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ABSTRACT

Cognitive radio (CR) represents a recent direction for enabling coexistence among

heterogeneous networks. It can be a potential solution for the problem of scarce

spectrum available for wireless communication systems. The study here investigates

the underlay and interweave paradigms for the coexistence of CR network of sec-

ondary users (SUs) with a primary network of primary users (PUs). Under underlay

mode, both networks communicates concurrently using the same resources. With

interweave, SU is able to communicate as long as (some) PUs are not active. Usually,

underlay or interweave employs multiple antennas at SU to use the spectral resources

better and manage the interference towards the primary network. Performance of

the CR network under either paradigm depends largely on the amount and quality of

channel state information (CSI) available about the different communication links. In

practical systems, often CSI at SU has uncertainty since it is deviated from the true

one or is not known at all. This uncertainty should be accounted when designing the

precoding schemes for SU or otherwise the interference impact on primary networks

would violate the quality of service (QoS) requirements for PUs. This dissertation

considers two cases regarding to the availability of CSI, the first one is when CSI is

imperfect and the second is when CSI is completely not known.

For the underlay mode, we investigate two manifolds. The first one addresses the

problem of maximizing the throughput of a multiple-input multiple-output (MIMO)

SU when CSI of the interference link to PU is completely unknown or partially known.

We study the achievable rates for SU under two different QoS requirements for the

PU: the conventional interference temperature and leakage rate metrics. When CSI

xiv



is unavailable, we develop an iterative adaptation algorithm that satisfies the QoS

constraint through exploiting the side-information in the primary communication

network. When CSI is inaccurate, we model the uncertainty deterministically such

that the uncertainty error belongs to a convex compact set defined by the Schatten

norm. We design the precoder by following the worst case formulation. We further

investigate the relation between the unknown and the inaccurate CSI cases when

using the interference temperature metric, and reveal that the performance of the

latter is not necessarily better than the former.

The second manifold assumes there is uncertainty in the SU intended link for

communication as well as in the interference link from SU to PU. Similar to the

first manifold, we follow the deterministic modelling using Schatten norm for the

uncertainty and apply the worst case philosophy. For a given precoder matrix, we

find the worst uncertainty error in the set that describes the uncertainty in each

link. We further develop an iterative numerical algorithm for the precoder. Simpler

solutions for the precoder and the uncertainty errors are derived under some special

instances of the Schatten norm and certain requirement of transmission power.

For the interweave mode, we assume there is no CSI available at SU and derive

a Bayesian detector for the proposed binary hypothesis problem. For the null or

noise model, we propose a conjugate prior for the unknown spatial covariance matrix.

For the alternative or data model, we propose a new class of improper priors for

the covariance matrix. We introduce the fractional Bayes factor (FBF) approach to

enhance the detection capability of the Bayes factor. The developed FBF is compared

with those using the conjugate priors for both hypotheses and generalized likelihood

ratio test (GLRT), and it yields significant improvement.

xv



Chapter 1

Introduction

1.1 Notation and Acronyms

Throughout the dissertation, bold upper-case letters denote matrices and bold lower-

case letters represent column vectors. Further notational symbols are

Cm×n, Hn The complex space of m× n matrices and the space of Hermitian

n× n matrices

Rm×n, Rm×n
+ The real space of m × n matrices and of m × n matrices with

non-negative entries

(·)† The Hermitian transpose

(·)t The regular transpose

|A| Determinant of the square matrix A

Tr(A) Trace of the matrix A

[A]ij The ij-th element of A

1



λi(A) The ith eignvalue of A such that λ1(A) denotes the maximum

eigenvalue

A � B, A � B The matrix A−B is positive semi-definite or positive-definite

A � B The matrix A−B is negative semi-definite

diag(a) Diagonal matrix formed by the elements of the vector a

Diag(A) Forms a diagonal matrix from the diagonal elements of A

UAΛAU†A Eigenvalue decomposition, UA ∈ Cn×n is a unitary matrix and

ΛA = diag([λ1(A) · · ·λn(A)]t) with the eigenvalues arranged in

non-increasing order

vec(A) Stacks the columns of A into a single column

‖a‖, ‖a‖X The Euclidean norm
√

a†a and the weighted version
√

a†Xa for a

Hermitian and positive semi-definite matrix X of an appropriate

size

E[·] The statistical expectation

‖A‖p Schatten norm with order p

|a| The absolute value of the scalar a

log(·) The natural logarithm

CN (m,C) The distribution of a circularly symmetric complex Gaussian ran-

dom vector with mean m and covariance C

I The identity matrix of an appropriate size

a+ The maximum between a and 0

dae denotes the least integer ≥ a
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Acronyms

Some of the abbreviations and acronyms we used in the dissertation are summarized

as follows:

ACK/NAK ACKnowledgment and Negative AcKnowledgment signaling pro-

tocol

AI Alternate-Iterate optimization

AI-FDPS Alternate-Iterate Feasible Direction Projected Subgradient

CC Compound Capacity

CDMA Code-Division Multiple Access

CR Cognitive Radio

CSCG Circularly Symmetric Complex Gaussian distribution

CSI Channel State Information

DSA Dynamic Spectrum Access

EVD Eigenvalue Decomposition

FBF Fractional Bayes Factor

FDD Frequency-Division Duplexing

GLRT Generalized Likelihood Ratio Test

HSDPA High Speed Downlink Packet Access communication system

IT Interference Temperature

INR Interference-to-Noise Ratio

LMI Linear Matrix Inequality

LR Leakage Rate

LTE-A Long Term Evolution-Advanced communication system

MI Mutual Information

3



MIMO Multiple-Input Multiple-Output

NMSPG Non-Monotone Spectral Projected Gradient

OFDM Orthogonal Frequency-Division Multiplexing

PU Primary User

QoS Quality of Service

ROC Receiver Operating Characteristic

SDP Semi-Definite Programming

SINR Signal-to-Interference-plus-Noise Ratio

SNR Signal-to-Noise Ratio

SU Secondary User

TDD Time-Division Duplexing

1.2 Cognitive Radio Network

The increasing demand for reliable high-speed data services and the scarce of wireless

spectrum have created many challenges to meet the quality of service (QoS) require-

ments of the end users. One enthused approach is to allow several heterogeneous

networks to operate together while using dynamic spectrum access (DSA) techniques

to minimize their undesirable interactions [32, 94, 100]. Unlike incumbent users of

legacy communication systems, users that employ DSA require some sort of cogni-

tion on how to use the spectrum in an efficient and adaptive manner. Those users

are usually called cognitive radio (CR) users and formally defined as reconfigurable

4



devices via software that can operate over multiple air interfaces and communication

protocols [32, 46].

DSA provides a method to use spectrum through hierarchical spectrum access [94].

This access technique considers two (or more) disparate networks such that one of

them has priority over the other. Users of the network with high precedence is known

as primary users (PUs) and of the other netwok as the secondary users (SUs). SU is

capable of using the spectrum provided that the amount of interference induced on

PU is under an allowable limit. The availability of channel state information (CSI)

at SU plays a dominant role in determining how and when to access or to release the

physical channels of PUs. Based on the amount of CSI, there are two main paradigms

for spectrum sharing under the hierarchical access: The underlay paradigm and the

interweave paradigm [32].

The underlay paradigm provides a concept for concurrent operations of SU with

PU. SU can exist as long as the interference introduced to the PU is below an accept-

able limit [32, 46, 100, 110]. Figure 1.1 depicts the concept of underlay or concurrent

spectrum access. The underly CR requires CSI about the interference link from the

transmitter of SU to the receiver of PU.

We should point out that the underlay concept can be extended to the case where

PU and SU belong to the same network. For example in cellular network, we can

consider the femotcell as SU and the macrocell as PU where both radio cells share

the same frequency band [98,101].

The interweave paradigm offers an opportunistic communication for SU through

exploiting the spectrum holes that are not occupied by the PU. Figure 1.2 shows an

example for the spectrum holes in the spectral resources. This paradigm is feasible
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Figure 1.1: Schematic diagram for underlay CR network.

as there exists a significant amount of spectrum that is used infrequently by PU. In

this paradigm, CSI about the activity of PU of whether it is utilizing the spectrum is

crucial. The SU should use advanced signal processing algorithms to be able to sense,

track and release any spectrum holes. Please refer to [6, 114] for a recent review of

the spectrum sensing algorithms in CR networks.

Utilizing multiple antennas provides significant enhancement for the spectrum

sharing in CR networks. In particular, using multi-antenna at SU in the interweave

mode can obtain reliable spectrum sensing through exploiting the spatial domain.

Moreover, the multiple antennas can reduce CSI demands as SU may not require

prior knowledge about the PU signals or the interference channel from PU to SU

[6,84,90]. In underlay CR, multiple antenna offers the flexibility of precoding, which

can substantially reduce the interference from SU to PU and maintain QoS for PU

[32, 77, 88]. Back to Figure 1.1, multiple-input multiple-output (MIMO) SU and

MIMO PU users are illustrated. The precoding benefit offered by MIMO antennas

in an underlay CR network relies on the availability of CSI for the connections from
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Figure 1.2: An example for spectrum holes or white space in different dimensions.

SU-Transmit (SU-Tx) to SU-Receive (SU-Rx) and from SU-Tx to PU-Receive (PU-

Rx).

In this dissertation, we shall address the precoding design for underlay MIMO

CR networks under the assumption that there is a limited knowledge about CSI at

SU. We shall also investigate the spectrum sensing problem assuming there is no CSI

about PU available.

1.3 Robust Precoding for Underlay CR

1.3.1 CSI Acquisition

CSI of the link SU-Tx to SU-Rx can be obtained at SU-Tx through feedback [47].

Specifically, SU-Tx can send training or pilot signals, which can be used by SU-Rx

to estimate the corresponding channel, and then feedback the estimated channel to

SU-Tx.

7



CSI of the interference link from SU-Tx to PU-Rx can be made available at the

SU-Tx through adopting different approaches. When PU follows frequency-division

duplexing (FDD) transmission technique and there is cooperation between PU and

SU, CSI of the interference link is obtained through feedback. However, in practice

the two users are seldom cooperated. An alternative approach is to use blind null

space learning for slow fading channels whenever the PU adapts its transmitted power

as proposed in [63]. When PU follows time-division duplexing (TDD), SU can obtain

CSI by exploiting reciprocity and listening to the receiver of PU [72]. Otherwise,

blind techniques can be invoked to obtain the interference channel [90, 112]. It is

worth to mention that current communication systems such as LTE-A, CDMA, and

HSDPA, and WiFi networks usually exchange some control signals to maintain the

quality of the link at a certain level [85, 106]. These signals can be exploited by SU

to extract some related CSI to design the precoding scheme in CR network [63,91].

CSI can be estimated instantaneously so long as the time for estimating CSI

is small compared to the coherence time of the channel [39, 69, 80, 97, 101], see also

[22,51,72,99,105]. Otherwise, statistical representations for CSI can be used especially

for fast fading propagation environments, where the channel information is averaged

over sufficiently long time interval [9, 43, 65,97,98].

Regardless of how to make the CSI available at SU-Tx, the obtained CSI is often

far from perfect in practice [28, 55, 63, 112]. Channel estimation errors, limited and

outdated feedback, and short coherence time of the physical channels are among the

main factors that cause imperfect CSI. In some cases, the SU may not have any

information about the interference channel or its distribution; making the precoding

design problem more challenging [71].

8



This dissertation considers CSI of the direct link from SU-Tx to SU-Rx is inac-

curate, and of the interference link from SU-Tx to PU-Rx is inaccurate or unknown.

The assumption that the interference link has some channel errors is typical in un-

derly CR, while relatively very few studies in the literature address the unknown CSI

situation, see for example [71]. The consideration that the direct link can encounter

CSI errors has been recently adopted for multiuser scheduling in MIMO CR network

with space-time block coding in [111]. We should mention that our treatments are

valid for instantaneous or statistical CSI.

1.3.2 CSI Uncertainty Model

The uncertainty in CSI can be taken into account to improve the precoder design. It

can be modelled by following a deterministic or stochastic representation. The former

assumes the error is within some uncertainty set whose shape and size are known. The

design seeks the precoder that meets the stringent QoS of PU at the worst interference

scenario over all CSI possibilities within the uncertainty set. The stochastic model

characterizes the uncertainty error through a specific statistical distribution and the

precoder is obtained based on the outage probability [101,110]. However, for analysis

tractability, Gaussian or exponential distribution is assumed to model the uncertainty

error, which may not resemble the true distribution. In this work, we shall follow the

deterministic modelling for CSI uncertainty.

In the literature, there are different deterministic models for the uncertainty error.

Particularly, the polyhedron based set is used to model the quantization error due to

limited feedback as in [70]. Ellipsoid, Frobenius or spectral norm based set is usually

used to model the errors due to the additive noise such as in [8,51,69,102,105] or [25,
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36,78,89,93,95] . The authors in [35,44] bounded the Kullback-Leibler divergence to

model the uncertainty in probability distribution. Recently, uncertainty sets defined

by unitarily-invariant and Schatten norm are used for the precoding design in [102].

For other uncertainty models that appear in CR literature, we refer the interested

reader to [110].

The focus here is to provide a unified solution for the MIMO precoding design

in the underlay CR network under different uncertainty sets. We shall represent the

uncertainty errors associated with the SU-Tx to SU-Rx and SU-Tx to PU-Rx links

using some generic matrix norm. In particular, we shall follow [102] and use the

Schatten norm.

1.3.3 Interference Constraints

There are several types of interference constraints that have been proposed to satisfy

the QoS for PU. [94] provides a nice discussion on how to choose the interference

constraints in underly CR networks. Interference temperature (IT) is the conventional

metric for interference measure at the receiver of PU, and it quantifies the interference

power at PU-Rx. The IT metric is linear in the precoder matrix and mathematically

tractable, and hence it has been used extensively in the precoding design of CR

[8,22,36,51,72,93,105]. This metric requires CSI of the interference link from SU-Tx

to PU-Rx only.

In [38], a rate loss constraint (RLC) that is related to the maximum rate loss of

PU was imposed on SU. The RLC metric achieves a higher information rate for SU

than that using the IT metric. However, this metric requires CSI for the interference

link from SU-Tx to PU-Rx and for the PU links. The work in [23] confined the
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interference amount through proposing a precoder design that satisfies a constraint

on the PU information rate. Similar to the RLC metric, this design methodology

assumes CSI for PU links is readily available at the SU. The authors in [71] suggested

that the mutual information measure of the interference link from SU-Tx to PU-Rx

is a better metric than the corresponding power measure, i.e., IT metric.

This dissertation adopts the metric suggested in [71] as well as the traditional IT

metric to limit the interference on PU-Rx.

1.3.4 Robust Precoder Design

The approach for the MIMO precoder design under the worst case scenario of deter-

ministic CSI uncertainty is mostly based on robust beamforming technique developed

in the signal processing community [9, 97]. For point-to-point MIMO channels, the

worst case approach was applied to solve the compound capacity problem and obtain

a robust linear precoder [48, 49, 65, 82, 104]. The compound capacity is a suitable

information rate metric when the transmitter observes inaccurate CSI knowledge and

the CSI error lies in a deterministic set. It seeks the optimal precoder that maximizes

the worst case mutual information (MI). When the error set of MIMO channels is

isotropic, i.e., eigenvalue constraint based uncertainty set, [65] showed that under

total power budget at the transmitter the compound capacity is achieved using uni-

form power allocation. In [104], the compound capacity of a nominal rank one Ricean

MIMO channel with an ellipsoidal uncertainty set and total power constraint was ana-

lyzed. The works in [49,82] considered an unitarily-invariant power set and a spectral

norm defined channel uncertainty set.,They unveiled through proposing new matrix

inequalities that the compound capacity has an optimal channel-diagonalizing solu-
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tion. That is, the precoder design complexity reduces from an optimization problem

with matrix variables to a scalar power allocation problem.

The worst case robust beamforming design for CR network was used in [8,36,43,98]

to minimize the transmit power and limit the signal-to-interference-plus-noise ratio

(SINR) of the SU under interference power constraint. The works in [89,95] consider

a robust beamforming design through optimizing SINR and the information rate

metrics, respectively, with interference power constraints. In [93], the robust design

for MIMO CR nodes is performed through minimizing the sum mean square error of

SU with interference power constraints.

Due to the intractability caused by placing the uncertainty set into the optimiza-

tion problem, most studies use approximations or relaxation along with semi-definite

programming (SDP) to obtain a solution [8, 36, 39, 72]. Relatively few works focus

on producing an equivalent and yet convex formulation of the original problem to

yield more accurate and less conservative solutions. Among them, [51, 105] used the

S-procedure and [43, 95, 98] utilized the Lagrange duality to obtain the equivalent

formulations. However, they have limited applicability where the former is for the

Euclidean norm and the latter the Frobenius and trace norms uncertainty sets.

We shall follow the trend and employ the worst cast robust optimization to obtain

the precoder matrix that would optimize the worst case performance. We shall con-

sider an information theoretic criterion in terms of the MI to define the performance

metric.
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1.4 Spectrum Sensing

Spectrum sensing for CR networks is a binary hypothesis testing problem that looks

for distinguishing reliably between the null (or noise) hypothesis and the alternative

(or data plus noise) hypothesis. Once the detection problem is solved, SU becomes

aware of the PU activity and can access the physical channels when they are available.

It is well-known that according to the Neyman−Pearson lemma that the likelihood

ratio test is optimal when the probability distribution under each hypothesis is known

without uncertainty. Usually in practice, the distribution is not known perfectly due

to the lack of knowledge about some of its parameters. There are two standard

approaches to take care of the unknown parameters in hypothesis testing: Frequentist

and Bayesian frameworks. The former method estimates the unknown parameters

from the likelihood and plug back estimated quantities in the probability distributions,

which would yield the generalized likelihood ratio test (GLRT). The Bayesian method

estimates the unknown parameters by introducing prior distributions for them and

then uses the posterior distributions to perform inference.

We can classify the developed detectors in the interweave multiantenna CR lit-

erature into deterministic and Bayesian detectors. For the first category, the test

statistic can be based on energy [41], multivariate cyclostationary [73], eigenvalues of

the sample covariance matrix [45,79,86,87], or GLRT [16,50,90]. Bayesian detectors

has be proposed in [5,21,40,54]. In this work, we shall regard the Bayesian detection

for the spectrum sensing.
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1.5 Research Contribution

For the underlay CR paradigm, we have considered two scenarios: CSI for the SU-Tx

to PU-Rx link is not accurate, and CSI for SU-Tx to SU-Rx and SU-Tx to PU-Rx

links is not accurate. The contributions for the first scenario are as follows

• A precoder design without requiring CSI. The proposed design approach obtains

the maximum SU rate while maintaining the QoS for PU without coordination

between PU and SU and without channel estimation. The design exploits chan-

nel side-information usually broadcasted from PU to optimize the precoder. We

show that this precoder is asymptotically optimal as the number of antennas at

PU-Rx goes to infinity;

• A robust precoder design for SU with imprecise CSI modelled by the Schatten

norm deterministic uncertainty. The previous techniques such as the S-lemma

and differentiable Lagrange function are unable to handle the Schatten norm

uncertainty. We propose a new approach based on the Lagrange dual and Hölder

inequality to obtain a precoder using the IT metric for QoS. For the leakage

rate (LR) metric, we develop an iterative linearization method for the design

that ensures global convergence;

• The conditions on the amount of CSI uncertainty under which the robust design

of imprecise CSI will not perform better than the one without CSI, under the

IT metric.

The contributions for the second scenario are

• New algorithms for solving the CR problem, including the CC problem as well.

Most of the related works from the literature in robust optimization are for
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unconstrained maximin problems. A recent method took the interior-point

methods with semi-infinite programming iterative steps and subgradient descent

directions to address the constrained minimax problem. However, the iterative

algorithm is applicable for equality constrained minimax problems and requires

the functions in the equality constraints twice differentiable. Furthermore, it

assumes there is sufficient number of solutions at each iteration for the inner

non-concave maximization to obtain a descent direction;

• Most studies in the literature uses a specific norm, such as the spectral norm,

to define the CSI uncertainty set for simplifying the solution finding, and conse-

quently yielding a limited result to the problem. The work here uses the general

matrix norm called the Schatten norm that comprises a number of frequently

used matrix norms such as the spectral and Frobenious norms. We also do not

restrict the transmit power constraint to be on the total power. As a result the

proposed solution is more general and applicable to wider situations;

• Through the Lagrange dual and the Hölder inequality, we obtain a suboptimal

solution for the worst case direct link CSI uncertainty in the alternate-iterate

optimization process. This solution is more attractive than solving the con-

strained problem directly using the interior point methods, while maintaining

comparable performance from our observations;

• We derive the optimal structure of the CR precoder matrix when the uncertainty

sets are defined by the spectral norm and the transmit power requirement is

always fulfilled. Furthermore, we prove for the CC problem that the optimal

precoder has eigen-directions equal to those of the available CSI matrix for the
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uncertainty set defined by the Schatten norm, when the power set is unitarily-

invariant;

For the interweave CR paradigm, we assume that SU does not know CSI about

PU or noise signals other than their probability distribution. Our contribution for

this research problem is to use the fractional Bayes factor approach to produce a well-

defined Bayes factor when the priors are improper. We also propose a new class of

priors for the unknown parameters in the alternative hypothesis. Previous attempts

in the literature are limited to the conjugate priors or conventional priors such as

Jeffreys and g-priors. Furthermore, we have derived closed-form expressions for the

marginal likelihoods and the test statistic.

The materials of this dissertation are based on the following papers:

[1] M. H. Al-Ali and K. C. Ho, “Robust transmit precoding for underlay MIMO

cognitive radio with interference leakage rate limit,” in Proc. IEEE ICASSP, Shang-

hai, China, Mar. 2016, pp. 3001-3005.

[2] M. H. Al-Ali and K. C. Ho, “Transmit precoding in underlay MIMO cognitive

radio with unavailable or imperfect knowledge of primary interference channel,” IEEE

Trans. Wireless Commun., vol. 15, no. 8, pp. 5143-5155, Aug. 2016.

[3] M. H. Al-Ali and K. C. Ho, “Bayesian multi-antenna sensing in cognitive radio

networks using fractional Bayes factor,” in Proc. IEEE ICASSP, New Orleans, Mar.

2017.

[4] M. H. Al-Ali and K. C. Ho, “Precoding for MIMO channels in cognitive radio

networks with CSI uncertainties and for compound capacity,” under 2nd review, IEEE

Trans. Signal Process.
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1.6 Dissertation Organization

The subsequent chapters of the dissertation are organized as follows. In chapter

2, we design the SU precoder by maintaining the QoS of PU for either IT or LR

interference metric under unknown or imperfect CSI between SU-Tx and PU-Rx.

Chapter 3 considers CSI of the links from SU-Tx to SU-Rx and from SU-Tx to PU-

Rx is inaccurate. We design the worst case precoder matrix for the CR problem under

the schatten norm modelling for the uncertainty sets and a general convex power set.

Chapter 4 addresses the spectrum sensing problem such that there is no CSI about

the covariance matrices of the received signals. We follow the Bayesian philosophy

to marginalize the unknown parameters and derive the detectors. Finally, chapter 5

summarizes the dissertation and discusses some possible future directions to develop

the current work.
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Chapter 2

Transmit Precoding in Underlay
MIMO CR with Unavailable or
Imperfect Knowledge of Primary
Interference Channel

2.1 Introduction

This chapter addresses the problem of precoder design that maximizes the throughput

of an SU in an underlay MIMO CR network, where the CSI from the SU to the PU

is unavailable or inaccurate. The design maintains the QoS for the PU through an

interference amount measure in terms of the interference temperature or the leakage

rate. For the case of unknown CSI, we propose an iterative adaptation algorithm by

exploiting the side-information in the primary communication network. For the case

of imperfect CSI, we model the amount of uncertainty to be within a convex set defined

by the Schatten norm and apply the maximin optimization to obtain the solution. To
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complete the study in this chapter, we derive the conditions on the CSI uncertainty

radius under which the robust design with imperfect CSI would not perform better

than the one with unknown CSI, when using the interference temperature metric.

The proposed techniques are supported by numerical simulations.

2.1.1 Background

The precoding benefit offered by MIMO antennas in a CR network relies on the

availability of CSI for the connections from SU-Tx to SU-Rx and from SU-Tx to PU-

Rx. Perfect CSI knowledge enables optimal precoding to meet the QoS requirement

of PU by limiting the leakage power or leakage rate of the interference caused by

SU [32, 88]. The obtained CSI is often far from perfect in practice [28, 63, 112].

Channel estimation errors, limited or outdated feedback, and short coherence time of

the physical channels are among the main factors that cause imperfect CSI. SU-Tx is

not even able to acquire the CSI when there is no co-operation from the PU network

or when fast fading occurs [55]. These practical limitations make the design problem

very challenging. This chapter proposes solutions for the design of MIMO precoders

at the SU-Tx cognitive node that maximizes the throughput of SU while maintaining

the QoS of PU, under the situation in which the interference CSI from SU-Tx to

PU-Rx is unavailable or imperfect.

Although gaining more attention recently in CR, relatively few studies in literature

address the unknown CSI situation. When neither the interference channel nor its

distribution is accessible by the SU, Pei et al. [71] proposed a minimum rank precoding

design that achieves a target information rate for SU. However, this method has no

guarantee of the required QoS for PU.
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The uncertainty in CSI can be taken into account to improve the precoder design.

It can be modelled in a deterministic or stochastic form. The former assumes the

error is within some uncertainty set whose shape and size are known. The design

seeks the precoder that meets the stringent QoS of PU at the worst interference

scenario over all the CSI possibilities within the uncertainty set. The stochastic model

characterizes the uncertainty through a statistical distribution and the precoder is

obtained based on the outage probability [67,80,101]. Apart from the models, CSI can

appear instantaneous for slow fading, see [39,69,80,97,101] and [22,51,72,99,102,105],

or long-term [9, 43, 95, 98, 101] for fast fading propagation environment. The study

in this chapter uses the deterministic uncertainty model, and the proposed design is

applicable for instantaneous or long-term CSI.

The approach for the precoder design under the worst case scenario of determin-

istic CSI uncertainty is mostly based on robust beamforming technique developed in

the signal processing community [22,43,51,72,95,97,98,105]. Due to the intractability

caused by placing the uncertainty set into the optimization problem, most studies use

approximations or relaxation along with SDP to obtain a solution [22, 39, 69, 72, 97].

Relatively few works focus on producing an equivalent and yet convex formulation of

the original problem to yield more accurate and less conservative solutions. Among

them, [51, 105] used the S-procedure and [43, 95, 98] utilized the Lagrange duality to

obtain the equivalent formulations. They have limited applicability where the former

is for the Euclidean norm and the latter the Frobenius and trace norms uncertainty

sets. The study here provides an accurate design without limiting to a certain norm

uncertainty set through the Schatten norm formulation.
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2.1.2 Chapter Organization

This chapter is organized as follows. The system model and problem formulation are

introduced in Section 2.2, where the interference metrics, objective function along

with the constraints are discussed. Section 2.3 develops the precoder solution when

no CSI is available, derives a lower bound for the SU rate performance without CSI,

and analyzes its asymptotic performance. Section 2.4 provides the design for the

robust precoder using imprecise CSI. Section 2.5 derives the conditions such that

the robust solution with partial CSI will not be better than the other without CSI.

Section 2.6 contains the simulation results. Section 2.7 is the conclusion and Section

2.8 illustrates the derivations developed in this chapter.

2.2 System Model and Problem Formulation

2.2.1 System Model

We shall begin our development with a scenario containing two transmit-receive pairs

as shown in Figure 2.1, one for the PU and the other for the SU network. The PU

pair has precedence of the spectrum resources and the SU pair seeks to communicate

over the same physical resources by exploiting the underlay CR paradigm. The PU

pair has Mp transmit and Np receive antennas, and the MIMO channel is denoted

by Hp ∈ CNp×Mp . Similarly, the MIMO channel for SU is Hs ∈ CNs×Ms with Ms

transmit and Ns receive antennas.

To simplify the illustration, we assume the transmission of each user is point-

to-point over narrowband flat fading channels. Let xs(n) ∈ CMs be the zero-mean
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transmitted data vector of SU at time n. The observed signal at SU-Rx is

ys(n) = Hs(n)xs(n) + zs(n) (2.1)

where zs(n) ∼ CN (0, σ2
sINs) is the additive noise of power σ2

s . The time index is

added to the channel to signify it is time-varying.

We shall follow [19,56] and assume the interference caused by PU on SU is negli-

gible. If the interference from PU to SU is significant, the developments and precoder

designs in this chapter remain valid by replacing the SU communication channel Hs

with one that contains the equivalent interference effect as detailed after (2). On the

other hand, the presence of SU creates non-negligible interference to PU through the

channel Gs ∈ CNp×Ms giving the interference Gs(n)xs(n). The interference should be

kept to a certain level to maintain the QoS of the PU.

The development here is focused on the SU where Hs is known while Gs is un-

available or partially known to SU-Tx. The objective is to seek a linear precoder

T ∈ CMs×r that applies to the data streams of SU, s(n) ∈ Cr×1, to form the transmit

vector xs(n) = Ts(n) such that it will not violate the QoS of PU while the throughput

of SU is maximized. The transmitted signal xs(n) is modelled by a zero-mean complex

Gaussian distribution. The design of the linear precoder is equivalent to determining

the covariance matrix or codebook Qs = E
[
xs(n)x†s(n)

]
, where Qs = TT† [88]. The

codebook should satisfy the power constraint Tr(Qs) ≤ PT , where PT is the maximum

allowable transmission power of SU-Tx.
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Figure 2.1: An underlay CR user (SU) coexists with a single PU where the transmit-
ter and receiver of each user have multiple antennas. The notations of the various
channels are shown.

2.2.2 Design Objective

We shall use an information-theoretic criterion to design Qs by maximizing the mutual

information of SU. Under the Gaussian transmitted signal model, it is given by [88]

Cs(Qs) = log |INs + HsQsH
†
s/σ

2
s | (nats/s/Hz) . (2.2)

Cs(Qs) is called the rate of SU for the rest of the chapter. In (2), we can include

the interference from PU to SU by replacing Hs with H̃s = σsR
−1/2
S Hs if it is not

negligible, where R
−1/2
S is the matrix square root of RS. The matrix RS is defined as

RS
∆
= σ2

sINs + GpQpG
†
p, where Gp ∈ CNs×Mp is the interference channel from PU-Tx

to SU-Rx and Qp is the precoder used by PU.

We shall use Γ(Qs,RG) to denote the interference measure at SU-Tx for the

purpose to maintain the QoS of PU. Apart from the precoder Qs, it also depends on

the covariance matrix RG, where for slow fading environments [51,89,99,102,105] and

fast fading propagations [9, 43, 95, 98] it is defined respectively as RG = G†sGs and

RG = E
[
G†sGs

]
. The function Γ(Qs,RG) can appear in several forms as described

below.

23



IT Metric: The interference measure using the IT metric is [32,88],

Γ(Qs,RG) = Tr (RGQs)− IT (2.3)

where IT is the maximum interference level allowed at the receiver.

LR Metric: It has been shown by Monte Carlo simulations [71] that the leakage

rate of the interference link between SU-Tx and PU-Rx could be a better measure

of the QoS for PU than IT which is essentially the leakage power. That is, instead

of considering the power of the quantity RGQs we assess its information rate. We

define the LR metric as

Γ(Qs,RG) = log |σ2
pIMs + R

1/2
G QsR

1/2
G | −RL . (2.4)

The first term on the right side of (2.4) is the interference leakage rate encountered

by PU and RL is the maximum interference leakage rate at PU-Rx. σ2
p is the power

of the Gaussian IID noise at PU-Rx and R
1/2
G is the matrix square root of RG.

Let us define for simplicity the set of all feasible values of Qs to be

Q = {Qs : Qs � 0,Tr(Qs) ≤ PT} . (2.5)

In mathematical form, the problem we would like to address is

(P1): max.
Qs∈Q

Cs(Qs) (2.6a)

s.t. Γ(Qs,RG) ≤ 0 . (2.6b)

The problem P1 is convex in Qs under the IT metric, and it is not when the LR
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metric (2.4) is used in (2.6b).

2.2.3 Interference CSI

If RG is perfectly known at SU-Tx, obtaining the solution to the problem P1 is

straightforward by using a numerical SDP optimization package such as CVX [34].

Indeed, for interference-limited systems where Tr(Qs) ≤ PT is inactive the optimal

rate of SU from P1 under the IT metric has an algebraic form as derived in Appendix

2.8.1. The work in [88] derived closed-form solutions that are optimal when both

PU-Rx and SU-Rx have a single antenna only, i.e., Np = Ns = 1.

Due to the practical limitation that the PU and SU networks are seldom coordi-

nated or have limited interaction, the CSI is often inaccurate and we shall model the

available R̂G as

RG = R̂G + ∆RG . (2.7)

In (2.7), ∆RG ∈ HMs represents the CSI uncertainty. Obviously, obtaining the trans-

mit precoder using P1 by pretending R̂G as the true value will not guarantee (2.6b)

is fulfilled.

This chapter considers two cases about the interference CSI. The first case is that

R̂G is not available at SU-Tx and we propose a new algorithm to solve P1. The second

case is when an estimate R̂G is available [28, 63, 112], and we take into account the

uncertainty ∆RG to derive a robust solution. In particular, we model the uncertainty

within a certain set and optimize P1 based on the worst case concept [22,69,72,97,105]

to reach a robust solution.

The precoder design without using interference CSI is suitable for use in FDD
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systems with slow fading situation in general. The robust design precoder using

inaccurate CSI is applicable to both FDD and TDD systems and can be applied to

fast or slow fading scenarios.

2.3 Unavailable CSI scenario

This section addresses the SU precoder design in the situation where the interference

channel covariance matrix RG is not available at SU-Tx. We shall propose an alter-

native formulation to P1 through the adaptation of the available power and rank of

the precoder at SU such that the QoS for PU is maintained. The proposed solution

assumes the availability of some side-information in the primary network to indicate

if the PU transmission is successful. Such side-information can be easily assessable

in modern communication systems as will be elaborated.

2.3.1 Proposed Solution

It is not possible to obtain the optimal precoder for P1 by a typical numerical op-

timization algorithm without knowing RG that appears in (2.6b). An alternative to

the algebraic evaluation of (2.6b) is to examine if the PU transmission is successful

when SU is operating with a certain precoder. This seems impractical since there are

infinitely number of possible choices for Qs in Q, and many of them could harm the

PU transmission. We shall propose a suboptimal solution for Qs by limiting it to a

certain structure so that the evaluation of (2.6b) through transmission is kept to a

reasonable level.

Let us denote RH = H†sHs that has a rank d = min(Ms, Ns) and eigenvalue
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decomposition (EVD) UHsΛHsU
†
Hs

, where UHs ∈ CMs×d is a unitary matrix and the

diagonal matrix ΛHs has the eigenvalues arranged in non-increasing order. In the

absence of the QoS constraint (2.6b), it is direct to show that the optimum precoder

Q̄s of P1 follows the waterfilling solution

Q̄s = UHsΛ̄QsU
†
Hs

, Λ̄Qs = (ν−1Id − σ2
sΛ
−1
Hs

)+ (2.8)

where ν is the water-level chosen such that Tr (Λ̄Qs) = PT . The solution in (2.8)

would likely violate (2.6b) and a more conservative precoder is needed. The proposed

suboptimal precoder has a structure similar to that in (2.8), but with a rank r and a

certain transmission power P ,

Qs = UHs,rΛQsU
†
Hs,r

, ΛQs = (ν−1Ir − σ2
sΛ
−1
Hs,r

)+ (2.9)

where ΛHs,r is the upper left r×r block of ΛHs and contains the largest r eigenvalues

of RH, and UHs,r is the matrix with the corresponding eigenvectors. The water-level

ν in (2.9) is found from Tr (ΛQs) = P . When putting (2.9) into (2.2), the problem

P1 becomes

(P2): max.
P≤PT , r≤d

Cs = log |Ir + ΛHs,rΛQs/σ
2
s | (2.10a)

s.t. Γ (ΛQs ,RG,H) ≤ 0 , (2.10b)

where RG,H = U†Hs,r
RGUHs,r . The solution from P2 is dependent on the SU-Tx

power and the precoder rank as implicitly indicated in ΛQs and RG,H. Note that we

do not evaluate (2.10b) explicitly since RG is not known. We shall instead use the
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side-information associated with the PU transmission to test if the QoS requirement

is satisfied.

In this design, the precoder steers the SU signal in the directions of RH eigen-

vectors to maximize the SU rate while optimizing its power and rank to keep the

interference to PU to an acceptable level by maintaining (2.10b). The optimization

over the rank of Qs affects the spatial dimension of the interference, which translates

to limiting the interference to PU [68,71]. The proposed formulation and solution of

P2 are different from [71] that minimizes the rank at a preselected SU rate without

considering PU QoS and from [68] that solves the feasibility problem for interference

alignment. Moreover, our work is different from [63] that learns iteratively the null

space of RG by observing the transmitted power of PU-Tx, it also requires the number

of deployed antennas at SU-Tx and PU-Rx are different.

The proposed problem P2 has lower complexity than the matrix optimization

problem in P1 as it enables optimization with respect to two scalars only. Conse-

quently, we limit the interference induced on PU-Rx by adapting the power and rank

of the precoder starting with increasing values during optimization of the rate of SU.

The proposed solution for P2 meets (2.10b) through the use of the side-information

from PU [63,85,106] that indicates PU’s transmission performance. The operation of

P2 depends on the form side-information is present in the primary network.

Continuous transmission: This approach requires PU-Rx to be able to broadcast

an alert signal when the transmission quality is not acceptable (implying interference

measure Γ(ΛQs ,RG,H) is positive). It also requires SU-Tx to initiate its transmission

with a unit rank solution, i.e., beamforming, along with a precoder of low power.

The power can be gradually increased as long as the QoS of PU is not violated.
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This process can be repeated for higher rank solutions until r = d or the SU rate

improvement due to rank increasing is not significant. Similar concept of power

adaptation scheme has been used in [63].

Packet transmission: For packet network with ACK/NAK signaling, outage caused

by interference can be tolerated as long as it is below a certain percentage. The QoS

requirement (2.10b) is maintained so long as the amount of outage caused by SU-Tx

does not exceed that percentage limit.

The algorithm for optimizing P2 under continuous transmission is summarized

in Algorithm 1. In step 2 the algorithm evaluates Λ
(k)
Qs

in P2 at the kth iteration.

Whenever the SU rate obtained from (2.10a) at Λ
(k)
Qs

is larger than some value Ro,

construct the precoding matrix T based on Q
(k)
s in step 3 and generate the precoded

data xs(n) = Ts(n) for transmission in step 4, where n is the time sample count

local to a transmission cycle. Next, update Ro as long as the constraint (2.10b) is not

violated at the given rank. We should notice that during the optimization process

SU transmits data signals using different T only when the calculated rate at the k

iteration is larger than the previous best rate Ro. Once the maximum rate from P2 is

achieved, the corresponding precoder solution is Q∗s. The SU continues sending data

using Q∗s as long as Gs remains the same. We shall only need to adapt the rank and

power near those for the solution found previously if Gs varies gradually.

In Algorithm 1, we can adjust the step size of the search in the loop over power to

improve the resolution of the power value. Alternatively, it would be more efficient

to apply a coarse search in the loop over power and followed with the bi-section

technique to reach a fine resolution. Let Po be the lower limit of the power of Qs,

µ be the coarse step-size and ν be the desired resolution of the power. Typically µ
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is much larger than ν. The total number of iterations to reach the power level value

at a given rank is no more than d(PT − Po)/µ+ log2(µ/ν) + 1e. In addition to the

bi-section method, we can step from the initial power Po to PT using a grid search

with an adaptive step size that can be set according to the channel coherence time

or the side-information broadcast interval.

Algorithm 1 Iterative algorithm for solving P2

Initialization: Set the minimum SU power Po and counter k = 0
Requirement: PT , d, IT or RL

For r = 1, · · · , d
For P = Po, · · · , PT
1. k = k + 1.
2. Compute Λ

(k)
Qs

from (2.9) and C
(k)
s from (2.10a).

If C
(k)
s > Ro

3. Obtain Q
(k)
s from (2.9) and construct T.

4. Transmit xs(n) = Ts(n) over n in a transmission cycle.
If PU transmission acceptable (no alert over the cycle)

5. Set Ro = C
(k)
s and Q∗s = Q

(k)
s .

Else
6. Break updating the power.

EndIf
EndIf
EndFor

EndFor

2.3.2 Solution Analysis

We would like to find an algebraic lower bound for the maximum rate obtained from

P2 in which the CSI is not known. To simplify the illustration and gain insight the

analysis is restricted to interference-limited systems in which the power constraint

Tr(Qs) ≤ PT is inactive.

Proposition 1: The rate of SU achieved from P2 has a lower bound that corre-
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sponds to the solution when replacing the constraint (2.10b) by

Tr (ΛRG,r
ΛQs) ≤ ITL (2.11)

where r is the rank of Qs, ΛRG,r is a diagonal matrix that contains the largest r

eigenvalues of RG, and ITL is a constant that can refer to the IT or LR metric limit,

i.e., IT or RL. The associated optimization problem can be solved numerically.

Proof: Please see Appendix 2.8.2. �

The lower bound provides a guarantee of the SU rate achievable when using the

proposed design from P2.

We have further investigated the asymptotic performance of the solution from P2

as Np →∞. The main result is summarized in the following proposition.

Proposition 2: The solution of P2 can yield a performance approaching that of

P1 as the number of antennas at PU-Rx tends to infinity.

Proof: Please see Appendix 2.8.3. �

The performance in such a case will be the same as when the SU-Tx to PU-Rx

CSI is exactly known.

2.4 Inaccurate CSI

We assume that an inaccurate copy of the channel covariance matrix R̂G is available

and according to (2.7) it is different from the actual by ∆RG
∆
= RG − R̂G. Let the

feasible set to which ∆RG belongs be

U = {∆RG : ∆RG ∈ ξ, R̂G + ∆RG � 0} (2.12)
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where ξ is the uncertainty set to be defined. The design seeks the worst uncertainty

matrix that gives the largest interference measure Γ (Qs,RG) when solving P1, i.e.,

the maximin solution [18]. The problem P1 becomes

(P3): max.
Qs∈Q

Cs(Qs) (2.13a)

s.t. Γmax ≤ 0 (2.13b)

where Γmax corresponds to the value of the following optimization subproblem

max.
∆RG∈U

Γ
(
Qs, R̂G + ∆RG

)
. (2.14)

Before continuing our proposed solution further, let us elaborate on the uncertainty

set since it affects the solution of the worst ∆RG.

2.4.1 Modelling the Uncertainty Set

It is common in literature to define the uncertainty set ξ using some matrix norms

[9, 51, 69, 89, 95, 99, 105], see in particular [99] and the references therein. Instead of

dealing with each norm one by one, we follow [102] and use the Schatten norm ‖.‖Sp

of certain order p to define the uncertainty set. The Schatten norm is defined as

follows

Definition 1 [13, Proposition 9.2.3]: Let W ∈ Cn×m be a matrix whose ith singular

value is σi ∈ R+, i = 1, 2, · · · ,min(n,m). The maximum singular value is denoted by
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σ1. The Schatten norm of W is

‖W‖Sp =


(∑min(n,m)

i=1 σpi

)1/p

, 1 ≤ p <∞

σ1, p =∞ .

(2.15)

It is easy to verify that by choosing p equal to 1, 2, or ∞ the Schatten norm

becomes the Nuclear norm that characterizes the uncertainty in the matrix rank, the

Frobenius norm that limits the error power or the Spectral norm that defines the

eigenmode uncertainty [102].

The uncertainty set ξSp for the channel covariance matrix under the Schatten

p-norm is

ξSp = {∆RG : ‖∆RG‖Sp ≤ ε} (2.16)

where ε is the uncertainty radius. It is straightforward to verify that

‖∆RG‖S∞ ≤ ‖∆RG‖Sq ≤ ‖∆RG‖Sp ≤ ‖∆RG‖S1 (2.17)

for 1 ≤ p ≤ q ≤ ∞.

The following two subsections give the general framework to solve the subproblem

in (2.14) for the two interference metrics IT and LR.
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2.4.2 Robust Solution for IT Metric

At a given Qs and using (2.3) along with (2.16), (2.14) becomes

(P3-I): max.
∆RG

Tr
(

(R̂G + ∆RG)Qs

)
− IT (2.18a)

s.t. ∆RG ∈ U . (2.18b)

The above subproblem is convex in ∆RG. We shall provide a new solution to P3-I

based on the Schatten p-norm and the Lagrange dual of P3-I. The Lagrange dual

has been used before to solve a constrained problem [95, 98] and [43], but these

previous works are on different optimization objectives and their solutions apply to

the uncertainty sets modeled by the Frobenius and Nuclear norms only. Using the

Lagrange dual has the benefit of avoiding the evaluation of ∆RG explicitly for the

optimization.

Proposition 3: The subproblem P3-I can be compactly expressed in terms of its

Lagrange dual as

inf.
Y�0

Tr (R̂G(Qs + Y)) + ε‖Qs + Y‖Sq − IT (2.19)

where Y is a PSD matrix and 1/p+1/q = 1. The minimum of (2.19) is reached when

Y = 0.

Proof: Please see Appendix 2.8.4. �

Interestingly enough, Proposition 3 can be utilized for solving the problem of

robust transmit beamforming in a single- or multi-group multi-casting networks [43,

72,98] when redefining the variables. It can also yield the robust design solutions that

are derived from a different approach in [69] for coexisting a single antenna OFDM
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based SU in a PU network under the general ellipsoidal norm. Moreover, our proposed

solution encompasses the ones in [95,98] that account for the CSI uncertainty under

the Frobenius norm.

Since the minimum of (2.19) is achieved when Y = 0, we have

Γmax = Tr (R̂GQs) + ε‖Qs‖Sq − IT . (2.20)

Comparing with (2.3), the robust design uses the dual norm of the Schatten p-norm

scaled by the uncertainty radius to form the regularization term ε‖Qs‖Sq for ensuring

robustness. Indeed, one may infer from (2.17) that choosing the uncertainty set

defined by the Spectral norm ξ∞ results in the most conservative robust solution. In

this case we can rewrite (2.20) as

Γmax = Tr (R̃GQs)− IT , R̃G = R̂G + εIMs . (2.21)

The equivalent CSI covariance matrix R̃G has the same eigenvectors as the available

one but its eigenvalues are increased by the amount ε.

If the optimal precoder solution is of rank one, i.e., the transmission strategy is

simply beamforming, (2.20) is the same and the robust solution to P3 is identical

regardless of the choice of p in the Schatten norm CSI uncertainty. This indicates

that beamforming is robustly optimal for the various norms of uncertainty despite its

simplicity. Similar conclusion was also made in [102] when the objective function to

be optimized in (2.13a) is Tr
(
HsQsH

†
s

)
for Qs under the set Q only.

In general, solving P3 using (2.20) for the left side of (2.13b) is not a difficult

task by using a convex optimization software package. Nevertheless, for interference-

35



limited systems where the interference constraint (2.13b) dominates such that the

transmit power constraint (2.5) is inactive, the solution to P3 under (2.21) is in the

form of waterfilling, please see Appendix 2.8.5 for details.

2.4.3 Robust Solution Based Linearization for LR Metric

When using the LR interference metric defined in (2.4), (2.14) can be casted as

(P3-II): max.
∆RG

log |σ2
pIMs + (R̂G + ∆RG)1/2Qs(R̂G + ∆RG)1/2| −RL (2.22a)

s.t. ∆RG ∈ U . (2.22b)

Note that Qs is fixed and ∆RG is the variable in (2.22). The resulting Γmax for

(2.13b) after optimizing P3-II remains to be non-convex with respect to Qs and it

will be challenging to solve the problem (2.13). The proposed approach handles the

non-convexity by linearizing the log-det objective function in a local neighborhood

and tightening the LR requirement a little to enable a simple solution for ∆RG.

Stimulated by the application of log-det function as a smooth surrogate for the rank

function [27], we use a local minimization approach [23]. From [13, Proposition 8.6.13]

and the fact that log(x) for x > 0 is an increasing function, we can deduce that the

log-det function is strictly increasing with respect to Qs and as such a local linear

approximation will represent its upper bound, which is achievable when the solution

is reached.

The linear approximation of the objective function by the first-order Taylor series
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expansion at a certain Q
(l)
s , where l is the iteration index, is

log |σ2
pIMs + R

1/2
G QsR

1/2
G | ≈ log |σ2

pIMs + R
1/2
G Q(l)

s R
1/2
G |+ Tr (A(l)(Qs −Q(l)

s )) ,

(2.23a)

A(l) = R
1/2
G (σ2

pIMs + R
1/2
G Q(l)

s R
1/2
G )−1R

1/2
G (2.23b)

where RG = R̂G + ∆RG. Substituting (2.23a) into (2.22a) gives

max.
∆RG

Tr (A(l)Qs)−R(l)
L (2.24)

where

R
(l)
L = RL − log |σ2

pIMs + R
1/2
G Q(l)

s R
1/2
G |+ Tr (A(l)Q(l)

s ) . (2.25)

Replacing (2.22a) by (2.24) makes the optimization of P3 easier to handle with respect

to Qs. However, finding the value of (2.24) under U remains challenging.

To proceed further, let us notice that the true CSI matrix, RG, is upper bounded

by

R̃G = R̂G + εIMs . (2.26)

This can be shown by realizing that R̃G −RG = εIMs −∆RG is Hermitian and has

non-negative eigenvalues and hence PSD, since the maximum eigenvalue of ∆RG is

no larger than ε under the uncertainty defined by (2.16). Thus (2.24) is ensured to

be non-positive when

Γ̃(l)
max = Tr (Ã(l)Qs)− R̃(l)

L (2.27)

is non-positive, where Ã(l) and R̃
(l)
L are given in (2.23b) and (2.25) with RG replaced
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by R̃G defined in (2.26). Thus P3 becomes solvable by some SDP package after using

Γ̃
(l)
max as Γmax in (2.13b). If we start with Q

(1)
s = 0, the first iteration of (2.27) has a

similar expression as (2.21) provided that σ2
p = 1. However, as l increases the value

of (2.27) approaches 0, causing reduction in the rate of SU. Let

Csp(Qs) = log |σ2
pIMs + R̃

1/2
G QsR̃

1/2
G | . (2.28)

Algorithm 2 summarizes the required steps to solve P3 under the LR metric. The

algorithm happens off-line in the SU-Tx processing unit.

If the power constraint in (2.5) is inactive, it can be verified that the solution

of P3 with the LR metric follows the waterfilling power allocation strategy at each

iteration (see Appendix 2.8.5).

In Section 2.4.4, we shall propose another precoder design method when the

interference-to-noise ratio (INR) is low.

Algorithm 2 Iterative robust solution for P3 under the LR metric

Initialization: Setting Q
(1)
s = γIMs counter l = 0, γ ≈ 0 [27], and obtaining

Csp(Q
(1)
s )

Requirement: PT , RL, ε, and rate accuracy θ
Repeat
1. l = l + 1.
2. Evaluate Ã(l) using (2.23b) and R̃

(l)
L using (2.25) by replacing RG with R̃G

defined in (2.26).

3. Obtain Γ̃
(l)
max from (2.27).

4. Solve P3 by setting Γmax = Γ̃
(l)
max and obtain Q

(l+1)
s .

5. Compute Csp(Q
(l+1)
s ) using (2.28).

Until |Csp(Q(l+1)
s )− Csp(Q(l)

s )| ≤ θ
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2.4.4 Robust Solution at Low INR for LR Metric

We shall provide another tractable formulation for the optimization subproblem in

the left side of (2.4). The LR metric can be expanded as

Γ(Qs,RG) =
1

σ2
p

Tr (RGQs) + o

(
1

σ2
p

‖R1/2
G QsR

1/2
G ‖

)
−RL (2.29)

where ‖ · ‖ is a norm measure [99]. We shall define INR at PU-Rx as Tr (RGQs)/σ
2
p.

At low INR regimes where INR ≤ 0 dB, the second term on the right side of (2.29)

can be ignored. Hence, for a given precoder Qs and under low INR condition, the left

side of the interference constraint (2.4) can be casted into the following subproblem

(P3-III): max.
∆RG

Tr

(
1

σ2
p

(R̂G + ∆RG)Qs

)
−RL (2.30)

s.t. ‖∆RG‖Sp ≤ ε (2.31)

R̂G + ∆RG � 0 . (2.32)

The problem P3-III has a similar format to P3-I and hence we can use Proposition 3

to find the optimal solution for (2.30).

2.5 Selection Between Unavailable and Inaccurate

CSI Solutions

We have developed two solutions for the precoder matrix, one corresponds to the

unavailable CSI situation P2 and the other the inaccurate CSI situation P3. Both

designs have lower performance than the case when the CSI of the interference channel
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is exactly known. However, their relative performance depends on how large the

uncertainty radius ε is. While it is anticipated that the P3 design would always

yield better SU rate than P2, we shall show that this is not necessarily the case. In

particular, we are going to find the range of the uncertainty radius at which the robust

design from P3 is guaranteed to be worse than the CSI absent solution from P2 for the

IT metric. Two conditions on it will be derived, one is for the SU rate that is sufficient

and the other is for the SU power that is exact. Since the conditions we are going

to determine are sufficient or exact, it will ensure that there will be no degradation

in, indeed there will be better, performance when we switch from the P3 precoder to

the P2 precoder. We would like to clarify that some side-information regarding the

successful transmission in the PU is still needed to obtain the P2 precoder solution.

2.5.1 Condition for the Rate of SU

We would like to determine the sufficient condition of the uncertainty radius ε at

which the rate resulted from the robust design P3 is going to be no better than that

from the design P2 under the IT metric.

The rate achievable from the proposed solution of P2, denoted R∗s, is guaranteed
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to be larger than that of P3, represented by Cs(Q
o
s), if

Cs(Q
o
s) =E

[
log
(
1 + λ1(RHQo

s)/σ
2
s

)]
+
∑d

i=2
E
[
log
(
1 + λi(RHQo

s)/σ
2
s

)]︸ ︷︷ ︸
Rminor

(2.33a)

≤E
[
log
(
1 + λ1(RH)λ1(Qo

s)/σ
2
s

)]
+Rminor (2.33b)

≤E
[
log
(
1 + λ1(RH)‖Qo

s‖Sq/σ
2
s

)]
+Rminor (2.33c)

≤ log
(
1 + λ1(RH)E

[
‖Qo

s‖Sq

]
/σ2

s

)
+Rminor ≤ R∗s, (2.33d)

where the expectation is taken with respect to ∆RG and Qo
s is the optimal codebook

from P3. The inequality in (2.33b) comes from the fact that λ1(AB) ≤ λ1(A)λ1(B)

for Hermitian PSD n × n matrices A and B [13, Fact 8.19.17]. The inequality in

(2.33c) is from (2.17) and it is valid for q ∈ [1,∞] and we use Jensen’s inequality to

obtain (2.33d). The constraint (2.13b) is active at the optimum, and based on (2.20)

it becomes

Tr (R̂GQo
s) + ε‖Qo

s‖Sq = IT . (2.34)

Hence, substituting (2.34) into (2.33d) and solving give explicitly the sufficient con-

dition for uncertainty radius:

ε ≥ ε∗R =
λ1(RH)(IT − E[Tr (R̂GQo

s)])

σ2
s [e

(R∗s−Rminor) − 1]
. (2.35)

A valid value of ε∗R requires both the numerator and the denominator be positive,

which implies that IT > E[Tr (R̂GQo
s)] and R∗s > Rminor.

The expectations in (2.35) and Rminor defined in the second term of (2.33a) need
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to be computed numerically since they do not have analytical explicit expressions.

2.5.2 Condition for the Power of SU

We are interested in obtaining the condition in which the power of the robust precoder,

P o
T , is not going to be larger than that of the CSI absent precoder, P ∗T . The main

result of this subsection is summarized in the following proposition.

Proposition 4: The exact condition for uncertainty radius at which the power

E [P o
T ] from P3 is not larger than P ∗T from P2 is

ε ≥ ε∗P = E
[
(IT − Tr (R̂GQo

s)) Tr (Qo
s)/(P

∗
T‖Qo

s‖Sq)
]

(2.36)

for q ∈ [1,∞], where the expectation is taken over ∆RG which can be evaluated

numerically.

Proof: For any uncertainty set with p ∈ [1,∞], P o
T = Tr (Qo

s) can be found from

(2.13b) when Γmax has the value in (2.20). Hence when P o
T ≤ P ∗T , (2.36) is established.

�

Although the bounding value in (2.35) is more computationally complex than that

in (2.36), the two conditions correspond to different operating requirements of SU.

Specifically, SU may use the former if the rate is of primary interest, otherwise it can

use the latter.

We should emphasize that (2.35) and (2.36) are the sufficient and exact conditions

on the CSI uncertainty radius for the precoder of P3 performing worse than that

of P2 and consequently we can ignore the imprecise CSI information. Thus, we

would not expect to have any performance degeneration, indeed would have better
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performance, when SU switches its operation from P3 to P2 when those conditions are

met. In practice, the critical value ε∗R in (2.35) or ε∗P in (2.36) is computed numerically.

During transmission, SU-Tx compares the uncertainty radius ε with them to see if

the conditions are satisfied to decide using the precoder from P2 instead.

2.6 Numerical Results

2.6.1 Results for IT and LR Metrics

We provide numerical simulations to examine the several precoder designs proposed in

this chapter. The total power limit of SU-Tx is PT = 20. For the channel matrices Hs

and Gs, the elements are independently drawn from a CSCG distribution with zero

mean and unit variance. The PSD inaccurate CSI matrix R̂G is generated through

R̂G = (Gs − δGs)
†(Gs − δGs) (2.37a)

= G†sGs︸ ︷︷ ︸
RG

− (δG†sGs + G†sδGs − δG†sδGs)︸ ︷︷ ︸
∆RG

(2.37b)

where δGs is the uncertainty whose elements are also drawn independently from a

zero mean circularly symmetric complex Gaussian (CSCG) distribution. The variance

is chosen so that the Schatten norm of the second term in (2.37b) is not larger than ε.

Note that we require ε < ‖RG‖Sp to ensure a valid R̂G and we set ε = w‖RG‖S∞ with

w ∈ (0, 1) [102]. The results presented are the average over several realizations of

Hs, RG, ∆RG or a combination of them to obtain the statistical meaningful results.

The value of Po and initial value for Ro in Algorithm 1 are set to be 0.01 and 10−3
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nats/s/Hz. The antenna settings for the SU and PU are Ms = Ns = 4 and Mp =

Np = 4. The noise levels σ2
s and σ2

p are set to unity.

We first examine the behavior of the proposed precoder when no CSI is available

from Algorithm 1, where the IT metric is used. We also include the precoder design

from [71] for which we randomly select the target SU rate such that it satisfies the

required IT for PU. The results shown are the averages over 100 independent realiza-

tions of Hs and Gs. Figure 2.2 indicates that the SU rate of the proposed precoder

(shown in solid line) follows the trend as in the perfect CSI case when solving (2.6)

(shown in asterisk-symbol) as the interference limit (power) IT increases. Using the

studies in Section 2.3.2, the lower bound of the SU rate from the proposed algorithm

is shown with plus-symbol. There is obvious advantage of the proposed design com-

pared to the design from [71] (shown in triangle-symbol) in improving the rate. The

design in [71] requires a line search, such as bi-section, for each rank r ≤ d. Our pro-

posed design as shown in Algorithm 1 needs a similar line search in each transmission

cycle and therefore is more computationally demanding.

We have examined in Figure 2.3 the performance of the proposed algorithm, Algo-

rithm 1, under the situation of time-varying interference channel Gs using the model

from [107] where each element of the channel follows a Rayleigh distribution. With

the same antenna settings as in Figure 2.2, Po = 0.01, 10 log10(IT ) = 0, µ = 9.995, and

ν = 10−3, the degradation of the SU rate is about 4% at 20 Hz Doppler frequency when

the side-information is broadcasted at every 0.01 msec. The degradation increases to

21% when the broadcast interval becomes 0.1 msec. The percentage degradation is

insensitive to IT .

We next examine the performance of the proposed robust precoders with imperfect
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and Mp = Np = 4. The results are obtained from 100 realizations of Hs and RG.
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CSI along with the one corresponds to unavailable CSI for the IT as well as LR metric.

Figure 2.4 shows the achieved rate for SU at different values of the IT metric limit

IT . The uncertainty radius ε is set with w = 0.1, i.e., ‖∆RG‖Sp ≤ 0.1‖RG‖S∞ . The

channel Gs is a single realization and is held fixed. We show the result for p = 2 in the

Schatten norm using the proposed design from Section 2.4.2. For comparison purpose

we also include the design from [22] that uses the Forbenious norm, i.e., p = 2, to

model the CSI uncertainty. The results shown are averaged over 100 independent

realizations of Hs and ∆RG. As expected, the SU rate for the robust design with

imperfect CSI lies between the perfect CSI and the unknown CSI cases. The proposed

robust design with p = 2 has better performance than the one from [22]. The work

of [22] addresses the design for the CSI uncertainty defined by the Frobenius norm

and uses the spectral norm as an upper bound to obtain a suboptimal solution. Both

design methods may produce similar solutions in the special case where Qs has unity

rank. These designs belong to the class of determinant maximization with linear

matrix inequality (LMI) constraints that can be efficiently solved using the interior-

point method [18]. Given Ms transmit antennas in SU, the proposed algorithm with

p = 2 has computational complexity in terms of the number of Newton steps [96] as

O(
√

4Ms), while that of [17] is O(
√

3Ms).

Figure 2.5 illustrates the results when the LR metric is used where the simulation

setting is the same as that in Figure 2.4. The robust solution is obtained using

Algorithm 2. Corresponding to the results in Figure 2.5, Table 2.1 shows the average

number of iterations required for Algorithm 2 to converge at different rate limit RL

and SU rate resolution θ, where w = 0.1. It achieves better performance than the

unknown CSI case as expected. We do not have the results from [22] for using the
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Figure 2.4: Rates for SU versus IT for the IT metric, Ms = Ns = 4 and Mp = Np = 4.
The results are generated by the average of 100 realizations for Hs and ∆RG with
w = 0.1 at a given Gs.

LR metric since it is for the IT metric only. In both Figure 2.4 and Figure 2.5, the

differences in the SU rates between the robust and the unknown CSI solutions will be

larger if w is smaller. In addition, when the interference limit IT or RL becomes too

large, the interference constraint of problems P1 to P3 would become inactive. As

such, the power constraint would dominate performance, yielding comparable results

for the perfect, imperfect, or unknown CSI solutions.

To gain some insight on the difference between the two interference metrics on

PU when they are active, Figure 2.6 depicts the leakage rate for PU at different

achievable rate values of SU for the same settings as that in Figure 2.4. The results

of the proposed robust design for different p values have similar trend and only the

one with p = 2 is shown. In general, one can notice for a certain rate of SU the

corresponding leakage rate for PU due to the leakage metric is smaller, which is
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more obvious for the imperfect CSI case or larger rate of SU. From the throughput

perspective, the leakage metric has less impact on PU while the IT metric is more

beneficial to SU. Also, the more uncertain is the interference CSI the higher the leak

in the rate for PU.

Lastly, we investigate the performance of the robust precoder as the uncertainty

radius increases at different p values. Figures 2.7 and 2.8 illustrate the achieved rate

and power for SU at different values of the normalized uncertainty radius w. The

settings are 10 log10(IT ) = 0, Ms = Mp = 5 and Ns = Np = 4. As expected the

performance of the robust solutions starts at the same values as the perfect CSI case,

it then deteriorates as w (or ε) increases and eventually becomes worse than the

performance of the unknown CSI case. Due to the large uncertainty region of ξS∞ it

has the largest performance degradation compared to the other norms while ξS1 yields

the smallest degradation. The cross-over point between imperfect and unknown CSI

cases can be viewed as the critical rate (or power) for the robust solution beyond

which the available imperfect CSI is not useful.

Let the actual ε at which the cross-over occurs in the rate case be denoted as ε̊R.

Table 2.2 summarizes ε̊R at different SU noise power 10 log10(σ2
s) for p = 1, 2, and∞.

They are obtained using the same IT value and antenna setting as in Figure 2.7, where

Hs and RG are created randomly at particular realizations and the averaging is over

∆RG. The ε̊R value is small at high noise power, implying that very accurate CSI

is needed for the robust solution of P3 to be better than the unknown CSI solution

of P2. Also listed are the boundary ε∗R values from the sufficient condition (2.35) at

which the robust design P3 is not better than the P2 solution. The ε∗R values match

with the actual cross-over points ε̊R very well for p = 1, as can be seen from the
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Figure 2.5: Rates for SU versus RL for the LR metric, Ms = Ns = 4 and Mp = Np = 4.
The results are generated by the average of 100 realizations for Hs and ∆RG with
w = 0.1 at a randomly generated Gs.

relative deviations. The deviations are larger for the other p values. Table 2.3 shows

the critical uncertainty radius ε∗P values for the power case evaluated from (2.36) at

different noise power for p = 1, 2, and ∞. We have verified that they are the values

obtained from the simulations.

Table 2.1: The average number of iterations for Algorithm 2 to converge at a certain
leakage rate limit RL and rate resolution θ

LR limit RL = 1 RL = 2 RL = 3 RL = 4

dNum. of Iterationse
θ = 10−3 5 6 6 6

θ = 10−5 8 14 19 21
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Table 2.2: The actual value ε̊R, the sufficient value ε∗R and its percent deviation at
different levels of the noise power σ2

s

10log10 σ
2
s -10 -5 0 5 10

p = 1

ε̊R 2.816 2.0158 1.417 0.886 0.6033

ε∗R 2.8544 2.0503 1.4459 0.9084 0.6121

% dev. ε∗R 1.3613 1.7101 2.036 2.5273 1.4549

p = 2

ε̊R 1.8796 1.4236 1.0256 0.624 0.5368

ε∗R 2.2536 1.679 1.1849 0.7528 0.57

% dev. ε∗R 19.8985 17.9377 15.5291 20.6358 6.1859

p =∞
ε̊R 1.2006 0.9986 0.7401 0.5427 0.4868

ε∗R 1.7217 1.3838 1.0186 0.6146 0.5132

% dev. ε∗R 43.4016 38.5786 37.636 13.2362 5.4091
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Table 2.3: The value ε∗P at different levels of the noise power σ2
s

10 log10 σ
2
s -10 -5 0 5 10

p = 1 ε∗P 2.022 2.1001 0.6195 0.6206 0.6236

p = 2 ε∗P 1.3872 1.4899 0.5655 0.5671 0.5699

p =∞ ε∗P 0.9675 1.0912 0.5075 0.5157 0.5369

2.6.2 Results for LR Metric

We shall model the power characteristics of Qs using a general convex set Qs as [66]

Qs = {Qs � 0 : Tr (Qs) ≤ PT , λmax(Qs) ≤ Pmax,

[Q]s,qq ≤ P ant
q , q = 1, · · · ,Ms} (2.38)

where Pmax is the maximum average power and P ant
q is the average power of the qth

antenna.

We shall provide some numerical simulations that illustrate the performance of

the proposed designs in Sections 2.4.3 and 2.4.4 for the LR metric. The antenna

settings for the SU and PU are Ms = Ns = 3 and Mp = Np = 6. The noise power

values are σ2
s = σ2

p = 1. The results shown are the averages over 1000 independent

realizations of Hs and Gs.

We first examine the performance of the precoder design under the low INR con-

dition presented in Section 2.4.4. The power settings in the set Qs are PT = σ2
p = 1,

Pmax = P ant
1 = 0.6, and P ant

q = 0.3 for q = 2, · · · ,Ms. Figure 2.9 shows the achieved

SU rate as the leakage rate limit RL in nats/s/Hz increases. The result when the

interference channel is perfectly known is shown as a reference. When the amount of

52



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
L
 (nats/s/Hz)

S
U

 R
at

e 
(n

at
s/

s/
H

z)

 

 

Perfect CSI
Imperfect CSI (p = 1)
Imperfect CSI (p = 2)
Imperfect CSI (p = ∞)

w = 0.4

w = 0.2

w = 0.6

w = 0.8

Figure 2.9: Rates for SU from the design using low INR approximation versus the
leakage rate limit RL. The results for imperfect interference CSI at p = 1, 2, and ∞
are shown. The settings of antennas are Ms = Ns = 3 and Mp = Np = 6. The results
are generated by the average of 1000 realizations for Hs and Gs for different values
of w.

uncertainty in interference CSI increases (increasing w), the performance is further

away from the perfect CSI scenario as expected. The reduction in performance seems

to be more sensitive at small uncertainty than large. With respect to different p

values for the Schatten norm used in defining the uncertainty set, the difference is

more obvious at large amount of uncertainty and high leakage rate limit.

Next, we look at the behavior of the precoder design using the iterative lineariza-

tion method summarized in Algorithm 2. The SU-Tx power settings are PT = 10,

Pmax = P ant
1 = 6, and P ant

q = 5 for q = 2, · · · ,Ms. Figure 2.10 illustrates the achieved

SU rate at different values of RL and several levels of the interference CSI uncertainty,

with the order of the Schatten norm for CSI uncertainty set fixed to p =∞. We also
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Figure 2.10: Rates for SU from the iterative linearization solution for different leakage
rate limit RL and amount of interference CSI uncertainty w. The results are generated
by the average of 1000 realizations for Hs and Gs. The settings for antennas are
Ms = Ns = 3 and Mp = Np = 6.

include the result when the interference CSI is perfectly known for reference purpose.

The proposed design yields a solution that follows very well with the ideal solution

with perfect CSI. Similar to Figure 2.9, higher amount of CSI uncertainty (increasing

w) would reduce the performance of SU.

Figure 2.11 illustrates the behavior of the SU rate for a given RL as the amount

of CSI uncertainty increases. The simulation setting is similar to that in Figure 2.10.

The SU rate is more sensitive to the CSI uncertainty level when it is smaller. The

SU rate increases with RL as expected.

The solution using the low INR approximation has similar complexity as the

algorithm in [22] for the uncertainty set defined by p = 2. At RL = 0.9 nats/s/Hz
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Figure 2.11: Rates for SU from the iterative linearization solution for different un-
certainty levels w = ε/‖RG‖S∞ and leakage rate limit RL. The results are generated
by the average of 1000 realizations for Hs and Gs. The settings for antennas are
Ms = Ns = 3 and Mp = Np = 6.

and w = 0.2 the computation time for the proposed algorithm is 1.5 times higher. The

required time for the iterative linearization approach is 6.5 times higher for θ = 10−4,

where the power settings are similar to that in Figure 2.9.

2.7 Conclusion

This chapter investigates the cognitive radio design of optimizing the rate for SU

equipped with MIMO antennas when the instantaneous or statistical CSI from SU-Tx

to PU-Rx is unavailable or imperfect, under the metric of interference temperature IT

or the leakage rate LR to ensure the QoS of PU. When no CSI is available an iterative
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adaptation algorithm is proposed that uses side-information in the primary network

for the guarantee of QoS in reaching a solution. For the imperfect CSI scenario, we

have utilized the maximin strategy to obtain a robust solution through the dual norm

of the Schatten norm that defines the amount of CSI uncertainty. Further, we have

shown that the leakage metric favors a higher rate for PU while the IT metric for

SU. In addition to the design solutions, we have evaluated a lower bound for the rate

of SU when the interference CSI is completely unavailable to the SU. We have also

completed the study by deriving the conditions on the uncertainty radius for which

the imperfect CSI solution is not better than the unavailable CSI one for the IT

metric. Computer simulations verified and supported the proposed techniques and

the theoretical developments.

2.8 Appendix

2.8.1 Optimal Solution of P1 with Perfect CSI

For interference-limited systems, the power constraint in P1 is inactive and can be

ignored. [113, Theorem 1] gives the general form of the optimal covariance matrix Q̆s

for P1, which is

Q̆s = R
−1/2
H UΣU†R

−1/2
H (2.39)

where RH = H†sHs is a full rank matrix, U ∈ CMs×Ms is a unitary matrix, and Σ

is an Ms ×Ms matrix whose diagonal entries are arranged in non-increasing order.

Furthermore, according to [113, Theorem 2] U is the eigenvectors matrix of the EVD

of R
−1/2
H RGR

−1/2
H = URΛRU†R, where the diagonal elements of ΛR are arranged in
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increasing order. Thus, P1 under the IT metric can be formulated to be

max.
Σ�0

log |IMs + Σ/σ2
s | (2.40a)

s.t. Tr (ΛRΣ) ≤ IT . (2.40b)

Accordingly, the ith diagonal element of Σ can be found using waterfilling as

Σ(i, i) =

(
1

βΛR(i, i)
− σ2

s

)+

(2.41)

where β is the water-level chosen such that (2.40b) is satisfied with equality. From

(2.40b) we can have a closed form expression for β,

IT =
r̆∑
j=1

Σ(j, j)ΛR(j, j) =
r̆∑
j=1

[(
1

βΛR(j, j)
− σ2

s

)
ΛR(j, j)

]
(2.42)

β =
r̆

IT + σ2
s

∑r̆
j=1 ΛR(j, j)

(2.43)

where (2.41) is used to get (2.42) and r̆ is the optimal rank. Plugging (2.43) in (2.41)

and substituting the result into (2.40a) yield the optimal rate C̆s

C̆s =
r̆∑
i=1

log

[
IT + σ2

s

∑r̆
j=1 ΛR(j, j)

r̆σ2
sΛR(i, i)

]
(2.44)

The optimal rank can be calculated by applying the following notion

r̆ = arg max
m

Σ(m,m) , (2.45)
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provided that r̆ > 0. Substituting (2.41) and (2.43) into (2.45) yields

r̆ = arg max
m

[
IT + σ2

s

∑m
j=1 ΛR(j, j)

mΛR(m,m)
− σ2

s

]
. (2.46)

2.8.2 Proof of Proposition 1

Lemma 1 [42]: Let A, B ∈ HN having eigenvalues γ1 ≥ · · · ≥ γN and δ1 ≥ · · · ≥ δN .

Then, Tr(AB) ≤
∑N

i=1 γiδi with the equality holds if A and B are diagonal.

For convenience, we first write (2.6b) using a unified expression for both IT and

LR metrics. Beginning from (2.4), the leakage rate metric is upper bounded by

log |σ2
pIMs + R

1/2
G QsR

1/2
G | −RL ≤ K log(σ2

p + Tr (RGQs)/K)−RL (2.47)

using the Jensen’s inequality, where K = min(Ms, Np). If we set the right side of

(2.47) to be no bigger than 0, i.e.,

Tr (RGQs) ≤ K(eRL/K − σ2
p) , (2.48)

(2.6b) will be guaranteed. From (2.48), we can obtain similar expression for the IT

metric.

Assume Qs has a rank r, then applying Lemma 1 on the left side of (2.48) gives

(2.11), where ITL represents either IT or the right side of (2.48). From the waterfilling

solution of ΛQs in (2.9), (2.11) can be written as

Tr (ΛRG,r
(ν−1Ir − σ2

sΛ
−1
Hs,r

)+) ≤ ITL , (2.49)
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where ΛRG,r
is assumed to be known, then P2 can be solved numerically under the

interference-limited scenario. The r value needs to be chosen such that ν achieves

(2.11) or (2.49) with equality.

The expressions in (2.10b) and (2.11) have to meet the same interference level ITL.

The constraint (2.11), however, is a sufficient condition for (2.10b) and would reduce

the feasible set of the solution. Thus, it becomes clear that the rate corresponding to

the precoder solution of P2 under (2.11) is no more than that from P2 under (2.10b).

2.8.3 Proof of Proposition 2

When the number of receiving antennas at PU-Rx Np grows large while Ms is being

fixed, we have from the asymptotic theory of complex Gaussian random matrix that

lim
Np→∞

G†sGs/Np = IMs . (2.50)

Using (2.50), the interference constraint (2.6b) in P1 is reduced to Tr(Qs) ≤ IT/Np

for the IT metric or log |σ2
pIMs + NpQs| ≤ RL for the LR one. Then the solution

of P1 under known Gs in Appendix 2.8.1 reduces to the one using the waterfilling

technique as described in (2.8) for P2. In such a scenario, P1 and P2 will yield the

same precoder solution and the P2 precoder is optimal.
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2.8.4 Proof of Proposition 3

Lemma 2 (Hölder inequality) [13, Proposition 9.1.6]: Let p, q ∈ [1,∞] such that

1/p+ 1/q = 1, and let a,b ∈ Cn with elements a1, · · · , an and b1, · · · , bn. Then,

|a†b| ≤ ‖a‖p‖b‖q, (2.51)

where ‖ · ‖p is the Hölder norm [13, Proposition 9.1.4]

‖a‖p =


(
∑n

i=1 |ai|p)
1/p

, 1 ≤ p <∞

max
i∈1,··· ,n

|ai|, p =∞ .

(2.52)

Equality in (2.51) holds if and only if



|ai||bi| = ‖b‖∞|ai|, p = 1,

|a1|1/q

|b1|1/p
= · · · = |an|

1/q

|bn|1/p
, 1 < p <∞,

|ai||bi| = ‖a‖∞|bi|, p =∞.

(2.53a)

(2.53b)

(2.53c)

We first rewrite P3-I as follows

max.
∆RG

Tr ((R̂G + ∆RG)Qs)− IT (2.54a)

s.t. ‖∆RG‖Sp ≤ ε (2.54b)

R̂G + ∆RG � 0 . (2.54c)

Then, we form the Lagrangian for P3-I and find the dual function G(·) as follows
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(ignore the constant IT )

G(Y, η) = sup.
∆RG∈HMs

Tr ((R̂G + ∆RG)Qs)− η(‖∆RG‖Sp − ε) + Tr((R̂G + ∆RG)Y)(2.55)

= sup.
∆RG∈HMs

L∆RG
+ Tr (R̂G(Qs + Y)) + ηε (2.56)

where η ≥ 0 and Y � 0 are the Lagrange multipliers associated with the constraints

(2.54b) and (2.54c) and L∆RG

∆
= Tr (∆RG(Qs + Y))−η‖∆RG‖Sp . To find the supre-

mum of L∆RG
in (2.56), let the EVDs of ∆RG and J

∆
= Qs + Y be U∆Λ∆U†∆ and

UJΛJU†J, respectively. Using Lemma 1, we obtain

sup.
∆RG∈HMs

L∆RG
= sup.

Λ∆

Tr (Λ∆ΛJ)− η‖Λ∆‖Sp (2.57)

since Tr(∆RGJ) ≤ Tr(Λ∆ΛJ) and equality is achieved when U∆ = UJ.

Next let LΛ∆
= Tr (Λ∆ΛJ)− η‖Λ∆‖Sp and consider the following two cases:

1. Tr (Λ∆ΛJ) ≤ 0: from (2.57) we can conclude that sup.
Λ∆

LΛ∆
≤ 0 and equality

is achieved when Λ∆ = 0.

2. Tr (Λ∆ΛJ) > 0: we apply Lemma 2 and the Schattern norm definition on LΛ∆

to obtain,

LΛ∆
≤
(∑Ms

i=1
|Λ∆(i, i)|p

)1/p (∑Ms

i=1
Λq

J(i, i)
)1/q

− η
(∑Ms

i=1
|Λ∆(i, i)|p

)1/p

(2.58a)

= ‖Λ∆‖Sp(‖Qs + Y‖Sq − η) (2.58b)

The constraint in (2.54b) is always active at the optimal solution for P3-I since we

use the maximin principle [18] that seeks the most conservative precoder design from

P1 at the worst uncertainty matrix from P3-I. Thus in (2.57), the value of the second
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term is η‖Λ∆‖Sp = η‖∆RG‖Sp = ηε and would not be affected by bounding the

first term. The equality in (2.58a) holds provided that the eigenvalues of ∆RG must

satisfy (2.53) for given eigenvalues of J. To this end, optimizing LΛ∆
in (2.57) would

produce the following values:

sup.
∆RG∈HMs

L∆RG
=


0, ‖Qs + Y‖Sq ≤ η

∞, ‖Qs + Y‖Sq > η .

(2.59)

The dual function G(Y, η) in (2.56) is then bounded from above only when ‖Qs +

Y‖Sq ≤ η. Consequently, it can be written as

G(Y, η) =


Tr (R̂G(Qs + Y)) + ηε, Tr (Λ∆ΛJ) ≤ 0

Tr (R̂G(Qs + Y)) + ηε, Tr (Λ∆ΛJ) > 0 .

(2.60)

To proceed further, we shall minimize the dual function with respect to the La-

grange multipliers. That is,

inf.
Y�0, η≥0

G(Y, η) . (2.61)

Clearly, the solution of (2.61) when Tr (Λ∆ΛJ) ≤ 0 is trivial as ∆RG = 0. For the

case Tr (Λ∆ΛJ) > 0, the complementary slackness for the constraint (2.54b), i.e.,

η(‖∆RG‖Sp − ε) = 0, forces η to be positive with a minimum value of ‖Qs + Y‖Sq as

(2.59) indicates. Thus, we obtain (2.19) as an alternative expression for P3-I.

In what follows we shall prove that Y = 0 is the optimal solution for the problem

defined in (2.19). Since the Tr (·) function is linear, the first term in (2.19) will be

at the minimum when Y = 0. Also, as Qs + Y � Qs, then from Definition 8.6.12
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and Proposition 8.6.13 in [13] we obtain ‖Qs + Y‖Sq ≥ ‖Qs‖Sq , and again Y = 0

minimizes the second term of (2.19).

The subproblem P3-I and (2.19) are dual and solving either one will yield the

same optimal solution. The strong duality between them can be established by ap-

plying the Slater’s condition [18]. To show this it is sufficient to find a value of

∆RG that makes P3-I strictly feasible, i.e., ‖∆RG‖Sp < ε and R̂G + ∆RG � 0. Fol-

lowing a similar approach as in [43], let ∆RG be having the same subspace as R̂G

whose EVD is represented by R̂G = UR̂G
ΛR̂G

U†
R̂G

. Also, let the diagonal eigenval-

ues matrix of ∆RG be Λ∆. Now since (ΛR̂G
(i, i) + Λ∆(i, i)) has to be positive for

i = 1, 2, · · · , K = min(Ms, Np), the subproblem P3-I would be strictly feasible when

|Λ∆(i, i)| = min(cΛR̂G
(i, i), α) where c < 1 and 0 < α < ε/ p

√
K.

2.8.5 Waterfilling Solutions

For the IT metric P3 has a channel-diagonalizing solution when the power constraint

is inactive and Γmax in (2.13b) is equal to (2.21). Using the procedure of Appendix

A, the waterfilling solution can be derived similarly by applying Theorem 1 [113] to

obtain the general structure of the precoder and Theorem 2 to find the U matrix.

When using the LR metric, we simply need to use the same procedure as in

Appendix A to obtain the waterfilling solution for each iteration.
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Chapter 3

Precoding for MIMO Channels in
Cognitive Radio Networks With
CSI Uncertainties and for
Compound Capacity

3.0.1 Introduction

Inaccurate knowledge of CSI limits the performance offered by MIMO communica-

tions. The design of a MIMO precoder should take the CSI uncertainty into considera-

tion to mitigate its effects. This chapter proposes a method to design the precoder for

a secondary user in an underlay cognitive radio framework that maximizes its trans-

mission performance, where the direct link to its receiver and the interference link

to a primary user have CSI uncertainties. We model the CSI uncertainties through

the Schatten norm. The proposed method solves iteratively a minimax problem by

deriving the optimal solution for the worst case interference CSI uncertainty, applying
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the alternate-iterate technique for the worst case direct link CSI deviation, and devel-

oping a feasible direction projected subgradient technique for the precoder. Simpler

solutions for the precoder are also derived under some specific norm measure of CSI

uncertainty and certain requirement of transmission power. Simulations corroborate

the expected performance of the proposed design.

3.0.2 Background

This chapter considers an underlay CR point-to-point MIMO system in which an

SU seeks communication in the presence of a PU where its QoS should be assured.

The available CSI of the direct link between SU-Tx and SU-Rx and the interference

link between SU-Tx and PU-Rx is not accurate. The CSI error in the direct link

is attributed to the short coherence time, limited feedback or significant demand of

spectrum resources by PUs [24]. The uncertainty in interference CSI results from

the non-cooperative nature of PU with SU since both users often belong to different

networks [8,24–26,52,76,92,93,103,109]. The objective is to design a linear precoder

for SU-Tx to improve the SU transmission performance that is robust to the CSI

uncertainties, while ensuring the QoS for PU. The underlay CR paradigm is less de-

manding in managing interferences than some other approaches, such as interference

alignment [26,109] which requires the availability of CSI for all link connections and

a precoder at each transmitter and a combiner at each receiver ends.

This work uses a deterministic model for the uncertainties and provides a novel

solution to the precoder. The precoder design is however rather involved as it requires

the solution of a maximin (or the equivalent minimax) optimization problem.

Essentially, we are interested in searching a precoder for Gaussian modelled data
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that maximizes MI of SU, under its most conservative performance caused by the

channel uncertainties in the SU intended connection and in the SU to PU interfer-

ence link. The optimization is non-concave over the maximization on the precoder

and non-convex over the minimization of the SU’s MI, although it is concave over

the maximization of the amount of interference to PU. Such a mixed optimization

problem does not lend itself to apply the existing techniques in [65,104] or the matrix

inequalities introduced in [49, 82]. This chapter formulates the problem as a contin-

uous maximin optimization [74] and solves one variable at a time while holding the

others fixed. We first derive an explicit solution of the worst case CSI deviation that

would cause the largest amount of interference from SU to PU. Next, by introduc-

ing a nuisance parameter, we obtain the CSI uncertainty value that yields the least

MI at a given precoder through the alternate-iterate (AI) technique [33]. Finally,

the precoder is then updated according to the feasible direction determined by the

projection of a subgradient [14]. The optimization process repeats until a stationary

solution is reached. We support the proposed method by providing the convergence

analysis for reaching a stationary point.

It is critical to maintain the QoS of PU in CR. Such a constraint, nevertheless,

creates a non-convex feasible set for the precoder that would complicate the opti-

mization. To handle this difficulty, we express the QoS measure in the interference

constraint through the Taylor-series and maintain up to the first order. Such an

expansion provides more conservative requirement on the QoS. As the optimization

cycles through, the linear approximation would be more accurate and eventually rep-

resents the actual constraint at a stationary solution.

The CR problem we are addressing encompasses another interesting problem in
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the literature in which PU is absent that the QoS constraint is not needed. This is

termed as the compound capacity (CC) problem [48, 49, 65, 82, 104]. The proposed

solution is applicable to the CC problem as well except the optimization of CSI

deviation on the interference link is not necessary. The optimization of the precoder

is in fact simpler as its feasible set is convex.

3.0.3 Chapter Organization

Chapter three is organized as follows. The system model and problem formulation

are introduced in Section 3.1. Section 3.2 develops an algorithm to solve the CR

problem and proves the convergence of the proposed solution method. Section 3.3

briefly summarizes the reduced solution to the CC problem. In Section 3.4, particular

solutions for the CR and CC problems are established. Section 3.5 provides the

numerical results and Section 3.6 gives the conclusion.

3.1 System Model and Assumptions

Let us consider the scenario as shown in Figure 3.1 in which an SU communicates

through the MIMO channel H22 ∈ CN2×M2 in the presence of a PU, where M2 and N2

are the number of SU transmit and receive antennas. The signal from SU interferes

with PU through the channel H21 ∈ CN1×M2 , where N1 is the number of PU-Rx

antennas. The channels are not known exactly due to limited feedback [24, 48] and

the lack of coordination between PU and SU [1, 2, 36, 92, 93, 103]. The objective

is to obtain a linear precoder for SU that maximizes the MI for its transmission

where the available channel information has uncertainty, subject to the requirement
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of maintaining the QoS of PU.

It is more direct here to represent the CSI in terms of the covariance matrices

R2j, j = 1, 2. It is related to the MIMO channels by R2j = H†2jH2j for slow fading

and R2j = E
[
H†2jH2j

]
for fast fading. The available CSI at SU-Tx is R̂2j. It is not

accurate and is different from the actual by

R̂2j = R2j + ∆2j , j = 1, 2 . (3.1)

∆2j ∈ CM2×M2 represents the error in acquiring CSI.

We model the channel acquisition error as deterministic using the non-empty

compact and convex set Uj, j = 1, 2, whose shape is defined by the Schatten norm1

[2, 102],

Uj = {∆2j : ‖∆2j‖Spj
≤ εj, R̂2j −∆2j � 0} , j = 1, 2 . (3.2)

The parameter εj > 0 controls the size of the uncertainty set and ‖ · ‖Spj
denotes the

Schatten norm of order pj ∈ [1,∞].

In (3.2), the requirement R̂2j −∆2j � 0 ensures the actual CSI R2j is PSD and

it implicitly restricts ∆2j to be a Hermitian matrix.

The linear precoder we would like to obtain is represented by the matrix Q ∈

CM2×M2 . It processes the SU signal before transmission to improve the performance.

1The developed techniques and solutions in this work are not limited to the Schatten norm based
uncertainty set. They can be easily extended to any non-empty compact and convex uncertainty
set.
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Figure 3.1: An underlay MIMO CR network with single SU and single PU. CSI for
the SU direct link and for the interference link from SU to PU is not accurate.

The metric for maximization is

φ(Q,∆22)
∆
= log |I + R22Q| (3.3a)

= log |I + (R̂22 −∆22)Q| (3.3b)

where log(·) is the natural logarithm. (3.3b) resembles the MI of SU. It is indeed the

MI for slow fading, and is the upper bound for the MI under fast fading where R22

is defined with expectation, i.e., R22 = E
[
H†22H22

]
. Please refer to Appendix 3.7.1

for the details. Precoding optimization based on a tractable bound of a performance

metric is common in CR with single [52,76] or multiple antennas [28,56]. The metric

(3.3b) defines the information rate over the SU transmission link and henceforth we

shall call φ(·, ·) as the SU rate. The SU rate in (3.3) assumes the SU signal follows a

Gaussian distribution [31] so that it is accurate and has a simple form. In practice the

distribution of SU signal may be different. For finite-alphabet signals such as those

created from quadrature amplitude modulation (QAM), the rate expression should

be defined using the constellation-constraint MI instead [108]. In such a case, it will

lead to a different solution for the precoder.

The precoder matrix Q is not a free variable. It should be Hermitian and PSD,
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and should satisfy the power budget defined by its elements or eigenvalues. We shall

use a convex set Q to represent these requirements together.

The maximization of the SU rate is under the constraint that the interference

caused by SU-Tx to PU-Rx is under a certain limit. The interference level is quantified

by

g(Q,∆21)
∆
= log |I + R21Q| (3.4a)

= log |I + (R̂21 −∆21)Q| . (3.4b)

The measure (3.4b) is often referred as the leakage rate [71] and was recently inves-

tigated in [1, 2] for the CR design.

It would be more convenient to use −φ(·, ·) instead of φ(·, ·) for the development

in the sequel. In mathematical form, the problem we would like to address can be

posed as

(P-I): min.
Q∈Q

max.
∆22∈U2

− φ(Q,∆22) (3.5a)

s.t. max.
∆21∈U1

g(Q,∆21) ≤ rL . (3.5b)

Note that (3.5a) is equivalent to max.
Q∈Q

min.
∆22∈U2

φ(Q,∆22). We seek a conservative

precoder that guarantees performance improvement as much as possible under the

worst transmission scenario for SU. (3.5b) ensures the interference tolerance limit

rL > 0 is not exceeded for all possible CSI uncertainties expected in the interference

link.

P-I is a constrained continuous minimax problem and it is rather difficult to solve

for several reasons. First, the objective function −φ(Q,∆22) is not concave in ∆22.

70



Second, the interference constraint (3.5b) is not convex in Q. Third, the optimization

on the left side of (3.5b) does not have a closed form expression in terms of Q, unlike

the studies in [2, 95,98].

In addition to the CR problem, P-I becomes the CC problem [65] if the constraint

(3.5b) is absent. That is, we only consider the transmission of SU without worrying

the QoS of PU. The CC problem has found interests in the research community as

well [48,49,65,82,104].

3.2 Cognitive Radio Problem

We would like to solve P-I over the optimization variables ∆21, ∆22 and Q. They

are coupled together and it is extremely difficult for joint optimization. Rather, we

resort to the approach similar to coordinate descent by iteratively optimizing over

the variables one by one in sequence; while optimizing in one variable the others are

held fixed at their latest values. Let us assume that after the previous iteration we

have obtained the precoder solution Q(l), where l denotes the iteration count.

3.2.1 Solution for ∆21

Utilizing the interference constraint (3.5b) requires the optimal value of the subprob-

lem

(P-I.1): max.
∆21∈U1

g(∆21,Q) . (3.6)

P-I.1 is concave in ∆21 for a given precoder.

To proceed, we first introduce a proposition for the set of possible solutions for
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∆21.

Proposition 1: For a given precoder matrix Q the optimal uncertainty matrix

∆21 to the problem P-I.1 must be NSD.

Proof: The key idea for the proof is to show that the function g(·, ·) in P-I.1 would

have a larger value when ∆21 is NSD than PSD. Please refer to Appendix 3.7.2 for

the details. �

As a result, R̂21 − ∆21 � 0 is automatically satisfied and does not need to be

included in the set U1.

We shall derive an analytic solution of ∆21 for the problem (3.6) at Q = Q(l).

Note that ∆21 does not depend on ∆22 explicitly. Let us begin by defining the matrix

T(l) ∆
= Q(l)(I + R̂21Q

(l))−1, which is PSD according to Lemma 2 in Appendix 3.7.3.

It is direct to verify the subproblem P-I.1 in (3.6) at Q = Q(l) is equivalent to

(P-I.2): max.
−∆21�0

log |I−∆21T
(l)| (3.7a)

s.t. ‖∆21‖p1

Sp1
≤ εp1

1 . (3.7b)

The solution to P-I.2 is obtained through the EVD representations of T(l) and

∆21. Let T(l) = UT(l)ΛT(l)U
†
T(l) with eigenvalues λ1(T(l)) ≥ · · · ≥ λM2(T(l)) and

∆21 = U∆21Λ∆21U
†
∆21

with eigenvalues −λ1(∆21) ≥ · · · ≥ −λM2(∆21). From the

Hadamard’s inequality [57, Ch. 9, B.5] that states |A| ≤
∏n

i=1[A]ii with A ∈ Cn×n

being Hermitian and PSD, the objective function (3.7a) is maximized when U∆21 =

UT(l) .

Introducing the Lagrange multiplier µ ≥ 0 for the constraint (3.7b), the Lagrange
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dual for P-I.2 under U∆21 = UT(l) is

max.
[Λ∆21 ]

ii
≥0

∑M2

i=1 log
(
1 + |λi(∆21)|λi(T(l))

)
− µ

(∑M2

i=1 |λi(∆21)|p1 − εp1

1

)
. (3.8)

Taking derivative with respect to λi(∆21) and setting it to zero give

λi(∆21) = −
(

1

µp1|λi(∆21)|p1−1
− 1

λi(T(l))

)+

(3.9)

for p1 ∈ [1,∞), where the value x+ = max(x, 0). For a given µ, we can solve (3.9) for

λi(∆21) through a simple line search. Applying another level of line search yields µ

such that
∑M2

i=1 |λ
p1

i (∆21)| = εp1

1 .

For p1 =∞, it is straightforward to validate that ∆21 = −ε1I is optimal since the

constraint (3.7b) is equivalent to −∆21 � ε1I.

Putting together the eigenvectors and the eigenvalues, we have the solution to

P-I.2 and it is denoted as ∆
(l)
21 .

We next obtain the solutions for ∆22 and Q. For ease of illustration, (3.5a) in the

problem P-I is expressed as two sub-problems

(P-I.3): Ψ(Q)
∆
= max.

∆22∈U2

− φ(Q,∆22) , (3.10)

(P-I.4): min.
Q∈Q

Ψ(Q) . (3.11)

P-I.3 is not concave in ∆22 at a given Q and P-I.4 is convex in Q over the set Q.
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3.2.2 Solution for ∆22

Using a similar procedure as for Proposition 1 in Appendix 3.7.2, we can show that

∆22 should be PSD for the solution to P-I.3. Incorporating this result, the uncertainty

set for ∆22 in (3.2) becomes

Ũ2 = {∆22 : ‖∆22‖Sp2
≤ ε2, R̂22 −∆22 � 0,∆22 � 0} . (3.12)

Given the intermediate solution for the precoder Q(l), the objective is to find

∆22 ∈ Ũ2 that maximizes −φ(Q(l),∆22). We shall make use of the following lemma

to convert −φ(·, ·) to a different and yet equivalent form to simplify the solution

finding.

Lemma 1: Let A ∈ Cn×n be any PD matrix (not necessarily Hermitian). Con-

sider the function z(S) = −Tr(SA) + log |S|+ n, where S ∈ Cn×n is any PD matrix.

Then

max.
S�0

z(S) = − log |A| . (3.13)

The optimization on the left is achieved when S = A−1.

Proof: It is direct to show (3.13) as z(S) is concave and differentiable in S. �

When using the fact that ∆22 is PSD and applying (3.13) to the function −φ(·, ·)

defined in (3.3b), (3.10) becomes

max.
∆22∈Ũ2,W2�0

−Tr
(
Q(l)W2(R̂22 −∆22)

)
+ f(W2) (3.14)
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where W2 is a nuisance variable that is PD and

f(W2) = −Tr(W2) + log |W2|+M2. (3.15)

The optimization problem (3.14) is biconcave, i.e., it is concave in ∆22 or W2

but not in both [33]. We shall solve it based on the AI approach using the alternate

convex search (ACS) method [33]. In particular, each iteration of ACS consists of the

following two steps:

• Fix ∆22 and maximize (3.14) over W2. The resulting solution for W2 is in

closed-form

W2 =
(
I + (R̂22 −∆22)Q(l)

)−1

. (3.16)

• Fix W2 at the value obtained in (3.16) and maximize (3.14) over ∆22, which is

uniquely determined from the following subproblem

(P-I.5) max.
∆22�0

Tr (Q(l)W2∆22) (3.17a)

s.t. ‖∆22‖Sp2
≤ ε2 (3.17b)

R̂22 −∆22 � 0 . (3.17c)

The subproblem (3.17) has a linear objective function and convex constraints

in ∆22. It can be solved using the interior-point methods [15] or some software

optimization packages such as CVX [34]. Alternatively, we shall propose an at-

tractive suboptimal solution for (3.17) and provide the corresponding structure

of ∆22.
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Suboptimal Solution to P-I.5

We solve (3.17) by considering an upper bound of its Lagrange dual function and

denote the resulting solution as ∆∗22. The following theorem defines the structure of

the solution.

Theorem 1: Given that the matrix Q(l)W2 in (3.17a) is Hermitian and PSD. Let

F∗ ∈ CM2×M2 be a PSD matrix obtained through (3.20) and it is Hermitian. Define

the matrix E2
∆
= Q(l)W2 − F∗ whose EVD is E2 = UE2ΛE2U

†
E2

where λ1(E2) ≥

· · · ≥ λM2(E2). A suboptimal solution to (3.17) that optimizes an upper bound of its

Lagrange dual function is ∆∗22 = U∆∗22
Λ∆∗22

U†∆∗22
, where

1. The eigenvectors of ∆∗22 are the same as those of UE2 , i.e., U∆∗22
= UE2 .

2. The eigenvalues of ∆∗22, λ1(∆∗22) ≥ · · · ≥ λM2(∆∗22) ≥ 0, are:

i. If p2 ∈ (1,∞)

λi(∆
∗
22) = (|λi(E2)|/|λ1(E2)|)

q2
p2 λ1(∆∗22) , i = 2, · · · ,M2 (3.18)

where p2 is the Schatten norm order in the set Ũ2 and q2 = (1 − 1/p2)−1. The

maximum eigenvalue λ1(∆∗22) is

λ1(∆∗22) = ε2

[
M2∑
k=1

(|λk(E2)|/|λ1(E2)|)q2
]−1

p2

. (3.19)

ii. If p2 = 1, λ1(∆∗22) = ε2 and λi(∆
∗
22) = 0 for i = 2, · · · ,M2.

iii. If p2 =∞, ∆∗22 = ε2I.

Proof: Please refer to Appendix 3.7.3. �

Corollary 1: The matrix ∆∗22 from Theorem 1 is the optimal solution for (3.17) if
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the matrix F∗ = 0.

Proof: Please see the end of Appendix 3.7.3. �

Corollary 2: The matrix F∗ � 0 presented in Theorem 1 represents the optimal

solution of the following optimization subproblem

min.
F�0

h(F)
∆
= ε2‖Q(l)W2 − F‖Sq2

+ Tr(R̂22F) . (3.20)

Proof: Please refer to Appendix 3.7.4. �

The problem (3.20) is convex in F. For q2 ∈ [1,∞), the function h(F) is differ-

entiable and hence (3.20) can be solved efficiently using the non-monotone spectral

projected gradient (NMSPG) method with superlinear convergence [17]. We have

included the first derivative of the function h(F) in Appendix 3.7.4 that will be useful

in obtaining the numerical results presented in Section 3.5. For q2 =∞, h(F) is not

differentiable and we reformulate the problem (3.20) as linear SDP in Appendix 3.7.4,

which can be solved in polynomial time using an interior-point based method [15].

The proposed suboptimal solution for P-I.5 through Theorem 1 and (3.20) is more

computationally efficient than solving (3.17) directly using the interior-point methods.

The NMSPG algorithm for (3.20) has a linear time complexity and involves h(F) and

its gradient only. The interior-point methods, on the other hand, have polynomial

time complexity. Furthermore, Theorem 1 yields the optimal solution for P-I.5 when

the constraint (3.17c) is always satisfied.

The computation of F∗ from (3.20) does not depend on the solution ∆∗22. Hence,

using F∗ in E2 yields ∆∗22 analytically.

The AI process starts with ∆22 = γ∆22I where γ∆22 ≈ 0, and will reach an

accumulation or a stationary point [33, Theorem 4.7]. The solution of W2 is discarded
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and the solution of ∆22 is the intermediate solution ∆
(l)
22 for use to update Q.

3.2.3 Solution for Q

We now update Q, using Q(l), ∆
(l)
21 and ∆

(l)
22 . The corresponding optimization problem

P-I.4 is solved using a feasible descent direction method. The method uses scaled

gradient projection to generate the feasible direction for updating the precoder matrix

[14, Sec. 2.3]. The gradient of Ψ with respect to Q may not be unique and the descent

direction is obtained by a subgradient instead [60]. For simplicity, let us use Ψ(l)(Q)

to denote −φ(Q,∆
(l)
22).

A direction vector at Q(l) is

d(Q) = vec(Q)− vec(Q(l)) . (3.21)

The update equation for Q in the next iteration is

vec(Q(l+1)) = vec(Q(l)) + αld
(l) (3.22)

where the parameter αl ∈ (0, 1] is the step-size at the l-th iteration that will be

discussed later. The feasible direction vector is d(l) = d(Q̆(l)). Q̆(l) ∈ Q is obtained

through scaled subgradient projection by using a quadratic approximation of Ψ(l)(Q)

around Q(l), which is equivalent to solving the following Euclidean projection problem

[14, Sec. 2.3]

Q̆(l) = arg min.
Q∈Q

1

2

∥∥∥d(Q)− d̄(l)(Q(l),∆
(l)
22)
∥∥∥2

N−1(l)
, (3.23)
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where d̄(l) is a descent direction that may not be feasible and is given by

d̄(l)=−N(l)vec(Ψ(l)
g (Q(l)) , (3.24)

Ψ(l)
g (Q(l))=−

(
I + (R̂22 −∆

(l)
22)Q(l)

)−1

(R̂22 −∆
(l)
22) . (3.25)

The matrix N(l) ∈ CM2
2×M2

2 is PD symmetric that approximates the Hessian inverse

with respect to Q, and the choice of it will be discussed at the end of this Section.

Ψ
(l)
g (Q(l)) represents a subgradient of Ψ with respect to Q evaluated at Q(l), please

see Lemma 4 in Appendix 3.7.5. The projection problem (3.23) can be solved using

the interior-point methods [15] or an optimization package [34].

The precoder Q in P-I must be solved under the interference constraint (3.5b) to

guarantee the QoS of PU. The constraint makes the feasible set of Q non-convex. The

non-convexity in the constraint is handled through the Taylor-series expansion up to

the first order. The linearized constraint is more conservative than the original [2]

and the two become closer and eventually equivalent as we approach the solution.

To ensure d(l) is a feasible direction for the problem P-I, Q̆(l) is determined by the

Euclidean projection (3.23) together with the interference constraint,

Q̆(l) ∈ arg min.
Q∈Q

1

2
‖d(Q)− d̄(l)(Q(l),∆

(l)
22)‖2

N−1(l) (3.26a)

s.t. log |I + R
(l)
21Q| ≤ rL (3.26b)

where R
(l)
21

∆
= R̂21 − ∆

(l)
21 . The solution of the projection problem (3.26) exists as

the feasible set is closed and it may not be unique due to the non-convex constraint

(3.26b). We shall obtain one possible solution out of many by applying a local ap-

proximation through linearization to the constraint (3.26b) to obtain a tractable
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formulation. Expanding the left side of (3.26b) around a nominal point Q̃(k), (3.26)

becomes

Q̃(k+1) = arg min.
Q∈Q

1

2
‖d(Q)− d̄(l)(Q(l),∆

(l)
22)‖2

N−1(l) (3.27a)

s.t. Tr (M(k)Q) ≤ r(k) (3.27b)

where the variables M(k) and r(k) are defined as

M(k)=
(
I + R

(l)
21Q̃(k)

)−1

R
(l)
21 , (3.28a)

r(k) = rL − log |I + R
(l)
21Q̃(k)|+ Tr (M(k)Q̃(k)) . (3.28b)

The matrix M(k) represents the partial derivative of the left side of (3.26b) with

respect to Q evaluated at Q̃(k). Note that k = 0, 1, · · · here represents the iteration

index for the first order approximation and (3.27) is iterated over k to reach a solution.

The proposed formulation (3.27) would guarantee a feasible solution to the sub-

problem (3.26) as the feasible set of (3.27) is a subset of that in (3.26). This means

that (3.27b) provides a conservative approximation of (3.26b). Hence, as k increases

the precoder matrix Q̃(k) converges to a solution for (3.26). The iteration begins with

the initial value Q̃(0) = γCRI where γCR ≈ 0 and the converged value is Q̆(l).

As the feasible region for Q in P-I is not convex, direct update using (3.22) is no

longer valid. The solution for Q requires the optimization

Q(l+1) ∈ arg min.
Q∈Q

‖d(Q)− αld(l)(Q̆(l))‖2 (3.29a)

s.t. log |I + R
(l)
21Q| ≤ rL . (3.29b)
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There could be multiple solutions to (3.29) due to the non-convex optimization prob-

lem, and applying the approach as in (3.27)-(3.28) with linearization of (3.29b) would

lead to a solution.

To complete the solution finding, the details for selecting the step-size αl and the

PD matrix N(l) are as follows.

Step-Size

We shall use an exogenous step-size that can be fixed or diminishing [14,60]. Such a

step-size ensures the convergence of (3.22) to a stationary point, as shown in Appendix

3.7.5.

Hessian Inverse

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm can yield a good estimate

of the Hessian inverse as the iteration proceeds [74, Ch. 4]. To simplify the algorithm

and ensure stable behavior, we simply choose N to be a scalar multiple of an identity

matrix by following the approach from the spectral gradient method [17]

N(l)=s(l)I , s(l) = min
(
smax,max

(
smin, ρ

(l−1)x(l−1)†x(l−1)
))

(3.30)

where s(l) is known as the spectral step-length, 0 ≤ smin ≤ smax ≤ ∞ are two pre-

determined constants and

x(l−1) = vec(Q(l))− vec(Q(l−1)) , (3.31a)

y(l−1) = vec(Ψ(l)
g (Q(l)))− vec(Ψ(l−1)

g (Q(l−1))) , (3.31b)

ρ(l−1) = 1/(y(l−1)†x(l−1)) . (3.31c)

Algorithm 1 illustrates the major steps for solving P-I, through the AI and fea-
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sible direction projected subgradient (FDPS) techniques. In Algorithm 1, we use a

diminishing step-size rule for αl in (3.29). The algorithm would converge to a critical

point and reach a solution for Q. This is shown in Appendix 3.7.5 with the aid of

the Danskin’s min-max Theorem [15, Proposition 4.5.1].

Algorithm 1 Solving P-I Using the AI and FDPS Techniques

Input: Provide the initial matrices Q(1), N(1); the Schatten norm order pj and the
error size εj for j = 1, 2; the LR limit rL. Define the step-size rule for αl; set the
iteration counter l = 0.
Step 1. l = l + 1.
Step 2. If Q(l) satisfies a certain stopping criterion: STOP.
Step 3. Find ∆

(l)
21 by the explicit solution of (3.7).

Step 4. Obtain the solution ∆
(l)
22 by iterating (3.16) and (3.17).

Step 5. Determine d̄(l)(Q(l),∆
(l)
22) using (3.24), solve (3.26) for Q̆(l) through (3.27).

Step 6. Evaluate αl from a diminishing step-size rule.
Step 7. Obtain the precoder Q(l+1) by solving (3.29) and N(l+1) using (3.30). Go
back to Step 1.

A typical choice for initialization is Q(1) = γQI and N(1) = I, where γQ ≈ 0.

We would like to clarify that the optimization problem P-I.3 shown in (3.10) is non-

concave in ∆22 and the feasible set of Q in P-I is non-convex. There could be multiple

stationary points and there is no guarantee the proposed algorithm will give the global

optimum solution. For better result, one can use several different initializations for

Q(1) and select the solution that gives the best objective value.

It is straightforward to extend the proposed CR solution for the presence of mul-

tiple PUs. In such a case, a separate solution for the amount of interference CSI

uncertainty for each PU is evaluated according to Section 3.2.1. Furthermore, the

number of constraints is expanded for the PUs in (3.29b) when obtaining the pre-

coder.
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3.3 Compound Capacity Problem

When dropping (3.5b) in P-I, we have the CC problem

(P-II): min.
Q∈Q

max.
∆22∈U2

− φ(Q,∆22) . (3.32)

The CC problem is considered to be challenging to solve in the literature due to

the inner maximization over ∆22 before optimization in Q can take place. Indeed,

analytical solutions for P-II are known under very few cases: when H22 belongs to an

isotropic set [65], the available channel Ĥ22 is rank one [104], and the uncertainty set

is defined for the spectral norm only (p2 = ∞) [49, 82]. In this work, the considered

uncertainty set U2 is governed by the Schatten norm and the feasible set Q is more

general than the previous studies [48, 49,65,82,104].

The proposed algorithm for CR is applicable to the CC problem as well. There

are two main changes. The first one is that we do not need to update ∆21 in each

iteration. The second is that the feasible set of Q is convex because of the absence

of the constraint (3.5b), making it easier to solve.

Algorithm 2 summarizes the main framework to find a solution for the CC prob-

lem. It would converge to a critical point for ∆22 and Q. The proof of convergence

follows a similar analysis as in Appendix 3.7.5.

Similar to Algorithm 1, the initialization is Q(1) = γQI and N(1) = I with γQ ≈ 0.

The optimization problem P-I.3 in (3.10) is non-concave in ∆22. The possibility

remains of having multiple stationary points that some could be local optima. Using

several different initializations for Q(1) could improve the chance of obtaining the

global optimum solution.
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Algorithm 2 Solving P-II Using the AI and FDPS Approach

Input: Provide the initial matrices Q(1) and N(1); the Schatten norm order p2 and
the uncertainty size ε2. Set counter l = 0.
Step 1. l = l + 1.
Step 2. If Q(l) satisfies a suitable stopping criterion: STOP.
Step 3. Obtain the solution ∆

(l)
22 by iterating (3.16) and (3.17).

Step 4. Calculate Ψ
(l)
g (Q(l)) using (3.25) and d̄(l) using (3.24); solve the subproblem

(3.23) for Q̆(l) and obtain d(l) from (3.21) at Q = Q̆(l).
Step 5. Determine αl using a fixed or diminishing step-size rule.
Step 6. Obtain the precoder Q(l+1) from (3.22) and N(l+1) using (3.30). Go back to
Step 1.

3.4 Particular Solutions

Under some specific conditions the proposed solutions for the CR and CC problems

can be reduced to simpler forms for evaluation.

3.4.1 Particular Solution for P-I

We shall consider the solution of the CR problem P-I under the following two condi-

tions.

• The uncertainty sets U1 and U2 for R̂21 and R̂22 are defined under pj = ∞,

j = 1, 2 in the Schatten norm (2.15), which is equivalent to the spectral norm.

Using the spectral norm will lead to the most conservative solution among the

class of unitarily-invariant norms [48];

• The power limitation constraints for the precoder in the feasible set Q are

inactive in the presence of the interference constraint (3.5b). Such situation

occurs often in a CR network where the performance is interference limited

rather than power-budget restricted.
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Let us define the PSD matrix Rε2
22 = UR̂22

(ΛR̂22
− ε2I)+U†

R̂22
. The inequality

‖∆22‖s∞ ≤ ε2 from the uncertainty set Ũ2 is equivalent to −∆22 � −ε2I where ∆22

is PSD. Adding both sides by R̂22 gives

R̂22 −∆22 � Rε2
22 (3.33a)

⇒ log |I + (R̂22 −∆22)Q| ≥ log |I + Rε2
22Q| . (3.33b)

As a result, the solution of ∆22 that yields the minimum MI is ∆22 = ε2I.

Similarly, let Rε1
21 = R̂21 + ε1I. The inequality ‖∆21‖s∞ ≤ ε1 from the uncertainty

set U1 is equivalent to −∆21 � ε1I. Adding both sides by R̂21 yields

R̂21 −∆21 � Rε1
21 (3.34a)

⇒ log |I + (R̂21 −∆21)Q| ≤ log |I + Rε1
21Q| . (3.34b)

The largest amount of interference to PU occurs when ∆21 = −ε1I.

Using the uncertainty matrix solutions ∆22 = ε2I and ∆21 = −ε1I, P-I in (3.5)

becomes

(P-III): max.
Q�0

log |I + Rε2
22Q| (3.35a)

s.t. log |I + Rε1
21Q| ≤ rL (3.35b)

where the power limitation in the feasible set Q is assumed satisfied. The following

proposition shows that the optimal precoder should diagonalize the matrix Rε2
22.

Proposition 2: Let U ∈ CM2×r with r ≤ M2 be (semi-)unitary and Σ ∈ Rr×r

a diagonal matrix with non-negative non-increasing elements. The optimal precoder

85



solution for the problem P-III would diagonalize the covariance matrix Rε2
22 and has

the structure

Q = (Rε2
22)−

‡
2 UΣU†(Rε2

22)−
‡
2 (3.36)

where (Rε2
22)

1
2 is the matrix square root of Rε2

22 and (·)‡ denotes the pseudo-inverse of

(·).

Define the PSD matrix R̄ = (Rε2
22)−

‡
2 Rε1

21(Rε2
22)−

‡
2 whose EVD is R̄ = UR̄ΛR̄U†

R̄

where UR̄ ∈ CM2×r and ΛR̄ ∈ Rr×r are (semi-)unitary and diagonal matrices. Then,

the selection U = UR̄Ia would optimize (3.35) where Ia is the anti-identity matrix of

appropriate size. The matrix Σ is obtained by solving the problem

(P-IV): max.
Σ�0

log |I + Σ| (3.37a)

s.t. log |I + IaΛR̄IaΣ| ≤ rL . (3.37b)

Proof: Please refer to Appendix 3.7.6. �

P-IV is not convex in Σ due to the constraint (3.37b). (3.37b) can become

tractable by using the Taylor-series expansion and P-IV can be solved by the iterative

linearization technique as presented in Section 3.2.3.

3.4.2 Particular Solution for P-II

When the power of the precoder Q is restricted to be in a unitarily-invariant convex

setQu, for example, the total power restriction (2.5) or the maximum power limitation

Qu = {Q : Q � 0, λ1(Q) ≤ Pmax} , (3.38)
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the following theorem states the precoder for the CC problem has the same eigenvec-

tors as the available channel covariance.

Theorem 2: Consider the EVD representation Q = UQΛQU†Q and R̂22 =

UR̂22
ΛR̂22

U†
R̂22

where the elements along the diagonal of ΛQ and ΛR̂22
are arranged in

non-increasing order. For any ∆22 ∈ U2, define the matrix ∆o
22

∆
= JU†

R̂22
∆22UR̂22

J,

where J ∈ Rn×n is a diagonal matrix with diagonal elements either +1 or −1. If

Q ∈ Qu where Qu is a unitarily-invariant compact and convex set, the optimal pre-

coder for the CC problem P-II has eigenvectors equal to those of the channel R̂22

available, i.e., UQ = UR̂22
. Additionally, P-II becomes

(P-V): max.
ΛQ∈Qu

min.
∆o

22∈Uo
2

log |I + (ΛR̂22
−∆o

22)ΛQ| (3.39)

where the uncertainty set Uo2 is

Uo2 = {‖∆o
22‖Sp2

≤ ε2,ΛR̂22
−∆o

22 � 0,∆o
22 � 0}. (3.40)

Proof: Please see Appendix 3.7.7. �

The conclusion that the precoder has the same eigenmodes as the available channel

has previously been demonstrated for the CSI uncertainty set defined by the spectral

norm only under unitarily-invariant convex set for the transmission power [49, 82].

We generalize the results here and prove that the same conclusion carries for the CSI

uncertainty set defined by the Schatten norm.

As apparent from (3.39), the outer maximization for the CC problem simplifies

considerably since the unknowns are M2 eigenvalues rather than M2(M2 + 1)/2 inde-

pendent elements of Q.
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The modification to the FDPS method developed in Section 3.2.3 for P-V is

straightforward. In particular, the matrices Q and R̂22 become diagonal counterparts

ΛQ and ΛR̂22
with diagonal elements arranged in non-increasing order. Furthermore,

∆22 is now ∆o
22, and Q and U2 turn into Qu and Uo2 .

We can simplify P-V further by restricting the matrix ∆o
22 to be diagonal. Con-

sequently, both Q and ∆22 share the same eigenvectors as R̂22, which leads to a

channel-diagonalizing solution. In this case, we only need to obtain the eigenvalues

of Q and ∆22. The restriction that ∆o
22 has diagonal structure will likely lead to a

suboptimal solution, unless the channel uncertainty set U2 is defined by the spectral

norm [49,82].

3.5 Numerical Results

We shall provide numerical examples to illustrate the performance of proposed pre-

coder solutions. The available CSI is set as R̂2j = Ĥ†2jĤ2j for j = 1, 2, where the

elements of Ĥ2j are IID and follow a Gaussian distribution with zero mean and unit

variance. The SU rate reported is the worst case rate by the design methodology and

is the average over the randomly generated matrices R̂2j. The uncertainty error size

is εj = wj‖R̂2j‖S∞ where the normalized parameter wj ∈ (0, 1) is used to adjust the

amount of uncertainty. The noise variance is fixed to unity and hence the total SU

transmit power PT is equal to the signal-to-noise ratio (SNR), i.e., PT = SNR. In

addition to the power sets in (2.5) and (3.38), we consider the per-transmit dimension
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power set defined as

Q =
{
Q : Q � 0,Q � diag([P1, · · · , PM2 ]T )

}
(3.41)

where Pm, m = 1, · · · ,M2, is the power limit for the m-th antenna. Unless otherwise

stated, we simply set the power values as Pmax = 0.7PT and Pm = 0.75mPT for

illustration purpose.

For all the proposed precoder designs, we compute αl in (3.22) by a diminishing

step-size rule such that the rule αl+1 = 1/(l + 1) is used for the CR problem while

αl+1 = αl(1 − βαl) with β = 10−2 ∈ (0, 1) and α0 = 1 for the CC problem. The

proposed solutions shown in Algorithm 1 and Algorithm 2 are computed with one

initialization of Q(1) only. The initialization constants γ∆22 , γQ and γCR are set to

10−4 and the constants smin and smax are 10−7 and 1020. We shall denote the solution

for ∆22 as AI(O) when solving P-I.5 optimally using CVX [34] and AI(SO) as the

suboptimal solution.

We first examine Algorithm 1 and the proposed solutions for the CR problem

in Section 3.2 under different values of the Schatten norm orders pj and normalized

uncertainty error wj, j = 1, 2. Figure 3.2 illustrates the SU rate in (nats/s/Hz) as the

leakage rate limit rL (nats/s/Hz) increases. It includes the robust solution from [2]

for comparison. The antenna setting is M2 = N2 = N1 = 4 and SNR = 5dB. We use

the AI(O) method to obtain the uncertainty element ∆22. It is obvious from Figure

3.2 that the proposed solutions for Q and ∆21 provide higher rate than that in [2].

It should be noted that the work [2] does not consider CSI uncertainty in the direct

link of SU; therefore, we limit the comparison in Figure 3.2 for w2 = 0 only. As

expected, increasing the uncertainty error w2 for fixed values of w1 will deteriorate
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the SU rate. Also, the proposed solution when p1 = p2 = ∞ produces the most

conservative solution among the Schatten norm orders.

Figure 3.3 depicts the SU rate versus the uncertainty error w1 of the interference

link for antenna settings of M2 = N2 = N1 = 2 or 4, where the leakage rate limit

and the uncertainty error of the direct link are kept at rL = 3 (nats/s/Hz) and

w2 = 0.5. The AI(SO) method is applied to obtain ∆22. The results show that the

SU rate decreases as the uncertainty error w1 increases for a fixed value of w2, and

the decrease is more significant for the four antenna than the two antenna setting.

The uncertainty sets defined with p1 = p2 = 1 have the smallest size among all other

Schatten norm orders and SU has the highest rate. The effect of the Schatten norm

order on the SU rate is apparent.

We next consider Algorithm 2 to obtain the designs for the CC problem presented

in Section 3.3 when the normalized uncertainty error w2 = 0.3 or 0.5 and the Schatten

norm order p2 = 2. Both precoder solutions AI(O)-FDPS or AI(SO)-FDPS are

provided. To illustrate the effectiveness of the proposed FDPS technique, we compare

the proposed precoder solutions with the beamforming precoder that transmits signals

over the principal eigenvalue of the worst channel and with the equal power allocation

precoder that distributes power equally among the antennas. Both the beamforming

and equal power precoders require ∆22 and it is taken from the proposed AI(O)-FDPS

solution. Figure 3.4 illustrates the average SU rate as SNR increases. The antenna

setting for SU is M2 = N2 = 4. Figure 3.4 indicates that the proposed precoder

significantly outperforms the beamforming and equal power ones. The performance

of the AI(O)-FDPS and AI(SO)-FDPS is almost identical at different SNR and w2

values.
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Figure 3.2: Rate for SU from the proposed CR solution and from [2] for different
values of rL (nats/s/Hz), SNR = 5dB, M2 = N2 = N1 = 4. The results shown are
the average over 100 realizations of R̂22 and R̂21.

Figure 3.5 shows the average SU rates when the error w2 increases with SNR =

4dB and p2 = 2 or ∞. The power and antenna settings of Figure 3.5 are the same

as those in Figure 3.4. The proposed precoders show better SU rate than the beam-

forming and equal power designs. The uncertainty set defined with p2 = ∞ has the

largest shape among the Schatten norm uncertainty sets; hence the proposed solution

at p2 = ∞ would produce the most conservative SU rate. Similar to Figure 3.4, the

precoders from AI(O)-FDPS and AI(SO)-FDPS are quite comparable in performance

at different values of p2 and w2.

Finally, we investigate the proposed particular solutions for the CR and CC prob-

lems in Section 3.4. Figure 3.6 evaluates the performance of the particular solution

for the CR problem from Section 3.4.1 at different values of w1 = w2 as the leakage
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Figure 3.3: Rate for SU from the proposed CR solution versus the uncertainty error
w1, rL = 3 (nats/s/Hz), w2 = 0.5, SNR = 5dB, M2 = N2 = N1 = 2 or 4. The results
shown are the average over 100 realizations of R̂22 and R̂21.

rate limit rL increases, where p1 = p2 = ∞ and the power set Q is relaxed. The SU

rate increases with rL as expected. The increase in the SU rate is more sensitive at

smaller normalized uncertainty radii w1 and w2.

Figure 3.7 shows the SU rates for the CC problem as SNR varies. The curves

denoted by “Q diagonalization” and “Q, ∆22 diagonalization” correspond to the

optimal precoder that diagonalizes the available channel estimate R̂22 and the sub-

optimal solution in which both Q and ∆22 diagonalize R̂22 for any value of p2. The

SU rates for both precoder solutions are very comparable. The proposed precoders

are applicable to a wide class of situations and covers some precoder solutions from

the literature that are obtained under more restrictive scenarios. This is illustrated in

92



SNR (dB)
-10 -5 0 5 10 15 20

S
U

 R
at

e 
(n

at
s/

s/
H

z)

0

2

4

6

8

10

12
CC, AI(O)-FDPS, w

2
 = 0.3

CC, AI(SO)-FDPS, w
2
 = 0.3

CC, Equal power, w
2
 = 0.3

CC, Beamforming, w
2
 = 0.3

CC, AI(O)-FDPS, w
2
 = 0.5

CC, AI(SO)-FDPS, w
2
 = 0.5

CC, Equal power, w
2
 = 0.5

CC, Beamforming, w
2
 = 0.5

Figure 3.4: Rate for SU from the proposed CC solution, the beamforming and the
equal power solutions versus SNR (dB), M2 = N2 = 4. The results shown are the
average over 100 realizations of R̂22.

the figure where the proposed Q diagonalization precoder yields identical performance

with the precoder from [49,82] that is applicable to p2 =∞ only.

3.6 Conclusion

We have developed in this chapter the solution of a robust precoder for an SU in

an underlay cognitive radio framework, where the available CSI of the direct link of

SU and the interference link to PU have uncertainties and the QoS of PU must be

maintained. In the absence of PU, the proposed solution addresses the CC problem in

the literature. The CSI uncertainties are modelled by convex sets with the Schatten

93



Uncertainty w
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
U

 R
at

e 
(n

at
s/

s/
H

z)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
CC, AI(O)-FDPS, p

2
 = 2

CC, AI(SO)-FDPS, p
2
 = 2

CC, Equal power, p
2
 = 2

CC, Beamforming, p
2
 = 2

CC, AI(O)-FDPS, p
2
 = ∞

CC, AI(SO)-FDPS, p
2
 = ∞

CC, Equal power, p
2
 = ∞

CC, Beamforming, p
2
 = ∞

Figure 3.5: Rate for SU from the proposed CC solution, the beamforming and the
equal power solutions at different values of w2, M2 = N2 = 4. The results shown are
the average over 100 realizations of R̂22.

norm measure. We formulate the design as a maximin optimization problem that

seeks a precoder to maximize the MI of SU under the most conservative anticipated

performance for SU while ensuring the QoS of PU under all possible CSI uncertainties

expected in the interference link. The maximin problem is solved iteratively, using

the explicit solution for the worst case CSI deviation of the interference link, the AI

technique for the worst case CSI error of the direct link, and the FDPS method for

the precoder. Convergence analysis of the proposed solution is established. Simpler

solutions for some specific choices of the norm measure and transmission power re-

strictions are also derived. Simulations validate the performance improvement of the

proposed precoders for the CR and CC problems.

94



r
L
 (nats/s/Hz)

0 1 2 3 4 5 6 7

S
U

 R
at

e 
(n

at
s/

s/
H

z)

0

2

4

6

8

10

12

14
CR, Particular solution, w

1
 = w

2
 = 0

CR, Particular solution, w
1
 = w

2
 = 0.15

CR, Particular solution, w
1
 = w

2
 = 0.35

CR, Particular solution, w
1
 = w

2
 = 0.55

Figure 3.6: Rate for SU from the particular CR solution versus rL, M2 = N2 = N1 =
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3.7 Appendix

3.7.1 Upper Bound for MI

The MI for the transmission link from SU-Tx to SU-Rx is defined as [31]

E[log |I + H22QH†22|] (3.42)

where the expectation is taken over the channel H22. Using first the fact that [13,

Corollory 2.8.5]

log |I + AB| = log |I + BA| (3.43)
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Figure 3.7: Rate for SU from the particular CC solutions versus SNR (dB), M2 =
6, N2 = 3. The results shown are the average over 100 realizations of R̂22.

for any A ∈ Cn×m and B ∈ Cm×n, and next the concavity of the log | · | function over

the set of PSD matrices, we have

E[log |I + H22QH†22|] = E[log |I + H†22H22Q|] (3.44a)

≤ log |I + E[H†22H22]Q| . (3.44b)

Hence the metric φ(·, ·) in (3.3a) is an upper bound of (3.42).

We can follow similar procedure to show that the function g(Q,R21) (3.4a) is no

less than E[log |I + H21QH†21|], where the expectation is applied to the channel H21.
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3.7.2 Proof of Proposition 1

Consider NSD ∆21 ∈ U1 and PSD ∆̌21 ∈ U1. It is obvious that −∆̌21 � −∆21. Hence

R̂21 − ∆̌21 � R̂21 −∆21 (3.45a)

Q1/2(R̂21 − ∆̌21)Q1/2 � Q1/2(R̂21 −∆21)Q1/2 (3.45b)

log |I + Q1/2(R̂21 − ∆̌21)Q1/2| ≤ log |I + Q1/2(R̂21 −∆21)Q1/2| (3.45c)

log |I + (R̂21 − ∆̌21)Q| ≤ log |I + (R̂21 −∆21)Q| (3.45d)

where Q1/2 is the matrix square root of Q. (3.45b) follows since for Hermitian matrices

A, B ∈ Cn×n such that A � B, SAS† � SBS† where S ∈ Cm×n [13, Proposition

8.1.2]. (3.45c) comes from the fact that the function log | · | is strictly increasing on

the set of PD Hermitian matrices [57, Ch. 16, F.2.b], and (3.45d) is by applying

(3.43). It is obvious from (3.45d) that the function g(·, ·) will take a larger value if

∆21 is NSD rather than PSD.

3.7.3 Proof of Theorem 1

The proof requires a number of lemmas. We first summarize them below,

Lemma 2: Given the Hermitian and P(S)D matrices A,B ∈ Cn×n. The matrix

A(I + BA)−1 is then Hermitian and P(S)D matrix.

Proof: Let A1/2 be the matrix square root of A. From direct algebraic manipula-
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tion,

A(I + BA)−1 = A1/2A1/2(I + BA1/2A1/2)−1 (3.46a)

= A1/2(I + A1/2BA1/2)−1A1/2 . (3.46b)

(3.46b) is due to the fact (I + AB)−1A = A(I + BA)−1 [13, Fact 2.16.16]. The

Hermitian property can be easily seen from the right side of (3.46b). Note that

A1/2BA1/2 is P(S)D. By the definition of the P(S)D property, the right side is P(S)D

and hence the left side. �

Lemma 3: Let A, B ∈ Cn×n be Hermitian with eigenvalues λ1(A) ≥ · · · ≥ λn(A)

and λ1(B) ≥ · · · ≥ λn(B). Then, Tr(AB) ≤
∑n

i=1 λi(A)λi(B) and the equality holds

if A and B are diagonal [13, Fact 5.12.4].

From Lemma 2 and (3.16) the matrix (Q(l)W2) is Hermitian and PSD.

We shall begin the proof of Theorem 1 as follows. Let the Lagrange multipliers

associated with (3.17b) and (3.17c) be γ ≥ 0 and F � 0. We first form the Lagrangian

L for (3.17) and its corresponding dual function D(·, ·) is

D(F, γ)=max.
∆22�0

L(∆22,F, γ) (3.47a)

=max.
∆22�0

Tr(Q(l)W2∆22)− γ(‖∆22‖Sp2
− ε2) + Tr

(
(R̂22 −∆22)F

)
(3.47b)

=max.
∆22�0

Tr
(
(Q(l)W2 − F)∆22

)
− γ‖∆22‖Sp2

+ γε2 + Tr (R̂22F) (3.47c)

≤ max.
Λ∆22

�0
Tr (ΛE2Λ∆22)− γ‖Λ∆22‖Sp2

+ γε2 + Tr (R̂22F) (3.47d)

≤ max.
Λ∆22

�0
‖ΛE2Λ∆22‖S1 − γ‖Λ∆22‖Sp2

+ γε2 + Tr (R̂22F) (3.47e)

≤ max.
Λ∆22

�0
‖Λ∆22‖Sp2

(
‖ΛE2‖Sq2

− γ
)

+ γε2 + Tr (R̂22F) . (3.47f)
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where E2 = (Q(l)W2−F). The inequality in (3.47d) is due to Lemma 3 and equality

happens when U∆22 = UE2 . Hence, we conclude that U∆∗22
= UE2 in order to

maximize L(∆22,F, γ).

The inequality Tr (ΛE2Λ∆22) ≤ ‖(ΛE2Λ∆22)‖S1 in (3.47e) is from [13, Fact 9.14.3].

The inequality in (3.47f) is due to Hölder inequality in Lemma 2 in chapter 2. Equality

for (3.47f) can be achieved provided that the eigenvalues of the suboptimal solution

∆∗22 and that of E2 satisfy (2.53). Thus, for p2 ∈ (1,∞),

|λ1(E2)|1/p2

λ
1/q2
1 (∆∗22)

= · · · = |λi(E2)|1/p2

λ
1/q2
i (∆∗22)

(3.48)

and (3.18) in Theorem 1 follows.

From the Schatten norm definition in (2.15) and (3.18), when the constraint

(3.17b) is active for reaching a solution of P-II.3, we obtain λ1(∆∗22) as

εp2

2 =λ1(∆∗22)p2 +

M2∑
k=2

(
|λk(E2)|
|λ1(E2)|

)q2
λ1(∆∗22)p2 . (3.49)

(3.49) leads to (3.19) directly.

For p2 = 1, from (2.53a) a possible choice for λi(∆
∗
22) that achieves the equality

in (3.47f) and fulfills (3.17b) is λ1(∆∗22) = ε2 and λi(∆
∗
22) = 0 for i 6= 1. For p2 =∞,

using (2.53c) we can select λi(∆
∗
22) = ε2 to reach the equality in (3.47f) and satisfy

(3.17b). The above two choices for λi(∆
∗
22) are valid regardless of the value of the

matrix F∗ in E2. If the eigenvalues of E2 as well as ∆∗22 are considered variables to

be evaluated, the conditions (2.53a) or (2.53c) can lead to other choices for λi(∆
∗
22).

Proof of Corollary 1: If F∗ is the zero matrix, then the matrix E2 would be

PSD and the inequality in (3.47e) becomes equality, which makes ∆∗22 the optimal
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solution for the problem P-II.3 when p2 ∈ (1,∞). For p2 = 1 or p2 = ∞ the choice

(λi(∆
∗
22) = ε2 for i = 1 and zero otherwise) or (λi(∆

∗
22) = ε2 for every i) is optimal as

E2 becomes a fixed matrix and the equality condition (2.53a) or (2.53c) is determined

by ∆∗22 only.

3.7.4 Evaluation of the Matrix F∗

Proof of Corollary 2: From Appendix 3.7.3, an upper bound for the dual function

D(·, ·) of the problem (3.17) is the right side of (3.47f). D(·, ·) would take the following

values

D(F, γ) ≤


∞, γ < ‖ΛE2‖Sq2

,

γε2 + Tr (R̂22F), γ ≥ ‖ΛE2‖Sq2
.

(3.50)

We can find the variables γ and F by minimizing the upper bound of D(·, ·) when

γ ≥ ‖ΛE‖Sq2
. That is,

min.
γ≥0,F�0

γε2 + Tr (R̂22F) (3.51a)

s.t. γ ≥ ‖ΛE2‖Sq2
. (3.51b)

It is evident that γ should be chosen as its smallest possible value, γ = ‖ΛE2‖Sq2
.

Substituting the optimal value of γ back into (3.51a) produces the problem (3.20).

Derivative of h(F): For q2 ∈ [1,∞), the derivative of the function h(F) in (3.20)
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with respect to F is

Dh(F) = 2ε2

d

[
Tr

((√
E†2E2

)q2)]1/q2

dF
+ R̂22 (3.52a)

= − ε2‖E2‖−q2/p2

Sq2

(√
E†2E2

)q2−2

E2 + R̂22 . (3.52b)

In (3.52b), the matrix (E†2E2) should be non-singular for q2 < 2, otherwise we can

consider its pseudo-inverse to obtain a well-defined derivative Dh(F) [13, Sec. 6.1].

We shall provide next a reformulation for (3.20) when q2 = ∞. Since ‖E2‖S∞ is

the largest eigenvalue of
√

E†2E2 according to (2.15), the optimization problem (3.20)

can be casted as

min.
t≥0,F�0

ε2t+ Tr (R̂22F) (3.53a)

s.t

 tI E†2

E2 tI

 � 0 (3.53b)

where we have introduced t such that E†2E2 ≤ t2I and used the Schur complement

property of a partitioned PSD matrix [13, Definition 6.1.8]. Thus, (3.20) reduces to

(3.53) when q2 =∞, which is an SDP problem of an affine objective function with a

linear matrix inequality constraint.

3.7.5 Convergence Analysis

We shall establish the convergence of Algorithm 1 to a stationary point with exogenous

step-size. For a given Q, ∆21 has an optimal solution and the AI method is ensured
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to yield a solution for ∆22 [33]. We therefore only need to show the convergence of the

FDPS iteration for Q. It is achieved based on the Danskins min-max Theorem [15,

Proposition 4.5.1] which is repeated here for completeness.

Lemma 4: (Danskin’s min-max Theorem [15, Proposition 4.5.1]) Let Y be a

compact set and let the function f : Cn×m ×Y → R be continuous and differentiable

such that f(·,Y) : Cn×m → R is convex for each Y ∈ Y . Then,

1. The maximum function p(X)
∆
= max.

Y∈Y
f(X,Y) is convex and has a subgradient

OXf(X, Ȳ) with respect to X, where Ȳ ∈ Y(X) and Y(X)
∆
= {Ȳ : f(X, Ȳ) =

max.
Y∈Y

f(X,Y)} is the set of maximizing points for p(·).

2. If f(·,Y) is differentiable for any Y ∈ Y and ∇Xf(X, ·) is continuous on Y for

each X, then

∂p(X) = conv{∇Xf(X, Ȳ) : Ȳ ∈ Y(X)} (3.54)

where ∂p(X) is the subdifferential of the convex function p(X) at X, and conv{·}

denotes the convex hull.

To make use of the min-max theorem, we associate the variables to our problem

as follows: f(·, ·) is −φ(·, ·), p(·) is Ψ(·), X is Q, Y is ∆22, and Ȳ is ∆
(l)
22 .

The following assumption is needed. Assumption 1: The Hessian inverse approx-

imation matrix N(l), l = 0, 1, 2 · · · , satisfies the following condition

c‖z‖2 ≤ ‖z‖2
N(l) ≤ c̄‖z‖2 (3.55)

where 0 < c ≤ c̄. Assumption 1 indicates that the eigenvalues of N(l) are bounded

from below and above, which can be easily checked to ensure it is valid.

Let Q∗ be an optimal point for P-I in (3.5). We begin with the weighted Euclidean
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distance between Q(l+1) from (3.29) and Q∗. Using (3.22) and (3.24),

‖vec(Q(l+1))− vec(Q∗)‖2
N−1(l)

≤ ‖vec(Q(l)) + αld
(l) − vec(Q∗)‖2

N−1(l) (3.56a)

≤ ‖vec(Q(l)) + αld̄
(l) − vec(Q∗)‖2

N−1(l) (3.56b)

= ‖vec(Q(l))− vec(Q∗)‖2
N−1(l) − 2αlvec(Ψ(l)

g (Q(l)))†(vec(Q(l))− vec(Q∗))

+α2
l ‖vec(Ψ(l)

g (Q(l)))‖2
N(l)(3.56c)

≤ ‖vec(Q(l))− vec(Q∗)‖2
N−1(l) − 2αl(Ψ(Q(l))−Ψ(Q∗)) + α2

l c̄‖vec(Ψ(l)
g (Q(l)))‖2 .(3.56d)

The inequalities in (3.56a) and (3.56b) are due to the fact that Q(l+1) from (3.29)

is a projection of that from (3.22) and the descent direction d(l) from (3.26) is a

projection of d̄(l). Note that vec(Ψ
(l)
g (Q(l))) is a subgradient for Ψ according to part

2 of Lemma 4, and ‖d̄(l)‖2
N−1(l) = ‖vec(Ψg(Q

(l)))‖2
N(l) . The last two terms in (3.56d)

follows from the subgradient definition [15, Sec. 4.2] and Assumption 1, respectively.

The quantity ‖vec(Ψ
(l)
g (Q(l)))‖2 is bounded from above for any ∆

(l)
22 as the feasible

set Q is compact.

From (3.56d), we can proceed to prove the convergence of the proposed FDPS

method for exogenous step-size using the procedure presented in [60].

3.7.6 Proof of Proposition 2

Lemma 5: For Hermitian PSD matrices A ∈ Cn×n and B ∈ Cn×n whose EVDs

are A = UAΛAU†A and B = UBΛBU†B, where the eigenvalues are arranged in non-
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increasing order. Then, we have

|I + AB| ≥ |I + IaΛAIaΛB| . (3.57)

The equality is achieved when UA = UBIa [65, Lemma 1].

We can prove the precoder structure (3.36) is optimal using a similar approach to

that in [113, Theorem 1].

We can show that U = UR̄Ia optimizes (3.35) as follows. Substituting (3.36), the

left side of the constraint (3.35b) becomes log |I + R̄UΣU†|. According to (3.57), we

have log |I + R̄UΣU†| ≥ log |I + IaΛR̄IaΣ|. Clearly, when the left side of (3.35b) is

replaced by the expression log |I + IaΛR̄IaΣ|, the problem (3.35) would have a larger

feasible set and hence U = UR̄Ia maximizes P-V.

3.7.7 Proof of Theorem 2

Lemma 6: Let J be the set of all L = 2n diagonal matrices J that have either +1

or −1 as the diagonal elements. Let A ∈ Cn×n be a Hermitian matrix and DA be a

diagonal matrix such that [DA]ii = [A]ii. Then, DA = 1
L

∑L
J∈J JAJ [57, Ch 9].

Define the matrices Q̄
∆
= U†

R̂22
QUR̂22

and ∆̄22
∆
= U†

R̂22
∆22UR̂22

. Under the

unitarily-invariant set Qu, the CC problem P-II can be expressed as

min.
Q̄∈Qu

[
Ψ(Q̄)

∆
= max.

∆̄22∈Ū2

− log
∣∣I + (ΛR̂22

− ∆̄22)Q̄
∣∣] (3.58)

where the uncertainty set Ū2
∆
= {‖∆̄22‖Sp2

≤ ε2,ΛR̂22
− ∆̄22 � 0, ∆̄22 � 0}. It is

equivalent to U2 since the Schatten norm is invariant under the transformation and
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so does the PSD property [13, Proposition 8.1.2]. Let ∆o
22 = J∆̄22J. From (3.58)

and using (3.43), we have

Ψ( ¯JQJ) = max.
∆̄22∈Ū2

− log
∣∣I + (JΛR̂22

J− J∆̄22J)Q̄
∣∣ (3.59a)

= max.
∆o

22∈Uo
2

− log
∣∣I + (ΛR̂22

−∆o
22)Q̄

∣∣ (3.59b)

= Ψ(Q̄) (3.59c)

where (3.59b) follows as Ū2 is equivalent to Uo2 [13, Proposition 8.1.2]. The function

Ψ(Q̄) is convex in Q̄, and hence

Ψ(Q̄) =

[
1

L

L∑
J∈J

Ψ( ¯JQJ)

]
≥ Ψ(

1

L

L∑
J∈J

¯JQJ) (3.60a)

= Ψ(DQ̄) (3.60b)

where (3.60a) is due to the Jensen’s inequality and (3.60b) are obtained from Lemma

6. The inequality in (3.60a) becomes equality when Q̄ is a diagonal matrix, which

can be achieved when UQ = UR̂22
.
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Chapter 4

Bayesian Multi-antenna Sensing in
Cognitive Radio Networks Using
Fractional Bayes Factor

4.1 Introduction

In this chapter, we propose a Bayesian detector for spectrum sensing in a multi-

antenna CR network in which no CSI is available. The Bayesian approach for detec-

tion requires a prior distribution of the CSI in terms of the spatial covariance matrix,

and unfortunately it is often improper and cannot be applied directly. We shall in-

troduce the use of the FBF approach to handle improper prior, which in turn yields a

well-defined Bayes factor as the test statistic for detection. A number of priors of the

CSI are examined and a closed-form expression for the test statistics is derived. The

developed Bayesian detector is compared with those by using the conjugate priors

for both hypotheses and GLRT, and it yields considerable improvement in detection
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performance.

4.1.1 Background

Opportunistic access for CR network can provide an efficient use of the limited spec-

trum resources and allow interweaving between heterogeneous networks [32]. Essen-

tially, the SU in a CR network seeks opportunistic access to the spectral band of a

licensed primary network when the PU is idle. Spectrum sensing in the interweave

paradigm is an essential component for the design of a CR network [6]. The capa-

bilities of SU to detect the presence of PU can be enhanced significantly through

incorporating multiple antennas at the terminals of SU and PU, see [45,50,54,79,86]

and [16,41,73,87].

Spectrum sensing in the interweave multi-antenna CR requires a detector that

generates a defined test statistic to be compared against a specific threshold value to

attain a reliable belief about the activity of PU. Such a detector can be separated into

the deterministic and Bayesian categories. For the deterministic category, the test

statistic can be based on energy [41], multivariate cyclostationary [73], eigenvalues of

the sample covariance matrix [45,79,86,87], or GLRT [16,50,90]. The first three kinds

have limitations as they assume, respectively, the noise power is accurately known,

the PU signal has a format with its cyclic frequency known, or the PU signal does

not have any structure. The GLRT detector does not guarantee in general optimality

for the employed test statistic [40, Ch. 6]. On the other hand, the Bayesian approach

avoids estimating the unknown parameters through introducing prior distributions

for them and marginalizes the likelihood function [5, 21, 40, 54]. In the Bayesian

framework, the Bayes factor is used as the test statistic and it can be considered as
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the odds of one hypothesis to another provided by the data. In this work, we shall

regard the Bayesian detection for spectrum sensing, where the unknown parameters

are the spatial covariance matrix that represents the CSI from PU to SU.

Several approaches have been proposed in the statistics community for the evalua-

tion of the Bayes factor, please refer to [11] for a good overview. Obtaining the Bayes

factor is not straightforward, due to the choice of prior, the improper prior behavior

and the integration for marginalization. Indeed, utilizing proper priors for hypothesis

testing is crucial to ensure a well behaved Bayes factor [11]. The conjugate prior is

proper but it often yields inadequate results for Bayesian detection [54] as indicated in

Section 4.4. In this chapter, we shall introduce the FBF approach to define the Bayes

factor for the spectrum sensing problem that can provide better performance [59,64].

FBF can work with different priors that can be improper, and it can transform

improper priors into proper ones through the concept of training samples. Specifically,

FBF uses a fraction of the likelihood function to make the priors become proper

and the remaining for hypothesis evaluation. Consequently, it avoids the need in

determining the rather difficult non-informative or objective conventional priors (CPs)

[7]. Furthermore, it is computationally attractive and does not need averaging over

all the possible training data as compared to the intrinsic Bayes factor [10].

Recently, the authors of [81] considered FBF and used it for associating proper

priors of the unknown parameters. Previous attempts in the engineering literature

are limited to the conjugate priors [54] or CPs [61,62].
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4.1.2 Chapter Organization

The organization of this chapter is as follows. Section 4.2 formulates the problem

and defines the Bayes factor for spectrum sensing. Section 4.3 presents the FBF

technique, introduces prior distributions for the unknown CSI parameters, and de-

termines the expression for the associated FBF. Section 4.4 compares the proposed

Bayesian detector with the state-of-art detectors and Section 4.5 concludes chapter

four.

4.2 Problem Formulation

4.2.1 Problem Setup

We shall consider spectrum sensing for an interweave CR network in which SU is

able to exploit the spectrum resources of the primary network whenever PU is not

active. Figure 4.1 depicts the considered interweave CR model. We assume PU has l

transmit and SU has p receive antennas. The transmitted signal from PU is xk ∈ Rl×1,

k = 1, · · · , N , where N is the number of samples available for detection. We shall

follow [16,21,50,54,90] and consider xk is Gaussian distributed with E[xxt] = I. The

signal propagates through the channel represented by the matrix H ∈ Rp×l that is

assumed static during the N sample period and reaches SU. The observed signal at

SU is yk, k = 1, · · · , N . The collections of the transmitted and received samples form

the matrices X
∆
= [x1 · · ·xN ] and Y

∆
= [y1 · · ·yN ].

Spectrum sensing in CR can be casted as a detection problem that intends to

109



distinguish between the following two hypotheses:

H0 : Y = W, (4.1a)

H1 : Y = HX + W, (4.1b)

where W = [w1 · · ·wN ], wk ∈ Rp×1, is the zero-mean additive white Gaussian noise

matrix. The hypotheses H0 and H1 in (4.1) correspond to the null (noise) model and

to the data model.

It is reasonable to consider the received signal yk is IID. Thus the detection

problem becomes one of choosing between two multivariate normal distributions from

the observations [6, 16, 21,54].

H0 : yk ∼ N (µ,D), k = 1, · · · , N (4.2a)

H1 : yk ∼ N (µ,Σ), k = 1, · · · , N (4.2b)

where µ ∈ Rp×1 is the mean vectors, D = E[wwt] is a diagonal matrix of positive

diagonal elements. We do not restrict the diagonal elements to be identical to account

for uncalibrated multi-antenna receivers [50,54]. Σ ∈ Rp×p is a positive definite matrix

that is equal to Σ = HHt + D.

The CSI for the detection problem (4.2) is not available and µ, D, H, and Σ

are unknown parameters. In the development follows, we shall denote the density

function for the hypothesis H0 as f0(Y/µ,D) and that for H1 as f1(Y/µ,Σ).
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4.2.2 Bayesian Detection

Let π0(µ,D) and π1(µ,Σ) be prior distributions for the unknown parameters (µ,D)

and (µ,Σ). The marginal density functions for the hypotheses are

m0(Y)=

∫
f0(Y/µ,D)π0(µ,D)dµdD , (4.3a)

m1(Y)=

∫
f1(Y/µ,Σ)π1(µ,Σ)dµdΣ . (4.3b)

Under the Bayesian framework, the test statistic to discriminate between the two

hypotheses is the Bayes factor defined as

B10 =
m1(Y)

m0(Y)
. (4.4)

Given a threshold value γ, the probability of detection and the probability of false

alarm in favor of H1 are

PD = P(B10 ≥ γ/H1) (4.5)

PFA = P(B10 ≥ γ/H0) , (4.6)

where P(A) denotes the probability of the event A.

The Bayes factor (4.4) needs to be evaluated without any unspecified constants [11]

so that the integrations in both (4.3a) and (4.3b) yield certain values. This requires

that the prior πi(·, ·), i = 0, 1, must be proper, i.e,
∫
dπi(·, ·) <∞.

Determining proper CPs can be a challenging task [7]. Furthermore, a rich set of

priors is available from Bayesian inferences and predictions and nevertheless they are

improper. Rather than evaluating (4.4), we shall replace it by the FBF for detection.
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Figure 4.1: An interweave CR model between PU and SU, where each user has
multiple antennas and the channel H is not known.

One direct benefit is the improperness of the priors can be easily taken care of.

The FBF for spectrum sensing that we are going to develop is for unknown pa-

rameters that are real. Extension to the complex parameters is for further study.

4.3 Proposed FBF Detector

4.3.1 FBF

FBF was first introduced by O’Hagan [64] in 1995. It applies a fraction b, 0 < b < 1,

of the likelihood fi(·), i = 0, 1, to handle the improper behaviors of the priors and then

uses the remaining 1− b fraction of the likelihood to decide between the hypotheses.

The FBF, BF
10, is defined as [11,64]

BF
10 = B10

∫
f b0(Y/µ,D)π0(µ,D)dµdD∫
f b1(Y/µ,Σ)π1(µ,Σ)dµdΣ

(4.7)

where B10 is given in (4.4). The ratio term on the right of B10 has the purpose of

cancelling out any unspecified constants in B10. Thus, the FBF BF
10 becomes a well

defined numeric value.

In (4.7), one common choice of b is m/N , where m is the minimal training sample
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size [10]. Other possible values for b are max(m,
√
N)/N and max(m, logN)/N [64].

At the end of Section 4.3.4, we shall provide a requirement of b for the proposed CR

detector.

Moreno [59] has shown that the FBF method can produce fractional priors, mean-

ing that we can consider FBF as a method of generating suitable CP for hypotheses

or models discrimination. The sufficient conditions for the existence of the prior are

that b = m/N and the models are nested.

We shall introduce next some priors for µ, D and Σ and use them to determine

BF
10 for the hypothesis testing problem (4.1).

4.3.2 Prior Distribution under H0

For calculation tractability, we shall use the following conjugate proper prior for

(µ,D)

π0(µ,D)
indep∼

p∏
j=1

IG (h/2, δjj/2) (4.8a)

=

p∏
j=1

(δjj/2)h/2

Γ(h/2)
d
−(h

2
+1)

jj exp

(
− δjj

2djj

)
(4.8b)

=
|∆|h/2

2hp/2Γp(h/2)
|D|−(h

2
+1)etr

(
−1

2
∆D−1

)
(4.8c)

where IG(·, ·) stands for the inverse Gamma distribution, h/2 and δjj/2, j = 1, · · · , p

are the shape and scale parameters of IG(·, ·) and Γ(·) denotes the gamma function.

The matrix ∆ is diagonal formed by having δjj > 0, j = 1, · · · , p, as the diagonal

elements. Note that in (4.8c) the prior for µ is uniform and independent of the prior

for D.
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In the absence of prior information about δjj, it is customary to make the prior

in (4.8) having non-influential effect by setting the hyperparameters (h, δjj) to small

values such as (0.001, 0.001). We should note however that the prior IG(ε, ε) becomes

improper as ε→ 0 [30].

Define h̃ = h+N − 1 and the sample covariance matrix S as

S =
N∑
k=1

(y − ȳ)(y − ȳ)t (4.9)

where ȳ = (1/N)
∑N

k=1 yk is the sample mean. It can be shown that the marginal

density m0(Y) defined in (4.3a) under the prior distribution (4.8c) has the following

closed form expression [5]

m0(Y) =
1

π(N−1)p/2Np/2

Γp(h̃/2)

Γp(h/2)

|∆|h/2

|∆ + Diag(S)|h̃/2
. (4.10)

4.3.3 Prior Distributions under H1

We shall introduce a collection of possible improper priors for the covariance matrix

Σ. It would be convenient to express Σ−1 in a unique decomposition form through

the Cholesky factorization

Σ−1 = ΨΨt (4.11)

where Ψ ∈ Rp×p is an upper triangular matrix with positive diagonal elements. The

off-diagonal elements are denoted by ψjk, k > j.

Rather than using priors on the whole Σ as in [21,54], we shall follow [20,83] and

apply priors on the elements of Ψ. The general class of priors for (µ,Ψ) that we
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propose is

π1,a(µ,Ψ) =

p∏
j=1

1

ψ
aj
jj

(4.12)

where a = [a1, ··, aj, ··, ap]t. (4.12) is a common form that encompasses several priors

by changing the value of a. Choosing aj = p − j gives the Jeffreys’ prior πJ and

aj = p − j + 1 the independence-Jeffreys’ (left-Haar measure) prior πIJ [37]. If

aj = 2 − j, (4.12) becomes the Geisser and Cornfield’s prior πGC that yields the

exact frequentist matching inference for all the means and variances [29]. The right-

Haar measure prior πRH for exact frequentist inference is also represented by (4.12)

when setting aj = j. Finally, using aj = 1 reduces (4.12) to the reference prior πR [83]

that is defined in [12].

We shall next obtain m1(Y) described in (4.3b) for the prior (4.12). Let the

Cholesky factorization of the sample covariance matrix given in (4.9) be S = VtV,

where V ∈ Rp×p is an upper triangular matrix with diagonal elements vjj > 0, j =

1, · · · , p. Define the upper triangular matrix T
∆
= VΨ whose diagonal elements are

tjj > 0, j = 1, · · · , p. Through the Jacobian of the transformation from Σ to Ψ and

from Ψ to T, we have dΣ/dΨ = 2p
∏p

j=1 ψ
−2(p+1)+j
jj and dΨ/dT =

∏p
j=1 v

−(p−j+1)
jj . As

a result, the density function f1(Y/µ,Σ) becomes f1(V/µ,T). Since ψjj = tjj/vjj,

it can be shown that f1(V/µ,T) has the following expression [5],

f1(V/µ,T) =
2pN−p/2

(2π)
(N−1)p

2

p∏
j=1

vcjj

t
−dj
jj

etr

(
−1

2
TTt

)
N
(
µ,

Σ

N

)
(4.13)

where c = p−N + 2 and dj = −2(p+ 1) + j +N − 1.

We have shown in [5] that the off-diagonal elements of T follows the unit normal

distribution and the diagonal elements the chi-square distribution with dj +1 degrees
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of freedom (dof).

Consequently, m1(Y) can be evaluated explicitly as

m1(Y) =
(2π)

−(N−1)p+O
2

Np/2

p∏
j=1

2
k̃j
2
−1Γ

(
k̃j
2

)
v
c̃j
jj , (4.14)

where O = p(p− 1)/2, d̃j = (N − 1)− aj, k̃j = d̃j + 1, cj = −(N − 1)− (p− j + 1),

and c̃j = cj + aj. For further details, please refer to [5].

4.3.4 Bayes Factor Evaluation

The prior for D is improper as h, δ → 0, so does the class of priors (4.12) for the

matrix Σ. The following proposition provides a closed form expression for the test

statistic BF
10.

Proposition 1 [5]: The FBF BF
10 can be evaluated according to (4.7) as

BF
10 = K

∏p
j=1 2

k̃j
2
−1( b

2
)
d̃b,j+1

2 Γ(
k̃j
2

)v
c̃j−c̃b,j
jj

Γ(
d̃b,j+1

2
)

|∆ + Diag(S)| h̃2

|∆ + bDiag(S)|
h̃b
2

(4.15)

where the parameters c̃b,j = bcj + aj − (b − 1), d̃b,j = bN − aj − 1, h̃b = h + bN − 1

and K = 2pbO/2Γp(h̃b/2)

2(1+(b−1)N)p/2Γp(h̃/2)
.

Proof: We should first substitute (4.8c) and use π1,a(µ,Σ) from (4.12) for π1(µ,Σ)

in (4.7). Then we obtain from (4.10) and (4.14) the factor B10 defined in (4.4).

Simplifying yields the FBF expression (4.15). Please refer to [5] for the details. �

Since the gamma function Γ((d̃b,j + 1)/2) in (4.15) has to be a positive value, the
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following condition must be satisfied for the fraction b,

b >
p+ 1

N
, (4.16)

where the number of samples should be N > p+ 1.

4.4 Numerical Results

This section presents numerical results for the hypothesis testing problem of spectrum

sensing in interweave CR. We use 105 realizations to generate data in each hypothesis

to evaluate the probability of detection and the probability of false alarm according to

(4.5) and (4.6). The detection threshold γ in (4.6) for a given PFA value is determined

experimentally as the probability PFA does not admit a closed-form expression. The

number of samples to obtain the test statistics for detection is N = 50.

We compare the performance of the proposed FBF detector (4.15) with the ones

that are based on the conjugate prior πC in both hypotheses [54] and on GLRT [87].

Their test statistics are provided in Appendices 4.6.1 and 4.6.2.

Using l = 4 PU transmit antennas and p = 4 SU receive antennas, Figure 4.2

shows the average probability of detection as SNR at SU increases while keeping a

fixed PFA at 10−3. The fraction b for the proposed FBF is set to b = 0.1. We examine

all members of the class of improper priors: πJ, πIJ, πGC, πRH, and πR for FBF. They

behave similarly and the difference occurs at very low SNR where the πRH prior shows

the lowest PD while the πR prior has the best detection performance. Any of the FBF

outperforms the conjugate prior [54] and the GLRT test [87] detector considerably.

For example to reach a PD = 0.5, the FBF detectors require an SNR of −2.5 dB while
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the other two detectors need 1 dB and 6 dB, respectively.

Figure 4.3 shows the average probability of detection versus the probability of false

alarm. The SNR is −4 dB and the numbers of antennas are l = 5, p = 5. The fraction

for FBF is b = 0.12. We observe again that the behaviors of the different priors

defined in (4.12) for the CSI in H1 are similar. They all provide superior performance

to the detectors using the conjugate prior πC and GLRT test. At PFA = 10−2, the

corresponding probability of detection PD for the FBF detector with πRH prior, and

the πC prior and GLRT based detectors are 0.67, 0.16 and 1.1× 10−2.

4.5 Conclusion

In this chapter, we have developed a Bayesian detector for spectrum sensing in in-

terweave CR networks. The proposed detector employs FBF to handle the problem

of improper prior distributions in generating the Bayes factor for detection. We have

introduced a new class of improper priors for the covariance matrix that represents

the CSI between PU and SU. Numerical results show that the proposed FBF Bayesian

detector has superior performance to that with the conjugate prior and to the GLRT

test.
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4.6 Appendix

4.6.1 Bayes Factor for the Conjugate Prior

The conjugate priors for the distributions (4.2a) and (4.2b) are (4.8c) and the Wishart

distributions, respectively. Let u and Υ be the dof and the scale matrix of the Wishart

distribution for (4.2b). It can be verified that the Bayes factor (4.4) corresponding

to the conjugate priors BC
10 has the following form

BC
10 =

Γ(ũ/2)Γp(h/2)

Γ(u/2)Γp(h̃/2)

|Υ|u/2

|Υ + S|ũ/2
|∆ + Diag(S)|h̃/2

|∆|h/2
, (4.17)

where ũ = u + N − 1. We set Υ = I to indicate that there is no CSI about the

covariance matrix Σ.

4.6.2 GLRT Formula

The GLRT test statistic from [87] is

TGRLT =
(
C (1− κ/p)p−1)−N (4.18)

where C = (1 − 1/p)p−1 and κ = λ1/
∑p

i=1 λi with λi being the eigenvalues of the

covariance matrix 1
N

S arranged in non increasing order.
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Figure 4.2: Performance of the proposed FBF, the conjugate prior [54] and the GLRT
test [87] detector for PU active; the settings are l = 4, p = 4, PFA = 10−3 and b = 0.1.
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Chapter 5

Summary and Future Work

This chapter provides a summary for our developed techniques in this thesis. It also

describes the CR problems we intend to conduct in the future.

5.1 Research Summary

Chapter 2 considers a CR problem such that CSI of the link from SU-Tx to PU-Rx is

uncertain or unknown while that of the link from SU-Tx to SU-Rx is perfectly known.

We impose the IT and LR interference constraints to maintain the QoS of PU.

When CSI is not known, we assume that the PU network exchanges control or side

information that can be used to extract some useful indicators about PU’s QoS. We

develop an iterative algorithm that optimizes the SU rate and satisfies QoS require-

ments through making use of the side information. The proposed algorithm is optimal

as the number of antennas of PU-Rx goes without limit. Also, the performance of the

iterative algorithm is examined through simulations under different values of Doppler
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frequency.

When CSI is inaccurate, we model the uncertainty error using a generic norm

called the Schatten norm. We use the worst case formulation in the interference

constraint to find the most conservative solution for the precoder matrix. Particularly

for the IT metric, an equivalent tractable formulation for the interference constraint

at the worst case channel uncertainty matrix is proposed. For the LR metric, a local

approximation through linearization is developed to obtain a tractable expression for

the interference constraint. This approximation serves as an upper bound and the

final solution is achieved iteratively.

The study in this chapter is completed by comparing the performance of precoder

solutions from the unknown CSI and the partially known CSI. It is observed that

the SU rate of the former could be better than that of the latter, and we derive the

conditions for this occurrence.

In chapter 3, CSI of the links from SU-Tx to SU-Rx and from SU-Tx to PU-Rx

are inaccurate. The linear precoding matrix belongs to a general convex power set

and the uncertainty error elements to a convex set defined by the Schatten norm.

The PU’s QoS is measured using the (LR) metric. We seek the precoder matrix that

maximizes MI at the worst uncertainty elements in the uncertainty regions associated

with both links. If the interference constraint is fully satisfied, we encounter the

compound capacity problem which has its own interest. We provide equivalent and

more tractable reformulations for the mutual information function, and propose two

iterative algorithms to obtain the best precoder. These algorithms exhibit different

convergence behavior and computational complexity. We reduce the computational

time for each iterative step through deriving analytical forms for the precoder, which
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may produce a lower bound for the SU rate.

For a fixed precoder matrix, the uncertainty element of the SU’s direct link is

obtained using the AI approach, while that of the SU’s interference link is estimated

analytically. The precoder is updated iteratively using the FDPS technique until a

stopping criterion is met.

We finally provide simpler and attractive solutions for the CR and CC problems.

For the CR problem, we find the optimal structure when the uncertainty sets are

defined by the spectral norm and the transmit power requirement is always satisfied.

For the CC problem, we show that the precoder matrix has the same eigenvectors as

that of the nominal channel matrix when the uncertainty set is unitarily-invariant.

Chapter 4 addresses an interweave CR network in which CSI of the covariance

matrices under the null and alternative hypotheses are not known. We follow the

Bayesian approach that imposes priors on the unknown parameters and use the Bayes

factor as a test statistic. We invoke the FBF approach to obtain a well-defined Bayes

factor when the proposed priors are improper. We further use a new class of non-

informative priors in the alternative hypothesis. The numerical results show that the

proposed FBF detector outperforms the state-of-the art detectors.

5.2 Future Work

We are planning to extend our work towards the following directions
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5.2.1 Stochastic Modeling

We shall adopt the stochastic modeling for channel uncertainties in the forthcoming

work. It is however worth noting that dealing with this modeling is challenging

because of the intractability of the closed form of the probability expressions or even

the lack of such expressions. Indeed, several works have focused on solving safe

tractable approximations to circumvent this difficulty in the context of multiuser

beamforming. Nevertheless, those approximations suffer from two folds: First, the

robust solutions are conservative and considerably not close to the optimum of the

original problem. Second, the approximated problem may not be feasible even though

the original problem is feasible.

We can summarize our objectives for this path as follows

• We shall formulate the precoder design problem by optimizing the ergodic ca-

pacity of SU under transmit-power, number of spatial data streams, and a set of

QoS-outage based interference constraints.The general structure of the optimum

precoder will be derived for single and multiple PUs;

• We shall make the solutions developed in the above item are applicable to a wide

range of objective functions (performance measures) under the aforementioned

constraints. Our aim is to make the mathematical formulation of the proposed

problem covers other communication systems in addition to the CR one;

• We shall analyze the performance of the proposed techniques in the asymptotic

regime as the number of antennas goes to infinity, and devise some asymptotic

algorithms to obtain the precoder.
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5.2.2 Bayesian Model Selection

We shall extend the FBF approach introduced in chapter 4 for Bayesian model se-

lection. We shall consider as well the intrinsic Bayes factor (IBF) and conjugate

priors.

5.2.3 Game Theory Based CR Design

We shall consider a CR network with multiple MIMO PUs and SUs. Our objectives

in this path are to address the following aspects.

• We shall consider a global interference constraint from SUs to PUs rather than

the individual one. This design can provide better information rate for SU than

that with conservative individuals constraints. The suggested design will be

accomplished using game theory to control signaling among users;

• We shall devise a distributed method to update the precoder matrices for SUs

as an alternative to the centralized fashion.

125



Bibliography

[1] M. H. Al-Ali and K. C. Ho, “Robust transmit precoding for underlay MIMO cogni-

tive radio with interference leakage rate limit,” in Proc. IEEE ICASSP, Shanghai,

China, Mar. 2016, pp. 3001-3005.

[2] M. H. Al-Ali and K. C. Ho, “Transmit precoding in underlay MIMO cognitive

radio with unavailable or imperfect knowledge of primary interference channel,”

IEEE Trans. Wireless Commun., vol. 15, no. 8, pp. 5143-5155, Aug. 2016.

[3] M. H. Al-Ali and K. C. Ho, “Bayesian multi-antenna sensing in cognitive radio

networks using fractional Bayes factor,” in Proc. IEEE ICASSP, New Orleans,

Mar. 2017.

[4] M. H. Al-Ali and K. C. Ho, “Precoding for MIMO channels in cognitive radio

networks with CSI uncertainties and for compound capacity,” under 2nd review,

IEEE Trans. Signal Process.

[5] M. H. Al-Ali and K. C. Ho, “A new class of priors for Bayesian model selection

and hypothesis testing: MIMO cognitive radio application,” under preparation.

126



[6] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spectrum sensing for cognitive

radio,” IEEE Signal Process. Mag., vol. 29, no. 3, pp. 101-116, May 2012.

[7] M. J. Bayarri, J. O. Berger, A. Forte, and G. Garcia-Donato, “Criteria for

Bayesian model choice with application to variable selection,” Ann. Stat., vol.

40, no. 3, pp. 1550-1577, 2012.

[8] M. Beko, “Efficient beamforming in cognitive radio multicast transmission,” IEEE

Trans. Wireless Commun., vol. 11, no. 11, pp. 4108-4117, Nov. 2012.

[9] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit beamform-

ing,” chapter 18 in Handbook of Antennas in Wireless Communications, L. C.

Godara, Ed. Boca Raton, FL, USA: CRC Press, Aug. 2001.

[10] J. O. Berger and L. R. Pericchi, “The intrinsic Bayes factor for model selection

and prediction,” J. Amer. Statist. Assoc., vol. 91, no. 433, pp. 109-122, Mar. 1996.

[11] J. O. Berger and L. R. Pericchi, “Objective Bayesian methods for model selection:

Introduction and comparison,” Inst. Math. Stat. Lecture Notes-Monograph Series,

vol. 38, pp. 135-207, 2001.

[12] J. O. Berger, J. M. Bernardo, and D. Sun, “The formal definition of reference

priors,” Ann. Stat., vol. 37, no. 2, pp. 905-938, 2009.

[13] D. S. Bernstein, Matrix Mathematics: Theory, Facts, Formulas, 2nd ed. Prince-

ton, NJ, USA: Princeton Univ. Press, 2009.

[14] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena Scientific,

2nd ed., 1999.

127
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“A Bayesian approach for adaptive multiantenna sensing in cognitive radio net-

works,” Signal Process., Elsevier, vol. 96, part B, pp. 228-240, 2014.

[55] A. Manolakos, Y. Noam, and A. J. Goldsmith, “Interference due to null space

mismatch in cooperative multipoint MIMO cellular networks,” in Proc. IEEE

ICC, Sydney, NSW, Jun. 2014, pp. 5148-5153.

[56] J. Mao, J. Gao, Y. Liu, G. Xie, and X. Li, “Power allocation over fading cognitive

MIMO channels: An ergodic capacity perspective,” IEEE Trans. Veh. Technol.,

vol. 61, no. 3, pp. 1162-1173, Jan. 2012.

[57] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization

and Its Applications, Springer, 2nd ed., 2009.

[58] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal

Processing. Upper Saddle River, NJ, USA: Prentice-Hall, 2000.

[59] E. Moreno, “Bayes factor for intrinsic and fractional priors in nested models.

Bayesian robustness,” Inst. Math. Stat. Lecture Notes-Monograph Series, vol. 31,

pp. 257-270, 1997.
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