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NOMENCLATURE	
  
C  fluid density ratio, dimensionless 
 
d  diameter of primary nozzle exit, in 
 
D  diameter of mixing chamber, in 
 
f  friction factor, dimensionless 
 
K  component loss coefficient, dimensionless 
 
L  length of mixing chamber, in 
 
l  characteristic length, in 
 
M  volume flow ratio, dimensionles 
 
N  pressure ratio, dimensionless 
 
Q  volume flow rate, GPM 
 
R  area ratio, dimensionless 
 
Re  Reynolds number, dimensionless 
 
s  distance from primary nozzle exit to mixing chamber entrance, in 
 
V  velocity, in/s 
 
x  quality, dimensionless 
 
β  coefficient for nozzle placement ‘jet loss’ term, dimensionless 
 
ε  effective roughness height of mixing chamber surface, mm 
 
η  ejector efficiency, dimensionless 
 
φ  diffuser half angle, degrees 
 
ρ  density, kg/m3 
 
σ  cavitation number, dimensionless 
 
α  fitting parameters  
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Subscripts stuff 

1, 2, 3, 4, 5 planes within ejector, as defined in Figure 4 

d  diffuser or discharge flow 

m  mixing chamber 

n  primary nozzle exit 

p  primary flow 

s  secondary or induced flow 
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ABSTRACT 

	
   An ejector pump uses a primary flow as a motive fluid to entrain another fluid, 

and can work with both incompressible flow and compressible flow, in either as a single-

phase or two-phase mixture. Determining the behavior of the two-phase flow inside the 

ejector with different geometric parameters was the objective of this research. Three 

approaches were used to predict the performance and the capture the flow behavior inside 

it. An analytical model used the geometric parameters to calculate the loss factors for the 

first time and work as a basis for the two-phase flow ejectors. A fluid transportation 

system was built to verify analytical and numerical predictions and to explore optimum. 

Using a fitting parameter to capture the flow behavior inside the ejector was crucial for 

the accuracy of the numerical model. The fitting parameter is a new technique that uses 

an arbitrary fluid to match the induced air measurements numerically with the ones 

founded experimentally. To apply the three approaches, nine ejectors were built with 

different geometric parameters. The nozzle exit diameters are tested at three levels while 

the length mixing tube are tested at three levels as well. The results reveal that the 

diffuser angle of 5°, the smallest nozzle exit diameter, and the longest mixing tube result 

on maximum efficiency and highest induced air. More investigation of two-phase ejectors 

is important to fully understand flow behavior and to increase efficiency. There are many 

improvements needed to this work in future
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1   CHAPTER I    

1.1   INTRODUCTION 

An ejector uses a primary flow as a motive fluid to entrain another fluid, and can 

work with both incompressible flow and compressible flow, either as single-phase or 

two-phase mixture. An ejector is illustrated in Figure 1which has four main parts: a 

primary nozzle, secondary chamber, a mixing chamber and a diffuser.  

 

Ejector is based upon Bernoulli’s Principle that states that when a motive fluid at 

high pressure is accelerated through a nozzle, it exits the nozzle at high velocity as its 

kinetic energy increases and its pressure reduces.   

 

Figure 1 Cross section view of a typical liquid ejector  

 

The low-pressure and low-velocity secondary fluid induces since the motive fluid creates 

a vacuum at the nozzle exit due to the pressure drop.   
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Both the motive fluid, which in this case is water, and secondary fluid, which is air, 

combines in the mixing chamber to create a mixture flow. Since there are two different 

pressures and velocities, the energy and momentum will transfer from high to low, and 

turbulence may occur in the mixing chamber. For simplicity, we assume that the mixture 

will be fully developed at the end of the mixing chamber due to some pressure recovery 

and decelerated flow. Since most of the energy is lost in mixing chamber, we also assume 

that the mixture will be homogenous, no slip velocity. In the last part of the ejector, the 

diffuser, the mixture decelerates further and gains more pressure due to conversion that 

happens as kinetic energy is converted into potential energy.  

This pressure distribution is depicted in Figure 2. 

 

Figure 2 Characteristic pressure distribution within a liquid ejector [1] 
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There are two most important parameters used to describe the performance of an 

ejector as the ‘flow ratio’ and the ‘pressure ratio’ [2] 

 

Multiplying the ratios describes the ejector performance and overall efficiency. 

The flow ratio is the secondary flow rate compared to the primary flow rate and the 

pressure ratio is the secondary pressure rise compared to the primary pressure drop. 

Equations 1-1 to 1-3 show the ejector performance and its parameters.  

 

s

p

Q
M

Q
=     1-1 

d s

p d

P P
N

P P
−

=
−

   1-2 

M Nη = ×    1-3 

  

A typical characteristic curve as shown in Figure 3 describes the ejector 

performance and its parameters. The efficiency, η, and pressure ratio, N, is plotted versus 

flow ratio, M. As we see in the typical characteristic curve, there are two lines. The slope 

which is the area ratio, R, is describing the pressure ratio, N. It has two intercept points 

with the Y-axis, pressure ratio, and X-axis, M, flow ratio. The one intercept with the Y-

axis describes the secondary reverse flow point that we do not want the flow to reach 

because it will affect the ability of the ejector to entrain more air in the system. The other 

intercepts with the efficiency curve and describes the cavitation point. Both are critical 

points that we are trying to avoid when we design the system. In addition, the slope 

shows that when the flow ratio, M, increases the pressure ratio, N, decreases. When M=0, 
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the secondary flow is 0 and only the primary fluid is running.  Therefore, the best point to 

design the ejector is at the mid-point which has the highest efficiency.  

 

The efficiency curve is describing the efficiency of the ejector and it is plotted using 

equation 1-3. The characteristic curve of an ejector pump is important to understand 

because it explains the parameters that affect the ejector efficiency, which is the flow 

ratio, M, the pressure ratio, N, and the geometry of the ejector, R.  

 

Ejector performance will be studied in two cases as a single-phase liquid (water) 

and a two-phase liquid/gas mixture (water/air).  

 

Figure 3 Characteristic curve of ejector performance over its complete operating range [1] 
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2   CHAPTER II 

2.1   LITERATURE REVIEW 

2.1.1   ANALYTICAL  
  

Since the introduction of single phase ejectors in the mid-twentieth century, 

ejectors have been studied and analyzed for improvements in design and performance.  In 

1934, Gosline and O’Brien [3] published the first comprehensive theoretical analysis of 

water ejectors verified with empirical data. While Gosline and O’Brien did not focus on 

improved capabilities, their work has since served as the basis of ejector design and 

performance analysis. Hundreds of papers have been published based on one-dimensional 

analysis of liquid jet pumps.  Ejectors were the focus of two symposiums in the 1970s 

sponsored and organized by the British Hydraulic Research Association of Fluid 

Engineering in conjunction with the Institution of Chemical Engineers [4, 5]. In 

bibliographic reviews by Seddon and Dyke of the Royal Aircraft Establishment [6] and 

Bonnington and King [7], over 500 references were cited relating to ejectors prior to 

1964. Approximately half of these articles referred to liquid ejectors while only two 

articles referred to liquid ejectors with two-phase entrained flow. 

Gosline and O’Brien’s combination of theory and experiment provided notable 

agreement and introduced the concepts of area ratio, the dimensionless geometry factor 

impacting the N and η characteristic curves of an ejector, and loss factors accounting for 

friction losses in the different sections of the ejector assembly [3]. Cunningham 

researched both optimal geometries of ejectors and appropriate loss factors [8]. 

Performance models were considerably enhanced by direct measurement of all four loss 

coefficients, but because that is not always feasible, estimations must be made.  
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Additionally, it was determined that in addition to area ratio, there are two geometrical 

parameters required for adequate design: spacing of the primary nozzle away from the 

throat entrance and the length of the throat.  Cunningham performed an energy balance to 

determine the impact of primary nozzle placement on the pressure ratio, N.  The 

analytical equation for N, as determined by Cunningham [8], is shown in Eq.(3 45) where 

the final term in the denominator accounts for the ‘jet loss’ or the additional energy loss 

from the withdrawn primary nozzle unaccounted for in basic one-dimensional analysis 

[8]. If the primary nozzle tip is in the same plane as the entrance to the mixing chamber, β 

= 0, and the equation simplifies to the standard analytical equation for N, which will be 

derived later in this work. Mixing throat length is critical to the one-dimensional 

assumptions of performance prediction. If the mixing throat length is inadequate, mixing 

will not be complete at the entrance to the diffuser. Diffuser loss coefficients for 

performance predictions are not adequate to account for this. Sanger’s experiments 

involving mixing throat lengths validated this theory and looked at optimum mixing 

throat lengths [9]. While short mixing throat lengths extend mixing into the diffuser, 

lengths that are too long have increased friction losses, thus impeding pump performance. 

 

Cunningham et al. continued their investigation into optimal placement of the primary 

nozzle away from the throat entrance and determined that retraction of the primary nozzle 

aids the delay of the onset of cavitation [10]. Use of a cavitation index, σ, and equal to 

1.35 is generally recommended for prediction of the onset of cavitation. Marini et al.’s 

investigation into prediction of cavitation agrees with Cunningham et al., but Marini et al. 

also show that for low area ratio ejectors, the mixing chamber and diffuser loss 
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coefficients vary significantly with discharge flow rate [11]. Inclusion of this factor 

improves performance prediction over previous models. Kentfield and Barnes determined 

the diffuser loss coefficient to be the most significant factor in the effectiveness of 

performance prediction [12].   

 

As the design and performance predictions have improved for ejector operation with 

similar fluids, attention has shifted to ejectors with streams of different phases. 

Developments in these areas are not as advanced and leave many questions unanswered. 

Mikhail and Abdou investigated liquid ejectors where the primary and induced liquid 

streams have different viscosity and density, resulting in an empirical determination of 

the mixing chamber loss coefficient based on the Reynolds number of the unique 

homogeneous mixture [13]. Liquid ejectors entraining gas flows studied by Cunningham 

[14] and Cunningham and Dopkin [14, 15], employ similar loss coefficients to the four 

required for liquid-liquid ejectors, but the overall efficiency is increased by including the 

compression of the induced flow stream into the parameter. 

 
ln d

s

P
s s P

l g
p d

P
MN

P P
φ

η η η= + = +
−

  2-1 

where ϕs is the ratio of gas flow to the primary flow stream shows that the efficiency of 

pumping the liquid remains the same, but the overall efficiency considered for the 

application increases by the work done by compressing the gas divided by the energy rate 

input to the system. Hongqi provides additional investigation into deriving governing 

equations for the operation of liquid ejectors entraining gas flow [16]. Based on flow 

ratio and pressure ratio, an ejector can be designed with the highest possible entrainment 
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and the highest possible discharged pressure, when operating at given conditions. Many 

studies were made to understand not only fundamental ejector fluid dynamics and heat 

transfer but also ejector operational behavior [17, 18, 19]. 

 

Most relevant to this work, research into ejectors with a single two-phase stream, 

primary or induced, is preliminary and not validated. Jiao et al. employ the same analysis 

for a two-phase induced flow as has been used for one-dimensional analysis of ejector 

performance [20]. However, Jiao et al. utilize an empirical expression for the loss 

coefficient associated with the throat and the diffuser. This factor was determined by 

applying data regression to empirical data. The resultant model predicts two-phase ejector 

performance with a mean square error equal to 0.065 of the experimental data. An 

important notation in this work is that the properties of the gas phase are at standard 

conditions – that which are known outside of the ejector. The most accurate temperature 

and pressure which should be used to model the gas phase would be those properties in-

situ. However, it is unlikely these would be known during operation. 

Noronha et al. presented another two-phase model covering the same experimental data 

used by Jiao et al. [21, 22]. This work utilized linear regression to determine all of the 

loss coefficients, including primary nozzle, secondary nozzle, throat, and diffuser, to 

improve Jiao’s model. Noronha et al. also improved Jiao’s model by disregarding data 

points that correlate poorly, citing possible experimental error or transcription mistakes. 

The results used 118 of the original 269 data points, reducing the mean square error to 

0.050. All of the data points considered by Jiao et al. and Noronha et al. neglected low 
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pressure tests [20-22] and the primary fluid was 2,000-3,000 psi (13,800-27,600 kPa), 

significantly higher than pressure obtained in aircraft fuel barrel applications. 

Cunningham extended his study of ejectors to two-phase flow inn 1995, when he 

proposed theoretical governing equations for an ejector with a liquid primary flow and a 

liquid-vapor secondary flow [23]. This model encompasses both liquid/liquid and 

liquid/gas operations of ejectors. With the correct input flow parameters, the model 

would predict performance of a liquid/liquid or a liquid/gas counterpart. Unlike other 

models, it provides a method for predicting the overall efficiency, from which the 

pressure ratio can be determined. This method is not validated, however, and the author 

states, “no experimental data are known to be available at this time for comparison with 

the gas-in-liquid two-phase secondary-flow predictions [23].” Additional review of the 

citations for this article also provides no experimental validation. 

 

Another way to evaluate existing research is to consider the ability of the model to 

predict the properties of the flow stream. All of the previous references declare the 

properties of the entrained flow streams to be known a priori, thus the entrained flow 

streams are considered inputs into the model [24]. Balamurugan et al. summarize the 

literature for determining the entrainment rate by providing a semi-empirical 

determination of the liquid entrainment rate for an ejector with air as the primary stream 

and water as the induced stream within 20% [25]. This work will include a similar 

prediction of the quality of a water-air stream entrained by a water primary stream, 

enhancing the novel model with the ability to predict the induced flow stream properties 

and the overall system performance. 
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In 1985, the Engineering Sciences Data Unit, an advisory organization in the 

United Kingdom, published a document summarizing the one-dimensional theory 

generally adopted for design and performance of ejector pumps [3, 4, 8, 13, 20, 26, 27]. 

Published as ESDU 85032, the document covers ejectors operating with incompressible 

liquid flow [1]. This document serves as the basis of the existing single-phase analytical 

ejector model employed by industry, and thus serves as the basis for the extended two-

phase analytical ejector model devised in this work. Integrating the works in the reported 

analytical models will enable industry to enhance their current models to handle the full 

range of ejector operation within the examined application. 

2.1.2   NUMERICAL  
  

In recent years, numerical and empirical modeling approaches for understanding 

flow behavior inside ejectors produced good but scattered efforts, particularly for two-

phase flow. Kumar et al. [28] investigated the two-phase flow in terms of the variant 

geometrical parameters. Their study was for a desalination system. An optimization was 

applied on the parameters to find out the maximum performance along variant 

geometrical parameters. Neto and Porto [29] applied area ratios on ejector to find out the 

optimum design. They had 0.25, 0.35, and 0.53 for the area ratios. Their observation was 

that 0.35 gives the highest performance. Chamlong et al. [30] improved a way to gain the 

prime mixing tube length for a nozzle position. They found that the prime ratio of mixing 

tube length to nozzle diameter. Mikhail et al. [31] improved a theory for ejector 

performance. The theory was a one-dimension. Their focus was spent on the mixing with 

two methods, analytical, experimental. In addition, they introduced the pressure loss 
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coefficient empirically. Samad and Nizamuddin [32] were investigating the effect of 

geometry numerically and they found that the longer mixing tube gives the best 

performance. (Lm/Dn) is 2-3.5. Afzal Husain and his coworkers [33] introduced an 

improved numerical modeling and optimization approach using fluid dynamics to design 

energy efficient ejector pumps. In their work, optimization was conducted by applying 

geometrical variables by using LHS, Latin Hypercube Sampling, and method. The jet 

pump was optimized numerically and the highest efficiency detected. Nevertheless, there 

was no experimental or industrial data supporting or verifying Husain et al. [33] claims. 

 

It has been shown that when liquid is pumped through a nozzle to create a high- 

velocity jet, if the velocity of the jet is increased, the velocity of surrounding fluid also 

increases, causing higher gas induction Bin [34]. Any obstruction downstream of the jet 

like the throat of a venture tube will adversely affect the fluid induction as more energy is 

required to overcome the pressure drop of the obstruction Bhutada and Pangarkar [35]; 

Fadavi and Chisti [36]; Havelka et al. [37]. Thus, besides liquid flow rate, the rate of gas 

induction is dependent upon the geometry of the ejector. Studies have shown that the 

mass transfer rates closely relate to gas induction rates, making it imperative to study gas 

induction in ejectors for safe design Havelka et al. [36]. Many different studies have 

developed methods for correlating gas induction in ejectors, most dealing with down flow 

ejectors Acharjee et al. [38]; Bhutada and Pangarkar [39]; Dutta and Raghavan [40]. 

They correlate the ratio of area of nozzle and throat (An⁄At). While the correlations have 

considerably different exponents and constants, the general theme is the same. Bhutada 

[41] presents a very detailed experiment on gas-liquid ejectors of varying geometric 



12 
 

parameters. Ben Brahim et al. [42] shows a definite correlation for motive and entrained 

fluid Reynolds number for different motive and entrained fluids. All these studies are 

correlative in their approach and are reasonably successful in matching the observed gas 

induction with the experimental parameters and fluid parameters Bhat et al. [43]. There 

also have been attempts to model the gas–liquid ejectors, where the study of flow 

characteristics of the jet is crucial to predicting gas induction. Several efforts have been 

made to develop computational fluid dynamics (CFD) based models for simulating gas 

induction in gas–liquid ejectors. Yadav et al. [44]; Kim et al. [45] have used the 

Eulerian–Eulerian (EE) and mixture model approach to model gas induction Kim et al. 

[45], [46]; Utomo et al. [47]; Yadav and Patwardhan [44]. Kandakure et al. [48] have 

developed CFD methodology for estimating gas induction using the two-phase mixture 

model framework. In the mixture model, simulations of algebraic expressions for slip 

velocity were used for modelling the interaction between gas and liquid instead of 

modelling the drag force between the phases. Notwithstanding, some of the uncertainties 

associated with the mixture model, they have reported much success in estimating gas 

induction. The experimental studies have shown how different aspects of gas induction, 

like gas inlet Reynolds number and gas Euler number, correlate to different jet 

parameters and jet Reynolds numbers Kandakure et al. [48]. The differences in the fitting 

parameters of the correlations reflect different ejector geometries. However, no explicit 

relationship between the different geometric parameters and gas induction was 

established. Even very detailed induction studies like Bhutada and Pangarkar [35], [39] 

and Bhutada [41] develop separate correlations for different geometries instead of 

developing a single correlation using various geometric parameters. While all the 
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experimental studies explain the driving force for induction as a suction force, no 

measurements of pressure were presented in the experimental data. Even for the 

calculations for gas Euler number, there is no experimental data provided. The reaction 

engineering models developed have too many unknowns, like mass transfer coefficient, 

bubble diameter, gas hold up, etc.; hence, correlative studies do not explain the 

phenomenon of gas induction and the impact of various geometric parameters on it. An 

adjustable parameter was introduced in Sharma et al [49] to ensure a fully mixed fluid for 

the two-phase.  

 

The above literature survey for both analytical and numerical studies clearly 

indicates that very little work was reported considering two-phase flow behavior in 

ejector pumps. No reliable numerical simulation or empirical models are available for 

understanding the flow behavior in ejector pumps.  

 

The present work is a continuation of a project started 5 years ago with support 

from Boeing Company for improving the efficiency of ejectors used in the Fuel System 

for large aircraft [50]. The results of the presented research are expected to address many 

of the deficiencies in our original work. Improvements would include refining the 

analytical model with more accurate parameters estimations, including uncertainties that 

were never included in any previous models, and consideration of the cost and time 

efficient numerical simulation of the flow behavior inside the ejectors. Both analytical 

and numerical models will be verified experimentally in the present work. 

 



14 
 

2.2   RESEARCH OBJECTIVES 

The present research aims at: 

1-   Developing an integrated modeling approach for understanding two-phase flow 

inside ejector pumps using analytical, experimental, and numerical modeling 

methods.  

2-   Optimal performance of ejectors in terms of energy use, delivered flow rate, and 

manufacturing cost.  

3-   Predicting flow behavior inside ejectors carrying two-phase fluids.  

4-   Introducing uncertainty in the developed analytical model to increase its prediction 

accuracy.  

5-   Developing a numerical simulation modeling method using computational fluid 

dynamics based on an ANSYS platform to facilitate effective design of experiments 

needed for exploring optimal ejector design.  

6-   Introducing a comprehensive experimental investigation using a specifically built 

fluid transportation system to verify analytical and numerical predictions. 

7-   Developing digital design and manufacturing techniques for the construction of 

quality and cost-effective ejectors.  

 

 

 

 

 

 



15 
 

3   CHAPTER III 
  
3.1   INVESTIGATIVE APPROACH 

The present research uses three different techniques to ensure accurate predictions that 

will help in development of optimal ejector design for different applications.  

3.1.1   ANALYTICAL MODEL 
  
The objective of the analytical model is to design an ejector theoretically with the main 

parameter being the pressure ratio, N, because secondary pressure, Ps, is dependent. 

Other parameters, such as primary volumetric flow rate, Qp, primary pressure, Pp, 

discharge pressure, Pd, flow ratio, and initial fluid height, H0, are independent and they 

are known experimentally.  

 

The analytical model of a liquid ejector derives a dimensionless equation for N  

based on a continuity equation, conservation of energy equations, and a momentum 

equation, and uses loss factors for the four main parts of the ejector. Literature shows 

research that uses constants empirically determined in other publications. Since there is 

an abundance of information about loss factors for two-phase ejectors, it makes sense to 

determine them analytically and compare them to ones that have been determined 

empirically.  

 

To determine the loss factors for a two-phase ejector, begin with the governing 

equations for the loss factors for a single-phase ejector, and then add terms to be valid for 

the two-phase ejector.  

In order to make a reliable model, we should note assumptions such as:  
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1.   Ejector operates isothermally and under steady-state conditions 

2.   Flow is one-dimensional except within the mixing chamber 

3.   Nozzle wall thickness at the exit is zero 

4.   Nozzle spacing from the throat entrance is zero (s = 0) 

5.   Mixing (momentum transfer) is completed within the constant cross-sectional 

area mixing chamber 

6.   The primary and secondary streams enter the mixing chamber with uniform 

velocity profiles, and the produced fluid exits the mixing chamber with a uniform 

velocity profile 

7.   Frictional losses in the nozzle, secondary inlet, mixing chamber, and diffuser are 

accounted for by four loss coefficients  

8.   Primary fluid is a single-phase incompressible liquid 

9.   Secondary fluid behaves as an incompressible liquid (liquid mass flow rate >> gas 

mass flow rate) 

10.  Any two-phase mixture is homogeneous 

11.  There is no mass transfer between the phases 

12.  Temperatures of primary and secondary fluids are equal 

13.  Gas phase, if present, undergoes ideal-gas isothermal compression 

14.  Fluid velocities are less than the speed of sound 

We made some modifications to the reference plane to make it easy to follow up. 

So, the letter notations have been replaced by numbers. Figure 4 shows the 

modifications.  



17 
 

All the equations have been updated based on Figure 4 

Thus, the pressure ratio is also shown by Eq.3-1: 

 

5 2

1 5

d s

p d

P P P P
N

P P P P
− −

= =
− −

 3-1 

 
This equation is the goal of the analytical model but in extended form to cover all the 

cases as shown in Eq. 3-28.   

Eqs 3-2 & 3-4 show how loss factors are determined analytically: 

 

 

Figure 4 Reference planes and notations as applied to ejector analysis 
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The only equation that is different is the mixing chamber loss coefficient. It has a friction 

factor because the turbulent flow occurs in it.  

Thus, mK  is shown by Eq. 3-5: 

4m
LK f
D

=  3-5 

where 

2
4

Δ
14
2 m

pf
L V
D

ρ
=  3-6 

 
The velocity at the exit of the mixing chamber, V4, is used to get the pipe friction 

factor because it is lower than the average velocity in the mixing chamber. It gives us 

accurate results since the friction loss inside the mixing chamber has been found to be 

much less than in conventional pipe flow [9]. 

Conservation of energy is used to find the total pressure at the primary nozzle, secondary 

inlet, and diffuser, as shown in Eqs.3-7 & 3-9: 
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ρ ρ
⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

2 2
1 3

1 1	
  
2 2p n p p nP p V K V  3-7 

ρ ρ
⎛ ⎞

= + + ⎜ ⎟
⎝ ⎠

2 2
2 3 3 3

1 1
2 2s s sP p V K V  3-8 

ρ ρ
⎛ ⎞

= + − ⎜ ⎟
⎝ ⎠

2 2
5 4 4 4

1 1	
  
2 2d d dP p V K V  3-9 

where 

ρ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

21 	
   	
   	
  
2p p nK V primary nozzle pressure loss  3-10 

ρ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

2
3

1 	
   	
   	
   	
  
2s sK V secondary flow inlet pressure loss  3-11 

ρ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

2
4

1 	
   	
  
2d dK V diffuser pressure loss  3-12 

Thus, 

( )2
1 3

1 1
2 p n pP p V Kρ= + +  3-13 

( )2
2 3 3

1 1
2 s sP p V Kρ= + +  3-14 

( )2
5 4 4

1 1
2 d dP p V Kρ= + −  3-15 

The conservation of mass, the continuity equation for the ejector at steady-state 

conditions, is shown by Eq.3-16: 
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p p s s d dQ Q Qρ ρ ρ+ =  3-16 

The velocity at the entrance to the mixing chamber, 3V  and the velocity at the exit 

of the mixing chamber, V4 can be used as functions of the primary nozzle exit velocity,

nV  by applying Eq. 1-1 for the flow ratio as shown in Eqs. 3-17 and 3-18, respectively.   

3 1 n
MRV V
R

=
−

 3-17 

( )4 1 nV R M V= +  3-18 

Lastly, conservation of momentum in the mixing chamber: 

( )ρ ρ ρ ρ+ + = + + +
2

22
3 3 3 4 4 4 4 1

2
n

p p n s s m m d m

Vp A Q V QV p A Q V A K R M  3-19 

where 

( )ρ + =
2

22
4 1 	
   	
   	
  

2
n

d m

VA K R M mixing chamber friction loss  3-20 

Substituting Eqs.3-17, 3-18, and 3-20, and replacing the volumetric flow terms by an 

equivalent area multiplied by velocity representation, Eq. 3-21becomes: 

 

( ) ( ) ( ) ( )
2 2

2 22 2 2 2 2
4 3 4 3 4 1 1

1 2
n

p n n s n n d n d m

VMRp p A AV A A V A R M V K R M
R

ρ ρ ρ ρ
⎛ ⎞

− = + − − + − +⎜ ⎟−⎝ ⎠
3-21 

The pressure increase of the secondary stream, also the numerator of Eq.3-1, can be 

found by subtracting Eq. 3-14 from Eq. 3-15: 

( ) ( )2 2
5 2 4 3 4 3

1 11 1
2 2d d s sP P p p K V K Vρ ρ− = − + − − +  3-22 

Applying Eq. 3-21to Eq. 3-22 and simplifying, the pressure increase becomes:  
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 ( )( )( ) ( )
22 2

2 2
5 2

1 22 1 1 1 1
2 1 1p n m d s

CM R MRP P V R R K K CM M C K
R R

ρ
⎡ ⎤⎛ ⎞
⎢ ⎥− = + − + + + + − + ⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

3-23 
where 

s

p

C
ρ

ρ
=  3-24 

4

n n

m

A AR
A A

= =  3-25 

Doing the same thing for the pressure drop of the primary stream, the denominator of Eq. 

3-1, can be found by subtracting Eq. 3-13 from Eq. 3-15 

 

 ( ) ( ) ( )( )2 2 2
1 5 3 4

1 11 1 1 1
2 2p p n d p nP P p p K V K R M CM Vρ ρ− = − + + − − + +  3-26 

 
Applying Eq. 3-21to Eq. 3-26 and simplifying, the pressure decrease becomes:  

 

( )( )( ) ( )
2 2

2 2
1 5

1 22 1 1 1 1
2 1p n m d p

CM RP P V R R M CM K K K
R

ρ
⎡ ⎤

− = − − + + + + + + +⎢ ⎥
−⎣ ⎦

3-27 

 
Lastly, dividing Eq. 3-23 by Eq. 3-27, the analytical equation for N  is determined by Eq. 

3-28: 

 

( )( )( )
( )

( )

( ) ( )( )( )

2 2 2 2
2

2

2 2
2

22 1 1 1 1
1 1

21 2 1 1 1
1

m d s

p m d

CM R CM RR R CM M K K K
R R

N
CM RK R R CM M K K

R

+ − + + + + − +
− −

=

+ − − + + + + +
−

 3-28 

If the air is induced into the ejector, the densities will not be the same, C=1.  

the flow ratio is approximated by Eq. 3-29 [9]:  
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1.0CMM
C
==  3-29 

As we assumed, it can be seen that Eq. (3-43) is for the case of s = 0 only.  Cunningham 

enhanced this equation when using a withdrawn primary nozzle by adding an additional 

“jet loss” term in the denominator, as discussed in Chapter II [51].  Applying this term to 

Eq. 3-28 , the pressure ratio becomes:  

 

( )( )( )
( )

( )

( ) ( )( )( )
( )

( )

2 2 2 2
2

2

2 2 2 2
2

2

22 1 1 1 1
1 1

21 2 1 1 1 1
1 1

m d s

p m d s

CM R CM RR R CM M K K K
R R

N
CM R CM RK R R CM M K K K

R R
β

+ − + + + + − +
− −

=

+ − − + + + + + + +
− −

3-30 
where 

0	
   	
   0for sβ = =  3-31 

 1	
   	
   0for sβ = >  3-32 

Eq.3-30 matches the equation derived by Cunningham, who assumes that the nozzle tip is 

withdrawn from the entrance of the mixing chamber. Eq.3-30 depends on very few 

parameters.  R, is ratio, is known for a given ejector. C is a determination term which 

comes from the properties of the primary and secondary flow streams, and M is an input 

into the model from the experiments. The four loss coefficients are needed to solve for N. 

Literature shows that model performance is considerably enhanced when direct 

measurements are taken of the four loss coefficients [51]. Pressure measurements along 

the ejector are hard to make due to the design of the ejector used in this experiment. so, 

measurement of the loss factors are also not easy to determine. Instead, empirical data 

can be used to determine the loss factors. The goal is to calculate loss factors based on the 

geometry of the ejector and find the associated pressure drops using the ability to account 
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for the two-phase flow conditions. The ejector primary nozzle is a converging nozzle. 

The motive fluid is a liquid, so two-phase flow does not occur in the primary nozzle. 

Thus, the calculation for the gradual contraction [1] is shown in Eq. 3-33: 

 
θ ⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

2
1
2
2

0.8sin 1
2p

dK
d

 3-33 

where θ  is the angle of the convergence. The last term, ratio of diameters, for contraction 

is small to large. 

The secondary inlet has a gradual contraction too. Thus, the calculation for the secondary 

inlet loss coefficient is similar to 3-33, with the addition of a frictional loss term:  

θ ⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠

2
21
02

2

0.8sin 1 4 Φ
2s

d lK f
dd

 3-34 

Friedel’s correlation, 2
LOΦ , is an empirical coefficient which scales the frictional losses 

[52]. In single-phase flow conditions, 2
LOΦ  = 1. In two-phase flow conditions in vertical 

upward and horizontal flow, we should solve the Eq. 3-25. Friedel’s correlation works 

best in the case of air in water, which is seen in Table 1. 

Friedel’s correlation: 

 

Table 1 Two-phase correlation recommendations 

 

µ
µg

 m  Recommended 
Correlation 

< 1,000 -- Friedel 

> 1,000 > 100 Chisholm 

> 1,000 < 100 Martinelli 
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= +2 2
0 1 0.045 0.035

3.24
Φ

CC
Fr We

 3-35 

where 

( )
ρ

ρ
= − +

2 02
1

0

1
g

gfC x x
f

 3-36 

( )
µ µρ

ρ µ µ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

0.91 0.19 0.7
0.240.78

2 1 1g g

g

C x x  3-37 

2

2

m

TP

Fr
gDρ

=  3-38 

2m

TP

DWe
ρ σ

=  3-39 

and	
   GOf 	
   and LOf  are the friction factors for gas and liquid properties.  For the Friedel 

correlation, TPρ  is given by: 

1
1

TP
G L

x x
ρ

ρ ρ

−
⎛ ⎞−

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 3-40 

 
Also, The Friedel correlation has been adding to the mixing chamber loss coefficient [9]: 

24 Φm LO
LK f
D

=   3-41 

Finally, the diffuser loss coefficient is a similar to Eq. 3-33 and 3-34 Crane 410 [53]. The 

diffuser loss coefficient: 

( )θ β

β

−
=

22
22.6sin 1

dK  3-42 

Where β is the ratio of smaller diameter to larger diameter: 
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1

2

d
d

β =  3-43 

The β in the denominator is included for the tailpipe at the exit of the diffuser. 

Miller indicates that the loss coefficients and head recoveries are determined for diffusers 

with inlet Reynolds numbers above 105 [54]. For Reynolds numbers less than 105, these 

values may not hold true. This correlates to the experimental data obtained, such that: 

 

( )Re
50,000

0	
   	
  Re 	
  	
  	
  50,000: 0

50,000	
   	
  Re 	
  100,000: 1
Re 	
  100,000:

m

m da

m da d

m da d

K
K K
K K

          < <   =

≤ <   = −

                 ≥   =

 3-44 

where daK is the actual loss applied in the model and dK  is from Eq. 3-42 Neve 

investigated the two-phase effects on diffuser performance, but for the low entrainment 

ratios experienced when air is merely sucked into the secondary inlet with the induced 

water, the effect is negligible so no adjustment is necessary for this application [55].  

3.1.2   EVALUATION OF UNCERTAINTY  
  
The NASA developed program called Numerical Evaluation for Stochastic Structures 

under Stress (NESSUS) [56], can perform reliability-based analysis to predict the 

pressure ratio, N. The system is examined for the probability that the flow rate through it 

is above a minimum acceptable value to give an acceptable pressure ratio and for 

sensitivity of the model to the loss coefficients. 

 

The Advanced Mean Value plus iteration (AMV+) method has been conducted for 

the analysis. The efficiency has a method to make it more reliable. The accuracy for the 

Standard Monte Carlo simulation is high, but consuming the time is a matter, and it needs 

only few runs to validate the results. 
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Probability density function or PDF is used to define the probability that a certain 

value occurs in a certain domain. Density functions will be different depending on how 

the variables are changing over a domain. Normal, Lognormal, and Weibull are some of 

the PDF functions used in analysis.     

( ) ( )≤ ≤ = ∫	
  
b

X
a

P a X b f x dx            3-45 

           
  
where x is the desired value in the domain. CFD or cumulative density function describes 

the probability that a certain value is smaller than a certain known value.  

( ) ( ) ( )
∞−

= ≤ = ∫
x

X XF x 	
  P X x f x dx          3-46 

Since there are many types of distribution, choosing one of them must be done carefully. 

In this way, the probability plot is established for the chosen variables of Km and Ks with 

four types of distributions. The probability distribution has been conducted for normal, 

lognormal, exponential and Weibull as shown in Figure 5-Figure 8 respectively.  
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Figure 5 Normal Probability Plot of ks, km 

 

 
Figure 6 Lognormal Probability Plot of ks, km 
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Figure 7 Exponential Probability Plot of ks, km 

 
Figure 8 Weibull Probability Plot of ks, km 
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Looking at them to see which distribution lines is the best match for our data. 

Immediately we can rule out the Exponential and Weibull distribution, where some of our 

data points out of the best-fit lines. The other two look better, so that the normal or 

lognormal distribution would be a good choice for running subsequent reliability 

analyses. 

 

 

Normal distribution is the most common distribution used to describe how the 

variables are changing. It is also called Bell curve or Gaussian distribution. Normal 

distribution uses the average (mean) of the data and the standard deviation. 

Eq. 3-47 describes the probability density function for the normal distribution. 

( ) ∞ ∞
⎛ ⎞−

− ⎜ ⎟
⎝ ⎠= − < <

2
1 x µμ
2 σ

x
1f x e dx, 	
   x

σ 2π
          3-47 

where f is the probability density function for the normal distribution, µ is the average 

and σ is the standard deviation. Eq. 3-48 shows the cumulative density function for the 

normal distribution.    

( )
∞

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠

−

= ∫
2

1 x µμx
2 σ1F x 	
   e dx

σ 2π
           3-48 

 

The loss coefficients for Km, Ks are considered in this probabilistic model. They are 

assumed to have a normal distribution as shown in Figure 9 to Figure 12 based on the mean 

µ and standard deviation σ, which were calculated by the analytical model.  
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Figure 9  Probability density function for Km 

 
Figure 10 Cumulative density function for Km 
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Figure 11 Probability density function for Ks 

 
Figure 12 Cumulative density function for Ks 
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These loss coefficients are then substituted in Eq. 3-28 to determine the sensitivity 

of the pressure ratio N to these coefficients. The rest of the variables are taken from the 

analytical model and assumed constants. Table 2 Deterministic Values for the used variables 

shows the values for each variable used in that equation.   
Table 2 Deterministic Values for the used variables 

Variable Value 

R 0.27 

C 0.001225 

M 1.5733 

Kd 0.16 

Kp 0.14 

Beta (β) 0 

 

After defining the variables, Standard Monte Carlo is used. This method uses 

repetition of randomly generated data to determine the probability density function for a 

given variable. The solution can be controlled either by specifying an error value or use 

sample size. The larger the sample size, the more accurate the results will be. 

 

NESSUS reliability software from Southwest Research Institute was used to 

conduct the reliability model. NESSUS offers to find the sensitivity that each variable has 

to any changes in the input data. To do so, it uses the MPP value at each function and it 

records the data using a first order probability estimate. Probability analysis can also be 

used to find the relative importance of the particular variables by using sensitivity 

analysis. The procedure can be done by measuring the relative importance of the random 

variables based on the location of the MPP. At the MPP, u*=(u1*,u2*,…,un*), the first-

order probability estimate is Φ(-β) where: 

= + +…+
2 2 22 * * *
1 2 nβ u u u            3-49 

The unit normal vector at the MPP at the surface is defined as: 
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⎛ ⎞∂
∝⎜ ⎟⎜ ⎟∂⎝ ⎠ *

i
i u

gα
u

∇
= −

∇

gα
g

           3-50 

where g is the response function and α vector is positive in the direction of decreasing g. 

The sensitivity factors are indicators of α vectors to the u-axes. Therefore, they are 

direction cosines of α and can be written as: 

=
*
i

1

u
α

β
             3-51 

The above equation satisfies the following rule: 

+ +…+ =* * *
1 2 nα α α 1           3-52 

which indicates that αi
2 is how much this variable contributes to the probability; the larger 

this value the more its contribution (importance).  

The definition of sensitivity factors can be seen in the u-space 

 
           3-53 
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3.1.3   NUMERICAL MODEL 
  

The numerical analysis is conducted using CFD codes. The goal is to analyze 

each aspect of the ejector geometry and to correlate coherently any geometric parameter 

to a mathematical parameter. While experimental and pure correlative studies can make 

system specific predictions, there is a need for a model that can predict the impact of a 

geometric parameter in a more general way. 

 

The ejectors were simulated to predict the flow behavior inside them. In the 

absence of important information needed to solve the numerical analysis, a simpler CFD 

model was conducted to predict the gas induction and then the flow behavior. A single-

phase model was used to simulate gas induction and the behavior inside the ejectors. 

Using the mixture model with gas and liquid, with two different densities, is not 

applicable because knowing the slip velocity and relative velocity between the two 

phases is crucial, and this information is unknown. If the slip velocity is required, the 

bubble diameter has to be known. Using mixture model or EE model needs specific 

information to be used as an adjustable parameter to fit the simulation results to 

experimental results. In this work, it was decided that a single-phase model would be 

used to simulate induced gas and to capture the flow behavior of various geometries. This 

approach supposes that the driving force for the induced gas is imparted by the nozzle, 

which is the kinetic energy of the primary fluid, making this approach similar to the two-

phase gas-liquid ejector. The numerical analysis objectives are to develop a model to 

estimate the gas induction as a function of the primary fluid, measure the influence of the 

various geometric parameters on gas induction in an ejector nozzle, and to quantify the 
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effect of the geometry on the flow behavior inside the ejectors. The impact of the 

geometries of the ejectors was investigated for developing a better understanding of the 

significance and sensitivity of the various geometric parameters. This approach and 

results will be valuable for designing better ejector configurations.  

 

Three-dimensional steady-state analysis is carried out to simulate the water-gas two-

phase incompressible flow inside a water-gas jet pump. ANSYS version 16 CFD 

software package is used for the simulation. The mesh was developed using the ANSYS 

design modeler’s meshing tools and the fluid flow was modelled using the FLUENT 

solver. The 3D model of the ejector pump, was imported into ANSYS as a STEP file, 

which is initially modelled in Solid Works. The solving method is pressure-velocity 

coupling. The realizable κ-ε turbulence model is selected for two reasons:	
  

1.   The realizable κ-ε model has a new formulation for the turbulent viscosity. 

2.   An improved transport equation for the dissipation rate, ε, has been derived from 

an exact equation for the transport of the mean-square vorticity fluctuation. 

while the standard near wall function is used in the near wall treatment. Boundary 

conditions are the pressure inlet for phase 1, water, and the outlet and pressure inlet for 

phase 2. Single-phase turbulent flow of two miscible fluids of different densities was 

simulated using the Reynold’s averaged Navier–Stokes equations. The turbulent flow 

was simulated using the Realizable k-ε model. The species equation was only solved for 

the secondary fluid, Ranade [57]. As the pressure inlet of water through the nozzle is 

known, the pressure inlet was used as the boundary condition for primary liquid. The 

suction chamber inlet was set to be 0-gauge pressure due to the opening to atmospheric 
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pressure and the outlet as well. Since, arbitrary fluid has been conducting, the slip 

velocity between the two phases has been disabled and lastly, the ejector was used 

standard wall-function. 

 

In the FLUNET solver, second order has been set for the momentum, mass 

fraction, turbulent kinetic energy, and turbulent energy dissipation rate. In addition, a 

SIMPLE scheme for the pressure-velocity was enabled. To make the solution relaxes; its 

factor was set at 0.4 for momentum, turbulent kinetic energy and turbulent energy 

dissipation rate. The pressure was set at 0.3 for relaxation factor. Earlier modelling efforts 

using the EE or mixture models did not capture the gas–liquid dispersion in the ejector 

and simulated stratified flow. The experiments showed excellent mixing of gas and liquid 

in the ejector. In order to ensure mixing of primary and entrained flu-ids in the ejector, 

here we decided to treat the entrained fluid as a miscible fluid with the primary fluid. 

This will ensure complete mixing of primary and entrained fluids in the ejector. The use 

of miscible fluids of course completely ignores interphase drag. In order to mimic 

interphase drag exhibited by immiscible gas bubbles, the effective density of the 

entrained fluid had to be increased. It was therefore treated as an adjustable parameter. 

The density of this arbitrary entrained fluid was set as 998.2α (kg/m3) where α is a 

dimensionless fitting parameter. 
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3.1.4   EXPERIMENTAL INVESTIGATION 
  

The experiments were divided into two parts,first with an ejector run in the 

analytical model providing empirical data. In the second part, nine ejectors were built 

with various values of geometric parameters carefully chosen from the published data and 

to ensure high efficiency. In the parameters provided in table Table 3, primary flow rate, 

Qp, is the only input that can be controlled, thus, the maximum Qp has been selected. The 

minimum Qp differs from one ejector to another. For instance, in ejector 1, the minimum 

Qp was set with a fully opened bypass valve, and in ejector 3,  the minimum Qp was set 

with a half closed bypass valve because water will not go through water will not go 

through a fully opened bypass valve. The experiments were repeated three times for each 

ejector.  

 

Table 3 various values of geometric parameters 

Ejector	
  
number	
   L	
  mm	
   s	
  mm	
   D	
  mm	
   d	
  mm	
  

Diffuser	
  
Angle	
  
Ø	
  

1	
   160	
   1.5	
   40	
   9.6	
   5	
  
2	
   160	
   1.5	
   40	
   12	
   5	
  
3	
   160	
   1.5	
   40	
   14	
   5	
  
4	
   200	
   1.5	
   40	
   9.6	
   5	
  
5	
   200	
   1.5	
   40	
   12	
   5	
  
6	
   200	
   1.5	
   40	
   14	
   5	
  
7	
   240	
   1.5	
   40	
   9.6	
   5	
  
8	
   240	
   1.5	
   40	
   12	
   5	
  
9	
   240	
   1.5	
   40	
   14	
   5	
  

 

Five data points have to be collected experimentally: primary flow rate, Qp, the 

secondary flow rate, Qs, air in this case, primary pressure, Pp, secondary pressure, Ps, and 

diffuser pressure, Pd. The test rig was constructed with the assistance of a senior capstone 
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group. Once built, the sensors were calibrated, and an array of experiments were 

conducted with the test rig to examine each ejector operation. Data was recorded and 

analyzed to serve in the two parts of the experiments. The test rig contains two individual 

barrels, one connected to the secondary inlet and one connected to the diffuser outlet or 

discharge barrel of the ejector pump, with 2” ID PVC piping. A schematic diagram of the 

test rig is shown in Figure 13. A centrifugal pump, drawing from the bottom of the 

discharge barrel, ensures drawing liquid only, feeding motive flow.   

 

 

Figure 13 A schematic diagram of the test rig and A 3-D rendering of the test rig 

  

The motive flow rate is an independent input that it could be changed from time 

to time as wished. The bypass valve is used to control the flow rate of the motive flow. In 

case of a fully closed valve, the highest motive flow rate occurs. In case of a fully open 

valve, the lowest motive flow rate occurs. Induced flow is drawn into the ejector from the 

suction barrel connected to the secondary inlet. The suction barrel is open to the 

atmosphere and maintains a constant level of available fluid by a return pipe angled from 

the discharge barrel back to the suction barrel in single-phase flow. In two-phase flow, 

the return valve is fully closed to prevent any liquid from running into the suction barrel. 
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In two-phase flow, the induced fluid is air only. A 3-D rendering of the test rig is shown 

in Figure 13.  

  

 In order to evaluate the performance of both single-phase and two-phase ejector 

pumps by using Eq. 1-1 and Eq. 1-2 and then Eq. 1-3, five measurements are required: 

three pressures (primary (motive), secondary (suction), and discharge) and two flows 

(primary (motive) and secondary (suction)).  

  

 The pressure transducers are in the appropriate locations to detect the primary 

nozzle pressure, secondary inlet pressure, and discharge pressure. The primary flow 

buddle wheel meter is located right before the bypass valve. The secondary flow buddle 

wheel meter is located on the return from the discharge barrel to the suction barrel for 

single-phase flow only.  

  

 Due to the limits caused by the placement of the secondary flow meter, the 

scope of the data compiled from this test rig applies only to steady-state operation. A 

sixth data variable, the airflow rate through the ejector induced during two-phase 

operation, is required for the purpose of developing the analytical model. The method of 

measurement is discussed later. 

 

 Clear ejector pumps manufactured by 3-D Printer were used to enable 

observation of the two-phase flow. The clear ejector is a typical liquid ejector containing 
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the four sections previously discussed: a primary nozzle, a secondary flow inlet, a 

constant-area mixing chamber, and a diffuser.  

 

Nine clear ejectors were printed to investigate the effect of the geometry on the 

ejector performance. As mentioned, nine ejectors have been used in this work with nine 

different geometries. The only independent parameter, primary flow rate, is fixed at one 

level. Each experiment was repeated three times to ensure reproducing data for 27 

experiments for all ejectors.  

  

 For safety purposes, water was used as the liquid phase of the system in place of 

jet fuel, and air was the gas phase. To begin each experiment, the discharge barrel was 

filled with running water to ensure water reached the centrifugal pump. The centrifugal 

pump was started with the bypass valve fully closed and the suction barrel valve was 

closed to circulate the water to prime the system. Once all of the air is displaced from the 

piping and ejector pump filled with water, the suction barrel valve was opened. The 

system is then given sufficient time to reach steady-state operation before data collection 

was initiated.  

  

 Each of the four variables was recorded with a data acquisition system on a 

computer via transducers and meters. National Instruments LabVIEW computer software 

interfaces with the data acquisition system and was used for data logging during the 

experiments. The pressure meters sent voltage outputs directly to the system, and then the 

system was calibrated to read the psig except when the secondary pressure, Ps, was 
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calibrated to read the psia, the pressure that could fall below the atmospheric pressure. 

The flow meters sent frequencies to the transducers that were also calibrated to send 

voltage to the system and read as GPM. Eqs.3-54 and 3-58 describe that processes: 

 
3.0029 0.0	
   188

pp PP v= −  3-54 

5.9995 0.0	
   164
ss PP v= −  3-55 

2.9952 0.0	
   036
dd PP v= −  3-56 

	
  5
pp QQ v=  3-57 

	
  5
ss QQ v=  3-58 

The resultant secondary pressure, in psig, is found by Eq. 3-59: 

 

( ) 05.9995 0.0164	
  
ss PP v P= − −  3-59 

where P0 is the atmospheric pressure reading of the laboratory. 

 

The data acquisition system averages data points every second for each of the four 

variables. Approximately 120 data points are recorded for each experiment at steady-state 

conditions. With two-phase conditions, a sixth data set must be included for the flow rate 

of the air induced in the secondary fluid. Here the trash bag method was employed. It is 

used by the HVAC industry and involves measuring the time required to fill a 50 lb trash 

bag. Then the calculation for the airflow rate can be determined by using Eq. 3-60:  
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bag
a

V
Q

t
=  3-60 

This strategy gives a measurement of volumetric airflow rate without depending 

on sampling a small amount of the flow and assuming uniformity. 

Error can be lessened by utilizing an unbending edge for the air to flow into the bag and 

by adjusting the sack to keep up a uniform shape after filling [58, 59]. Because of the 

visual nature of this technique, there is some variation from person to person, though it is 

thought to be low.  

 

For these experiments, the same person has been used to run the clock that times 

the filling of the sack. Error is acceptable within 10% [58, 59]. The trash bag technique, 

as connected to the two-phase discharge barrel, can be found in Figure 14. 

 

As can be seen in the photo, the outlet barrel is tightened with a top cover and a 

fitting is attached to an opening in the top that decreases the range of actuated air that can 

leave the barrel. A plastic piece is connected to a standard, financially accessible trash 

bag that fits cozily into the fitting on the barrel, driving all air to go into the bag. 

 

The waste bag is fixed along its edge, and a similar trash sack is used as a part of 

all the two-phase tests. The waste bag rig is not connected to the outlet barrel until the 

steady-state is achieved. At first, the waste bag is consistently adjusted to expel a 

reasonably expected amount of air. After that, it is permitted to fill uninhibited. The full 

trash bag opens into its final shape as seen.  
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Figure 14 Visual of left empty and right full trash bag for airflow measurement 

 

 

 

 

 

 

 

 

 

 

When information for all examinations is collected, investigation can start. An empirical 

model is created to improve the analytical model's ability to the forecast the entrained 

stream properties. Analysis also requires computing the performance characteristics 

seenin Chapter I using Eqs.1-1 – 1-3.  A representative value ofN ,M  and η  for each 

single-phase and two-phase test are used to align the analytical model.  

3.1.4.1   ERROR ANALYSIS 

The sensors are found as exhibited in “Mechanical Measurements” by Beckwith. 

[60]. The precision of the analytical model depends on those error equations.  The sensor 

error starts with understanding the aggregate error in the voltage readings, which is a 

function of both the accuracy and inclination error as seen in Eq. 3-61:  
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( )
1

2 2 2	
   	
   	
  
iv

u PrecisionError Bias Error= +  3-61 

where i  is each individual sensor including primary, secondary, and discharge pressure 

sensors, and primary and secondary flow meters.  Precision error accounts for 

fluctuations in the voltage signal sent from the sensor.  Bias error is a function of 

accuracy of the device’s calibration and dimensional tolerances.  Precision error is 

calculated by Eq. 3-62, and bias error is calculated by Eq. 3-63: 

2	
   	
  
cezPrecisionError
n

σ
=  3-62 

( ) ( )	
   	
   	
  Bias Error Reading GainError Range Offset Error= +  3-63 

where eσ  is the standard deviation of the sensor voltage readings, 
2

cz  is the value from 

the students t-distribution for a 95% confidence level, and n  is the number of readings 

taken. Both gain error and offset error are values based on the voltage range of the 

individual sensor and available in the datasheet for the specific data acquisition system 

used. 

 

The uncertainty in each measured value is then propagated from the total 

uncertainty in the voltage measurement. To do so, the total voltage uncertainty from Eq.  

3-61 is multiplied by the derivative of the voltage conversion equation for each individual 

sensor, particularly the derivatives of Eqs. 3-54-3-58 Equations 3-64 and 3-65 represent 

the total error for the different data readings: 
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j i

j

j
P v

P

P
u u

v
∂

=
∂

 3-64 

l k

l

l
Q v

Q

Qu u
v
∂

=
∂

 3-65 

where j 	
   is the pressure sensor variable (primary, secondary, or discharge) and l   is the 

flow meter variable (primary or secondary). The uncertainty must be propagated again to 

find the voltage of the dependent variables:N ,M , andη : 

 
1
22 22

P s dN P P P
P s d

N N Nu u u u
P P P

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂⎢ ⎥= + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 3-66 

1
22 2

p sM Q Q
p s

M Mu u u
Q Q

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

 3-67 

1
22 2

N Mu u u
N Mη

η η⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥= +⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 3-68 

With this error analysis, all uncertainties must be independent of each other and have the 

same probability of occurring [60]. 
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3.1.4.2   MATRIX EXPERIMENT FOR VARIOUS GEOMETRIC PARAMETERS  

It was interesting to determine the effect of the two geometric parameters: The 

length of mixing chamber, L, and the diameter of nozzle, d, on the efficiency of the 

ejector. Three levels for each parameter were chosen to cover the range of interest.  

The factors and their chosen levels are listed in Table 4. They define the experimental 

region or the region of interest. The reason for this is to determine the best setting for 

each parameter, so that the efficiency is maximized.  

Table 4 the factors and their chosen levels 

Factor Levels 
1 2 3 

L 160 200 240 
d 9.6 12 14 

The matrix experiment is shown in Table 5. It consists of nine individual experiments 

that correspond to nine rows. The two columns of the matrix are the two factors as 

specified in the table. The data in the matrix are the levels of factors. Thus, experiment 1 

is to be tested with each factor at the first level. Referring to Table 4, it can be seen that 

the factor levels for experiment 1 are 160 mm, and 9.6 mm. The matrix experiment of the 

table is the standard orthogonal array L9 of the Taguchi and Wu. The full range of the 

matrix experiment can be seen in Table 6 

Table 5 matrix experiment 

Exp. No. Column Number and Factor assigned Efficiency 

 
1 L 2 d (output) 

1 1 1 η1	
  

	
  

2 1 2 Η2	
  
3 1 3 Η3	
  
4 2 1 Η4	
  
5 2 2 Η5	
  
6 2 3 Η6	
  
7 3 1 Η7	
  
8 3 2 Η8	
  
9 3 3 Η9	
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Table 6 orthogonal array L9 for the full range of the various geometries 

Exp. No. Column Number and Factor assigned Efficiency 
1 L 2 d 

1 160 9.6 10.015	
  
2 160 12 9.259	
  
3 160 14 7.721	
  
4 200 9.6 13.45	
  
5 200 12 9.37	
  
6 200 14 7.886	
  
7 240 9.6 14.76	
  
8 240 12 9.915	
  
9 240 14 7.974	
  

Table 6 shows the full region of interest with corresponding efficiency. After 

producing this table, the nine ejectors listed in Table 7 can be designed. All the geometric 

parameters have been chosen accordingly from published studies to maximize the outputs 

and efficiencies of the selected geometries.  

Table 7 geometric parameters for all nine ejectors  

Group	
   No.	
   L	
  (mm)	
   d	
  (mm)	
   D	
  (mm)	
   L/D	
   d/D	
   s/D	
  
A	
   1	
   160	
   9.6	
   40	
   4	
   0.24	
   0.0375	
  
B	
   2	
   160	
   12	
   40	
   4	
   0.3	
   0.0375	
  
C	
   3	
   160	
   14	
   40	
   4	
   0.35	
   0.0375	
  
A	
   4	
   200	
   9.6	
   40	
   5	
   0.24	
   0.0375	
  
B	
   5	
   200	
   12	
   40	
   5	
   0.3	
   0.0375	
  
C	
   6	
   200	
   14	
   40	
   5	
   0.35	
   0.0375	
  
A	
   7	
   240	
   9.6	
   40	
   6	
   0.24	
   0.0375	
  
B	
   8	
   240	
   12	
   40	
   6	
   0.3	
   0.0375	
  
C	
   9	
   240	
   14	
   40	
   6	
   0.35	
   0.0375	
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Figure 15 geometric parameters for group A  

 

 

Figure 16 geometric parameters for group B 
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Figure 17 geometric parameters for group C 
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4   CHAPTER IV  

4.1   RESULTS AND DISCUSSIONS  

4.1.1   ANALYTICAL MODEL RESULTS 
 The analytical model predicts the four parameters necessary to compute the 

performance of the system. They are the secondary pressure, the two-phase flow ratio, the 

pressure ratio, and the efficiency. As aforementioned, the loss factors are the key to 

computing the efficiency analytically, and they have to be calculated via the analytical 

model. A review of the literature was made for the loss factors, with only three papers 

addressing the two-phase flow inside the ejector : Petrie et al.[61], Jiao et al.[20], and 

Noronha et al.[21, 22]. 

  

 Some researchers, consider the loss factor in the mixing chamber and diffuser to 

be an loss factor, Kmd, when they have applied Eq. 3-28. Out of many researchers, only 

Jiao et al. set a range for Kmd over a set of experiments.  

Table 8  the comparison with literature for the loss factors 

Source Kp Ks Km Kd Kmd 

Gosline & O’Brien [3] 0.15 0.00 0.28 0.10 0.38 

Cunningham [62] 0.10 0.00 -- -- 0.30 

Sanger [9] 0.14 0.04 0.10 0.10 0.20 

Sanger [9] 0.09 0.08 0.10 0.10 0.20 

Petrie et al. [61] 0.03 0.00 -- -- 0.20 

Jiao et al. [20] 0.04 0.00 -- -- 0.10-0.50 

Noronha et al. [21, 22] 0.10 0.00 -- -- 0.19 

This work 0.14 0.21-0.34 0.11-0.25 0.00-
0.16 0.13-0.41 
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 In addition, loss factors in the secondary tube were recorded as a zero value. 

That is far from realistic physics [21, 22]. Since zero is a value, it might be replaced with 

an finite value in order to compute the loss factor in the secondary tube [8]. 

A valueless secondary inlet loss factor is convenient when the secondary tube has gas 

only [15] unlike our experiments. 

  

 Table 8 shows that the published loss factors are consistent with the one that 

was calculated in this work. A range is adopted for the loss factors in this work due to the 

calculations that have been made for them. All the researchers use empirical data for the 

loss factors, yet this work calculates the loss factors.  

  

 Marini et al.’s work discovered that the diffuser loss factors could become 

insignificant for low discharge flow [11]. The range of the loss factors that was found is 

logical and gives precise results. The ability of an analytical model to produce a 

characteristic curve for both single-phase and two-phase flow is crucial. 

The analytical model produced the characteristic curves for single-phase flow in the first 

stages of the work. It includes the repetitions for each individual experiment linked with 

estimated error.  

  

 The characteristic curve should be studied carefully to identify any unusual 

curves that may show that the analytical model does not work. There is a minor curvature 

in the slope that presents the pressure ratio, and it depends on the area ratio that is an 
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input in the analytical model [9]. Moreover, close to the mid-point where the high 

efficiency is, all the data points are plotted under the normal operation [9]. 

 

 
 

 
 

 
Figure 18 Analytical model characteristic curves for single-phase experiments 
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 The plotted data on the characteristic curve gives a wide view of the analytical 

model’s ability versus the experimental data. All experimental data falls within the curve 

except one datum as shown in Figure 18. As mentioned, the error is involved in the 

analytical model and it is normal range.   

  

 The error fluctuates considerably between the five experiments because it is a 

function of the actual sensor readings, and he lowest primary flow rates get especially 

high error rates. Yet, when the flow rate increases, the error decreases. The variability 

between the repetitions of Experiment 1 is the only obvious outlier. The repetitions 

between the other four single-phase experiments show strong agreement. With low 

motive flow rate and low available fluid head, which is the lowest of the ejector 

operations, there is variation in ejector performance that could be explained by the 

sensors limitations for low readings. In addition, there is not good agreement between 

one repetition of Experiment 1 and the analytical model’s prediction that indicates this 

may be an outlier. Now, the performance of the analytical model is ready to be 

considered over the whole range of ejector operations, including both single-phase and 

two-phase flow.   

  

 For single-phase performance, predicting the pressure ratio, presented in Figure 

19, and efficiency, as shown in Figure 20, is important. For two-phase performance, the 

third ratio, which is flow ratio, is also important due to the differences in densities 

between the primary fluid, water, and secondary fluid and air, as shown in Figure 21, and 

a prediction of secondary pressure presented in Figure 22.  
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 Better agreement appears between the empirical data and the analytical data of 

the pressure ratio for the two-phase experiments than in the single-phase experiments. 

This relates to lower error for the two-phase experiments because most were operated at 

the higher motive flow rates. The highest level of error happens for the single-phase 

experiments with the lowest motive flow rate. With sequential, the same thing happens 

for efficiency. For the single-phase experiments, there is no error coupled with the flow 

ratio because flow ratio is an input into the model.  The error for the efficiency is the 

same as the error for the pressure ratio which both are dependent variables. For the two-

phase experiments, the average of the single-phase experiments is the predicted flow ratio 

input into the analytical model.  The final flow ratio for the two-phase experiments is an 

output of the analytical model after calculating the quality for the induced air in the 

empirical model.  

  

 Figure 21 shows some error in the prediction of the two-phase flow ratio, albeit 

very slight. Experiment 3, which is operated at the highest motive flow rate and the 

lowest available fluid head, shows the largest disagreement because the highest induced 

air and the lowest flow ratio occurs here.  

 

 Lastly, as mentioned earlier, the secondary pressure for two-phase flow is 

calculated by comparing the predicted data with the empirical data. Experiment 6 shows a 

weak agreement, while the rest has a good agreement.  
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Figure 19 Analytical model prediction of pressure ratio 
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Figure 20 Analytical model prediction of efficiency 
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Figure 21 Analytical model prediction of flow ratio 
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Figure 22 Analytical model prediction of secondary pressure 
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4.1.1.1   MODEL VERIFICATION 

The results of the two validation experiments further proves that the developed 

analytical model is a reliable and accurate method of predicting ejector performance 

using ejector geometry and flow conditions. The specific results of the individual 

performance parameters determined by the validation experiments are included in Table 

12.  Similar to the error results of the standard array of experiments, the error results for 

the validation experiments are provided in Table 11 and Table 12.  

Table 9 Analytical model results (percent error) 

 
Model Phase Ps N M η 

Single 16.94 6.49 -- 6.48 
Two 7.93 2.61 2.14 3.89 

Overall 12.94 4.76 2.14 5.33 
 

Table 10 Analytical model results (mean square error) 

 
Model Phase Ps N M η 

Single 0.014 0.007 -- 1.941 
Two 0.024 0.002 0.051 0.369 

Overall 0.019 0.006 0.051 1.468 
 

Table 11 Analytical model verification results (percent error) 

Model Phase Ps N M η 
Single 20.15 3.59 -- 3.55 
Two 0.69 0.39 3.30 3.49 

Overall 10.42 1.99 3.30 3.52 
 

Table 12 Analytical model verification results (mean square error) 

Model Phase Ps N M η 
Single 0.014 0.003 -- 0.730 
Two 0.002 0.000 0.064 0.350 

Overall 0.010 0.002 0.064 0.572 
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Analytical model results for the prediction of the performance parameters of the 

verification experiments are consistent with the results of the original experiments for 

both the single-phase and two-phase flows. This shows very strong model performance, 

repeatable at data points contained within the examined experimental data set. 

 

Final model performance consideration is given to comparing the newly 

developed model to previously published two-phase models in the literature. Three 

models are readily available with specific published results, particularly the root mean 

square error of the pressure ratio prediction.  Although specific data that could be run 

through the model is not available, the root mean square error for the data set contained 

can be determined and is presented in Table 13 with the other models’ root mean square 

error. 

The model developed through this work demonstrates significant improvement 

over previous models, reducing the root mean square error to less than 10% of the 

previous best value. This is a significant improvement and shows the benefit of 

calculating the loss coefficients based on the geometry and flow conditions contained 

within the ejector rather than fitting empirical data. Constant loss coefficients across a 

Table 13 Comparison of published two-phase model pressure ratio prediction results 

Source Root Mean Square Error 

Petrie et al. [61] 0.401 

Jiao et al. [20] 0.255 

Noronha et al. [21, 22] 0.224 

This work 0.006 
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range of empirical data may not adequately consider conditions as they vary between 

experimental parameters. 

4.1.2   UNCERTAINTY MODEL:  
  

This section shows the results for the Monte Carlo method discussed earlier. The 

output of the NESSUS software [56], using Monte Carlo method can solve for the 

cumulative probability, Figure 23, probabilistic sensitivity factors, Figure 24, and 

sensitivity levels, Figure 25. A cumulative probability graph shows the relationship 

between the pressure ratio N and the probability of occurrence. For example, there is 10% 

chance that the pressure ratio N is 0.041 using this model and almost 99% chance that it 

is 0.075. This probability will change if the random variables are changed. Probabilistic 

sensitivity factor can determine the sensitivity of the pressure ratio N to each of the 

random variables used (loss coefficients).  

 

Figure 23  Cumulative probability for the pressure ratio N 
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Figure 24 Probabilistic sensitivity factors 

 

 

Figure 25 Sensitivity levels 

\ 
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4.1.3   NUMERICAL  
  

The model was solved for the velocity and pressure across the ejector. The 

solution of these equations provides detailed results on velocity, pressures, and extent of 

secondary fluid inside the ejector. Simulated velocity, pressure, and volume fraction of 

primary phase in the form of contour plots are shown in Figure 26-Figure 34.  

 

Figure 26 Pressure contour plots of various geometries 

 

Figure 27 Velocity contour plots of various geometries  
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Figure 28 Volume fractions of the primary phase contour plots of various geometries 

 

Figure 29 Pressure contour plots of various geometries 
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Figure 30 Velocity contour plots of various geometries 

 

 

Figure 31 Volume fractions of the primary phase contour plots of various geometries 
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Figure 32 Pressure contour plots of various geometries 

 

 

Figure 33 Velocity contour plots of various geometries 
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Figure 34 Volume fractions of the primary phase contour plots of various geometries 

 

The primary fluid creates a vacuum region as seen in the pressure contours. The 

gas is induced to enter the mixing chamber and partially mix with the primary fluid. 

Because the ejector follows Bernoulli’s principle, which states that “pressure is inversely 

proportional to velocity, ” the basic assumptions that the driving force for the induced gas 

is a power imparted by the liquid is reinforced. However, the fluids slowly diffuse and 

become a mixture, as can be seen in the contours of volume fraction. This envelope does 

not depend upon the velocity and is a constant for all the flow rates, i.e., when the flow 

rate is changed the actual values of velocity will change, but not the shape of the 

envelope. The lowest pressure region in the whole ejector geometry is at the secondary 

inlet and the highest-pressure region is in the liquid nozzle exit, which is expected. The 

resultant flow and pressure in the ejector depends upon the geometry of the ejector. The 

results were grouped to better visualize them. They have been divided upon the d, the 

diameter of the nozzle. For example, ejectors 1, 4, and 7 have identical geometries with 

the only exception being the mixing tube length. It has been noted that the most important 
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parameter is the d. The first group that has the high efficiency and high gas induction has 

been illustrated in Figure 26-Figure 28.  

 

Nine ejectors have been built to examine the impact of different geometries on the 

behavior of ejectors. At this point, most attention has been placed on the behavior of the 

flow. The parameters such as mixing tube length, L, and nozzle exist diameter, d, were 

studied computationally. The experimental data was used to capture reliable behavior as 

seen in Table 14. 

Table 14 nine ejectors experimental results  

No.	
   L	
  (mm)	
   d	
  (mm)	
   M	
   N	
   Efficiency	
  
1	
   160	
   9.6	
   4.714	
   0.021	
   10.015	
  
2	
   160	
   12	
   3.125	
   0.03	
   9.259	
  
3	
   160	
   14	
   2.413	
   0.032	
   7.721	
  
4	
   200	
   9.6	
   4.719	
   0.029	
   13.459	
  
5	
   200	
   12	
   3.303	
   0.028	
   9.37	
  
6	
   200	
   14	
   2.446	
   0.032	
   7.886	
  
7	
   240	
   9.6	
   5.185	
   0.028	
   14.763	
  
8	
   240	
   12	
   3.131	
   0.032	
   9.915	
  
9	
   240	
   14	
   2.418	
   0.033	
   7.974	
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 35 the impact of the mixing chamber length, L, and the nozzle diameter, d.  
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As seen in the table, ejectors are divided into three groups based on the similarity 

of their mixing tube length, L. Group A, 1-4-7, has the high efficiency associated with the 

lowest d, group B, 2-5-8, and group C, 3-6-9. As shown, in all three groups, the high 

efficiency occurs with the lowest d. It is thought that the gas induction depends upon 

kinetic energy used by the primary flow to drive gas, which has low density in the 

direction of the mixing flow. In addition, the high efficiency in all groups happens with 

the high flow ratio, M and lowest pressure ratio, N, which is consistent with the ejector 

pump characteristic curve. Moreover, the best group in all three combinations is Group 

A, d=9.6 mm. Figure 35 plots readings from the table to be more easily visualized.  

Table 15 the impact of geometric parameter with using fitting parameter, α, on gas induction 

No.	
   L	
  
(mm)	
  

D	
  
(mm)	
   L/D	
   d	
  

(mm)	
   d/D	
   Experiment	
  
(m3/s)	
  

Simulation	
  
(m3/s)	
  

α	
  

1	
   160	
   40	
   4	
   9.6	
   0.24	
   0.0063	
   0.0063	
   0.4	
  
2	
   160	
   40	
   4	
   12	
   0.3	
   0.0061	
   0.0061	
   0.498	
  
3	
   160	
   40	
   4	
   14	
   0.35	
   0.0056	
   0.0056	
   0.6	
  
4	
   200	
   40	
   5	
   9.6	
   0.24	
   0.0063	
   0.0063	
   0.356	
  
5	
   200	
   40	
   5	
   12	
   0.3	
   0.0063	
   0.0063	
   0.4	
  
6	
   200	
   40	
   5	
   14	
   0.35	
   0.0059	
   0.0059	
   0.45	
  
7	
   240	
   40	
   6	
   9.6	
   0.24	
   0.0069	
   0.0069	
   0.239	
  
8	
   240	
   40	
   6	
   12	
   0.3	
   0.0061	
   0.0061	
   0.376	
  
9	
   240	
   40	
   6	
   14	
   0.35	
   0.0058	
   0.0058	
   0.4	
  

 

Using the fitting parameter, α, shows excellent agreement between experimental 

results and simulation results as seen in Table 15. This excellent match comes from 

changing α to find a best match on gas induction for each ejector.  
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The increasing in L will decrease in α. It was discovered that ejector 7 has the 

lowest α among all ejectors and the highest induced gas as well. The same trend happens 

in all groups as seen in Figure 36-Figure 38. 

 

Figure 36 Group A; Variation of α with different Mixing tube length and constant nozzle diameter, d  

 

  

Figure 37 Group B; Variation of α with different Mixing tube length and constant nozzle diameter, d 
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Figure 38 Group C; Variation of α with different Mixing tube length and constant nozzle diameter, d 

 

The numerical results, also, show the impact of variation of geometers on the gas 

induction. The categories mentioned earlier used a fixed d and changing L. In order to 

address the results in a new perspective, fixing L and changing d is necessary. Thus, the 

new groups were L1, 1-2-3, L2, 4-5-6, and L3, 7-8-9. As seen in Figure 39-Figure 41.  

 

Figure 39 Group L1; Variation of gas induction with different nozzle diameter, d and constant Mixing tube 

length, L  
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Figure 40 Group L2; Variation of gas induction with different nozzle diameter, d and constant Mixing tube 

length, L 

 

 

Figure 41 Group L3; Variation of gas induction with different nozzle diameter, d and constant Mixing tube 

length, L 
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4.1.4   EXPERIMENTAL 
  

Data from all 27 experiments and the two additional validation experiments was 

compiled and analyzed. The results of the experiments were studied to determine the 

impact of the induced fluid stream comprised of both water and air. An empirical model 

was subsequently developed to predict the quality of the induced stream as a function of 

the primary flow rate and the available secondary fluid height. 

 

 Two-phase flow, when the liquid level in the inlet barrel is below the bell 

mouth, was found in half of the experiments. Here, the ejector sucks 100% air into the 

system and it mixes with the primary fluid which is water and, because of the two 

different densities, makes turbulence. It was seen that this turbulence in the mixing 

chamber loses most of its energy as shown in Figure 42, and that when air is induced, the 

flow ratio is decreased. Low flow ratio happens due to the different densities of the two 

fluids. The air is only 0.12% of the density of water and there were high quantities of air 

transported to the outlet barrel by the primary fluid, water. At low primary flow rate, the 

flow ratio is going to be higher and vice versa- when primary flow rate is high, the flow 

ratio is low.  

  

 The rest of experiments were single-phase as shown in Figure 43. When there is 

no air induction due to the water height level in inlet barrel, the flow ratio is high and 

single-phase flow occurs. All the data on the Y-axis is with no airflow. However, it is 

seen from the Figure 44 that when the airflow rate increases, the corresponding flow ratio 

decreases. This is not unexpected when one looks at the flow ratio equation.  



74 
 

  

 In the same manner, Figure 45 shows that the pressure ratio with two-phase 

flow is less than the one is found with single-phase. That is due to the vacuum that 

happens in secondary pressure because it is below the atmospheric pressure which is 

negative.  It can be seen that efficiency is reduced due to that.  

 

Figure 42 Flow ratio versus airflow rate 

 

Figure 43 Pressure ratio versus air flow rate 
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 Figure 46 shows the dependency of primary pressure, Pp, on the primary flow 

rate, Qp. Because higher flow rates result in high pressure it was expected that the 

diffuser pressure, Pd, was between these. The pressure balance is shown in Figure 47. 

The primary pressure is the highest pressure due to the primary fluid that has been 

delivered by the centrifugal pump. In contrast, the secondary pressure is the lowest 

pressure due to the fall below the atmospheric pressure at the inlet barrel.  

 

 

Figure 44 Pressure versus primary flow rate 
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 The secondary pressure is dependent on two independent aspects; the primary 

flow rate and the available fluid head in the inlet barrel. This relationship is shown in 

Figure 45. When primary flow rate is high, much more fluid is induced, which makes the 

pressure decrease below 0 psi. All of these factors cause the pressure ratio to decrease 

with the increase of the air flow rate.  When higher flow rate is provided and lower inlet 

barrel water height happens in sequence, the pressure ratio increase of the secondary flow 

is slight as the secondary pressure decreases. The increase in the primary pressure 

significantly increases the pressure drop of the primary flow and the pressure ratio. The 

decrease of the flow ratio and the pressure ratio cause a large decrease in the efficiency of 

the ejector pump during two-phase flow. This is shown in Figure 46. 

 

Figure 45 Secondary pressure as a function of primary flow rate and inlet barrel fluid 

level 
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 The maximum ejector efficiency can be seen at a low motive flow rate and a 

high level of available fluid.  After collecting and analyzing all the data, the estimated 

error linked with each sensor data measurement is determined by Eqs.64–3-65and is 

presented in Table 16.   

The estimated error is low for all five sensors, yet the secondary pressure 

transducer is greater than the others are. This is because the secondary pressure sensor 

outputs pressure in psia versus psig and uses an additional sensor to make the conversion 

to psig. The error is presented in conjunction with the analytical model results. The 

 

Figure 46 Efficiency versus air flow rate 

Table 16 Error associated with data variables 

 
Principal Measured Variable Estimated Error 

Motive Pressure ± 0.19 psig 
Secondary Pressure ± 1.61 psig 
Discharge Pressure ± 0.16 psig 
Motive Flow Rate ± 0.10 GPM 

Secondary Flow Rate ± 0.10 GPM 
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ejector used for examining two-phase performance was manufactured from clear acrylic 

plastic. 

 

During doing the experiments, it was found that the change in fluid height is the 

same for a certain level of primary flow rate, regardless of the available fluid in the inlet 

barrel. Due to that, more experimental work is needed to predict the quality of the 

secondary flow stream when two-phase conditions occur, and it will be necessary to use 

an empirical model to examine an analytical model. Some data was taken at different 

primary flow rates not included in the experimental matrix to get a better look at the 

relationship and is shown in Figure 47: 

 

 Figure 47 Empirical relationship for ΔH as a function of Qp 
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Once the change in the inlet barrel available fluid height is determined, the fluid 

level that occurs while the system is running is known, and the actual quality of the air 

entrained in the secondary fluid is determined from the empirical model shown in Figure 

48. The empirical model is a function of two independent variables, the motive flow rate 

and the available fluid height at the inlet barrel. These two measurements determine the 

flow rate of air in the induced fluid stream. Using those two models to determine the  

induced air flow rate, the empirical models are accurate within 5.55%.  The model 

predicts the airflow rate of the two-phase verification experiment with 3.46% accuracy.  

 

 

 

 

 

 

Figure 48 Empirical model for volumetric flow rate of induced air 
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5   CHAPTER V 

5.1   CONCLUSION 

The present work is a continuation of a project started with support from Boeing 

Company for improving the efficiency of ejectors used in the Fuel System for large 

aircraft [50]. The results of the presented research have addressed many of the 

deficiencies in our original work. Improvements include refining the analytical models 

with more accurate parameters estimations, including uncertainties that were never 

included in any previous models, and development of cost and time efficient numerical 

simulation of the flow behavior inside the ejectors. Both analytical and numerical models 

were verified experimentally in the present work. 

The following specific conclusions can be drawn from the present work: 

1.   An integrated modeling approach was developed for understanding two-phase 

flow inside ejector pumps. 

2.   The introduced approach involves analytical, experimental and numerical 

modeling methods which will help in optimization of performance of the ejectors 

in terms of energy utilization, and delivered flow rate. 

3.   The developed analytical model extends the single-phase flow model for 

predicting behavior and performance of ejectors to two-phase flow models.  

4.   Uncertainty, ignored in previously developed analytical models, is introduced in 

the present model in order to improve its prediction accuracy to address the 

analytical loss coefficients, Km and Ks.    
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5.   A numerical simulation modeling method using computational fluid dynamics is 

developed to address cases that difficult to predict analytically or expensive 

experimentally.  

6.   Comprehensive experimental investigation was conducted using a specifically 

built fluid transportation system to verify analytical and numerical predictions.  

7.   All results indicate that increasing the mixing chamber length and decreasing the 

nozzle diameter would result in increasing flow efficiency. 
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