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ABSTRACT

The multiple instance learning problem addresses the case where training data comes

with label ambiguity, i.e., the learner has access only to inaccurately labeled data. For ex-

ample, in target detection from remotely sensed hyperspectral imagery, targets are usually

sub-pixel and the ground truthing of the targets according to GPS coordinates could drift

across several meters. Thus the locations of the targets corresponding to the hyperspec-

tral image are inaccurate. Training a supervised algorithm or extracting target signatures

from this kind of labels is intractable. This dissertation investigates the topic target concept

learning from ambiguously labeled data comprehensively; reviews and proposes several

methods that either learn a set of representative or discriminative target concepts.

The multiple instance hybrid estimator (MI-HE) maximizes the response of the hybrid

detector under a generalized mean framework and estimates a set of discriminative target

concepts. MI-HE adopts a linear mixture model and iterates between estimating a set of

discriminative target and non-target signatures and solving a sparse unmixing problem.

MI-HE preserves bag-level label information for each positive bag and is able to estimate a

target concept that is commonly shared among positive bags. Furthermore, MI-HE has the

potential to learn multiple signatures to address signature variability.

After learning target concept, signature based detector could be applied for target de-

tection. The presented algorithms were tested in many applications including simulated

and real hyperspectral target detection, heartbeat characterization from ballistocardiogram

signals and tree species classification from remotely sensed data. The presented algo-

rithms were proven to be effective in learning high-quality target signatures and consis-

tently achieved superior performance over the state-of-the-art comparison algorithms.

xvi



Chapter 1

Introduction

In supervised learning, each training data is assumed to be coupled with the desired classifi-

cation output. However, acquiring accurately labeled training data can be time consuming,

expensive and even infeasible. Furthermore, labeling ambiguity comes naturally in many

machine learning and computer vision applications, for example, an image that is labeled

as computer may also contain a desk or several books; a video that is labeled as abnormal

may only have its subset frames containing an accident, making the training label ambigu-

ous [2, 3].

In hyperspectral target detection [4, 5], ground truth label information coming from a

GPS receiver could drift across several pixels depending on the accuracy of the GPS, thus it

is only known that some area denoted by the ground truth contains some points of interest

for sure. In medical applications like heartbeat characterization and heart rate estimation

from Ballistocardiogram (BCG) signals [6–8], ground truth is not strictly aligned in time

with the BCG signals and moreover, there may be some missed collection of heartbeat sig-

nals by the BCG sensors. These labeling uncertainties make traditional supervised learning

1



Rotated Bond

Figure 1.1: Illustration of MIL: a molecule with different shapes [1]

algorithms challenging to apply and the multiple instance learning algorithms more appeal-

ing.

Multiple instance learning (MIL) problem was first comprehensively investigated by

Dietterich et al. [1] in the 1990s for the prediction of drug activity (musk activity). The

effectiveness of a type of drug is determined by how tightly the drug molecule binds to a

much larger protein molecule (eg., enzymes and cell-surface receptors). However, a certain

molecule determined by laboratory assay to be effective can have alternative variants called

“conformations” - different structures the molecule could be by rotating its bonds shown

by Fig. 1.1. Among all those different conformations the effective molecule could adopt,

only one (or a few) actually binds to the desired target binding site. The learning task is to

infer the correct shape of that molecule that actually has tight binding capacity.

In order to solve this problem, Dietterich et al. introduced the concept of “bags”. Each

molecule was treated as a bag and each possible conformation the molecule could be was

treated as an instance in that bag. This directly induces the definition of multiple instance

learning problem: a positively labeled bag contains at least one positive instance and neg-

2



atively labeled bags are composed of entirely negative instances. Finally, Dietterich et

al. proposed to solve this problem by finding axis-parallel rectangles constructed by the

conjunction of the features as approximation of the binding conformation.

Dietterich et al. also compared the proposed algorithm with several classical super-

vised learning algorithm including the backpropagation neural network and decision tree,

and concluded that any supervised machine learning algorithm will perform poorly on MIL

problem without considering the essence of MIL. Since Dietterich’s work, many MIL learn-

ing algorithms were proposed and investigated. The MIL algorithms in the literature can

be generally divided into two categories: learning an individual or a set of concepts that

describe the positive class or learning a classifier that is able to classify individual instances

or bags. This dissertation focuses on the former category, learning an individual or a set of

concepts that either try to describe the positive class or distinguish the positive instances.

Here, concepts refer to generalized class prototypes in the feature space.

1.1 Hyperspectral Image Analysis

Hyperspectral imaging spectrometers (also referred to as hyperspectral sensors) collect

electromagnetic energy scattered in the scene across hundreds or thousands of spectral

bands, and thus capture both the spatial and spectral information [9]. The spectral infor-

mation is a combination of the reflection and/or emission of sunlight across wavelength by

objects on the ground, and contains the unique spectral characteristics of different materials

[10, 11]. The wealth of spectral information in hyperspectral imagery enables the possibil-

ity to conduct sub-pixel analysis including target detection [12, 13], precision agriculture

[14, 15], biomedical applications [16, 17] and others [11, 18, 19].

3



1.1.1 Hyperspectral Image Data

Hyperspectral cameras collect radiance data over a high resolution range of wavelength,

typically in the range of 0.3 µm to 2.5 µm [20] and construct a three-dimensional data cube.

In hyperspectral data cube, each layer corresponds to a certain band of wavelength over all

pixels and each pixel corresponds to the radiance value at certain location over the entire

spectral bands. Due to the spatial resolution of hyperspectral cameras and high diversity of

nature scene, individual pixel may be a mixture of several objects, in other words, each pixel

may contain several different materials, called endmembers. Endmembers are assumed

spectral value vectors over the wavelength for the pure materials present in the image. But

the definition of “pure materials” could be also task driven or user defined.

As each pixel is a mixture of endmembers, abundances or proportions, are the amount

or percentage of each endmember presents in an individual pixel. The magnitude of each

endmember’s proportion in an individual pixel is determined by many factors, e.g., the

relative area of the corresponding object, reflective intensity of materials, interactive ab-

sorption and scattering of light. Beside this, how the mixture is modeled also matters. Both

linear and non-linear mixture models have been developed and verified to be effective in

different physical context in the literature [11]. In realistic, the spectral mixture in remote

sensing should be non-linear, due to the multiple mixture of light among different objects

on the ground, e.g., between tree canopy and the ground, and microscopic scattering be-

tween molecules. However, the linear mixing model that assumes each pixel is a convex

combination of endmembers and proportions maintains the advantages of simplicity and

good generalization ability and is investigated and adopted immensely. This dissertation

mainly focuses on the linear mixing model.

4



1.1.2 Hyperspectral Unmixing

Hyperspectral unmixing can be decomposed into two major tasks: endmember estimation

and abundance estimation. A mixing model needs to be assumed before conducting spec-

tral unmixing. The convex mixing model assumes each pixel is a convex combination of

the endmembers,

xj =
M∑
k=1

ajkdk + εj, j = 1, . . . , N (1.1)

M∑
k=1

ajk = 1, ajk ≥ 0,∀j, k, (1.2)

whereN is the total number of data points, M is the number of endmembers (or materials),

xj is the spectral value of the jth data point, εj is an error/noise term, dk is the spectral

signature of the kth endmember, and ajk is the abundance of the jth pixel corresponding

to the kth endmember. The abundances in this model are constrained to the sum-to-one

and non-negative constraint shown in Eq. (1.2). Typically, only the N data points are

known as the input hyperspectral image, the remaining variables in the model including

the spectral value of the endmembers, the number of endmembers, M , and corresponding

abundance values are unknown and need to be solved. Estimating these unknown variables

is an ill-posed inverse problem.

Many unsupervised hyperspectral unmixing methods adopt a number of assumptions

about hyperspectral imagery to solve the ill-posed problem [10, 21–25]. For example,

these methods include requiring the solution of endmembers to be found within the input

data [26–31], adding volume penalty [32–35], assuming sparsity constraints [36–41], or

adding the spatial smooth constrain on the abundance values [42–46]. These hyperspectral

unmixing methods are mainly unsupervised algorithms. However, it is more appealing to

5



apply supervised or task driven unmixing [47, 48] if prior information about the particular

materials of interest is available.

1.1.3 Hyperspectral Target Detection

Hyperspectral target detection generally refers to the task of locating all instances of a

target given a known spectral signature within a hyperspectral scene. A large number of

hyperspectral target detection methods have been developed in the literature [4, 5, 49, 50].

The reasons most classification methods are not applicable to hyperspectral target detection

tasks are threefold:

1. The number of training instances from the positive (target) class is small compared to

that of the negative training data such that training an effective classifier is difficult.

Typically in a hyperspectral image with size hundreds by hundreds pixels, there are

only a few pixel or sup-pixel level target points. Compared with the number of

the non-target points, this number of target points is too few to effectively train an

classifier, e.g., a SVM may be biased by the excessive non-target points and achieves

very high classification accuracy but low detection rate.

2. Due to the relatively low spatial resolution of hyperspectral imagery and the diversity

of natural scenes, many targets are mixed points (sub-pixel targets). Most of the

supervised learning algorithms assume each training data is a prime prototype of a

class denoted by the label paired with this data. However, in hyperspectral image,

a target pixel could be a mixture of several background materials and the amount

of target mixture is unknown. Supervised learning algorithms will be stuck without

considering the fact of mixture in training data.
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3. Precise training labels are often difficult or infeasible to obtain. In hyperspectral im-

age analysis, the ground truth information usually comes from a Global Positioning

System (GPS) receiver placed to the target. However, the co-registration of the tar-

gets in the image to the GPS coordinates could drift for several meters. That means a

target pixel denoted by the GPS coordinates could be a false positive point. The only

reliable knowledge is with in a certain region there exists some targets for sure.

As an example, Fig. 1.2(a) shows the scattered target locations over MUUFL Gulf-

port data set collected over the University of Southern Mississippi-Gulfpark Campus [51],

where there are 4 types of targets throughout the scene: Brown (15 examples), Dark Green

(15 examples), Faux Vineyard Green (12 examples) and Pea Green (15 examples). The

highlighted region shown in Fig. 1.2(a) is one of the brown target locations whose zoomed

view is shown in Fig. 1.2(b), where we can clearly see that for this brown target there is

one pixel drift between the real target location and ground truth location given by GPS. De-

veloping a classifier or extracting a pure prototype for the target class given this incomplete

knowledge of the training data is intractable, thus MIL methods are needed.
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(a) Scattered target locations over MUUFL Gulfport data set
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Figure 1.2: Illustration of inaccurate coordinates from GPS: one target denoted as brown
by GPS has one pixel drift.
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1.2 Ballistocardiogram Signal Analysis

Long-term measurement and monitoring of vital signs, e.g., heart rate, respiratory rate,

body temperature and blood pressure, provides promise for the early treatment of any

potential problems, especially for older adults. Compared with the many wearable heart

rate monitoring systems available, ballistocardiography provides an unobtrusive and, thus,

comfortable monitoring alternative. These systems record the motion of the human body

generated by the sudden ejection of blood into the large vessels at each cardiac cycle [6].

Such motion contains rich information and has gained revived interest due to recent de-

velopment in measurement technology [7, 8] and a growing interest in managing chronic

health conditions through passive sensors in the home [52].

1.2.1 Hydraulic Bed Sensor System

The hydraulic bed sensor (HBS) developed at the Center for Eldercare and Rehabilitation

Technology (CERT) at the University of Missouri is a BCG device providing a low-cost,

noninvasive and robust solution for capturing physiological parameters during sleep [53–

55]. The HBS was designed to maintain an imperceptible flat profile and to be used beneath

a bed mattress. The system is comfortable for subjects lying on the mattress (i.e., nonin-

vasive), easy to install, watertight, and durable. Compared with other methods such as

electrocardiography (ECG), BCG does not need electrodes or clips to be affixed to the

patient’s body and thus is ideal for long term in-home monitoring. However, the lack of

saliency and large variability in a BCG signal makes it much more difficult to detect indi-

vidual heartbeats than with an ECG.

The HBS is composed of a transducer and a pressure sensor as shown in Fig. 1.3(a). The
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(a) Sensor and Embedded System

(b) Transducer placement

Figure 1.3: Hydraulic Bed Sensor System. (a) Hydraulic transducer (top) and embedded
system (bottom). (b) Transducer placement
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transducer was designed to be placed under the subject’s upper torso. It is 54.5 cm long,

6 cm wide, and is filled with 0.4 liters of water [53–55]. The integrated silicon pressure

sensor (Freescale MPX5010GP) attached to the end of the transducer is used for measuring

the vibration of human body arising from each heartbeat. It captures the information of

heartbeat together with respiration and motion artifact. The signal from each transducer is

then amplified, filtered and sampled at 100 Hz. For ground-truthing, a piezoelectric pulse

sensor (TN1012/ST, ADInstruments) attached to subject’s finger was used to record the

pulse ejected by a heartbeat.

In order to ensure enough coverage, four transducers are placed in parallel underneath

a mattress as shown in Fig. 1.3(b). The four transducers are identical and independent, but

the data quality collected by those four transducers could vary depending on the sleeping

position, type of mattress (e.g., material, thickness) and the physical characteristics of the

subject (e.g., age, body mass index (BMI)).

1.2.2 Multiple Instance Learning Problem in Ballistocardiograms

Fig. 1.4 shows a typical filtered BCG signal collected by one transducer and the corre-

sponding finger sensor ground truth information, where the green circles denote every peak

location of the filtered BCG signal. From Fig. 1.4, it can be seen that near the ground

truth locations denoted by the finger sensor, there are prominent peak patterns measured

by the BCG transducer corresponding to heartbeats. However, although all of the sensors

are expected to be capturing each corresponding heartbeat signal simultaneously, there is

unavoidable misalignment between the finger sensor and each of the BCG pressure sensors.

Furthermore, depending on the location and position of the subject lying on the bed, which

of these BCG sensors are able to capture a clear heartbeat signal is difficult to determine.
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Positive bags 

Figure 1.4: BCG signal and ground truth plot

These multiple labeling uncertainties in the training data cast more difficulties to traditional

supervised learning methods for heartbeat detection and heart rate estimation from a BCG

signal.

For this problem, this dissertation proposes to introduce the idea of training “bags” to

address label uncertainty as well as mis-collection of heartbeat signals in the BCG data. So

accurately labeled BCG signals are no longer needed. The proposed MI-HE algorithm is

expected to learn a set of discriminative subject-specific heartbeat concepts from training

bags of this type. After learning the heartbeat concept, a signature based detector can then

be applied for real-time heartbeat monitoring and heart rate estimation.
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1.3 Signature Based Detectors

The majority of sub-pixel detection techniques are statistical methods in which the target

and background signals are modeled as random variables distributed according to some

respective underlying probability distribution [4, 56, 57]. The detection problem can then

be posed as a binary hypothesis test with two competing hypotheses: target absent (H0) or

target present (H1) and a detector can be designed using the generalized likelihood ratio

test (GLRT) approach [58]. Following the Neyman-Pearson criterion that maximizes the

probability of detection (PD) given any desired probability of false alarm (PFA), the GLRT

is shown in Eq. (1.3),

Λ(x) =
f(x|Target present)
f(x|Target absent)

,
f(x|H1)

f(x|H0)

H1

≷
H0

η, (1.3)

where f(x|Hi) is the likelihood function value for each hypothesis.

1.3.1 Spectral Matched Filter

The hypotheses used for the spectral matched filter (SMF) [4, 58–61] are:

H0 : x ∼ N (0,Σb)

H1 : x ∼ N (as,Σb) (1.4)

where Σb is the background covariance and s is the known target signature which is scaled

by a target abundance, a. The square-root of the GLRT for (1.4) results in the following as

13



the SMF detector:

ΛSMF (x, s) =
sTΣ−1

b (x− µb)√
sTΣ−1

b s
(1.5)

where µb is the background mean subtracted from the data to ensure a zero-mean back-

ground as defined inH0.

1.3.2 Adaptive Coherence/Cosine Estimator

The hypotheses used for the structured-background adaptive coherence/cosine estimator

(ACE) [62–64] are:

H0 : x ∼ N
(
0, σ2

0Σb

)
H1 : x ∼ N

(
as, σ2

1Σb

)
(1.6)

which includes σ2
0 = 1

n
xTΣ−1

b x and σ2
1 = 1

n
(x− as)T Σ−1

b (x− as) to add scale-invariance

to the ACE detector where n is the dimensionality of the spectra. The square-root of the

GLRT for (1.6) results in the following as the ACE detector [62, 63]:

ΛACE(x, s) =
sTΣ−1

b (x− µb)√
sTΣ−1

b s
√

(x− µb)TΣ−1
b (x− µb)

. (1.7)

Compared with Eq. (1.5), the ACE detector can be viewed as a normalized version of

SMF: the input test points are whitened and normalized before the projection to the target

signature. The normalization step removes the magnitude difference from the input data

and achieves better performance in some scenarios, e.g., test data with large variance in
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magnitude.

1.3.3 Hybrid Detector

The hypotheses used for the background structured hybrid detector (HSD) [56, 65] are:

H0 : x ∼ N
(
D−p, σ2

0Σb

)
H1 : x ∼ N

(
Da, σ2

1Σb

)
(1.8)

where D and D− represent the full endmember set and background endmembers set, re-

spectively. a and p are the abundance values computed by Fully Constrained Least Squares

(FCLS) [66] corresponding to D and D−, respectively. The GLRT for (1.8) results in HSD

detector:

ΛHSD(x,D) =
(x−D−p)TΣ−1

b (x−D−p)

(x−Da)TΣ−1
b (x−Da)

, (1.9)

The hybrid detector models the reconstruction error of each point as a zero mean Gaus-

sian distribution using the entire endmember set and non-target endmember set, respec-

tively. The ratio between the reconstruction error using the entire endmember set and only

the non-target endmember escalates the difference in the two reconstruction errors. The hy-

brid detector explicitly models the mixture in hyperspectral data and provides a sub-pixel

detection alternative.
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1.4 Overview of Research

In this dissertation, algorithms for target characterization (i.e., estimation of target concept

signatures) from training data with labeling ambiguity are presented. The goal of these

algorithms are to estimate the target concept signatures from mixed training data that are

effective for a follow-on target detection task. Since these algorithms extract the concept

signatures from training data, then the background materials, environmental and atmo-

spheric conditions, and other such variables are addressed during target characterization.

In the following, Chapter 2 provides a literature review of current multiple instance

concept learning approaches and classifier learning approaches respectively. Chapter 3 in-

troduces four previously proposed target concept learning algorithms: extended function

of multiple instances (eFUMI) [67–70], dictionary learning using function of multiple in-

stances (DL-FUMI) [71, 72], multiple instance spectral matched filter (MI-SMF) and mul-

tiple instance adaptive coherence/cosine estimator (MI-ACE) [73]. Chapter 4 investigates

learning discriminative target concepts from MIL problem by maximizing the Hybrid De-

tector and proposes the multiple instance hybrid estimator (MI-HE) [74, 75]. Chapter 5

conducts a comprehensive testing of MI-HE and compares with previously proposed algo-

rithms and the state-of-the-art MIL algorithms. Chapter 6 provides a conclusion and future

work.

1.5 Formulation

Without loss of generality, let X = [x1, · · · ,xN ] ∈ Rn×N be training data where n is the

dimensionality of an instance and N is the total number of training instances. The data are

grouped into K bags, B = {B1, . . . ,BK}, with associated binary bag-level labels, L =
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{L1, . . . , LK} where Li ∈ {0, 1}; Ni is the number of instances in bag Bi and xij ∈ Bi

denotes the jth instance in bag Bi with instance-level label lij ∈ {0, 1}. When identifying

the label on a certain bag or instance is important, the N training data are assumed to be

partitioned into K+ positive bags with total number of instances N+, and K− negative

bags with total number of instances N−. Thus N = N+ +N− =
∑K+

i=1 Ni +
∑K++K−

i=K++1 Ni

where Ni is the number of instances for the ith bag. A positive bag will be indicated as B+
i

with associated bag level label Li = 1 containing instances xij with instance-level labels

lij, s.t.
∑Ni

j=1 lij ≥ 1. Similarly, B−i denotes a negative bag with bag level label Li = 0

and instance-level labels lij = 0 (−1 for SVM based algorithms), j = 1, · · · , Ni.
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Chapter 2

Literature Review

This chapter provides a review of existing MIL algorithms discussed into two categories,

multiple instance concept Learning and multiple instance classifier Learning, respectively.

2.1 Multiple Instance Concept Learning

Multiple instance concept learning refers to learning a description for the positive class

given the bag-level labeled training data from MIL problem. Normally some prior knowl-

edge is assumed in this step, e.g., the estimated concept should be close to least one instance

in each positively labeled bag and far away form every instance in the negatively labeled

bags; the estimated concept must be a bad representation of all the negative instances. The

estimated target concepts have the physical meaning to tell the unique features for the pos-

itive class and can be applied for further applications, e.g., classification or regression.
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2.1.1 Axis-parallel Rectangles

The Axis-parallel Rectangles (APR) [1] algorithms were proposed by Dietterich et al. for

drug activity prediction in the 1990s. An axis-parallel rectangle can be viewed as an over-

lap or aggregation region of true positive instances in the feature space. In APR algorithms,

a lower bond and upper bond are estimated for the scope of positive (active) class. Three

APRs, GFS elim-count (greedy feature selection elimination count), GFS kde (greedy fea-

ture selection kernel density estimation) and iterated-discrim (iterated discrimination) al-

gorithms were investigated and compared in [1].

GFS elim-count APR

The GFS elim-count APR refers to finding an APR in a greedy manner starting from the

inclusion of all positive instances. This algorithm first finds the “all-positive APR” that

exactly covers all of the positive instances. Fig. 2.1 shows the “all-positive APR” as

a solid line bounding box of the instances, where the unfilled markers represent feature

vectors of active instances and filled markers represent negative instances. As shown in

the figure, the all-positive APR may contain several negative examples. The next step is to

eliminate those negative instances and keep the positive instances as many as possible. A

greedy shrinkage procedure was performed, which first excludes the “cheapest” negative

instance by counting the minimum number of positive instances that needs to be removed

from the APR for each negative instance. The greedy algorithm iteratively excludes the

negative instance with the least cost (i.e., the negative instance associates with the least

positive instance to be removed) until all negative instances within the all-positive APR are

eliminated. The dashed box in Fig. 2.1 indicates the final shrinkage APR by elim-count.

As stated in [1], feature selection is necessary as the features for this application are ex-
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Figure 2.1: The elim-count procedure for excluding negative instances [1]
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tracted by measuring the length of rays emanating from the origin of each instance (musk

molecule) and nearby rays could be highly correlated. Also it is possible that only a sub-

set of the feature dimensions is discriminative. So after constructing this shrinkage APR,

the greedy feature selection algorithm that iteratively selects the feature dimensions that

eliminates the most negative instances is conducted until no negative instance remain to be

eliminated.

The GFS elim-count APR eliminates all negative instances from itself but one problem

with this method is it is not guaranteed to contain at least one positive instance for each

positive bag.

GFS kde APR

In order to solve the problem that GFS elim-count APR cannot preserve at least one positive

instance for each positive bag, the author proposed to introduce a Gaussian kernel density

estimate (kde) function to assign a cost value to each positive instance associated with the

negative instance to be removed, GFS kde APR, instead of merely counting the number of

positive instances must be eliminated for removal of one negative instance.

The proposed cost function is shown in Eq. (2.1), where Gd(xij) is the Gaussian kernel

density estimation denoting the probability of observing xij . The cost function (2.1) adds

three criteria to a positive instance associated with a negative instance to be removed:

1. The cost of removing xij should be small if there are many other positive instances

xik, k = 1, · · ·Ni, k 6= j, surviving in bag B+
i .

2. xij should be eliminated if there are many other positive instances are also observed

at xij , e.g., the feature density at xij is high.
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3. Assign a low cost value if xij is very isolated, i.e., there are few other positive in-

stances located near xij in the feature space.

(
−

Ni∑
k=1,k 6=j

Gd(xij)

)
+ αGd(xij) (2.1)

According to Eq. (2.1), the last positive instance in each positive bag will be added by a

very large cost value to not be eliminated. To some degree this “outside-in” method keeps

the notion of MIL to have at least one positive instance per positive bag. However, one

drawback of this algorithm is the computation complexity. It is quite expensive to compute

every necessary kernel density estimates, e.g., each negative instance may associate with

several positive instances to be excluded across each of the n dimensions.

Iterated Discrimination APR

The iterated-discrim APR is an “inside-out” algorithm and tries to find the smallest APR

that contains at least one instance per positive bag. It first choses an initial “seed” positive

instance and iterates between two steps, growing a tight APR and selecting discriminat-

ing features until convergence, and then performs an expending procedure to improve its

generalization ability, described as follows:

1. In this growing a tight APR step, the author proposed a cost function to define the

size of an APR shown as Eq. (2.2), which is the sum of all its side length, where

n is the index of feature dimension and ubn and lbn is the upper bond length and

lower bond length of nth dimension, respectively. This cost function is optimized

by a greedy algorithm to incorporate the “cheapest” positive instance followed by a
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back-fitting algorithm [76] that tunes back at each greedy step.

Size(APR) =
∑
n

ubn − lbn (2.2)

2. In this feature selection step, the algorithm iteratively choose feature that “strongly

discriminates” the most number of negative instances. Here the “strongly discrimi-

nate” is defined either if one negative instance lies more than 1 Å outside the bounds

of the APR for feature dimension n or if one negative instance lies beyond the bounds

of the APR and lies further along feature n than along any other dimensions.

After iteration between step 1 and 2 (which is said to converge within 3-4 iterations),

a too tight, sub-dimensional APR that excludes most positive instances was esti-

mated. So a kernel density estimation method was adopted to expand this tight APR

to include more positive instances which made the resulted APR a more generalized

concept region. The iterated-discrim APR was verified to have the best performance

on the musk dataset. However, one problem with the iterated-discrim APR is in

theory the resulted APR may contain a subset of instances belong to negative bags.

2.1.2 Diversity Density

Diversity Density (DD) [2, 77] tries to learn a concept for the positive class that is close to

the intersection of positive bags and far always from every negative instance, i.e., an area

preserves both high density of target points and low density of non-target points, called

diversity density.

The proposed general maximum likelihood function by DD is shown in Eq. (2.3),

where s is the assumed true concept for the positive class and d is the concept variable for
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estimation,

arg max
d

K+∏
i=1

Pr(d = s|B+
i )

K++K−∏
i=K++1

Pr(d = s|B−i ) (2.3)

Each term in the likelihood function Eq. (2.3) was defined by the noisy-or model,

Pr(d = s|B+
i ) = Pr(d = s|xi1,xi2, · · · ,xiNi

) = 1−
Ni∏
j=1

(1−Pr(d = s|xij ∈ B+
i )),

(2.4)

Pr(d = s|B−i ) =

Ni∏
j=1

(1−Pr(d = s|xij ∈ B−i )). (2.5)

The casual probability for individual instance is modeled by the distance between the

individual instance and the positive concept location,

Pr(d = s|xij) = exp(−‖xij − d‖2). (2.6)

The intuitive understanding of the proposed noisy-or model is if there is at least one in-

stance in positive bag B+
i is close to d then Pr(d = s|B+

i ) is high; thus the first term in the

noisy-or model in Eq. (2.4) makes sure that the estimated d close to at least one instance

in every B+
i . Eq. (2.5) drives the estimated d to be far away from every instance in B−i .

Similarly as stated in [1], a band selection was performed by optimization of the weights

added to each dimension.

As stated by the author, the noisy-or model is highly non-smooth and there are several

local maxima in the solution space which make finding the global optima very difficult.

Gradient ascent with starting points from every positive instance was adopted to maximize

the proposed log-likelihood function. Although it showed competitive performance to the

comparison algorithms, the computational complexity is still a problem.
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2.1.3 Expectation Maximization of Diversity Density

An expectation maximization version of Diversity Density (EM-DD) [78] was proposed by

Zhang et al. in order to improve the computation time of DD [2, 77]. EM-DD assumes

there exists only one instance per bag corresponding to the bag-level label and treats the

knowledge of the key-point instance corresponding to the bag-level babel as a hidden latent

variable. EM-DD starts with some initial guessing of the positive concept d and iterates be-

tween an expectation step (E-step) that picks one point per bag as the representative point

of that bag and then performs a quasi-newton optimization (M-step) [79] on the single-

instance DD problem. In more detail, in the E-step, the probability of each instance to be

the one determines the bag-level label given target concept d from the previous iteration

is estimated by a multivariate Gaussian distribution as shown in Eq. (2.7), where x∗i is the

assumed representative instance for bag Bi. In the M-step, the positive concept d′ is esti-

mated by optimizing the standard DD problem with only one instance per bag determined

in the E-step, shown in Eq. (2.8), where Pr(Li|d,x∗i ) is the reduced single instance DD

problem from Eq. (2.3).

x∗i = arg max
xij∈Bi

exp(−‖xij − d‖2) (2.7)

d′ = arg max
d

∏
i

Pr(Li|d,x∗i ) (2.8)

It was stated in the original paper “EM-DD runs over 10 times faster than DD on Musk

1 and over 100 times faster when applied to Musk2” [78] and achieved the highest accu-

racy (above 95%) over the comparison algorithms by picking specific initialization using

validation data. However, EM-DD was later verified in [80] to have close but inferior
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performance to DD.

2.1.4 Dictionary based Multiple Instance Learning

Dictionary based Multiple Instance Learning (DMIL) [81] and its generalization, General-

ized Dictionaries for Multiple Instance Learning (GDMIL) [82], propose to optimize the

noisy-or model using dictionary learning methods [83–87]. The target concept estimated is

a set of dictionary atoms. In detail, the author models the probability of individual instance

to be positive as a zero-mean multi-variate Gaussian distribution of the reconstruction error

between the individual instance and the linear combination of positive dictionary atoms,

shown as Eq. (2.9), where pij is the probability for instance xij to be a true positive point;

D is the estimated dictionary set as the positive concept set and aij is the sparse represen-

tation of xij given D,

pij ∝ exp(−‖xij −Daij‖2
2). (2.9)

Given the model defined in Eq. (2.9), the modified noisy-or model to be optimized is

shown in Eq. (2.10) and the negative logarithm of Eq. (2.10) is shown in Eq. (2.11), where

α is a scaling term to control the influence of negative bags.

J(D,X) =
K+∏
i=1

(
1−

Ni∏
j=1

(1− pij)

)
K++K−∏
i=K++1

(
Ni∏
j=1

(1− pij)

)
(2.10)

− log J(D,X) = −
K+∑
i=1

log

(
1−

Ni∏
j=1

(1− pij)

)
− α

K++K−∑
i=K++1

Ni∑
j=1

log(1− pij) (2.11)

By substituting Eq. (2.9) to Eq. (2.11), the objective function is optimized iteratively
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between two steps, a dictionary learning step that solves the dictionary D atom by atom

using gradient descent method and a sparse coding step that solves the sparse representation

of each instance in X given current dictionary D using orthogonal matching pursuit [88,

89].

The advantages of DMIL over the past multiple instance concept learning algorithms

lie in two folds:

1. Instead of learning one concept for the positive class, DMIL learns a set of positive

dictionary atoms to better describe the positive class.

2. The second term in the negative log-likelihood function, −α
∑

i:Li=−
∑Ni

j=1 log(1 −

pij), enforces that the negative instances are all poorly represented by the estimated

dictionary D, so that D maintains discriminative features of the positive class and

contains the least information from the negative class.

2.2 Multiple Instance Classifier Learning

Multiple instance classifier learning refers to training a discriminative model from labeled

training bags in MIL problem for prediction the label of unknown bags or individual in-

stances. Since the positive bags are mixture of both positive and negative data, the multiple

instance classifier learning algorithms in the literature typically train a classifier through a

heuristic way, i.e., starting from some initial guessing of the labels for data from positively

labeled bags.
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2.2.1 Mixed Integer Support Vector Machine

Andrews et al. model the MIL problem as a generalized mixed integer formulation of

support vector machine [90] algorithms (mi-SVM and MI-SVM). The two proposed al-

gorithms lead to mixed integer quadratic programming problem and were solved through

heuristic ways. The two algorithms mi-SVM and MI-SVE differ in the manner of selection

of training data. mi-SVM adopts the entire training data into consideration to train a SVM

and modifies the instance-level label iteratively; whereas the MI-SVM trains a SVM by se-

lecting one instance per bag with the maximum classification confidence as representative

instance of each bag. The two algorithms stop when there is no change in the assigned

label to instances across two iterations. mi-SVM and MI-SVM assume the labels for the

training data are subject to the following MIL constraint shown in Eq. (2.12):

∑
xij∈Bi

lij + 1

2
≥ 1, ∀i s.t. Li = 1, and lij = −1, ∀i s.t. Li = −1 (2.12)

mi-SVM

The mi-SVM tries to solve a soft-margin maximization problem jointly over the possible

labels assigned to individual instances and the hyperplane. The formulation of mi-SVM is

shown in Eq. (2.13).

min
{lij}

min
w,b,ξij

1

2
‖w‖2 + α

N∑
i=1

ξij

s.t. ∀i : lij(〈w,xij〉+ b) ≥ 1− ξij, ξij ≥ 0, lij ∈ {−1, 1}, and (2.12) holds,

(2.13)

28



where (w, b) are the weights and bias for a SVM classifier, ξij is a slackness term and α is

the scaling factor for slackness.

The problem of optimizing Eq. (2.13) is the accurate values of all lij from positive bags

are not known. In order to solve this mixed-integer quadratic programming problem, the

author adopted a heuristic optimization strategy. Specifically, the label lij for each instance

from positive bags was initialized by generalizing the bag-level label Li to individual in-

stance, lij = Li, for Li = 1. Then a SVM was trained and applied to the positive training

bags again to reset its instance-level label. If any of the positive bag has its all instances

classified into negative, i.e.,
∑

xij∈B+
i

(1 + lij)/2 == 0, the instance in this bag with max-

imum confidence value to be positive will be assigned a positive label and a SVM was

trained again based on the newly reset labels. The algorithm stops until there is no change

in the instance-level label.

The mi-SVM starts from all instances from positive bags with label 1 and iteratively

modifies the labels according to the bag constraint in MIL problem until there is no change

in label re-assignment. It finally looks for a MI-separating hyperplane such that each posi-

tive bag has at least one of its instances is classified into positive and all negative instances

are separated to the other side of the hyperplane. However, there is no guarantee that this

process will converge.

MI-SVM

Another way to applying max-margin optimization to mixed integer SVM is to generalize

the notion of margin to be maximized from individual instances to bags. The functional

margin for each bag, γI , is defined by the maximum decision values of the entire instances

in each bag, shown as Eq. (2.14). In each iteration, only the instances with the maximum
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decision value in each bag are adopted to train a SVM. One thing to notice is the margin of

a positive bag is defined by the “most positive” instance, whereas the margin of a negative

bag is defined by the “least negative” instance.

γi ≡ Li max
xij∈Bi

(〈w,xij〉+ b) (2.14)

The formulation of MI-SVM is shown in Eq. (2.15), where ξi is the slackness for bag

Bi. MI-SVM is initialized by assigning the mean of each bag as its representative train-

ing instance and optimized alternatively between training a SVM given the single training

instance from each bag and picking a representative instance with the maximum decision

value according to currently trained SVM. The algorithm stops until there is no change in

the selection of training instance from each bag. However, similar to mi-SVM, the conver-

gence of MI-SVM is also not guaranteed.

min
w,b,ξi

1

2
‖w‖2 + α

∑
i

ξi

s.t. ∀i : Li max
xij∈Bi

(〈w,xij〉+ b) ≥ 1− ξi, ξi ≥ 0 (2.15)

2.2.2 Multiple-Instance Learning via Embedded Instance Selection

The Multiple-Instance Learning via Embedded Instance Selection (MILES) [91] relaxes

the constraint in MIL that negative bags are composed of all negative instances and allows

target concept to be related to negative bags for a more general application in computer

vision. For example, in objective recognition application, an instance (typically small patch

in an image) is labeled as positive to indicate part of the object, however a negative bag may
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also contain patches that look like parts of the object. MILES proposed to first embed each

bag to a target concept based feature space, where the set of candidate target concept comes

from the union of all bags. Then a 1-norm SVM [92] was trained on the feature vectors

extracted from each bag; finally, an instance selection was performed based on the SVM

decision value to realize instance-level classification.

MILES adopts each instance in the training bag as a candidate for target concepts,

i.e., D = {xk : k = 1, · · · , N}. The kth value of embedded feature vector for bag Bi

corresponding to candidate target concept xk is computed according to Eq. (2.16), where

s(xk,Bi) is a similarity function.

Pr(xk|Bi) ∝ s(xk,Bi) = max
xij∈Bi

exp(−‖xij − xk‖2

σ2
) (2.16)

By applying Eq. (2.16) to all candidate target concepts inD, a bag Bi is then embedded

into a N dimensional space FD, with coordinate v(Bi) shown in Eq. (2.17). Applying the

mapping (2.17) embeds all training bags into FD, as a N × (K+ +K−) matrix:

v(Bi) =

[
s(x1,Bi), s(x2,Bi), · · · , s(xN ,Bi)

]T
(2.17)

After the mapping of training bags into FD, a MIL problem was converted into a su-

pervised leaning problem and was solved by 1 norm SVM [92] formulated as Eq. (2.18),

where (w, b) are weights and bias for a linear SVM classifier and ξ are slackness. α1 and

α2 are chosen differently to assign different penalty on false negatives and false positives.
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min
w,b,ξ,η

λ
N∑
k=1

|wk|+ α1

K+∑
i=1

ξi + α2

K++K−∑
i=K++1

ξi

s.t. (wTv+
i + b) + ξi ≥ 1, i = 1, · · · , K+,

−(wTv−i + b) + ξi ≥ 1, i = K+ + 1, · · · , K+ +K−,

ξi ≥ 0, i = 1, · · · , K+, K+ + 1, · · · , K+ +K−,

(2.18)

After solving the 1 norm SVM by linear programming (LP) [93, 94] for (w∗, b∗), the set

of selected features, I, was determined by the index set of nonzero values in w∗, shown in

Eq. (2.19). And the discriminant function for classifying a bag Bi is shown in Eq. (2.20).

This completes the bag classification step.

I = {k : |w∗k| > 0} (2.19)

y = sign(
∑
k∈I

w∗ks(xk,Bi) + b∗) (2.20)

In some applications of MIL, instance-level classification is also required. For example,

in objection detection, it is not enough to only identify if an image contains or not a target,

telling where is the target is also crucial. After learning discriminant function for bags,

MILES realizes instance-level classification by computing the contribution of individual

instance to the classification of the bags. Specifically, an instance in a bag Bi has contri-

bution to the discriminant function value
∑

k∈I w
∗
ks(xk,Bi) + b∗ greater (or less) than an

empirical threshold will be identified as positive (or negative).
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2.2.3 Multi-Instance Dictionary Learning

The Multi-Instance Dictionary Learning (MIDL) [95] is a multiple instance dictionary

learning algorithm for detection abnormal events in videos. The application context is

in the public video surveillance application, it is difficult to label each video frame as nor-

mal (negative) or abnormal (positive), the only known labeling information is the segment

of video that contains abnormal events. So each segment of video could be regarded as a

bag and its bag level label is determined by if it contains abnormal events. Specifically,

the author assumes there exists a set of dictionary D ∈ Rn×M that can better represent the

training data in the sense of classification and the label of bag is determined by the instance

in it with maximum classification value. The proposed objective is shown in Eq. (2.21),

min
D,W

1

K

K∑
i=1

log(1 + e−Li maxj=1···Ni
l(xij ,aij ,W)) +

α

2
‖W‖2

F , (2.21)

where aij is the sparse representation of xij given D, l(xij, aij,W) = xTijWaij + b is the

discriminant function to classify each instance into positive or negative, W ∈ Rm×k is

the classification weights matrix, b ∈ R is the bias and α is the scaling factor for weights

W ∈ Rm×k.

The variables are solved alternatively between the sparse codes a, dictionary D and re-

gression matrix W. Specifically, a is solved as the least angle regression (LARS) problem

[96] shown in Eq. (2.22) and D and W are solved by gradient descent by taking gradient on

objective function (2.21). Note that the logistic regression log(1+e−Li maxj=1···Ni
l(xij ,aij ,W))

is convex but not smooth with respect to W, so the sub-gradient was also used.

a∗(x,D) , arg min
a∈RM

1

2
‖x−Da‖+ λ1‖a‖1 +

λ2

2
‖a‖2

2 (2.22)
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2.2.4 Max-Margin Multiple-Instance Dictionary Learning

The Max-Margin Multiple-Instance Dictionary Learning (MMDL) [97] adopts the idea of

bag of words (BoW) model [98] and trains a set of linear SVMs as codebook. The novel

assumption of MMDL is the positive instances could belong to many different clusters.

The motivation of this assumption lies in the truth in computer vision that positive class

may have many different categories. For example, the positive class “computer room” may

have image patches containing desk, screen, keyboard.

MMDL assumes there exists a latent variable for each instance denoting its cluster,

zij ∈ 0, 1, · · · , C, where C is the assumed number of positive classes. For each in-

stance xij , zij = 0 denotes this instance is from the negative class; otherwise, xij is

from the cth positive class given zij = c, c = 1, · · · , C. Furthermore, a set of linear

SVM classifiers were also introduced as a matrix with each its column as a weight vector,

W = [w0,w1 · · · ,wC ], wc ∈ Rn×1, c ∈ {0, 1, · · · , K = C}. The cluster of instance xij

is determined according to Eq. (2.23):

zij = arg max
c

wT
c xij (2.23)

The proposed formulation of MMDL is shown in Eq. (2.24),

min
W, zij

C∑
c=0

‖wc‖2 + α
K∑
i=1

N∑
j=1

max(0, 1 + wT
rij

xij −wT
zij

xij)

s.t. if Li = 1,
∑

xij∈Bi

zij > 0, and if Li = 0, zij = 0, (2.24)

where rij = arg maxc∈{0,··· ,C},c/∈zij wT
c xij and α is a scaling factor to promote the classi-
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fication margin. Specifically, in (2.24), zij and rij are the indices of xij corresponding to

the most confident (with largest decision value) and second most confident classification

vectors in W, respectively. The second term in (2.24) tries to maximize the classification

margin between two most confident SVM classifiers and thus promotes the discriminative-

ness of the estimated classifier and induces the name “Max-Margin Dictionary Learning.”

MMDL is optimized iteratively between steps of sampling a subset of training data

based on each instance’s “positiveness”; learning SVM classifiers, W, using coordinate

descent [3]; update of “positiveness” for each instance according to a sigmoid function;

and a re-assignment of zij for each instance. Then the estimated SVM classifiers, W,

was adopted as the codebook and each image was represented as a distribution over the

codebook using spatial pyramid matching [99]. Finally another linear SVM was trained for

bag-level classification.

2.2.5 Other Multiple Instance Classifier Learning Algorithms

Beside the above reviewed MIL classifier learning algorithms, MILIS [100] alternates be-

tween the selection of an instance per bag as a prototype that represents its bag and training

a linear SVM on these prototypes. MissSVM [101] solves the MIL problem using a semi-

supervised SVM with the constraint that at least one point from each positive bag must be

classified as positive. Recent approaches [69, 102–106] provide insightful and constructive

view in MIL. Especially, Hoffman et al. [104] jointly exploit the image-level and bound-

ing box labels and achieve state-of-the-art results in object detection. Li and Vasconcelos

[105] further investigate MIL problem with labeling noise in negative bags and use “top

instances” as the representatives of “soft bags”, then proceed bag-level classification via

latent-SVM [3].
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Chapter 3

Previously Proposed Multiple Instance
Concept Learning Algorithms

In the beginning of this chapter, two Functions of Multiple Instances (FUMI) approaches,

extended FUMI (eFUMI) [67–70] and Dictionary Learning using FUMI (DL-FUMI) [71,

72], for learning representative target and non-target concepts are reviewed. Then, the

discriminative target concept learning methods, multiple instance spectral matched filter

(MI-SMF) and multiple instance adaptive cosine estimator (MI-ACE) [73] are investigated

and discussed.

3.1 Extended Function of Multiple Instances

FUMI approaches [107, 108] assume each data point is some functional form of the con-

cepts (or dictionary atoms) and tries to learn the unique features existing only in the positive

bags. In particular, eFUMI extends FUMI to be able to learn target and non-target concepts
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given only bag level labels for grouped training data indicating whether some proportion

of target exist. It addresses this problem by assuming a set of latent variables that account

for the true labels of each instances from positively labeled bags. eFUMI treats each data

point as a convex combination of target and/or non-target concepts and learns a set of target

concepts that are representative and unique features of the positive class and a set of non-

target concepts that are a good generalization of the negative bags as well as false positive

instances in the positive bags.

3.1.1 eFUMI

The goal of eFUMI is to estimate a target concept, dT , non-target concepts, dk, ∀k =

1, . . .M , the number of needed non-target concepts, M , and the abundances, aj , which de-

fine the convex combination of the concepts for each data point xj . The proposed objective

function for learning these unknown variables is shown in (3.2). There are four terms in

this objective function. The first term computes the squared error between the input data

and its estimate found using the current target and non-target signatures and proportions

where u is parameter constant controlling the relative importance of the first, second and

third terms. The scaling value for wl(xj) is shown in (3.1),

wl(xj) =

 1 if l(xj) = 0

αN+

N−
if l(xj) = 1

(3.1)

This scaling factor balances the influence between the positively and negatively labeled

data. For example, if the parameter α is set to 1, then the weights on the target points are

scaled such that the positive points has the same influence on the first term as the points
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F =
1

2
(1−u)

N∑
j=1

wj

∥∥∥∥(xj−zjajTdT −
M∑
k=1

ajkdk)

∥∥∥∥2

2

+
u

2

M∑
k=T,1

∥∥∥∥dk−µ0

∥∥∥∥2

2

+
M∑
k=1

γk

N∑
j=1

ajk

(3.2)

E[F ] =
∑

zj∈{0,1}

1

2
(1− u)

N∑
j=1

wjP (zj|xj,θ(t−1))

∥∥∥∥∥xj − zjajTdT −
M∑
k=1

ajkdk

∥∥∥∥∥
2

2


+
u

2

M∑
k=T,1

‖dk − µ0‖2
2 +

M∑
k=1

γk

N∑
j=1

ajk (3.3)

from negative bags.

The second and third terms of the objective encourages target and non-target signa-

tures that provide a tight fit around the data by minimizing the squared difference between

each signature and the global data mean, µ0. These terms were motivated by the volume-

related term in the SPICE [35] algorithm. The fourth term is a sparsity promoting term

used to determine M , the number of non-target signatures needed to describe the input

data where γk = Γ∑N
j=1 a

(t−1)
jk

, Γ is a parameter constant that controls the degree sparsity is

promoted. Higher values of Γ generally result in a smaller estimate M value. The a(t−1)
jk

values are the proportion values estimated in the previous iteration of the algorithm. Thus,

as a the proportions for a particular endmember decrease, the weight of its associated spar-

sity promoting term increases. This approach for estimating the number of background

endmembers follows the approach presented by the SPICE algorithm [35].

In (3.2) there are a set of hidden, latent variables, zj, j = 1, · · · , N , accounting for the

unknown instance-level labels l(xj). To address the fact that the zj values are unknown, the

expected values of the log likelihood with respect to zj is taken as shown in (3.3). In (3.3),

θt is the set of parameters estimated at iteration t and P (zj|xj,θ(t−1)) is the probability of
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individual points containing any proportion of target or not. P (zj|xj,θ(t−1)) is determined

given the parameter set estimated in the previous iteration and the constraints of the bag-

level labels, Li, as shown in (3.4),

P (zj|xj,θ(t−1)) =



e−β‖xj−
∑M

k=1 ajkdk‖2
2 if zj = 0, Li = 1

1− e−β‖xj−
∑M

k=1 ajkdk‖2
2 if zj = 1, Li = 1

0 if zj = 1, Li = 0

1 if zj = 0, Li = 0

(3.4)

where β is a scaling parameter and rj =
∥∥∥xj −∑M

k=1 ajkdk

∥∥∥2

2
is the approximation resid-

ual between xj and its representation using only background endmembers. The definition

of P (zj|xj,θ(t−1)) in (3.6) indicates that if a point xj is a nontarget point it should be

fully represented by the background endmembers with very small residual rj , and thus

P (zj = 0|xj,θ(t−1)) = e−βrj → 1. Otherwise, if xj is a target point, it may not be

well represented by only the background endmembers, so the residual rj must be large and

P (zj = 1|xj,θ(t−1)) = 1− e−βrj → 1. Note, zj is unknown only for the positive bags; in

the negative bags, zj is fixed to 0. This constitutes the E-step of the EM algorithm.

The M-step is performed by optimizing (3.3) for each of the desired parameters. The

method is summarized in Alg. 1.

3.1.2 eFUMI Optimization

In this section, the derivation of eFUMI update equations is provided. In order to solve for

the update equation for the proportion values, A, it should be pointed out that solving for

the proportion value of one point is not dependent on any other points. Considering only
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Algorithm 1 eFUMI EM algorithm
1: Initialize θ0 = {dT ,D,A}, t = 1
2: repeat
3: E-step: Compute P (zj|xj,θ(t−1)) given θt−1

4: M-step:
5: Update dT and D by maximizing (3.3) wrt. dT , D
6: Update A by maximizing (3.3) wrt. A s.t. the sum-to-one and non-negative

constraints in Eq. (1.2)
7: Prune each dk, k = 1, . . . ,M if maxj(ajk) ≤ τ where τ is a fixed threshold

(e.g. τ = 10−6)
8: t← t+ 1
9: until Convergence

10: return dT ,D,A

points in positive bags, the eFUMI objective function becomes the form shown in (3.5) and

a Lagrange multiplier term for the sum-to-one constraint is added in.

F+ =

N+∑
j=1

[
P (zj = 0)

1

2
(1− u)wj

∥∥∥∥(xj −
M∑
k=1

ajkdk)

∥∥∥∥2
2

+ P (zj = 1)
1

2
(1− u)wj

∥∥∥∥(xj − ajTdT −
M∑
k=1

ajkdk

∥∥∥∥2
2

]

+
u

2

M∑
k=1

‖dk − µ0‖22 +
u

2
‖dT − µ0‖22 +

∑
j

λ+j (ajT +

M∑
k=1

ajk − 1) +

M∑
k=1

γk

N+∑
j=1

ajk

(3.5)

Then take partial derivative of (3.5) with respect to ajT and ajk, respectively.

∂F+

∂ajT
= P (zj = 1)(1− u)wj(−1)dTT (xj − ajTdT −

M∑
k=1

ajkdk) + λ+
j

∂F+

∂ajk
= P (zj = 0)(1− u)wj(−1)dTk (xj −

M∑
k=1

ajkdk)

+ P (zj = 1)(1− u)wj(−1)dTk (xj − ajTdT −
M∑
k=1

ajkdk) + λ+
j + γk
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Let us denote α = (1−u)wj(−1). Then, rewrite the above two functions into consistent

matrix form and set the expression to 0.

∂F+

∂a+
j

=αP (zj = 0)
[
0 D−

]T (
xj −

[
0 D−

]
a+
j

)
+ αP (zj = 1)DT (xj −Da+

j ) + λ+j 1(M+1)×1 +

 0

V


=

[
αP (zj = 0)

[
0 D−

]T
+ αP (zj = 1)DT

]
xj

−
{
αP (zj = 0)

[
0 D−

]T [
0 D−

]
+ αP (zj = 1)DTD

}
a+
j + λ+j 1(M+1)×1 +

 0

V

 = 0

(3.6)

where a+j =



ajT

aj1

aj2
...

ajM


=

ajT
a−j

, V =



γ1

γ2
...

γk


, and D =

[
dT d1 d2 · · · dM

]
=
[
dT D−

]
.

D is the endmember matrix whose column corresponds to an endmember spectrum.

D− is a subset of D which accounts for constituent background endmembers. Similarly

a+
j is proportion vector for point x+

j and a−j is a subset of a+
j , which accounts for the

proportion values with respect to background endmembers. For points x−j from negative

bags, ajT is constrained to 0, so aj =

 0

a−j

 .

Then, solve for a+
j ,

a+j =

{
P (zj = 0)

[
0 D−

]T [
0 D−

]
+ P (zj = 1)DTD

}−1

·

{[
P (zj = 0)

[
0n×1 D−

]T
+ P (zj = 1)DT

]
xj + 1(M+1)×1

λ+j
α

+
1

α

 0

V

} (3.7)
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In order to enforce the sum-to-one constraint, multiply 11×(M+1) on both side of (3.7)

and use the sum to one constraint 11×(M+1)a
+
j = 1 to solve λ+

j shown as (3.9).

λ+j = α

(
1− 11×(M+1)

{
P (zj = 0)

[
0n×1 D−

]T [
0n×1 D−

]
+ P (zj = 1)DTD

}−1

(3.8)

·


[
P (zj = 0)

[
0n×1 D−

]T
+ P (zj = 1)DT

]
xj +

1

α

 0

V




{
11×(M+1)

{
P (zj = 0)

[
0n×1 D−

]T [
0n×1 D−

]
+ P (zj = 1)DTD

}−1

1(M+1)×1

}−1

Substitute Eq. (3.9) to (3.7), finally, the update equation for the proportion values

is shown in (3.9). Here, it is difficult to write a+
j in matrix form because in

{
P (zj =

0)
[
0n×1 D−

]T [
0n×1 D−

]
+ P (zj = 1)DTD

}−1

, a+
j is related to P (zj) in an inverse matrix. So

the proportion of points from positive bags must be updated point by point.

a+
j =

{
P (zj = 0)

[
0n×1 D−

]T [
0n×1 D−

]
+ P (zj = 1)DTD

}−1

·


[
P (zj = 0)

[
0n×1 D−

]T
+ P (zj = 1)DT

]
xj +

1

α

 0

V


+1(M+1)×1 ·

(
1− 11×(M+1)

{
P (zj = 0)

[
0n×1 D−

]T [
0n×1 D−

]
+ P (zj = 1)DTD

}−1

·
{[
P (zj = 0)

[
0n×1 D−

]T
+ P (zj = 1)DT

]
xj +

1

α

 0

V

}(11×(M+1)

{
P (zj = 0)

[
0n×1 D−

]T
[
0n×1 D−

]
+ P (zj = 1)DTD

}−1
1(M+1)×1

)−1
}

(3.9)

A similar derivation can be followed for points from negative bags (by simply excluding

the term for the target endmember). The resulting update equation for negative points is
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shown in (3.10).

A− = (D−TD−)−1

[
D−TX− − 1

1− u
R (V)1×N−

+1M×1 ·
1− 11×M (D−TD−)−1

(
D−TX− − 1

1−uR (V)1×N−

)
11×M (D−TD−)−11M×1


(3.10)

To solve for the update for the endmember matrix D, split objective function into two

parts according to points from positive bags and points from negative bags and drop terms

that are irrelevant to D.

F =

N+∑
j=1

[
P (zj = 0)

1

2
(1− u)wj

∥∥∥∥(xj −
M∑
k=1

ajkdk)

∥∥∥∥2
2

+ P (zj = 1)
1

2
(1− u)wj

∥∥∥∥(xj − ajTdT −
M∑
k=1

ajkdk

∥∥∥∥2
2

]

+
1

2
(1− u)

N−∑
j=1

[∥∥∥∥(xj −
M∑
k=1

ajkdk)

∥∥∥∥2
2

]
+
u

2

M∑
k=1

∥∥(dk − µ0)
∥∥2
2

+
u

2

∥∥(dT − µ0)
∥∥2
2

(3.11)

Then take the partial derivative of (3.11) with respect to dT and dk, respectively.

∂F

∂dT
=

N+∑
j=1

[
P (zj = 1)(−1)(1− u)wjajT (xj − ajTdT −

M∑
k=1

ajkdk)

]
+ u(dT − µ0) (3.12)

∂F

∂dk
=

N+∑
j=1

[
P (zj = 0)(−1)(1− u)wjajk(xj −

M∑
k=1

ajkdk) + P (zj = 1)(−1)(1− u)wjajk(xj − ajTdT

−
M∑
k=1

ajkdk)

]
+ (1− u)

N−∑
j=1

[
− ajk(xj −

M∑
k=1

ajkdk)

]
+ u(dk − µ0) (3.13)

These can then be combined into matrix form and set the expression to 0.
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∂F

∂D
=

N+∑
j=1

P (zj = 0)(−1)(1− u)wj(xj −D

 0

a−j

)

 0

a−j

T

+ P (zj = 1)(−1)(1− u)wj(xj −Daj)aT
j



+(1− u)

N−∑
j=1

[
− (xj −D

 0

a−j

)

 0

a−j

T ]
+ u(D−R (µ0)1×(M+1)) = 0 (3.14)

Finally, the update equation for E is shown in (3.15).

D =

(1− u)wj

N+∑
j=1

P (zj = 0)xj

 0

a−
j

T

+ P (zj = 1)xja
+T
j

 + (1− u)
N−∑
j=1

xj

 0

a−
j

T
 + u ·R (µ0)1×(M+1)


·

(1− u)wj

N+∑
j=1

P (zj = 0)

 0

a−
j

 0

a−
j

T

+ P (zj = 1)a
+
j a

+T
j

 + (1− u)

N−∑
j=1


 0

a−
j

 0

a−
j

T
 + u


−1

(3.15)

3.1.3 eFUMI Initialization and Parameter Settings

Initialization for eFUMI and parameters are determined using the following. Non-target

signatures are initialized by using the vertex component analysis (VCA) algorithm [109]

on all data in the negatively-labeled bags. Then, using these initial non-target signatures,

the data in the positively-labeled bags are unmixed. The data point with the largest recon-

struction error using the initial non-target signatures is set as the initial target signature, dT .

All proportion values are initialized to 1
M+1

for all data points in positive bags and to 1
M

for

all points in negative bags (since the proportion on the target endmembers is fixed to 0).

There are a few parameters that must be set in eFUMI. The u parameters trades-off

between the residual error term and the volume-related terms in the objective function. In

all of our results, u ∈ [0.01, 0.1]. Valid values of u are in the set (0, 1). Values that tend to

1 are appropriate for data with large noise levels. In contrast, values of u that tend towards

0 are appropriate for data with low noise levels and/or simulated data.
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The initial value of M does not play a large role in accuracy of the algorithm provided

that it is initialized to a value larger than needed number of non-target signatures. However,

initializing with a very large M value will require a larger number of iterations in which

to prune the unnecessary non-target signatures resulting in a longer running time. The

sparsity promoting parameter Γ controls the degree of sparsity and the resulting number of

non-target signatures. A larger Γ values tends to result in a smaller number of non-target

signatures.

The scaling parameter, β, used in the calculation of P (zj|xj,θ(t−1)) aids in separating

target and non-target points in positively labeled bags. As can be seen in the definition

of P (zj|xj,θ(t−1)), setting β is related to the magnitude of the input data, the number of

background endmembers, and the spectral similarity between the target and background

endmembers. For example, larger data magnitude corresponds to a larger reconstruction

error in general and, thus, a smaller β value is needed. Similarly, more background end-

members result, in general, with smaller reconstruction error and, thus, a larger β value is

needed. In our experience, normalizing the input data such that each data point has unit

norm greatly helps in the setting of this parameter. In our experiments with normalized

data, β ∈ [30, 50] has been found to work well.

3.2 Dictionary Learning using Function of Multiple In-
stances

The goal of DL-FUMI [71, 72] is to leverage the benefits of dictionary learning approaches

for problems in which only imprecise multiple instance learning type labels are available.

Compared with the eFUMI method, DL-FUMI advantages in the following: (1) adopts the

45



knowledge of discriminative dictionary learning to estimate multiple representative signa-

tures to accounts for the variability in the positive class; (2) introduces the use of a linear

mixing model instead of convex mixing model, which is more suitable for general MIL

problems.

Compared with supervised dictionary learning algorithms in the literature, DL-FUMI

is able to handle the labeling uncertainty existent in the training data, i.e., addresses the

MIL problems. Furthermore, quite different from the majority of discriminative dictionary

learning methods that estimate separate dictionaries for each class, DL-FUMI introduces

a shared background model that also learns non-target concept from the positive bags.

The advantage of this model over the class-specific dictionary learning is that the estimated

target atoms only represents the unique characteristics of target resulting in improved target

characterization and discrimination.

3.2.1 DL-FUMI

DL-FUMI models each instance as a sparse linear combination of target and/or background

atoms D, xj ≈ Daj , where aj is the sparse vector of weights for instance xj . Positive bags

(i.e., Bi with Li = 1, denoted as B+
i ) contain at least one instance composed of some

target:

if Li = 1,∃xj ∈ B+
i s.t.

xj =
T∑
t=1

ajtd
+
t +

M∑
k=1

ajkd
−
k + εj, ajt 6= 0, (3.16)

where εj is a noise term. However, the number of instances in a positive bag with a target

component is unknown.
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If Bi is a negative bag (i.e., Li = 0, denoted as B−i ), then this indicates that B−i does

not contain any target:

if Li = 0,∀xj ∈ B−i ,xj =
M∑
k=1

ajkd
−
k + εj (3.17)

Given this data mixing formulation, the goal of DL-FUMI is to estimate the dictionary

D =

[
D+ D−

]
∈ Rn×(T+M), where D+ =

[
d+

1 , · · · ,d+
T

]
are the T target atoms and

D− =
[
d−1 , · · · ,d−M

]
are the M background atoms. This is accomplished by minimizing

the objective function shown in Eq. (3.18), where a+
i and a−i are subsets of ai correspond-

ing to D+ and D−, respectively.

F =
1

2

N∑
j=1

wj

∥∥∥∥(xj−zj
T∑

t=1

a+jtd
+
t −

M∑
k=1

a−jkd
−
k )

∥∥∥∥2
2

+λ

N∑
j=1

wj

∥∥∥∥∥∥
zja+j

a−j

∥∥∥∥∥∥
1

+

M∑
k=1

T∑
t=1

γkt〈d−
k ,d

+
told〉 (3.18)

E[F ] =
∑

zj∈{0,1}
P (zj |xj ,θ

(l−1))

1

2

N∑
j=1

wj

∥∥∥∥∥xj − zj
T∑

t=1

a+jtd
+
t −

M∑
k=1

a−jkd
−
k

∥∥∥∥∥
2

2

+ λ

N∑
j=1

wj

∥∥∥∥∥∥
zja+

j

a−j

∥∥∥∥∥∥
1

(3.19)

+
M∑
k=1

T∑
t=1

γkt〈d−k ,d
+
told 〉

The first term in (3.18) computes the squared residual error between each instance and

its estimate using the dictionary. In this term, a set of hidden binary latent variables {zj}Nj=1

that indicate whether an instance is or is not a target (i.e., zj = 1 when xj contains target)

are introduced. For all points in negative bags, zj = 0. For points in positive bags, the value

of zj is unknown. Also, a weight wj is included where wj = 1 if xj ∈ B−i and wj = ψ

if xj ∈ B+
i where ψ is a fixed parameter. This weight helps balance terms when there is a
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large imbalance between the number of negative and positive instances.

The second term is an l1 regularization term to promote sparse weights. It also includes

the latent variables, zj , to account for the uncertain presence of target in positive bags.

The third term is a robust penalty term that promotes discriminative target atoms (and

inspired by a term presented in [110]). Instead of using a fixed penalty coefficient, we

introduce an adaptive coefficient γkt defined as:

γkt = Γ
〈d−k ,d

+
t 〉

‖d−k ‖‖d
+
t ‖

= Γ cos θkt, (3.5)

where θkt is the vector angle between the kth background atom and the tth target atom.

Since sign(γkt) = sign(〈d−k ,d
+
t 〉), this discriminative term is always positive and will

add large penalty when d−k and d+
t have similar shapes. Thus, this term encourages a dis-

criminative dictionary by promoting background atoms that are orthogonal to target atoms.

In implementation, γkt is updated once per iteration using d−
kold

and d+
told

which are the

dictionary values from the previous iteration.

3.2.2 DL-FUMI Optimization

Expectation-Maximization is used to optimize (3.18) and estimate D. During optimization,

the fact that many of the binary latent variables {zj}Nj=1 are unknown is addressed by taking

the expected value of the objective function with respect to zj as shown in (3.20). In (3.20),

θl =
{

D, {aj}Nj=1

}
is the set of parameters estimated at iteration l and P (zj|xj,θ(l−1)) is

the probability that each instance is or is not a true target instance. During the E-step of
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each iteration, P (zj|xj,θ(l−1)) is computed as:

P (zj|xj,θ(l−1)) =



e−β‖xj−
∑M

k=1 ajkd
−
k ‖

2

2 if zj = 0, Li = 1

1− e−β‖xj−
∑M

k=1 ajkd
−
k ‖

2

2 if zj = 1, Li = 1

0 if zj = 1, Li = 0

1 if zj = 0, Li = 0

(3.6)

where β is a fixed scaling parameter.

If xj is a non-target instance, then it should be characterized by the background atoms

well, thus P (zj = 0|xj,θ(l−1)) ≈ 1. Otherwise, if xj is a true target instance, it will not be

characterized well using only the background atoms and P (zj = 1|xj,θ(l−1)) ≈ 1.

Algorithm 2 DL-FUMI EM algorithm

1: Initialize θ0 =
{

D, {aj}Nj=1

}
, l = 1

2: repeat
3: E-step: Compute P (zj|xj,θ(l−1))
4: M-step:
5: Update d+

t using (3.7), d+
t ← 1

‖d+
t ‖2

d+
t , t = 1, · · · , T

6: Update d−k using (3.8), d−k ← 1
‖d−k ‖2

d−k , k = 1, · · · ,M

7: Update {aj}N
+

j=1 for xj ∈ B+
i using gradient descent according to (3.10), (3.11)

8: Update {aj}N
−

j=1 for xj ∈ B−i using gradient descent according to (3.13)
9: l← l + 1

10: until Convergence
11: return D, {aj}Nj=1

The M-step is performed by iteratively optimizing (3.20) for each of the desired pa-

rameters. The dictionary D is updated atom-by-atom using a block coordinate descent

scheme [111, 112]. The sparse weights, {ai}Ni=1, are updated using an iterative shrinkage-

thresholding algorithm [113, 114]. The method is summarized in Alg. 2 and the derivation

of update equations are described as follows.
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Similar to eFUMI, when updating the dictionary D, the sparse weights {aj}Nj=1 are

held fixed. To update one of the atoms in D, (3.20) is minimized with respect to the

corresponding atom while keeping all other atoms constant. The resulting update equations

for d+
t and d−k are shown in (3.7) and (3.8).

d+
t =

∑N+

j=1

[
P (zj = 1)ajt(xj −

∑T
l=1,l 6=t ajld

+
l −

∑M
k=1 ajkd

−
k )
]

∑N+
j=1

[
P (zj = 1)a2

jt

] (3.7)

d−k =


N+∑
j=1

P (zj = 1)ψajk(xj −
T∑

t=1

ajtd
+
t −

M∑
l=1,l 6=k

ajld
−
l ) + P (zj = 0)ψajk(xj −

M∑
l=1,l 6=k

ajld
−
l )


+

N−∑
j=1

ajk(xj −
M∑

l=1,l 6=k

ajld
−
l )

− Γ

T∑
t=1

cos θktd
+
told




N+∑
j=1

ψa2jk +

N−∑
j=1

a2jk


−1

(3.8)

Note, P (zj|xj,θ(t−1)) is denoted as P (zj) for simplicity.

When updating the sparse weights, {aj}Nj=1, it should be noted that the sparse weight

vector aj for instance xj is not dependent on any other instances.

For points from positively labeled bag, the gradient with respect to aj without consid-

ering the l1 penalty term is:

∂F

∂aj
= −

[
P (zj = 1)D+ D−

]T
xj +

(
P (zj = 1)DTD

+P (zj = 0)

[
0d×T D−

]T [
0d×T D−

])
aj. (3.9)

Then aj at lth iteration can be updated using gradient descent,

alj ← al−1
j − δj

∂F

∂al−1
j

, (3.10)
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followed by a soft-thresholding:

 a+l
j = SλP (zj=1)

(
a+l
j

)
a−lj = Sλ

(
a−lj
) , (3.11)

where Sλ (a[k]) = sign(a[k]) max(|a[k]| − λ, 0), k = 1, ..., n.

Following a similar proof to that in [115], when the step length satisfies (3.12), the

update of aj using a gradient descent method with step length δi monotonically decreases

the value of the objective function, where Eigmax(P) denotes the maximum eigenvalue of

P. For simplicity, δj was set to 1
Eigmax(DTD)

for all aj , xj ∈ B+
i .

δj ∈
(

0,
(
Eigmax

(
P (zj = 0)

[
0d×T D−

]T [
0d×T D−

]
+ P (zj = 1)DTD

))−1
)
(3.12)

A similar update can be used for points from negative bags. The resulting update equa-

tion for negative points is:

alj ← Sλ

(
al−1
j +

1

Eigmax (D−TD−)

(
D−T (xj −D−al−1

j )
))

(3.13)

The sparse weights corresponding to target dictionary atoms are set to 0 for all points

in negative bags.

3.2.3 Classification using Estimated Dictionary

Given D, a confidence that the jth instance is target can be computed using a ratio of the

reconstruction errors given the target and background atoms, D, vs. background atoms,
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D−:

Λj =
‖xj − pjD

−‖2

‖xj − ajD‖2 , (3.14)

where pj are the sparse weights of the jth instance given only the non-target atoms D−. If

the numerator has a large error and the denominator has a low error, then the target atoms

are needed to reconstruct instance xj .

3.3 Multiple Instance Spectral Matched Filter and Multi-
ple Instance Adaptive Coherence/Cosine Detector

Quite different from FUMI algorithms that aim to recover exactly the target concepts mixed

in the training data, the discriminative target concept learning tries to find a set of target

concepts that help discriminate the target instances. Two algorithms, MI-SMF and MI-ACE

[73], are reviewed in this section. In general, the discussed algorithms aim to maximize the

detection statistics of some signature based detectors under the MIL problem definition.

Experimental results show that the estimated target concepts may look quite different from

the ground truth, but achieve better detection performance.

3.3.1 MI-SMF and MI-ACE

The MI-SMF and MI-ACE maximize the detector response of SMF and ACE under a MIL

problem definition. Compared with FUMI algorithms that minimize the Euclidean distance

between the input data and its reconstruction error using the estimated target and non-target

concepts, MI-SMF and MI-ACE maximize the cosine similarity between the target concept
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and the input instance which is found to be more robust to highly mixed, noisy training data

and efficient in optimization.

Following the MIL definition, a positive bag (i.e., Bi with Li = 1, denoted as B+
i ) must

contain at least one instance contains some amount of target following the target present

hypothesis shown in Eq. (3.15):

if Li = 1, ∃xij ∈ B+
i s.t. xij ∼ N

(
aijs + µb, σ

2
1Σb

)
, aij 6= 0. (3.15)

If Bi is a negative bag (i.e., Li = 0, denoted as B−i ), then this indicates that B−i is

composed of all non-target instances, following the target absent hypothesis:

if Li = 0,xij ∼ N
(
µb, σ

2
0Σb

)
∀xij ∈ B−i (3.16)

Given this problem formulation, the proposed objective function for MI-SMF and MI-

ACE is to learn the target signature, s, is shown in Eg. (3.17). The objective function

maximizes the detector response of at least one instances in each positive bag and mini-

mizes the detector response over all negative instances.

arg max
s

1

K+

∑
i:Li=1

Λ(x∗i , s)− 1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

Λ(xij, s), (3.17)

where x∗i is the selected representative instance from the positive bag B+
i with the largest

detector response, Λ(·, s), given a target signature, s:

x∗i = arg max
xij∈B+

i

Λ(xij, s) (3.18)
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The assumption that each positive bag could be represented by the most positive instance

in it inherits the advantages of the EM-DD paper [78].

In order to maximize Eq. (3.17) with respect to s, first apply some transformation on

the ACE detector:

ΛACE(x, s) =
sTΣ−1

b (x− µb)√
sTΣ−1

b s
√

(x− µb)TΣ−1
b (x− µb)

=
sTUV−

1
2 V−

1
2 UT (x− µb)√

sTUV−
1
2V −

1
2 UT s

√
(x− µb)TUV−

1
2 V−

1
2 UT (x− µb)

=

(
ŝ

‖ŝ‖

)T (
x̂

‖x̂‖

)
= ˆ̂sT ˆ̂x (3.19)

where x̂ = V−
1
2 UT (x−µb), ŝ = V−

1
2 UT s, U and V are the eigenvectors and eigenvalues

of the background covariance matrix, Σb, respectively, ˆ̂s = ŝ
‖ŝ‖ and ˆ̂x = x̂

‖x̂‖ . It can be

clearly seen from Eq. (3.19) that the ACE detector response is the cosine value between

a test data point, x, and a target signature, s after whitening. Thus, the objective function

(3.17) for MI-ACE can be written as:

arg max
ˆ̂s

1

K+

∑
i:Li=1

ˆ̂sT ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂sT ˆ̂xij, such that ˆ̂sT ˆ̂s = 1. (3.20)

The l2 norm constraint, ˆ̂sT ˆ̂s = 1, is resulted from the normalization term in Eq. (3.19). The

optimum for (3.20) can be derived by solving the Lagrangian:

ˆ̂s =
t

‖t‖
, where t =

1

K+

∑
i:Li=1

ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂xij (3.21)
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Similarly, the objective function for MI-SMF can be written as:

arg max
ˆ̂s

1

K+

∑
i:Li=1

ˆ̂sT x̂∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂sT x̂ij, such that ˆ̂sT ˆ̂s = 1. (3.22)

resulting in the following update equation for ˆ̂s:

ˆ̂s =
t

‖t‖
, where t =

1

K+

∑
i:Li=1

x̂∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

x̂ij, (3.23)

where it shows the difference between MI-SMF and MI-ACE that MI-SMF takes the un-

normalized data for consideration, which is consistent with the SMF formulation shown in

Eq. (1.5).

MI-SMF and MI-ACE alternates between two steps: (1) selecting representative in-

stances from each positive bag and (2) updating the target concept s. The algorithm is

summarized in Alg. 3.

Algorithm 3 MI-SMF/MI-ACE
1: Compute µb and Σb as the mean and covariance of all instances in the negative bags
2: Subtract the background mean and whiten all instances, x̂ = V−

1
2 UT (x− µb)

3: If MI-ACE, normalize: ˆ̂x = x̂
‖x̂‖

4: Initialize ˆ̂s using the instance in a positive bag resulting in largest objective function
value

5: repeat
6: Update the selected instances, x∗i , for each positive bag, B+

i using (3.18)
7: Update ˆ̂s using (3.21) for MI-ACE or (3.23) for MI-SMF
8: until Stopping Criterion Reached
9: return s = t

‖t‖ , where t = UV
1
2 ˆ̂s

MI-SMF and MI-ACE stop when there is no change in the selection of instances from

positive bags across two iterations. Similar to [78], since there exists a finite set of possible

selection of positive instances given a finite training bags, the convergence of MI-SMF and
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MI-ACE is guaranteed. In the experiments shown in this work, MI-SMF and MI-ACE

generally converged with less than 7 iterations.

3.3.2 MI-ACE and MI-SMF Optimization

To derive the update equation for MI-ACE (updates for MI-SMF can be similarly derived),

the Lagrangian for MI-ACE objective function in (3.20) is shown below:

L =
1

K+

∑
i:Li=1

ˆ̂sT ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂sT ˆ̂xij − λ
(
ˆ̂sT ˆ̂s− 1

)
(3.24)

where λ is the Lagrange multiplier. The derivative of the Lagrangian with respect to ˆ̂s is:

∂L

∂ˆ̂s
=

1

K+

∑
i:Li=1

ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂xij − 2λˆ̂s (3.25)

We can then set (3.25) to zero and solve for ˆ̂s:

ˆ̂s =
1

2λ

 1

K+

∑
i:Li=1

ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂xij

 (3.26)

Then, define t as:

t =
1

K+

∑
i:Li=1

ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂xij. (3.27)

To determine the value of the Lagrange multiplier, λ, we must determine the value for λ

that enforces the constraint that ˆ̂sT ˆ̂s = 1. Thus, λ = ‖t‖
2

which results in the final update
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equation for ˆ̂s:

ˆ̂s =
t

‖t‖
, where t =

1

K+

∑
i:Li=1

ˆ̂x∗i −
1

K−

∑
i:Li=0

1

N−i

∑
xij∈B−i

ˆ̂xij. (3.28)

The derivation for the update equation for the MI-SMF target signature is identical to what

is shown above except x̂ is used in place of ˆ̂x in all of the preceding equations in this

section.
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Chapter 4

Multiple Instance Hybrid Estimator

In this chapter, we present the proposed multiple instance hybrid estimator (MI-HE) [74,

75] framework. MI-HE is a discriminative target concept learning algorithm for problems

with mixed data and label uncertainty. Quite different from the FUMI algorithms [69, 71]

that learn representative concept from reconstruction error, MI-HE learns discriminative

target concept that maximizes the detection performance. Specifically, the estimated target

concept by MI-HE maximizes the detection response of structured hybrid detector (HSD)

[56, 65] under a generalized mean model. Furthermore, the FUMI algorithms do not exploit

the entire label information from the training data, i.e., the FUMI algorithms combine all

positive bags together into a big positive bag and thus discard the information that each

positive bag must contain at least one positive instance. On the contrary, MI-HE adopts a

generalized mean model to differentiate each individual positive bag. Experimental results

show that the estimated target concept by MI-HE achieves better detection performance.

Compared with the existing MIL algorithms in the literature, MI-HE explicitly deals

with the following difficulties in MIL and target detection problems:
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1. The number of negative training instances are often much more than that of

positive training instances. MI-HE addresses this problem by applying the hybrid

detector only to the instances from the positively labeled bags. The negative bags are

only needed to refine the background concepts.

2. Mixed training data. MI-HE explicitly utilizes a linear mixture model and maxi-

mizes the detection statistics. So the resultant target and background concepts ap-

plied to testing data can also perform sub-pixel detection.

3. Learning discriminative target concepts. Maximizing discrimination ability in MI-

HE is accomplished in two ways: (1) the proposed MI-HE algorithm assumes a

shared background concepts set between the positive and negative bags; and (2) an

efficient discriminative term is adopted.

4.1 Multiple Instance Hybrid Estimator Learning Frame-
work

MI-HE starts from the bag-level likelihood measurement and wants to maximizes the prob-

ability of the labels of the given bags,

J1 =
K+∏
i=1

Pr(Li = +|B+
i ) ·

K++K−∏
i=K++1

Pr(Li = −|B−i ). (4.1)

Since the MIL problem states that there must be at least one positive instance in each posi-

tive bag and each negative bag must consist of only negative instances, we can approximate

the probability of an individual bag to the instances in each bag, as shown in Eq. (4.2).

Specifically, the probability for a positive bag to be positive is substituted by the instance
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in this bag with highest “positiveness” and the probability for a negative bag to be negative

is represented by the joint probability of all instances in this bag to be negative.

J2 =
K+∏
i=1

max
xij∈B+

i

Pr(lij = +|B+
i ) ·

K++K−∏
i=K++1

Ni∏
j=1

Pr(lij = −|B−i ). (4.2)

Eq. (4.2) contains a max operation that is difficult to optimize numerically. Some

algorithms in the literature [77, 78] adopt a noisy-OR model instead of using max. How-

ever, experimental results show that the noisy-OR model is highly non-smooth and needs

to be repeated with many different initializations (typically using every positive training

instance) to avoid local optima. In the proposed approach, we adopt the generalized mean

as an alternative of max operation, as shown in (4.3).

J3 =
K+∏
i=1

(
1

Ni

Ni∑
j=1

Pr(lij = +|B+
i )b

) 1
b

·
K++K−∏
i=K++1

Ni∏
j=1

Pr(lij = −|B−i ), (4.3)

where b ∈ [−∞,+∞] is a real number controlling the function to approximately vary from

min to max.

Then taking the negative logarithm and scaling the second term of Eq. (4.3) results in:

− ln J3 = −
K+∑
i=1

1

b
ln

(
1

Ni

Ni∑
j=1

Pr(lij+ = +|B+
i )b

)
− ρ

K++K−∑
i=K++1

Ni∑
j=1

ln Pr(lij = −|B−i ),

(4.4)

where the scaling factor ρ is usually set to be smaller than one to control the influence of

negative bags.

Similar to DL-FUMI [71], here each instance is modeled as a sparse linear combination

of target and/or background concepts D, xi ≈ Dai, where ai is the sparse vector of weights
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for instance xi. Each positive bag contains at least one instance composed of some target:

if Li = 1,∃xij ∈ B+
i s.t.

xij =
T∑
t=1

aitd
+
t +

T+M∑
k=T+1

aikd
−
k + εij, ait 6= 0, (4.5)

where εi is a noise term. Each negatively labeled bag B−i should not contain any target:

if Li = 0,∀xij ∈ B−i ,xij =
T+M∑
k=T+1

aikd
−
k + εij. (4.6)

Given the above data model, we introduce the hybrid detector to estimate if instances

from positive bags are positive target points. Specifically, define the following term,

Λ(xij,D|B+
i ) = exp

(
−β ‖xij −Daij‖2

‖xij −D−pij‖2

)
, (4.7)

where D =

[
D+ D−

]
∈ Rn×(T+M), D+ =

[
d+

1 , · · · ,d+
T

]
is the set of T target con-

cepts and D− =
[
d−T+1, · · · ,d

−
T+M

]
is the set of M background concepts, β is a scaling

parameter; aij and pij are the sparse representation of xij given entire concept set D and

background concept set D−, rij = (xij − Daij) and qij = (xij − D−pij) are the corre-

sponding reconstruction residual vectors, respectively. Further, aij = [a+
ij; a+

ij], where a+
ij

and a−ij are subsets of aij corresponding to D+ and D−, respectively. Since D is a super

set of D−, theoretically the reconstruction error of xij using D (the numerator) should be

always smaller than that using D− (the denominator). Specifically, solving the sparse rep-

resentation a given a dictionary set D is modeled as the Lasso problem [116, 117] shown

in Eq. (4.8):

a∗ = arg min
1

2
‖x−Da‖2

2 + λ‖a‖1, (4.8)
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where λ is a scaling factor to control the sparsity of a. The solving of l1 regularized least

squares have been investigated extensively in the literature [118–120]. Here we adopt the

iterative shrinkage-thresholding algorithm (ISTA) [113, 114] for solving the sparse codes

a.

The definition of Λ(xij,D|B+
i ) in (4.7) indicates that if a point xij ∈ B+

i is a true posi-

tive point, it may not be well represented by only the non-target concepts, so the residual er-

ror approximated by the entire concepts, ‖rij‖2, will be much smaller than that by the back-

ground concepts ‖qij‖2, thus Λ(xij,D|B+
i ) = exp

(
−β ‖rij‖

2

‖qij‖2

)
→ 1. Otherwise, if xij ∈

B+
i is a false positive point, ‖rij‖2 ≈ ‖qij‖2, thus Λ(xij,D|B+

i ) = exp
(
−β ‖rij‖

2

‖qij‖2 → 0
)

.

For points from negative bags, following Eq. (4.6), we model the reconstruction error

of points xij ∈ B−i as a zero mean Gaussian distribution, shown as Eq. (4.9),

Pr(lij = −|B−i ) = exp
(
−‖xij −D−pij‖2

)
, (4.9)

where pij is the sparse representation of xij given D− and is solved by Eq. (4.8). Here

instead of applying the hybrid detector, we use a least squares to represent the residual error

of xij . This indicates that the negative points should be fully represented by just the non-

target concepts, D−. The intuitive understanding of this assumption is that minimizing the

least squares of all of the negative points provides a good description of the background.

Moreover, because there are typically many more negative points in negatively labeled bags

than true positive points in positive bags, the target concept estimation may be biased if the

hybrid detector was also applied to negative instances.

Thus far, we have constructed an objective function that learns a set of concepts that

maximize the hybrid sub-pixel detector statistics of the positive bags and characterize the

negative bags. However, given the objective function so far, there is no guarantee that the
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estimated target concept captures only the discriminative features of the positive class and

is discriminative from the negative class. Inspired by the discriminative terms proposed by

the Dictionary Learning with Structured Incoherence [110] and the Fisher Discrimination

Dictionary Learning (FDDL) algorithm [121, 122], we propose a cross incoherence term

Q(X ,D+,A) shown in Eq. 4.10 to complete the objective, where X is the union of all

instances from negatively labeled bags, D+ is the target concept set which is the subset of

D = [D+ D−], A = [A+ A−] is the sparse codes matrix of X with respect to the entire

concepts D.

Q(X ,D+,A) =
α

2
‖Diag

(
(D+A+)TX

)
‖2

2

=
α

2

K∑
i=K++1

Ni∑
j=1

(
(D+a+

ij)
Txij

)2
(4.10)

The understanding of the proposed cross incoherence term is presented by examining

the reconstruction of the negative data set X . First of all, X should be well represented by

the non-target concept set D−, i.e., X ≈ D−P. This is fulfilled by inclusion of the term

in Eq. (4.9). Second, since D = [D+ D−] is a superset of D−, the reconstruction error

of X by the entire concept set D is also small, i.e., X ≈ D+A+ + D−A− = R+ + R−.

In order to have a target concept D+ that is distinct from the negative data, it is expected

that the reconstruction of X with respect to the target concept, R+, should either maintain

small energy or else have a bad representation of X , and thus Eq. 4.10 is optimized.

The final objective function is shown in Eq. 4.11, which contains three terms: general-

ized mean (GM) term (first), background data fidelity term (second) and the cross incoher-

ence (discriminative) term (third):
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J4 = −
K+∑
i=1

1

b
ln

(
1

Ni

Ni∑
j=1

exp

(
−β ‖xij −Daij‖2

‖xij −D−pij‖2

)b)
+ ρ

K++K−∑
i=K++1

Ni∑
j=1

‖xij −D−pij‖2

+
α

2

K∑
i=K++1

Ni∑
j=1

(
(D+a+

ij)
Txij

)2
, (4.11)

4.2 Optimization

The optimization of Eq. (4.11) can be decomposed into two sub-problems, updating the

concepts D and the sparse representation of a alternatively.

4.2.1 Concept Optimization

Similar to the Dictionary Learning using Singular Value Decomposition (K-SVD) approach

[85], the optimization of target and background concepts is performed by taking gradient

descent with respect to one atom at a time and holding the rest fixed. Denote fGM as the

generalized mean part of Eq. (4.11) and expend the logarithm of fGM :

fGM = −
K+∑
i=1

1

b
ln

 1

Ni

Ni∑
j=1

Λ(xij ,D|B+
i )b


= −

K+∑
i=1

1

b
ln

1

Ni
−

K+∑
i=1

1

b
ln

 Ni∑
j=1

Λ(xij ,D|B+
i )b

 (4.12)

Remove the constant part in fGM and take the partial derivative with respect to d, here
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d is a symbolic notation for any atom in D, shown in (4.13):

∂fGM
∂d

= −
K+∑
i=1

1∑Ni
j=1 Λ(xij ,D|B+

i )b
·

 Ni∑
j=1

Λ(xij ,D|B+
i )b−1 ·

∂Λ(xij ,D|B+
i )

∂d

 (4.13)

Then take the partial derivative on the fidelity (second) term of the objective function

Eq. (4.11) with respect to the background concept, d−k :

∂ − ρ
∑K++K−

i=K++1

∑Ni
j=1 ln Pr(lij = −|B−i )

∂d−k
=

∂ρ
∑K++K−

i=K++1

∑Ni
j=1 ‖xij −D−pij‖2

∂d−k

= ρ
K++K−∑
i=K++1

Ni∑
j=1

−2pijk(xij −D−pij)

= ρ

K++K−∑
i=K++1

Ni∑
j=1

−2pijkqij , (4.14)

where pijk is the kth element in pij corresponding to d−k .

The partial derivative of the cross incoherence (third) term corresponding to d+
t is:

∂Q(X ,D+,A)

∂d+
t

= α
K++K−∑
i=K++1

Ni∑
j=1

(D+a+
ij)

Txij · a+
ijtxij (4.15)

The partial derivatives of the negative objective function Eq. (4.11) with respect to d+
t

and d−k are shown in (4.16) and (4.17).

∂J4

∂d+
t

= −
K+∑
i=1

1∑Ni
j=1 Λ(xij ,D|B+

i )b
·

 Ni∑
j=1

Λ(xij ,D|B+
i )b−1 ·

∂Λ(xij ,D|B+
i )

∂d+
t


+α

K++K−∑
i=K++1

Ni∑
j=1

(D+a+
ij)

Txij · a+
ijtxij (4.16)
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∂J4

∂d−k
= −

K+∑
i=1

1∑Ni
j=1 Λ(xij ,D|B+

i )b
·

 Ni∑
j=1

Λ(xij ,D|B+
i )b−1 ·

∂Λ(xij ,D|B+
i )

∂d−k


+ρ

K++K−∑
i=K++1

Ni∑
j=1

−2pijkqij (4.17)

The next step is taking the partial derivative of the hybrid detector in (4.7) with respect

to d+
t and d−k shown as Eq. (4.18) and (4.19) respectively:

∂Λ(xij,D|B+
i )

∂d+
t

= exp

(
−β ‖xij −Daij‖2

‖xij −D−pij‖2

) ∂
(
−β ‖xij−Daij‖2

‖xij−D−pij‖2

)
∂d+

t

= Λ(xij,D|B+
i )

2βa+
ijt(xij −Daij)

‖xij −D−pij‖2

= Λ(xij,D|B+
i )

2βa+
ijtrij

‖qij‖2
(4.18)

∂Λ(xij,D|B+
i )

∂d−k
= exp

(
−β ‖xij −Daij‖2

‖xij −D−pij‖2

) ∂
(
−β ‖xij−Daij‖2

‖xij−D−pij‖2

)
d−k

= Λ(xij,D|B+
i ) ·

2βa−ijk(xij −Daij)‖xij −D−pij‖2 − 2βpijk‖xij −Daij‖2 (xij −D−pij)

‖xij −D−pij‖4

= Λ(xij,D|B+
i )

2βa−ijkrij‖qij‖2 − 2βpijk‖rij‖2qij

‖qij‖4
(4.19)

Substituting the gradient of hybrid detector with respect to d+
t and d−k in Eq. (4.18)

and (4.19) to Eq. (4.16) and (4.17), respectively, we can get the resultant gradient of the
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objective function (4.11) over d+
t and d−k :

4d+
t = −

K+∑
i=1

1∑Ni

j=1 Λ(xij,D|B+
i )b

(
Ni∑
j=1

Λ(xij,D|B+
i )b ·

2βa+
ijtrij

‖qij‖2

)

+α
K++K−∑
i=K++1

Ni∑
j=1

(D+a+
ij)

Txij · a+
ijtxij (4.20)

4d−
k = −

K+∑
i=1

1∑Ni

j=1 Λ(xij ,D|B+
i )b

 Ni∑
j=1

Λ(xij ,D|B+
i )b · 2β

a−ijkrij‖qij‖2 − pijk‖rij‖2qij

‖qij‖4


−ρ

K++K−∑
i=K++1

Ni∑
j=1

2pijkqij (4.21)

4.2.2 Optimization for Sparse Representation

The optimization of sparse representation can be viewed as a l1 regularized least squares

problem, also known as the lasso problem [116, 117, 123], denoted asL. The lasso problem

is shown in Eq. (4.8), where given concept (or dictionary) set D and preset sparsity level

λ, a∗ is the optimal sparse representation of the input data x. Here we adopt the iterative

shrinkage-thresholding algorithm (ISTA) [113, 114] for solving the sparse codes a.

The gradient of (4.8) with respect to a without considering the l1 penalty term is:

∂L
∂a

= −DT (x−Da) . (4.22)
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Then a at qth iteration can be updated using gradient descent shown in (4.23):

aq = aq−1 − δ∂L
∂a

, (4.23)

followed by a soft-thresholding step:

a∗ = Sλ (aq) , (4.24)

where Sλ: Rn → Rn is the soft-thresholding operator defined by

Sλ (a[k]) = sign(a[k]) max(|a[k]| − λ, 0), k = 1, · · · , n (4.25)

Following a similar proof to that in [115], when the step length δ satisfies (4.26), the

update of a using a gradient descent method with step length η monotonically decreases the

value of the objective function, where Eigmax(DTD) denotes the maximum eigenvalue of

DTD. For simplicity, δ was set to Eigmax
(
DTD

)
for all input data:

δ ∈
(

0,
1

Eigmax (DTD)

)
(4.26)

Finally the resultant update equation for the sparse representation of instance x given

concept set D is:

a∗ = Sλ

(
aq +

1

Eigmax (D−TD)

(
DT (x−Daq)

))
(4.27)
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4.3 Algorithm and Initialization

The algorithm for MI-HE is shown in Alg. 4

Algorithm 4 MI-HE algorithm
1: Initialize D0, iter = 0
2: repeat
3: for t = 1, · · · , T do
4: Solve aij , pij according to (4.27), ∀i ∈ {1, · · · , K}, j ∈

{1, · · · , Ni}
5: Update d+

t using gradient descent according to (4.20)
6: d+

t ← 1
‖d−t ‖2

d+
t

7: end for
8: for k = T + 1, · · · , T +M do
9: Solve aij , pij according to (4.27), ∀i ∈ {1, · · · , K}, j ∈

{1, · · · , Ni}
10: Update d−k using gradient descent according to (4.21)
11: d−k ← 1

‖d−k ‖2
d−k

12: end for
13: iter ← iter + 1
14: until Stopping criterion reached
15: return D

The stopping criterion is either the change in objective function value is smaller than a

preset threshold or the preset maximum number of iterations is reached.

The initialization of target concepts in D is conducted by computing the mean of T

random subsets drawn from the union of all positive training bags. K-means [124] or VCA

(vertex component analysis [109]) was applied to the union of all negative bags and the M

cluster centers (or vertices) were set as the initial background concepts.
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4.4 Classification using Estimated Concepts

Once the concept set D has been estimated using MI-HE, target detection on test data can

be performed using the hybrid detector shown in (4.28), the ratio of the reconstruction

errors given the target and non-target concepts vs. the non-target concepts only :

ΛHSD(x,D) =
(x−D−p)TΣ−1(x−D−p)

(x−Da)TΣ−1(x−Da)
. (4.28)

This provides a confidence that the ith instance belongs in the target class (i.e., if the nu-

merator has a large error and the denominator has a small error, then the target concepts are

needed in the reconstruction of the ith instance).
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Chapter 5

Experimental Results

The discriminative target concept learning algorithm MI-HE was applied to simulated hy-

perspectral data, the MUUFL Gulfport hyperspectral data set, ballistocardiogram data, hy-

perspectral data from NEON (National Ecological Observatory Network), and compared

with our previously proposed algorithms and the state-of-the-art MIL algorithms. The area

under the receiver operating characteristic (ROC) curve (AUC) or the normalized AUC

(NAUC) was adopted as performance analysis metrics.

5.1 Hyperspectral Target Detection from Simulated Hy-
perspectral Data

MI-HE was first tested with simulated hyperspectral data. Assume given a set of candidate

endmembers D = [D+,D−], each data point x is generated by the linear combination

of the subset elements of D and some corresponding proportion values a following Eq.

(4.5) (for target points) or Eq. (4.6) (for non-target points), respectively. The constituent
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endmembers and the number of endmembers for each data point were drawn randomly. The

corresponding background proportion values were generated by drawing from a Dirichlet

distribution. Theαmean parameter in the Dirichlet distribution was the expected mean value

for the generating process with different level of variance controlled by the magnitude of

αmean. For a more precise description of how the simulated data was generated, pseudo-

code describing the generation method is shown in Alg. 5 and 6.

Alg. 6 describes how each simulated data point is generated according to its bag-level

label and instance-level label following the model in (4.5) and (4.6). Alg. 5 describes one

method to generate simulated MIL data bags given the target signature set (D+ ∈ Rd×T ),

background signature set (D− ∈ Rd×M ), number of positive bags (K+), number of negative

bags (K−), number of points in each bag (Ni), the number of target points in each positive

bag (Ntar), the minimum number of background endmembers per data point (Nb), the mean

target proportion value (αt mean), and a parameter to control proportion variance (σ). The

code produces the following outputs: x: a synthetic data vector, X: full synthetic data

matrix, L: binary bag-level labels; and l: binary instance-level labels.

5.1.1 Simulated Data with Incomplete Background Knowledge

As discussed in section 4, eFUMI combines all positive bags as one big positive bag and

all negative bags as one big negative bag and learns target concept from the big positive

bag that is different from the negative bag. So if the negative bags maintain incomplete

knowledge of the background and only by distinguishing the commonly shared concept by

positive bags the target concept can be correctly estimated, eFUMI will suffer from this

kind of MIL problem. However, MI-HE which maintains bag structure will be able to

estimate the target.
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Algorithm 5 Pseudo Code for Generating Synthetic Data as Bags
Input: D+,D−, K+, K−, Ni, Ntar, Nb,αt mean, σ
Output: X = ∪xij,L, l

1: for i← 1 to K+ do
2: L(i) = 1
3: for j ← 1 to Ntar do
4: l(i, j) = 1
5: xi,j ← Alg. 6 given parameters set {D+,D−, L(i), l(i, j), Nb,

αt mean and σ}
6: end for
7: for j ← Ntar + 1 to Ni do
8: l(i, j) = 0
9: xi,j ← Alg. 6 given parameters set {D+,D−, L(i), l(i, j), Nb,

αt mean and σ}
10: end for
11: end for
12: for i← K+ + 1 to K+ +K− do
13: L(i) = 0
14: for j ← 1 to Ni do
15: l(i, j) = 0
16: xi,j ← Alg. 6 given parameters set {D+,D−, L(i), l(i, j), Nb,

αt mean and σ}
17: end for
18: end for
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Algorithm 6 Pseudo Code for Generating Linearly Mixed Data Point Given Bag-level and
Point-level Label
Input: D+,D−, Li, lij, Nb,αt mean, σ
Output: x

1: if Li&lij then
2: Draw an random integer t between [1, T ]
3: Randomly select t dictionary elements (denoted as D+

t ) from D+

4: Draw an random integer m between [Nb,M ]
5: if m == 0 then
6: αmean = αt mean
7: else
8: αmean = σ · [αt mean, 1−αt mean

m
× 11×m]

9: end if
10: Randomly select m dictionary elements (denoted as D−m) from D−

11: α← sample t+m random values from Dirichlet Distribution given param-
eter αmean

12: Generate point x following the Linear Mixing Model (4.5) using a and
[D+

t ,D
−
m]

13: else
14: Uniformly draw integer m between [max(1, Nb),M ]
15: αmean = σ · 11×m
16: Randomly select m dictionary elements (denoted as D−m) from D−

17: a ← sample m random values from Dirichlet Distribution given parameter
αmean

18: Generate point x following the Linear Mixing Model (4.6) using a and D−m
19: end if
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Given this hypothesis, simulated data was generated from four spectra selected from

the ASTER spectral library [125]. Specifically, the Red Slate, Verde Antique, Phyllite

and Pyroxenite spectra from the rock class with 211 bands and wavelengths ranging from

0.4µm to 2.5µm (as shown in Fig. 5.1) were used as endmembers to generate hyperspectral

data. Red Slate was labeled as the target endmember.
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Figure 5.1: Signatures from ASTER library used to generate simulated data with incom-
plete background knowledge

Four sets of highly-mixed noisy data with varied mean target proportion value (αt mean)

were generated according to Alg. 5 and 6. Specifically, this synthetic data has K+ = 15

positive and K− = 5 negative bags with each bag has Ni = 500 points. If it is a positively

labeled bag, there are Ntar = 200 highly-mixed target points with mixture level Nb = 1

containing mean target (Red Slate) proportionαt mean. The parameterαt mean that controls

the mean target proportion value was set to 0.1, 0.3, 0.5 and 0.7 respectively to vary the
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Table 5.1: List of Constituent Endmembers for Synthetic Data with Incomplete Back-
ground Knowledge

Bag Number Bag Label Target Endmember Background Endmember
1-5 + Red Slate Verde Antique, Phyllite, Pyroxenite

6-10 + Red Slate Phyllite, Pyroxenite
11-15 + Red Slate Pyroxenite
16-20 − N/A Phyllite, Pyroxenite

level of target presence from weak to high. The scale factor that controls the variance of

the Dirichlet distribution is set to σ = 2. Gaussian white noise was added so that signal-

to-noise ratio of the data was set to 20dB. To highlight the ability of MI-HE to leverage

individual bag-level labels, we use different subsets of background endmembers to build

synthetic data as shown in Tab. 5.1. Tab. 5.1 shows that the negatively labeled bags only

contain 2 negative endmembers and there exists one confusing background endmember

in the first 5 positive bags which is Verde Antique. However, only the target endmember

Red Slate was placed in all 15 positive bags and the learner is expected to distinguish Red

Slate correctly by checking what is commonly shared over positive bags. So it is expected

that the proposed MI-HE will be able to learn the target signature correctly and eFUMI

will confuse both Red Slate and Verde Antique as target signatures since Verde Antique is

missing in the training negative bags (and eFUMI does not preserve bag-level labels).

The parameter settings of MI-HE for this experiment are T = 1,M = 9, ρ = 0.8, p =

5, β = 5 and λ = 1 × 10−3. MI-HE was compared to our previously proposed algorithm

eFUMI, MI-SMF, and MI-ACE and several state-of-the-art MIL algorithms DMIL, EM-

DD and mi-SVM. The mi-SVM algorithm was added to these experiments to include a

comparison MIL approach that does not rely on estimating a target signature.

Fig. 5.2(a) - 5.5(a) show the estimated target signature from simulated hyperspectral

data with different levels of mean target presence from 0.1 to 0.7. Those figures clearly
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Figure 5.2: MI-HE and comparisons on synthetic data with incomplete background knowl-
edge, αt mean = 0.1. MI-SMF and MI-ACE are not expected to recover the true signature.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Wavelength (7m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

R
ef

le
ct

an
ce

Truth
eFUMI
MI-SMF
MI-ACE
EM-DD
DMIL
MI-HE

(a) Estimated target signatures

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PFA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

eFUMI (ACE)
eFUMI (HSD)
MI-SMF (ACE)
MI-SMF (SMF)
MI-ACE (ACE)
mi-SVM
EM-DD (ACE)
DMIL (ACE)
MI-HE (ACE)
MI-HE (HSD)

(b) ROC curves

Figure 5.3: MI-HE and comparisons on synthetic data with incomplete background knowl-
edge, αt mean = 0.3. MI-SMF and MI-ACE are not expected to recover the true signature.
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Figure 5.4: MI-HE and comparisons on synthetic data with incomplete background knowl-
edge, αt mean = 0.5. MI-SMF and MI-ACE are not expected to recover the true signature.
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Figure 5.5: MI-HE and comparisons on synthetic data with incomplete background knowl-
edge, αt mean = 0.7. MI-SMF and MI-ACE are not expected to recover the true signature
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show that the proposed MI-HE is able to correctly distinguish Red Slate as target concept

from the incomplete background knowledge. Also, the other comparison algorithms can

also estimate a target concept close to the ground truth Red Slate spectrum. However,

eFUMI is always confused with the other non-target endmember, Verde Antique, that exists

in some positive bags but is excluded from the background bags.

For simulated detection analysis, estimated target concepts from the training data were

then applied to the test data generated separately following the same generating procedure

as training data. The detection was performed using the HSD or ACE detection statistic.

For MI-HE and eFUMI, both methods were applied since those two algorithms can come

out a set of background concept from training simultaneously; for MI-SMF, both SMF and

ACE were applied since MI-SMF’s objective is maximizing the multiple instance spectral

matched filter; for the rest multiple instance target concept learning algorithms, MI-ACE,

EM-DD, DMIL, only ACE was applied. For the testing procedure of mi-SVM, a regular

SVM testing process was performed using LIBSVM [126], and the decision values (signed

distances to the separating hyperplane) of test data determined from trained SVM model

were taken as the confidence values. For the signature based detectors, the background data

mean and covariance were estimated from the negative instances of the training data.

For quantitative evaluation, Fig. 5.2(b) - 5.5(b) show the receiver operating character-

istic (ROC) curves using estimated target signature, where it can be seen that the eFUMI

is confused with the testing Verde Antique data at very low PFA rate. Tab. 5.2 shows the

AUCs of proposed MI-HE and comparison algorithms. The results reported are the median

results over five runs of the algorithm on the same data. From Tab. 5.2, it can be seen that

the proposed MI-HE and our previously proposed discriminative multiple instance concept

learning algorithms MI-ACE and MI-SMF achieved the best performance on detection us-
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Table 5.2: Detection Statistics (AUCs) for Simulated Hyperspectral Data with Incomplete
Background Knowledge, Bold for the Best, Underline for the Second Best

Algorithm
αt mean

0.1 0.3 0.5 0.7
MI-HE (HSD) 0.743 0.931 0.975 0.995
MI-HE (ACE) 0.763 0.952 0.992 0.999
eFUMI (ACE) 0.675 0.845 0.978 0.998
eFUMI (HSD) 0.671 0.564 0.978 0.998

MI-SMF (SMF) 0.719 0.923 0.972 0.993
MI-SMF (ACE) 0.735 0.952 0.992 0.999
MI-ACE (ACE) 0.764 0.952 0.992 0.999

mi-SVM 0.715 0.815 0.866 0.900
EM-DD (ACE) 0.695 0.918 0.983 0.998
DMIL (ACE) 0.687 0.865 0.971 0.996

ing ACE detector. The reason that MI-HE’s detection performance using HSD detector

is little worse is that HSD relies on knowing the complete background concept to prop-

erly represent each non-target testing data, the missing non-target concept (Verde Antique)

makes the non-target testing data containing Verde Antique maintain a large reconstruction

error, and thus large detection statistics.

5.1.2 Simulated Data with Multiple Target Concepts

For this experiment, we select another rock endmember, Quartz Conglomerate, from ASTER

spectral library as the second target concept. Three sets of highly-mixed noisy data with

varied mean target proportion value (αt mean) from [0.1, 0.1] to [0.3, 0.3] were generated

according to Alg. 5 and 6. Specifically, this synthetic data has K+ = 5 positive bags con-

taining both target concept (Red Slate and Quartz Conglomerate) and non-target concept

(Verde Antique, Phyllite, Pyroxenite); K− = 5 negative bags containing only the back-
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ground concept (Verde Antique, Phyllite, Pyroxenite); each bag has Ni = 500 points. If it

is a positively labeled bag, there are Ntar = 200 highly-mixed target points with mixture

level Nb = 1. The parameter αt mean that controls the mean target proportion value was set

to [0.1, 0.1], [0.2, 0.2] and [0.3, 0.3], respectively to vary the level of target presence from

weak to high. The scaling factor that controls the variance of the Dirichlet distribution is

set to σ = 2. Gaussian white noise was added so that signal-to-noise ratio of the data was

set to 20dB. Tab. 5.3 shows the constituent endmembers for each bags. It is expected that

the proposed MI-HE is able to learn multiple target concept at one time.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Wavelength (7m)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
ef

le
ct

an
ce

Red Slate
Verde Antique
Phyllite
Pyroxenite
Quartz Conglomerate

Figure 5.6: Signatures from ASTER library used to generate simulated data with multiple
target concepts

The parameter settings of MI-HE for this experiment are T = 2,M = 9, ρ = 0.8, p =

5, β = 5 and λ = 1 × 10−3. Fig. 5.7(a) - 5.9(a) show the estimated target concept by

proposed MI-HE and comparisons, where we can see that the proposed MI-HE is able
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Table 5.3: List of Constituent Endmembers for Synthetic Data with Multiple Target Con-
cepts

Bag Number Bag Label Target Endmembers Background Endmembers
1-5 + Red Slate, Quartz Conglomerate Verde Antique, Phyllite, Pyroxenite

6-10 − N/A Verde Antique Phyllite, Pyroxenite
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Figure 5.7: MI-HE and comparisons on synthetic data with multiple target concepts,
αt mean = [0.1, 0.1]. Not all comparisons algorithms are expected to recover true target
signatures.

to accurately estimate multiple target concepts simultaneously. Compared with MI-HE,

although DMIL is also a multiple concept learning algorithm, target concept as estimated

by DMIL is noisy, and not a representative prototype of the target class. The remaining

comparison algorithms are single target concept learning which are always confused by the

multiple target concept problem.

For quantitative evaluation, Fig. 5.7(b) - 5.9(b) show the ROCs using estimated target

signature, and Tab. 5.4 shows the AUCs of proposed MI-HE and comparison algorithms.

The results reported are the median results over five runs of the algorithm on the same

data. For ACE detector using multiple estimated target concept, the maximum detection

82



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Wavelength (7m)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

R
ef

le
ct

an
ce

Truth
eFUMI
MI-SMF
MI-ACE
EM-DD
DMIL
MI-HE

(a) Estimated target signatures

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

PFA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

eFUMI (ACE)
eFUMI (HSD)
MI-SMF (ACE)
MI-SMF (SMF)
MI-ACE (ACE)
mi-SVM
EM-DD (ACE)
DMIL (ACE)
MI-HE (ACE)
MI-HE (HSD)

(b) ROC curves

Figure 5.8: MI-HE and comparisons on synthetic data with multiple target concepts,
αt mean = [0.2, 0.2]. Not all comparisons algorithms are expected to recover true target
signatures.
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Figure 5.9: MI-HE and comparisons on synthetic data with multiple target concepts,
αt mean = [0.3, 0.3]. Not all comparisons algorithms are expected to recover true target
signatures.
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Table 5.4: Detection Statistics (AUCs) for Simulated Hyperspectral Data with Multiple
Target Concepts, Bold for the Best, Underline for the Second Best

Algorithm
αt mean

[0.1, 01] [0.2, 0.2] [0.3, 0.3]
MI-HE (HSD) 0.875 0.982 0.998
MI-HE (ACE) 0.875 0.982 0.998
eFUMI (ACE) 0.872 0.980 0.998
eFUMI (HSD) 0.865 0.976 0.997

MI-SMF (SMF) 0.866 0.977 0.997
MI-SMF (ACE) 0.865 0.976 0.997
MI-ACE (ACE) 0.866 0.976 0.997

mi-SVM 0.711 0.890 0.970
EM-DD (ACE) 0.858 0.979 0.998
DMIL (ACE) 0.850 0.971 0.994

statistics across all estimated target concept was selected for each testing data. From Tab.

5.4, it can be seen that the proposed MI-HE outperforms all the comparison single MI

concept learning algorithms as well as the multiple MI concept learning algorithm DMIL.

5.1.3 Analysis of MI-HE Parameter Settings on Simulated Data

In order to provide deeper insights into the sensitivity of MI-HE performance relative to

variations in input parameters, we tested MI-HE on simulated hyperspectral data across a

range of parameter values. Specifically, the varying parameters and ranges examined are:

M ∈ [1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21];

β ∈ [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100];

λ ∈ [1×10−4, 2×10−4, 5×10−4, 1×10−3, 2×10−3, 5×10−3, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1];

p ∈ [−10,−5,−2,−1, 1× 10−10, 1, 2, 5, 10, 20, 50, 100].

Because the generalized mean function is not continuous at 0, 1×10−10 was chosen instead.
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Red Slate was again selected as target endmember and the other three, Verde Antique, Phyl-

lite and Pyroxenite were used as non-target endmembers as shown in Fig. 5.1. Tab. 5.5

shows the bags labeling and constituent endmembers. The synthetic data has K+ = 5

positive and K− = 5 negative bags with each bag containing Ni = 100 points. If it is a

positively labeled bag, there are Ntar = 50 highly-mixed target points with mixture level

Nb = 1 containing mean target (Red Slate) proportion αt mean = 0.1. The scale factor that

controls the variance of the Dirichlet distribution is set to σ = 2. Gaussian white noise

was added so that the signal-to-noise ratio of the data was set to 20dB. The reference

parameters for MI-HE were set to T = 1,M = 7, ρ = 0.8, p = 5, β = 5 and λ = 1× 10−3.

Fig. 5.10 shows the detection performance of MI-HE for the sensitivity analysis on the

simulated data described above. Several interesting inferences can be drawn from Fig. 5.10

regarding how MI-HE responds to its parameter settings. For the setting of M , it can be

seen from Fig. 5.10(a) that MI-HE performs consistently given the number of background

concepts greater or equal to 3, which is the true number of background concepts of the

simulated data. Since MI-HE adopts a linear mixing model instead of convex mixing for

the data mixture, the conclusion is MI-HE is not sensitive to the setting of M given M is

set not smaller than the necessary constituent background concepts of input data.

For the setting of β, Fig. 5.10(b) shows MI-HE performs well with β in the range

[1, 10] on this data. Since β is a scaling factor for the hybrid detector, Pr(xij|D,B+
i ) =

exp
(
−β ‖xij−Da+

ij‖
2

‖xij−D−pij‖2

)
, the scaling effect controls the gradient of the objective function

(4.11). Fig. 5.11 shows the plot of exp(−β) with varying β values, which shows that the

range β ∈ [1, 10] provides a moderate gradient for the exponential function. So it can be

concluded that MI-HE requires β to be set to a suitable range, e.g., [1, 10].

The setting of sparsity level, λ, results in the step length of soft shrinkage. This value
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Table 5.5: List of Constituent Endmembers for Synthetic Data for Parameter Sensitivity
Testing

Bag Number Bag Label Target Endmember Background Endmembers
1-5 + Red Slate Verde Antique, Phyllite, Pyroxenite

6-10 − N/A Verde Antique Phyllite, Pyroxenite

should be related with the magnitude of the input data. For the simulated data tested here,

the proportion values were generated from the Dirichlet distribution within range [0, 1]. As

shown by Fig. 5.10(c), the appropriate range of λ for this simulated data is [5× 10−4, 0.02]

which is reasonable. However, in general, a prior knowledge is needed for setting specific

λ for a real dataset. Currently we set λ to approximately the 1/1000 of the l2-norm mean

of the training data.

The parameter p is related to the effects of the generalized mean model from minimum

(p→ −∞), or mean (p ∈ (0, 1]) to maximum (p→ +∞). Since the proposed model aims

to predict the true positive instance from positive bags and assumes the “soft maximum”

operation for this generalized mean model, it is expected that the model will work well with

p greater than 1. Fig. 5.10(d) verifies this hypothesis showing that the algorithm works well

for p great than 1. For all experiments shown in this paper, the parameter p was set to 5 and

observed to work well.

Although there are several parameters for MI-HE, these parameters come from the mod-

els assumed to underlie MI-HE. From this sensitivity analysis of MI-HE with different pa-

rameter settings, it can be concluded that there is a general range of model stability for each

parameter. Moreover, the above analysis provides a intuitive understanding and heuristic

approach for setting the parameters of MI-HE to stable ranges.
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Figure 5.10: Detection statistics (AUCs) of MI-HE plots with different parameter settings
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Figure 5.11: Plot of exponential function exp(−β)

5.2 Hyperspectral Target Detection from Real Hyperspec-
tral Data

For experiments on real hyperspectral target detection data, the MUUFL Gulfport hyper-

spectral data set collected over the University of Southern Mississippi-Gulfpark Campus

was used. This data set contains 325× 337 pixels with 72 spectral bands corresponding to

wavelengths from 367.7nm to 1043.4nm at a 9.5− 9.6nm spectral sampling interval with

spatial resolution 1 pixel/m2 [51]. The first four and last four bands were removed due to

sensor noise. Two sets of this data (Gulfport Campus Flight 1 and Gulfport Campus Flight

3) were selected as cross-validated training and testing data for these two data sets have the

same altitude and spatial resolution. Throughout the scene, there are 64 man-made targets

in which 57 were considered in this experiment which are cloth panels of four different

colors: Brown (15 examples), Dark Green (15 examples), Faux Vineyard Green (FVGr)
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(12 examples) and Pea Green (15 examples). The spatial location of the targets are shown

as scattered points over an RGB image of the scene in Fig. 5.12. Some of the targets are

in the open ground and some are occluded by the live oak trees. Moreover, the targets also

vary in size, for each target type, there are targets that are 0.25m2, 1m2 and 9m2 in area,

respectively, resulting a very challenging, highly mixed sup-pixel target detection problem.

5.2.1 MUUFL Gulfport Hyperspectral Data, Individual Target Type
Detection

For this part of the experiments, each individual target type was treated as a target class,

respectively. For example, when “Brown” is selected as target class, a 5 × 5 rectangular

region corresponding to each of the 15 ground truth locations denoted by GPS was grouped

into a positive bag to account for the drift coming from GPS. This size was chosen based

on the accuracy of the GPS device used to record the ground truth locations. The remain-

ing area that does not contain a brown target was grouped into a big negative bag. This

constructs the detection problem for “Brown” target. Similarly, there are 15, 12, 15 posi-

tive labeled bags for Dark Green, Faux Vineyard Green and Pea Green, respectively. The

parameter settings of MI-HE for this experiment are T = 1,M = 9, ρ = 0.3, p = 5, β = 1

and λ = 5× 10−3.

MI-HE and comparison algorithms were evaluated on this data using the Normalized

Area Under the receiver operating characteristic Curve (NAUC) in which the area was nor-

malized out to a false alarm rate (FAR) of 1 × 10−3 false alarms/m2 [127]. MI-HE was

compared to the eFUMI, MI-SMF, MI-ACE, mi-SVM, EM-DD, DMIL algorithms. Target

concepts were estimated on the training flight and then used to perform detection on the

test flight using the HSD or ACE detection statistic. For MI-HE and eFUMI, both meth-
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Figure 5.12: MUUFL Gulfport data set RGB image and the 57 target locations

ods were applied; for MI-SMF, both SMF and ACE were applied; for the other multiple

concept learning algorithm, only ACE was applied; for mi-SVM, a regular SVM testing

process was performed using LIBSVM and the decision values (signed distances to the

separating hyperplane) of test data determined from the trained SVM model were taken as

the confidence values. During detection on the test data, the background mean and covari-

ance were estimated from the negative instances of the training data. The results reported

are the median results over five runs of the algorithm on the same data.

Fig. 5.13(a) - 5.20(a) show the estimated target concept by proposed MI-HE and com-

parisons for four types of target and two flights, respectively. We can see that the proposed

MI-HE is able to recover the target concept quite close to ground truth spectra manually se-

lected from the scene. Fig. 5.13(b) - 5.20(b) show the detection ROCs given target spectra

estimated on one flight data and cross validated on another flight data. Tab. 5.6 shows the
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Figure 5.13: MI-HE and comparisons on Gulfport data Brown, training flight 1 testing
flight 3
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Figure 5.14: MI-HE and comparisons on Gulfport data Dark Green, training flight 1 testing
flight 3
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Figure 5.15: MI-HE and comparisons on Gulfport data Faux Vineyard Green, training flight
1 testing flight 3
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Figure 5.16: MI-HE and comparisons on Gulfport data Pea Green, training flight 1 testing
flight 3
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Figure 5.17: MI-HE and comparisons on Gulfport data Brown, training flight 3 testing
flight 1
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Figure 5.18: MI-HE and comparisons on Gulfport data Dark Green, training flight 3 testing
flight 1
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Figure 5.19: MI-HE and comparisons on Gulfport data Faux Vineyard Green, training flight
3 testing flight 1
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Figure 5.20: MI-HE and comparisons on Gulfport data Pea Green, training flight 3 testing
flight 1
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NAUCs for MI-HE and comparison algorithms, where it can be seen the proposed MI-HE

outperforms the comparisons for most of the target types.

Table 5.6: Detection Statistics (NAUCs) for Gulfport Data with Individual Target Type,
Bold for the Best, Underline for the Second Best

Alg. Train on Flight 1; Test on Flight 3 Train on Flight 3; Test on Flight 1
Brown Dark Gr. Faux Vine Gr. Pea Gr. Brown Dark Gr. Faux Vine Gr. Pea Gr.

MI-HE (HSD) 0.499 0.453 0.655 0.267 0.781 0.532 0.655 0.350
MI-HE (ACE) 0.433 0.379 0.104 0.267 0.710 0.360 0.111 0.266
eFUMI (ACE) 0.423 0.377 0.654 0.267 0.754 0.491 0.605 0.393
eFUMI (HSD) 0.444 0.436 0.653 0.267 0.727 0.509 0.500 0.333

MI-SMF (SMF) 0.419 0.354 0.533 0.266 0.657 0.405 0.650 0.384
MI-SMF (ACE) 0.448 0.382 0.579 0.316 0.760 0.501 0.613 0.388
MI-ACE(ACE) 0.474 0.390 0.485 0.333 0.760 0.483 0.593 0.380

mi-svm 0.206 0.195 0.412 0.265 0.333 0.319 0.245 0.274
EM-DD(ACE) 0.411 0.381 0.486 0.279 0.760 0.503 0.541 0.416
DMIL(ACE) 0.419 0.383 0.191 0.009 0.743 0.310 0.081 0.083

5.2.2 MUUFL Gulfport Hyperspectral Data, All Four Target Types
Detection

For training and detection for the four target types together, the positive bags were gen-

erated by grouping each of the 5 × 5 regions denoted by the ground truth that it con-

tains any of the four types of target. Thus, for each flight there are 57 targets and 57

positive bags were generated. The remaining area that does not contain any target was

grouped into a big negative bag. The parameter settings of MI-HE for this experiment are

T = 9,M = 11, ρ = 0.3, p = 5, β = 1 and λ = 5× 10−3.

Fig. 5.21(a) - 5.21(b) show the detection ROCs given target spectra estimated on one

flight data and cross validated on another flight data, which shows that given estimated

multiple target concepts, the detection statistics by proposed MI-HE using HSD are sig-

nificantly better than the comparison algorithms. Tab. 5.7 summarizes the NAUCs as a

quantitative comparison.
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Figure 5.21: ROCs of MI-HE and comparisons on Gulfport data, all types detection.
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Table 5.7: Detection Statistics (NAUCs) for Gulfport Data with All Four Target Types,
Bold for the Best, Underline for the Second Best

Alg. Tr. Fl. 1; Te. Fl. 3 Tr. Fl. 3; Te. Fl. 1 Alg. Tr. Fl. 1; Te. Fl. 3 Tr. Fl. 3; Te. Fl. 1
MI-HE (HSD) 0.304 0.449 MI-SMF(ACE) 0.219 0.327
M-IHE (ACE) 0.257 0.254 MI-SMF(SMF) 0.198 0.277
eFUMI (ACE) 0.214 0.325 mi-SVM 0.235 0.269
eFUMI (HSD) 0.256 0.331 EM-DD(ACE) 0.211 0.310

MI-ACE (ACE) 0.226 0.340 DMIL(ACE) 0.198 0.225

5.3 Beat-to-Beat Heart Rate Monitoring from Ballistocar-
diogram Data

In this work, we applied the proposed MI-HE to heartbeat detection and rate monitoring

from ballistocardiogram signals. Given the hydraulic bed sensor system described in Sec.

1.2, in this study, we use the dataset collected from 40 subjects at the CERT at the Uni-

versity of Missouri. The data collection from human subjects has been approved by the

Institutional Review Board (IRB) at the University of Missouri. To prepare for the data

collection, each subject was asked to lie flat on their back for 10 minutes. The gender,

age, weight and height of the subjects are listed in Table 5.8. There were 7 females and

33 males. Their ages, weights, heights and BMIs are 18 - 49, 48 - 127 (Kg), 156 - 190

(cm), 18.3 - 37.9, with the average as 29.2, 76.9 (Kg), 175.2 (cm) and 24.9, respectively.

The BCG signal was sampled at 100Hz and filtered by a six order Butterworth band-pass

filter with 3dB cutoff frequency at 0.4Hz and 10Hz to remove the respiratory component

and high frequency noise.

Feature Extraction from Ballistocardiograms Time Series: The filtered time do-

main segments from received BCG signals were used as training features. Specifically,

for each subject, we found the signal peaks for the entire BCG signal received by four

transducers as candidate J-peak locations (possible heartbeat locations). For each peak,

we extract a data segment (simply called instance) that is 91 samples long and centered
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at the peak (corresponding to 0.91s signal, 45 samples before and after the peak) as the

training feature for this peak location. The feature length (0.91s, at 100 Hz sampling rate)

was determined empirically and found to be the typical length of a heartbeat pattern. Fig.

5.22 shows example filtered BCG signals collected by four transducers (blue plots) and the

corresponding finger sensor ground truth information (black plots), where the green circles

denote every peak location of the filtered BCG signal.

MIL Bags for Ballistocardiograms Time Series: In this study, we continue to inves-

tigate the idea of training “bags” to address label uncertainty as well as miss-collection of

heartbeat signals in the BCG data. Specifically, each of the extracted sub-signals is treated

as individual data points (or “instances”) during training. Each positive labeled training bag

(shown as red rectangles in Fig. 5.22) was formed by grouping the 12 instances across the

four transducers (3 instances for each transducer) that are close in time to the ground-truth

location marked by the finger sensor (shown as a red cross in Fig. 5.22). Similarly, one

negative bag was formed by grouping instances from four transducers between two positive

bags that were not included in any positive bag. Fig. 5.23 shows an example positive bag.

In this figure, we can see that a positively labeled bag contains both true heartbeat patterns

(shown in red) and non-heartbeat patterns ( shown in dotted green). From Fig. 5.23 it

can also be seen that the assumed heartbeat patterns tend to have more prominent J-peaks.

The proposed MI-HE algorithm is expected to learn a set of discriminative subject-specific

heartbeat concepts from training bags of this type. After learning the heartbeat concept, the

HSD was applied for real-time heartbeat monitoring and heart rate estimation.

For each subject, the 10 minutes BCG signal was split into 5 minutes for training and 5

minutes for testing. The parameter settings of MI-HE for this experiment are T = 3,M =

3, ρ = 0.3, p = 5, β = 1 and λ = 5× 10−3. Fig. 5.24 shows estimated heartbeat concepts
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One positive bag

Figure 5.22: BCG signal of four transducers and ground truth plot.

99



0 10 20 30 40 50 60 70 80 90 100

Time (s#10-2)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

A
m

pl
itu

de
 (

V
ol

t)

True positive
False positive

Figure 5.23: Plot of one positive bag.
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Figure 5.24: Estimated heartbeat concepts by MI-HE.
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Figure 5.25: Estimated heartbeat concept by EM-DD.
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Figure 5.26: Confidence value and confirmed heartbeats.
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Figure 5.27: The Bland Altman plot comparison of MI-HE and EM-DD for Subject No.
10.

for subject No. 10 as an example, where we can see the heartbeat concept estimated by

MI-HE maintains prominent J-peaks. For comparison, we applied EM-DD [78] which is a

widely used multiple instance concept learning algorithm to the same data. From Fig. 5.24

and 5.25 we can clearly see that although both the heartbeat concepts estimated by MI-HE

and EM-DD have prominent J-peaks, MI-HE is able to learn multiple concepts to account

for the variability in heartbeat prototype during sleeping, which helps improve performance

in heartbeat detection and rate estimation.

After learning heartbeat concepts, heartbeat detection on test data can be carried out.

In the results shown in this paper, the HSD was applied to the test data to get a confidence

value for each data point to be a true heartbeat signal. Since EM-DD only learns a single

target concept, we applied K-SVD [128] which is a widely used unsupervised dictionary
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Figure 5.28: Heart rate estimation for Subject No. 10. (a) MI-HE (b) EM-DD
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learning algorithm to the negative labeled training bags to get a set of non-target concepts

for EM-DD heartbeat detection using HSD. Fig. 5.26 shows the excerpt of HSD 4 - channel

confidence value (485s - 500s) for subject No. 10 estimated by the heartbeat concepts of

MI-HE (shown in Fig. 5.24) and EM-DD (shown in Fig. 5.25), respectively. In this

procedure, a heartbeat (J-peak) is confirmed through a voting procedure requiring at least

two confidence values within a neighborhood (25 samples) that are greater than a threshold

(1.31) across all four transducers. The neighborhood and threshold values are determined

via cross-validation on training data. From Fig. 5.26 we can see that the confidence peaks

estimated by MI-HE match the peaks of the finger sensor signal very well. A missed

detection was found at about 489s. For comparison, the confidence estimated by EM-DD

is not as prominent as MI-HE and there are several false alarms found. Fig. 5.27 shows

the beat to beat Bland Altman plot of MI-HE and EM-DD, where we can see the plot of

MI-HE is more compact than that of EM-DD. For MI-HE, the outlier in the bottom left

corresponding to the missed detection appeared around 489s in Fig. 5.26. The two outliers

in the top right corresponding to the one false alarm found by MI-HE around 310s.

For heart rate estimation, the average of beat-to-beat heart rates over 1 minute is com-

puted using a sliding window. Fig. 5.28(a) and Fig. 5.28(b) show the estimated heart rate

on testing data for subject No. 10 by MI-HE and EM-DD, respectively. From Fig. 5.28(a)

we can see that the drop in estimated heart rate around 489s comes from the missed detec-

tion of heartbeat in Fig 5.26, the rise at the beginning of estimated heart rate corresponding

to one false alarm appeared in 310s. As a comparison, the rise in estimated heart rate in

Fig. 5.28(b) comes from the several false alarms estimated by EM-DD.

A comprehensive study and comparison with more state-of-the-art BCG heart rate mon-

itoring algorithms were conducted on the 40 subjects. The four algorithms used for the
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comparison are window-peak-to-peak (WPPD) [129], clustering approach (CA) [53], en-

ergy (EN) [130], and Hilbert transform (HT) [55, 131]. The details of results are listed in

Table 5.8. The mean error shown in Table 5.8 is the mean absolute error (MAE) between

the estimation and ground truth at every 15s interval, where the bold numbers highlight the

best and underlined numbers highlight the second best performance for each subject. Over

40 subjects, the mean error of proposed algorithm is 0.64 (beat/min), which is the best over

the comparison algorithms. The mean error of EM-DD+K-SVD, EN, WPPD, CA and HT

are 2.43, 3.02, 1.42, 1.49 and 0.83 (beat/min), respectively. For EN, there are 3 subjects that

have aberrant estimation (with error greater than 10) and make the average result worse. If

we ignore these three outliers, the mean error of EN is 2.04 (beat/min).

To examine if the performance of proposed algorithm is related to subject’s age, weight,

height, BMI, and magnitude of subject’s heart rate, we compute the correlation coefficient

between the results in Table 5.8 and subjects’ age, weight, height, BMI and the average

of ground truth heart rate over testing data (denoted as average GT). The sample Pearson

correlation coefficient r defined in Eq. (5.1) measures the linear correlation between two

variables x and y, where i is the index of the variables and x̄ and ȳ are the mean of two

variables, respectively. Table 5.9 shows the corresponding correlation coefficient of the

proposed algorithm and the other five comparison algorithms. For weight, height, and

BMI, all six algorithms show no relation. For age, all algorithms consistently show negative

relationship with error, this is mainly due to the increase in heartbeat variations with the

decrease in age. However, compared with the other five algorithms, the proposed MI-HE

and our previous DL-FUMI are more robust to age since MI-HE and DL-FUMI [72] are

able to learn multiple concepts to account for heartbeat variability. Based on the results, we

can tell that the performance is not related to age, weight, height, and BMI, which validates
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Table 5.8: Errors of MI-HE and Comparisons for Heart Rate Monitoring from 40 Subjects,
Bold for the Best, Underline for the Second Best

Subject Age, sex (F/M), BMI Mean Error (beat/min)
weight (kg), height (cm) MI-HE DL-FUMI EM-DD+K-SVD EN WPPD CA HT

1 43, M, 23.3, 74.8, 179 0.91±0.11 0.19±7.95×10−3 0.96±0.82 0.22 1.26 1.76±0.09 0.79
2 21, M, 23.1, 74, 179 0.64±0.09 0.85±0.05 4.99±1.48 0.58 1.67 1.68±0.14 0.94
3 33, M, 27.2, 75, 166 0.27±0.07 0.22±0.20×10−3 0.71±0.94 0.17 1.02 1.05±0.03 0.77
4 23, F, 21.1, 52, 157 1.55±0.06 0.96±0.57 3.55±1.76 14.69 1.28 1.24±0.03 0.85
5 28, M, 37.9, 127, 183 0.79±0 0.83±0.33 4.83±0.89 2.84 1.25 1.10±0.07 1.00
6 21, M, 22.2, 75, 184 0.53±0.47 0.45±0.07 2.61±1.61 20.20 1.26 1.10±0.03 0.66
7 32, M, 30.1, 82, 165 1.06±3.86×10−3 1.28±0.19 4.45±2.23 1.83 1.47 1.98±0.09 0.79
8 32, M, 27.2, 92, 180 1.08±0.22 1.46±0.89 3.47±2.72 1.65 1.04 1.06±0.04 0.48
9 29, M, 19.7, 68, 186 0.48±0.40 2.47±0.60 1.34±0.46 0.77 2.12 2.03±0.04 1.26
10 24, F, 22.8, 62, 165 0.34±0.05 0.24±1.42×10−3 3.00±1.72 0.53 1.07 1.39±0.03 0.64
11 31, M, 22.5, 68, 174 0.70±5.99×10−3 1.09±9.54×10−3 2.16±1.20 0.61 1.66 1.42±0.04 1.05
12 27, M, 24.2, 70, 170 0.83±0.20 0.30±0.10 0.66±0.55 0.18 1.28 1.10±0.04 0.94
13 29, M, 23.6, 79, 183 0.02±3.49×10−4 0.27±0.37 1.14±0.28 0.09 1.03 1.12±0.04 0.53
14 18, M, 25.6, 83, 180 1.05±0.09 1.64±0.37 2.88±1.52 6.52 1.63 2.27±0.04 1.62
15 39, M, 25.0, 74, 172 0.04±4.74×10−4 0.14±9.91×10−3 0.45±0.33 0.27 1.45 1.29±0.04 0.89
16 26, M, 21.2, 65, 175 0.22±1.02×10−5 0.22±0.02 2.09±1.14 6.12 1.25 1.65±0.05 0.50
17 31, M, 28.9, 100, 186 0.10±4.53×10−3 0.10±3.21×10−3 1.66±1.12 0.49 1.04 1.87±0.19 0.46
18 27, M, 22.3, 70, 177 0.25±3.07×10−3 0.45±0.01 1.64±1.72 0.20 1.21 1.07±0.04 0.63
19 30, M, 25.1, 76, 174 0.30±0.07 0.15±4.31×10−3 1.18±0.95 0.62 1.45 1.48±0.05 0.71
20 23, M, 24.7, 73, 172 0.69±0.29 0.56±0.03 4.43±3.93 0.85 2.35 2.12±0.09 1.42
21 30, F, 19.7, 57, 170 1.04±0.06 1.18±0.37 4.08±1.55 4.29 0.90 1.07±0.14 0.23
22 27, M, 27.5, 86, 177 0.22±0.25 0.10±6.17×10−3 2.12±0.34 0.38 1.65 1.51±0.07 0.44
23 24, F, 20.8, 60, 170 0.33±3.30×10−3 0.81±4.95×10−3 1.76±0.72 7.65 1.44 1.61±0.13 1.12
24 25, M, 27.1, 86, 178 1.91±1.23 0.32±0.03 2.21±0.27 7.21 2.74 1.86±0.08 1.14
25 49, M, 23.0, 83, 190 0.72±4.42×10−3 0.20±0.04 0.73±0.75 0.07 1.35 1.41±0.04 0.80
26 22, M, 26.0, 92, 188 0.71±0.17 0.25±0.02 2.08±1.82 0.49 2.13 2.30±0.26 1.81
27 33, M, 29.2, 82, 167.6 0.43±0.33 0.56±0.27 4.57±3.26 0.89 1.45 1.49±0.04 1.00
28 28, M, 21.2, 73, 185.4 0.82±4.21×10−3 0.62±0.22 1.64±1.10 3.21 1.72 1.96±0.08 1.38
29 34, M, 25.6, 84, 181 0.32±0 0.47±0.08 1.15±0.54 0.09 0.89 0.87±0.06 0.34
30 34, M, 24.4, 64, 162 0.15 ±4.49×10−3 0.15±0.03 3.67±3.14 0.17 1.06 1.28±0.16 0.34
31 32, F, 28.2, 77, 165.1 1.00±1.28 0.99±0.12 3.75±1.31 1.47 1.30 2.36±0.13 1.71
32 22, F, 21.0, 51, 156 0.91±0.46 1.26±0.57 2.53±1.38 10.23 1.59 2.36±0.04 1.03
33 27, M, 23.8, 77, 180 0.68±0.03 0.71±0.07 0.73±0.23 8.43 1.82 0.98±0.01 0.54
34 26, M, 23.7, 83, 187 0.33 ±0.21 0.61±0.13 2.72±2.27 4.65 1.49 1.55±0.08 0.64
35 28, F, 18.3, 48, 162 0.53 ±0.69 0.15±0.05 3.98±1.63 0.43 1.34 1.15±0.03 0.76
36 38, M, 36.9, 120, 180.3 0.44±1.13×10−3 1.44±0.31 1.00±0.52 1.68 1.15 1.19±0.16 0.47
37 37, M, 22.1, 68, 175.3 0.23±0.07 0.23±9.86×10−3 2.42±1.54 0.85 0.74 0.89±0.05 0.40
38 29, M, 25.8, 79, 175 0.29±0.08 0.46±0.16 1.37±1.24 6.53 1.13 0.87±0.07 0.47
39 23, M, 23.0, 68, 172 0.36±1.75×10−3 0.71±0.38 4.11±3.43 0.52 1.80 1.84±0.08 1.00
40 32, M, 30.9, 99, 179 2.06±0.29 0.37±0.04 2.57±2.10 1.94 1.24 1.44±0.08 0.55

Total average 0.63 0.64 2.43 3.02 1.42 1.49 0.83
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Table 5.9: The Correlation Coefficients between Performance and Age, Weight, Height,
BMI and Ground Truth.

MI-HE DL-FUMI EM-DD WPPD CA EN HT
Age -0.12 -0.12 -0.37 -0.28 -0.31 -0.46 -0.35

Weight 0.10 0.04 -0.06 -0.12 -0.04 -0.21 -0.01
Height -0.09 0.00 -0.35 -0.07 -0.01 -0.11 0.01
BMI 0.15 0.05 0.11 -0.08 -0.04 -0.21 -0.01

the robustness of the proposed algorithm.

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
, (5.1)

5.4 Tree Species Classification from NEON Data

In this section, we applied MI-HE to a multiple instance tree species classification problem

using the subset of National Ecological Observatory Network (NEON) data [132] collected

at the Ordway-Swisher Biological Station (OSBS) in north-central Florida, United States.

This data contains 1020× 1631 pixels with 428 bands corresponding to wavelengths from

380 nm to 2510 nm at a 5 nm spectral sampling interval. The spatial resolution and collec-

tion altitude are 1 pixel/m2 and 1000 meters, respectively.

Fig. 5.29(a) shows the full ground view (RGB) of the hyperspectral data where there

are six types of trees named CAGL, PIPA, ACRU, QUGE, LIST and NYSY, denoted by

polygons with different colors. The number of labeled trees for each type is: 26, 18, 16,

15, 13 and 13, respectively. Fig. 5.29(b) shows the zoomed view of Fig. 5.29(a), where

the solid line denotes the polygon contours of each tree’s canopy. These polygons were

collected by Stephanie Bohlman and Sarah Graves from the School of Forest Resources

and Conservation, University of Florida. The polygon contours were drawn by having an
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(a) Full view

(b) Zoomed view

Figure 5.29: RGB image of NEON OSBS with tree polygons
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analyst walk under each tree and recording the analyst’s trace by a GPS. These polygon

contours create an accurately labeled training data for tree species classification. Several

existing methods [133, 134] train a SVM from these accurately labeled polygons for tree

species classification. However, obtaining accurate tree canopy labels are time consuming,

requiring lots of efforts. Furthermore, the canopy labels could be inherently inaccurate,

e.g., the accuracy of GPS could drift several meters; the boundary of a tree canopy could

be ambiguous.

So here we model this task as a MIL problem and more general, inaccurate labels were

generated by drawing a circle including each polygon shown as dashed line in Fig. 5.29(b).

The goal is to show the proposed MI-HE is able to do tree species classification well given

the inaccurate circle labels. The experiment was conducted by training on randomly select-

ing 70% of the canopies and testing on the remaining 30% canopies. The testing step was

conducted by scoring the testing data point by point, where the testing data were per-pixel

labeled according to the polygon data. Hierarchical dimension reduction was applied to

reduce the dimensionality of the data to 124. Both the circle data and polygon data were

used as training and compared with SVM. The parameter settings of MI-HE for this exper-

iment are T = 1,M = 8, ρ = 0.5, p = 5, β = 1 and λ = 1× 10−3. The experiments were

repeated for five times and the median performance (AUC) was shown.

Fig. 5.30 and 5.31 show the ROC curves of MI-HE and SVM that train and test on

polygon data and circle data, respectively. Tab. 5.10 shows the detailed AUCs for each run.

For training and testing on the polygon data, SVM outperforms MI-HE only on tree type

QUGE and has close overall performance to MI-HE. However, for training and testing on

the circle data, MI-HE outperforms SVM on each type of the classification. Furthermore,

compared with the results from the polygon data, although MI-HE and SVM both provide
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Figure 5.30: ROC curves of MI-HE and SVM on polygon data
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Figure 5.31: ROC curves of MI-HE and SVM on circle data
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Table 5.10: Tree Species Classification Results (AUCs), Bold for the Best, Underline for
the Second Best

Species
Polygon Data Circle Data

MI-HE SVM MI-HE SVM
CAGL 0.880 0.876 0.833 0.807
PIPA 0.994 0.992 0.984 0.969

ACRU 0.873 0.829 0.867 0.806
QUGE 0.950 0.970 0.936 0.910
LIST 0.942 0.884 0.933 0.890

NYSY 0.887 0.862 0.861 0.755
Average 0.921 0.902 0.902 0.856

decreased performance on the circle data, SVM suffers more from the label uncertainty

given the circle data.
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Chapter 6

Conclusion and Future Work

In this work the MI-HE target concept learning framework for MIL problems is proposed

and investigated. MI-HE is able to learn multiple discriminative target concepts from am-

biguously labeled data. After learning target concepts, target detection can be conducted by

applying the estimated target concept to any signature based detector. Comprehensive ex-

periments show that proposed MI-HE is effective in learning discriminative target concept

and achieves superior performance over comparison algorithms in several scenarios.

Future work will include developing an automatic parameter setting tool for MI-HE.

For example, the number of background concepts could be determined by examining clus-

ter validity measures from some efficient unsupervised learning methods (e.g., K-means

[124], VCA [109], PM-LDA [135–137], K-SVD [128]); the sparsity level λ could be em-

pirically estimated from the magnitude of the training data. Furthermore, improving the

computational efficiency of MI-HE is also important. For example, the sparse unmixing

step in MI-HE can be executed in parallel using many-core devices and accelerators (e.g.

GPUs, Intel Xeon Phi and FPGA [138–140]); instead of using gradient descent, conju-
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gate gradient can be adopted for dictionary learning. Finally, more experiments will be

conducted. We expect to get more tree labeling information for the NEON data and con-

duct comprehensive experiments with more tree species. We also plan to apply MI-HE to

the long-term monitored data acquired at TigerPlace, an active aging-in-place retirement

community developed by the MU Sinclair School of Nursing and CERT at the University

of Missouri, and study about how the position, posture, and body movement affect the

performance of the proposed algorithm.
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