each node, the insert, update, and delete opera-

tions remain unchanged from the classic approach. A given operation is per-

formed on the head node of the compute cluster, and the updated FHPTree is

broadcasted to all nodes.

4.1.1 Scan

The sequential search strategy discussed in the second paragraph of this section

is detailed in Algorithm 15. Figure 4.2 provides a visualization of the number

of patterns returned by each search; the number of results varies significantly

for different query items. Specifically, the items with higher support tend to be

involved in more maximal frequent patterns.

Algorithm 15 FHPGrowth: Distributed Scan
1: queries = []
2: for item ∈ I do
3: n = newQuery()
4: n.search = item
5: queries.append(n)
6: end for
7: FHPTree.broadcastToNodes
8: for q ∈ Distribute(queries) do
9: localFHPTree.search(q.search)
10: end for

To address these concerns, we utilize an iterative search and delete process.

The philosophy is that after searching for an item, we have all the patterns con-

taining said item, and thus, that item may be deleted after the search. In ad-

dition, a classic strategy in query optimization is to evaluate the most selective

query condition first. Similarly, we search for the least frequent item first since

they execute the fastest. Then, the item is deleted, and the next least frequent

item is searched. This process is continued until the tree is empty. This itera-

97

tive search and delete technique is discussed as a serial process. However, the

method is parallelized by precomputing the necessary delete operations asso-

ciated with each query item and distributing the corresponding instructions to

appropriate machines in the cluster.

Figure 4.2: Illustrating the number of results returned when searching for each item and
the impact of the iterative search and delete process. By deleting ’previously’ search items,
redundant computation is reduced.

Throughout this chapter, we will refer to queries as being subsequent or oc-

curring after other queries. If query A occurs ”after” query B, this simply states

that A will be deleted from the tree before searching for B. As a result, search-

ing for A and searching for B become independent operations. In general, for

any queryQ1 that occurs before another queryQ2, the items contained inQ1 will

be deleted from the FHPTree before searching for Q2. From this point forward,

we refer to this sequential search and delete strategy as the SD approach and is

detailed in Algorithm 16.

By deleting from the FHPTree, the most frequent items are contained in

progressively smaller trees. Items that previously took the longest become the

98

Algorithm 16 FHPGrowth: Distributed Scan (Search And Delete)
1: queries = []
2: sortItems = I.sortByIncreasingSupport
3: for item ∈ sortItems do
4: n = newQuery()
5: n.search = A.append(item)
6: n.previousItems = sortItems.subseq(0, item)
7: queries.append(n)
8: end for
9: FHPTree.broadcastToNodes
10: for q ∈ Distribute(queries) do
11: localFHPTree.delete(q.previousNodes)
12: localFHPTree.search(q.search)
13: end for

fastest. Figure 4.2 demonstrates the reduction in results for the highest support

items achieved by this technique. Although, this technique has a significant im-

pact onworkload distribution and reducing redundant computation, both issues

remain. Now the first 50% of items, when sorted in ascending order by support,

take on the burden of retrieving the most results, and some non-maximal pat-

terns are detected due to item deletion. Another point to notices, there is a long

tail effect; at a certain point, all patterns have been detected and subsequent

queries do not return any patterns.

We will come back to the issue of non-maximal patterns being detected and

the long tail of unnecessary queries. As for workload balancing, conceptually,

these expensive search queries need to be split into a collection of more selec-

tive queries that yield equivalent results. Those new queries could then be exe-

cuted on various CPUs or compute nodes, effectively distributing the burden of

the initially expensive query. For example, if the search for A yields too many

results, searching for {A,B}, {A,C}, and {A,D} separately may partition this bur-

den. These secondary items are also searched for in order of increasing support,

99

so themost selective query is evaluated first. We also delete the secondary items

after searching. That is, after searching for {A,B}, B is deleted, so the search for

{A,C}will not return any patterns containingB. We let each node in itemA’s cor-

responding FHPTree be a secondary query item to ensure all patterns involving

A have been detected.

At this point, we have defined a mechanism for partitioning and distribut-

ing the workload of the FHPGrowth traversal. Next, we discuss how to prevent

non-maximal patterns from being detected and how to remove the long tail of

unnecessary queries.

Removing Non-maximal Patterns

Removing subsets can be a computationally intensive process. The naive ap-

proach is to perform an all-against-all comparison between the resulting pat-

terns, and remove those that occur as a subset. That approach is expensive,

scaling as O(n2). The number of non-maximal patterns is linearly dependent

on the number of maximal patterns, and these subsets follow a predictable pat-

tern. For example, suppose {A,B,C} is detected when searching for A. Then,

{B,C} may be detected when subsequently searching for B. For each pattern P

detected when searching for A, we generate an anti-pattern P − A designed to

negate the subsets detected during subsequent searches. In the final aggrega-

tion of the pattern results, these anti-patterns will negate and eliminate their

non-maximal counterpart, and as a result, only maximal patterns will remain.

In the cases where secondary items are utilized in the query, the deletion

logic becomes slightly more complex. Suppose we search for {A,B}, and dis-

100

cover the maximal pattern {A,B,C,D}. After deleting the secondary item B and

searching for {A,C}, the pattern {A,C,D} will be detected. After all of A’s sec-

ondary items are exhausted, A is deleted from the FHPTree and B is searched.

At this time, {B,C,D} will be detected. Given that {A,B,C,D} was detected while

searching for {A,B}, we create anti-patterns {A,B,C,D} − B and {A,B,C,D} − A.

To generalize, ifK is a collection of items in the query, andP is a pattern detected,

P − ki is a subset that may be detected by subsequent searches for all ki ∈ K.

Removing the Long Tail

The long tail can be viewed in Figure 4.2 and refers to the collection of queries

that are unnecessary because they do not return any results. The results for

these queries have already been covered by previous search operations. To ac-

count for this, we only evaluate the first k% of queries. There is a chance that

the last (1 − k)% of queries contain novel pattern results. Therefore, we must

construct one final query that covers the (1 − k)% that have been discarded. In

this way, we guarantee comprehensive results while consolidating many unnec-

essary operations.

For example, let {A,B,C,D,E,F} be the query items sorted in ascending order

based on support. Suppose we evaluate the first 50% of queries. Then {A,B,C}

is searched using the SD approach. The remaining nodes {D,E,F} are searched

by performing a full scan on the FHPTree containing only D, E, and F.

This long tail effect also presents itself after we slit a query into a collection of

more selective queries. For example, letA be a query that is split into a collection

ofmore selective queries. Let {(A,B), (A,C), (A,D), (A,E), (A,F)} be the collection

101

of queries sorted in ascending order based on support. If we discard the last 50%,

we are left with {(A,B), (A,C), (A,D)}. The covering query would be a search for

item A, on the FHPTree containing {A,E,F}. If any remaining patterns contain

(A,E) or (A,F), they will be detected by this covering query. In general, for a

query Q that is split into a collection CQ, the covering query involves searching

for Q on the FHPTree containing all items in Q and the long tail removed from

QC.

4.1.2 Search

A useful technique in frequent pattern mining is having the ability to execute

targeted data mining tasks. That is to say, we would like to find all maximal fre-

quent patterns that contain a collection of items of interest. Similar to the classic

FHPGrowth approach, the distributed search utilizes the same logic as the dis-

tributed scan. However, rather than querying all items, we generate a collection

of queries that include the items of interest. Algorithm 17 demonstrates this

concept.

Algorithm 17 FHPGrowth: Distributed Search
1: function Search(A: Array of items)
2: queries = []
3: sortItems = I.sortByIncreasingSupportWith(A)
4: for item ∈ sortItems do
5: n = newQuery()
6: n.search = A.append(item)
7: n.previousItems = sortItems.subseq(0, item)
8: queries.append(n)
9: end for
10: FHPTree.broadcastToNodes
11: for q ∈ Distribute(queries) do
12: localFHPTree.delete(q.previousNodes)
13: localFHPTree.search(q.search)
14: end for
15: end function

102

In this passage, we provide an example of the collection of queries generated

for a specific search. Let {A,B,C,D,E,F} be the set of all items, and let A be the

search item. The set of querieswe generate are {(A,B), (A,C), (A,D), (A,E), (A,F)}.

After removing the long tail, the resulting set of queriesmaybe {(A,B), (A,C), (A,D),A},

where the singleton A is the covering query.

4.2 Performance Evaluation

In this section we evaluate the efficiency of the distributed FHPGrowth in terms

of the search and scan operations. We compare with the single node implemen-

tation of FHPGrowth detailed in the previous chapter. In addition, we compare

with a single node implementation that utilizes the SD approach.

Throughout the experiments, we use four datasets: chess, chainstore, con-

nect, and pumsb. Chess and chainstore are classic datasets commonly used for

benchmarking frequent pattern mining algorithms [80]. Chess consists of 75

distinct items across 3196 transactions that have an average size of 37 items.

Chainstore contains digital customer transactions from a retail store. There are

roughly 46,000 distinct items, 1.1million transactions, and each transaction has

an average size of seven items. Connect is composed of spacial information col-

lected from the connect-4 game. This data contains 67,557 transactions and 129

distinct items. Pumsb consists of census data for population and housing. It is

composed of 49,000 transactions with more than 2,100 distinct items. All ex-

periments are conducted on an Apache Spark cluster consisting of 8 nodes, each

with 8 CPU cores and 120 GB of RAM.

103

4.2.1 Horizontal Scalability

The goal of this experiment is to demonstrate the performance gains associated

with increasing computing resources. In this experiment, we consider the chess

dataset at 15% support and vary the number of compute nodes in our cluster

from 1 to 8 and report the runtime for the scan operation.

Figure 4.3: A horizontal scalability analysis demonstrating how the number of compute
nodes affects the runtime.

Shown inFigure 4.3, as thenumber of nodes increases, the runtimedecreases.

For this dataset, the workload distribution is balanced, so we see an 8x speed up

when comparing the 8 node cluster to the single node execution.

4.2.2 Scan

The next experiment is mining all maximal frequent patterns from the chess

dataset. Figure 4.4 characterizes the runtime relative to themin_support thresh-

old. The improvements offered by the SD process are significant. For minimum

104

support thresholds greater than 35%, the SD approach is the slowest, nearly 2x

slower than the original FHPGrowth. Below 35%, the improvement becomes

significant, offering a 20x speedup at min_support = 15%. The distributed ap-

proach consistently offers approximately 8x speedup over the SD approach, and

thus, is roughly 160x faster than the original FHPGrowth.

Figure 4.4: A comparison between the single server FHPGrowth and distributed FHPGrowth
relative to runtime and minimum support threshold on the chess dataset.

As the number of patterns increases, the SD approach is more efficient. Fig-

ure 4.5 demonstrates this concept.

105

Figure 4.5: A comparison between the single server FHPGrowth and distributed FHPGrowth
relative to runtime and number of pattern results on the chess dataset.

In this next performance comparison, we utilize the connect dataset. In con-

trast to the previous results, the SD approach is 2x slower than the original FH-

PGrowth. This may seem contradictory; however, it is aligned with the previous

results at high minimum support thresholds.

Figure 4.6: A comparison between the single server FHPGrowth and distributed FHPGrowth
relative to runtime and minimum support threshold on the connect dataset.

106

The number of results for this dataset is far less than that of chess; at 25%

support, there are roughly 18,000 results. As a result, the overhead of the SD

process makes it less efficient in this scenario. Figure 4.7 provides more detail

about the runtime performance relative to the number of maximal patterns.

Figure 4.7: A comparison between the single server FHPGrowth and distributed FHPGrowth
relative to runtime and number of pattern results on the connect dataset.

Next, we utilize the pumsb dataset to evaluate performance. The FHPTree is

efficient on this dataset; in our previous work, we demonstrated a 60x speedup

over the classic approaches, FPMax and Charm-MFI. As shown in Figure 4.8,

the SD approach offers a 4x speedup over the original FHPGrowth, and the dis-

tributed approach achieved a 3x speedup over the SD approach.

107

Figure 4.8: A comparison between the single server FHPGrowth and distributed FHP-
Growth relative to runtime and minimum support threshold on the pumsb dataset.

If we consider the number ofmaximal patterns detected, shown in Figure 4.9,

we see a similar trend compared to the chess dataset. When there are hundreds

of thousands of maximal patterns detected, the SD approach is faster than the

original FHPGrowth. Since the distributed approach achieves a 3x speedup,

rather than 8, we know that the workload distribution was not perfectly bal-

anced.

108

Figure 4.9: A comparison between the single server FHPGrowth and distributed FHPGrowth
relative to runtime and number of pattern results on the pumsb dataset.

The final dataset we consider is mushroom, which is much more sparse in

comparison to chess, connect, and pumsb. As a result, the original FHPTree

was not efficient. This is because many traversal paths lead to patterns that do

not meet the minimum support threshold. The SD approach is able to signifi-

cantly reduce this effect, offering a 3x speedup for min_support < 0.5%. The

distributed approach consistently offered an 8x speedup over the SD approach.

109

Figure 4.10: A comparison between the single server FHPGrowth and distributed FHP-
Growth relative to runtime and minimum support threshold on the mushroom dataset.

Figure 4.11: A comparison between the single server FHPGrowth and distributed FHP-
Growth relative to runtime and number of pattern results on the mushroom dataset.

4.2.3 Search

We evaluate the performance of the distributed search operation using the chess

dataset. In this experiment, our goal is to find the maximal frequent itemsets

containing an item of interest. Since the search time varies significantly for dif-

110

ferent items, we consider the maximum, minimum, andmedian runtimes when

characterizing the performance.

As shown in Figure 4.12, the maximum time taken during search is always

less than that of the full scan. This is intuitive as there are fewer results returned

in a targeted search. Themedian search time is consistently more than 4x faster

than the full scan. The minimum runtime will be achieved when searching for

the rarest items. These rarest items took less than 1 second for all minimum

support thresholds we tested, and at min_support = 10%, this search returns

thousands of maximal patterns. These results are consistent with that of the

single server approach shown in Figure 3.18

Figure 4.12: An analysis comparing targeted search maximum, minimum, and median run-
times with the full scan.

4.3 Conclusion and Future Work

In this chapter, we present an iterative search and delete process for the FHP-

Growth algorithm that offered up to a 20x speed up over the original approach in

111

a single server environment. In addition, we discuss how this can used to paral-

lelize the FHPGrowth traversal, porting the technology to distributed computing

environments The distributed computing extension consistently outperformed

the single node implementations by notable margins.. Our experiments demon-

strated that an 8 node computing cluster with a balanced workload can achieve

up to an 8x speed up over the single server environment. In total, we offered up

to a 160x speedup over the original FHPGrowth algorithm. Furthermore, since

the original traversal schemewas significantly faster than competing algorithms

in the previous chapter, the evidence to support the FHPTree paradigm is clear

and strong.

Through our experiments, we discovered that the density of a dataset and

number of items it contains determines the effectiveness of the SD approach. At

times when the number of maximal patterns remains small and the dataset is

dense, the original traversal may be more efficient. However, in cases where

there are hundreds of thousands of maximal patterns to be detected, the SD ap-

proach can offer improvements. In every case, the distribution strategy proved

effective and the workload was distributed across several machines while yield-

ing comprehensive results. Through our horizontal scalability experiments, we

have shown that by increasing the resources in the computing cluster, the run-

time is reduced.

At the core of this research, the key is the targeted search feature that is of-

fered by the FHPTree. The ability to target broad or specific regions of the search

space allows efficient retrieval of relevant information. Moreover, we can use

this strategy to partition the original traversal into a collection of more efficient

112

traversals. Those traversals can be parallelized and distributed acrossmulticore

and cluster computing environments.

It is important to note that any improvements to the core FHPTree directly

improve both of the methods detailed in this chapter. For example, in the pre-

vious chapter, we discussed several areas where the FHPTree may be improved

such as defining amore effective similaritymeasure when building the tree. The

results presented in this dissertation foreshadow a variety of useful applications

for the FHPTree paradigm. Additional extension on the FHPTree include a gen-

eralization to sequential pattern mining, contrast mining, handling uncertainty

data, among many others. This work demonstrates that further extensions may

also be effective in distributed computing environments.

113

Chapter 5

Conclusion

Applications of frequent pattern mining and association rule mining are abun-

dant and in diverse research domains. In this dissertation, we emphasize the

complexity of the pattern mining problem and demonstrate the computational

need for innovative algorithms. Our initial studies utilize classic algorithms,

such as Apriori, on distributed computing environments in order to acquire the

amount of computational resources necessary to quickly extract patterns. We

presented a scheduling method, Cartesian Scheduler, to optimize the Cartesian

operations on distributed datasets and improve the performance of the self-join

operation embedded in the distributed Apriori algorithm. Next, we reconsid-

ered the problem of frequent pattern mining and proposed a novel paradigm,

frequent hierarchical pattern mining. The FHPTree is the persistent, dynamic

data structure at the core of this paradigm; it provides targeted search capabil-

ities that were previously not possible using classic approaches. FHPGrowth is

the top-down traversal algorithm that offer significant improvements over the

classic approaches and lends itself well to distributed computing environments.

We also offered a distributed FHPGrowth technique that offered significant run-

time improvements over the single server solution. The remainder of this chap-

114

ter provides more details about the contributions made with these technologies.

5.1 Distributed Cartesian Operations and The Apriori Al-

gorithm

In chapter 2, we worked to optimize the bottleneck associated with the Apriori

algorithm, the self-join. This classic algorithm utilizes a Cartesian product (CP)

to build larger itemsets. The philosophy we adopted was to precompute and ex-

ecute all shuffle operations simultaneously as a preprocessing step, eliminating

continual network communication and leaving the remaining time for uninter-

rupted computation. As a result, we must introduce redundant copies of data to

ensure that every worker node has its own copy of the necessary data. However,

data redundancy poses the challenge of preventing redundant comparisons in

the CP. In this work, we proposed virtual partitioning and the virtual partition

pairing protocol to manage the degree of redundancy while guaranteeing that

no redundant computation is performed.

Virtual partitioning is a variable grouping paradigm we proposed that gives

control over the granularity of the partial CPs. A virtual partition (VP) functions

as an irreducible building block for partial CPs, so redundant copies of VPs are

created and copied to relevant compute nodes. Since partial CPs are performed

between VPs, the size and number of partial CPs ismanaged by the VP size. This

is valuable since the size of each partial CP affects how well the hardware can ex-

ecute the instructions. The virtual partition pairing protocol preprocesses and

schedules all of the partial CPs necessary to be equivalent to a global Cartesian

product. This protocol facilitates the introduction of redundancy while guar-

115

anteeing that no comparisons are redundant. By construction, the protocol pre-

vents redundant comparisons, so additional filtering or duplicate checks are not

necessary.

Limitations for this approach include the automatic selection of the sharding

factor. We demonstrated the importance of the sharding factor in determining

the overall performance of a distributed CP. In our experiments, we were able

to achieve up to a 40x speedup when compared to Spark on a small commodity

cluster. When the comparison was made on a high performance cluster, the ad-

vantage becomes less drastic, achieving a 2x speedup over the classic approach.

In addition, we demonstrated how well the Cartesian Scheduler handles hetero-

geneous data by achieving a balanced workload, which is common in the Apriori

algorithm.

5.2 Frequent Hierarchical Pattern Mining

In this chapter, we proposed the FHPTree, a hierarchical cluster tree of items,

and FHPGrowth, a top-down mining scheme for extracting frequent patterns.

The number of nodes required for the FHPTree scales linearly as the number

of distinct items. Furthermore, we achieved a 10-fold reduction in the memory

footprint over the FPTree. In addition, for reoccurring pattern mining analy-

ses, utilizing a persistent data structure reduces redundant computation. Since

the FHPTree supports insert, update, and delete operations, it is not necessary

to continually rebuild before each analysis or when the transaction database is

updated. FHPGrowth was competitive when compared to existing state-of-the-

art approaches, CHARM-MFI and FPMax. FHPGrowth outperformed both ap-

116

proaches on dense datasets. In addition, the search operation enables targeted

pattern mining analyses to be conducted efficiently. The median runtime for

search was a dramatic reduction in runtime compared to a full scan.

Limitations for the FHPTree revolve around sparse data. We discussed sce-

narios to avoid when building the tree; however, at times those situations may

not be avoidable. Using new correlationmetrics to build the FHPTree could help

to further alleviate these concerns. Experimental results were promising and a

testament to the frequent hierarchical pattern mining paradigm. Additionally,

we conjectured several potential improvements to the FHPTree structure, FHP-

Tree construction process, FHPGrowth Scan, and FHPGrowth Search.

5.3 Distributed Frequent Hierarchical Pattern Mining

We presented an iterative search and delete process for the FHPGrowth algo-

rithm that offered up to a 20x speed up over the original FHPGrowth approach

in a single server environment. We also discussed how this can be used to paral-

lelize the FHPGrowth traversal, porting the technology to distributed computing

environments The distributed computing extension consistently outperformed

the single node implementations by notable margins.. Our experiments demon-

strated that an 8 node computing cluster with a balanced workload can achieve

up to an 8x speed up over the single server environment. In total, we offered up

to a 160x speedup over the original FHPGrowth algorithm and a 2400x speedup

over the classic FPMax.

Limitations for this approach are similar to that of the single server approach;

sparse datasets continue to be a challenge. Through our experiments, we discov-

117

ered that the density of a dataset and number of items it contains determines the

effectiveness of the search and delete approach. At times when the number of

maximal patterns remains small and the dataset is dense, the original traversal

may be more efficient. However, in cases where there are hundreds of thou-

sands of maximal patterns to be detected, the search and delete approach can

offer improvements. In every case, the parallelization strategy proved effective

and the workload was distributed across several machines while yielding com-

prehensive results. Through our horizontal scalability experiments, we showed

that by increasing the resources in the computing cluster, the runtime was re-

duced.

At the core of this research, the key is the targeted search feature that is of-

fered by the FHPTree. The ability to target broad or specific regions of the search

space allows efficient retrieval of relevant information. Moreover, we can use

this strategy to partition the original traversal into a collection of more efficient

traversals. Those traversals can be parallelized and distributed acrossmulticore

and cluster computing environments.

5.4 Contributions in Computer Science and Applications

in Biomedicine

The main contribution of this dissertation is the frequent hierarchical pattern

mining paradigm. Classic data structures used for frequent patternmining were

not well suited to serve as persistent, dynamic indexes for frequent pattern data,

as they do not provide targeted search capabilities like FHPGrowth can. The

results presented in this dissertation foreshadow a variety of useful applications

118

for the FHPTree paradigm. The frequent hierarchical pattern mining paradigm

will serve as a catalyst for deep, targeted associative mining analyses.

The FHPTree achieved massive performance improvements over state-of-

the-art approaches, and the memory footprint was smaller than existing data

structures. The approaches offered in this dissertation generate a variety of re-

search opportunities in the form of extensions into similar pattern mining do-

mains. The generality of the frequent pattern mining problem suggests that the

FHPTree paradigm may have a broad impact on related data mining areas.

Several other research projects were instrumental to this research process;

however, they are not detailed in this dissertation. First, a biological applica-

tion of frequent pattern mining was explored. The high-level goal was to extract

repetitive DNA sequences from massive genomic sequence datasets using the

Apache Hadoop MapReduce distributed computing framework [81, 82]. Appli-

cations of contrast mining in the medical domains were also explored [83, 84].

Big data technologies were employed for these studies as well to promote scala-

bility, as EMR data continues to increase in volume and variety.

5.5 Limitations and Future Work

The methods and discussions presented in this dissertation open up a variety

of research opportunities. Regarding Cartesian operations, the automatic selec-

tion of the sharding factor will alleviate a burden from developers and improve

performance across the board. Such improvements will directly impact the per-

formance of the distributed Apriori algorithm presented in chapter 2.

AswithApriori andFPGrowth, a commonnext step is to seek generalizations,

119

extensions, and optimizations in sequential pattern mining, high-utility pattern

mining, uncertain datasets, streaming data, GPU architectures, andmany other

areas of research. The FHPTree may offer advantages in these areas as well.

These extensions and generalizations will require additional research as the FH-

PTree may not be ready out of the box. For example, sequential pattern mining

requires the the order of items to be tracked where the order of items is not con-

sidered in frequent pattern mining.

Several limitationswere discussed, which could also create potential research

opportunities. Addressing the limitations of the FHPTree in terms of sparse

datasetswouldmakeFHPGrowthmore generally applicable to arbitrary frequent

pattern mining analyses.

120

References

[1] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools and techniques. Morgan Kaufmann, 2005.

[2] C. Silverstein, S. Brin, and R. Motwani, “Beyond market baskets: Gener-

alizing association rules to dependence rules,” Data mining and knowl-

edge discovery, vol. 2, no. 1, pp. 39–68, 1998.

[3] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset count-

ing and implication rules for market basket data,” in ACM SIGMOD

Record, vol. 26, pp. 255–264, ACM, 1997.

[4] S. E. Brossette, A. P. Sprague, J. M. Hardin, K. B. Waites, W. T. Jones,

and S. A. Moser, “Association rules and data mining in hospital infection

control and public health surveillance,” Journal of the Americanmedical

informatics association, vol. 5, no. 4, pp. 373–381, 1998.

[5] C. Ordonez, N. Ezquerra, and C. A. Santana, “Constraining and summa-

rizing association rules in medical data,” Knowledge and Information

Systems, vol. 9, no. 3, pp. 1–2, 2006.

[6] A. Wright, E. S. Chen, and F. L. Maloney, “An automated technique

for identifying associations between medications, laboratory results and

121

problems,” Journal of biomedical informatics, vol. 43, no. 6, pp. 891–

901, 2010.

[7] J. Li, A. W.-c. Fu, H. He, J. Chen, H. Jin, D. McAullay, G. Williams,

R. Sparks, and C. Kelman, “Mining risk patterns in medical data,” in

Proceedings of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pp. 770–775, ACM, 2005.

[8] J. Nahar, T. Imam, K. S. Tickle, and Y.-P. P. Chen, “Association rule min-

ing to detect factors which contribute to heart disease in males and fe-

males,” Expert Systemswith Applications, vol. 40, no. 4, pp. 1086–1093,

2013.

[9] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules be-

tween sets of items in large databases,” in Acm sigmod record, vol. 22,

pp. 207–216, ACM, 1993.

[10] K. Ishimoto, “Incremental mining of constrained association rules,” in

Proceedings of the 2001 SIAMInternational Conference onDataMining,

Society for Industrial and Applied Mathematics, 2001.

[11] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for association

rulemining?a general survey and comparison,”ACMsigkdd explorations

newsletter, vol. 2, no. 1, pp. 58–64, 2000.

[12] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association

rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,

pp. 487–499, 1994.

122

[13] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without

candidate generation: A frequent-pattern tree approach,” Data mining

and knowledge discovery, vol. 8, no. 1, pp. 53–87, 2004.

[14] M. Houtsma and A. Swami, “Set-oriented mining for association rules

in relational databases,” in Data Engineering, 1995. Proceedings of the

Eleventh International Conference on, pp. 25–33, IEEE, 1995.

[15] J. S. Park, M.-S. Chen, and P. S. Yu, An effective hash-based algorithm

for mining association rules, vol. 24. ACM, 1995.

[16] M. J. Zaki andC.-J.Hsiao, “Charm: An efficient algorithm for closed item-

set mining.,” in SDM, vol. 2, pp. 457–473, SIAM, 2002.

[17] N. Pasquier, Y. Bastide, R. Taouil, andL. Lakhal, “Efficientmining of asso-

ciation rules using closed itemset lattices,” Information systems, vol. 24,

no. 1, pp. 25–46, 1999.

[18] Y. Aumann, R. Feldman, O. Lipshtat, and H. Manilla, “Borders: An effi-

cient algorithm for association generation in dynamic databases,” Jour-

nal of Intelligent Information Systems, vol. 12, no. 1, pp. 61–73, 1999.

[19] D. Burdick, M. Calimlim, and J. Gehrke, “Mafia: A maximal frequent

itemset algorithm for transactional databases,” in Data Engineering,

2001. Proceedings. 17th International Conference on, pp. 443–452,

IEEE, 2001.

[20] A. Sharma and N. Tivari, “A survey of association rule mining using ge-

netic algorithm,” Int J Comput Appl Inf Technol, vol. 1, pp. 5–11, 2012.

123

[21] J. Alcalá-Fdez, R. Alcalá, M. J. Gacto, and F.Herrera, “Learning themem-

bership function contexts for mining fuzzy association rules by using ge-

netic algorithms,” Fuzzy Sets and Systems, vol. 160, no. 7, pp. 905–921,

2009.

[22] F. Pan, G. Cong, A. K. Tung, J. Yang, andM. J. Zaki, “Carpenter: Finding

closed patterns in long biological datasets,” in Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pp. 637–642, ACM, 2003.

[23] B. Nair and A. K. Tripathy, “Accelerating closed frequent itemset min-

ing by elimination of null transactions,” Journal of Emerging Trends in

Computing and Information Sciences, vol. 2, no. 7, pp. 317–324, 2011.

[24] A. J. Lee, W.-K. Tsao, P.-Y. Chen, M.-C. Lin, and S.-H. Yang, “Mining

frequent closed patterns in pointset databases,” Information Systems,

vol. 35, no. 3, pp. 335–351, 2010.

[25] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel implementation of apriori algo-

rithm based on mapreduce,” in Software Engineering, Artificial Intelli-

gence, Networking and Parallel & Distributed Computing (SNPD), 2012

13th ACIS International Conference on, pp. 236–241, IEEE, 2012.

[26] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based frequent itemset

mining algorithms on mapreduce,” in Proceedings of the 6th interna-

tional conference on ubiquitous information management and commu-

nication, p. 76, ACM, 2012.

124

[27] S. Rathee, M. Kaul, and A. Kashyap, “R-apriori: an efficient apriori based

algorithmon spark,” inProceedings of the 8thWorkshop on Ph. D.Work-

shop in Information and Knowledge Management, pp. 27–34, ACM,

2015.

[28] H. Qiu, R. Gu, C. Yuan, and Y. Huang, “Yafim: a parallel frequent itemset

mining algorithm with spark,” in Parallel & Distributed Processing Sym-

posiumWorkshops (IPDPSW), 2014 IEEE International, pp. 1664–1671,

IEEE, 2014.

[29] X. Yan and J. Han, “Closegraph: mining closed frequent graph patterns,”

in Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 286–295, ACM, 2003.

[30] G. Grahne and J. Zhu, “Fast algorithms for frequent itemsetmining using

fp-trees,” IEEE transactions on knowledge and data engineering, vol. 17,

no. 10, pp. 1347–1362, 2005.

[31] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent

itemsets.,” in FIMI, vol. 90, 2003.

[32] W. Cheung and O. R. Zaiane, “Incremental mining of frequent patterns

without candidate generation or support constraint,” in Database Engi-

neering and Applications Symposium, 2003. Proceedings. Seventh In-

ternational, pp. 111–116, IEEE, 2003.

[33] I. Pramudiono and M. Kitsuregawa, “Fp-tax: Tree structure based gener-

alized association rule mining,” in Proceedings of the 9th ACM SIGMOD

125

workshop on Research issues in data mining and knowledge discovery,

pp. 60–63, ACM, 2004.

[34] Y. Qiu, Y.-J. Lan, and Q.-S. Xie, “An improved algorithm of mining from

fp-tree,” in Machine Learning and Cybernetics, 2004. Proceedings of

2004 International Conference on, vol. 3, pp. 1665–1670, IEEE, 2004.

[35] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: parallel fp-

growth for query recommendation,” inProceedings of the 2008ACMcon-

ference on Recommender systems, pp. 107–114, ACM, 2008.

[36] P. Comninos,Mathematical and computer programming techniques for

computer graphics. Springer Science & Business Media, 2010.

[37] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets,” in Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, vol. 10, p. 10,

2010.

[38] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing,” in Proceed-

ings of the 9th USENIX conference on Networked Systems Design and

Implementation, pp. 2–2, USENIX Association, 2012.

[39] U. Kumar and J. Kumar, “A comprehensive review of straggler handling

algorithms for mapreduce framework,” International Journal of Grid

and Distributed Computing, vol. 7, no. 4, pp. 139–148, 2014.

126

[40] M. Raab and A. Steger, “Òballs into binsÓÑa simple and tight analysis,”

in Randomization and Approximation Techniques in Computer Science,

pp. 159–170, Springer, 1998.

[41] C. J. Date and H. Darwen, A Guide To Sql Standard, vol. 3. Addison-

Wesley Reading, 1997.

[42] M. W. Berry, Z. Drmac, and E. R. Jessup, “Matrices, vector spaces, and

information retrieval,” SIAM review, vol. 41, no. 2, pp. 335–362, 1999.

[43] F. Holzschuher and R. Peinl, “Performance of graph query languages:

comparison of cypher, gremlin and native access in neo4j,” in Proceed-

ings of the Joint EDBT/ICDT 2013Workshops, pp. 195–204, ACM, 2013.

[44] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of

sparql,” in International semantic web conference, vol. 4273, pp. 30–43,

Springer, 2006.

[45] J. Clark, S. DeRose, et al., “Xml path language (xpath) version 1.0,” 1999.

[46] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information retrieval

using self-organizing semantic overlay networks,” in Proceedings of the

2003 conference on Applications, technologies, architectures, and pro-

tocols for computer communications, pp. 175–186, ACM, 2003.

[47] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,

M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, et al., “F1: A dis-

tributed sql database that scales,” Proceedings of the VLDB Endowment,

vol. 6, no. 11, pp. 1068–1079, 2013.

127

[48] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,

T. Kaftan, M. J. Franklin, A. Ghodsi, et al., “Spark sql: Relational data

processing in spark,” in Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data, pp. 1383–1394, ACM, 2015.

[49] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-

reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,

pp. 1626–1629, 2009.

[50] T. Elsayed, J. Lin, andD.W. Oard, “Pairwise document similarity in large

collections with mapreduce,” in Proceedings of the 46th Annual Meet-

ing of the Association for Computational Linguistics on Human Lan-

guage Technologies: Short Papers, pp. 265–268, Association for Com-

putational Linguistics, 2008.

[51] J. Lin, “Brute force and indexed approaches to pairwise document simi-

larity comparisons withmapreduce,” in Proceedings of the 32nd interna-

tional ACM SIGIR conference on Research and development in informa-

tion retrieval, pp. 155–162, ACM, 2009.

[52] F. Crestani, M. Lalmas, C. J. Van Rijsbergen, and I. Campbell, “Òis this

document relevant?É probablyÓ: a survey of probabilistic models in in-

formation retrieval,” ACM Computing Surveys (CSUR), vol. 30, no. 4,

pp. 528–552, 1998.

[53] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, “Scat-

ter/gather: A cluster-based approach to browsing large document collec-

128

tions,” in Proceedings of the 15th annual international ACM SIGIR con-

ference on Research and development in information retrieval, pp. 318–

329, ACM, 1992.

[54] “Reuters-21578.” http://www.daviddlewis.com/resources/testcollections/reuters21578.

Accessed: 2015-10-02.

[55] M.Phinney, S. Lander,M. Spencer, andC.-R. Shyu, “Cartesian operations

on distributed datasets using virtual partitioning,” in IEEE International

Conference on Big Data Computing Service and Applications, pp. 1–8,

IEEE, 2016.

[56] “Cartesian scheduler gitlab source code repository.”

https://gitlab.com/idas-lab/CartesianScheduler.git. Accessed: 2017-3-

20.

[57] C. C. Aggarwal and J. Han, Frequent pattern mining. Springer, 2014.

[58] J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent pattern mining: current

status and future directions,” Data Mining and Knowledge Discovery,

vol. 15, no. 1, pp. 55–86, 2007.

[59] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations

and performance improvements,” in Int’l Conf. on Extending Database

Technology, pp. 1–17, Springer, 1996.

[60] M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets,” in Proc.

of the 9th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data

Mining, pp. 326–335, ACM, 2003.

129

[61] R. J. Bayardo Jr, “Efficiently mining long patterns from databases,” ACM

Sigmod Record, vol. 27, no. 2, pp. 85–93, 1998.

[62] R. C. Agarwal, C. C. Aggarwal, and V. Prasad, “Depth first generation of

long patterns,” inProc. of the 6th ACMSIGKDD Int’l Conf. onKnowledge

Discovery and Data Mining, pp. 108–118, ACM, 2000.

[63] D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, and T. Yiu, “Mafia: A

maximal frequent itemset algorithm,” IEEE Transactions on Knowledge

and Data Engineering, vol. 17, no. 11, pp. 1490–1504, 2005.

[64] L. Szathmary, Symbolic Data Mining methods with the Coron platform.

PhD thesis, Université Henri Poincaré-Nancy I, 2006.

[65] Y. Chi, H.Wang, P. S. Yu, andR. R.Muntz, “Catch themoment: maintain-

ing closed frequent itemsets over a data stream sliding window,” Knowl-

edge and Information Systems, vol. 10, no. 3, pp. 265–294, 2006.

[66] R. Chan, Q. Yang, and Y.-D. Shen, “Mining high utility itemsets,” in 3rd

IEEE Int’l Conf. on Data Mining (ICDM), pp. 19–26, IEEE, 2003.

[67] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle, “Proba-

bilistic frequent itemset mining in uncertain databases,” in Proc. of the

15th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Min-

ing, pp. 119–128, ACM, 2009.

[68] D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, and Y. Fu, “A fast distributed

algorithm for mining association rules,” in 4th Int’l Conf. on Parallel and

Distributed Information Systems, pp. 31–42, IEEE, 1996.

130

[69] J. Pei, J.Han, B.Mortazavi-Asl, J.Wang, H. Pinto, Q. Chen, U.Dayal, and

M.-C. Hsu, “Mining sequential patterns by pattern-growth: The prefixs-

pan approach,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 16, no. 11, pp. 1424–1440, 2004.

[70] J. Wang, J. Han, Y. Lu, and P. Tzvetkov, “Tfp: An efficient algorithm for

mining top-k frequent closed itemsets,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 17, no. 5, pp. 652–663, 2005.

[71] V. S. Tseng, C.-W. Wu, B.-E. Shie, and P. S. Yu, “Up-growth: an effi-

cient algorithm for high utility itemset mining,” in Proc. of the 16th ACM

SIGKDD Int’l Conf. on Knowledge Discovery and DataMining, pp. 253–

262, ACM, 2010.

[72] V. S. Tseng, C.-W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient al-

gorithms for mining top-k high utility itemsets,” IEEE Transactions on

Knowledge and Data Engineering, vol. 28, no. 1, pp. 54–67, 2016.

[73] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, “Mining frequent pat-

terns in data streams at multiple time granularities,” Next generation

Data Mining, pp. 191–212, 2003.

[74] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang, “Frequent pattern mining

with uncertain data,” in Proc. of the 15th ACM SIGKDD Int’l Conf. on

Knowledge Discovery and Data Mining, pp. 29–38, ACM, 2009.

[75] Y. Tong, L. Chen, and P. S. Yu, “Ufimt: an uncertain frequent itemsetmin-

ing toolbox,” in Proc. of the 18th ACM SIGKDD Int’l Conf. on Knowledge

Discovery and Data Mining, pp. 1508–1511, ACM, 2012.

131

[76] Y. Tong, L. Chen, Y. Cheng, and P. S. Yu, “Mining frequent itemsets

over uncertain databases,” Proc. of the VLDB Endowment, vol. 5, no. 11,

pp. 1650–1661, 2012.

[77] H. Liu, J. Han, D. Xin, and Z. Shao, “Mining frequent patterns from very

high dimensional data: A top-down row enumeration approach,” in Proc.

of the 2006 SIAM Int’l Conf. on DataMining, pp. 282–293, SIAM, 2006.

[78] Y. Xie and P. S. Yu, “Max-clique: A top-down graph-based approach

to frequent pattern mining,” in IEEE 10th Int’l Conf. on Data Mining

(ICDM), pp. 1139–1144, IEEE, 2010.

[79] O.Maimon andL.Rokach,DataMiningandKnowledgeDiscovery hand-

book, vol. 2. Springer, 2005.

[80] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, V. S.

Tseng, et al., “Spmf: a java open-source patternmining library.,” Journal

of Machine Learning Research, vol. 15, no. 1, pp. 3389–3393, 2014.

[81] H. Cao, M. Phinney, D. Petersohn, B. Merideth, and C.-R. Shyu, “Mining

large-scale repetitive sequences in a mapreduce setting,” International

Journal of Data Mining and Bioinformatics, vol. 14, no. 3, pp. 210–228,

2016.

[82] H. Cao, M. Phinney, D. Petersohn, B.Merideth, and C.-R. Shyu, “Mrsmrs:

Mining repetitive sequences in a mapreduce setting,” in Bioinformat-

ics and Biomedicine (BIBM), 2014 IEEE International Conference on,

pp. 463–470, IEEE, 2014.

132

[83] L. Sheets, M. A. Phinney, S. Lander, J. C. Parker, and C. Shyu, “Data min-

ing to predict healthcare utilization in managed care patients,” in AMIA

2015, American Medical Informatics Association Annual Symposium,

San Francisco, CA, USA, November 14-18, 2015, AMIA, 2015.

[84] M. A. Phinney, Y. Zhuang, S. Lander, L. Sheets, J. C. Parker, and C. Shyu,

“Contrast mining for pattern discovery and descriptive analytics to tailor

sub-groups of patients using big data solutions,” inMedInfo, 2017.

133

Vita

Michael Phinney received both his Ph.D. degree inComputer Science (inMay

2017) and his M.S. degree in Computer Science (in December 2015) from the

University of Missouri-Columbia. He received dual B.S. degrees in Computer

Science and Mathematics from the University of Central Missouri in May 2012.

Since 2012, he has worked as a Graduate Research Assistant in the Center

for Interdisciplinary Data Analytics and Search (iDAS) under the direction of

Dr. Chi-Ren Shyu at the University of Missouri. Mike was the recipient of

the U.S. Department of Education Graduate Assistantship in Areas of National

Need (GAANN) Fellowship which supported his education from 2012 to 2017.

Mike received the 2017 University of Missouri Outstanding Computer Science

PhD Student Award. In 2013, his Big Data project won the IBM Smarter Planet

Big Data Student Project Award. He instructed a required undergraduate com-

puter science course, CS3380: Database Applications and Information Systems,

where he also managed three undergraduate teaching assistants. Over the last

two years of Mike’s degree, while completing his own Ph.D. program require-

ments, he mentored seven undergraduate researchers. Mike has also served as

an advisory boardmember for the University of CentralMissouri’sMathematics

and Computer Science Department since 2013.

During his graduate studies at the University of Missouri, his research foci

134

were frequent pattern mining, data mining and analytics, big data technologies,

distributed computing, and algorithmdesign. In addition,Mike applies his theo-

retical computer science research to biomedical domains, such as deep genomic

sequence analysis across a large number of genomes and healthcare datamining

for a project supported by the Centers for Medicare and Medicaid Services. In

his dissertation, he proposed a novel frequent pattern mining paradigm that of-

fered significant performance improvements over prior solutions. These works

resulted in several publications, conference posters, and presentations.

135

	Introduction
	Background and General Terminology
	Classic Algorithms
	Cartesian Operations
	Real-World Applications
	Distributed Computing
	Dissertation Organization

	Cartesian Operations and the Distributed Apriori Algorithm
	Cartesian Scheduler
	Experimental Results and Validation
	Conclusion and Future Work

	Frequent Hierarchical Pattern Mining
	Related Work
	FHPTree: Frequent Hierarchical Pattern Tree
	FHPGrowth: Frequent Hierarchical Pattern Growth
	Performance Evaluation
	Conclusion and Future Work

	Distributed Computing and Frequent Hierarchical Pattern Mining
	Parallelizing FHPGrowth
	Performance Evaluation
	Conclusion and Future Work

	Conclusion
	Distributed Cartesian Operations and The Apriori Algorithm
	Frequent Hierarchical Pattern Mining
	Distributed Frequent Hierarchical Pattern Mining
	Contributions in Computer Science and Applications in Biomedicine
	Limitations and Future Work

	Vita

