
MULTIPLE INSTANCE CHOQUET INTEGRAL

FOR MULTIRESOLUTION SENSOR FUSION

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

XIAOXIAO DU

Dr. Alina Zare, Dissertation Supervisor

DECEMBER 2017



c© Copyright by XIAOXIAO DU 2017

All Rights Reserved



The undersigned, appointed by the Dean of the Graduate School, have examined the

dissertation entitled:

MULTIPLE INSTANCE CHOQUET INTEGRAL

FOR MULTIRESOLUTION SENSOR FUSION

presented by Xiaoxiao Du,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion,

it is worthy of acceptance.

Dr. Alina Zare

Dr. James Keller

Dr. Dominic Ho

Dr. Marjorie Skubic

Dr. Mihail Popescu



To my family, all my love.

To Dr. Alina Zare, with warmest wishes.



ACKNOWLEDGMENTS

I would like to thank my dissertation adviser and committee chair, Dr. Alina Zare, for

her wholehearted guidance, support, and all the opportunities she provided me throughout

my studies and research. I am inspired by her dedication, passion, and creativity in research

and teaching; I admire and respect her confidence, intelligence, and strength of character.

I would also like to thank my doctoral committee members, Dr. James Keller, Dr.

Dominic Ho, Dr. Marjorie Skubic, and Dr. Mihail Popescu, for their help and valuable

suggestions. I gained knowledge and experience in the lectures, seminars, and discussions,

for which I am grateful.

Thank you to those who shed light on the field of multiple instance learning, computa-

tional intelligence, and sensor fusion. Thank you to those who make the data sets used in

this dissertation available.

I am thankful for the University of Missouri and Zhejiang University, for preparing me

for the journey. I am thankful for my current and former teachers and professors, for their

help and support along the way.

I am thankful for my labmates, for the times they provided insightful comments as well

as encouragements in my studies and in life. I am grateful for my friends, for all the music

and laughter.

Finally, a warm thank you goes to my parents and all of my family, for their love,

support, understanding, and inspiration, as always.

ii



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS AND ACRONYMS . . . . . . . . . . . . . . . . . . xvii

LIST OF SYMBOLS AND NOTATIONS . . . . . . . . . . . . . . . . . . . . . . xix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Multiple Instance Classification . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Multiple Instance Regression . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Fuzzy Measure and Choquet Integral . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Fuzzy Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Choquet Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Learning The Fuzzy Measure . . . . . . . . . . . . . . . . . . . . . 24

2.4 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Co-registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Multi-resolution Fusion . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.3 Fusion of Mixed Data Types . . . . . . . . . . . . . . . . . . . . . 40

iii



2.5 Summary and Discussion of Literature Review . . . . . . . . . . . . . . . . 42

3 Multiple Instance Choquet Integral . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Noisy-or Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Min-Max Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Generalized Mean Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Measure Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Evaluation of Valid Intervals . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.4 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Multiple Instance Choquet Integral Regression . . . . . . . . . . . . . . . . . 56

5 Multi-Resolution Multiple Instance Choquet Integral . . . . . . . . . . . . . 58

6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Synthetic 3-Source Classification Data Set . . . . . . . . . . . . . . 63

6.1.2 Synthetic Lane-Based Target Detection Data Set . . . . . . . . . . . 64

6.1.3 Synthetic 5-Source Classification Data Set For Varying Parameters . 67

6.1.4 MUUFL Gulfport Target Detection . . . . . . . . . . . . . . . . . . 69

6.2 Multi-Resolution Fusion Data Set . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Synthetic Multi-Resolution Fusion Data Set . . . . . . . . . . . . . 104

6.2.2 MUUFL Gulfport Building Detection – Sub-image . . . . . . . . . 107

6.2.3 MUUFL Gulfport Scene Understanding: Building, Sidewalk and
Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

iv



6.2.4 Soybean and Weed Data Set . . . . . . . . . . . . . . . . . . . . . 115

6.3 Regression Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Synthetic Regression Data Set . . . . . . . . . . . . . . . . . . . . 137

6.3.2 Crop Yield Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Discussion on Optimization Schemes . . . . . . . . . . . . . . . . . . . . . 144

6.4.1 “Top-Down” and “Bottom-Up” Initialization . . . . . . . . . . . . 144

6.4.2 Sampling according to measure element used . . . . . . . . . . . . 145

6.4.3 Using a binary fuzzy measure . . . . . . . . . . . . . . . . . . . . 148

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

APPENDIX

A Truncated Gaussian Sampling Method . . . . . . . . . . . . . . . . . . . . . . 159

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

v



LIST OF TABLES

Table Page

6.1 Mean and standard deviation of estimated and true measure element values

learned by MICI noisy-or model for synthetic 3-source MICI classification

data set over three runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Mean and the standard deviation (in parentheses) of estimated measure el-

ement values learned for synthetic 5-source lane-based classification data

set over five runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 The positive detection and false alarm rate of the synthetic lane-based target

detection data set after five-fold cross validation across five runs. . . . . . . 70

6.4 Relative error versus contamination for synthetic classification data set for

MICI noisy-or model across five runs. . . . . . . . . . . . . . . . . . . . . 70

6.5 Relative error versus contamination for synthetic classification data set for

MICI min-max model across five runs. . . . . . . . . . . . . . . . . . . . . 71

6.6 Relative error versus contamination for synthetic classification data set for

MICI generalized mean model across five runs. . . . . . . . . . . . . . . . 71

6.7 The AUC results at on un-normalized MUUFL Gulfport data across five

runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi



6.8 The AUC results at on normalized MUUFL Gulfport data across five runs.

Normalized by dividing over the norm of the data. . . . . . . . . . . . . . . 77

6.9 The AUC results at on normalized MUUFL Gulfport data across five runs.

Normalized by unity-based normalization. . . . . . . . . . . . . . . . . . . 78

6.10 The AUC results at on normalized MUUFL Gulfport data across five runs.

Normalized by the mean and standard deviation. . . . . . . . . . . . . . . . 79

6.11 Running time (seconds) and number of iterations until convergence for

MICI models comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.12 One example estimated measure element values learned for synthetic 5-

source multi-resolution classification data set after one run. . . . . . . . . . 106

6.13 The AUC results of building, sidewalk, and road detection using MUUFL

Gulfport HSI and LiDAR data. . . . . . . . . . . . . . . . . . . . . . . . . 114

6.14 The RMSE results of MICI and MR-MICI on building, sidewalk, and road

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.15 The AUC and RMSE results of MICI and MR-MICI on building detection,

scored on edges. Train on campus 1 and test on campus 2. . . . . . . . . . . 115

6.16 The AUC and RMSE results of MICI and MR-MICI on building detection,

scored on edges. Train on campus 2 and test on campus 1. . . . . . . . . . . 115

6.17 Relative error versus percentage of primary instances for synthetic regres-

sion data set for MICI Regression model across five runs. . . . . . . . . . . 138

6.18 Relative error versus SNR for synthetic regression data set MICI Regres-

sion model across five runs. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.19 Number of counties (bags) with both corn and wheat yield in the crop yield

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vii



6.20 RMSE error for CA corn and wheat yield, Training on Years 2001-2004,

Test on Year 2005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.21 RMSE error for KS corn and wheat yield, Training on Year 2001-2004,

Test on Year 2005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.22 Running time (seconds) and number of iterations until convergence for op-

timization schemes comparison. . . . . . . . . . . . . . . . . . . . . . . . 147

6.23 Running time (seconds) and number of iterations until convergence for

MICI models comparison with binary measures. . . . . . . . . . . . . . . . 152

viii



LIST OF FIGURES

Figure Page

2.1 Illustration of bags in multiple instance learning. . . . . . . . . . . . . . . . 7

2.2 Illustration of standard supervised classification, multiple instance learning

classification and embedded multiple instance learning classification. . . . . 8

2.3 An illustration for the subset and superset relationships between fuzzy mea-

sure elements given four sources. . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Illustration for HSI and LiDAR fusion. . . . . . . . . . . . . . . . . . . . . 60

6.1 Synthetic 3-source dataset and results for MICI classifier fusion model. . . . 64

6.2 Colorbar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 One example of the synthetic lane-based target detection data set. . . . . . . 66

6.4 RX detection output (plotted horizontally) of the synthetic lane-based target

detection data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Relationship of fitness values vs. number of iterations in the synthetic lane-

based target detection experiment. . . . . . . . . . . . . . . . . . . . . . . 69

6.6 The RGB image from MUUFL Gulfport “campus 3” data set. . . . . . . . 72

6.7 The spectral signatures for brown, dark green, FVG, and pea green targets

in the MUUFL Gulfport data set. The unit for the wavelength is nanometers. 72

ix



6.8 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 3. The HSI data were un-normalized. . . . . . . . 80

6.9 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 4. The HSI data were un-normalized. . . . . . . . 81

6.10 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 1. The HSI data were un-normalized. . . . . . . . 82

6.11 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 4. The HSI data were un-normalized. . . . . . . . 83

6.12 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 1. The HSI data were un-normalized. . . . . . . . 84

6.13 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 3. The HSI data were un-normalized. . . . . . . . 85

6.14 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 3. The HSI data were normalized by dividing over

the norm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.15 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 4. The HSI data were normalized by dividing over

the norm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.16 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 1. The HSI data were normalized by dividing over

the norm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.17 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 4. The HSI data were normalized by dividing over

the norm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



6.18 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 1. The HSI data were normalized by dividing over

the norm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.19 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 3. The HSI data were normalized by dividing over

the norm of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.20 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 3. The HSI data were normalized by unity-based

normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.21 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 4. The HSI data were normalized by unity-based

normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.22 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 1. The HSI data were normalized by unity-based

normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.23 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 4. The HSI data were normalized by unity-based

normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.24 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 1. The HSI data were normalized by unity-based

normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.25 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 3. The HSI data were normalized by unity-based

normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xi



6.26 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 3. The HSI data were normalized by the mean and

standard deviation method. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.27 ROC curve results for the MUUFL Gulfport data when training on Campus

1 and testing on Campus 4. The HSI data were normalized by the mean and

standard deviation method. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.28 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 1. The HSI data were normalized by the mean and

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.29 ROC curve results for the MUUFL Gulfport data when training on Campus

3 and testing on Campus 4. The HSI data were normalized by the mean and

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.30 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 1. The HSI data were normalized by the mean and

standard deviation method. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.31 ROC curve results for the MUUFL Gulfport data when training on Campus

4 and testing on Campus 3. The HSI data were normalized by the mean and

standard deviation method. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.32 Groundtruth for synthetic 5-source dataset for MR-MICI fusion experiments.104

6.33 One example for synthetic 5-source dataset for MR-MICI fusion experiments.105

6.34 Three subimages of buildings in MUUFL Gulfport campus 1 data set. . . . 108

6.35 Results of building classification, train on sub-image 1, test on sub-image 1. 117

6.36 ROC curve results of building classification results, train on sub-image 1,

test on sub-image 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

xii



6.37 Results of building classification, train on sub-image 1, test on sub-image 3. 119

6.38 ROC curve results of building classification results, train on sub-image 1,

test on sub-image 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.39 Four LiDAR lines in MUUFL Gulfport data, shown in Google Earth. . . . . 121

6.40 RGB image of MUUFL Gulfport data. . . . . . . . . . . . . . . . . . . . . 121

6.41 Scatterplot of LiDAR line 1 point cloud in MUUFL Gulfport campus 1 data. 122

6.42 Raster image of the first return MUUFL Gulfport LiDAR data. . . . . . . . 122

6.43 Open Street Map imagery over MUUFL Gulfport campus 1. . . . . . . . . 123

6.44 The Ground Truth map and the SLIC segmentation map of the MUUFL

Gulfport HSI data for building detection. . . . . . . . . . . . . . . . . . . . 124

6.45 The building signature for ACE detector and the ACE detection map for the

MUUFL Gulfport HSI data. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.46 The histogram and peaks of the LiDAR values of building points. . . . . . . 125

6.47 The LiDAR confidence maps for building detection in the MUUFL Gulf-

port HSI data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.48 The fusion test confidence maps for building detection in the MUUFL Gulf-

port HSI data for SVM and min methods. Train on campus 1 and test on

campus 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.49 The fusion test confidence maps for building detection in the MUUFL Gulf-

port HSI data for taking the max and mean of the sources. Train on campus

1 and test on campus 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.50 The fusion test confidence maps for building detection in the MUUFL Gulf-

port HSI data for the mi-SVM and CI-QP methods. Train on campus 1 and

test on campus 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xiii



6.51 The fusion test confidence maps for building detection in the MUUFL Gulf-

port HSI data for the proposed MICI and MR-MICI methods. Train on

campus 1 and test on campus 2. . . . . . . . . . . . . . . . . . . . . . . . . 127

6.52 The Overall ROC curve for building detection for MUUFL Gulfport data. . 128

6.53 The difference map in the MUUFL Gulfport HSI data between LiDAR

points picked by MR-MICI and mean of the LiDAR points versus rasterized

LiDAR imagery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.54 The difference map in the MUUFL Gulfport HSI data between min and

max of the LiDAR points and rasterized LiDAR imagery. . . . . . . . . . . 129

6.55 The ROC curve for building detection for MUUFL Gulfport data, scored

on the difference map between LiDAR edge map and mean maps. Train on

Campus 1, test on Campus 2. . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.56 The ROC curve for building detection for MUUFL Gulfport data, scored

on the difference map between min and max maps. Train on Campus 1,

test on Campus 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.57 The ROC curve for building detection for MUUFL Gulfport data, scored

on the difference map between LiDAR edge map and mean maps. Train on

Campus 2, test on Campus 1. . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.58 The ROC curve for building detection for MUUFL Gulfport data, scored

on the difference map between min and max maps. Train on Campus 2,

test on Campus 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.59 The Ground Truth map and the SLIC segmentation map of the MUUFL

Gulfport HSI data for sidewalk detection. . . . . . . . . . . . . . . . . . . 132

xiv



6.60 The Ground Truth map and the SLIC segmentation map of the MUUFL

Gulfport HSI data for road detection. . . . . . . . . . . . . . . . . . . . . . 132

6.61 The fusion test confidence maps for building detection in the MUUFL Gulf-

port HSI data for the proposed MICI and MR-MICI methods. Train on

campus 1 and test on campus 2. . . . . . . . . . . . . . . . . . . . . . . . . 133

6.62 The Overall ROC curve for sidewalk detection for MUUFL Gulfport data. . 133

6.63 The Overall ROC curve for road detection for MUUFL Gulfport data. . . . 134

6.64 The RGB image of weed in the soybean-weed data. . . . . . . . . . . . . . 134

6.65 The height map of the soybean-weed data. . . . . . . . . . . . . . . . . . . 134

6.66 The L-band image of the soybean-weed data. . . . . . . . . . . . . . . . . 134

6.67 The B-band image of the soybean-weed data. . . . . . . . . . . . . . . . . 135

6.68 The Gabor filtered image of the soybean-weed data height map. . . . . . . . 135

6.69 The Ground Truth map of weed in the soybean-weed data. . . . . . . . . . 135

6.70 The SLIC segmentation map of the soybean-weed data. . . . . . . . . . . . 135

6.71 The ROC curve for weed detection in the soybean-weed data. . . . . . . . . 136

6.72 The confidence map obtained from MICI fusion for the soybean-weed data. 136

6.73 The confidence map obtained from the MR-MICI fusion for the soybean-

weed data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.74 Contamination data set for MICI Regression model experiments. . . . . . . 138

6.75 The relationship between the Gaussian kernel width and RVM RMSE. . . . 142

6.76 The relationship between the Gaussian kernel width and Aggregate MIR

RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.77 The relationship between the cluster number and Cluster MIR RMSE. . . . 144

xv



6.78 Comparison of ROC curve performance using top-down initialization and

bottom-up initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.79 Comparison of the two optimization schemes: sampling by measure ele-

ment or sampling according to the valid intervals. . . . . . . . . . . . . . . 154

6.80 An illustration for the subset and superset relationships between binary

fuzzy measure elements given four sources. . . . . . . . . . . . . . . . . . 155

6.81 Relationship of fitness values vs. number of iterations for MICI binary

measure models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xvi



LIST OF ABBREVIATIONS AND ACRONYMS

AHI Advanced Himawari Imager

BFM binary fuzzy measure

CI Choquet integral

DD Diverse Density

DEM dital elevation model

DSM digital surface model

EM Expectation-Maximization

EMI electro-magnetic induction (sensor)

FAR false alarm rate

GA genetic algorithm

GIS geographic information systems

GPR ground penetrating radar

GPS Global Positioning System

GSD ground sample distance

HSI hyperspectral image

IR infrared (sensor)

kNN K-nearest neighbor

LiDAR or LIDAR Light Detection and Ranging

LCFI linguistic Choquet fuzzy integral

MAP maximum a posteriori probability

MI Mutual Information

MICI Multiple Instance Choquet Integral

xvii



MIL Multiple Instance Learning

MILES Multiple-Instance Learning via Embedded Instance Selection

MIR Multiple Instance (Multiple) Regression

MKL Multiple Kernel Learning

MR-MICI Multi-Resolution Multiple Instance Choquet Integral

MS multispectral (imagery)

PAN panchromatic (imagery)

PSO particle swarm optimization

RFC-MIR Robust Fuzzy Clustering Multiple Instance Regression

ROC receiver operating characteristic (curve)

SAR synthetic aperture radar

SVM support vector machine

xviii



LIST OF SYMBOLS AND NOTATIONS

g A fuzzy measure

B Total number of bags

m Total number of sources (e.g. classifiers) to be fused

N Total number of data points

Nh Total number of source combinations in multiresolution fusion

Cg(·) The Choquet integral output on an input computed with fuzzy measure g

P Measure population size in the evolutionary algorithm

I Maximum number of iterations in the evolutionary algorithm

F0
P Fitness values for all measures in the initial population in the evolutionary algorithm

Ft
P Fitness values for all measures in Iteration t

F∗ Best (highest) current fitness value

g∗ Best current measure with the highest fitness value

G All measures in the current measure population

G {p} The pth measure in measure population G

η Rate of small-scale mutation

xix



ABSTRACT

Imagine you are traveling to Columbia, MO for the first time. On your flight to Columbia,

the woman sitting next to you recommended a bakery by a large park with a big yellow um-

brella outside. After you land, you need directions to the hotel from the airport. Suppose

you are driving a rental car, you will need to park your car at a parking lot or a parking struc-

ture. After a good night’s sleep in the hotel, you may decide to go for a run in the morning

on the closest trail and stop by that recommended bakery under a big yellow umbrella. It

would be helpful in the course of completing all these tasks to accurately distinguish the

proper car route and walking trail, find a parking lot, and pinpoint the yellow umbrella.

Satellite imagery and other geo-tagged data such as Open Street Maps provide effective

information for this goal. Open Street Maps can provide road information and suggest

bakery within a five-mile radius. The yellow umbrella is a distinctive color and, perhaps,

is made of a distinctive material that can be identified from a hyperspectral camera. Open

Street Maps polygons are tagged with information such as “parking lot” and “sidewalk.”

All these information can and should be fused to help identify and offer better guidance on

the tasks you are completing.

Supervised learning methods generally require precise labels for each training data

point. It is hard (and probably at an extra cost) to manually go through and label each

pixel in the training imagery. GPS coordinates cannot always be fully trusted as a GPS

device may only be accurate to the level of several pixels. In many cases, it is practically

infeasible to obtain accurate pixel-level training labels to perform fusion for all the imagery

and maps available.

Besides, the training data may come in a variety of data types, such as imagery or as

xx



a 3D point cloud. The imagery may have different resolutions, scales and, even, coordi-

nate systems. Previous fusion methods are generally only limited to data mapped to the

same pixel grid, with accurate labels. Furthermore, most fusion methods are restricted to

only two sources, even if certain methods, such as pan-sharpening, can deal with different

geo-spatial types or data of different resolution. It is, therefore, necessary and important,

to come up with a way to perform fusion on multiple sources of imagery and map data,

possibly with different resolutions and of different geo-spatial types with consideration of

uncertain labels.

I propose a Multiple Instance Choquet Integral framework for multi-resolution multi-

sensor fusion with uncertain training labels. The Multiple Instance Choquet Integral (MICI)

framework addresses uncertain training labels and performs both classification and regres-

sion. Three classifier fusion models, i.e. the noisy-or, min-max, and generalized-mean

models, are derived under MICI. The Multi-Resolution Multiple Instance Choquet Integral

(MR-MICI) framework is built upon the MICI framework and further addresses multi-

resolution in the fusion sources in addition to the uncertainty in training labels. For both

MICI and MR-MICI, a monotonic normalized fuzzy measure is learned to be used with the

Choquet integral to perform two-class classifier fusion given bag-level training labels. An

optimization scheme based on the evolutionary algorithm is used to optimize the models

proposed. For regression problems where the desired prediction is real-valued, the primary-

instance assumption is adopted.

The algorithms are applied to target detection, regression and scene understanding ap-

plications. Experiments are conducted on the fusion of remote sensing data (hyperspectral

and LiDAR) over the campus of University of Southern Mississippi - Gulfpark. Cloth-

panel sub-pixel and super-pixel targets were placed on campus with varying levels of oc-

xxi



clusion and the proposed algorithms can successfully detect the targets in the scene. A

semi-supervised approach is developed to automatically generate training labels based on

data from Google Maps, Google Earth and Open Street Map. Based on such training la-

bels with uncertainty, the proposed algorithms can also identify materials on campus for

scene understanding, such as road, buildings, sidewalks, etc. In addition, the algorithms are

used for weed detection and real-valued crop yield prediction experiments based on remote

sensing data that can provide information for agricultural applications.
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Chapter 1

Introduction

Multi-sensor fusion methods aim to combine and integrate information obtained from mul-

tiple sensor sources while reducing uncertainties in the data and providing more detailed

information [1, 2]. Each of the sensor sources may provide complementary and reinforcing

information that is helpful in applications such as target detection, classification, or scene

understanding [3]. Take remote sensing applications for example, imagery can be obtained

from multiple sensors such as hyperspectral and LiDAR (light detection and ranging). Hy-

perspectral imaging sensors can provide spectral information about materials in the scene

across a wide range of wavelengths while LiDAR data can provide height information. If

a road and a building rooftop are built with the same material (say, asphalt), hyperspectral

information alone may not be sufficient to tell them apart. However, LiDAR data provides

height information and can easily distinguish the two. On the other hand, a highway and

a biking trail can be at the same elevation and using LiDAR data alone may not be suf-

ficient to distinguish the two types of roads, but hyperspectral sensor can be very helpful

in identifying the distinctive spectral characteristics between a highway, which is likely to
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be primarily asphalt, and a biking trail, which is likely to be covered in dirt. It would be,

thus, valuable to take advantange and fuse the information provided by multiple sensors in

order to produce more detailed information, such as a better classification result or a more

comprehensive understanding of the scene [2, 4–6].

The Choquet integral (CI) has a long history of being an effective aggregation operator

for non-linear fusion [3, 7–10]. A discrete Choquet integral integrates the input sources

with respect to a fuzzy measure [11]. Compared with commonly used aggregation oper-

ators such as weighted arithmetic means [12], the Choquet integral is able to model the

relationship amongst the combinations of the sources and can flexibly represent a wide

variety of aggregation operators [7, 13]. In this dissertation, the monotonic normalized

discrete Choquet integral [14] is used as the aggregation operator for sensor fusion.

The standard Choquet integral fusion method assumes that (1) the data to be fused

are homogeneous (of the same data type and with the same resolution) and (2) there are

training labels available for each data point. It is generally assumed that the data provided

by multiple sources for fusion must be of the same type, of the same resolution, on the

same grid, or be possible to match and link individual data points together if the data types

are arbitrary/heterogeneous [15]. That is to say, the standard CI fusion method requires

data from m different sensors produce data that has a one-to-one correspondence, or that

some form of pre-processing is needed to transform all sources to the same resolution and

perform matching. In addition, the data has to be on the same grid or scale, so pixel (i, j)

in sensor image data 1 should correspond to pixel (i, j) in sensor image data m exactly.

The image data values Xk
ij , k = {1, ...,m} as well as its classification or regression labels

lij are also assumed to be known for each training pixel/data point in the image [16].

This assumption raises two problems. First, the assumption about homogeneous data
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source types does not generally hold in real applications for sensor fusion. Existing op-

tical sensors operate on varying spatial and spectral and temporal resolutions [17] and it

is not necessarily feasible to convert all data to the same resolution or map to the same

grid. Techniques such as rasterization and image registration [18, 19] have been proposed

to perform co-registration of heterogeneous geospatial information sources. However, ras-

terized images may lose some of its original information. Suppose a hyperspectral imaging

(HSI) camera scans the scene and provides an image with 1-meter ground sample distance

(GSD) [20]. That means each pixel in the hyperspectral image covers 1 × 1m2 area. Li-

DAR technology, on the other hand, produces point clouds by densely sample the surface

of the earth in the scene. There can be several LiDAR data points inside an 1 × 1m2 area.

One way to rasterize LiDAR data is by projecting the LiDAR data points into the pixel

coordinate plane of the HSI image [21] and obtain one single LiDAR value (Z coordinate

value, usually height information) for each pixel. Then, data fusion between the HSI and

rasterized LiDAR data can be performed pixel-by-pixel on the image grid. However, the

dense LiDAR point cloud data can offer higher geographic accuracy [22] as the data does

not depend on grid size. Each LiDAR data point provides a certain degree of information

and it would be nice to take all available information into account. Besides, most image

registration methods rely heavily on both the accuracy of input images and registration pa-

rameters [18, 23] and can also bring in another layer of uncertainty regarding geometric

misalignment and mismatch [15, 21].

Second, even assuming that homogeneous data is available for fusion or that there is

a noiseless way to transform heterogeneous data, standard supervised learning methods

require accurate labels for each training data point. However, data-point specific labels

are often unavailable or difficult and expensive to obtain [10]. For target detection in real
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remote sensing applications, for example, some Global Positioning System (GPS) device

may only be accurate to the level of several meters [24]. Depending on the GSD of the

imagery, the target ground truth locations in the scene measured by a GPS can only be

accurate to the level of several pixels. It is, thus, difficult to pinpoint accurate pixel-level

target locations and provide accurate training labels.

To address these two problems, this dissertation proposes a Multiple Instance Choquet

Integral (MICI) framework for both multi-sensor classifier fusion and regression that can

deal with uncertainty in training labels. Three variations of the objective functions based

on three models, i.e. noisy-or, min-max and generalized-mean models, were derived for the

MICI classifier fusion framework. A monotonic normalized fuzzy measure is learned to be

used with the Choquet integral to perform two-classs classifier fusion given bag-level train-

ing labels. An optimization scheme using an evolutionary algorithm is used to optimize the

models proposed. For regression problems where the desired prediction is real-valued, this

dissertation adopts the “primary-instance” assumption that there is one primary instance re-

sponsible for the label for each bag [25] and proposes a Multiple Instance Choquet Integral

Regression model that can fuse multiple sources with real-valued label as well as taking

into account the uncertainties in the label.

Furthermore, this dissertation proposes a Multi-Resolution Multiple Instance Choquet

Integral (MR-MICI) framework that takes in heterogeneous data (for example, images at

different resolutions or data of different geospatial types) from multiple sensors with un-

certainty in training labels and perform fusion. The proposed MR-MICI algorithm works

under the assumption that at least one point in each bag from each data source is accurate

but the remaining data points in the bags can have uncertain labels. The proposed MR-

MICI algorithm also learns a monotonic normalized fuzzy measure to be used with the
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Choquet integral to perform fusion on heterogeneous data sources.

Experiments were conducted based on the proposed algorithms on both synthetic data

and real applications such as target detection and scene understanding in remote sensing

imagery. Results indicate that the proposed MICI framework can successfully learn a set

of fuzzy measure to be used with the Choquet integral to effectively perform classifier

fusion and regression while dealing with uncertainties in training labels. Results also indi-

cate that the proposed MR-MICI framework can successfully perform classifier fusion and

yield better classification accuracy on heterogeneous data (multi-resolution data and data

of different geospatial types such as HSI and LiDAR) while taking into account uncertain

labels.
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Chapter 2

Literature Review

This chapter provides a literature review on Multiple Instance Learning frameworks in-

cluding MIL classification and MIL regression. This chapter also provides definitions for

fuzzy measures and the Choquet integral and reviews previous methods in learning a fuzzy

measure. This chapter also reviews the existing literature in sensor fusion, especially fu-

sion with the Choquet integral and fusion of heterogeneous data types and multiresolution

fusion.

2.1 Multiple Instance Classification

The Multiple Instance Learning (MIL) framework was first proposed in [26] to address

uncertainty and inaccuracy in labeled data in supervised learning. In the MIL framework,

training labels are associated with sets of data points (“bags”) instead of each data point

(“instance”). In the scenario of two-class classification, the standard MIL assumes that a

bag is labeled positive if at least one instance in the bag is positive and a bag is labeled
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negative if all the instances in the bag are negative. Figure 2.1 shows the illustration of

MIL bags. Assuming the red-colored points are positive instances and blue-colored points

are negative instances. The two bags on the top row are, therefore, negative bags, as all the

instances in the bags are negative. The three bags on the bottom row are positive bags, as

there is at least one positive instance in the bags. A more generalized view of the MIL was

also introduced in the literature [27]. The generalized MIL does not follow the restriction

of the standard MIL assumption [28, 29]. The standard MIL assumes that a bag’s label

depends on the labels of the instances in the bag, while the generalized MIL assumes that

a bag’s label depends on the “interaction” between instances in the bag [28, 29]. In this

dissertation, only the standard MIL assumption is discussed as it fits the task of sensor

fusion at hand.

Negative Bags

Positive Bags

Figure 2.1: Illustration of bags in multiple instance learning. Red color marks positive
instances and blue color marks negative instances. The two bags on the top row are
negative bags and the three bags on the bottom row are positive bags.

Figure 2.2 illustrates the differences between standard supervised classification, multi-

ple instance learning classification and embedded multiple instance learning classification

based on the paradigms discussed in [30]. The standard supervised classification learns a

classifier based on a set of training feature vectors, where each feature vector has an asso-
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ciated class label (such as marked in orange or blue color in Figure 2.2) [30]. The instance-

space paradigm classifies instances based on their values at the instance level and draws a

decision boundary between classes. The bag-space paradigm discriminates information at

the bag-level. Distances between bags are computed and a standard distance-based clas-

sifier may be applied such as the K-nearest neighbor (KNN) classifier [30, 31]. In the

embedded-space paradigm, each bag is often mapped into a high-dimensional space. Each

feature vector in the high-dimensional space for each bag represents information from the

entire bag and all the instances in the bag. A discriminative classifier is then applied to the

feature vectors in the embedded space; thus classifying entire bags. Selected notable MIL

classification methods are discussed in detail as follows.

Standard  
Classification 

Multiple  
Instance Learning 

Embedded Multiple  
Instance Learning 

Figure 2.2: Illustration of standard supervised classification, multiple instance learning
classification and embedded multiple instance learning classification. The left column
is training stage and the right column is testing stage. Orange color marks positive
instances/bags and blue color marks negative instances/bags in the feature space.
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The EM-DD technique [32] combines the Expectation-Maximization (EM) method

[33] and the Diverse Density (DD) approach [13, 26, 34]. For two-class classification

problems, the maximum Diverse Density is defined as [13, 34]:

arg max
x

∏
i

Pr(x = t|B+
i )
∏
i

Pr(x = t|B−i ), (2.1)

whereB+
i is the ith positive bag andB−i is the ith negative bag, Bij is the individual feature

values of the jth instance of the ith positive bag, t is the true concept, and x represents all

the points in feature space. Maron et al. [34] proposed a noisy-or model, where for all the

instances in each bag,∏
i

Pr(x = t|B+
i ) = 1−

∏
j

(
1− Pr(x = t|B+

ij )
)
, (2.2)

and ∏
i

Pr(x = t|B−i ) =
∏
j

(
1− Pr(x = t|B−ij )

)
. (2.3)

The causal probability of an individual instance on a potential target was computed based

on the distance between them using

Pr(x = t|Bij) = exp(−‖Bij − x‖2), (2.4)

where Bij is the individual feature values of the jth instance of the ith bag.

To extend the DD model, the EM-DD views the relationship between all the instances

in the bag and the label of the bag (which instance corresponds to the label of the bag?)

as a latent variable that can be estimated using the EM approach [32]. In the E-step, one

instance is picked from each bag as the most influential instance for its bag-level label. In

the M-step, the DD is maximized by a gradient ascent search and the process is iterated

until a stopping criteria is met. Note that EM-DD will terminate after finite number of

iterations since there are only finite number of instance-combinations that the algorithm
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may pick, but the convergence rate is undetermined [32]. EM-DD scales up well as the bag

size increases but the performance will depend on initialization. The EM-DD algorithm

can be used for both MI classification and regression [32].

Citation-kNN [35] algorithm uses the Hausdorff distance to compute distance between

two bags and assigns bag-level label based on the K Nearest Neighbor rules [36]. The

Hausdorff distance for two Bags A and B is defined as:

H(A,B) = max{h(A,B), h(B,A)}, (2.5)

and

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ , (2.6)

where a and b are instances in bagsA andB, respectively. A modified version of Hausdorff

distance can be computed as follows instead of (2.7):

h(A,B) = ktha∈A min
b∈B
‖a− b‖ . (2.7)

Citation-kNN algorithm then assigns label for bag Bi considering its K nearest neighbors

(“references”) and also C bags that counts Bi as a neighbor (“citers”). The Citation-kNN

algorithm extends the traditionalK Nearest Neighbor to suit multiple instance learning pur-

poses. Extensions of citation-kNN include Bayesian citation-kNN [37] and fuzzy citation-

kNN [38, 39].

Andrews et al. [40] proposed two MIL formulations, mi-SVM and MI-SVM, based on

support vector machine (SVM) learning approaches. For the mi-SVM two-class classifica-

tion problem, the objective function is defined as [40]:

min
{yi}

min
w,b,ξ

1

2
‖w‖2 + C

∑
i

ξi, (2.8)
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such that ∑
i∈I

yi + 1

2
≥ 1, ∀i : yi(< w,xi > +b) ≥ 1− ξi, ξi ≥ 0 (2.9)

where w is the weights, b is the bias, yi is the instance-level label, ξi are the slack variables

(similar to that of a standard SVM). The labels Y satisfy the MIL assumption. The mi-

SVM algorithm learns a linear discriminate function and maximizes the margin to separate

the positive from the negative classes based on instance labels. MI-SVM extends based on

mi-SVM and defines the objective function as [40]:

min
w,b,ξ

1

2
‖w‖2 + C

∑
I

ξI , (2.10)

such that

∀I : YI max
i∈I

(< w,xi > +b) ≥ 1− ξI , ξI ≥ 0, (2.11)

where YI is the label for bag I . The MI-SVM objective function extends the concept of

margin maximization to the bag-level.

Multiple-Instance Learning via Embedded Instance Selection (MILES) is a represen-

tative embedded multiple instance learning method [41, 42]. MILES maps both training

and testing bag into high-dimensional feature vectors and then performs classification in

the mapping space using a one-norm SVM [43]. The distance between an instance xk and

a bag Bi is computed as the smallest distance between xk and all the instances in bag Bi

[41, 43]:

s
(
xk | Bi

)
= max

j
exp

(
−
∥∥xij − xk

∥∥2
σ2

)
, (2.12)

where xk is the feature vector for kth instance, Bi is the ith bag, xij is the jth pixel in the

ith bag, and σ is a fixed parameter. The feature vector for bag Bi consists of this similarity

measure computed and concatenated over all n instances in the data set.
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In this way, a high-dimensional feature vector is constructed based on the distance

values. The dimensionality of the feature vector is equal to the number of instances in a

data set. The feature vector reflects the similarity between each instance in the data set and

each bag. The complete feature mapping m given all l+ positive and l− negative bags is

written as [41, 43]:

[m+
1 , . . . ,m

+
l+ ,m

−
1 , . . . ,m

−
l− ]T

= [m(B+
1 ), . . . ,m(B+

l+),m(B−1 ), . . . ,m(B−l−)]T

=



s(x1,B+
1 ) . . . s(x1,B+

l+) s(x1,B−1 ) . . . s(x1,B−l−)

s(x2,B+
1 ) . . . s(x2,B+

l+) s(x2,B−1 ) . . . s(x2,B−l−)

...
...

...
...

...
...

s(xn,B+
1 ) . . . s(xn,B+

l+) s(xn,B−1 ) . . . s(xn,B−l−)



T

,

(2.13)

where the complete mapping for all the bags to all the training instances has dimensionality

NumBags×NumInstances.

After feature mapping, a one-norm Support Vector Machine (SVM) is used to perform

classification and simultaneously select the most discriminating training instances. The

one-norm SVM classifier can be expressed as follows:

y = sign

(
n∑
k=1

wks(xk,Bi) + b

)
, (2.14)

where weights w = [w1, w2, . . . , wk, . . . , wn]T (k = 1, . . . , n for n training instances)

and bias b are model parameters. The weights w and bias b are determined through the

following optimization problem:

min
w,b,η,ξ

λ

n∑
k=1

|wk|+ c1

l+∑
i=1

ξi + c2

l−∑
j=1

ηj (2.15)

with constraints
(
wTm+

i + b
)

+ ξi > 1; −
(
wTm−j + b

)
+ ηj > 1; ξi, ηj > 0 for i =
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1, ..., l+ and j = 1, ..., l−. In the above formulation, l+ and l− are the number of positive

bags and negative bags, respectively. m+
i is the mapping for all positive bags and m−i is

the mapping for all negative bags. ξ and η are hinge loss parameters that are estimated

through the above linear programming problem together with the weights w and bias b. λ,

c1 and c2 are scale parameters set by the user. These parameters must satisfy the following

constraints: c2 = 1 − c1 and 0 < c1 < 1. These constraints ensure the total training

error (i.e., the objective function measure we are trying to minimize through optimization)

is associated with a convex combination of training error on both the positive bags and

negative bags [41].

After the training, the instances corresponding to non-zero weights, w, are identified as

the “selected” and “discriminative” training samples. These samples will be used during

the feature mapping and classification of test data. The usage of the one-norm penalty on

the weights is to promote sparsity and drive more elements of w to zero, thus making the

testing process efficient.

Inspired by drug activity prediction problem [26], Multiple Instance Classification has

wide applications in natural scene classification [44, 45], human action recognition in

videos [46], object detection and tracking [47–49], context identification and context-

dependent learning [43, 50], and music information retrieval [51, 52].

2.2 Multiple Instance Regression

Multiple instance regression (MIR) deals with multiple instance problems where the pre-

diction values are real-valued instead of class labels. MIR has been used in the literature

for applications such as predicting the ability of antigen peptides to bind to major histo-
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compatibility complex class II (MHC-II) molecules [53], predicting aerosol optical depth

from remote sensing data [54, 55], and predicting crop yield [55–57].

Ray and Page [25] first proposed an MIR algorithm based on the “primary-instance”

assumption, which assumes there is one primary instance in a bag that is responsible for

the real-valued bag-level label. A linear regression hypothesis was assumed and the goal is

to find a hyperplane Y = Xb such that

b = arg min
b

n∑
i=1

L (yi, Xip,b) , (2.16)

where Xip is the primary instance in bag i, and L is some error function. An Expecta-

tion Maximization (EM) algorithm was proposed to solve for the ideal hyperplane. First,

a random hyperplane was used for initialization. For each instance j in each bag i, the

error L of the instance Xij to the hyperplane Y = Xb was computed as L (yi, Xij,b) =

(yi −Xijb)2. In the E step, the instance with the lowest error L was selected as the “pri-

mary instance.” In the M step, a new hyperplane was constructed by performing a multiple

regression over all the instances selected in the E step. The two steps were repeated until

the algorithm converges and the best hyperplane solution was returned. Their algorithm

was tested using synthetic data sets only but showed benefits of multiple instance regres-

sion over ordinary regression, especially when the non-primary instances in the bag were

not correlated with the primary instances.

Dooly et al. [58] presented three multiple-instance variants of k-Nearest Neighbor

(k-NN) [59], citation-kNN [35] and the diverse density algorithms [34] for real-valued

prediction. The minimal Hausdorff distance from [35] was used to measure the distance

between two bags. Given two sets of pointsA = a1, ...am andB = b1, ..., bn, the Hausdorff
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distance is defined as:

H(A,B) = max{h(A,B), h(B,A)}, (2.17)

where h(A,B) = maxa∈A minb∈B ‖a− b‖, ‖a− b‖ is the Euclidean distance between

points a and b. The Hausdorff distance, however, is very sensitive to outliers. If there

is one point in B that is in some very large distance from all points in A, the Hausdorff

distance will depend entirely on this one outlier point.

In their MI k-NN algorithm, the prediction made for a bag B is the average label of

the k closest bags (measured in Hausdorff metric). In their MI citaion-kNN algorithm,

the prediction made for a bag B is the average label of the R closest bag neighbors of

B(measured in Hausdorff metric) and C-nearest citers, where the “citers” include the bags

whereB is a one of theirC-nearest neighbors. It is generally recommended thatC = R+2.

The third variant, a diverse density approach for the real-valued setting, maximizes

b∏
i=1

Pr(r|Bi) (2.18)

where

Pr(t|Bi) = (1− |li − Label(Bi|t)|)/Z, (2.19)

b is the total number of bags, t is the target point, li is the label for the ith bag, and Z

is a normalization constant. Their results showed good performance of all three variants

on a benchmark Musk Molecules data set [26, 58] but the performance of both the near-

est neighbor and diverse density algorithms are very sensitive to the number of relevant

features, as expected based on the sensitivity of the Hausdorff distance.

Goldman and Scott [60] investigated MIR for learning real-valued geometric patterns

for landmark matching in robot navigation applications. They associated a real-valued label

15



with each point and used the Hausdorff metric as well to help classify a bag as positive (if

the points in the bag are within some Hausdorff distance from target concept points). Their

algorithm differs from the supervised MIR in that the standard supervised MIR learns from

a given set of training bags and bag-level training labels, while [60] applies an online

agnostic model [61–63] where the learners make predictions as the bag xt is presented at

iteration t. [64] also used the idea of online MIR, i.e. use the latest arrived bag with its

training label to update the current predictive model. This work is also extended in [65].

Cheung and Kwok [66] proposed a regularization framework for MIR by defining a

loss function that takes into consideration both training bags and training instances. The

first part computes the error (loss) between training bags label and its predictions and the

second part considers the loss between the bag label prediction and all the instances in

the bag. Cheung and Kwok still adopted the “primary instance” assumption but simplified

to assume the primary instance was the instance with the highest prediction output value.

Their model provided comparable or better performance on the Musk Molecules data set

[58] as citation-kNN [35] and Multiple Instance kernel-based SVM [66, 67].

Most MIR works methods discussed thus far only provided theoretical discussions or

results on synthetic data set(s). Wagstaff et al. in [56, 57] started to further investigate

more applications of MIR to predict crop yield from a remote sensing data set collected

over California and Kansas. [56] provided a novel method for inferring the “salience” of

each instance with regard to the real-valued bag label. The salience of each instance, i.e.

its “relevance” with respect to all other instances in the bag to predict the bag label, is the

weight associated with each instance. The salience values were defined to be non-negative

and sum to one for all instances in each bag. Like Ray and Page [25], Wagstaff et al.

followed the “primary-instance” assumption but their primary instance, or “exemplar” of a
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bag, is the weighted average of all the points in the bag instead of one single instance from

the bag. Given training bags and instances, a set of salience values are solved based on a

fixed linear regression model and given the estimated salience, the regressor is updated and

the algorithm reiterates until convergence. This work did not intend to provide predictions

over new data but instead focused on understanding the contents (the salience) of each

training instance.

Wagstaff et al. then made use of the salience learned to provide predictions for new, un-

labeled bags by proposing an MI-ClusterRegress algorithm (or in some references, Cluster-

MIR algorithm) that mapped instances onto (hidden) cluster labels [57]. The main assump-

tion of MI-ClusterRegress is that the instances from a bag are drawn (with noise) from a set

of underlying clusters and one of the cluster is “relevant” to the bag-level labels. After ob-

taining k clusters for each bag by EM (Expectation Maximization)-based Gaussian mixture

models (or any other clustering method), a local regression model is constructed for each

cluster. MI-RegressCluster then selects the best-fit model and use it to predict labels for test

bags. A support vector regression learner [68] is used for regression prediction. Results on

simulated and predicting crop yield data sets show that modeling the bag structure when

the structure (cluster) is present is effective for regression prediction, especially when the

cluster number k is equal to or larger than what is actually present in the bags.

More recently, Trabelsi and Frigui [69] proposed the Robust Fuzzy Clustering for MIR

(RFC-MIR) algorithm that, similar to Cluster-MIR, clusters the training instances and

learns multiple regression models for each cluster. RFC-MIR uses fuzzy clustering meth-

ods such as the fuzzy c-means (FCM) [70] or possibilistic c-means (PCM) [70], and uses

features as well as labels in clustering. The current regression model was assumed to be

linear. The possibilistic memberships were used to identify the primary instances in each
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bag. Results on synthetic and predicting crop yield data sets show improved accuracy. Both

Cluster-MIR and RFC-MIR combine all instances from all training bags for clustering.

MIR has since then been used in more real-world applications. EL-Manzalawy et al.

[53] adapted the 1-norm SVM classifier in the MILES algorithm [41] to a support vector

regression (SVR) model and applied their MHCMIR method to predict MHC-II binding

affinity in molecules to help develop new vaccine. Pappas and Popescu-Belis [71] extends

the works of Wagstaff et al. to deal with high dimensions and learns the instance relevance

together with the target labels with application in aspect-based sentiment rating and analy-

sis using texts from datasets such as TED talks or audiobooks. Hsu et al. [72] proposed the

Augmented MIR (AMIR) algorithm to estimate object contours from images. The bound-

ing box outside of an object in the image is regarded as “bags” and the object contour

pixels are the instances. The gradient descent optimization method was used to solve for

the weights of the regressor. The AMIR algorithm was evaluated using the Pascal VOC

2007 Segmentation Challenge data set and obtained good results in semantic segmenta-

tion. Notably, Wang et al. [54, 55] proposed a novel, probabilistic and generalized mixture

model for MIR based on the primary-instance assumption. It is assumed that the bag label

is a noisy function of the primary instance, and the conditional probability p(yi|Bagi) for

predicting label yi for the ith bag is dependent entirely on the primary instance. A binary

random variable zij is defined such that zij = 1 if the jth instance in the ith bag is the

primary instance and zij = 0 if otherwise. The mixture model for each bag i is written as:

p(yi|bagi) =

bi∑
j=1

p(zij = 1|bagi)p(yi|xij) (2.20)

=

bi∑
j=1

πijp(yi|xij), (2.21)

where πij is the (pior) probability that the jth instance in the ith bag is the primary instance,
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p(yi|xij) is the label probability given the primary instance xij and bi is the total number

of instances in the ith bag. Therefore, the learning problem is transformed to learning

the mixture weights πij and p(yi|xij) from training data and an EM algorithm is used to

optimize the parameters. This work discussed several methods to set the prior πij , including

using deterministic function, or as a (Gaussian) function of prediction deviation, or as a

parametric function (in this case a feedforward neural network). It was discussed in [55]

that several previous algorithms, including Prime-MIR [25] and Pruning-MIR [54], are

in fact the special case of the mixture model they proposed. Their results showed better

performance on simulated data as well as for predicting aerosol optical depth (AOD) from

remote sensing data and predicting crop yield applications, compared with the Cluster-MIR

[57] and Prime-MIR [25] algorithms described above.

Overall, the study of Multiple Instance Regression has been in the literature for about

one and a half decades and most studies base their algorithms on the primary-instance

assumption proposed by Ray and Page in 2001. Linear regression was used in most cases

if a regressor was used and experiments have been conducted on synthetic data sets as well

as real data sets such as crop yield and AOD prediction.

2.3 Fuzzy Measure and Choquet Integral

The Choquet integral (CI) has a long history of providing an effective framework for non-

linear information fusion [8, 9, 73–75]. The CI is an aggregation operator based on the

fuzzy measures [11]. Depending on the values of each element in the fuzzy measure, the CI

can represent a variety of relationships and combinations amongst the information sources.

Therefore, a crucial aspect of using the CI for information/sensor fusion is learning the
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fuzzy measures for the CI [76, 77]. This section provides description and definition of the

fuzzy measure and the Choquet integral and reviews previous methods in learning the fuzzy

measures, specifically within the CI.

2.3.1 Fuzzy Measure

Consider the case that there are m sources, C = {c1, c2, . . . , cm}, for fusion. The set C

contains 2m − 1 non-empty subsets. The power set of all (crisp) subsets of C is denoted

2C .

Definition 2.3.1. A monotonic and normalized fuzzy measure, g, is a real valued function

that maps 2C → [0, 1]. It satisfies the following properties [14, 78–80]:

1. g(∅) = 0;

2. g(C) = 1; normalized

3. g(A) ≤ g(B) if A ⊆ B and A,B ⊆ C. monotonic

One special and useful case of the fuzzy measure is the Sugeno λ-measure [9, 11,

81, 82]. The Sugeno λ-measure is defined as follows and will be further referred to in

Section 2.3.3.

Definition 2.3.2. A Sugeno λ-measure, g, is a real valued function that maps 2C → [0, 1].

Let λ ∈ (−1,+∞), it satisfies the following properties [9, 11, 81, 82]:

1. g(C) = 1; normalized

2. if A,B ⊆ C and A ∩B = ∅, then g(A ∪B) = g(A) + g(B) + λg(A)g(B).

Fuzzy measures, in general, model the relationship amongst the sources. Each measure

element value represents the power/“worth” of a certain combination of the sources. In

this dissertation, the measure elements within a fuzzy measure are denoted with a subscript
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matching its corresponding subset. For example, element g1 corresponds to subset {c1},

element g12 corresponds to subset {c1, c2}, etc. Note that g has a total of 2m − 1 elements

and g123...m is always equal to 1 (property 2). All other measure elements hold real values

between [0, 1] and satisfy monotonicity (property 3). Non-monotonic fuzzy measures have

been studied in the literature [82–84] but this dissertation only deals with monotonic and

normalized fuzzy measures. The term “fuzzy measures” in this dissertation always refers

to monotonic and normalized fuzzy measures.

Figure 2.3 shows an illustration of the monotonicity property in between fuzzy mea-

sure elements given four sources. Take measure element g23 for example, g2 and g3 are

its subsets and g123 and g234 are its supersets. Therefore, the element value of g23 satisfies

g23 ≥ g2, g23 ≥ g3, g23 ≤ g123 and g23 ≤ g234. The red arrows show one path to “climb

up the lattice” of the fuzzy measure elements. Notice that the measure element that cor-

responds to the full set, g1234 in this case, is always equal to 1 (property 2). All measure

elements take values between zero and one.

g1 g2 g3 g4

g12 g13 g14 g23 g24 g34

g123 g124 g134 g234

g1234

Figure 2.3: An illustration for the subset and superset relationships between fuzzy mea-
sure elements given four sources. The red arrows describe one path for “climbing up the
lattice”.

Fuzzy measures have applications in multicriteria decision making [73, 85, 86], model-
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ing human evaluation and decision processes [87, 88], image segmentation [89–91], image

enhancement [92], gene ontology [93, 94], medical diagnostic reasoning [95], and evaluat-

ing the similarity between sets of linguistic summaries [96].

2.3.2 Choquet Integral

Fuzzy measures are used to define fuzzy integrals such as the Sugeno fuzzy integral (here-

inafter referred to as “the Sugeno integral”) [78] and the Choquet fuzzy integral (hereinafter

referred to as “the Choquet integral”) [14, 97] in the literature. There has been studies on

the statistical properties of the Choquet and Sugeno Integrals [98–100]. The Choquet inte-

gral (CI) is a natural extension of the Lebesgue integral [11, 88] and has long been used as

an effective aggregation operator [80].

Definition 2.3.3. The Choquet integral, denoted as (C)
∫

, of a measurable function h

with respect to fuzzy measure g is defined as [11, 97]: (C)
∫
h dg =

∫∞
0
g({h > α})dα.

Note that if the function h→ [0, 1], the∞ sign will be replaced by 1 (integrating from

0 to 1).

In this dissertation, the discrete Choquet integral is used to fuse information provided

by different sources. Suppose the sources are the outputs from the set of m classifiers

or regressors, C = {c1, c2, . . . , cm}, as mentioned above. Denote the classifier/regressor

output of kth classifier/regressor, ck, on nth data point/instance, xn, as h(ck; xn).

Definition 2.3.4. The discrete Choquet integral on instance xn given C is then computed

as [10, 11, 80]:

Cg(xn) =
m∑
k=1

[h(ck; xn)− h(ck+1; xn)] g(Ak), (2.22)
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where C is sorted so that h(c1; xn) ≥ h(c2; xn) ≥ · · · ≥ h(cm; xn). Since there are only m

sources, h(cm+1; xn) is defined to be zero. The fuzzy measure element value corresponding

to the subset Ak = {c1, . . . , ck} is g(Ak).

Gader et al. [3, 101] applied the CI to multi-algorithm and multi-sensor fusion in land-

mine detection applications. In their work, detectors were applied to Advanced Himawari

Imager (AHI) hyperspectral and synthetic aperture radar (SAR) imagery or ground pen-

etrating radar (GPR) and electro-magnetic induction (EMI) sensors and then, the CI was

used to fuse the detector results. A linguistic version of the Choquet fuzzy integral (LCFI)

was proposed in [102] and was used to perform fusion on GPR, EMI and infrared (IR)

sensors also for landmine detection [103]. Liu et al. [104] used the CI to perform classifier

fusion on Doppler radar sensor signals for fall detection in application towards elder care.

Wang et al. [105] used the CI to integrate classifier results for Landsat image classification.

The CI is and has provided effective fusion performance in fusing homogeneous possibility

and probability distributions [106].

The Choquet integral has wide applications in pattern recognition [74] and classification

[80, 107]. The Choquet integral has been applied with Multiple Kernel Learning (MKL)

for pattern recognition and feature-level and decision-level fusion [108, 109]. The CI was

used in real applications such as landmine detection [9, 110], handwritten word recogni-

tion [111, 112], text classification [113], gesture recognition [114], temperature prediction

[115], chromosome abnormalities detection [116] and immunoinformatics [117]. The Cho-

quet integral has also been used as a morphological image filter [80, 118–120]. The discrete

Choquet integral has also been proven to define a distance metric “with the versatility of

nonlinearity and the ability to use order statistics information” [121]. In addition, the Cho-

quet integral has been used as an effective aggregator for crowdsourced information such
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as aggregating aspect rating of restaurants from customer ratings [122].

2.3.3 Learning The Fuzzy Measure

In a classifier or regressor fusion problem with training data X = {x1,x2, . . . ,xN}, the

h(c1; xn), h(c2; xn), . . . , h(cm; xn) values for all n are known. The desired bag-level la-

bels for sets of Cg(xn) values are known. A crucial aspect of using the CI to perform

fusion is to learn all the element values of the fuzzy measure g from training data of this

form [10]. This dissertation adopts and adapts the categorization in [80] and [123] and de-

scribes below three main types of methods to learn the fuzzy measure, especially (but not

necessarily limited) within the Choquet integral: least-square based approaches, gradient

descent algorithm and evolutionary algorithms.

Least-square based approaches

As introduced in Section 2.3.1, form input sources, there are 2m−1 non-empty subsets and

hence 2m − 1 fuzzy measure elements. Excluding g123...m ≡ 1, there are 2m − 2 unknown

fuzzy measure element values to be estimated. A quadratic programming (QP) approach to

solve for the fuzzy measures based on the least-square criteria was discussed in [11, 124].

Given the discrete CI formula in equation (6.10) and assuming the desired labels for the

nth data point/instance xn is dn, the goal of the the least-square criteria is to find the fuzzy

measure g so that the squared error is minimized between the Choquet integral outputs of

all training data points given g and their desired labels [11, 124]:

min
g
E2 =

N∑
n=1

(Cg(xn)− dn)2 . (2.23)

For convenience, write the measure elements in a vector form according to the lattice
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given in Figure 2.3 in a bottom-up order:

g = [g1, g2, ..., gm, g12, g13, ..., g123...m−1, ..., g23...m]T . (2.24)

Denote Γ matrix as the difference matrix between the sources. Specifically, for each data

point/instance n, the vector Γn is defined to depict the differences between the sources [11]:

Γn = [0, ..., 0, h(c1; xn)− h(c2; xn), ..., h(cm−1; xn)− h(cm; xn), 0, ..., 0]T . (2.25)

The Γn has only m− 1 non-zero elements corresponding to the indices that occur in the CI

definition in Eq. (6.10) [11].

Therefore, Eq. (2.23) can be rewritten as [11, 80]:

min
g
E2 =

N∑
n=1

(Cg(xn)− dn)2 (2.26)

=
N∑
n=1

(
ΓT
n · g + [h(cm; xn)− dn]

)T (
ΓT
n · g + [h(cm; xn)− dn]

)
(2.27)

=
N∑
n=1

(
gTΓnΓ

T
ng + 2 [h(cm; xn)− dn] ΓT

ng + [h(cm; xn)− dn]2
)

(2.28)

= gT

(
N∑
n=1

ΓnΓ
T
n

)
g + 2

(
N∑
n=1

[h(cm; xn)− dn] ΓT
n

)
g

+
N∑
n=1

[h(cm; xn)− dn]2 ,

(2.29)

in which (·)T denotes the transpose of a matrix.
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We can then define,

D ≡

(
N∑
n=1

ΓnΓ
T
n

)
, (2.30)

Γ ≡

(
N∑
n=1

[h(cm; xn)− dn] Γn

)
, (2.31)

d2 ≡
N∑
n=1

[h(cm; xn)− dn]2 , (2.32)

Hence, Eq. (2.29) can be written as

min
g
E2 = gTDg + ΓTg + d2. (2.33)

Considering the monotonicity property of the fuzzy measure g (Section 2.3.1), we require:

g1 − g12 ≤ 0,

g1 − g13 ≤ 0,

...

g1 − g123...m ≤ 0,

...

g123...m−1 − g123...m ≤ 0,

...

g23...m − g123...m ≤ 0,

(2.34)

i.e., a total ofm (2m−1 − 1) inequality constraints on elements of g. Notice that g123...m ≡ 1

according to the normalization property of the fuzzy measure g (Section 2.3.1).
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To write those inequality constraints in A · g + b ≤ 0 format,



1 0 · · · 0 −1 0 · · · 0 0 · · · 0

1 0 · · · 0 0 −1 · · · 0 0 · · · 0

...
... · · · ...

...
... · · · ...

... · · · ...

0 0 · · · 0 0 0 · · · 1 0 · · · 0

...
... · · · ...

...
... · · · ...

... · · · ...

0 0 · · · 0 0 0 · · · 0 0 · · · 1


(m(2m−1−1)×2m−2)

·



g1
...

g12

g13
...

g123...m−2
...

g123...m−1

g134...m
...

g234...m


((2m−2)×1)

+



0

...

0

0

...

0

...

−1

−1

...

−1


(m(2m−1−1)×1)

≤ 0 (2.35)

Note that the “-1” elements of the b vector comes from the g123...m ≡ 1 property.

Here is an example for three input sources (m = 3). We know there are a total of 9

constraints, i.e.

g1 ≤ g12, g1 ≤ g13,

g2 ≤ g12, g2 ≤ g23,

g3 ≤ g13, g3 ≤ g23,

g12 ≤ g123 = 1, g13 ≤ g123 = 1, g23 ≤ g123 = 1.

(2.36)
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The constraints can be rewritten in matrix form as:

1 0 0 −1 0 0

1 0 0 0 −1 0

0 1 0 −1 0 0

0 1 0 0 0 −1

0 0 1 0 −1 0

0 0 1 0 0 −1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(9×6)

·



g1

g2

g3

g12

g13

g23


(6×1)

+



0

0

0

0

0

0

−1

−1

−1


(9×1)

≤ 0 (2.37)

Therefore, the problem of finding the fuzzy measure g according to the least square criteria

formulated in Equation (2.33) turns into a quadratic programming (QP) problem [11, 124]:

min
g
E2 = gTDg + ΓTg + d2,

subject to A · g + b ≤ 0 and 0 ≤ g ≤ 1.

(2.38)

The quadratic programming approach can then be solved by a QP solver such as the MAT-

LAB built-in quadprog() function. This method is called “CI-QP” method and was used as

a baseline comparison method later in the dissertation.

There are other approaches including a maximum split approach [125], a minimum

variance method [126, 127] and a less constrained approach [128] as discussed in [123].

The maximum split approach models the pairs and interactions of the fuzzy measure ele-

ments subject to the monotonicity and normalization constraints and solves the maximiza-

tion problem using linear programming. The maximum split approach is a simple model

[123] but introduces many variables and threshold parameters that must be chosen care-
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fully [125]. The minimum variance method is based on a maximum entropy principle for

fuzzy measures [127]. The principle argues that the maximum entropy capacities (fuzzy

measures) “is the one that will exploit the most on average its arguments”, i.e. the opti-

mal solution is the one that maximizes the entropy and hence minimizes the variance of

the fuzzy measures (the link between the entropy and the variance can be seen in [127]).

The less constrained approach [128] also writes the objective function based on the least

squares criteria and optimizes the objective function subject to the properties of the fuzzy

measure, using a convex quadratic program. However, it relaxes some of the constraints

by converting the constraints on the fuzzy measures to constraints on the (unknown) over-

all evaluation values. This methods can be regarded as a generalization of the standard

least-squares QP method [123].

Gradient descent algorithm

A gradient-descent algorithm has been used to learn a fuzzy measure (a Sugeno λ-measure

in this case) for the Choquet integral in [9]. The Sugeno λ-measure is defined in Sec-

tion 2.3.1. Denote the measure element corresponding to a singleton set {cj}, also known

as “densities”, as gj , j = 1, ...,m. Take the derivative of the Choquet integral in Equation

(6.10), each partial derivative of Cg(xn) with respect to the measure element gj is given

by:
∂Cg(xn)

∂gj
=

m∑
k=1

∂g(Ak)

∂gj
[h(ck; xn)− h(ck+1; xn)] . (2.39)

Recall the notation that fuzzy measure element g(Ak) corresponds to the subset Ak =

{c1, ..., ck}, as discussed in Section 2.3.2. According to the definition of the Sugeno λ-
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measure in Section 2.3.1, g(Ak) can be written as

g(Ak) = g({ck} ∪ Ak−1)

= gk + g(Ak−1) + λgkg(Ak−1).

(2.40)

Then, the ∂g(Ak)
∂gj

term in Equation (2.39) can be written as

∂g(Ak)

∂gj
=
∂gk
∂gj

+
∂g(Ak−1)

∂gj

+
∂λ

∂gj
gkg(Ak−1) + · · ·

+ λ
∂gk
∂gj

g(Ak−1) + λgk
∂g(Ak−1)

∂gj
.

(2.41)

It is known in [11] that the value λ for any Sugeno λ-measure satisfies

(1 + λ) =
m∏
k=1

(1 + λgk) , (2.42)

given the normalization property of the Sugeno λ-measure. Therefore, the ∂λ
∂gj

term in

Equation (2.41), as proven in [9], can be rewritten as

∂λ

∂gj
=

λ2 + λ

(1 + gjλ)
[
1− (λ+ 1)

∑m
k=1

(
gk

1+gkλ

)] , λ 6= 0. (2.43)

Then, a gradient descent algorithm can be used for any objective function (such as the

aforementioned least-squares criterion) to solve for the fuzzy measure to be used with the

Choquet integral [9, 104].

Keller and Osborn proposed a neuron model and a “reward-punishment” training al-

gorithm to train fuzzy measures for multi-class decision making [129]. A neuron is used

to represent each data class and the fuzzy measure element values were initialized. Then,

the Choquet integral output is calculated and compared with the true class label. If the CI

output is incorrect, the density values are decreased (“punished”) and if correct, increased

(“reward”) [129]. The process is continued until all data are correctly classified. The neural
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networks approach to determine a (Sugeno) fuzzy measure can also be seen in [130, 131].

Evolutionary Algorithms

The Genetic Algorithm (GA) is a special instance and a popular algorithm in Evolutionary

algorithms [132]. The GA has been used in the literature to determine fuzzy measure values

[10, 76, 133–141]. The GA algorithm considers the fuzzy measure as a chromosome and

generates a population of potential measures. A fitness function is pre-defined to model

and evaluate the measure. An example of the fitness function is a function that calculates

misclassification rate or the least-squared error between the CI output and the actual class

label. Measures are selected from the measure population based on their fitness values.

Measures from the last iteration are called the “parents.” The measure element values are

then updated by mutation based on their fitness values and the “child” measure population is

generated. The process continues until a stopping criterion is met (for example, maximum

number of iterations or the minimum misclassification rate). The measure that gives the

best fitness value is returned as the optimal fuzzy measure solution.

Additional methods, such as the Particle Swarm Optimization (PSO) [142, 143], have

also been used to solve nonlinear multi-regresson based on generalized Choquet integrals

[144]. Results in [144] suggest that the PSO speeds up the convergence and reduces the

computation time as compared with the GA algorithm, specifically for determining the

unknown regression parameters for nonlinear multiregression model.
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2.4 Sensor Fusion

Sensor fusion is the process of combining data or information from multiple (sensory)

inputs (“sources”). Sensor data, features extracted from the data, and classifier or prediction

outputs estimated from the data can all be used as sources during fusion [145, 146]. Sensor

fusion can be performed at three levels: data level, feature level, and decision level [4, 17].

Data-level fusion takes in sensor data directly and perform transformation on the data itself

to project, map or co-register data from multiple sensors. Feature-level fusion performs

fusion of features, such as characteristics extracted from the data like shapes or objects [4].

Decision-level fusion takes multiple classifier or real-valued prediction outputs estimated

from the data as sources of information. It then derives one fused output with the aim of

providing a finer, more accurate and/or descriptive classification or regression result [10,

146, 147]. Sensor fusion has wide applications including remote sensing and hyperspectral

image classification [148–150], object detection [151], landmine detection [103, 147, 152–

154], handwriting recognition [155], and medical and fault diagnosis [156–158].

There are a number of challenges in sensor fusion, such as data alignment, varying

modality/data types, and fusion of imperfect data [159]. In the case where the fusion

sources are images or maps, it is necessary, if not “an absolute prerequisite” [160], to

make sure the pixels across all images correspond to the same region and objects [18, 160].

The process of (geometrically) align two or more of the images to be fused is called image

co-registration [160]. Notice that image co-registration is a pre-processing step for fusion

that only deals with images or maps on a grid of pixels as input sources. This section will

review image co-registration methods as a pre-processing step for image-type-only sensor

fusion.

On the other hand, sensors often produce data of mixed data types other than images
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or maps (for example, point clouds). Sensor imagery can also be of multi- spatial, spectral

and temporal resolution and with mixed uncertainties [108]. This section reviews fusion

methods in the literature that deals with multi-resolution sensor fusion, in particular fusion

of mixed spatial, spectral and temporal resolution. Furthermore, this section reviews fu-

sion methods that can handle data of mixed types, such as fusing multispectral (MS) or

hyperspectral (HS) imagery with LiDAR point cloud data.

2.4.1 Co-registration

Image co-registration is a fundamental step in image processing that has applications in

computer vision and pattern recognition, medical image analysis and remote sensing data

processing and fusion [161–163]. Image co-registration deals with a variety of problems,

such as (1) registration of images over the same scene from different sensors (multimodal

registration), (2) registration of images over the same scene from different viewpoints (mul-

tiviewpoint registration), (3) registration of images over the same scene at different times

or under different conditions (temporal registration), and (4) find pattern or object in the

image that matches a desired pattern (template registration) [161]. For multi-sensor fusion

purposes, the co-registration step usually refers to the first three scenarios.

Most multi-sensor image co-registration methods are based on geocoding, parametric

methods such as similarity measures, or non-parametric methods such as optical flow [18].

Geocoding

Geocoding co-registration refers to the process of transforming the pixels in the image to

a geographic location on the surface of the Earth, represented in spatial coordinates such

as a latitude and longitude [4, 18, 164]. Approaches of geocoding includes rigorous range

33



doppler approach, interpolation and nearest-neighbor resampling, among others [18, 164,

165].

The geocoding co-registration process plays an essential role for fusion, but the accu-

racy of geocoding highly depends on the availability and accuracy of auxilary geographic

data such as a dital elevation model (DEM) [18, 166]. However, many Global Position-

ing System (GPS) device are often only accurate to the level of several meters [24, 167].

Ground control points can be selected to enhance the accuracy of geocoding [166] but

the process still requires geometrically corrected reference systems and it requires extra

expense for picking control points.

Similarity measures

Similarity measures methods, described here, are feature-based co-registration methods

[168]. In the literature, features such as edges, edge orientations, points, regions and line

features have been used to perform image co-registration [169, 170]. The scale-invariant

feature transform (SIFT), for example, has been used as a popular feature descriptor [171].

Image intensity was also used in classical area-based methods such as cross-correlation

[172] or mean square difference of image intensity values [173]. Feature-based methods

are useful if the images contain enough detectable and distinctive details and/or objects in

the scene [168].

Once the features were selected, a similarity measure or function is used to evaluate

and optimize the similarity between images. The choice of similarity measures plays a

significant role in image co-registration [18]. Mutual Information (MI) [174] is widely used

as a similarity measure to co-register images, especially in applications such as medical

imaging and remote sensing [175–182]. The MI between two random variables A and B is
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defined as [174, 183]:

I(A,B) = H(A) +H(B)−H(A,B), (2.44)

where H(A) and H(B) are the Shannon entropies [184] of A and B, respectively and

H(A,B) is the joint entropy of A and B.

Suppose A and B are two sensor images to be co-registered and assume the intensity

values in image A ranges from [0,M − 1] and the intensity values in image B ranges from

[0, N − 1]. Define the joint histogram matrix, h, as:

h =



h(0, 0) h(0, 1) · · · h(0, N − 1)

h(1, 0) h(1, 1) · · · h(1, N − 1)

...
... · · · ...

h(M − 1, 0) h(M − 1, 1) · · · h(M − 1, N − 1)


, (2.45)

where h(a, b) is the number of pairs having intensity value a in imageA and intensity value

b in image B. The joint histogram matrix h, thus, describes the relationship between the

image pairs A and B. The joint probability mass function pA,B(a, b) is then defined as:

pA,B(a, b) =
h(a, b)∑
a,b h(a, b)

. (2.46)

The marginal probability mass functions pA(a) and pB(b) are computed as:

pA(a) =
∑
b

pA,B(a, b), (2.47)

and

pB(b) =
∑
a

pA,B(a, b). (2.48)
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The entropies H(A) and H(B) and joint entropy H(A,B) can be computed as:

H(A) =
∑
a

−pA(a)logpA(a), (2.49)

H(B) =
∑
b

−pB(b)logpB(b), (2.50)

H(A,B) =
∑
a,b

−pA,B(a, b)logpA,B(a, b). (2.51)

Here the intensity values are used as suggested in [174, 181] but other features can be used

as well. Other interpolation algorithms, such as nearest neighbor [185], can also be used to

estimate the joint histogram matrix.

Similarity measures methods such as the MI-based co-registration face challenges such

as high computation time due to large data volume and wide differences of sensor geometry

and radiometry due to increased spatial resolution of sensor data [181]. Traditional features

tend not to work well with multiangle remote sensing images as the resolution changes

in images with large view angles may affect the accuracy of key points selection [186].

Other properties, such as the low-rank constraint [186], has been explored for image co-

registration. The RANdomSAmple Consensus (RANSAC) algorithm [187–191] was also

widely used in feature-based image registration.

Transformation, Interpolation and Resampling

Transformation, interpolation and resampling methods are studied in the literature for im-

age co-registration [169, 192]. To co-register two images, one image is fixed to be the

“master image” and the other image is projected and resampled to the same reference sys-

tem as the master image [18, 193]. A variety of transformations can be used to co-register

images, such as similarity transform, affine transform, perspective projection, and elastic
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transform [169]. Popular nterpolation methods include the nearest neighbor [194, 195],

cubic convolution [196], bilinear/tri-linear interpolation [197–199], quadratic interpolation

[200], polynomial interpolation [192], and spline interpolation [201, 202]. A survey of in-

terpolation methods in medical imaging applications can be found in [203]. Interpolation

methods can reduce the computational expense of conventional co-registration methods

[192]. The efficiency and performance, however, will depend on the selection of the opti-

mal interpolation kernel [192].

Additionally, the spectral diversity technique is used to perform co-registration, more

specifically for SAR images, based on the spectral properties of the comple SAR signal

[204, 205].The spectral diversity co-registration does not need any interpolation or cross-

correlation and can be “at least as accurate as” conventional co-registration methods [204].

Conflation

The term “conflation” has been used, in some cases, interchangably in the literature as

image (co-)registration [206–211]. Conflation is in particular associated with applications

relating to map compilation and geospatial data, such as overlaying a vector road map to

a geospatial imagery [212–214]. Conflation integrates and combines (in particular) geo-

graphic information from multiple sources to “retain accurate data, minimize redundancy,

and reconcile data conflicts.” [211, 215] Just like image co-registration, features and sim-

ilarity measures can be extracted to match images or to overlay different geospatial infor-

mation sources [211].
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2.4.2 Multi-resolution Fusion

Existing optical sensors produce data at varying spatial, temporal and spectral resolutions

[17]. In order to obtain an image that has higher spatial, temporal or spectral resolution

and integrating complementary information provided by multiple sensors, multi-resolution

fusion methods are needed and studied in the literature. This sections describes previous

fusion methods that deal with multi-spatio-temporal-spectral resolutions, concentrating on

remote sensing applications.

Spectral-spatial fusion is an important branch in multi-resolution fusion [17]. Spectral-

spatial fusion combines images of varying spectral and spatial resolutions to obtain an

image with high spectral/spatial resolution. Pan-sharpening is one example of spectral-

spatial fusion that has been heavily studied in the literature [216–218]. Pan-sharpening

refers specifically to fusing a high-resoluion panchromatic (PAN) image with a lower-

resolution multispectral (MS) image [219]. It is necessary to consider the tradeoff be-

tween computational complexity and detection/classification accuracy when considering

pan-sharpening algorithms [219]. Model-based optimization pan-sharpening approaches

[220] model the relationships between PAN and MS images and optimizes an objective

function (e.g. minimizes error between observed and desired images) to solve for the

deisred fused output. Model-based optimization generally has higher precision than com-

ponent substitution approaches [221–223] or multiresolution analysis-based approaches

[224] but can be complex and time-consuming when the image size is large [17]. A sparse

coding method proposed in [225] takes into account the signal correlation between the

spectral bands and turns pan-sharpening into a dictionary learning problem. It relies on

“dictionary atoms”, i.e. columns of the dictionary, trained from observed PAN images,

learns the (sparse) coefficients for each dictionary atom and reconstruct the desired images
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as a linear combination of those dictionary atoms. Pan-sharpening methods also include

methods based on compressed sensing [226–228], wavelet-based algorithms [229–231],

deep neural networks [232] and particle swarm optimization [233, 234].

In addition to PAN/MS fusion, PAN/hyperspectral (HS) fusion [235, 236] and MS/HS

fusion [237, 238] are also studied within spectral-spatial fusion. In general, panchromatic

images offer higher spatial resolution but MS or HS images provide spectral information

over multiple (tens to hundreds of) bands and higher spectral resolution. PAN/HS and

MS/HS are more challenging due to the increased number of spectral bands [17].

Sensors such as satellite systems often produce multi-view, multi-angle and multi-frame

images. Temporal information can also be used in fusion. Multi-view remote sensing and

aerial imagery data integration was studied in [239–241]. [17] provides a summary of

multiview spatial fusion and spatio-temporal fusion.

There have also been studies on dealing with spatial, temporal and spectral resolutions

with a unifying framework. Shen et al. [17] and Meng et al. [242] proposed an inte-

grated framework that uses a maximum a posteriori probability (MAP) estimate for spatio-

temporal-spectral fusion. It is based on a model-based optimization scheme and models

the relationships between the desired (fused) image and the multi-source multi-resolution

observed images using matrices. The objective function is written as minimizing the differ-

ence between the observed images and the desired image (the fused image) after applying

the matrix transformation. A conjugate gradient algorithm [243] is used to solve for the de-

sired fused image. Chen et al. [244] proposed methods for six individual one-to-one fusion

modes (spatial-spectral, spatial-temporal, spatial-angular, etc.) and proposed a “general

mode” of spatial-temporal-spectral fusion by going through each one-to-one fusion mode

step by step.
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Applications of multi-resolution remote sensing image fusion include and not limited

to extraction of urban road networks [239], building detection [245], precision agriculture

[246], and anomaly detection in archaeology [247].

2.4.3 Fusion of Mixed Data Types

Sensor sources can not only produce multi-resolution image data but also data of mixed

geospatial types and mixed uncertainties [108]. One important and widely-studied exam-

ple is the fusion of remote sensing imagery data (such as hyperspectral or multispectral

imagery) and LiDAR (Light Detection and Ranging) data. Take the fusion of hyperspectral

imagery (HSI) and LiDAR data [248–250] for example. Hyperspectral imagery provide

spectral information of materials in the scene over a wide range of spectral bands while

LiDAR data provides height information. HSI can help distinguish materials and objects

but only if the materials and objects have distinct spectral signature, for example vegetation

versus asphalt. HSI alone cannot tell an asphalt road from building roof made of asphalt.

On the other hand, LiDAR data distinguishes materials based on height information, so

LiDAR data can easily tell asphalt road apart from a rooftop, but will have a hard time dis-

tinguishing a tree and a building, if they are of similar height. In real applications, LiDAR

data is highly effective in detecting buildings [251–254], modeling and identifying trees or

plants [255–259], and modeling water bathymetry [260–262]. Therefore, the fusion of HSI

and LiDAR can integrate complementary information and effectively extract features and

distinguish materials in the scene [249].

Hyperspectral cameras produce images on a pixel grid. Each pixel covers a certain

area in the scene, based on the image resolution and ground sample distance. The values

of each pixel is a vector carrying reflectance values across wavelengths/spectral bands.
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LiDAR sensors, on the other hand, obtain data by densely sampling the surface of the

earth. The raw LiDAR data are usually in the form of point clouds instead of maps or

images on a pixel-by-pixel grid. LiDAR point cloud is a vector-based structure. Each point

in the point cloud is associated with an X-Y coordinate that matches a location on earth

(UTM coordinates or Latitude/Longitude, for example). Z-coordiante value at each data

point provides height information. There may be multiple LiDAR points corresponding to

each pixel area on earth. The size of both data would not even match. It is, thus, difficult,

to directly fuse the HSI and LiDAR sources.

One solution is to pre-process the LiDAR data by rasterization. LiDAR data can be

rasterized by projecting data points into a pixel coordinate plane similar to that of an HSI

image [21]. Or, in some cases, a digital surface model (DSM) or digital elevation model

(DEM) derived from the LiDAR is available instead of the raw data [263]. A DSM repre-

sents the earth’s surface and all objects (such as buildings and trees) on the surface, while

a digital terrain model (DTM) represents the bare ground surface without any objects. A

DEM is often used as a generic term for DSMs and DTMs. When a DSM or a DEM is

available, the LiDAR data can be converted to or represented as an image based on pixel

grid that can be further processed and fused with HSI or any other sensor images [21].

Features can then be extracted from both LiDAR and HSI images based on methods such

as morphological attribute profiles [263–267]. Those features can be stacked together as

a large feature matrix and classifiers such as the support vector machine (SVM) [268] or

logistic regression [269] can be applied to obtain the final fusion results [248, 263]. Such

pre-processing allows the usage of classical image processing and fusion methods based

on image inputs. However, the raw dense LiDAR point cloud data can offer higher geo-

graphic accuracy [22] because the raw data does not depend on grid size. Besides, most
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image registration methods rely heavily on both the accuracy of input images and registra-

tion parameters [18, 23]. Rasterization and co-registration can also bring in another layer

of uncertainty regarding geometric misalignment and mismatch [15, 21].

Sparse representation has also been used for HSI and LiDAR fusion [270]. The fusion

is modeled as a dictionary learning problem. For each data sample x = [x1,x2, ...,xm] for

m sources, given dictionary Ai = [A1,A2, ...,AC ] as the dictionary representation of C

classes for the ith source, the sparse coefficient can be estimated by [270]

Ŝ = arg min
S

1

2

m∑
i=1

∥∥xi −Aisi
∥∥2
2

+ λ ‖S‖1,q , (2.52)

where ‖S‖1,q is the l1/lq norm of the coefficient matrix S and λ is a regularization param-

eter. Notice that this method also requires an one-to-one correspondence for all the data

samples from m sources so that x may be stacked into one data matrix .

2.5 Summary and Discussion of Literature Review

The standard Choquet integral fusion method and applications mentioned in Section 2.3

only work if the following two assumptions are met.

First, the data to be fused are homogeneous. It assumes that the input sources for CI

fusion must be of the same type, of the same resolution, on the same grid, or be possible

to match and link together if the data types are arbitrary and/or heterogeneous [15]. This

assumption is implied from the standard discrete CI formulation in Equation (6.10). In

order to compute the CI output, the [h(ck; xn)− h(ck+1; xn)] term on the right-hand side

of the equation must be valid and calculable. Therefore, the function output of source k

and source k + 1 on data point xn must be comparable and of the same size for all sources

42



k = 1, ...,m. However, as discussed in Sections 2.4.2 and 2.4.3, this assumption does not

generally hold true in real applications for sensor fusion.

Sensor data may be available in mixed geospatial types. It is not necessarily feasible to

always convert all data to images on a pixel grid. Suppose a hyperspectral imaging (HSI)

camera scans the scene and provides an image with 1-meter ground sample distance (GSD)

[20]. That means each pixel in the hyperspectral image covers 1 × 1m2 area. LiDAR

technology, on the other hand, produces point clouds by densely sample the surface of

the earth in the scene. There can be several LiDAR data points inside an 1 × 1m2 area.

Traditional fusion methods fail to consider the scenario where the data point/pixel number

does not match among sensor sources, if the raw heterogeneous data types are used for

fusion. Techniques may not always allow transformation the raw data into images of the

same resolution or map to the same pixel grid.

Even if the sensor data are all imagery, existing optical sensors operate on varying

spatial and spectral and temporal resolutions [17]. The first step in multisensor image data

fusion is usually data alignment, i.e., the observations from the individual sensors must be

processed to a form that is suitable for subsequent processing [271]. Techniques such as

rasterization and image co-registration, as discussed in Section 2.4.1, align images from

multiple sensors for further processing. However, co-registration only deals with image

inputs and may introduce mis-alignment error. Rasterization projects vector data or point

cloud data to a pixel-grid and that process may lose some of the original information as

well.

Second, to learn a fuzzy measure to be used with the CI, standard methods require

training labels available for each data point. This assumption states that the desired classi-

fication or prediction values must be known for training data. If the least-squares criterion
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is used with the CI fusion, for example, the dn term in Equation (2.23) must be known for

each and every training data point xn [16]. This is difficult to achieve in real sensor fusion

applications as well. Data-point specific labels are often unavailable or difficult and expen-

sive to obtain [10]. For target detection in real remote sensing applications, for example, a

Global Positioning System (GPS) device may only be accurate to the level of several meters

[24]. Depending on the GSD of the imagery, the target ground truth locations in the scene

measured by a GPS can only be accurate to the level of several pixels. It is, thus, difficult

to pinpoint accurate pixel-level target locations and provide accurate training labels.

The multisensor fusion algorithms presented in this research are capable of fusing data

of mixed types and multi-resolution, while accounting for uncertainty in training labels.

The new algorithms are able to be applied to classifier fusion with binary classification

labels as well as regression problems with real-valued class labels.
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Chapter 3

Multiple Instance Choquet Integral

This chapter provides a detailed description on the proposed Multiple Instance Choquet In-

tegral (MICI) framework for multi-sensor classifier fusion uncertainties in training labels.

Three variations of the objective function based on three models, i.e. noisy-or, min-max

and generalized-mean models, were derived for the MICI classifier fusion framework. A

monotonic normalized fuzzy measure is learned to be used with the Choquet integral to per-

form two-classs classifier fusion given bag-level training labels. An optimization scheme

based on an evolutionary algorithm is used to optimize the models proposed.

The Multiple instance Choquet integral classification model learns a fuzzy measure to

be used within a Choquet integral for two-class classifier fusion. The learning approach

relies on the MIL framework [26, 34] given bag-level training labels. The computed Cho-

quet integral with the learned measure aims at matching as much as possible to the desired

labels. In the two-class classifier fusion problems in this dissertation, the positive class

(target) is marked label “+1” and the negative class (non-target) is marked label “0”.
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3.1 Noisy-or Model

In standard MIL, a bag is labeled negative if all the instances in the bag are negative and

a bag is labeled positive if there is at least one positive instance in the bag. The noisy-or

model can be used to express these assumptions [34]:

P (X|θ) =
N∏
n=1

p(xn|θ)

=

B−∏
a=1

N−
a∏

i=1

1− p(x−ai|θ)

B+∏
b=1

1−
N+

b∏
j=1

1− p(x+
bj|θ)

 (3.1)

where N is the total number of data points, xn is the nth data point/instance, B+ is the total

number of positive bags, B− is the total number of negative bags, N+
b is the total number

of instances in positive bag b, and N−a is the total number of instances in negative bag a.

Each xn is either positive or negative, this is indicated by the following notation: x−ai is the

ith instance in the ath negative bag and x+
bj is the jth instance in the bth positive bag. θ

represents the model parameters.

For all a = 1, . . . , B−, we want:

Cg(x−ai) = 0,∀x−ai ∈ B−a . (3.2)

For all b = 1, . . . , B+, we want:

Cg(x+
bj) = 1,∃x+

bj ∈ B+
b . (3.3)

where Cg is the Choquet integral given measure g, B−a is the ath negative bag, and B+
b is

the bth positive bag.
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In this algorithm, we define

p(xn|θ) = N
(
Cg(xn)|µ, σ2

)
=

1√
2πσ2

exp

{
− 1

2σ2
(Cg(xn)− µ)2

}
.

(3.4)

We set µ = 1 to encourage the Choquet integral values of positive instances to be 1 and the

Choquet integral values of negative instances to be far from 1. Here, the model parameter

vector θ consists of the variance of the Gaussian σ2 and the fuzzy measure g values used

to compute the Choquet integral.

Then, after taking the logarithm, the objective function in (3.1) becomes:

ln p(X|θ) =
B−∑
a=1

N−
b∑

i=1

ln
(
1−N

(
Cg(x−ai)|1, σ2

))
+

B+∑
b=1

ln

1−
N+

b∏
j=1

1−N
(
Cg(x+

bj)|1, σ
2
) .

(3.5)

By maximizing the objective function in (3.5), we encourage the Choquet integral of

all the points in the the negative bag to zero (first term) and encourage the Choquet integral

of at least one of the points in the positive bag to one (second term). The variance σ2 is a

user-defined parameter. The variance parameter control how sharply the Choquet integral

values are pushed to 0 and 1, and thus controls the weighting of the two terms separately. A

larger variance parameter allows for more noise in the data by allowing points in negative

bags to have higher CI values and positive points to have lower CI values.

3.2 Min-Max Model

The min-max model substitutes the noisy-or with simple “min” and “max” operators fol-

lowing the same MIL assumption. The MIL framework assumes that for negative bags, all
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the instances in the bag are negative (label “0”):

J− =
B−∑
a=1

max
∀x−

ai∈B−
a

(
Cg(x−ai)− 0

)2
; (3.6)

For positive bags, at least one instances in the bag should be positive (label “1”):

J+ =
B+∑
b=1

min
∀x+

bj∈B+
b

(
Cg(x+

bj)− 1
)2
, (3.7)

where B+ is the total number of positive bags, B− is the total number of negative bags, x−ai

is the ith instance in the ath negative bag and x+
bj is the jth instance in the bth positive bag.

Cg is the Choquet integral output given measure g computed using (6.10), B−a is the ath

negative bag, and B+
b is the bth positive bag.

Thus, the objective function for the MICI Min-Max model classifier fusion approach is

written as follows:

J = J− + J+. (3.8)

By minimizing the objective function in (3.8), we encourage the Choquet integral of

all the instances in the the negative bag to zero (“J−” term) and encourage the Choquet

integral of at least one of the points in the positive bag to one (“J+” term), which fits the

MIL assumption.

3.3 Generalized Mean Model

Instead of hard min and max operators as proposed in Section 3.2, a generalized mean

model is used to replace the hard min and max operators.

Definition 3.3.1. If p is a non-zero real number, and x1,...,xn are positive real numbers,
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then the generalized mean, or power mean, with the exponent p of x1,...,xn is [272]:

Mp(x1, x2, ..., xn) =

(
1

n

n∑
i=1

xpi

) 1
p

. (3.9)

The generalized mean has the following two properties:

M−∞(x1, x2, ..., xn) = lim
p→−∞

Mp(x1, x2, ..., xn) = min(x1, x2, ..., xn). (3.10)

M∞(x1, x2, ..., xn) = lim
p→∞

Mp(x1, x2, ..., xn) = max(x1, x2, ..., xn). (3.11)

Therefore, by adjusting the p value, the term can act as varying aggregating operators.

For negative bags, all the instances in the bag are negative (label “0”).

J− =
B−∑
a=1

 1

N−a

N−
a∑

i=1

(
Cg(x−ai)− 0

)2p1 1
p1

, (3.12)

Similarly, for positive bags, at least one instances in the bag should be positive (label

“1”).

J+ =
B+∑
b=1

 1

N+
b

N+
b∑

j=1

(
Cg(x+

bj)− 1
)2p2

1
p2

, (3.13)

whereB+ is the total number of positive bags, B− is the total number of negative bags, N+
b

is the total number of instances in positive bag b, and N−a is the total number of instances

in negative bag a, x−ai is the ith instance in the ath negative bag and x+
bj is the jth instance

in the bth positive bag. Cg is the Choquet integral given measure g, B−a is the ath negative

bag, and B+
b is the bth positive bag. p1 and p2 are the two exponent parameters of the

generalized mean and p1 →∞ and p2 → −∞ , according to properties (3.10) and (3.11),

Thus, we can define the objective function for the proposed MICI softmax classifier
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fusion as follows:

J = J− + J+. (3.14)

By minimizing the objective function in (3.14), we encourage the Choquet integral of

all the points in the the negative bag to zero (“J−” term) and encourage the Choquet integral

of at least one of the points in the positive bag to one (“J+” term).

3.4 Optimization

An optimization scheme based on the evolutionary algorithm is used to optimize the models

proposed. Pseudocode for the MICI algorithm for both training and testing stages can

be seen in Algorithm 1. The notation used in Algorithm 1 please refer to the LIST OF

SYMBOLS AND NOTATIONS provided in Page x in the beginning of this dissertation.

The right arrows in the pseudocode mark the corresponding subsections where each step

will be explained in detail.

3.4.1 Measure Initialization

In the algorithm, a population (size P ) of the Choquet integral measures is generated and

each measure in the population is intialized randomly to a set of values between [0, 1] that

satisfies monotonicity.

Two types of initialization approaches, “top-down” and “bottom-up” approaches, were

implemented. In the “top-down” initialization, the values of the measure elements were

sampled from the top of the lattice towards the bottom. Again using the example of the

measure lattice of four sources as shown in Figure 2.3, the (m−1)-tuple measure elements
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Algorithm 1 MICI Algorithm [10]
TRAINING

Require: Training Data, Training Labels, Parameters
1: Initialize a population of measures . 3.4.1
2: F ∗ = max(F0

P ), g∗ = arg maxG F0
P

3: for t := 1→ I do
4: for p := 1→ P do
5: Evaluate valid intervals of G {p} . 3.4.2
6: Randomly sample z ∈ [0, 1]
7: if z < η then . 3.4.3
8: Update G {p} by small-scale mutation
9: else

10: Update G {p} by large-scale mutation
11: end if
12: end for
13: Evaluate fitness of updated measures using (3.5)
14: Select measures . 3.4.4
15: if max(Ft

P ) > F ∗ then
16: F ∗ = max(Ft

P ), g∗ = arg maxG Ft
P

17: end if
18: end for

return g∗

TESTING
Require: Testing Data, g∗

19: TestLabels ← Choquet integral output computed based on Equation (6.10) using the
learned g∗ above

return TestLabels

51



(g123, g124, g134, and g234) were first sampled randomly between 0 and 1. Then, the (m−2)-

tuple measure elements (g12, g13, g14, g23, g24, and g34) were sampled between 0 and its

corresponding superset. For example, g12 measure element value is sampled randomly

between 0 and min(g123, g124), due to monotonicity property. The process goes on until the

singletons (g1, g2, g3, g4) were each sampled between 0 and their corresponding superset

values.

Similarly, the “bottom-up” approaches samples measure element values from the bot-

tom of the lattice up. First the singletons were sampled between 0 and 1 randomly. Then,

the duples were sampled between its corresponding subsets and 1. For example in the four-

source case, the initial value of g12 was sampled randomly between max(g1, g2) and 1. The

process goes on until the (m − 1)-tuple measure elements were sampled, thus initializing

all the element values in the entire measure. Note that the measure element correspond-

ing to the full set is always equal to 1 (e.g. g1234 ≡ 1 for four sources), according to the

normalization property of the fuzzy measure.

In our experiments, the two initialization approaches yield different sets of measure

element values but seem to have little impact on the final measure learned. In the following

experiments, the measure is initialized by randomly flipping a coin and pick either “top-

down” or “bottom-up” initialization approach. Detailed comparison of the top-down versus

bottom-up initialization experimental results can be seen in Section 6.4.1.

3.4.2 Evaluation of Valid Intervals

A measure element, when updated, must still satisfy monotonicity. The term “valid inter-

val” is used in this paper to define how large the element value can change without sacrific-

ing monotonicity. The valid interval width for each measure element is set as the difference
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between the lower and upper bound for each element. The lower and upper bounds of a

measure element are computed as the largest value of its subsets and the smallest value of

its supersets, respectively. For example, when number of sources m = 3, g1 and g2 cor-

responds to the subsets of measure element g12, while g123 corresponds to the superset of

g12. Therefore, the lower bound of g12 is equal to max(g1, g2) and the upper bound of g12

is g123 = 1. The valid interval width for element g12 is thus 1 −max(g1, g2). In this step,

the valid interval width for each measure element is computed.

3.4.3 Mutation

An evolutionary algorithm is used to learn the fuzzy measure in the MICI algorithm. Mu-

tations of two different scales were designed in search of the optimal solution. The valid

intervals computed above are used in determining which measure element to update during

both types of mutations.

In the large-scale mutation, all the measure elements are sorted based on their valid in-

terval widths in descending order. Then, all the measure elements are sampled according to

their sort order. That is to say, the measure element with the largest valid interval width (and

has the largest room to change) will be sampled first, the measure elements with the second

largest valid interval width will be sampled second, and so on. The new measure values

are sampled from a truncated Gaussian (TG) distribution [273]. Appendix A describes the

method to sample from a truncated Gaussian distribution in mathematical detail. The Beta

distribution and the full Gaussian distribution have been investigated but the TG provides

best results so far. Other distributions, such as Cauchy, can be explored in the future. The

lower and upper bounds of the truncated Gaussian are equal to the lower and upper bounds

of the valid interval of the corresponding measure element.
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In the small-scale mutation, only one measure element is sampled. The element to

be sampled is chosen by randomly sampling from a multinomial distribution based on

the valid intervals of all the measure elements. The probability of sampling a particular

measure element gl is set to

P (gl) =
wl∑2C−1

o=1 wo
, (3.15)

where wl is the valid interval width for measure element gl. The measure element with

the largest valid interval width will, therefore, have the largest probability to be sampled.

As in the large-scale mutation, the new measure values are obtained by sampling from a

truncated Gaussian (TG) distribution.

The rate of small-scale mutation η ∈ [0, 1] is defined by users. The rate of large-scale

mutation is 1− η.

3.4.4 Selection

The measures retained for the next generation are selected based on their fitness function

values computed using Equation (3.5). In each iteration, all measures in the population are

sampled, yielding a child measure population of size P . The measure population before

sampling is regarded as the parent measure population (size P ). Both the parent and child

measure populations are pooled together (size 2P ) and their fitness values are computed

using Equation (3.5). Then, P/2 measures with the top 25% fitness values are kept and

carried over to the next iteration (elitism), and the remaining P/2 measures to be carried

over are sampled according to a multinomial distribution based on their fitness values from

the remaining 75% of the parent and child population pool, following a similar approach to

Equation (3.15). Among the new measure population, the measure with the highest fitness
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value is kept as the current best measure g∗. The process continues until a stopping criterion

is reached, such as when the maximum number of iterations is reached or the change in the

objective function value from one iteration to the next is smaller than a fixed threshold.

At the end of training process, the best measure g∗ with the highest fitness value so far

is returned as the learned measure and used for testing.
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Chapter 4

Multiple Instance Choquet Integral
Regression

This chapter describes the proposed Multiple Instance Choquet Integral Regression (MI-

CIR) algorithm. The Multiple Instance Choquet Integral Regression model is proposed to

solve regression problems where the desired prediction values are real numbers. The pro-

posed MICIR algorithm adopts the “primary-instance” assumption that there is one primary

instance responsible for the label for each bag [25]. The MICIR algorithm fuses multiple

sources with real-valued label as well as taking into account the uncertainties in the label.

Given a set of training data and bag-level training labels, MICI Regression learns a

fuzzy measure to be used with the Choquet integral and the CI value is used to perform

classification and regression on the testing data. The following objective function is pro-

posed to optimize the fitness given a fuzzy measure g:

min

Nb∑
b=1

min
∀i,xbi∈Xb

(Cg(xbi)− db)2 , (4.1)

where Nb is the total number of training bags, db is the desired training bag-level label for
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bag b, Xb is the set of all the instances in bag b, Cg(xbi) is the choquet integral output for

the ith instance in bag b given fuzzy measure g. The Choquet integral output is computed

based on Equation (6.10). The objective function encourages the Choquet integral value of

one instance in the bag b to the desired real-valued label db.

The proposed MICIR is applicable to two-class classification problems with uncertain

labels as well. For two-class classification problems, the desired training bag label db = 1

for positive bags and db = 0 for negative bags. In this formulation, a positive bag contains

at least one positive instance and each negative point forms its own negative bag, as the

MIL assumes that a bag is labeled negative if all of the instances in the bag is negative.

Notice that when using MICIR for classification, the CI values should correspond to the

class labels. That is to say, the desired CI values should be high (close to 1) for positive

class (class label “+1”) and low (close to 0) for negative class (class label “0”). This is due

to the objective function encouraging all the negative points to label “0” and encouraging

one of the instances in the positive bags to be “+1”, following the MIL framework. This

assumption fits applications such as target detection well, where the CI values represent

the confidence values. The higher the confidence value (the CI value) of a pixel/data point,

the more likely it is a target. For multi-class classification, the class labels must be care-

fully selected, as the fuzzy measure used in this dissertation is limited to between [0, 1]

(normalization property). Future work can include investigating MICIR for multi-class

classification problems.

Optimization scheme of MICI Regression follows the MICI framework described in

Chapter 3. The same evolutionary algorithm is used to optimize the MICIR algorithm

using training data and the optimal fuzzy measure obtained from the training is used to

compute the CI value for testing.
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Chapter 5

Multi-Resolution Multiple Instance
Choquet Integral

This chapter describes the proposed Multi-Resolution Multiple Instance Choquet Integral

(MR-MICI) framework that takes in heterogeneous data (for example, images at different

resolutions or data of different geospatial types) from multiple sensors with uncertainty

in training labels and perform fusion, considering uncertainties in training labels. The

proposed MR-MICI algorithm works under the assumption that at least one point in each

bag from each data source is accurate but the remainder data points in the bags can have

uncertain labels. The proposed MR-MICI algorithm also learns a monotonic normalized

fuzzy measure to be used with the Choquet integral to perform fusion on heterogeneous

data sources.

The proposed Multi-Resolution Multiple Instance Choquet Integral algorithm is able

to fuse heterogeneous data sources (for example, image data at different resolutions or

data of different geo-spatial data types) with consideration of uncertain training labels. As
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described in the Introduction chapter, traditional fusion methods only work with homoge-

neous data types where data points are assumed to be corresponding across sources exactly.

However, previous methods to accommodate this restriction such as image co-registration

and rasterization may cause a loss of information or add noise with problems such as mis-

alignment. Besides, the GPS devices are often only accurate to the level of several pixels,

which makes it difficult to pinpoint accurate pixel-level locations, let alone mapping exact

pixel correspondence between sources. The proposed Multi-Resolution Multiple Instance

Choquet Integral uses the MIL framework to take into account the variability of corre-

sponding data points from each source and is able to fuse sources at different resolutions.

The objective function for Multi-Resolution Multiple Instance Choquet Integral is pro-

posed as follows:

B−∑
a=1

max
∀S−

ai∈B−
a

(
min
∀x−

k ∈S
−
ai

Cg(x−k )− 0

)2

+
B+∑
b=1

min
∀S+

bj∈B+
b

(
max
∀x+

l ∈S
+
bj

Cg(x+
l )− 1

)2

, (5.1)

where B+ is the total number of positive bags, B− is the total number of negative bags,

S−ai is the collection of ith instance set in the ath negative bag and similar for S+
bj . Cg is the

Choquet integral given measure g, B−a is the ath negative bag, and B+
b is the bth positive

bag.

The outside min and max operators over negative and positive bags are comparable to

the MICI min-max model. We encourage the Choquet integral of all the points in the the

negative bag to zero (first term) and encourage the Choquet integral of at least one of the

points in the positive bag to one (second term), which satisfies the MIL assumption.

The inner max and min operators, on the other hand, are used to handle multi-resolution

data sources. Suppose we would like to fuse hyperspectral imagery with LiDAR point

cloud data. Suppose the hyperspectral imagery has the ground sample distance (GSD) of
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one meter, which means each pixel in the HSI imagery covers 1m2 area. There could

be more than one LiDAR data points inside the 1m2 area, as described in Introduction.

Figure 5.1 shows an illustration for multiple LiDAR points (on the right) corresponding to

one pixel in HSI imagery on the left.

Figure 5.1: Illustration for HSI and LiDAR fusion. All LiDAR data points in the pink
shade fell in the same area covered by the pink pixel in the HSI image, and all LiDAR
data points in the blue shade corresponds to the blue pixel in the HSI image. Note
there could be more than one LiDAR points in the area covered by one pixel in the HSI
imagery.

Denote the value of the ith pixel in the HSI imagery asHi. Suppose three LiDAR points

fell in the same one-pixel area, as illustrated in pink in Figure 5.1. Denote the values of the

three LiDAR points as Li1, Li2, Li3. The collection of the sensor outputs for pixel i can be

written as:

Si =


Hi Li1

Hi Li2

Hi Li3

 (5.2)

For each collection of the sensor sources, we assume at least one of the combinations

gives the desired label. In the example above, we assume that at least one of the LiDAR

points provides accurate information corresponding to the HSI pixel. Therefore, in the ob-
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jective function, the inner max and min operators are picking one of all combinations that

provides accurate information, and thus taking multi-resolution data sources into consider-

ation.

Optimization scheme of Multi-Resolution MICI follows the MICI framework described

in Chapter 3. An optimal fuzzy measure is obtained using an evolutionary algorithm in

training. In testing, the fuzzy measure is used to compute the CI values for all combinations

of the sensor sources and the inner min and max operators are used to pick one of the

combinations as the test label.
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Chapter 6

Experimental Results

This chapter presents experimental results of the proposed algorithms on both synthetic

data and real applications such as target detection and scene understanding applications in

remote sensing imagery. Results indicate that the proposed MICI framework can success-

fully learn a set of fuzzy measure to be used with the Choquet integral to effectively perform

classifier fusion and regression while dealing with uncertainties in training labels. Results

also indicate that the proposed MR-MICI framework can successfully perform classifier

fusion and yield better classification accuracy when compared with traditional approaches

on heterogeneous data (multi-resolution data and data of different geospatial types such as

HSI and LiDAR) while taking into account uncertain labels.

6.1 Classification

This section presents results on classifier fusion using the proposed Multiple Instance Cho-

quet Integral (MICI) framework and the noisy-or, min-max, and generalized-mean models
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within the MICI framework. Experiments were conducted on both synthetic classification

data set as well as a real target detection application on the MUUFL Gulfport hyperspectral

data set.

6.1.1 Synthetic 3-Source Classification Data Set

A synthetic classification data set was constructed with 1000 data points. Three individual

classifiers were applied to the data set and produced classifier output of either “1” or “0”

for each data point. Figure 6.1a to 6.1c show the scatter plot of the three classifer outputs

for all the data points. The data points are plotted on the 2-D plane only for visualization,

with the color indicating the classfier output source value.

These data points are randomly grouped into 50 bags with 20 points per bag. Each

positive bag contains 25% positive points and 75% negative points. MICI is used to perform

classifier fusion of the three classifiers (three sources). Figure 6.1d shows the desired true

labels. As can be seen in Figure 6.1, source 1 and source 2 are useful in producing the true

labels whereas source 3 does not provide useful information.

One example of a measure learned by the MICI noisy-or model is presented in Ta-

ble 6.1. MICI successfully learns the interaction between the sources, i.e., putting high

measure value on the intersection of source 1 and source 2 (g12) and lower values other-

wise. The proposed algorithm achieves 100% classification accuracy after fusing the three

sources, consistently over multiple runs. The MICI min-max model and the MICI general-

ized mean model yield similar results.
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(e) MICI Fusion Result

Figure 6.1: Synthetic 3-source dataset and results for MICI classifier fusion model. (a)
classifier 1 output; (b) classifier 2 output; (c) classifier 3 output; (d) true labels; (e) MICI
fusion result. The 1000 data points are scatter plotted in the 2-D space for visualization.
The colors indicate the classification label for each data point according to the colorbar
shown in Figure 6.2, bright yellow means “1” and deep blue means “0”.

6.1.2 Synthetic Lane-Based Target Detection Data Set

A synthetic 5-source classification data set was constructed based on the following scenario

inspired by real target detection applications. Suppose five detector results were obtained

on a target detection data set and MICI was used to perform fusion on the five detector

outputs. Each detector result is one source for MICI. There are a total of ten true targets in

the 120m×40m scene, where 1 pixel has a resolution of 1m in both directions. Five targets

are metal and five targets are plastic. Among the five detectors, Detectors No. 1 and No.

2 can detect metal well and Detectors No. 3 and No. 4 can detect plastic well. Detector
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Figure 6.2: Colorbar from [0, 1].

Table 6.1: Mean and standard deviation of estimated and true measure element values
learned by MICI noisy-or model for synthetic 3-source MICI classification data set over
three runs.

g1 g2 g3

True 0 0 0
Learned 0.065(0.038) 0.046(0.046) 0.096(0.004)

g12 g13 g23

True 1 0 0
Learned 0.998(0.001) 0.117(0.011) 0.110(0.008)

No. 5, however, performs very poorly on the targets and triggers high confidence values on

non-target locations. There are 5 clutter (non-target) objects detected by each detector. The

targets and clutter objects are generated with Gaussian filters with mean intensity value

of 0.9. Figure 6.3 shows one data set example. Each 120m × 40m lane in Figure 6.3

represents one detector result. The red boxes mark the true target locations. The above

generation process was repeated five times with different true target and clutter locations

each time. Now, five 120× 40× 5 data sets were generated for the experiment.

The Reed-Xiaoli (RX) detector [274] was applied to the data set and connected compo-

nent analysis was conducted on each RX detection result. RX is an anomaly detector. For

each connected component found in each RX detection result, the centroid location was

found. To construct training bags for the MICI algorithm, a 6 × 6 halo was put around

each centroid obtained from the connected components. The number of training bags is the

number of connected components and all the pixels within the halo size of each centroid

are instances in the training bag. If any of the pixels (instances) in a training bag is within
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Figure 6.3: One example of the synthetic lane-based target detection data set. Each
rectangular image represents one detector output - Detectors No. 1 to No. 5 from left to
right. Each rectangular image has 120m (120 pixels) in the vertical direction and 40m
(40 pixels) in the horizontal direction. The red boxes mark the true target locations.

the halo of true target locations,that bag is labeled positive; Otherwise, the bag is labeled

negative. Figure 6.4 shows one example of RX results. The squares marks the halo and all

the points inside the halo belongs to a bag. The red squares form the true positive bags and

the white squares are the negative bags.

The colorbar used in all images in this section is shown in Figure 6.2.

Five-fold cross validation was conducted with four data sets as training and one as

testing. One example of the measures learned after training on data sets 1, 2, 3, 4 and

testing on data set 5 is shown in Table 6.2. The MICI learns near-zero value on source

5 and relatively higher measure values on the combination of source 1 and 2 (g12), for

example. This fits the construction of the data set where detectors 1-4 provides information

on both plastic and metal targets, while detector 5 does not provide positive reinforcement

towards targets.

Figure 6.5 shows the relationship between the fitness values versus the number of iter-
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Figure 6.4: RX detection output (plotted horizontally) of the synthetic lane-based target
detection data set shown in Figure 6.3. The squares marks the 6 × 6 halo and all the
points inside the halo construct a bag. The red squares marks the true positive bags and
the white squares are the negative bags.

ations. The fitness values in the first 1000 iterations over five runs are plotted. As can be

seen in Figure 6.5, the fitness values in the first 300 iterations over five runs are increas-

ing rapidly, and the fitness values are increasing more slowly beyond the first few hundred

iterations.

Table 6.3 shows the positive detection (PD) vs. false alarm rate (FAR) results after the

five-fold cross validation across five runs. MICI algorithm is able to achieve 92.8% positive

detection (PD) rate when FAR = 0.002. and continues to increase to near 100% positive

detection with FAR = 0.004.

6.1.3 Synthetic 5-Source Classification Data Set For Varying Parame-
ters

An additional synthetic classification data set was constructed to investigate the relationship

between the MICI fusion performance and varying parameters concerning the structure of

the training bags. A five-source classification data set was constructed with 100 bags and

10 data points per bag. Half of the bags are positive (with label “1”) and half are negative
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Table 6.2: Mean and the standard deviation (in parentheses) of estimated measure el-
ement values learned for synthetic 5-source lane-based classification data set over five
runs.

g1 g2 g3 g4 g5
0.001(0.001) 0.001(0.001) 0.000(0.000) 0.001(0.001) 0.000(0.000)

g12 g13 g14 g15 g23
0.009(0.005) 0.003(0.001) 0.004(0.003) 0.001(0.001) 0.007(0.004)

g24 g25 g34 g35 g45
0.009(0.011) 0.003(0.002) 0.002(0.003) 0.001(0.000) 0.001(0.001)

g123 g124 g125 g134 g135
0.013(0.008) 0.020(0.014) 0.010(0.006) 0.006(0.002) 0.004(0.001)

g145 g234 g235 g245 g345
0.006(0.004) 0.017(0.007) 0.007(0.004) 0.010(0.011) 0.003(0.004)

g1234 g1235 g1245 g1345 g2345
0.050(0.028) 0.014(0.007) 0.020(0.014) 0.008(0.002) 0.018(0.007)

(with label “0”). According to the assumption of MIL, the negative bags must contain all

negative points but the positive bag only needs to contain at least one positive points.

The effect of “contamination” was investigated. Assume half of the training bags are

positive and contain 100% positive points. Then, a varying percentage of positive points

were added to the negative bags so that the negative bags were “contaminated.” Relative

error [57] is used to evaluate the performance for the MICI classification models:

Errorreg(y, ŷ) = |y − ŷ| , (6.1)

where y is the true label (“1” or “0”) and ŷ is the estimated label for each data point.

The relative error results with MICI noisy-or model, min-max model, and generalized

mean model were recorded and presented in Tables 6.4, 6.5, and 6.6. As can be seen, in

all three models, the relative error increases as the percentage of contamination increases.

When the percentage of contamination goes towards 100%, the error is nearly 1 (100%
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Figure 6.5: Relationship of fitness values vs. number of iterations in the synthetic lane-
based target detection experiment. The results in the first 1000 iterations are shown over
five runs.

wrong) as well, which makes sense as the negative bags are now filled with positive points

and it is not possible to distinguish positive and negative points. When the percentage of

contamination increases towards 100%, the relative error also increases as the difficulty

grows.

6.1.4 MUUFL Gulfport Target Detection

The MICI classification models were tested on a real target detection experiment using

the MUUFL Gulfport hyperspectral data set. The MUUFL Gulfport hyperspectral data set
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Table 6.3: The positive detection and false alarm rate of the synthetic lane-based target
detection data set after five-fold cross validation across five runs.

FAR (/m2)
5× 10−5 1× 10−4 4× 10−4 1× 10−3 2× 10−3 4× 10−3 4.2× 10−3

PD (%)

Run1 18.0 26.0 54.0 70.0 94.0 100.0 100.0
Run2 18.0 26.0 50.0 70.0 92.0 100.0 100.0
Run3 20.0 24.0 54.0 70.0 92.0 98.0 100.0
Run4 0.0 24.0 50.0 68.0 92.0 98.0 100.0
Run5 18.0 26.0 50.0 68.0 94.0 98.0 100.0
Total 14.8(8.3) 25.2(1.1) 51.6(2.2) 69.2(1.1) 92.8(1.1) 98.8(1.1) 100.0(0.0)

Table 6.4: Relative error versus contamination for synthetic classification data set for
MICI noisy-or model across five runs.

Percentage of contamination
0% 10% 20% 30% 40% 50%

Relative Error 0.371(0.026) 0.492(0.008) 0.534(0.007) 0.588(0.007) 0.630(0.012) 0.668(0.004)
60% 70% 80% 90% 100%

Relative Error 0.697(0.014) 0.751(0.012) 0.787(0.019) 0.812(0.012) 0.868(0.014)

[275] was collected over the University of Southern Mississippi Gulf Park Campus. The

data set used in this experiment consists of three hyperspectral data cubes collected on three

separate flights at an altitude of 3500’ over the campus area. The HSI data cubes have a

ground sample distance of 1m.1 The image from campus 1 is 325× 337 pixels in size. The

image from campus 3 is 329× 345 pixels in size. The image from campus 4 is 333× 345

pixels in size. All HSI data cubes contain 72 bands corresponding to wavelengths 367.7nm

to 1043.4nm and were collected using the CASI hyperspectral camera [275, 276]. In this

experiment, the first four and last four noisy bands were removed.

A total of sixty cloth panel targets were placed in the scene. The targets were cloth

panels of five different colors: fifteen brown, fifteen dark green, twelve faux vineyard green

(FVG), fifteen pea green, and three vineyard green. Figure 6.6 shows the RGB images of

1The data set is available at https://github.com/GatorSense. The three flights used in this ex-
periment corresponds to “muufl_gulfport_campus_w_lidar_1.mat”, “muufl_gulfport_campus_3.mat”, and
“muufl_gulfport_campus_4.mat”.
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Table 6.5: Relative error versus contamination for synthetic classification data set for
MICI min-max model across five runs.

Percentage of contamination
0% 10% 20% 30% 40% 50%

Relative Error 0.288(0.025) 0.514(0.003) 0.536(0.011) 0.570(0.017) 0.655(0.005) 0.686(0.005)
60% 70% 80% 90% 100%

Relative Error 0.255(0.171) 0.217(0.191) 0.359(0.304) 0.579(0.255) 0.345(0.366)

Table 6.6: Relative error versus contamination for synthetic classification data set for
MICI generalized mean model across five runs.

Percentage of contamination
0% 10% 20% 30% 40% 50%

Relative Error 0.247(0.037) 0.517(0.002) 0.551(0.006) 0.595(0.005) 0.660(0.002) 0.694(0.007)
60% 70% 80% 90% 100%

Relative Error 0.709(0.020) 0.744(0.022) 0.783(0.027) 0.821(0.017) 0.882(0.011)

the two flights over the campus and the true target locations. These panels varied from

sub-pixel targets (at 0.25m2 corresponding to a quarter of a pixel in area) up to super-pixel

targets (at 9m2) with varying levels of occlusion. For each target, a GPS ground truth

location was collected using a Trimble Juno SB hand-held device. The device has accuracy

up to 5m. Thus, the groundtruth locations for each target are only accurate within a 5 × 5

pixel halo. Given the inaccuracy in the groundtruth, a multiple instance learning approach

that can address this is required.

The adaptive coherence estimator (ACE) detector [277–279] was applied to the im-

agery using spectral signatures of four of the target types (as spectral signatures for these

targets were available from previous studies2). Their spectral signatures can be seen in

Figure 6.7. The background mean and background covariance for the ACE detector was

estimated using the global mean and covariance of all the pixels in each image. Note that

the signed ACE detector used yields confidence values between [−1, 1]. Therefore, all ACE

results used in this experiment were normalized to be between zero and one by adding 1 to

2The target spectra used in this experiment come from “tgt_img_spectra .mat” in the data set. The four
target types are: brown, dark green, FVG and pea green.
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Figure 6.6: The RGB image from MUUFL Gulfport “campus 3” data set. Orange circle
marks the true brown target locations, yellow diamond marks the true dark green target
locations, cyan asterisk marks the true FVG target locations, green square marks the
true pea green target locations, and pink triangle marks the true vineyard green target
locations.
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Figure 6.7: The spectral signatures for brown, dark green, FVG, and pea green targets
in the MUUFL Gulfport data set. The unit for the wavelength is nanometers.
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the original ACE results and divide by 2. All target signature and data pixel values were

normalized to have norm 1.

Cross validation is performed on this data set, i.e., training on campus 1 and testing

on campus 3 and campus 4, and so on. First, the mean and covariance of the training

imagery, µtr and covtr, were computed. Then, the ACE detection map for the training

imagery, ACEtr, was obtained using µtr and covtr. Each pixel in the detection map has

four dimensions, each dimension corresponds to ACE confidence values for four target

types. Each of the ACE results highlights different locations corresponding to different

targets. The four dimensions of the ACE results will be the sources for the MICI to fuse.

To construct training bags for MICI, a 5× 5 window was put around each groundtruth

target location of the training imagery. Each window forms a positive bag and all the pixels

in the windows are instances in the positive bag. The size of the positive bag corresponds

to the accuracy of the GPS device used to collect the groundtruth points. One negative bag

was constructed by randomly picking 1600 background pixels that do not belong to any of

the windows. The positive bags were labeled “1” and the negative bag was labeled “0”.

MICI was applied to the training data and a fuzzy measure g∗ is learned.

The ACE detection results for the test imagery, ACEte, were computed using training

mean and covariance µtr and covtr. Then, the Choquet integral given the learned measure

g∗ and ACEte was computed. The Choquet integral result is the MICI fusion result.

Experiments were conducted on the original, un-normalized HSI data as well as normal-

ized HSI data using three different normalization methods. The “un-normalized” version

uses directly the HSI data and target signature values without any normalization. In the first

experiment using normalized data, the hyperspectral image cube and the target signature

73



was normalized by dividing over the norm as shown in Eq.(6.2).

Inorm =
I

||I||
, (6.2)

where I is the data to be normalized, || · || is the Euclidean norm (2-norm) of I .

The second normalization method uses a unity-based normalization, where the hyper-

spectral data were normalized and scaled between 0 and 1 as shown in Eq.(6.3).

Inorm =
I −min(I)

max(I)−min(I)
, (6.3)

where I is the data to be normalized, max(I) and min(I) are the max and min value of the

data I , respectively.

The third normalization method uses a Gaussian distribution-based normalization, where

the hyperspectral data were normalized by the mean and standard deviation as shown in

Eq.(6.4).

Inorm =
I − µ
σ

, (6.4)

where I is the data to be normalized, µ is the mean and and σ is the standard deviation of

the data I , respectively.

The proposed MICI noisy-or, MICI min-max, and MICI soft-max models were first

compared with the four ACE results using the four target signatures (Brown, Dark Green,

FVG and Pea Green) described above. The results are scored over all the targets in the

scene with known groundtruth. The fusion results were then compared with a standard

Support Vector Machine (SVM) on the four ACE maps, and taking the max, min, or mean

over the four ACE results. The MICI models were also compared with CI-QP [73], mi-

SVM [40], and EM-DD [32] methods. CI-QP learns a fuzzy measure for Choquet integral

by optimizing a least squares error objective using Quadratic Programming. The CI-QP
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approach assumes an accurate label for every training data point and, thus, does not inher-

ently support MIL-type learning. In our application of CI-QP to this problem, we gave all

points in a positive bag the label of “1” and all points in the negative bag as a label of “0”.

The mi-SVM and EM-DD are both multiple instance learning approaches. The mi-SVM

method is a Support Vector Machine classification approach with an extension for Multi-

ple Instance Learning. The EM-DD is an Expectation-Maximization (EM) version of the

diverse density algorithm [26], which iteratively selects an instance from the training bags

and updates the estimated target “concept” based on the selected instances.

All the comparison methods were run on un-normalized and normalized MUUFL Gulf-

port data. The receiver operating characteristic (ROC) curve is used to evaluate the target

detection results. The ROC curve plots the positive detection rate (PD, Y-axis) against the

false alarm rate (FAR, X-axis). The performance of the algorithms was evaluated by (1)

computing the area under curve (AUC) results with FAR up to 1×10−3/m2 (corresponding

to a reasonable scale of 1 false alarm in 1000m2) and (2) the positive detection rate versus

the false alarm rate.

Table 6.7 shows the AUC results at FAR up to 1 × 10−3/m2 for all fusion methods

with un-normalized hyperspectral data. Table 6.8, Table 6.9, and Table 6.10 show the AUC

results at FAR up to 1 × 10−3/m2 for all fusion methods with normalized hyperspectral

data using the three normalization methods as shown in Equations (6.2)-(6.4), respectively.

In all the AUC tables in this section, the “best” performance was determined by comparing

the mean value of the AUC results, and in the case where the mean is the same between

methods, the one result with smaller standard deviation is preferred. The best two results

were bolded and underlined, respectively.

In all the AUC experiments, the proposed MICI models have the most bolded and/or
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underlined results, which outperforms with the best of comparison results in most cases.

Taking the max of the ACE results also perform quite well in a few cases, which is under-

standable as the goal of this experiment is to detect all targets across the four target types

and the max operator is capable of merging the four ACE confidence maps as expected.

The MICI models learned were able to match the max operator in these cases.

Considering the best target detection AUC results, the normalization by mean and stan-

dard deviation method shown in Eq. (6.4) performs better than other normalization methods

when trained on campus 1 and 4, and using un-normalized data works well when training

on campus 3 data. This could be because the HSI data from campus 1 and 4 fits a normal

distribution better. To confirm this observation, quantile-quantile (Q-Q) plots [280, 281]

were used to determine the difference between the hyperspectral data and the normal dis-

tribution representation. The Q-Q plot compares the similarity of two distributions by

plotting their inverse cumulative distribution values against one another at regular intervals

[281]. On the other hand, the beta distribution can be a good fit to measured hyperspectral

data for some materials [281] especially if the data is limited between zero and one. The

Q-Q plot between the original data and a Gaussian distribution is compared with a beta

distribution representation. After computing the Q-Q plot, it was found that ≤ 82.1% of

points in campus 1 HSI data and ≤ 86.3% of points in campus 4 HSI data fits a normal

distribution better, while around 74% of data points in campus 3 fits a normal distribution

better. The normal distribution, therefore, deems a better fit for campus 1 and 4 and the

normalization method that is based on a Gaussian mean and standard deviation will work

better for campus 1 and 4 data.

The ROC curve plots were shown for results of one run from each normalization method

on each cross validation. Figure 6.8 to Figure 6.13 shows the ROC curve results for un-
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Table 6.7: The AUC results at on un-normalized MUUFL Gulfport data across five runs.

Notes Methods Train1Test3 Train1Test4 Train3Test1 Train3Test4 Train4Test1 Train4Test3
Sources:
individual
target
types.

Brown 0.265 0.264 0.334 0.267 0.307 0.263
Dark Green 0.266 0.261 0.328 0.256 0.293 0.266

FVG 0.114 0.106 0.122 0.107 0.136 0.109
Pea Green 0.088 0.000 0.107 0.000 0.100 0.091

Fusion
methods in
compari-
son.

SVM 0.185 0.195 0.164 0.175 0.245 0.220
min 0.000 0.000 0.046 0.073 0.026 0.023
max 0.345 0.329 0.459 0.339 0.349 0.328
mean 0.224 0.221 0.269 0.214 0.260 0.246
CI-QP 0.328 0.325 0.399 0.330 0.260 0.272

MIL
methods.

mi-SVM 0.346 0.337 0.350 0.293 0.317 0.317
EM-DD 0.062(0.014) 0.073(0.013) 0.002(0.003) 0.021(0.004) 0.005(0.008) 0.021(0.021)

Proposed
MICI
methods.

MICI Noisy-Or 0.346(0.000) 0.331(0.001) 0.461(0.000) 0.340(0.000) 0.349(0.000) 0.329(0.000)

MICI Min-Max 0.345(0.001) 0.331(0.008) 0.463(0.010) 0.333(0.013) 0.348(0.002) 0.329(0.001)

MICI Generalized Mean 0.345(0.000) 0.331(0.005) 0.466(0.004) 0.339(0.001) 0.349(0.001) 0.330(0.002)

Table 6.8: The AUC results at on normalized MUUFL Gulfport data across five runs.
Normalized by dividing over the norm of the data, as shown in Eq.(6.2).

Train1Test3 Train1Test4 Train3Test1 Train3Test4 Train4Test1 Train4Test3
Brown 0.225 0.332 0.383 0.334 0.269 0.238

Dark Green 0.258 0.307 0.379 0.318 0.285 0.265
FVG 0.079 0.000 0.076 0.081 0.094 0.037

Pea Green 0.099 0.050 0.102 0.059 0.083 0.086
SVM 0.039 0.098 0.046 0.110 0.112 0.158
min 0.035 0.060 0.028 0.046 0.078 0.071
max 0.316 0.251 0.347 0.290 0.350 0.312
mean 0.044 0.127 0.061 0.129 0.086 0.122
CI-QP 0.247 0.232 0.233 0.276 0.264 0.252

mi-SVM 0.314 0.252 0.362 0.323 0.279 0.256
EM-DD 0.010(0.012) 0.002(0.005) 0.020(0.019) 0.013(0.017) 0.018(0.017) 0.022(0.018)

MICI Noisy-Or 0.317(0.000) 0.250(0.001) 0.348(0.001) 0.288(0.001) 0.351(0.000) 0.308(0.007)
MICI Min-Max 0312(0.010) 0.248(0.002) 0.351(0.007) 0.286(0.007) 0.353(0.005) 0.309(0.005)

MICI Generalized Mean 0.316(0.001) 0.249(0.002) 0.352(0.003) 0.290(0.009) 0.356(0.006) 0.298(0.022)

normalized HSI data. Figure 6.14 to Figure 6.19 shows the ROC curve results for the

HSI data normalized by dividing the norm of the data to norm 1. Figure 6.20 to Figure 6.25

shows the ROC curve results for the HSI data normalized by the unity-based normalization.

Figure 6.26 to Figure 6.31 shows the ROC curve results for the HSI data normalized by the

mean and standard deviation. All results are cross validated by flights. The red, magenta

and blue solid lines mark the ROC curve of MICI noisy-or, MICI min-max, and MICI

generalized mean model. The green solid line marks the CI-QP method and the black solid

line marks the mi-SVM method results. The dashed red line marks the EM-DD method
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Table 6.9: The AUC results at on normalized MUUFL Gulfport data across five runs.
Normalized by unity-based normalization, as shown in Eq.(6.3).

Train1Test3 Train1Test4 Train3Test1 Train3Test4 Train4Test1 Train4Test3
Brown 0.258 0.262 0.335 0.254 0.314 0.255

Dark Green 0.271 0.243 0.337 0.229 0.310 0.262
FVG 0.149 0.122 0.151 0.148 0.142 0.116

Pea Green 0.082 0.054 0.102 0.048 0.090 0.000
SVM 0.000 0.075 0.254 0.178 0.256 0.284
min 0.000 0.024 0.332 0.025 0.308 0.030
max 0.367 0.313 0.269 0.342 0.265 0.373
mean 0.233 0.127 0.285 0.170 0.264 0.243
CI-QP 0.375 0.304 0.295 0.320 0.221 0.332

mi-SVM 0.345 0.245 0.221 0.288 0.246 0.286
EM-DD 0.035(0.020) 0.008(0.017) 0.071(0.001) 0.026(0.023) 0.067(0.000) 0.003(0.005)

MICI Noisy-Or 0.365(0.000) 0.314(0.000) 0.269(0.000) 0.342(0.000) 0.265(0.001) 0.373(0.001)

MICI Min-Max 0.368(0.003) 0.315(0.001) 0.269(0.011) 0.342(0.002) 0.276(0.004) 0.375(0.001)
MICI Generalized Mean 0.370(0.005) 0.306(0.017) 0.270(0.001) 0.341(0.003) 0.265(0.019) 0.373(0.004)

and dashed magenta line marks the SVM method. The dashed blue, green and black lines

mark the min, max and mean results of the ACE detector maps. The dash-dot red, magenta,

blue, and green lines mark the original ACE detector results for Brown, Dark Green, FVG,

and Pea Green target types. The X-axis of the ROC curves represents the False Alarm Rate

(FAR) between [0, 0.001] and the Y-axis represents Positive Detection (PD).

The Choquet integral has O (2m) parameters for m sources. To compute the objective

function of the proposed MICI noisy-or, the computational complexity of I iterations across

B bags and N data points is O (INB2m). Same goes for MICI min-max, and MICI gen-

eralized mean models. Table 6.11 lists the running times and the number of iterations until

convergence for five runs of the proposed MICI noisy-or, MICI min-max, and MICI gen-

eralized mean models. The algorithm was considered reaching convergence if the change

of fitness is below 10−4. Note that convergence is not guaranteed with the evolutionary

algorithm. As can be seen from the table, the MICI min-max and the MICI generalized

mean models converge in much less iterations and much faster as compared to the MICI

noisy-or model, given that their detection results are quite comparable. The MICI min-max
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Table 6.10: The AUC results at on normalized MUUFL Gulfport data across five runs.
Normalized by the mean and standard deviation, as shown in Eq.(6.4).

Train1Test3 Train1Test4 Train3Test1 Train3Test4 Train4Test1 Train4Test3
Brown 0.258 0.258 0.343 0.236 0.345 0.251

Dark Green 0.268 0.250 0.343 0.225 0.357 0.255
FVG 0.164 0.152 0.186 0.133 0.164 0.169

Pea Green 0.087 0.057 0.099 0.062 0.107 0.077
SVM 0.226 0.164 0.224 0.042 0.315 0.265
min 0.011 0.036 0.000 0.039 0.040 0.015
max 0.405 0.347 0.412 0.267 0.543 0.412
mean 0.234 0.156 0.228 0.104 0.276 0.239
CI-QP 0.361 0.338 0.439 0.286 0.505 0.338

mi-SVM 0.377 0.329 0.421 0.261 0.517 0.358
EM-DD 0.010(0.022) 0.007(0.010) 0.033(0.021) 0.038(0.023) 0.029(0.020) 0.035(0.024)

MICI Noisy-Or 0.405(0.000) 0.347(0.000) 0.412(0.000) 0.269(0.001) 0.543(0.001) 0.412(0.000)

MICI Min-Max 0.404(0.006) 0.340(0.013) 0.425(0.015) 0.273(0.005) 0.543(0.001) 0.398(0.016)

MICI Generalized Mean 0.404(0.003) 0.347(0.003) 0.415(0.003) 0.276(0.007) 0.544(0.000) 0.409(0.001)

model is the fastest among the three models, as the MICI min-max model only takes either

a max or a min operation over the positive or negative bags, and therefore limit the time

needed to compute the noisy-or or the generalized mean objective functions.

Table 6.11: Running time (seconds) and number of iterations until convergence for
MICI models comparison.

MICI noisy-or MICI min-max MICI generalized mean
NumIteration Run Time NumIteration Run Time NumIteration Run Time

Run 1 5000 2698.913s 95 44.940s 75 59.342s
Run 2 1543 802.690s 123 54.978s 31 24.040s
Run 3 5000 2733.617s 59 34.411s 82 75.877s
Run 4 5000 3064.963s 162 88.156s 148 132.799s
Run 5 3281 1903.074s 71 32.665s 272 204.593s

Summary 2240.651(910.247)s 51.030(22.608)s 99.330(70.743)s
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Figure 6.8: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 3. The HSI data were un-normalized.
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Figure 6.9: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 4. The HSI data were un-normalized.
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Figure 6.10: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 1. The HSI data were un-normalized.
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Figure 6.11: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 4. The HSI data were un-normalized.
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Figure 6.12: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 1. The HSI data were un-normalized.
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Figure 6.13: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 3. The HSI data were un-normalized.

85



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FAR (FA / m 2)

(112832 m 2, 1 FA = 8.86e-06)

×10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

(6
4 

ta
rg

et
s,

 1
 D

et
 =

 0
.0

16
)

Gulfport Data Train 1 Test 3 (normalized by norm)

MICI Noisy-Or
MICI Min-Max
MICI Gen-Mean
CI-QP
mi-SVM
EM-DD
SVM
min
max
mean
Brown
Dark Green
FVG
Pea Green

Figure 6.14: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 3. The HSI data were normalized by dividing over the norm of
the data.
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Figure 6.15: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 4. The HSI data were normalized by dividing over the norm of
the data.
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Figure 6.16: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 1. The HSI data were normalized by dividing over the norm of
the data.
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Figure 6.17: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 4. The HSI data were normalized by dividing over the norm of
the data.
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Figure 6.18: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 1. The HSI data were normalized by dividing over the norm of
the data.

90



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FAR (FA / m 2)

(112832 m 2, 1 FA = 8.86e-06)

×10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

(6
4 

ta
rg

et
s,

 1
 D

et
 =

 0
.0

16
)

Gulfport Data Train 4 Test 3 (normalized by norm)

MICI Noisy-Or
MICI Min-Max
MICI Gen-Mean
CI-QP
mi-SVM
EM-DD
SVM
min
max
mean
Brown
Dark Green
FVG
Pea Green

Figure 6.19: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 3. The HSI data were normalized by dividing over the norm of
the data.
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Figure 6.20: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 3. The HSI data were normalized by unity-based normalization.
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Figure 6.21: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 4. The HSI data were normalized by unity-based normalization.
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Figure 6.22: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 1. The HSI data were normalized by unity-based normalization.
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Figure 6.23: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 4. The HSI data were normalized by unity-based normalization.
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Figure 6.24: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 1. The HSI data were normalized by unity-based normalization.
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Figure 6.25: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 3. The HSI data were normalized by unity-based normalization.
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Figure 6.26: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 3. The HSI data were normalized by the mean and standard
deviation method.
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Figure 6.27: ROC curve results for the MUUFL Gulfport data when training on Campus
1 and testing on Campus 4. The HSI data were normalized by the mean and standard
deviation method.
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Figure 6.28: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 1. The HSI data were normalized by the mean and standard
deviation.
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Figure 6.29: ROC curve results for the MUUFL Gulfport data when training on Campus
3 and testing on Campus 4. The HSI data were normalized by the mean and standard
deviation.
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Figure 6.30: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 1. The HSI data were normalized by the mean and standard
deviation method.
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Figure 6.31: ROC curve results for the MUUFL Gulfport data when training on Campus
4 and testing on Campus 3. The HSI data were normalized by the mean and standard
deviation method.
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6.2 Multi-Resolution Fusion Data Set

6.2.1 Synthetic Multi-Resolution Fusion Data Set

A synthetic 5-source multi-resolution fusion data set is constructed based on the following

scenario, similar to the target detection data set in Section 6.1.2, except with consideration

of multi-resolution. An “MU” data set is generated with inspiration from the University of

Missouri logo. Suppose the two letters are written in the scene, with two different paints

for each letter. The goal is to detect both paints (both the “M” and “U” letters). The first

two detectors can detect paint type one for the letter “M” and the 3rd and 4th detectors can

detect paint type two for the letter “U.” Detector No. 5 can detect background but neither

paint. Figure 6.32 shows the ground truth for the “MU” data set.
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Figure 6.32: Groundtruth for synthetic 5-source dataset for MR-MICI fusion experi-
ments. (a) Full MU data set high resolution ground truth, without noise; (b) Full MU
data set with only paint type one (letter “M”-only) in high resolution ground truth, with-
out noise; (c) Full MU data set with only paint type two (letter “U”-only) in high reso-
lution ground truth, without noise. The colors indicate the classification label for each
data point according to the colorbar shown in Figure 6.2, bright yellow means label “+1”
and deep blue means label “0”.

Suppose five detector results were obtained and MR-MICI was used to perform fusion

on the five detector outputs. Suppose these five detector results have different resolutions:

Detectors No. 1 and 3 have 1m resolution; Detector No. 2 and 4 have 2m resolution; and
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Detector No. 5 have 4m resolution. The size of the five detector maps are of 77 × 64,

37× 33, 77× 64, 37× 33, and 25× 22. Figure 6.33 shows one example of the synthetic 5-

source multi-resolution “MU” data set. As can be seen from the images, each detector map

has clutter (such as the random “i” “z” “o”-shaped letters), in addition to the true targets

(“M” and “U” letters). Detector No. 5 has high confidence on the background and not on

the targets.
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Figure 6.33: One example for synthetic 5-source dataset for MR-MICI fusion exper-
iments. (a) Detector 1, image size 77 × 64; (b) Detector 2, image size 37 × 33; (c)
Detector 3, image size 77 × 64; (d) Detector 4, image size 37 × 33 ; (e) Detector 5,
image size 25 × 22; (f) test-on-train map classification result, image size 25 × 22. All
images are without noise. The colors indicate the detector confidence for each data point
according to the colorbar shown in Figure 6.2, bright yellow means “+1” and deep blue
means “0”. The red boundaries mark the bags.

The simple linear iterative clustering (SLIC) algorithm [282, 283] is used to generate

superpixel as training bags, as marked in red in Figure 6.33. Notice that this is a multi-

resolution multiple instance problem as the detector maps have different resolutions and
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each pixel in detector map 5 corresponds to multiple pixels in detector maps 1-4. The

“correspondence” of pixels across multi-resolution is constructed as follows: Each pixel

in each map is assigned to a simulated Easting and Northing coordinate based on their

resolutions described above. Based on the coordinates of each pixel in the lowest resolution

(in this case Detector No. 5), the pixels in other detector maps within a 1m× 1m window

are included as the corresponding training instance for that pixel.

Ideally, to fulfill the goal of detecting true targets (both “M” and “U” letters), the fusion

will put emphasis on the intersection of Detectors 1 and 2 and Detectors 3 and 4 and take

the union of Detectors 1-4, while ignoring Detector 5 (background). Table 6.12 shows one

example of the estimated measure value learned. The red highlights g12 and g34, which

has high measure values as expected. The blue highlights g5 on Detector 5 alone, which

has low measure values as expected Figure 6.33f show one example of test-on-train map

classification result on the lowest resolution image (size 25 × 22). As can be seen, the

clutter are much weakened after fusion and the target letters “M” and “U” are assigned

high confidence, as desired.

Table 6.12: One example estimated measure element values learned for synthetic 5-
source multi-resolution classification data set after one run.

g1 g2 g3 g4 g5
0.0720 0.2411 0.0835 0.0010 0.0097

g12 g13 g14 g15 g23 g24 g25 g34 g35 g45
0.8403 0.3775 0.2624 0.0937 0.3288 0.4145 0.2602 0.7830 0.2293 0.1572
g123 g124 g125 g134 g135 g145 g234 g235 g245 g345

0.8497 0.8927 0.9428 0.9015 0.6035 0.4427 0.8876 0.6740 0.7572 0.8985
g1234 g1235 g1245 g1345 g2345

0.9414 0.9991 0.9790 0.9217 0.9504
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6.2.2 MUUFL Gulfport Building Detection – Sub-image

Three subimages were chosen from the MUUFL Gulfport data set [275] as the fusion data

sets. The MR-MICI is used to perform fusion based on the hyperspectral imagery and raw

LiDAR point cloud data.

Suppose building is the target (positive) class and non-building has non-target (nega-

tive) labels. Figure 6.34 shows three sub-images extracted from the scene. The simple

linear iterative clustering (SLIC) algorithm [282, 283] is used to generate superpixel as

training bags, as marked in red in Figure 6.34d to 6.34f. In this experiment, the bags

were manually labeled to be positive if it contains buildings and negative if not. Figure

6.35 shows one result on building classification on sub-image 1 (test-on-train) after using

MR-MICI fusion, compared with MICI (based on rasterized data) and CI-QP (based on ras-

terized data). The MR-MICI-sampling refers to the method of picking points by sampling

from a multinomial based on the CI values, instead of based on max or min as described in

Chapter 5. If the bag-level labels were known, the test map was constructed by picking the

combination of sources that gives the max CI value for positive bags and min CI value for

negative bags. If not knowing bag-level labels, we randomly sample a combination to form

the test map (marked as “multiresMinMaxR” and “multires-sampleMinMaxR” in the plot

legend). Figure 6.36 shows the receiver operating characteristic (ROC) curve. The ROC

curve results show higher classification accuracy of building using MR-MICI-sampling

compared with MICI and CI-QP results, especially at lower false alarm rate (FAR). Simi-

larly, Figure 6.37 and Figure 6.38 show the classification map and ROC curve results for

training on sub-image 1 and testing on sub-image 3 after using MR-MICI fusion, com-

pared with MICI (based on rasterized data) and CI-QP (based on rasterized data). The

performance when knowing the bag-level labels is higher than randomly sampling, which
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makes sense as the bag-level labels provide information to help pick the correct point in

testing.
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Figure 6.34: Three subimages of buildings in MUUFL Gulfport campus 1 data set. (a)
sub-image 1 of size 100× 100, with Y = [151 : 250], X = [16 : 115]; (b) sub-image 2
of size 60× 55, with Y = [91 : 150], X = [56 : 110]; (c) sub-image 3 of size 120× 70,
with Y = [71 : 200], X = [156 : 225]; (d) sub-image 1 after SLIC superpixel bag
generation; (e) sub-image 2 after SLIC superpixel bag generation; (f) sub-image 3 after
SLIC superpixel bag generation. Red boundaries marks training bags. The Y and X
numbers refers to the row and column pixel indices of the sub-images from the original
campus 1 full image.

6.2.3 MUUFL Gulfport Scene Understanding: Building, Sidewalk and
Road

Section 6.2.2 provides preliminary results on small sub-image patches of the Gulfport data.

In this section, the proposed fusion methods were run on the entire MUUFL Gulfport data

set for building, sidewalk and road classification.
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The MUUFL Gulfport hyperspectral imagery and LiDAR data set [275] used in this

experiment contains two flights of hyperspectral and lidar data. The LiDAR raw data was

available in point cloud and was collected by the Gemini LiDAR sensor at 35000ft over the

scene in November 2011 [275]. Figure 6.39 shows the four sets of LiDAR data collected

over the area. The red pin shows the location of the campus. As can be seen from Figure

6.39, LiDAR flights 001 and 002 cover the campus area. Therefore, LiDAR data from these

two lines were used for fusion. The scatter plot of the raw LiDAR point cloud data over the

entire Gulfpark campus is shown in Figure 6.41.

The RGB images of campus 1 and campus 2 data are shown in Figure 6.40a and Fig-

ure 6.40b. Detailed description of MUUFL Gulfport hyperspectral imagery (HSI) can be

seen in Section 6.1.4. The “campus 1” HSI imagery used in this experiment is the same

hyperspectral image cube as in “muufl_gulfport_campus_w_lidar_1.mat” in Section 6.1.4

and hereinafter denoted as “campus 1” data. The same goes for “campus 2”. The first 220

columns of the hyperspectral data were kept due to highly bright beach sand materials in

the lower right corner in the original images and the first and last four bands of the data

were removed due to noise. The size of the HSI image is 325× 220× 64 for both flights in

this experiment. The data set also includes rasterized LiDAR imagery processed by 3001

Inc. and Optech Inc. The rasterized LiDAR imagery for campus 1 and campus 2 are shown

in Figure 6.42a and Figure 6.42b. The proposed MR-MICI was used to perform detection

on building, sidewalk, and road classes based on the fusion of the hyperspectral imagery

and raw LiDAR point cloud data.

The simple linear iterative clustering (SLIC) algorithm [282, 283] was used to gener-

ate superpixel as training bags. Bag labels were constructed based on the open map data
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from Open Street Map (OSM)3. Information from Google Earth4, Google Maps5 and geo-

tagged photographs from a digital camera taken at the scene are also used as auxiliary

data. Figure 6.43 shows the map extracted from Open Street Map (OSM) based on the tags

available, such as “highway”, “footway”, “building”, “parking” etc. The blue lines corre-

sponds to asphalt materials, which includes road, highway and parking lot. The magenta

lines corresponds to sidewalk/footway. The green lines marks buildings. The black lines

corresponds to “other” tags.

Affine transformation was used to merge information from the OSM data and the HSI

data coordinates. Two pairs of points were selected on both the OSM map (with longitude

and latitude values) and the HSI data (with pixel coordinates) and the affine transformation

is used to map the points from OSM map to the HSI imagery. Then, for all the bags formed

by SLIC segmentation, if a point tagged by OSM as positive falls into a bag after the affine

transformation, the bag is labeled positive, and a bag is labeled negative if no positive points

are in the bag.

MUUFL Gulfport Building Detection

Figure 6.44b shows the SLIC segmentation result on the MUUFL Gulfport hyperspectral

campus 1 data. Each segmentation is treated as a “bag” in training, where the red marks the

positive bags that contain building pixels and the blue marks the negative bags that do not

contain building pixels. Here, the “building” class is specific to the buildings with a grey

roof, as tagged with green color in OSM. Figure 6.44a shows the ground truth map for the

(grey-roofed) buildings. The complete ground truth label map was created for all materials

3Map data copyrighted OpenStreetMap contributors and available from http://www.openstreetmap.org
4https://www.google.com/earth/
5https://www.google.com/maps/
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in the MUUFL Gulfport data set and can be seen in [284].

Three sources were used for fusion. First, building points were extracted from the scene

in training data and the mean target signature of these point were computed, as shown in

Figure 6.45a. Notice only the “light grey roof” and “medium grey roof” are applicable in

this experiment for detecting grey roofs and were used. The ACE detector was applied over

the entire HSI image with the grey roof signature as target, and the confidence map yielded

by ACE is as shown in Figure 6.45b. As can be seen, the ACE confidence map highlights

the buildings, but also the roads which has similar asphalt material. Besides, the top right

building has darker grey roofs and has low confidence values by using ACE. It is, thus,

useful to fuse other sources such as LiDAR information with the ACE detection results.

Two LiDAR detection maps were generated to be fused with the ACE detector [277–

279] . The LiDAR height information of extracted training building points were plotted in a

histogram, as shown in Figure 6.46a. It is assumed in this experiment, specific to this scene,

that buildings do have different heights and of course would be significantly different than

height of the road surface materials. The peaks of the histogram was found by using the

MATLAB findpeaks() function, as shown in Figure 6.46b. The Euclidean distance of all the

LiDAR points in the scene were computed against the peak height values of the building

points. As high confidence values were desired on points that have similar height to the

training data, a Gaussian function was applied to the distance, as follows:

Conflidar = exp

{
−dlidar

2

}
(6.5)

where dlidar is the Euclidean distance between all the LiDAR points in the scene and the

peak height value. The LiDAR confidence value, Conflidar, would thus have high values

on points where dlidar is small (where points are similar to training building points) and low

values on points with larger distance. The top two were selected as sources. Figure 6.47a
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and Figure 6.47b shows the confidence maps based on rasterized LiDAR maps. As can

be seen, one LiDAR source highlights the three buildings that are the tallest and the other

LiDAR source highlights the topleft building. These two maps were used as the second and

third training sources in the (rasterized) fusion experiments. The confidence values were

computed in the same way for all points in the LiDAR point cloud as well and were used

for the MR-MICI fusion experiment.

The comparison fusion methods were similar to those described in Section 6.1.4. In

addition, the proposed MICI algorithms were applied to the rasterized data as a comparison.

After training on one campus and obtaining the fuzzy measure for fusion, the test sources

were obtained in the same way as training and the Choquet integral was computed as the

detection results.

Figures 6.48 to 6.51 show the test confidence map on building detection with all com-

parison methods. Figures 6.52a and Figures 6.52b show the overall ROC curve on building

detection, cross validated between campus 1 and 2. The first two columns of Table 6.13

shows the Area Under Curve (AUC) results for building detection. The ACE, Lidar1 and

Lidar2 above the dotted line shows results for the three sources and methods below the

dotted line are fusion results. As can be seen, MR-MICI has the best-performing ROC

curve with the highest AUC. Table 6.14 shows the comparison of Root Mean Square Error

(RMSE) of MICI and MR-MICI methods. These two evaluation methods were chosen as

the AUC shows how well the method detects the target class – buildings, and the RMSE

shows how the detection results on both the building and non-building points differ from

the ground truth. As can be seen, the MR-MICI has a lower RMSE overall than MICI

method as well.

Now, the MICI method uses rasterized LiDAR imagery while the MR-MICI uses raw
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LiDAR points directly. It would be interesting to see the performance of the fusion meth-

ods on where the rasterization may be noisy or mis-aligned. Figure 6.53 and Figure 6.54

show the difference maps between the lidar points that MR-MICI picked and the raster-

ized LiDAR imagery (hereinafter called “LiDAR edge maps”), and the difference maps

between the mean, min, and max of the raw LiDAR points corresponding to each pixel

and the rasterized LiDAR imagery. As can be seen, the difference maps highlight mostly

edges of buildings and trees, which is understandable as the edges are where rasterization

would have possible mis-alignment between a tall object (such as building and trees) and

the ground-level surface. Figure 6.55 and Figure 6.58 show the ROC curve the MUUFL

Gulfport building detection scored on lidar edge map, mean difference map, min difference

map, and max difference map with FAR up to 10−3, cross validated between campus 1

and campus 2. Table 6.15 and Table 6.16 records the AUC scored on the difference maps

with FAR up to 10−3 and the RMSE of all the fusion methods. As can be seen from the

ROC curves and AUC tables, the MR-MICI has a much better performance over comparing

methods specifically on the edge areas.

Similar to the MICI models, the Choquet integral hasO (2m) parameters form sources.

Assume Nh is the total number of combinations that the sources can make (so that we need

to compute CI for Nh times), the computational complexity of computing the CI in the

objective function (which is the main part of the computation) for I iterations across B

bags is O (INhB2m).

MUUFL Gulfport Sidewalk and Road Detection

Similarly, the same experiment was conducted for sidewalk and road detection. Figure 6.59

and Figure 6.60 shows the ground truth map and SLIC segmentation results for side-
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Table 6.13: The AUC results of building, sidewalk, and road detection using MUUFL
Gulfport HSI and LiDAR data. The best two results with the highest AUC were bolded
and underlined, respectively.

Building Detection Sidewalk Detection Road Detection
Train1Test2 Train2Test1 Train1Test2 Train2Test1 Train1Test2 Train2Test1

ACE 0.906 0.952 0.882 0.931 0.896 0.902
Lidar1 0.897 0.880 0.772 0.769 0.752 0.748
Lidar2 0.856 0.839 0.670 0.669 0.784 0.779
SVM 0.694 0.738 0.622 0.663 0.806 0.396
min 0.885 0.867 0.830 0.885 0.896 0.918
max 0.943 0.931 0.754 0.754 0.785 0.779
mean 0.957 0.953 0.831 0.870 0.849 0.856

mi-SVM 0.881 0.800 0.721 0.904 0.791 0.817
CI-QP 0.943 0.931 0.767 0.918 0.801 0.815
MICI 0.952(0.000) 0.956(0.000) 0.838(0.009) 0.908(0.001) 0.873(0.011) 0.824(0.003)

MR-MICI 0.952(0.000) 0.977(0.000) 0.854(0.019) 0.861(0.010) 0.905(0.002) 0.895(0.003)

Table 6.14: The RMSE results of MICI and MR-MICI on building, sidewalk, and road
detection.

Building Detection Sidewalk Detection Road Detection
Train1Test2 Train2Test1 Train1Test2 Train2Test1 Train1Test2 Train2Test1

MICI 0.403(0.002) 0.382(0.000) 0.485(0.002) 0.466(0.002) 0.480(0.009) 0.514(0.002)
MR-MICI 0.351(0.004) 0.331(0.001) 0.460(0.007) 0.489(0.006) 0.448(0.007) 0.478(0.008)

walk and road detection experiments. Figure 6.61 shows the test confidence map for

sidewalk and road detection for the proposed MR-MICI method. Figure 6.62 shows the

cross-validated overall ROC curve results on sidewalk detection and Figure 6.63 shows

the cross-validated overall ROC curve results on road detection. The AUC results can be

seen in Table 6.13. As can be seen, the MR-MICI is able to detect sidewalk and road

classes, respectively and achieve a good ROC curve performance. Note that the difference

map between the raw and rasterized LiDAR do not have significant difference on sidewalk

and road and, therefore, only the overall ROC curves for sidewalk and road classes are

presented.
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Table 6.15: The AUC and RMSE results of MICI and MR-MICI on building detection,
scored on edges. Train on campus 1 and test on campus 2.

picked points max diff map min diff map mean diff map
AUC RMSE AUC RMSE AUC RMSE AUC RMSE

SVM 0.420 0.040 0.113 0.067 0.141 0.125 0.078 0.063
mi-SVM 0.704 0.031 0.327 0.076 0.448 0.140 0.490 0.071
CI-QP 0.329 0.055 0.135 0.080 0.126 0.147 0.115 0.073
MICI 0.371(0.021) 0.046(0.000) 0.311(0.017) 0.068(0.001) 0.190(0.022) 0.125(0.002) 0.401(0.020) 0.062(0.001)

MR-MICI 0.776(0.004) 0.022(0.001) 0.458(0.022) 0.049(0.000) 0.614(0.025) 0.082(0.001) 0.619(0.027) 0.044(0.000)

Table 6.16: The AUC and RMSE results of MICI and MR-MICI on building detection,
scored on edges. Train on campus 2 and test on campus 1.

picked points diff map max diff map min diff map mean diff map
AUC RMSE AUC RMSE AUC RMSE AUC RMSE

SVM 0.513 0.058 0.413 0.101 0.537 0.176 0.390 0.109
mi-SVM 0.695 0.021 0.488 0.018 0.577 0.031 0.528 0.017
CI-QP 0.094 0.104 0.096 0.113 0.027 0.202 0.000 0.119
MICI 0.683(0.004) 0.077(0.000) 0.451(0.008) 0.091(0.000) 0.375(0.009) 0.162(0.000) 0.448(0.009) 0.096(0.000)

MR-MICI 0.794(0.007) 0.035(0.000) 0.529(0.003) 0.061(0.000) 0.649(0.007) 0.103(0.000) 0.638(0.005) 0.064(0.000)

6.2.4 Soybean and Weed Data Set

Another soybean and weed data set was used to test the performance of MR-MICI. Three

imagery were available over a patch of soybean field6 and the goal is to detect weed

amongst the soybean plants. The height map is 351 × 1450 in size and the RGB map

is 1404× 5864 in size. The MR-MICI was used to fuse those images. For comparison, the

RGB imagery was downsampled to be the same size as 351× 1450 and used for fusion.

Figure 6.65 shows the height map over the soybean-weed field. As can be seen from

the figure, weed has different height values than soybean plant, therefore the height map

can be a useful source. Four Gabor filters at angles 0◦, 45◦, 90◦, and 135◦ were applied to

the height map and the sum of the filtered images was used as one of the fusion source, as

shown in Figure 6.68.

Figure 6.64 shows the downsized RGB map. In this experiment, the RGB values were

transformed into the LAB space and the L and B band imagery were used as the other two

6Data provided by Precision Silver, LLC.
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sources for fusion. The weed pixels seem to have lighter color than the soybean plants,

and the L and B band are able to provide distinct features to separate weed from soybean

plants. The L dimension provide information about lightness and the B dimension is the

color opponent for blue-yellow space. Figure 6.66 and Figure 6.67 show the L and B band

imagery, which are useful in highlighting the weed pixels.

Figure 6.69 shows the ground truth map for weed in the data. Figure 6.70 shows the

SLIC segmentation and bag construction in the data set. Figure 6.72 and Figure 6.73 show

the confidence map obtained after MICI and MR-MICI fusion. Figure 6.71 shows the over-

all ROC curve for all the comparing fusion methods for one run. The MR-MICI method

was able to detect weed in the scene and yield higher AUC performance.
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(d) (e) (f)

(g) (h) (i)

Figure 6.35: Results of building classification, train on sub-image 1, test on sub-image
1. (a) MICI noisy-or model; (b) MICI min-max model; (c) CI-QP; (d) MR-MICI, plot
test map on rasterized data; (e) MR-MICI-sampling, plot test map on rasterized data;
(f) MR-MICI, plot test map if knowing bag-level labels; (g) MR-MICI, plot test map if
bag-level labels are unknown; (h) MR-MICI-sampling, plot test map if knowing bag-
level labels; (i) MR-MICI-sampling, plot test map if bag-level labels are unknown.
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Figure 6.36: ROC curve results of building classification results, train on sub-image 1,
test on sub-image 1. (a) ROC curve; (b) ROC curve on log scale.
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Figure 6.37: Results of building classification, train on sub-image 1, test on sub-image
3. (a) MICI noisy-or model; (b) MICI min-max model; (c) CI-QP; (d) MR-MICI, plot
test map on rasterized data; (e) MR-MICI-sampling, plot test map on rasterized data;
(f) MR-MICI, plot test map if knowing bag-level labels; (g) MR-MICI, plot test map if
bag-level labels are unknown; (h) MR-MICI-sampling, plot test map if knowing bag-
level labels; (i) MR-MICI-sampling, plot test map if bag-level labels are unknown.
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Figure 6.38: ROC curve results of building classification results, train on sub-image 1,
test on sub-image 3. (a) ROC curve; (b) ROC curve on log scale.
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Figure 6.39: Four LiDAR lines in MUUFL Gulfport data, shown in Google Earth.
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Figure 6.40: RGB image of MUUFL Gulfport data. (a) Campus 1; (b) Campus 2.
Notice the black regions in (b) are invalid regions from the data collection and were
excluded from any training or testing process in the experiment.
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Figure 6.41: Scatterplot of LiDAR line 1 point cloud in MUUFL Gulfport campus 1
data. The color corresponds to the RGB color over the scene. “Z”-axis is the height of
each point. “X” and “Y” are UTM coordinates.
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Figure 6.42: Raster image of the first return MUUFL Gulfport LiDAR data. The color
represents the lidar height information. The rasterized image is in the same size as the
hyperspectral imagery. (a) Campus 1; (b) Campus 2.
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Figure 6.43: Open Street Map imagery over MUUFL Gulfport campus 1. The blue
lines corresponds to road, highway, and parking lot (asphalt materials). The magenta
lines corresponds to sidewalk/footway. The green lines marks buildings–Notice that in
the building detection experiments, only the grey-roof buildings in the center of the map
was used as targets. The black lines corresponds to “other” tags.
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Figure 6.44: The Ground Truth map and the SLIC segmentation map of the MUUFL
Gulfport HSI data for building detection. (a) The Ground Truth map of the buildings
in MUUFL Gulfport HSI data. (b)The SLIC segmentation result on MUUFL Gulfport
HSI data. Red marks positive training bags and blue marks negative bags for building
detection experiment.
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Figure 6.45: The building signature for ACE detector and the ACE detection map for
the MUUFL Gulfport HSI data. (a) The building signature from the scene. In the “grey-
roof” building detection, only the “light-grey roof” and “medium-grey” roof signatures
were used. (b) The ACE detection confidence map.
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Figure 6.46: The histogram and peaks of the LiDAR values of building points. (a) The
histogram of the LiDAR values of building points. (b) The peaks found based on the
histogram in (a).
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Figure 6.47: The LiDAR confidence maps for building detection in the MUUFL Gulf-
port HSI data. (a)(b) were distance maps computed against the top two peaks found in
Figure 6.46.

125



50 100 150 200

50

100

150

200

250

300

(a)

50 100 150 200

50

100

150

200

250

300

(b)

Figure 6.48: The fusion test confidence maps for building detection in the MUUFL
Gulfport HSI data for SVM and min methods. Train on campus 1 and test on campus 2.
(a) Fusion by SVM; (b) Fusion by taking the min of the sources.

50 100 150 200

50

100

150

200

250

300

(a)

50 100 150 200

50

100

150

200

250

300

(b)

Figure 6.49: The fusion test confidence maps for building detection in the MUUFL
Gulfport HSI data for taking the max and mean of the sources. Train on campus 1 and
test on campus 2. Fusion by taking the (a) max and (b) mean of the sources.
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Figure 6.50: The fusion test confidence maps for building detection in the MUUFL
Gulfport HSI data for the (a) mi-SVM and (b) CI-QP methods. Train on campus 1 and
test on campus 2.
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Figure 6.51: The fusion test confidence maps for building detection in the MUUFL
Gulfport HSI data for the proposed (a) MICI and (b) MR-MICI methods. Train on
campus 1 and test on campus 2.
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Figure 6.52: The Overall ROC curve for building detection for MUUFL Gulfport data.
(a) Train on campus 1, test on campus 2; (b) Train on campus 2, test on campus 1.
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Figure 6.53: The difference map in the MUUFL Gulfport HSI data, (a) between the
lidar points that MR-MICI picked and the rasterized LiDAR imagery; (b) between the
mean of the raw LiDAR points corresponding to each pixel and the rasterized LiDAR
imagery.
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Figure 6.54: The difference map in the MUUFL Gulfport HSI data, (a) between the
min of the raw LiDAR points corresponding to each pixel and the rasterized LiDAR
imagery;; (b) between the max of the raw LiDAR points corresponding to each pixel
and the rasterized LiDAR imagery.
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Figure 6.55: The ROC curve for building detection for MUUFL Gulfport data, scored on
(a) the difference map between the lidar points that MR-MICI picked and the rasterized
LiDAR imagery; (b) the difference map between the mean of the raw LiDAR points
corresponding to each pixel and the rasterized LiDAR imagery. Train on Campus 1,
Test on Campus 2.
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Figure 6.56: The ROC curve for building detection for MUUFL Gulfport data, scored
on (a) the difference map between the min of the raw LiDAR points corresponding to
each pixel and the rasterized LiDAR imagery; (b) the difference map between the max
of the raw LiDAR points corresponding to each pixel and the rasterized LiDAR imagery.
Train on Campus 1, Test on Campus 2.
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Figure 6.57: The ROC curve for building detection for MUUFL Gulfport data, scored on
(a) the difference map between the lidar points that MR-MICI picked and the rasterized
LiDAR imagery; (b) the difference map between the mean of the raw LiDAR points
corresponding to each pixel and the rasterized LiDAR imagery. Train on Campus 2, test
on Campus 1.
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Figure 6.58: The ROC curve for building detection for MUUFL Gulfport data, scored
on (a) the difference map between the min of the raw LiDAR points corresponding to
each pixel and the rasterized LiDAR imagery; (b) the difference map between the max
of the raw LiDAR points corresponding to each pixel and the rasterized LiDAR imagery.
Train on Campus 2, test on Campus 1.
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Figure 6.59: The Ground Truth map and the SLIC segmentation map of the MUUFL
Gulfport HSI data for sidewalk detection. (a) The Ground Truth map of the sidewalks
in MUUFL Gulfport HSI data. (b)The SLIC segmentation result on MUUFL Gulfport
HSI data. Red marks positive training bags and blue marks negative bags for sidewalk
detection experiment.
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Figure 6.60: The Ground Truth map and the SLIC segmentation map of the MUUFL
Gulfport HSI data for road detection. (a) The Ground Truth map of the roads in MUUFL
Gulfport HSI data. (b)The SLIC segmentation result on MUUFL Gulfport HSI data. Red
marks positive training bags and blue marks negative bags for road detection experiment.
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Figure 6.61: The fusion test confidence maps for (a) sidewalk and (b) road detection in
the MUUFL Gulfport HSI data for the proposed MR-MICI method. Train on campus 1
and test on campus 2.
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Figure 6.62: The Overall ROC curve for sidewalk detection for MUUFL Gulfport data.
(a) Train on campus 1, test on campus 2; (b) Train on campus 2, test on campus 1.
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Figure 6.63: The Overall ROC curve for road detection for MUUFL Gulfport data. (a)
Train on campus 1, test on campus 2; (b) Train on campus 2, test on campus 1.
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Figure 6.64: The RGB image of the soybean-weed data.
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Figure 6.65: The height map of the soybean-weed data.
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Figure 6.66: The L-band image of the soybean-weed data.
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Figure 6.67: The B-band image of the soybean-weed data.
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Figure 6.68: The Gabor filtered image of the soybean-weed data height map.
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Figure 6.69: The Ground Truth map of weed in the soybean-weed data. The deep blue
is the background (soybean plants) and the yellow marks the target (weed).

Figure 6.70: The SLIC segmentation map of the soybean-weed data. Red marks positive
training bags and blue marks negative bags for weed detection experiment.
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Figure 6.71: The ROC curve for weed detection in the soybean-weed data.
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Figure 6.72: The confidence map obtained from MICI fusion for the soybean-weed
data.
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Figure 6.73: The confidence map obtained from the MR-MICI fusion for the soybean-
weed data.
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6.3 Regression Data Set

This section presents results on fusion with real-valued prediction values (regression) us-

ing the proposed Multiple Instance Choquet Integral Regression (MICI Regression) frame-

work. Experiments were conducted on both synthetic regression data set as well as a real

crop yield prediction application on a MODIS remote sensing data set provided from the

HARVIST (Heterogeneous Agricultural Research Via Interactive, Scalable Technology)

project.

6.3.1 Synthetic Regression Data Set

Synthetic 5-source regression data sets were constructed to investigate the performance of

MICI regression with changes in the percentage of primary instances in the bag and signal-

to-noise ratio (SNR). All data sets used in this section have 1000 data points, each with 5

dimensions and with values between [0, 1]. The data points were grouped into 10 bags,

each bag with 100 data points. The data points in this regression data set have real-valued

labels between [0, 1]. Relative error [57] is used to evaluate the performance for the MICI

Regression:

Errorreg(y, ŷ) =


∣∣∣y−ŷy ∣∣∣ , if y ∈ (0, 1]

|y − ŷ| , if y = 0

(6.6)

where y is the true label and ŷ is the estimated label for each data point.

MICI Regression model operates under the assumption that only one primary instance

is associated with the label of each bag [25]. What happens when there are more or less

primary instances in the bag? In this experiment, the percentage of primary instances in the

bag is changed to observe the performance of MICI. The percentage of primary instances
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in the bag takes the value of 0% to 100% with an increment of 10%. For each bag, the

“primary instances” have label values that are exactly the same as the bag-level training

label. The non-primary instances have randomly generated label values (different from the

bag-level labels) that are generated from a completely random measure. Figure 6.74 shows

the measure used to generate the data set and labels for each data point and for the bag.

Table 6.17 shows the relationship between the percentage of primary instances in the bag

and the mean relative error over all the data points across five runs. As can be seen from

the table, when the percentage of primary instances in the bag increases, the relative error

decreases.
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Figure 6.74: Contamination data set for MICI Regression model experiments: (a) True
measure values; (b) True labels per bag; (c) Colorbar.

Table 6.17: Relative error versus percentage of primary instances for synthetic regres-
sion data set for MICI Regression model across five runs.

Percentage of primary instances
0% 10% 20% 30% 40% 50%

Relative Error 0.730(0.001) 0.488(0.001) 0.492(0.000) 0.451(0.001) 0.365(0.000) 0.301(0.001)
60% 70% 80% 90% 100%

Relative Error 0.345(0.000) 0.274(0.001) 0.104(0.001) 0.059(0.002) 0.002(0.002)

Then, the performance of MICI is observed with varying levels of signal-to-noise ratio
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(SNR). In this experiment, 100% of the points in the bag are primary instances and varying

amount of noise is add to the entire data set, creating SNR value from 50dB to 0dB with an

increment of -5dB. Table 6.18 shows the relationship between the SNR values in the bag

and the mean relative error over all the data points across five runs. As can be seen from

the table, when the SNR value increases, the relative error decreases.

Table 6.18: Relative error versus SNR for synthetic regression data set MICI Regression
model across five runs.

SNR value
0dB 5dB 10dB 15dB 20dB 25dB

Relative Error 0.691(0.027) 0.443(0.029) 0.266(0.013) 0.173(0.025) 0.101(0.013) 0.061(0.012)
30dB 35dB 40dB 45dB 50dB

Relative Error 0.044(0.003) 0.021(0.003) 0.014(0.002) 0.008(0.002) 0.005(0.001)

6.3.2 Crop Yield Data Set

The crop yield data set from the HARVIST (Heterogeneous Agricultural Research Via

Interactive, Scalable Technology) project [55–57] is used to test the performance of MICI

Regression model. The data set contains MODIS data observations of corn and wheat yield

in the states of California and Kansas over 5 years (2001-2005). There are 100 randomly

selected pixels included for each county. The surface reflectance values were reported for

each pixel containing 92 values: observations in red for 46 timepoints (every 8 days across

the year) and observations in infrared (IR) for 46 timepoints (every 8 days across the year).

The zeros and “-32767” reflectance values were indicated as “bad values” in the original

data set and are removed for this experiment. Only the counties that reported both corn and

wheat yield values are considered and Table 6.19 shows the number of counties that are

considered in the states of California and Kansas across the years.

This data set suits the multiple-instance framework well as each county can be naturally
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Table 6.19: Number of counties (bags) with both corn and wheat yield in the crop yield
data set [57].

Training Testing
Year 2001 2002 2003 2004 2005
CA 17 16 18 15 13
KS 100 102 100 102 98

regarded as a bag with multiple data collections (instances). In this experiment, the corn

and wheat yield values for each county are regarded as the real-valued regression labels.

As the Choquet integral works with values between zero and one, the corn and wheat yield

values were normalized between zero and one by Equation (6.8):

Yn =
Y − Ymin
Ymax − Ymin

, (6.7)

where Yn is the normalized corn or wheat yield value that will be used as the regression

training labels. Ymin and Ymax are the min and max yield value in training, respectively.

Table 6.20: RMSE error for CA corn and wheat yield, Training on Years 2001-2004,
Test on Year 2005. The two results with the lowest errors were bolded and underlined,
respectively. The unit is bushels per acre.

Notes Regression Methods Wheat CA Corn CA
Produces
instance-level
labels. Fusion
source.

Linear Regress 8.316(0.000) 3.172(0.000)
RVM 3.197(0.000) 0.223(0.000)

SVR 8.601(0.137) 9.378(0.006)

Fusion methods
in comparison.

MICI Regression Fusion 1.572(0.268) 1.992(0.001)

Another layer of RVM/SVR 3.301(2.497) 4.141(1.246)
Taking the max 11.917(0.666) 12.721(0.609)
Taking the min 4.019(0.181) 4.229(0.059)

Taking the mean 7.079(0.093) 4.808(0.122)

Direct bag-level
label prediction.

Cluster MIR 10.168(0.000) 11.185(0.000)
Aggregate MIR 10.052(0.000) 11.185(0.000)

RFC-MIR 16.573(0.000) 15.631(0.000)

Linear regression, Relevant Vector Machine (RVM) regression [285, 286], and Support
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Table 6.21: RMSE error for KS corn and wheat yield, Training on Year 2001-2004,
Test on Year 2005. The two results with the lowest errors were bolded and underlined,
respectively. The unit is bushels per acre.

Notes Regression Methods Wheat KS Corn KS
Produces
instance-level
labels. Fusion
source.

Linear Regress 2.081(0.000) 16.279(0.000)

RVM 2.151(0.212) 13.479(0.746)
SVR 3.349(0.366) 20.151(1.392)

Fusion methods
in comparison.

MICI Regression Fusion 1.978(0.001 15.020(0.003

Another layer of RVM/SVR 3.351(1.017) 26.732(10.541)
Taking the max 2.845(0.164) 34.393(10.831)
Taking the min 9.041(1.838) 20.767(7.122)

Taking the mean 3.400(0.191) 20.713(1.477)

Direct bag-level
label prediction.

Cluster MIR 8.085(0.000) 31.736(0.000)
Aggregate MIR 6.866(0.000) 29.973(0.000)

RFC-MIR 6.550(0.000) 33.195(0.000)

Vector Regression (SVR) [287] were applied to the data. These three regressors operate

on all instances and each give a set of instance-based labels (these are essentially Instance-

MIR methods with different regressors). We used Gaussian kernel for both RVM and

SVR methods. Then, the MICI Regression model is applied to fuse these three regressors

and compared to use another layer of RVM and/or SVR (whichever one gives better per-

formance) or simply taking the max, min, or mean of the regression sources as a fusion

method. The results are also compared with existing multiple instance regression methods

such as the Aggregate MIR, Cluster MIR, and Robust Fuzzy Clustering MIR (RFC-MIR).

The detailed description of the comparing MIR methods can be seen in Chapter 2.

The test error was computed by computing the root mean squared error (RMSE) be-

tween the predicted county-level (bag-level) yield values for the test year and the (known)

actual county-level yield values for the test year, as follows:

RMSE =

√∑B
b=1 (ŷb − yb)2

B
, (6.8)
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where B is the number of (test) bags, ŷb is the predicted county-level yield values, and yb

is the (known) actual county-level yield values for the test year.
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Figure 6.75: The relationship between the Gaussian kernel width and RVM RMSE.

Tables 6.20 and 6.21 present the RMSE prediction error results for corn and wheat yield

for the states of California (CA) and Kansas (KS), using crop yield training data from years

2001-2004 and testing on year 2005. The standard deviation is across three runs.

From the table, we can first of all see that all methods are able to predict the yields

compariable to results from previous literature such as [55]. The MICI regression produces

the lowest or the second lowest error across both states and both crop types. Naturally, the

performance of MICI will depend on the performance of input sources (in this case, three

instance MIR approaches linear regression, RVM and SVR). The performance of MICI,

from Tables 6.20 and 6.21, has surpassed each of its sources as well as other fusion such

as taking the max and min. RVM performs well especially for corn, but RVM requires the

computation of the kernel matrix, which can be hard when the input data set has higher

dimensions. RVM is also highly dependent on the choice of kernel and the parameters
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Figure 6.76: The relationship between the Gaussian kernel width and Aggregate MIR
RMSE.

such as the kernel width. Figure 6.75 and Figure 6.76 shows the RVM and Aggregate MIR

(which also uses RVM regressor) results with kernel width ranging from 0.01 to 2 with an

increment of 0.01. Tables 6.20 and 6.21 presented the RMSE prediction of RVM with the

minimum error across all the kernel width choices, but it is easy to see that the error of

RVM method will depend on the choice of kernel width parameters and can go up to quite

high if using a less favorable parameter choice. The Cluster MIR method also depends

on the number of clusters and the relationship between the cluster number and the Cluster

MIR performance can be seen in Figure 6.77. Again, Tables 6.20 and 6.21 presented the

lowest error across these cluster number parameter choices.
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Figure 6.77: The relationship between the cluster number and Cluster MIR RMSE.

6.4 Discussion on Optimization Schemes

A variety of optimization schemes were explored to investigate the effects of optimization

schemes on how much objective function fitness and speed of convergence. First, the ef-

fects of sampling new measures from “top-down” for initialization versus sampling new

measures from “bottom-up” are investigated. Then, during the small-scale and large-scale

mutation step of the proposed Multiple Instance Choquet Integral, the performance of sam-

pling according to the size of the valid intervals is compared with sampling according to

the number of times a measure element is being used. To make it faster, an alternative

approach using binary fuzzy measures was investigated.

6.4.1 “Top-Down” and “Bottom-Up” Initialization

This section investigates the effects of sampling new measures from “top-down” for ini-

tialization versus sampling new measures from “bottom-up” as first introduced in Sec-
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tion 3.4.1. The two different initialization approaches were applied to the MUUFL Gulfport

hyperspectral target detection experiments similar to that in Section 6.1.4. The comparison

in the performance and measure values are presented.

Figure 6.78 shows the ROC curves using top-down initialization and bottom-up ini-

tialization, training on Gulfport Campus 1 and testing on Gulfport Campus 3. Each ini-

tialization was ran five times, with 1000 iterations. As can be seen from the figures, the

ROC curves for both initialization methods are almost completely overlapping, with small

variations in lower FAR. It can be observed that the ultimate detection performance (after

updating the measures) are very similar despite of initialization.

It is interesting to observe the difference of the initial measures generated from these

two initialization methods. The “bottom-up” initialization tends to put higher initial values

to measure elements from the lower levels of the lattice (as shown in Figure 2.3). Due

to monotonicity property of the measure, the “bottom-up” initialization usually forces the

measure elements of the upper levels of the lattice to be close to 1. Similarly, while the “top-

down” initialization puts lower initial values to measure elements from the upper levels of

the lattice, and therefore forcing the measure elements from the lower levels of the lattice

to be close to 0. After optimization, the learned measures are very similar and the detection

performance measured by ROC curve are also very similar, as shown above.

6.4.2 Sampling according to measure element used

One optimization scheme based on the valid intervals of each measure element was de-

scribed in Chapter 3 to optimize the proposed Multiple Instance Choquet Integral algo-

rithms. In this section, an alternative optimization scheme is developed and compared with

the previously proposed “sampling by the valid interval” scheme.
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Similar to the description in Chapter 3, an evolutionary algorithm is used to learn the

fuzzy measure for the MICI algorithm. A new measure or a new measure element is up-

dated by large-scale or small-scale mutation. First, for all the instances in the training

bags, it is easy to obtain which measure element was used for which instance by sorting all

sources (per the definition of Choquet integral). Then, in the small-scale mutation, only one

measure element is updated. The element to be updated is chosen by randomly sampling

from a multinomial distribution based on the counts of how many times a measure element

was used in all the training instances. The probability of sampling a particular measure

element gl is set to

P (gl) =
vl∑2C−1

o=1 vo
, (6.9)

where vl is the number of times measure element gl is used in training data. The mea-

sure element that was used most frequently by the training data to compute the Choquet

integral will have the largest probability to be updated. In the large-scale mutation, all

the measure elements are sorted in descending order based on the number of times it was

used by the training data and all measure elements are updated according to the sort order.

The new measure values are sampled from a truncated Gaussian (TG) distribution, same as

previously proposed.

Experiments were conducted based on the MUUFL Gulfport target detection experi-

ment similar to that in Section 6.1.4. The measures were initialized by randomly flipping

a coin and select from either top-down and bottom-up initialization methods and then up-

dated using the two different sampling techniques in optimization.

Table 6.22 lists the running times and the number of iterations until convergence for

five runs of the two different optimization. The algorithm was considered reaching con-

vergence if the change of fitness is below 10−4. The “measure element” in the table refers
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to sampling according to measure element used and “valid interval” refers to sample by

sorting the valid intervals of the measure elements. It can be observed from Table 6.22

that the “sampling according to measure element” approach is in general faster in running

time and converges in less iterations than the “sort-by-valid-interval” approach, mainly be-

cause the valid interval approach has to go through and evaluate the valid interval for all

measure elements while the “measure element” approach simply counts for the times a

measure element was used in training. Besides, the fitness of the training data depends

on the measure elements used, and the measure element that was most frequently used in

training is updated most frequently in the “measure element” approach, which encourages

the optimization to converge faster.

Table 6.22: Running time (seconds) and number of iterations until convergence for
optimization schemes comparison.

Measure Element Valid Interval
NumIteration Run Time NumIteration Run Time

Run 1 213 79.704s 3488 491.077s
Run 2 61 9.170s 3536 490.432s
Run 3 256 36.970s 2012 280.403s
Run 4 55 49.262s 630 88.477s
Run 5 335 47.479s 3231 448.018s

Summary 44.517(25.376)s 359.735(174.538)s

Figure 6.79 shows the comparison of the new “sampling according to measure element

used” scheme compared with the previous “sort-by-valid-interval” scheme. Figure 6.79a

shows the fitness value and the speed of convergence in the first 1000 iterations over five

runs by the two optimization schemes. It can be observed that the fitness values for both

schemes increased rapidly in the first few hundred iterations, and then increased slowly to-

wards convergence. The “sampling according to measure element used” scheme converges

faster than the “sort-by-valid-interval” scheme. The ROC curve performance, as shown in
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Figure 6.79b, are very similar with very small variations.

6.4.3 Using a binary fuzzy measure

The measures learned by the MICI algorithm for a binary classification problem seem to

have a tendency to take values close to {0, 1} rather than values in (0, 1), as presented

in Table 6.1. Therefore, it is natural to investigate whether it may be more efficient and

effective to use a binary fuzzy measure directly, specifically for the binary classification

problems.

The binary fuzzy measure (BFM) was explored previously in [288, 289]. It is a variant

on the standard fuzzy measure in that the standard fuzzy measure element takes value in

[0, 1] while the binary fuzzy measure elements only take values in {0, 1}. As discussed

in [288], the binary fuzzy measure only needs to optimize the space of {0, 1}2C rather

than [0, 1]2
C , which will be significantly more efficient especially when the number of

sources C takes a very large number. Besides, rather than going through the complicated

sampling techniques of obtaining a new measure element, the binary fuzzy measure only

needs to determine which element(s) has(have) the “first encounter” of the “1” value and

the remainder of the measure can be deduced based on the monotonicity property.

Figure 6.80 shows an illustration of a binary fuzzy measure for 4 sources. The red

arrows show one path to “climb up the lattice” of the fuzzy measure elements. This figure

is similar to Figure 2.3. Suppose we learned that the “first encounter of 1” is g23 on the

g2 → g23 → g123 → g1234 path (marked in red). Its subset, g2 ≡ 0 as g23 is the first 1 on

the path and g2 can only take the smaller value, which is 0. On the other hand, the elements

g123 and g1234 are in the superset and will have to take the value 1 as it can only be larger or

equal to g23, according to the monotonicity property. From this example we can see that it
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is only necessary to learn which measure elements first takes the value 1 and the remainder

of the measure can be deduced.

Recall the definition of the discrete Choquet integral in Chapter 2. The discrete Choquet

integral on instance xn given C is then computed as [10, 11, 80]:

Cg(xn) =
m∑
k=1

[h(ck; xn)− h(ck+1; xn)] g(Ak), (6.10)

where C is sorted so that h(c1; xn) ≥ h(c2; xn) ≥ · · · ≥ h(cm; xn). Since there are only m

sources, h(cm+1; xn) is defined to be zero. The fuzzy measure element value corresponding

to the subset Ak = {c1, . . . , ck} is g(Ak).

The above definition can be rewritten as [11]

Cg(xn) =
m∑
k=1

[h(ck; xn)− h(ck+1; xn)] g(Ak)

=
m∑
k=1

h(ck; xn) [g(Ak)− g(Ak−1)] ,

(6.11)

where g(A0) is defined to be zero.

Denote k0 as the (sorted) index for “the first encounter of 1” on a path in the lattice of

binary fuzzy measures, i.e. g(Ak0) = 1, g(Ak) = 0 for all A(k) ⊆ A(k0) and g(Ak) = 1

for all A(k) ⊇ A(k0) (monotonicity property). The Choquet integral of data point xn can

be computed as:

Cg(xn) =
m∑
k=1

h(ck; xn) [g(Ak)− g(Ak−1)]

=

k0−1∑
k=1

h(ck; xn) [g(Ak)− g(Ak−1)]

+ h(ck0 ; xn) [g(Ak0)− g(Ak0−1)]

+
m∑

k=k0+1

h(ck; xn) [g(Ak)− g(Ak−1)] .

(6.12)
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Under the assumption, [g(Ak)− g(Ak−1)] = [0−0] = 0 for k ∈ [1, k0−1] and [g(Ak)− g(Ak−1)] =

[1 − 1] = 0 for k ∈ [k0 + 1,m]. Therefore, the first and third term in Equation 6.12 equal

to zero and the result CI is:

Cg(xn) = h(ck0 ; xn) [g(Ak0)− g(Ak0−1)] = h(ck0 ; xn) [1− 0] = h(ck0 ; xn). (6.13)

In our example of the red path in Figure 6.80, the Choquet integral of xn would be equal

to the value from the 3rd source (before sorting the sources). This shows that for binary

fuzzy measure, the Choquet integral value is equal to the (sorted) ktho source value.

In binary classification case where the labels are “+1” for positive class (targets) and

“0” for negative class (non-targets), the (sorted) ktho source value must be equal to 1 in order

for the estimated label (computed CI) value to be 1.

Then, in this case, we may simply inspect and check the difference between the original

(sorted) source value against 1 and learn a binary fuzzy measure.

The binary fuzzy measure is applicable if the label values of a point is associated with

either no contribution (measure element value equals 0) or equal worth (measure element

value equals 1) to subsets of sources.

Experiments using the binary fuzzy measures were conducted on MUUFL Gulfport

target detection, training on Campus 1 and testing on Gulfport Campus 3, with five runs

for each MICI models, similar to Section 6.1.4. The measure values learned by the binary

fuzzy measure method are all “1”s, which is equivalent to the max operation. The result

fits the desired output of detecting all target types. The classification accuracy performance

of the binary fuzzy measure is exactly the same as the performance of the max operation

in Table 6.7 and the performance between the standard and binary fuzzy measures are very

similar.
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For binary fuzzy measures, the number of parameters to be optimized is no longer

exponential to the number of sourcesm, but rather linear (O(m) ) [289]. For MICI models,

the computation complexity of computing the CI in the objective functions using binary

fuzzy measure will be O(INBm) given I iterations across B bags and N data points.

For MR-MICI model, the computation complexity for computing the CI values will be

O (INhBm), where Nh is the total number of combinations that the sources can make (so

that we need to compute CI for Nh times).

Compared with the running times of MICI models with standard (non-binary) fuzzy

measures reported in Table 6.11, the running time of MICI models with binary measures

are much shorter as shown in Table 6.23. The maximum iteration number before con-

vergence is enforced to be 100 iterations in this experiment to ensure the fitness does not

change for an extended number of iterations, and the binary measure algorithms can in fact

reach the optimal solution in even shorter amount of time (sometimes even during initial-

ization). Figure 6.81 shows the comparison of fitness values in MICI models with standard

fuzzy measures and with binary measures. The binary fuzzy measure algorithms can reach

the optimal fitness almost immediately after initialization and remain the same for the re-

mainder of the iterations. The standard fuzzy measure algorithms rapidly increase in the

first few tens of iterations and increase more slowly later, but eventually the fitness reaches

convergence (the first 150 iterations are shown in Figure 6.81b). The MICI Noisy-Or model

with standard fuzzy measures, in particular, takes much longer to converge overall.
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Table 6.23: Running time (seconds) and number of iterations until convergence for
MICI models comparison with binary measures.

MICI noisy-or Binary MICI min-max Binary MICI generalized mean Binary
NumIteration Run Time NumIteration Run Time NumIteration Run Time

Run 1 100 6.746s 100 6.771s 100 10.162s
Run 2 100 6.854s 100 6.327s 100 9.582s
Run 3 100 6.754s 100 6.451s 100 9.355s
Run 4 100 6.897s 100 6.256s 100 9.324s
Run 5 100 6.964s 100 6.385s 100 9.340s

Summary 6.823(0.069)s 6.438(0.200)s 9.553(0.357)s
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Figure 6.78: Comparison of ROC curve performance using top-down initialization and
bottom-up initialization, testing on Gulfport Campus 3, with five runs for each initial-
ization methods. (a) ROC curve with FAR between 0 and 0.001; (b) ROC curve on log
scale with FAR between 0 and 1.
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Figure 6.79: Comparison of the two optimization schemes: sampling by measure ele-
ment or sampling according to the valid intervals. Experiments are on MUUFL Gulfport
target detection, training on Campus 1 and testing on Gulfport Campus 3, with five runs
for each optimization methods. (a) Fitness values in the first 1000 iteration; (b) ROC
curve with FAR between 0 and 0.001.
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g1 g2 0 g3 g4

g12 g13 g14 g23 1 g24 g34

g123 1 g124 g134 g234

g1234 1

Figure 6.80: An illustration for the subset and superset relationships between fuzzy
measure elements given four sources. The red arrows describe one path for “climbing
up the lattice”. Suppose g23 = 1 (marked in red box) and it can be deduced that g2 = 0
and g123 = g1234 = 1.
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Figure 6.81: Relationship of fitness values vs. number of iterations. The fitness val-
ues are shown for MICI noisy-or, min-max and generalized mean models with standard
fuzzy measures and MICI models with binary fuzzy measures. Experiments are on
MUUFL Gulfport target detection, training on Campus 1 and testing on Gulfport Cam-
pus 3. (a) Overall fitness; (b) The first 150 iterations.
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Chapter 7

Conclusion

This dissertation proposes a Multiple Instance Choquet Integral (MICI) framework and

a Multi-Resolution Multiple Instance Choquet Integral (MR-MICI) framework for multi-

sensor fusion. The proposed MICI framework is applicable for classifier fusion and re-

gression with uncertain/imprecise data. The proposed noisy-or, min-max, and generalized-

mean models showed successful performance in applications such as target detection. The

MR-MICI framework can successfully perform classifier fusion and yield better classifi-

cation accuracy when compared with traditional approaches on heterogeneous data (multi-

resolution data and data of different geospatial types such as HSI and LiDAR) while taking

into account uncertain/imprecise labels.

This research has the following contributions:

1. Three variations of the MICI models, i.e. noisy-or, min-max and generalized-mean

models, were derived for the MICI classifier fusion framework. This work was extended to

regression applications and was able to predict real-valued labels.

2. A novel MR-MICI model was proposed to perform multi-resolution multisensor fu-
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sion. Experiments on real data show improved performance against fusion using rasterized

data. The proposed model is able to handle mixed geospatial data types (such as HSI and

LiDAR) and multi-resolution data, as well as dealing with uncertainty in the training labels.

The MUUFL Gulfport data experiment, for example, shows that it is possible to use crowd-

sourced data such as OpenStreetMap to guide automatic (uncertain/imprecise) labeling in

the supervised training stage and achieve a good classification/detection performance based

on such training data.

3.A variety of sampling schemes were investigated for optimizing the proposed algo-

rithms and the binary fuzzy measure was discussed as an alternative approach to improve

speed.

4. A complete ground truth label map was created for all materials in the MUUFL

Gulfport data set [284], which may benefit future researchers in the area1.

It would be interesting to continue investigating alternative optimization schemes, such

as message passing. More experiments can be conducted to explore the binary fuzzy mea-

sure and possibly improve the speed and/or performance of the proposed algorithms. In

MR-MICI, it is possible to explore alternative objective function to minimize the number

of combinations needed to compute. Alternative features as fusion sources can also be

investigated.

1Scene labels available at https://github.com/GatorSense/MUUFLGulfport/tree/master/MUUFLGulfportSceneLabels.
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Appendix A

Truncated Gaussian Sampling Method

This appendix describes how to sample from a Truncated Gaussian distribution given a

lower and upper bound.

The probability density function (PDF) f of a Truncated Gaussian distribution with

lower bound a and upper bound b is defined as:

f(x;µ, σ, a, b) =
φ
(
x−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) , (A.1)

for a ≤ x ≤ b, and f = 0 otherwise. µ is the mean and σ is the standard deviation

of the Truncated Gaussian distribution. Here, φ(ζ) = 1√
2π
exp

(
−1

2
ζ2
)

is the probabil-

ity density function of the standard normal distribution and Φ(ζ) = 1√
2π

∫ ζ
−∞ e

−t2/2dt =

1
2

[
1 + erf

(
ζ√
2

)]
is the cumulative distribution function of the standard normal distribu-

tion. erf(z) = 2√
π

∫ z
0
e−t

2
dt is the "error function" encountered in integrating the normal

distribution.

The cumulative distribution function (CDF) of a generic normal distribution with mean

µ and standard deviation σ can be computed as Φ( ζ−µ
σ

) = 1
2

[
1 + erf

(
ζ−µ
σ
√
2

)]
.
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The culmulative density function (CDF) FX(x) of a continuous random variable X

can be expressed as the integral of its probability density function fX(x) as FX(x) =∫ x
−∞ fX(t)dt. Therefore, the CDF of a Truncated Gaussian distribution can be computed as

follows:

F (x;µ, σ, a, b) =

∫ x

−∞
f(t;µ, σ, a, b)dt (A.2)

=

∫ x

a

φ
(
t−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

)dt (A.3)

=

∫ x
a
φ
(
t−µ
σ

)
dt

Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) (A.4)

=
Φ
(
x−µ
σ

)
− Φ

(
a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) , (A.5)

where φ(ζ) = 1√
2π
exp

(
−1

2
ζ2
)

is the probability density function of the standard nor-

mal distribution and Φ(ζ) = 1√
2π

∫ ζ
−∞ e

−t2/2dt = 1
2

[
1 + erf

(
ζ√
2

)]
is the cumulative

distribution function of the standard normal distribution. erf(z) = 2√
π

∫ z
0
e−t

2
dt is the

"error function" encountered in integrating the normal distribution.

The following steps show the solution for x value given a culmulative density function

value F (x;µ, σ, a, b):

F (x;µ, σ, a, b) =
Φ
(
x−µ
σ

)
− Φ

(
a−µ
σ

)
Φ
(
b−µ
σ

)
− Φ

(
a−µ
σ

) (A.6)

Φ

(
x− µ
σ

)
= F (x;µ, σ, a, b) ∗

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]
+ Φ

(
a− µ
σ

) (A.7)

160



1

2

[
1 + erf

(
x− µ
σ
√

2

)]
= F (x;µ, σ, a, b) ∗

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]
+ Φ

(
a− µ
σ

) (A.8)

erf

(
x− µ
σ
√

2

)
= 2 ∗

{
F (x;µ, σ, a, b) ∗

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]
+ Φ

(
a− µ
σ

)}
− 1.

(A.9)

Define the right hand side term as RHTerm where

RHTerm = 2 ∗
{
F (x;µ, σ, a, b) ∗

[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]
+ Φ

(
a− µ
σ

)}
− 1.

(A.10)

RHTerm should be a constant and can be easily computed given a, b, µ, σ and

F (x;µ, σ, a, b). Then, x can be solved using the following equation:

x = σ
√

2 ∗ erf−1 (RHTerm) + µ. (A.11)

erf−1 can be computed using the MATLAB inverf() function.

Therefore, given a random number F (x;µ, σ, a, b) between [0, 1], its corresponding

sample is the x value computed above.
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