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ABSTRACT 

 

In this dissertation, I present a new framework for automated description, archiving, and 

identification of paper watermarks found in historical documents and manuscripts. The early 

manufacturers of paper have introduced the embedding of identifying marks and patterns as a sign 

of a distinct origin and perhaps as a signature of quality. Thousands of watermarks have been 

studied, classified, and archived. Most of the classification categories are based on image similarity 

and are searchable based on a set of defined contextual descriptors. The novel method presented 

here is for automatic classification, identification (matching) and retrieval of watermark images 

based on chain code descriptors (CC). The approach for generation of unique CC includes a novel 

image preprocessing method to provide a solution for rotation and scale invariant representation 

of watermarks. The unique codes are truly reversible, providing high ratio lossless compression, 

fast searching, and image matching. The development of a novel distance measure for CC 

comparison is also presented. Examples for the complete process are given using the recently 

acquired watermarks digitized with hyper-spectral imaging of Summa Theologica, the work of 

Antonino Pierozzi (1389 – 1459).  The performance of the algorithm on large datasets is 

demonstrated using watermarks datasets from well-known library catalogue collections. 
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CHAPTER 1 

INTRODUCTION 

Paper watermarks are invaluable to the scholars and enigmatic to the novice.  Watermarks 

are interesting, beautiful and revealing. Intrigued by watermarks, people have been searching, 

discovering and cataloguing them for centuries [1-9]. The oldest known watermark was 

discovered by Briquet printed on paper produced in 1292 in Fabriano, Bologna, Italy [8]. 

Catalogued as watermark #5410, it represents a Greek cross with circles at the cross-center and 

cross-ends [Figure 1.1]. 

 
Figure 1.1: Digital images of the oldest known paper watermarks. Greek cross 

(#5410) and name of paper maker (#12021). C. Briquet, publishes Les filigranes [8] 

 

Perhaps the very first watermarks were produced by broken mould wires leaving noticeable 

marks in the dried paper in addition to the inherent laid and chain lines artefact [5]. Soon after 

the paper production began in Europe, some manufacturers added wires to form simple shapes 

to leave an impression with a desired pattern on the finished paper product. The resulting effect 

was an embedded “wire-mark” left during the pulp’s drying process and historically have 

become known as “watermark”. Originally, watermarks may have served to identify papers 

produced by different workmen within a factory to mark specifically their production for which 

they were “paid by piece” [2]. They also were used as a proof of the manufacturing date, as an 
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indication of paper size and orientation during the paper sheet cutting process. Later on, over 

the centuries and nowadays, paper watermarks are used to identify paper owners, authenticity 

and also for protection from forgery and theft of important documents such as bank notes, 

passports, and others. 

 

1.1  Research motivation  

I was introduced to the world of historical documents and paper watermarks in 2014 when 

I joined CODICES, a multidisciplinary team of professors and graduate students at University 

of Missouri – Kansas City. The team was engaged in studying historical books and 

development of methods for digital imaging and artefacts discovery. In particular, I was 

involved in the hyperspectral imaging of Summa Theologica (Figure 1.2). The four-volume set 

is the work of Antonino Pierozzi (1389 – 1459) and contains many of the contemporary 

watermarks.  

 
Figure 1.2. Prima, Secunda and Tertia of Summa Theologica – the work of Antonino 

Pierozzi (1389 – 1459). 
 

In the process of learning about watermarks, their origin and historical importance, I also 

understood that there are no easy and automated methods for watermarks description, 

cataloging, and identification. Based on my experience in digital image processing and 

biometrics, I started to search for an applicable method to describe the watermarks in a concise 
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and unique mode. After all, the watermarks are a specific class (or classes) of shapes and there 

are numerous methods for shape description. In summary, I have identified an existing problem 

and I challenged myself to find a good and possibly an elegant solution. 

 

1.2 Thesis objective 

The objective of this thesis is to develop a method for deterministic description of paper 

watermarks found in digital images of historical documents and manuscripts. The goal is to be 

able to describe a watermark in a way that can result in a unique and concise code that can be 

used for identification. The ability to generate such an ID would result in capability to facilitate 

the automatic classification, comparison, search and retrieval of watermark databases. 

It turns out that the identified problem with watermarks description and classification is a 

persistent one. Currently, the description, classification, storage, search and retrieval of 

watermarks is text based. This approach is known as a content based image retrieval (CBIR) – 

a predefined list of categories and features used to describe a watermark for classification and 

identification purpose. Some of the difficulties of this approach arise from the different level 

of adherence to the existing standards for watermarks database development. Many datasets 

and collections in libraries are organized without an overreaching and an interoperability 

governing standard. A set of predefined parameters and criteria are used for organizing the 

digital images of watermarks (qualitative type classification). The modern tools for data 

storage, organization, and online access have facilitated the use of the existing databases and 

their expansions. However, the process model still remains a highly intense work based on 

textual descriptions and search interactions. The development of better methods for archiving 

and search models is ongoing. 
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In their book “The grand design” [10], S. Hawkins and L. Mlodinow outline four important 

characteristics of a good model. They specify that a good model is: 

1. Elegant. 

2. Contains few arbitrary or adjustable elements. 

3. Agrees with and explains all existing observations. 

4. Makes detailed predictions about future observations that can disprove or falsify 

the model if they are not borne out. 

The authors elaborate that it is not clear how to define the first characteristic: “elegant”. 

They referred to the Einstein’s famous quote “All thing have to be made simple, but not simpler 

than that.” Nevertheless, elegant and the other three characteristics are very applicable to the 

features of a good descriptor. Actually, a descriptor is a product of a method that follows a 

selected representation model. In this regard, ideally, the watermark descriptor would have the 

following properties: 

 Universally applicable 

 Easy to generate 

 Unique (ability to capture watermark shapes and details) 

 Complete (there is no need for any additional information) 

 Quantitatively comparable (ability to measure the degree of watermarks’  

similarity) 

This thesis outlines the framework of a method for generation of unique, numerical 

descriptor for identification of digitized watermarks with the desired properties listed above.  
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1.3 Thesis contributions 

The novel contributions in this thesis, titled “Framework for Automatic Identification of 

Paper Watermarks with Chain Codes”, are as follows: 

1. Generation of unique numerical watermark descriptor based on a chain code. 

2. Method for rotation, scale, and translation invariance of the generated chain codes 

(RST-invariant chain code). 

3. Method for an extended recto and verso variability capture. 

4. Method to compare two chain codes with different size – distance metric for 

similarity measurements. 

5. Exact re-generative model based on chain code with very high ratio lossless 

compression of watermark images. 

6. An alternative, new non-contact watermarks reproduction method. 

7. Development of a composite feature vector (CFV) for complete description and 

comparison of watermarks. 

 

All of the above contributions could be summarized as: 

 Introduction of the C-gram as a unique descriptor of watermarks. 

The design and implementation of the novel methods are described in the following 

chapters. The term “original” could be added to the proposed methods to indicate that they are 

introduced for the first time and are not an alternative (“new”) implementation of an existing 

method. In this regard, five of the seven contributions are original ideas and novel solutions 

with practical applications to paper watermarks. Additional supporting materials associated 

with generation of chain codes are also provided. Performance evaluation of the proposed 

methods is provided and also compared with a leading modern machine learning algorithms 

based on convolutional neural networks and bag of visual words. In the last chapter, after a 

summary and discussion of the proposed framework, I outline directions for further research. 



6 

 

 

1.4    Thesis overview 

 

The previous sections in Chapter 1 have given an introduction to the importance of paper 

watermarks, the problems associated with studying them, and the motivation to develop a 

method for deterministically describing watermarks with ability to compare and identify them. 

The rest of this thesis is organized as follows: 

Chapter 2: Paper and paper watermarks is a brief overview of the history of 

papermaking. It also describes the natural occurrence of the watermarks in the process of 

papermaking and the importance of studying watermarks. The literature review presents a 

coverage of background and literature surveys relevant to the research. The scope was focused 

on paper watermarks and their history, an introduction to the history of paper making and the 

origin and evolution of watermark creation. The chapter offers a review of the techniques used 

for capturing watermarks from historical documents. The current methods for description, 

classification, storage and retrieval of watermarks are outlined along with their limitations. The 

design of a modern hyperspectral imaging system is introduced with demonstration of 

experimental results. Some techniques for watermark images processing and restoration are 

presented. A new method for non-contact watermark reproduction is introduced and 

application examples are demonstrated. 

Chapter 3: Automated identification of paper watermarks provides an overview of 

existing shape descriptors and justifies the applicability of chain code for watermark 

representation. The motivation for a new method of watermark description is further elaborated 

and the implementation is demonstrated.  The generation of the chain code is presented with 

the reverse transform demonstrating that chain codes are inherently a re-generative lossless 
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compression engine. The compression of the chain code is extended with a novel 24-bit group 

presentation with ASCII base 85. The main limitations of the chain codes are described: 1) 

their rotation and scale dependence; and 2) non-existing ability to numerically compare them. 

Chapter 4: Rotation, scale and translation invariant chain code demonstrates an 

original framework for generation of chain codes based on watermark signatures that are 

independent of the size (scale) and orientation (translation and rotation) of the watermark 

image. The minimum boundary box is introduced as a preprocessing technique that provides 

normalization of the watermark images in a dataset and is the basis for generation of rotation, 

scale and translation invariant (RST-invariant) chain codes. The recto and verso imaging 

variability of watermarks is also discussed and a solution for testing and invariant 

representation is proposed. 

Chapter 5: Comparison of chain code introduces an original method for comparison of 

chain codes. The chapter elaborates that while the dependence of chain codes on rotation and 

scale have prevented their use, the ability to compare chain codes was also a dominant limiting 

factor. The review of research works on chain codes and the search for solutions to overcome 

their limitations are presented. Next, the new distance measure algorithm is presented with 

demonstration of its ability to compare chain codes with the same or different lengths. The 

application of the proposed chain code distance metric for watermarks’ similarity measure is 

demonstrated. 

Chapter 6: Automatic identification of watermarks with chain codes is presenting the 

results of the application of the new method to a real dataset of watermarks. The selected 

dataset is described with a statistical justification of the applicable sample test size. The 

performance of the new method is evaluated with receiver operating characteristics curves. For 
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the purpose, a random artificial degradation of the chain codes is introduced. To further 

demonstrate the level of performance of the new method, it is compared with the application 

of modern deep learning technique. A Convolutional neural network (CNN) was constructed 

and applied to the same set of watermark images. In order to expand the sample size, synthetic 

image degradation techniques are used. The expanded dataset was used with k-fold analysis 

and random separation of the data on training and testing subsets. The bag of visual words was 

also tested with ten classes of the same dataset and the classification results are presented with 

confusion matrices for different training and testing scenarios. 

Chapter 7: Watermark composite feature vector (CFV) is introduced to address the 

goal of complete description of watermarks. The complexity of watermarks is demonstrated 

with several examples. The structure, composition and use of the CFV are demonstrated with 

ability to speed up searches and retrievals of watermark database.  

Chapter 8: Summary presents an overview discussion of the work presented in this thesis. 

Conclusions for capabilities of the proposed original framework for automated identification 

of watermarks based on chain code are presented. The achieved results are used to illustrate 

the potential of the new method and to underline the opportunity for possible improvements. 

Future directions regarding this area of research are listed leaving the proposed framework 

open for improvements and optimization. The hope is that this method will become a useful 

tool in filigranology. 
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CHAPTER 2  

PAPER AND PAPER WATERMARKS 

2.1 The history of paper 

Paper was what irreversibly converted societies from “the oral to the written word”. “Paper 

– Paging through history”, by Mark Kurlansky [11], gives a well-justified foundation of 

understanding the importance of paper-making as one of the major technological advances of 

humanity. The book guides the reader through centuries of inseparable co-development of 

human societies and their abilities to make and use paper.  As the author puts it “Studying the 

history of paper exposes a number of historical misconceptions, the most important of which 

is this technological fallacy:  the idea that technology changes society. It is exactly the reverse. 

Society develops technology to address the changes that are taking place within it.” [11, 

Prologue, pp. XIV] 

Many other books make significant contributions to the body of knowledge about paper 

and paper-making [1, 13, 14, and 16].   Because of the quality and significance of the work of 

Dard Hunter, his book of “Papermaking: The History and Technique of an Ancient Craft” [1] 

is a leading example in many reference lists. Hunter’s famous book was published in 1945 and 

numerous editions continue to be valuable sources with very detailed information. In this thesis 

there will be multiple referrals to different sections of Hunter’s book. In his first chapter, 

“Before Paper”, Hunter points out, as Chinese have claimed for centuries, that paper was 

invented in the year 105 CE by an eunuch named Ts’ai Lun [1, 32]. This reference is quite 

common. However, the truth has been challenged (and the legend ruined) by twentieth-century 

archaeological expeditions’ discoveries of paper materials in the dry deserts of Central Asia 

which predate the CE. 
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The exact discovery date of paper as a new surface for writing is not of specific importance 

for this thesis. We may use it as a reference to point that ever since the time of its invention, 

paper coexisted with other materials for writing: papyrus, silk, tapa, parchment, vellum and 

others. The list of essential reference books on the subject of papermaking and the history of 

paper is given in the Bibliography of this thesis [1, 11, 13-16]. Many additional sources are 

referenced throughout the following text. 

From China, papermaking finds its way to Korea and the Japanese archipelago in the sixth 

century. In the seventh century, paper became known in Vietnam and India. Papermaking was 

a well-guarded secret and a source of lucrative income for the Chinese empire. A turning point 

was the battle of Talas in 751 when some Chinese papermakers were captured and possibly 

saved their lives by revealing their craft to the Abbaside Caliphate [17].  

The Arabs learned how to make paper which they called kaghid or qirtas, words believed 

to be of Chinese origin. Through Syria, Egypt and the Northern cost of Africa, the craft of 

papermaking reached Morocco. By the eleventh century, the city of Fez in Morocco had 

become an important paper producer.    The first mention of papermaking in Andalusia, today’s 

Spain, is in 1056 in the town of Xativa. Historically, both Spain and Italy claim to be the first 

European manufacturs of paper [33]. Crossing the Atlantic in 1620, the English Separatists 

(Pilgrims) on the Mayflower did not bring papermakers or any printing materials. Paper was 

not made in America until 1728, when the Liberty Paper Mill became operational on Neponset 

River near Boston. One curious fact, at least 26 copies of the original Declaration of 

Independence are found and some of the paper used was not made in America [13, Ch. 11]. 

In Chapter XVII of his book [1], Hunter provides a very detailed “Chronology of 

Papermaking, Paper, and the Use of Paper”. He starts the chapter by giving due respect to Joel 
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Munsell, an American printer and publisher for his pioneering work in the history of paper and 

contemporary recordings in the middle of the nineteenth century. Starting from 2700 BCE, the 

chronology goes to 1945 when the first edition of the book was published and “…it is stated 

that there are more than 14,000 paper products.” [pp.584] 

Many scholars studied the history of paper and paper making. The Bernstein Consortium 

[18] was formed to bring together all major European actors in the field of digital historical 

paper expertise coming from both humanities and computer sciences (Figure 2.1).  

 
Figure 2.1: Partners in the Bernstein Consortium (www.memoryofpaper.eu) 

The project consists of nine partners from six countries, among which the largest 

collections of paper and watermarks. Other institutions which have contributed prominently to 

http://www.memoryofpaper.eu/
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the project are: Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico 

e Librario, Rome, Italy; Paper and Watermark Museum of Fabriano, Fabriano, Italy; Institut 

Valencià de Conservació i Restauració de Béns Culturals, València, Spain; and The State 

Historical Museum of Russia, Moscow, Russia. As stated in the mission of the Bernstein 

project, the goal was the creation of a European integrated digital environment for paper history 

and expertise. Now, the Bernstein project connects all European watermark databases 

accessible through the Internet. It offers a comprehensive and unrivalled information source 

about paper. An additional substantial goal was the dissemination of the achieved results to a 

broad audience in the form of a series of exhibitions, a book about paper history and 

watermarks and an easily installable software package for paper cataloguing. 

Figure 2.2: The Memory of Paper integrated environment (http://www. 

memoryofpaper.eu/BernsteinPortal/appl_start.disp, last accessed Sep. 2016) 
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The integrated workspace [18] of the Bernstein project provides the digital environment 

necessary for the integration of resources. It is an Internet application interfaced in six 

languages (English, French, German, Italian, Russian, and Spanish) that gives access to all 

Bernstein resources, of which the main components are the catalogue, the atlas, the 

bibliography, the expertise, and the toolkit (Figure 2.2). Recently, the watermarks in the 

Bernstein project was sorted also in Hungarian and some in Portuguese, in addition to the six 

languages defined in the IPH Standard: English, French, German, Italian, Russian, and 

Spanish. 

“Memory of paper” is a deserving name for a technology achievement that helped to 

preserve so many memories of humanity. Being an excellent material for documents and 

books, paper cannot survive forever. Digitizing the paper content will insure its preservation 

for the future. In the Bibliography of his book, Hunter includes “both historical and technical 

material” about the paper and paper making. He references “Two hundred works on 

papermaking” of the Oriental, Occidental, Decorated papers, and the Watermarks, which are 

the topic of the next section. 

2.2    The origin and evolution of paper watermarks 

Due to the changes of the original processing method used in China (Figure 2A), most 

historical documents and manuscripts made in Europe (Figure 2B) inherently contain laid 

(horizontal) and chain (vertical) lines as an underlying artefact (Figure 2C) from the 

papermaking mould (also often spelled mold). The details of papermaking and the historical 

progress are well described in [1], [13] and [16]. 
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Figure 2.3: Early production of paper in China during Han dynasty [12] (A) and 

Europe [24] (B). The chain and laid lines are visible interference in the watermark 

image [16] (C).  

Around 1755 moulds with finely woven wire mesh were introduced and the paper made 

with them as known as wove paper. Soon after the paper production began in Europe, some 

manufacturers started to form simple shapes made with wires added to the mould. The 

additional wires leave an impression with a desired pattern on the finished paper product. The 

resulting effect was an embedded “wire-mark” left during the pulp’s drying process and 

historically have become known as “watermark” (Figure 2.4). 

 
Figure 2.4: An example of a wire figure added to the chain and laid mould wires. 
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Only the moulds with metal screens affixed to a wooden frame leave the laid and chain 

marks on the paper. A different mould design with cloth screens affixed to a wooden frame 

continue to be in use even today in Asia. This type of mould is floated in water, the pulp is 

poured onto the partially-submerged screen and distributed evenly across the surface. The 

mould is removed from the water and the paper dries directly on the cloth without any marks 

on the final product. In China, Korea and Japan, a flexible screen is often used with the support 

of a rigid frame. The screen, which is usually made of bamboo, can be removed from the frame 

to transfer the formed pulp sheet to a different surface for drying. The level of watermark 

embedding depends on the quality of the mould. The Japanese nagashizuki papermaking uses 

very fine screens and sometimes a thin cloth, to produce especially fine papers. 

In general, the papermaking moulds in Europe use wires, which are closely aligned or 

woven into a mesh. Through the centuries the mould designs have been modified with the goal 

to produce better quality paper. It is possible that the wire mould was an Arab idea. However, 

the papermakers of Fabriano, Italy, are the ones who perfected it. Figure 2.5 displays an image 

of a hand-mould showing the verge and warp wires used to secure the complex watermark 

figure to the chain and laid wires. 

 
Figure 2.5: Hand mould with relatively complex watermark. The verge and warp wire 

are visible attaching the wire figure to the chain and laid wires [16, pp221]. 
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It is possible that the cause for the first watermark was an accidentally bent mould wire. 

The artefact was noticeable when the paper was held up to the light. The papermakers realized 

that now they have the means to “sign” there work.  Originally, watermarks may have served 

to identify papers produced by different workmen within a factory to mark specifically their 

production for which they were “paid by piece” [2]. So the watermark belonged to the 

individual papermaker and not the paper mill. As the paper manufacturing process spread 

across Europe, watermarks were used to indicate the paper brand quality, format, strength, and 

guidance for folding and cutting of the large sheets produced at that time. The watermark 

patterns and composition evolved as a reflection of the commercial and cultural exchanges 

between the middle-age cities [3, 4]. 

Hunter has discussed some of the existing theories for the usage of watermarks in the early 

days [1]. In addition to the ones that were already presented here, Hunter comments their use 

as an identification mark for the sizes of moulds used for papermaking. Or that they were 

possibly used as symbols of religious groups called Albigenses, who used watermarks to 

identify the members of their group. Another theory suggested that these watermarks were 

introduced as an expression of artistic skills. A further theory for making watermarks was to 

help workmen to identify the moulds. The historical records show that Louis de Tignonville, 

bailiff of Troyes and Charles IV (1398-1409), made the use of watermarks mandatory [1]. 

The physical creation of watermarks is described in detail by Eakins et al. [19] as follows: 

“A watermark is formed by the attachment of a wire design to the mesh surface of the 

papermakers’ mould. During paper production the paper pulp is scooped from a vat onto the 

surface of the mould and the excess water is allowed to drain away through the mesh. The wire 

watermark, which sits proud of the mesh, reduces the density of fibers deposited on that area 
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of the mould, and when the finished sheet is viewed with transmitted light, the area where the 

wire had been present is thinner and appears lighter than the remainder of the sheet.” 

In his book [1], Hunter has dedicated three chapters to watermarks: IX, X, and XIV. He 

described the “Ancient watermarks: six and a half centuries of mystic symbols”, “Later-day 

watermarks: the nineteenth-century development of watermarks into an artistic and technical 

achievement” and “The watermarking of machine-made papers and the use of watermarks in 

detecting forgery”. In these chapters, Hunter has discussed the classification of watermarks 

from early days until the eighteenth century in four classes, based on their shapes. The first 

class includes the early watermarks, which have the forms of crosses, ovals, circles, knots, 

triangles, etc. The second class consists of shapes of the human figure, including a whole body 

and human parts, such as head, feet, and hands. The third class consists of flowers, trees, leaves, 

vegetables, grain, plants, and fruits. Finally, the fourth class includes wild and legendary 

animals, such as unicorns and dragons, as well as snakes, fish, snails, turtles, crabs, scorpions, 

and varieties of insects. This class also includes bulls’ heads, dogs, camels, elephants, leopards, 

goats, lambs, cats, horses, deer, and a large variety of birds. Examples of animal watermarks, 

with type, date used and description are in [20]. Further types of watermarks are given in the 

site of the International Association of Papers Historians [22]. Watermarks and their relation 

to the papermaking process is described by Loeber in [7]. 

Many online databases exist with hand drawn watermarks at known scale and accompanied 

by textual description of its creation date, origin, manufacturer, etc. [5, 6, and 23]. Not 

surprisingly, some paper-makers started to copy popular watermarks from their original 

owners. This led to the introduction of the “countermark” [7], located opposite to the main 

watermark, usually smaller and representing the initials of the papermaker’s name. An example 
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would be similar to the LVG initials in Figure 2.3C. It was the use of watermarks in bank notes 

and stamps that first inspired the use of the term “digital watermarking”. 

Modern technology makes the digitization and image storage of historic documents easier, 

better, and more accessible. The Internet becomes an irreplaceable tool for accessibility of 

databases, exchange of ideas and cooperation. Many libraries, universities and research centers 

have developed and continue to expand the use of modern technology to improve the method 

for recording, processing, and storage/retrieval of digitized documents in general and 

watermarks content in particular. Two examples are The International Society of Paper 

Historians portal (IPH) [22] and The Bernstein – Memory of the Paper project [18]. The 

Bernstein web site has links to more than 30 watermark databases, including: 

 WILK - Watermarks in Incunabula printed in the Low Countries, created by 

Koninklijke Bibliotheek; 

 Piccard Online - The entire “Piccard” repertory of watermark tracings, created by 

Archive of the State of Baden-Württemberg; 

 WZMA - Watermarks of the Middle Ages, from Austrian manuscripts of the late 

Middle Ages; 

 Database of Watermarks and Papers Used for Prints and Drawings, created by 

Nederlands Interuniversitair Kunsthistorisch Instituut (NIKI). 

In addition to the above links, The IPH portal has links to: 

 Watermark Database of the Dutch University Institute for Art History; 

 A Digital Catalogue of Watermarks and Type Ornaments Used by William Stansby in 

the printing of The Works of Benjamin Jonson; 

 The WWW Watermark Archive Initiative; 
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 Imaging and Watermarks of Rare and Fragile Books, Stamps. 

The paper watermarks and their description are the objects of study presented in this thesis. 

More specifically, paper watermarks found in historical documents and manuscripts. In 

comparison, the term “digital watermark” is the term to indicate methods for marking, typically 

in an obscured way, the content of a document. Digital watermark was first used by Komatsu 

and Tominaga in 1988 [24]. Since then, the concept of digital watermarking has been a subject 

of intense research and continued to evolve to identify, authenticate, and protect digital content 

[25]. Further reading on paper watermarks and digital watermarking can be found in [5, 33, 

75, 83, 105, and 148]. 

 

2.3     The study of watermarks 

Paper watermarks found in historical documents and manuscripts are an important part of 

human heritage. In 1907, C. Briquet (1839-1918), published Les filigranes [8] in Geneva, Paris 

and Leipzig, introducing a collection of 16,000 watermarks found in paper produced before 

the seventeenth century.  He visited hundreds of paper mills in order to compose his collection 

[8].  The oldest watermark discovered by Briquet printed on paper was produced in 1292 in 

Fabriano, Bologna, Italy. As previously shown, catalogued as #5410 watermark (Figure 1.1, 

left), it is the oldest known water mark. Also shown in Figure 1.1, the watermark with catalog 

#12021, is one of the oldest known watermarks with the name of the paper-maker [26]. 

According to Hunter [1], the use of the term Watermark in English begins in the eighteenth 

century. In 1708, the New English Dictionary gave the following explanation for the 

watermark: “The name was probably given because the watermark, being less opaque than 

the rest of the paper, had the appearance of having been produced by the action of water.” In 
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German the word Wasserzeichen was used in the first part of nineteenth century, Papiermerken 

in Dutch, Filigrane in French, and Filigrana in Italian and Spanish. The last terms are more 

reference to the “wire figure” rather than the impression it leaves on the paper. It is also the 

foundation for the term Filigranology (the Latin filium and granum combined with the Greek 

λογία, logia) -the Auxiliary Science of watermarks’ History.  In this thesis, the term watermark 

is used as reference to the markings embedded in the paper by the sieve used in the paper 

production method at a given time. The marks from the sieves and the intentionally weaved 

additional wires could and are used extensively for time period dating of historical documents 

and manuscripts, which is further described in this thesis. However, dating documents is only 

one of the applications. 

In “Catalogue of Watermarks in Italian Printed Maps CA 1540 – 1600”, by David 

Woodward [15], the author points out that “In any work involving watermarks, it is necessary 

to understand that it is the paper mould, not the paper, and certainly not the map or print, that 

is being identified by the watermark.” [15, pp. 8]. This being said, paper is the carrier of the 

watermark, the forensic “sample” used to make the discoveries. 

Curl Buhler postulates five hypothetical assumptions for any study that uses watermarks 

to date early documents [27, Pp. 2-3]: 

1. A paper mould had a limited life span ranging in four months to four years. 

2. There were no extensive time gaps in the use of the mould. 

3. The paper produced by a given mould was used up within two or three years of 

production. 

4. Paper was used in the same order in which it was produced. 

5. Stock of paper was not accumulated – it was too expensive to be kept unused. 
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These assumptions are important in regard to using paper making dating and its use for 

printing. It is not difficult to agree with assumptions 1, 3, and 5. To accept the second 

assumption for example, we have to ignore that a paper mills did not run without interruptions. 

Depending on flowing water for power, the mills stopped during dry seasons and winter times. 

Insufficient supply of rugs (key materials for the production of paper) also was the cause for 

interruptions. In his studies, Allan Stevenson shows that paper mould goes through identifiable 

stages of aging and changes [28]. He even demonstrates the rate of movement of the 

watermarks at about a millimeter per month of use [28, pp. 251]. While assumption 2 is 

important to possible discrepancies in dating of printed materials in general, assumption 5 is 

especially relevant to maps. One has to consider that only a ream or two are sufficient for 

printing of maps while book print-shops use 20 to 25 reams per an average size book (one ream 

has 500 sheets of paper.) It is quite possible that map printing shops used the paper with the 

same watermarks for a longer period of time. 

Scholars consider that the first stage of the study of watermarks started with the first known 

collections. A brief summary of the watermark studies indicates the tremendous work 

competed my many scholars. The references may lead to the conclusion that we are historically 

ready to enter a new, multimedia reach and computationally enhanced stage. 

The famous work of Charles Briquet, Les Filigranes, was published in 1907, a period 

which is considered the third stage of the Filigramology [29]. This is the stage during which 

the study of watermarks became independent scientific discipline with the published works of 

Aurelio Zonghi (1893) and Ernest Kirchner (1896). Humphrey Wanley (1672-1726), a 

librarian to the Earl of Oxford and an antiquarian, produced a collection of watermarks from 

1000 sheets of old papers. Since 1699, the collection is stored in the British Museum. During 
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the eighteenth century, the interest towards the watermarks and the collections has grown. 

Many authors have contributed to the field: Johann Herring (1736), John Levis (1737), Samuel 

Engel (1741), Joseph Ames (1749), Murray (1763), Rouget (1772), Cristofor Murr (1777), 

Breitkoph (1784), John Fen (1787), Schwartz (1793), Samuel Denne (1795), Camus 

and Sardini (1799). The work of collecting watermarks (first stage) continued during the first 

half of the nineteenth century with the collections made by Gotthelf Fischer (1801), M.C. De 

la Serra Santander (1803), Jansen (1808),  Koning  (1816), Hassler (1844)  and F. Gutermann 

(1845).  

The second stage in Filigranology has started with the first reproduction of 1493 

watermarks in Moscow in 1844 – the Tromonin's watermark album. The same year, 

the work of S. Sotheby with 265 watermark reproductions was published. Records indicate 

that scholars from Italy, Germany, Poland, and Romania started to copy watermarks and to 

publish in specialized journals. The first work about paper mills and their watermarks was 

completed in Hungary and Transylvania and was published by J. Kemeny in 1844.  

The scholars agree that watermarks offer reliable information on how to date paper sources 

of the late Middle Ages and early modern times. They also agree that while the evidence from 

watermarks is useful, it needs to be used in combination with additional bibliographical 

support. Woodward [15] provides an example of using watermarks with offset evidence to 

reconstruct family of printing plates used in the same place at the same time. In many cases 

with missing explicit date on the document, watermarks allow close period dating. The process 

includes finding an identical watermark taken from an already dated source. Because paper 

was an expensive commodity which was bought and used up within a couple of years, dating 

based on the identical paper watermarks is a valid scientific approach. One famous example is 
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the false 1619 year given to the Shakespearean quartos published by Thomas Pavier. Three 

centuries later in 1908, based on the watermarks, Sir Walter Greg has proved that the quartos 

were actually published in 1600, 1608, and 1619 [30]. His findings have been confirmed by 

Allan Stevenson [31]. 

We have to note that since early seventeenth century paper was often made with pair of 

moulds with similar but not necessarily identical watermark designs. Double moulds and 

divided moulds in the eighteenth century are the origin of many twin watermarks [30, 33]. 

Development of proper imaging systems has facilitated their discovery [32]. Figure 2.6 

displays “pair of twin” watermarks, circa 1640, from the Swedish National Archive [16]. 

Although very similar, these decorative watermarks have distinct differences in their details.  

 
Figure 2.6: “Pair of twins” watermarks, c. 1640, Swedish National Archive [16]. 

 

Atanasiu [34, 35], as part of his work in the Bernstein project [18], developed two 

applications which helped in studying laid lines. The first is for laid line density measurement, 

known as “AD751”, which locates the frequency of these lines after Fourier transform [36], 
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and the other is for laid lines suppression and extraction, known as “Blue Nile” project. Three 

other useful applications are: 1) “Filigrana” (another laid lines density measurement tool); 2) 

“Watermark Scissors” (an application which segments an image which contains a number of 

watermarks into smaller images according to the number of watermarks); and 3) “WMT’ (an 

application for interactively measuring width and height of watermarks) [35, 36]. 

It is important to note that during the life span of a mould the same watermark may produce 

slightly different impressions due to deterioration and shifting of the wire. The result is a 

variant of the same watermark known as “states” or “variant states” (Figure 2.7). Their 

differences are considered “false variants” to distinguish them from the “genuine variants” 

[16]. 

 
Figure 2.7: Different states of the same watermark. Swedish National archive, c 1825. 

The “F” has not changed while the “C” has shifted and changed shape noticeably [16]. 

 

In addition to the watermarks as artefacts of the manual papermaking, watermarks also 

exist in machine-made paper. The International Association of Paper Historians [22] has 

created a taxonomy of terms for describing the components of paper, including the paper 

watermark. Each watermark is assigned a code (e.g. E8 for snake), and these codes are arranged 

in organizational tree structures, (e.g. Birds → Eagle → Double-headed). 

The First International Conference on the History, Function and Study of Watermarks, has 

discussed the importance of watermarks and respectively their study. The proceedings of the 
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conference were published in [37]. In addition to Les filigranes by Briquet, there are several 

others published catalogues of watermarks. Collections can be found in [38 - 42]. A list of 

books of reproduced watermarks by tracing is in [81], together with a number of traced 

watermarks in each book. An interesting and rare find is the reference to Soviet era watermark 

studies [43]. 

Multiple web-based archives of watermarks are easy to access and use. Some examples 

include [44 - 52] and an extensive list of links to web databases is compiled in [18]. It is 

important to note again that easy access at any time is one advantage of digitized documents 

in addition to preserving digitally the watermarks from their paper carrier decay. The digital 

format allows many researchers to design and develop new methods for watermark processing, 

enhancement, and description. 

Going back to the facts about the original Declaration of Independence, the paper used to 

print it was (and still is) Dutch with three different watermarks. Some of the paper has the L. 

V. Gerrevinck watermark (Figure 2.3C, shown previously). It is the same watermark found on 

the notes of Tomas Jefferson for the 1776 Virginia Constitution. 

 

2.3.1 Imaging and reproduction techniques for watermarks 

Dating of historical documents is only one compelling reason for the continuing research 

on watermarks. Beautiful in their simplicity and enigmatic in their eternity, watermarks may 

stay hidden for centuries waiting to be discovered and reveal valuable information [28, 37]. It 

is very useful to humanity to preserve the cultural heritage of watermarks as stamps of history 

and to make them accessible to everyone interested without the physical access to the original 

paper resource. The problem of converting the watermark visible image from the paper into a 
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meaningful piece of information is still present in the study of these valuable cultural artefacts. 

Among many organization dedicated to the understanding and preservation of paper 

watermarks, The Centre for the Study of the Renaissance at the University of Warwick, 

Coventry, UK, has many useful links to libraries and online watermarks databases [5]. The 

Memory of Paper website of Bernstein, has a map of the centers with digitized and not digitized 

documents with watermarks (551,138 records, 36 databases) [6].  

There are many ways to gather identifying information about a watermark. Being visual 

artefacts and not-linguistic data, imaging watermarks is a better way of retaining information 

compared to textual description. Modern imaging techniques have facilitated the digital image 

acquisition of watermarks and the number of digitized watermark collections continues to 

grow. Nevertheless, the estimate in [6] is that about 66% of documents with watermarks are 

still not digitized. Attempts at standardizing the subjective description of watermarks has been 

published and is also available online [21, 22]. The watermarks are classified according to their 

thematic topic (e.g. flower, lamb, eagle, mill, cross, and others) in multiple languages. Due to 

their high numbers, variety or rarity, and not the least to the subjective nature of existing 

classifications, matching of a newly obtained (and perhaps unknown) watermark is a difficult 

task. Interoperability of existing databases is a separate and very challenging problem as well. 

Modern technologies facilitate imaging, processing, and storage in digital format of many 

cultural treasures and their preservation for the future generations. Captured digital images can 

be compared, processed, stored and retrieved easily. Numerous algorithms allow further image 

enhancements to be easily applied. Modern cameras provide captured images of high 

resolution, which allows the observer to see very small details. Various projects, such as AHDS 

[53], Minerva [54], Pulman [55], and MUSICNETWORK [56], provide guidelines for some 
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of the most useful digitization techniques. Existing methods for paper watermarks reproduction 

include: manual tracing, rubbing, Ilkley, phosphorescence watermark imaging, Dylux 503-

1B503 photosensitive paper, transmitted light photography (backlight imaging), 

thermography, Beta-, electron-, and soft X-ray radiography imaging [57 - 65]. The SHREW 

project (“SHape REtrieval system for Water-marking images”) compares different watermark 

digitization techniques [66, 67].  

The manual tracing of watermarks takes time, needs certain skills, and does not capture 

some watermark details. In addition to the subjective component, it is an intensively contact 

method which is a concern especially for original documents in fragile state. Dylux and back-

lighting methods provide good quality results with watermark details. However, the 

reproductions contain undesirable interferences (e.g. laid and chain lines, paper stains and 

defects, additional writings and others). Using Dylux is associated with “off-gassing” from the 

chemicals used in its production [57]. Backlight imaging followed by various image processing 

techniques is one of the most popular approach for watermarks digitization. The method 

provides accurate results, with optimal efforts in respect to cost and time. Main problem of 

using backlight imaging is the presence of the front-side (recto) and back-side (verso) prints 

in the acquired image. X-ray imaging and Beta-radiography method provide good quality 

images, but they are quite complex and require expensive resources and safety measures 

working with ionizing and radioactive sources [62 - 65]. Modern imaging techniques favor 

non-contact imaging including hyperspectral imaging with ultraviolet and near infra-red light. 

As described in [68], Christie-Miller collaboration with Solar Imaging Systems Ltd. [69] 

has developed a hardware back-lighting digitization system - Advanced Paper Imaging 

System. The goal was to record the paper structure (respectively the watermarks) in order to 
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provide digital identification for stolen manuscripts. Another purpose was to capture and 

preserve in digital format valuable artefacts. As a side note, the system was designed to allow 

imaging of bound manuscripts opened at 45o, so the digitization is less intruding and does not 

damage the manuscripts. 

After digitization and segmentation the watermarks images are with different quality, size, 

resolution, and orientation. Figure 2.8 displays watermarks from two different collection. On 

the left, is a sample from the searchable online watermark collections [69]. On the right, are 

watermarks from Primary paper by William Stansby in the Jonson Folio [70]. One can see the 

extreme to which the quality of watermarks representation varies based on the acquisition 

technique used. 

 
Figure 2.8: Examples of watermarks digitized with different techniques and 

respectively different quality. 

 

Digital images of watermarks from many sources require extensive image enhancement 

before filing, classification, and storage. A successful automated search, match, and retrieval 

would require even more extensive preprocessing before it could be successfully applied. The 
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quality of the images depend on the document’s condition and the imaging technology used. 

Imaging systems continue to improve (optics, filters, sensors, light sources). The 

computational capacity of CPUs and GPUs are also improving. There are multiple algorithms 

developed for image processing and enhancement and many more continue to be developed. 

However, it is important to notice that while some methods achieve remarkable results, there 

are no universal approaches that can work in all possible scenarios.  

 

2.3.2 Description, classification and storage 

The International Society of Paper Historians have developed a set of criteria that can be 

used to describe paper with considerable precision [22]. Known as the IPH Standard, its 

section 3.1 includes a series of entries for watermark data that allow for the identification of 

watermarks based on a set of unambiguous individualizing characteristics: type, dimensions, 

position in respect to the chain-lines, location, and others. The exhaustive set of descriptors 

specified in the IPH Standard are followed by leading scholars in the field of literary 

manuscripts. It is also well accepted that even the best textual descriptions are never as 

satisfactory as a high quality image reproduction such as a beta radiograph [65]. There are a 

number of printed volumes or digital resources that contain reproductions of thousands of 

watermarks. The available databases are a very important resource and the result of extensive 

scholarship. But they are not perfect because the most common (and least satisfactory) way to 

identify a watermark is to cite the known closest match in a database of watermarks based on 

textual description. This is especially valid for watermarks with similarity, being from the same 

“family” of watermarks or “the same” watermark from different moulds. 

http://www.paperhistory.org/standard.htm
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An important ability is to distinguish “identical” from “twin” watermarks. “Twin” 

watermarks are the result of common papermaking using a pairs of moulds to accelerate the 

process. The pair of moulds had similar but not necessarily identical watermark designs. The 

identification of “twins” and their distinction is important for the studying historical documents 

[33, 71]. Figure 2.9 displays four different “bull’s-head” watermarks reproduced from A. 

Stevenson, “The problem of the Missale Speciale” [28]. 

 
Figure 2.9: Bull’s head twin pairs, Missale Speciale, c. 1473. Two pairs from left to 

right: Wide face - Square face and Level eye - Slant eye. Adapted from [28]. 

 

Some of the techniques for description, classification and storage become clearer by 

reviewing the methods currently used for cataloging, searching and retrieval of watermarks. It 

is a mutual, two-way relationship in which a better and complete description provides easier 

cataloging, and searching. On the other hand, the needs for an easier and faster retrieval 

capabilities, demands better methods for description and classification of the variety of 

watermarks. The next section provides a review of current techniques for cataloging, searching, 

and comparison of watermarks. 
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2.3.3 Current methods for cataloging, search and retrieval 

Unfortunately, many different methods exist for cataloging of watermarks regardless the 

efforts to standardize the approach in order to achieve interoperability. As previously noted, 

section 3.1 of the IPH Standard [22] of The International Society of Paper Historians includes 

a series of entries for watermark data that allow for the identification of watermarks based on 

a set of unambiguous individualizing characteristics: type, dimensions, position in respect to 

the chain-lines, location, and others. The exhaustive set of descriptors prescribed in the IPH 

Standard are followed by leading scholars in the field of literary manuscripts. Nevertheless, it 

is also well accepted that even the best textual description are never as satisfactory as a high 

quality image reproductions of the watermarks. 

The following Figure 2.10 presents the IPH specifications for describing a simple and more 

complex watermark (IPH Standard, version 2.1.1). 

http://www.paperhistory.org/standard.htm


32 

 

 
Figure 2.10: Examples for description of simple and complex watermarks. 

IPH Standard, Version 2.1.1, 2013. 

 

Figure 2.11 shows an example for cataloging class Lion watermarks with different 

subclasses. All descriptors labels are given in six languages. IPH Standard describes in details 

many aspects for the registration of papers with or without watermarks. This includes 

abbreviation descriptors, dating, origin, and many others. 
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Figure 2.11: Lion class with subclasses. IPH Standard, Version 2.1.1, 2013. 

 

In “Catalogue of Watermark” by David Woodward [15, pp. 13], the “Explanation of 

Entries” for the watermarks are as follows: 

A) A general description of the watermark mould, including 

1. The watermark mould number 

2. A descriptive title, organized in the order recommended by the International 

Standard for the Registration of Watermarks published by the International Association of 

Paper Historians, Provisional Edition, 1992. 

3. The size of the salient feature, such as “circle 52 mm.” 

4. A notation of special characteristics. 

5. A code such as “A1{p05}-U1” following the specifications in the International 

Standard for the Registration of Watermarks published by the International Association of 

Paper Historians, Provisional Edition, 1992. 
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B) Each subentry reflects to a specific impression of a map or print, with the following 

information: 

1. Date printed on impression; n.d. signifies that no date is printed. 

2. The title or area of the map {in square brackets when summarized in English]. 

3. Place of publication printed on impression; n. pl. signifies that no place is printed 

on the map; [place in square brackets is estimated from other evidence]. 

4. Name of printer or publisher appearing on impression; n. pr. signifies that no 

publisher is printed on the map; {printer in square brackets is estimated from other evidence]. 

5. Map number from Toley’s list of Italian printed maps. 

6. Other references, when not listed in Toley or to help to identify the impression. 

7. The institution and call number where the impression is found. 

The presented referenced text illustrates several aspects: 1) the efforts made to capture the 

complete information; 2) the complexity and manual labor that is involved; 3) the lack of 

options for an easy way for search and retrieval. 

Many attempts have been made to develop a system for classification and retrieval 

watermark images, both by textual-based and content-based approaches. Briquet [8] has 

manually classified about 16.000 watermarks in about 80 textual classes. Del Marmol [72] has 

classified ancient watermarks based on the date of their creation. Pure textual classification 

systems might be less prone to errors but very tedious to use. Textual descriptions and 

watermark labels are inconsistent in methodology and format, erroneous or just not detailed 

enough. Many watermarks are without labels and cannot be used for textual queries. 

Advances in imaging technologies have made possible recent attempts to focus on the real 

content of watermark images. In [73] the authors describe the set-up of a system capable to 
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add, edit or remove watermarks with the possibility of textual and content-based retrieval.  As 

described in the paper, the authors used a 16-bin large circular histogram computed around the 

center of gravity of each watermark image. In addition, eight directional filters were applied 

to each image and used as a feature vector. The algorithms were tested on a watermark database 

consisting of 120 images, split up into 12 different classes. The system achieved a probability 

of 86% that the first retrieved image belongs to the same class as the query image.  

In [74], the authors used three sets of various global moment features and three sets of 

component-based features. The component feature set consists of several shape descriptors 

which are extracted from various image regions. For testing, 806 tracings of watermarks from 

the Churchill collection [38] are used and 15 images and their ground-truths have been 

manually selected. The retrieval system was based on the city-block distance measure. The 

system was evaluated with normalized and averaged precision and recall scores. The authors 

report a precision of 0.53 and a recall of 0.81 for their best scores with the conclusion that for 

their database, global features work better than the component-based (local) features extracted 

from various regions. 

In [75], the authors emphasize that “successful research in watermarks (filigranology) is 

reliant on the availability of relevant and accurate reference material that can be easily 

accessed.” After that, the authors describe different technologies for recording watermarks and 

the necessary criteria for proper recording and classification of the watermarks. Image 

examples are given for watermarks recording and processing. For image searching method, the 

authors used content based image retrieval (CBIR). First, ground truth images are established. 

For the retrieval process, a query image is chosen and a search is performed by the system and 

by independent researchers which are asked to select the most similar images from the database 
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based on visual inspection. The ground truth sets have been selected from an archive of 2000 

digital images of watermarks. In the referenced paper, the evaluation is marked as “ongoing” 

and numerical performance values are not given. 

Textual queries are processed very fast with modern computers but the queries have major 

limitations. As already mentioned, despite the existence of a standard, textual descriptions are 

subjective (inconsistent) and often are incomplete: some of the patterns appearing in a given 

watermark may not be described in the text. For these reasons, queries based on global 

morphological characteristics as well as on the watermark shape are essential. 

The watermarks can be described as shapes of their contours contained in their images. The 

information can be used for accessing the archived images of the watermarks or pictorial 

documents with them [22, 36, 67, 76-78]. Each watermark is described by a list of 

morphological characteristics. The spacing between the chain lines and their density (lines per 

unit length) helps to determine the type of the paper. The overall size of the watermark is 

defined by the height and width of its bounding box. The number of closed regions and the 

shapes of individual regions are described by the invariant moments [79]. 

During the review process of existing methods for watermarks description, I have maid 

useful observations. When multiple watermark regions exist, the centers of gravity of the 

watermark’s main region are selected to build a new normalized coordinate frame. The center 

of the largest region is the origin of the new coordinate frame and the two other regions form 

the two independent coordinate axes. The remaining regions from the watermark are then 

described in this new frame by means of two scalar coordinates. This morphological 

description of the regions is invariant to rotation, translation and scaling. The percentage of 

black pixels present in the watermark bounding box are used to define the watermark extent. 
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This value allows to assess the complexity of the watermark and to date its period - more 

ancient watermarks are simpler with and have less black pixels compared to the more recent 

ones. The location of the watermark with respect to the chain lines is used to compute two 

values: the distances between the chain lines and the closest pixels of the watermark. At the 

time of recording and archival, these characteristics are determined and stored into hash tables. 

At retrieval times, queries can be made according to one or more of these characteristics. 

The SHREW (“SHape REtrieval of Watermarks”) is a database project for image retrieval 

of historical watermarked papers. The input data consists of watermarks traced by Churchill 

[38] and images reproduced by electron-radiography. The enhanced watermark images are 

stored in a database and for a retrieval, a given watermark can be matched with previously 

stored watermarks and similar shapes [19]. Traced watermarked images were processed for 

feature extraction: images are first converted to binary using a constant threshold, then noise 

is reduced using filters (e.g., mean, median and Gaussian), images are then enhanced using 

morphological operators. These enhance images were combined with shape retrieval 

techniques and evaluated [80]. The SHREW was further developed and expanded with datasets 

reproduced using electron-radiography [81]. Chain and laid lines were removed by applying 

low-pass frequency filtering. The background was approximated by applying a median filter 

multiple times to produce an image, which is then subtracted from the original image. Some 

examples of the processing results are given in [19]. 

The SHREW system has been implemented in an SQL database (The North Umbria 

Watermarks Archive) for publication on the web to facilitate retrieval of information on 

watermarks. The authors admit the need for further work on image processing to improve 
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quality and on the content based image retrieval to improve the performance of shape matching 

and retrieval.  

An early attempt for developing a “smart” document retrieval system is described by Salton 

in [82]. Wenger et al. [83] have proposed the INTAS project: a Distributed Database and 

Processing System for Watermarks, which is a multinational effort coordinated by the Austrian 

Academy of Sciences [84]. The aim of the project is to build a database for watermarks existing 

in West Europe and Russia, which can be accessed widely, and can help scholars to study the 

captured watermarks and use them to study undated documents. The objectives of the project 

outline the important needs and associated challenges for: 

 Development of a distributed database system of watermarks; 

 Methods and technology for producing watermark hardcopies from manuscripts 

and early printed books; 

 Digital processing of watermark images;  

 Integrated system for database management and watermark processing; 

 Population of the distributed database; 

 Exploitation and dissemination of results. 

This list can be viewed as a charter for continuous work in the field of digitization of 

historical documents. The aim of INTAS was to improve the reproduction techniques, 

including radiographic, back-lighting and rubbing techniques, resulted in the birth of the first 

two electronic watermark databases in Russia [85]. The reproduced images were enhanced 

(contrast enhancement) and watermark contours were approximated using semi-automatic 

processes for identification purposes [86]. These enhanced images are then entered into the 

database. An acknowledgment is needed to emphasize the important role of individual 
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leadership: the leading author of [83], Mr. Emanuel Wenger, is also the coordinator of the 

Bernstein Consortium – The memory of papers [18]. Similarly to Bernstein project, INTAS 

aims to create a digital environment for researchers to study paper and to link European 

databases of reproduced watermarks together, and provide image processing tools to measure 

paper features. Additional resources can be accessed using the links in [87]. 

The Profil is another watermark database project [88] with the goal to provide scholars the 

ability to identify watermarked paper. Data was reproduced using beta-radiography in the 

National French Library. The watermarks were scanned and entered into the database, together 

with a description of each watermarked document. The recorded images were processed to 

enhance their quality using different filtering methods (e.g., median, Gaussian filters, filtering 

the frequency domain). 

The Bernstein Catalogue allows search in and data retrieval from various online databases. 

The search can be formulated in the six languages specified in the IPH Standard (English, 

French, German, Italian, Russian, and Spanish). Recently, queries are possible in Hungarian 

and some in Portuguese. This facts can be viewed as expansion of the interest in the watermarks 

as a cultural heritage and as the enabling power of the internet. All search terms are translated 

automatically into the supported languages according to the Bernstein vocabulary for 

watermark descriptions. For example, a search for mermaid (English) is carried in Italian for 

sirena and also in German for Meerjungfrau. The catalogue offers three modes for the search: 

simple search, advanced search, and browse motif [18]. Examples for each type are given in 

Figures 2.12, 2.13, and 2.14. 
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Figure 2.12: For a simple search the user just enters the search terms in a search field. 

 

 
Figure 2.13: For an advanced search the user can combine several search fields. 

 

 
Figure 2.14: The browsing with a motif offers the possibility to navigate in the tree 

structure of the systematics classification by names or by icons. 

 

The Watermark Database created by the Dutch University Institute of Art History in 

Florence has similar search methods (Figure 2.15 and 2.16). 
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Figure 2.15: For a simple search the Keyword Search field is used. 

 
Figure 2.16: For an advanced search up to 8 parameters may be used: 1. Creator/ 

Artist; 2. Signatures; 3. Time Period; 4. Keyword; 5. Range; 6. Exact value; 

7. Not Empty Value; 8. Empty Value. 

The field of study of historical documents and paper watermarks is wide open and offers 

many possibilities for further explorations. The internet becomes an irreplaceable tool for 
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research and cooperation. Almost the entire search for information for this thesis was 

performed on the Internet. As a conclusion for the options available on line, the reference to 

the Bernstein Paper Studies Kit (PSK) is presented in Figure 2.17. 

 
Figure 2.17: Bernstein Paper Studies Kit – links, software and manuals for the studies 

of watermarks. 

The kit offers a collection of ready-to-use software programs and data that enable the user 

to set up a watermark database conforming to Bernstein standards and to install Bernstein 

applications. The PSK is free of charge for non-commercial use. In addition, the portal links 

give access to: 

 the seven-language Bernstein Watermark-Terms (Vocabulary for Describing 

Watermarks); 

 the Bernstein watermark classification scheme; 

 Bernstein-related links. 
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Utilizing the Internet, Rauber et al. [73, 89] have proposed a system for the management, 

archival and retrieval of historical papers in a database accessible on line. The goal is to enable 

scholars to determine date and origin of unknown paper by being able to compare watermarks 

of interest with known watermarks in the database. The database contained an image and 

textual description of each watermark. Back-lighting was used for image capturing, followed 

by specific image processing algorithms [91] such as contrast and contour enhancement, 

removal of laid and chain lines and other imperfections from the paper. The work also included 

scanned images of the watermarks traced by hand by Briquet [8]. The proposed and used 

textual and image retrieval classifications of watermarks was specified with the following 

steps: 

1. The class of the watermark, as presented by Briquet. 

2. The use of IPH code presented by the International Association of Paper Historians. 

3. Retrieval by specifying global features, using 12 features (e.g., watermark size, 

watermark position on paper, spacing between two sequential chain lines). 

4. Retrieval by comparing similar images. A similarity task processing algorithm is 

presented to compare the shape of a given watermark with other watermarks stored in the 

database: two algorithms were proposed for comparing similarities, Circular histogram and 

Directional algorithms. Details of these algorithms are in [73]. 

5. Retrieval by drawing an approximate shape – the authors built the option which allows 

historians to draw watermarks manually in the absence of an image. 

6. Retrieval using small patterns, that is, retrieval using only part of the watermark, where 

watermarks in the database are indexed into a hash table, and convolution is applied to search 

for similar watermarks. 
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In [90], the authors report the continuous work to develop further their system for 

watermark images retrieval for ancient paper identification with ability for the archival, 

retrieval, and distribution of electronic documents. The idea is to access information via the 

World Wide Web with a search mechanism that allows the retrieval of text and images 

according to their content [91, 92]. The purpose is to design and implement an efficient method 

for comparing a given watermark with another similar known watermark. In their work, the 

authors referred previous attempts to develop such systems [26, 93]. The system developed in 

the project was applied to the watermark collection of the internationally known Swiss Paper 

Museum in Basel. Developed in the 1980s and early 1990s, the collection of the Museum 

consists of thousands of images of historical papers as well as ancient watermarks [89]. 

Presenting their work, the author address multiple important aspects. The watermark's 

description consists of the textual characterization of the paper containing the watermark, the 

origin, the date of creation, and a paper is described by approximately 150 different parameters 

[21, 22]. The reference to the available methods for the process of watermarks identification is 

a very good illustration of the capabilities and also the limitations of the used methods and the 

intensity of the efforts for their application. The reported work is one of very few examples 

when an attempt is made to expand the search, matching, and retrieval methods and include 

image based feature extraction. For illustration of this pioneering work and to demonstrate 

some of the constraints, several of the examples for the work are presented here. It is very 

relevant to the current state of watermark identification and retrieval and creates a good 

foundation for the framework proposed in this thesis. Figure 2.18 demonstrates retrieval by 

using a class and Figure 2.19 show the retrieval using the IPH code.  
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Figure 2.18: Internet page to access watermarks by using the class as the retrieval 

mechanism. (a) Textual list of classes. (b) Iconic representation of the classes. 

(c) Main page for the class Eagle (Aigle in French). 

 

 
Figure 2.19: Main pages for accessing watermarks by using the IPH code. (a) Main 

index in French. (b) Sub-class Mammals. (c) Sub-Sub class Lion. 

 

From the main watermark page, the users are prompted to enter values corresponding to 

the watermark they wish to retrieve (Figure 2.20.a). Using simple primitives (width between 

two chain lines or the size of the watermark) or more complex features are elaborate and not 

intuitive to choose. For these reasons, other approaches have been retained and developed. 
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Figure 2.20: (a) Watermark Main page. (b) Page that allows the setting of the different 

values. (c) Result page returned by a query. 
 

In an attempt to expand the retrieval options, a set of morphological characteristics has 

been developed and for each characteristic an automatic algorithm has been developed to 

extract these features from the input images. Total of twelve different features were developed. 

Figure 2.21 illustrates the global features used for the retrieval process. 

 
Figure 2.21: Global features on watermarks. (a) Space between chain lines and the 

density of laid lines per unit length; (b) Height and width of the watermark; (c) Number 

of regions; (d) Number and position of junctions; (e) Position of the watermark 

depending on the chain lines [90]. 
 

The authors have developed two algorithms to facilitate the process of watermarks search 

and retrieval. The first algorithm is based on computing a circular histogram around the center 

of gravity of the watermark (Figure 2.22.a). Each bar of the histogram corresponds to the 

number of pixels present inside a radial segment (Figure 2.22.b).  
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Figure 2.22: Graphical representation of the circular histogram. (a) The center of 

gravity of the watermark is used as the middle point; (b) The number of pixels present 

inside a radial segment. 

 

The histograms are computed once for each existing watermark and stored inside the 

database. Two watermarks are defined as globally similar, if their respective histograms are 

similar. The similarity measure d(H1,H2) between two histograms is computed as following: 

 

𝑑(𝐻1, 𝐻2  ) =  ∑|𝐻1[𝑖] − 𝐻2[𝑖]|  (2.1) 

 

The retrieved watermarks are visually inspected to evaluate the true match. 

 

The second algorithm consists of filtering the input image by eight directional filters. 

Figure 2.23 displays the eight filters Fj used to compute Gj. 

 

𝐺𝑗(𝑥, 𝑦) = 𝐼(𝑥, 𝑦). 𝐹𝑗           𝑗 = 1, 2, … , 8  (2.2) 

 

 

 
Figure 2.23: Eight filters Fj used to compute the directional information on the images. 

 

After this first operation, eight new planes are obtained. We compute the eight K(x,y)j 

planes by taking the highest value from these planes to form an eight dimensional vector Tj : 
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𝐾𝑗(𝑥, 𝑦) =  {
𝐺𝑗(𝑥, 𝑦)    𝑖𝑓   𝐺𝑗(𝑥, 𝑦) = 𝑚𝑎𝑥𝑗 (𝐺𝑗(𝑥, 𝑦)) > 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2.3) 

 

                  𝑇(𝑗) =  ∑ 𝐾𝑗(𝑥, 𝑦)𝑥,𝑦             (2.4) 

 

 

The authors report a typical computing time for shape-based retrieval in the order of 4 

seconds per watermark inspected, assuming a 42 x 48 pixels search pattern, a database 

containing 3,000 watermarks and a 1000 x 1000 x [1..3000] hash table. The authors considered 

this time as excessive for a blind search in the whole database and they concluded that 

separating the database in subsets by means of other query criteria is needed to speed up the 

search process. 

As already mentioned, an additional interesting approach in the project is the development 

of a Java-drawing interface. The interactive interface allows the sketching of a watermark 

contour directly from the browser (Figure 2.24b). When a historian does not have access to an 

image of the watermark to retrieve, an approximate shape of the watermark can be drawn. The 

approximate sketch is then used as the model for retrieval by similarity. With this interface, it 

becomes possible to load a local image of watermark and to apply some image pre-processing 

algorithms (for example, erosion or dilation with connectivity four or eight can be applied). A 

thinning algorithm is present and a module to add small missing parts of the contour of the 

watermark can be used. Finally, small spots or noise can be automatically removed. After 

having drawn the model, the histogram is calculated, and the same distance algorithm is used 

in order to compute the shape representation of the hand-drawn sketch image. The execution 

time depends on the computer used. The authors report that using Pentium 200 computer (a 

good tool for that time period) and an image of size 400 by 400 pixels, the algorithm needed 
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about 30 seconds to extract features and 15 seconds to transfer the data. Figure 2.24 illustrates 

the drawing interface and Figure 2.25 shows the retrieved of watermarks and shapes. 

 

 

 
Figure 2.24: (a) Main page of the similarity retrieval module; (b) Drawing applet 

interface to draw a similar shape; (c) Result of similar images. 

 

 
Figure 2.25: Shape-based retrieval. (a) Pattern used as search criterion; (b) Ordered list 

of the retrieved watermarks: from the most similar ((b.1) to the less similar (b.4) [90]. 
 

The authors have tested their system by taking 120 images from the test-database with a 

small variation in size, rotation and SNR. The goal was to retrieve the original model without 

transformation. The reported results include rank of the retrieved images and ROCs on very 

few tests.  If the image was scaled by a factor of 10%, then 40% of the original models are still 

found in the first position and all models are found in the first 12 images. If 20% of the pixels 

that compose the watermark are removed, then 85% of the models are found in the first 13 

images [90]. 
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Development of watermark descriptors is intended to facilitate their classification in a 

database and respectively search and retrieval. In his work Zamperoni [94] has proposed a 

watermark database system in which it is possible to perform watermark image retrieval. He 

used back-lighting for imaging followed by image processing in order to extract watermarks. 

First, he removed chain lines using frequency filtering and morphological closing. Then, he 

used the “top-hat” transform to approximate and subtract the background, followed by contrast 

enhancement. At the end the images of the two parallel processes are combined using a logical 

AND operator. The result is finally filtered by a median filter. 

In [95], Brunner and Burkhardt use a support vector machine (SVM) with an intersection 

kernel and leave-one-out tests for classification and retrieval of ancient watermarks. The best 

reported retrieval results have been achieved with the histogram intersection similarity 

measure. For the fourteen class problem they obtain a true positive rate of 87%, which they 

claim “that is better than any earlier attempt”. 

In [96], the authors propose a method for trademark image database retrieval based on 

object shape information that would supplement traditional text-based retrieval systems and 

report “significant improvement compared to manual retrieval…”. The authors in [97] used 

three sets of various global moment features and three sets of component-based features. The 

component-based feature set consists of several shape descriptors which are extracted from 

various image regions.  

Perhaps the most relevant work using image based features for watermarks retrieval is 

presented by G. Brunner in [98] where further details are given for the work presented in [95]. 

The author introduced a structure-based feature extraction technique with a method capable of 

representing the global structure of an image, as well as local perceptual groups and their 
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connectivity. The advantage of the method is its broad range of applications and its invariance 

against changes of illumination and similarity transformations. A line segment grouping, based 

on agglomerative hierarchical clustering, is also used where the segments are extracted with 

an edge point tracking algorithm. One of the tested applications was is the classification and 

content-based image retrieval of ancient watermark images. The results are presented with 

averaged class-wise precision/recall graphs that show the discrimination ability of the 

structure-based feature set. For the classification, the author used a support vector machine 

with an intersection kernel. The results are obtained by a leave-one-out evaluation and show 

that for the fourteen class problem, an average true positive rate of 87.41% could be achieved. 

The literature review on watermarks research and the selection of references presented in 

this section clearly indicate the importance of digitization of historic documents and the 

amount of the work already done in this area. It also illustrates the need for better tools and 

techniques for imaging and image processing. The examples found in the literature illustrate 

the obstacles and the limited performance of existing systems for watermarks searching and 

retrieval. 

The development of an efficient and accurate search and retrieval method for watermarks 

is one of the main goals of the current thesis. Before introducing the new method, the next 

section describes an alternative technique for imaging of historic documents and manuscripts. 

The method is based on hyper-spectral imaging – a technology originally developed for 

military monitoring and remote sensing. With the recent technological developments in optical 

systems, image sensors, cameras, memories and software, hyperspectral imaging becomes 

more accessible for many other applications. 

2.4   Hyperspectral imaging of historical documents 
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In the last several decades, Hyperspectral Imaging (HSI) rapidly proliferates from its 

original applications in remote sensing [99] and military purposes [100] to microscopic 

analysis of biological materials, forensics, chemical detection, and others [101]. Hyperspectral 

Imaging is a non-destructive optical technique that gathers electromagnetic radiation from 

across a large portion of the electromagnetic spectrum in many narrow bands to create what is 

known as the hyperspectral cube. The cube is a collection of monochromatic images (frames) 

at many specific (center) wavelengths. The XY dimensions of the hyperspectral cube are the 

image frame coordinates and the third dimension is the spectral wavelengths. Each pixel is 

presented by a column vector of the electromagnetic energy measured by the sensor at specific 

wavelengths. This essentially reveals a “spectral signature” of the object of interest by 

measuring its reflectance, transmission, absorption or luminescence. HSI sensors measure the 

intensities of these properties at specific wavelengths in regions of the spectrum: ultraviolet, 

visible, and infrared [102]. 

The main advantage of HIS is the spectral resolution. One may consider the standard RGB 

imaging as a broadband signal acquisition that integrates the values over three overlapping 

bands and inhibits the ability to detect optical properties at specific wavelength. The hyper-

spectral imaging (HSI) acquires images at multiple (hundreds) narrow wavebands. HSI is a 

non-contact method, which is especially important concerning the fragile state of some 

valuable historical documents. HSI provides the possibility to examine spectral segments and 

spatial layers of the object and analyze elements of their composition. The technique, known 

as anomaly detection or target recognition, presents the possibility of retrieving text that has 

been lost through fading, staining, overwriting or other forms of obscuring. HSI offers the 

prospect of distinguishing different ink types, paint and paper composition, which can be used 
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to answer questions about the time period and provenance of the documents. Figure 2.26 

illustrates the recent signature discovery and authorship conformation of Claude Monet's “A 

Haystack in the Evening Sun”. As the news announcement says, “RECENART®’s mobile 

laboratory team visited Serlachius Museums a couple of weeks ago to study some of their 

paintings. One of the paintings was Monet´s painting “Haystack in the Evening Sun” from 

1891. The painting did not have a visible signature. … With hyperspectral imaging the Monet 

signature was found underneath the paint layers.” [103]. 
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Figure 2.26: Claude Monet's A Haystack in the Evening Sun (c 1891) was examined at 

the University in the Recenart – Research Centre for Art project, Courtesy of Gosta 

Serlachius [103]. 
 

The application of hyperspectral imaging in the area of historical document examination is 

a novel and still somewhat specialized area of research, incorporating both machine vision and 

image processing to provide information about the physical characteristics of questioned 

documents and historical manuscripts. The recent advancement of related technologies 
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increased the capabilities of the HSI while decreasing the cost of the systems. Nevertheless, 

the instrumentation remains specialized and still at a prohibitive cost to become a mainstream. 

One of the main goals of the CODICES team at UMKC was to develop a HSI system with low 

cost, portability and ease of operation with respect to imaging of historic documents and books. 

Before describing the results, a review of some previously developed systems for HSI of 

documents is presented. 

Klein et al. [104] provide an excellent description of the basic concepts, working principles, 

construction and performance of a HSI device specifically developed for the analysis of 

historical documents. The device has been used to record the variation of spectral reflectance 

on a historic seventeenth century map. The instrument also was used to compare the local 

variation of the yellowness index of reference for bound paper volume and loose sheets. HSI 

allows the detection and visualization of differences in aging processes of documents, and are 

particularly useful to monitor the effects of exhibiting and handling on document aging.  

Vaarasalo [105] provides a useful discussion on the optical properties of paper, which 

changes its optical properties with time [106]. As the author indicates, the hyper-spectral 

images of historical paper, parchment, and other carriers are complex spectral combinations of 

the optical properties of a collection of materials for writing, printing and drawing as well as 

the opaque or semi-transparent carrier itself. The materials also have different temporal 

degradation properties. More recently, De la Rosa and Bautista [107] have discovered that to 

find the presence and concentration of different colorants or components in the paper, it is only 

necessary to know the spectra and fluorescence lifetimes at a specific single wavelength (337.1 

nm in their case). They indicate that these kinds of measurements could be useful for studying 

the papers long-term stability and how aging affects it. Additionally, the authors refer to the 
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particular importance for the preservation of paper-based historical records including the 

ambient storage conditions as specified by the Committee on Preservation of Historical 

Records. 

Hyperspectral imaging creates a large dataset for analysis purposes, recording vast amounts 

of information within a wide band of the electromagnetic spectrum with high spectral 

resolution. This provides a document analyst with information regarding an object’s 

characteristics at specific wavelengths. Other factors such as illumination source, type of 

emission being examined (e.g. reflectance, transmittance, fluorescence, absorption) also have 

a bearing on what information is acquired and available to be analyzed. As a result, currently 

the application of HSI for the examination of historical documents still requires some human 

interaction or examination to solve document specific questions. In this regard, HSI has to be 

viewed as a powerful enabling tool. Automation of the systems for image acquisition, including 

calibration, is important in order to obtain hyperspectral cubes with sufficient and conclusive 

quality. Automation of the image processing can accelerate the investigation process with the 

application of modern computational hardware and software. 

Even without any form of immediate processing, the hyperspectral cubes are a good 

method of digitally preserving historical documents and manuscripts. This three dimensional 

data also provides ample spectral data to perform post processing for more detailed analysis. 

Technological innovations in hardware (fast CPUs, powerful GPUs, clusters, the cloud) 

combined with modern processing algorithms (machine learning and parallel processing) 

substantially facilitate the successful discovery of useful information from the large amount of 

data. HSI and image processing techniques have been developed and successfully used in the 
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realm of remote sensing. Their potential in document and art investigation is facilitated by the 

new technology and the fact that the imaging is performed in a controlled environment. 

In the field of historical document examination, Tonazzini et al. [108] have modelled a 

document as a series of superimposed patterns and have implemented a linear mixture model 

to describe the relationship between the patterns. Detecting barely perceivable patterns is 

formulated as the separation of the various patterns in a mixture. A successful discrimination 

with statistical methods, including independent component analysis (ICA) is used to extract 

partially hidden texts and for the removal of the effects of the seeping of ink (bleed through) 

from the reverse paper side [109]. It was found that in general the mixture coefficients are not 

known, and the separation problem becomes an instance of the blind source separation (BSS) 

problem [110] where the information in the captured images exists in “mixed signals”. 

Principle Component Analysis (PCA) is another dimensionality reduction technique which 

is often applied to hyperspectral data as a means to isolate, uncover and enhance non-obvious 

features in document images. PCA is used to condense a high dimensional dataset of 

interrelated variables to a dataset of lower dimensions retaining as much as possible of the 

variation between the variables. PCA is used to identify the most representative elements of 

the data (the principal components), which is of use in hyperspectral image analysis. These 

principal components are selected and ranked by their relative variance, revealing the most 

variant representative element to be the most important [111]. In [112], the PCA algorithm has 

been successfully applied in the analysis of historical parchments in the Baltimore’s Walters 

Art Museum. The algorithm has aided in the enhancement of faded text and the isolation of 

different inks. In this work, the first principle component revealed a view similar to that of 

normal visual inspection. The second component significantly enhanced the legibility of the 
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partially faded main text, displaying a high contrast between the ink and paper. The third 

principal component distinguished the individual inks in manuscripts containing more than one 

type of ink by highlighting differences in the spectral responses at wavelengths outside the 

visible range. 

Hyperspectral image processing can also aid in the reading of documents which have 

degraded naturally over time by separating the under-written and over-written text to allow 

enhancing the contrast between them. Analyses at Rochester Institute of Technology and Johns 

Hopkins University have discovered previously unseen parts of famous Archimedes’ 

palimpsests which are now readable. Another capability particularly important to this thesis, is 

that hyper-spectral images scanned in the infrared spectrum can be used to better detect and 

visualize watermarks with techniques developed for remote sensing [113]. The post processing 

of hyperspectral images has seen much development in the areas of remote sensing of 

geographical images [114, 115] for purposes as feature extraction, target discrimination, 

classification and quantification. Borrowing ideas from previous applications and developing 

them further for the specifics of forensic analysis of historical documents, scholars can achieve 

very useful results. 

Hyperspectral imaging for document analysis is an emerging field of study but has already 

proved useful in aiding many high profile document examination projects. As a non-invasive, 

non-destructive imaging technique, HSI is used to capture the optical properties of objects at a 

series of contiguous wavelength bands. The series of these hyperspectral bands are typically 

in the hundreds, and contain information from a large portion of the electromagnetic spectrum, 

encompassing information outside the conventional imaging systems and the natural 

sensitivity of the human eye. The question of how to digitally represent and preserve the current 
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state of historical documents is likely the most prominent obstacle encountered by historical 

analysts and document conservators. Historical documents, with their cultural and sometimes 

irreplaceable historical values, provide opportunities and challenges to scholars. The solutions 

most of the time require a multidisciplinary approach and the CODICES team is one very good 

example.  

When light interacts with an object several different phenomena may occur. The incident 

light may be reflected, absorbed, transmitted or scattered. In general, several of these processes 

happen simultaneously to a different degree. 

Reflectance is the process in which a fraction of the incident radiation is reflected by an 

optical boundary in the direction somewhat opposite (less than 180o, in general) to the incident 

light. The reflectance spectrum captures the reflectivity of the object as a function of 

wavelength. 

Absorption of electromagnetic energy describes the energy changes with transformations 

to other forms of energy, for example to heat, when light interacts with materials. It relates to 

the coupling of photons at specific wavelengths with the structure of the radiated object. 

Scattering occurs when photons are forced to deviate from a straight trajectory by the 

interactions and non-uniformity in the material through which they pass. 

Transmitted and refracted light is the portion of incident light that passes through a 

material. 

Additional light properties are also important for the imaging process. Light is typically 

non-coherent, diffused and a mixture of wavelengths. Normally, light (solar radiation, light 

emitted from incandescent light bulbs, LEDs, etc.) contains many different frequencies, and 

when it interacts with an object, reflection, absorption and/or transmission at certain 
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frequencies occurs. All this complexity of interactions could be captured with the collection of 

a specific wavelengths to form a high resolution spectral characteristic of the object of interest. 

Another optical phenomenon that can occur and can be measured using HSI equipment is the 

emission of light as a result of the absorbed energy (fluorescence). There are light sources 

designed to emit light with specific properties in regard to wavelength, polarization, coherence, 

etc. The use of such special sources (tunable lasers, for example) provides additional elements 

of controlled interactions with the object of interest. The photon energy decreases as the 

wavelength increases (frequency decreases). For that reason the UV light (<400nm) has to be 

used carefully in order to prevent destructive transformations of the imaged materials. On the 

other hand, lower wavelengths provide better optical resolution (for example blue light 

compared to near infrared). 

Capturing the spectral response of an object over a broader electromagnetic region provides 

reach information which can be used to define the composition of the material. Hyperspectral 

imaging systems capture spectral signatures of materials with high resolution (multiple narrow 

bands with 10nm at half height, for example). There is no specification for the number of the 

multiple bands. When they are in the order of tens, the imaging is referred to as multi-spectral 

in comparison with the hyper-spectral imaging when the number of narrow bands are in order 

of hundreds.  

2.4.1 Hyperspectral imaging systems for historical documents 

As already indicated, there are many HSI systems commercially available or custom built 

to specific requirements. The approach of CODICES team at UMKC was to design and build 

a system at a reasonable cost with readily available components. The goal was to be able to 
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replicate the system in the future and make it available to multiple organizations. The system 

had to be compact and easy to use. 

Two separate systems were designed. One was intended to scan the page of a book by 

moving in X-Y plane parallel to the page and at some distance from the surface. The continuous 

spectrogram is produced for the illuminated area. The repositioning distance is based on the 

size of the illuminated area. The speed of complete page scan is defined by the scanned surface 

area and the time specified for scanning at each location. In general, multiple scans are 

performed for better signal-to-noise ratio. 

The second system was designed to take a full-frame size images at predefined wavelengths 

in the visible and infrared spectra. The two systems are presented next. 

For the area small area spectrometry the Jaz EL350 VIS-NIR spectrometer was used 

(Ocean Optics, Inc., Dunedin, FL, USA). The system was interfaced and controlled with 

custom LabVIEW (National Instruments, USA) based interface as shown on the right in Figure 

2.27. 

 

Figure 2.27: Ocean Optics Jaz EL350 VIS-NIR spectrometer (left) 

and LabVIEW based GUI for control and monitoring. 

. 
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Jaz is a modular and autonomous module that could be combined to create a community 

of smart sensing instruments that are unfettered by the limits of traditional optical sensing 

instrumentation. Jaz is built on a platform that expands to include a light source, rechargeable 

lithium-ion battery and up to 8 spectrometer modules to make Jaz an analytical instrument 

easily adaptable for the field, lab or process environment. Jaz can also connect to a computer 

via the USB port. When connected through a USB 2.0 or 1.1, the spectrometer draws power 

from the host computer and can be controlled by OceanView software. Based on the drivers 

provided by Ocean Optics, a custom interface was developed. Figure 2.27 shows the 

spectrogram of the light source used in the CODICES imaging laboratory. The GUI has tabs 

to display the Live View or Recorded spectra. 

Some of the Jaz features are: 

 Sony ILX511B 2048-element linear silicon CCD array detector; 

 14 grating options, UV through shortwave NIR; 

 Responsive from 200 nm to 1100 nm; 

 Maximum Wavelength range 650 nm; 

 Sensitivity of up to 75 photons/count at 400 nm; 41 photons/count at 600 nm; 

 An optical resolution of ~0.3 to 10.0 nm Full-Width at Half-Maximum (FWHM); 

 Integration times from 870 µ to 65 seconds; 

 EEPROM storage for Wavelength Calibration Coefficients, Linearity Correction 

Coefficients, and an optional Absolute Irradiance Calibration; 

 SD card data storage; 

 Low power consumption of ~ 2.5 W and 8-hour rechargeable lithium-ion battery; 

 16 bit, 3MHz A/D Converter; 
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 Up to 3 spectrometer channels in a stack for simultaneous multipoint measurement. 

The USB connectivity makes Jaz extremely adaptable and easy to operate. The Jaz display 

can be rotated 180 degrees in either direction with the faceplate specified for either orientation. 

One can use the specific modules needed for the particular application and to extend the 

bandwidth of the stacked system. This flexibility and the features which are listed above, 

makes Jaz a uniquely customizable scientific instrument and eliminating the cost of 

unnecessary components. That was the reason for selecting Jaz for the design of the HSI 

system. 

The full-frame imaging system was design based on the Cambridge Research & 

Instrumentation, Inc. (CRi, MA, USA) VariSpec Liquide Crystal Tunable Filters (LCTF, 

Figure 2.28). The family of filters are solid-state tunable birefringent devices that can be used 

for both imaging and non-imaging spectral analysis. The modules function like high-quality 

interference filters, but the wavelengths of light they transmit are electronically tunable and 

allow for the rapid, vibration-less selection of any wavelength in the visible (VIS) or near-

infrared (NIR) region for which the filters have been constructed to operate. Based on its filters, 

CRi manufactures and sells the Nuance™ Multispectral Imaging System, the R&D 100 

Award-winning Maestro™ In-Vivo Fluorescence Imaging System, and the Vectra™ 

microscope slide analysis system. 
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Figure 2.28: Electronically controlled tunable filters. 

 

VariSpec filters employ electronically controlled liquid crystal elements to select the center 

wavelength and the transmitted wavelength range while blocking all others. Filter 

transmittance is sensitive to polarization of the input beam, and is increased by a factor of two 

if the input beam is polarized along the axis of the input polarizer, as compared with a non-

polarized or randomly-polarized beam. VIS models contain an integral, non-removable hot 

mirror for blocking unwanted NIR light and its heating. The product family includes the 

following models: 

 VIS: Visible-wavelength filters with a wavelength range of 400 nm to 720 nm, 

bandwidths (FWHM) of 7 nm, 10 nm, or 20 nm, and working apertures of either 22 mm or 35 

mm; 

 SNIR: Short-wavelength near-infrared filters with a wavelength range of 650 nm 

to 1100 nm, bandwidths (FWHM) of 7 nm or 10 nm, and a working aperture of 22 mm; 
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 LNIR: Longer-wavelength near-infrared filters with a wavelength range of 850 nm 

to 1800 nm, bandwidths (FWHM) of 6 nm or 20 nm, and a working aperture of 22 mm; 

 XNIR: Longer-wavelength near-infrared filter with a wavelength range of 1200 nm 

to 2450 nm, bandwidth (FWHM) of 9 nm, and a working aperture of 22 mm; 

 VISR: Visible-wavelength filter with a wavelength range of 480 nm to 750 nm, 

extraordinarily narrow bandwidth (FWHM) of 0.25 nm (best effort), and a working aperture 

of 22 mm; 

 NIRR: Near-infrared wavelength filter with a wavelength range of 650 nm to 1100 

nm, extraordinarily narrow bandwidth (FWHM) of 0.75 nm (best effort), and a working 

aperture of 22 mm. 

In addition to low-power and compact design, other features of VariSpec filters include: 

 Ability to tune continuously over hundreds of nanometers in the VIS and NIR; 

 Fast, random-access wavelength selection; 

 Excellent imaging quality with averaging over multiple scans; 

 Solid-state construction, with no moving parts. 

Figure 2.29 displays the screen capture of the VariSpec VIS LCT filter integrated with the 

Jaz VIS module. The top capture is of VariSpec tuned at 530 nm and the bottom at 620 nm. 

The Jaz’s spectral graphs on the right side show the spectral band passing the filter at the exact 

center frequencies. Several more observations from the graphs: 1) the intensity picks for the 

two wavelengths are proportional to the illumination light profile given on Figure 2.27; 2) with 

the integration time set to 200ms, the noise base at 530nm is higher compared to the 620nm 

indicating lower SNR; 3) at half height the bandwidth of the filter is about 10 nm as specified. 
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Figure 2.29. Performance of the integrated Jaz and VariSpec modules. 

 

For comparison, Figure 2.30 shows the spectrogram of the light in the imaging laboratory 

when the overhead fluorescent light is on. The picks are common for fluorescent sources and 

obviously they can severely change the hyperspectral images acquired close to these two 

wavelengths. 
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Figure 2.30: Control panel for VariSpec and Jaz with the spectra of 3200K light source 

and the overhead room fluorescent light on. 

 

The VariSpec LCTF can be tuned from 400nm to 720nm. In this particular example with 

10nm specified bandwidth, there are total of 32 bands. The Jaz acquires spectra from 335nm 

to 825nm in 1024 data points. The internal temperature of the LCD filters is continuously 

monitored (25.6o C in this case), which is very important when operating using a light source 

with NIR spectra. The damage threshold of the filters for reasonably long-term exposure to 

VIS and NIR energy is 500 mW/cm2. Note that the filters absorb the light that is blocked. VIS 

filters have a near-infrared hot mirror to reflect some unwanted near-infrared light, but longer 

wavelength near-infrared light, such as thermal energy, can damage the filters. 

There are other technologies for electronic tunable filters. Acousto-Optic Tunable Filters 

(AOTF) use a crystal in which vibrational waves at radio frequencies allow a single wavelength 

of light to pass. The wavelength of light is a function of the frequency of the radio waves 

applied to the crystal. Transmission can be high, but without the superior out-of-band 

transmittance performance of an LCTF. There is also a so-called blur effect that can 
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compromise the spatial imaging quality of the filter. Field-of-view is narrower than with 

VariSpec LCTFs because of the requirements of the AOTF design. Tuning speeds can be as 

fast as 20 microseconds because all that is required is that the radio waves penetrate the crystal. 

There are several technical characteristics of the VariSpec LCTF which are not the most 

optimal. Only the VIS filters come in 22 mm and 35 mm apertures. All others are available in 

22 mm apertures only. The filters need from 50ms to 150ms to tune from one center 

wavelength to another and they linearly polarize the passing light. These constrains are not 

detrimental for the design of the HSI system but nevertheless limit the design flexibility. 

To complete the tools available for small area hyperspectral imaging, several additional 

executable programs were developed. They provide the functionality to read recorded spectral 

lines in binary format and to read concatenated spectra when multiple scans are recorded 

consecutively in the XY plane. Examples of the interface are shown in Figure 2.31. 

 
Figure 2.31: Spectra reader for binary and concatenated binary spectral records. 

 

For the full-frame imaging system, the camera could be any commercially available camera 

that meet the desired image resolution. Considerations are remote control, compatibility of the 

optics with the selected LCT filters, raw image capture and export, possibility to remove the 

infrared (“hot”) filter on the sensor of the camera, and others. The Canon, Nikon and several 

other popular camera families were considered. Canon 5Ti was selected. In this case the 
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selection was driven by the ability to integrate the camera for a complete remote control with 

the same GUI that is used to control the LCT filters. The Canon T5i is shown in Figure 2.32 

with the VariSpec filter attached.  

 
Figure 2.32: The Canon EOS T5i camera with the VariSpec VIS LCT filter attached. 

 

The manufacturers of most modern instruments provide a software development kit (SDK) 

for one or more programming languages. To expedite the development process, the drivers for 

LabVIEW were used to develop the control and monitoring GUI which is displayed in Figure 

2.33.  
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Figure 2.33a: Optical performance test at 520 nm wavelength. 

 

 
Figure 2.33b:  Optical performance test at 560 nm wavelength. 
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Figure 2.33c:  Optical performance test at 600 nm wavelength. 

 

The main tab is for acquisition control and monitoring. Three additional tabs provide access 

for remote setting of the filter, the camera, and for the overall status of the system. Figure 

2.33a, 2.33b, and 2.33c display screenshots of the image capturing of a standard test chart at 

three different wavelengths. With the use of the zooming tool (located next to the top left corner 

of the image viewer), a magnified portion of the captured chart is displayed to demonstrate the 

spatial resolution for the three different wavelengths. The GUI has several tabs for image 

viewing, capturing and storing, as well as control setting for the camera and the filter. The user 

can observe in real time selected image quality measures (contrast, intensity, saturation, color 

components). The user may operate the system in sequential target viewing, adjustments, and 

single image capture. In automated mode, a set of images is captured and stored. The number 

depend on the total bandwidth (start and stop wavelength) and the step size between the 

consecutive center frequencies. 
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Figure 2.34 is snapshot of the capturing process of Summa Theologica in the CODICES 

imaging laboratory.  

 
Figure 2.34:  CODICES imaging of Summa Theologica. 

 

The initial test of the integrated system was performed with a set of images captered with 

the Canon 5Ti camera and the VariSpec VIS LCT filter at center frequencies every 10 nm, 

starting from 440 nm and finishing at 700 nm, for a total of 28 images. The region of interst 

(ROI), in this particular test example, was the lower left corner of the verical page of Summa. 

The ROI containes a hand drawing in color. Figure 2.35 displays the RGB image of the first 

page of Summa Theologica volume one without any filtering. Figure 2.36 displays the RGB of 

a small area from the same page and three frames from the blue, green and red spectra captured 

with the VariSpec LCTF. 
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Figure 2.35: The RGB jpeg image of Summa Theologica, Volume 1, page 1. 

 

 
Figure 2.36: The jpeg images from page 1 of Summa Theologica Prima. Standard RGB 

image without filtering (A). The same ROI with VariSpec tuned at 450nm (B), 550nm 

(C), and 650nm (D). 

 

The subset of hyperspectral images is used to form a mini hyperspectral cube (Figure 2.37, 

left). The RGB images were transformed to gray-scale and the relative SNR of each image was 

calculated to evaluate the imaging quality across the whole bandwidth (Figure 2.37, right). 

Even this simple preliminary evaluation indicates the roll-off of the image quality at the end 

of the spectrum. The spectral intensity profile of the light source combines with transmission 

efficiency of the LCTF to further emphasize this effect. This prompts the necessity for real 

time image quality evaluation during the acquisition process. Or, postprocessing equalization 

with respect to the illumination source and the spectral characteristic of the filter. When the 
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combined transfer function of illumination source/filter is known, it can be used to adjust the 

camera settings during acquisition. Adjustments for intensity is one aspect. Focus adjustment 

is also necessary to compensate for the wavelength dependance. Image acquisition in the 

controlled laboratory setting is an advantage and also the posibility to use an optical system 

with sufficient dept of field. 

 
Figure 2.37: Grayscale images from 400nm to 700nm and the calculated relative SNR. 

 

In codicology, the two sides of each physical sheet or folium are referred to as folium 

rectum and folium versum. Translating the Latin rectō foliō and versō folio, it means "on the 

right side of the page" and "on the turned side of the page", respectively. The short 

terms recto and verso are used referring to the text written on the "front" and "back" sides of a 

page in a bound set such as a codex, book, broadsheet, or pamphlet. As mentioned previously, 

digitization of some historical documents and manuscripts benefits from backlight imaging 

which facilitates imaging of the watermarks and other paper artefacts. It is also helpful for 

digital processing involving text layers removal and subtraction of reflected and transmitted 

light images. For a backlight imaging, the CODICES team used a tin flat light source and its 

spectral profile was acquired with the Jaz spectrometer and is displayed in Figure 2.38. The 

composed “white” (relatively broad) color has two peaks in the upper blue (500nm) and green 
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(560nm) regions. Based on the spectral profile, this source cannot be used for hyperspectral 

imaging or spectral profile calibration needs to be used. 

 
Figure 2.38: Spectrogram of “white” flat light source. 

 

2.4.2 Processing of the hyperspectral cube 

The term hyper-spectral cube (HSC) is not necessarily the most accurate name for the 

gigabytes of hyperspectral images. Figure 2.39 displays two HSCs. One on the left is from HSI 

of biological cells and resembles the stereo-metric definition of cube. The one on the right is 

the HSC acquired with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and has 

224 bands from Jasper Ridge in California. The very fact is that the x and y dimension of the 

“cube” are number of pixels (sensor dependent), while the third dimension is a wavelength or 

the number of frequencies at which an image is acquired. 
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Figure 2.39: Two examples of typical hyperspectral cubes. 

 

During the work on the Summa Theologica project, several software tools were developed 

to facilitate the exploration and processing of the hyperspectral cube (HSC). The images were 

stored in CR2 (raw) and JPEG (compressed) format. CR2 (Canon Raw Version 2) files refer 

to the raw image format used by Canon cameras. It stores information directly from the sensor 

to the storage device. The image cannot be easily viewed like a JPG or PNG format images. 

When stored in RAW formats, the images can be edited in much more detail in post processing 

without any format-based loss of quality. CR2 images are not yet ready for printing and cannot 

be edited with a bitmap editing program. For the CODICES project, software was design to 

facilitate the conversion from CR2 to gray scale images based on the RGB Bayer pattern of 

the imaging camera. Figure 2.40 illustrates the interactive exploration for the conversion based 

on the Bayer’s pattern, band gain, gamma correction and the type of output image. This 

particular image was taken outdoors in direct Sun light. It is an image of folklore female 
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apparel from the Northern region of Bulgaria which is reach in color and patterns. The overall 

goal is to explore and demonstrate the transformation capabilities with maximum possible 

fidelity. While the recorded jpeg images can be used for data exploration and discovery, the 

high resolution camera data may be used for a detail search and an in depth description of 

artefacts.  

Figure 2.40: GUI for interactive conversion of CR2 files to TIFF, PNG, BMP, and other 

image formats. 

 

The development of preprocessing and evaluation tools with LabVIEW has provided an 

accelerated development based on the Visual Processing toolbox. Many additional tools are 

available as commercial products and open source. The processing algorithms for the work 

reported in this thesis were developed in Matlab (MatWorks, USA). Some exploratory work 

was conducted in Python, R, and LabVIEW. 

The HSI produces a vast amount of data. Traditionally named the hyperspectral cube 

(HSC) it has GBs of data. The goal is to transform this data to meaningful and valuable 

information. Given the limited perceptual capability of the human visual system with respect 
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to dimensions of the data, most of the time the first task that is performed on the HSC is 

dimensionality reduction. This is especially important during the development cycle of an 

algorithm and typically aims at visualization in a semi-automatic and iterative method. Most 

HSI systems have proprietary software for image exploration, dimensionality reduction, and 

visualization. Other options include a spectrogram for a selected pixel or an average 

spectrogram for a ROI. A different method is to compute the joint histogram of the images in 

the HSC and rank the pairs with highest variability. For example, Figure 2.41 displays the 

individual and some of the joint histogram for three of the Summa images. 

 
Figure 2.41: Individual and joint image histograms for three wavelengths. 

 

The pixel, ROI, and image histogram approaches provide the user with ability to discover 

point of interest (abnormality in the spectra) which in general are indicative of “something 

different from the surrounding area”. In the case of remote sensing and reconnaissance the 

terminology used is abnormality detection or target recognition. The terminology is suitable 

for the application of HSI as a forensic tool in the study of historic documents. The terminology 
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depends on the specific application: spectral un-mixing, blind source separation, feature 

extraction, and others. 

There are several classical methods for dimensionality reduction which were already 

described briefly. Principal component analysis (PCA), Independent component analysis 

(ICA) and Knn clustering are frequently used and several additional methods were developed 

for remote sensing applications. 

Principal Components Analysis (PCA) is the most widely used linear-dimension method 

based on second order statistics. PCA is also known as the Karhunen-Loeve transform, singular 

value decomposition (SVD), empirical orthogonal function (EOF), and Hoteling transform. 

PCA is a mathematical transformation that results in the simplification of large data sets by 

processing a number of correlated variables into a smaller number of uncorrelated variables 

called principal components [116]. The basic applications of PCA, as applied to hyperspectral 

images, are dimensionality reduction of the data (data compression) and information 

extraction, associated with segregation of noise components. This is done by finding a new set 

of orthogonal axes that have their origin at the data mean and are rotated to a new coordinate 

system so that the spectral variability is maximized. The resulting principal component bands 

are linear combinations of the original spectral bands and are uncorrelated. PCA is a family of 

techniques: the basic PCA is enhanced and developed to kernel PCA, Maximum Noise 

Fraction (MNF), Noise Adjusted Principal Components (NAPC), and others. Figure 2.42 

illustrates the basic PCA applied to hyperspectral images of Summa Theologica. The first three 

principal components are shown next to the RGB image of the same ROI on the bottom row 

in Figure 2.42:  

 



80 

 

 
Figure 2.42: PCA applied to hyperspectral images of Summa Theologica  (top row). The 

first three principal components are shown next to the RGB image of the ROI. 

 

The minimum (or maximum) noise fraction (MNF) is a second algorithm of the PCA 

family techniques developed and used in the remote hyperspectral imaging. It was introduced 

by Green, Berman, Switzer, and Graig in 1988 as a method that takes into account sensor noise 

[117]. It consists of two consecutive PCA transformations and requires an estimate of the signal 

and noise covariance matrices. While the basic PCA considers only the variances of each 

principal component and assumes that noise is isotropic (“white”), the real sensors’ noise is 

typically not isotropic. Early imaging sensors operated with an elevated noise levels and the 

images with monotonically declining variance, produced by the PCA, were not always images 

of decreasing quality. The MNF transform orders the images in terms of the SNR metric, thus 

ordering them based on image quality. Modern imaging sensors have better characteristics and 

in controlled environments could be used without active cooling to reduce the thermal noise. 

This removes the need to apply the MNF. 

Because the MNF transform orders the component images based on their quality, it is 

invariant to scale changes. The component images are ordered based on SNR instead of 

variance like in basic PCA. MNF transformation is also called the Noise Adjusted Principal 
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Components transform. It is equivalent to sequentially transforming the data to a coordinate 

system in which the noise covariance matrix is the identity matrix followed by a principal 

components transformation.  

Dimension reduction is not an easy task and many methods have been proposed to produce 

the intrinsic dimensionality of the data set. The goal is to retain the minimum number of free 

variables needed to model the data without or with minimal loss [118]. The reviewed literature 

describes four methods for reducing the dimensionality of multispectral and hyperspectral 

image data. 

Cumulative variability is the straightforward method for dimensionality reduction. The 

criterion is that the first components that account for at least 90% of the total variability are 

retained. It is estimated that these components capture the useful information of the scene. 

In 1966, Cattell [119] has introduced the scree test. It is a graphical method in which the 

eigenvalues are plotted versus the ordered principal components. The sharp drop from a high 

initial values indicates the components that should be retained. The low values (low variance 

elements) in the tail of the curve represent only the random variability in the data. 

The Kaiser criterion [120] for determining the intrinsic dimension of the data is based on 

the correlation matrix. The transform bands are evaluated and those with a variance greater 

than or equal to one are retained. Transform bands with a variance greater than or equal to one 

contain at least as much information as the original. 

Continuous Significant Dimensionality (CSD) for dimension reduction was proposed by 

Yury [121].  It is defined by the formula 

𝐶𝑆𝐷 =∑ min (λ𝑗, 1)
𝑘

𝑗=𝑙
   (2.5) 
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where λ1, λ2, ... λk are the eigenvalues of the correlation matrix. The CSD value indicates 

the number of principal components that should be retained. 

In general, the dimensionality reduction of hyperspectral data is achieved with different 

success and can produce quite different results due to the ill-conditioning of the dimension 

estimation problem [118].  

Independent Component Analysis (ICA) has received attention because of its wide range 

of potential applications [122 – 128]. The goal of ICA is to recover independent sources given 

only sensor observations that are unknown linear mixtures of the unobserved independent 

source signals. In contrast to correlation-based transformations such as Principal Component 

Analysis (PCA), ICA algorithm includes higher (beyond second order) statistics. ICA not only 

de-correlates the signals (2nd-order statistics) but also reduces higher-order statistical 

dependencies, attempting to make the signals as independent as possible. ICA is designed not 

to search the principal components, which allows to represent the maximum of the return 

dispersion, but the more independent factors which can linearly generate the returns. Thus, 

ICA seems to be an attractive candidate for dimensionality reduction. 

ICA is based on a linear decomposition of observed data into statistically independent 

components. Given an observation: 

𝑿 = 𝑨𝑺  (2.6) 

where X is the vector representation of the recorded signals and A is a scalar matrix of the 

coefficients of the source signals represented by the vector S, ICA finds a separating matrix W 

such that: 

𝒀 = 𝑾𝑿 = 𝑾𝑨𝑺  (2.7) 
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where Y is a vector of independent components. ICA looks for a linear representation that 

minimizes an objective function (maximizes a given non-Gaussian measure). A commonly 

used function in ICA algorithms is the mutual information of vector Y: 

𝑰(𝒀,𝑾) = 𝑯(𝒀𝒊) − 𝑯(𝒀)  (2.8) 

 

where H(Yi) and H(Y) are the entropy of the random variable Yi and of random vector Y, 

respectively. More details about the general framework of ICA can be found in [129]. Different 

implementations of ICA are listed in Table 2.1. 

 

Table 2.1: Different implementations of ICA algorithms. 

 
 

Independent component analysis (ICA) is a very popular (and classical) method that has 

shown success in applications for feature extraction and unsupervised recognition. There are 

many enhancements and implementations of ICA. Some of the algorithms are listed in Table 
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2.1. In general, the statistical independence of sources in hyperspectral images cannot be 

verified. However, it is a fact that many of the historic documents have been rewritten and 

corrected multiple times. This is especially true for manuscripts on parchments and other 

expensive writing surfaces. Also the watermarks and the writings on the paper are by default 

separate, statistically independent sources. This logic makes ICA a suitable tool in the study 

of historic documents for sources un-mixing and artefact discovery. The typical use of ICA for 

dimensionality reduction of the HSC is studied as hyperspectral data classification. 

Experimental results shown on Figure 2.43 indicate the capability and effectiveness of ICA 

when used for hyperspectral image pre-processing. A Matlab implementation of the first 

algorithm of Table 2.1 (highlighted in blue) is used for this example. 

 
Figure 2.43: ICA algorithm outputs. Images from Adair Chant Book 

 

There are many other methods for processing the HSC. The number of new algorithms 

continue to grow and the performance results continue to be improved. The ability to 

successfully process the images of the HSC and obtain the useful information is extremely 
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important and the basis for successful outcomes. However, as already mentioned, the 

acquisition and processing of the HSC is not the main focus of this thesis. The reference 

materials and demonstrated examples are given for completeness of the systematic approach 

to the study of historical documents and manuscripts. Some of the referenced methods have 

multiple application available in the public domain or as open source for academic research.  

One important consideration during hyperspectral imaging is to maintain a spatial 

alignment during the acquisition process. Remote control of camera and filter helps to avoid 

any mechanical disturbances during a complete acquisition of the HSC. The ability to align 

images is very useful. Table 2.2 shows some rigid, non-rigid, and optical flow algorithms for 

image alignment. 

 Table 2.2: Rigid, non-rigid and optical flow alignment algorithms. 

  
Random sample consensus, or RANSAC, is an iterative method for estimating a 

mathematical model from a data set that contains outliers. The RANSAC algorithm works by 

identifying the outliers in a data set and estimating the desired model using data that does not 

contain outliers. Figure 2.44 shows an example of RANSAC filtered correspondences for 
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hyperspectral images of an old music chant. Figure 2.45 shows the error comparison with the 

Least-square error method. 

 
Figure 2.44: RANSAC alignment of images – point correspondences. 

 

 
Figure 2.45: Two images (A and B), the error of RANSAC alignment (C), the warped 

image by features based alignments with RANSAC (D), warped image by features 

based alignments with Least-squares (E), , and error of Least-squares alignment (F). 
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Scale-invariant feature transform (SIFT) is an algorithm used in computer vision to detect 

and describe local features in images. The algorithm was published by David Lowe in 1999. 

Figure 2.46 shows an example of image alignment using the SIFT transform. The two images 

are A and B, the SIFT flow field (C) and the registration error (D). 

 
Figure 2.46: Images alignment with SIFT transform: images (A and B), SIFT field flow 

(C), and the registration error (D). 

For alignment purposes of the hyperspectral images and to evaluate the degree of 

misalignment of acquired images, several of the most popular and frequently used algorithms 

were tested. One has to note that due to the very nature of the hyperspectral imaging process, 

the alignment of the images is similar to alignment of different layers of two RGB images. 

Comparing the performance of the alignment algorithms, the Scale-invariant feature transform 

(SIFT) resulted in the lowest registration error as shown in Figure 2.46D.  

 

2.4.3 Watermark image extraction 

After reviewing some aspects of the digital image acquisition and the image preprocessing, 

in the next sections some of the most applicable methods for extraction and processing of 

watermarks are presented. Some of the popular enhancement techniques are reviewed for 

completeness and to emphasize that they are necessary steps in order to generate a good (or 

sufficiently acceptable) quality image. Usually, preprocessing includes histogram equalization 

enhancement for adjusting image contrast and brightness. Histogram thresholding, including 

double thresholding, is an example of using histograms for image enhancement [133, 134]. It 
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is frequently used due to the natural differences in the pixels’ intensity for the paper 

(background), the printed content, and the watermark. Image subtraction is used in 

combination with noise reduction and filtering in spatial and frequency domains. Algorithms 

for detection and extraction of chain lines in the image are based on the Hough or Radon 

transforms and edge detection methods, including Sobel, Prewitt, Roberts, Laplacian of 

Gaussian, and Canny [130 - 132]. The laid lines in backlight images appear as well-defined 

peaks in frequency domain due to their regular spacing and can be easily filter out. 

 

2.5    Watermark image preprocessing 

The digitized images of watermarks contain many unwanted interfering components such 

as text, chain and laid lines. The preprocessing of the watermarks images removes or at least 

decreases the interferences to produce an image of the watermark only. The steps typically 

involve thresholding to separate the background (paper surface with embedded watermark) 

and foreground (text and drawings). The task is complicated when an original recto image 

contains verso text. There are many techniques for layers separation and to determine an 

appropriate threshold value for the process of transforming a gray-scale image into a binary 

image for the object of interest. The techniques can be grouped into two broad categories: 

global thresholding and local thresholding. Global methods like that of Otsu [133] try to find 

a single threshold value for the whole document. Global methods are very fast and global 

thresholding statistical algorithms have been used for many years producing good results [134 

– 139]. The global thresholding is not applicable to images of complex documents and with 

degradation due to uneven illumination and background interference. To overcome these 

complexities, local thresholding techniques have been proposed. As the name suggests, local 
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thresholding compares each pixel according to the grayscale intensity of the neighboring 

pixels. The techniques described and used by Bernsen [135], Chow and Kaneko [140], Niblack 

[141], Mardia and Hainsworth [142], Taxt [143], Yanowitz and Bruckstein [144], Eikvil [145], 

Sauvola & Pietikainen [148] and Singh et al. [149, 150] belong to the local thresholding 

category. The combination of global and local thresholding used by O’Gorman [146] are Liu 

[147] may be grouped as hybrid techniques. Reference [151] describes the performance results 

from a 2009 Document Image Binarization Contest of 35 research teams with 46 different 

algorithms which are also applicable to watermark images. 

 The use of preprocessing and binarization is illustrated with example images 

acquired from Summa Theologica. The four-volume set contains many pages with watermarks. 

The four volumes have been digitized using standard RGB reflected imaging and also with 

hyperspectral imaging. 

 Figure 2.47 presents the results of image preprocessing by applying global and local 

thresholding techniques to a recto image from Summa Thologica containing a very popular 

watermark of six-petal flower. The blue layer gray-scale of an RGB image was used (2.47A) 

with the region of interest (ROI) displayed in (2.47B). The background laid lines were 

extracted with multilevel histogram thresholding of the pixel intensities above the dark pixels 

of the printed text (black) and below the watermark pixels which have the highest intensity 

(white). The application of global thresholding (2.47C) and local thresholding (2.47D) “lifts” 

the printed text layer. Local thresholding performs better in classifying the character pixels. 
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Figure 2.47: Blue layer of a Summa Theologica RGB recto image (A) and ROI (B). 

Global thresholding (C) performs worse than Local thresholding (D). 

 

Figure 2.48 displays the original watermark image (left) and the watermark after the text 

was removed at different threshold levels (center and right). 

 
Figure 2.48: The original watermark image (left) and the watermark after the text was 

removed at two different threshold levels (center and right). 

 

The most commonly used processes in this watermarks related work are morphological 

operators. A structuring element with selected shape (square, disc, line, diamond, etc.) is used 

in combination with an image to perform sequential operators (e.g., union, intersection, 

difference). Applying morphological operations (e.g. dilation, erosion, opening, closing, 

reconstruction, and top-hat) modifies the image depending on the structuring element. The goal 

is to remove irrelevant data and simplify the image to extract the features of interest. There are 

many available methods [152, 153]. The ultimate goal is to produce a binary image of the 

watermark free of background interference. 
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Sometimes, morphological operators cannot restore completely the lines and curve 

segments of a watermark due to the limitations of the image quality.  Figure 2.49 illustrates the 

interactive process of watermark (contour) restoration with high degree polynomial curves. In 

this particular example, a Bezier curve fitting is performed with the user selecting the number 

of points and clicking on a series of points of the petal contour. Bézier curve is a parametric 

curve frequently used in computer graphics to model smooth curves. Specifying the control 

points, the curve is completely contained in the convex hull of its points and can be graphically 

displayed and used to manipulate the curve intuitively. The curve is drawn directly on the 

original binary image. In Figure 2.49, the central circle has been restored and the cursor 

indicates the position of the currently selected point.  

 
Figure 2.49: Interactive digital restoration with high degree polynomial curves. 

 

The Bézier curves were developed in 1959 by the French mathematician Paul de Casteljau 

for the design of Citroën automobiles, but became popular after the extensive use from Pierre 

Bezier to model the curves of Renault. Figure 2.49 is presented to illustrate the feasibility to 

interactively restore the lines of a watermark which is partially retrieved because of 
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interference with overlapping text. The image is processed in Matlab. Photoshop and some 

other image editors provide similar functionality. For example image restoration in Photoshop 

includes Bezier curves. Implementation with Java, Python or other open source language offers 

a free of charge ability for restoration. Other mathematical models could be used as well. 

 

2.6   Watermark image binarization and skeletonization 

In general, to generate a clear image of the watermarks only, the goal is to convert the 

original images into a binary form. The process transforms a gray scale image (or a 

monochromatic sub band of the hyper-spectral cub) to a binary image which contain only two 

classes of pixels: white as background and black as foreground.  

The application of the preprocessing and thresholding techniques is demonstrated next with 

another image captured from Summa Theologica Tertia (recto pp. 82, Volume III) using 

reflected light imaging. The results or image processing are shown in Figure 2.50. The blue 

layer of the RGB image is used and the region of interest is selected. After applying histogram 

equalization and modified local adaptive binarization, the extracted binary image is almost free 

of print and background interference. 

 
Figure 2.50: Image with watermark from Volume III of Summa Theologica (left) and 

the binary image of the extracted watermark. 
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The next step after digitization, segmentation, and binarization of the watermark images is 

to generate descriptors which can be used to represent and uniquely identify the watermarks. 

Currently, the methods for description, classification, and search are based on text, 

morphological criteria and hash tables, whole image comparison, and statistical features 

similarities [2, 12, 22, 154 - 155]. Some efforts with partial success were reviewed in Section 

2.3 and presented in [95 – 98]. The search methods described in Subsection 2.3.3 illustrate the 

challenges and current deficiencies of these approaches. 

The need to develop a descriptor that can faithfully represent the main distinct features of 

watermarks in compact format is obvious. A method for generation of a “template-like” 

descriptor (similar to applications in biometrics, for example) would result in a compact format 

representation with ability for fast and better comparison.  In order to do that, the 

skeletonization technique is used next to further refine the watermark contours into a sequence 

of connected single pixels. 

Skeletonization of a binary image is a process for reducing foreground regions to a skeletal 

residue that preserves the extent and connectivity of the original shape while removing most 

of the original foreground pixels. The thinning morphological operation produces a sort of 

skeleton. Thinning successively erodes away pixels from the outermost boundary (while 

preserving the end points of line segments) until no more pixel removal is possible. The 

alternative method is to first calculate the distance transform of the image. The skeleton then 

lies along the singularities in the distance transform. One disadvantage is the potential 

formation of curvature discontinuities. Another approach is to use the Medial axis transform 

(MAT) which produces similar (but not identical) results as the skeletonization and the two are 

often used with similar success (Figure 2.51). One advantage of MAT (not the pure skeleton) 
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is that it has the regenerative property that can be used to exactly reconstruct the original shape, 

if necessary.  

 
Figure 2.51: Binary image of a rectangle (A), and the result from the skeletonization (B) 

and Medial axis transform (C). 

 

Another way to think about the skeleton is as the loci of centers of bi-tangent circles that 

fit entirely within the foreground region being considered [116, 160]. The skeleton is useful 

because it provides a simple and compact representation of a shape that preserves many of the 

topological and size characteristics of the original shape. In respect to watermarks, the 

skeletonization is performed on contours (in general with more than one pixel width) and 

results in contours in which each pixel has two non-zero neighbors. At the cross-section of 

contours there are pixels with more than two neighbors. In the next chapter the need for 

skeletonization becomes more apparent when it is used in the process of generating a unique 

descriptor for the watermark.  

The skeletonization process for a watermark (for a contour in general) can be defined as 

removing from its pattern as many pixels as possible without affecting the general shape of the 

pattern. The remaining pixels at the end should preserve the general shape and the pattern 

should still be recognized. The obtained pixels “skeleton” must have the following properties:  

 Be as thin as possible; 

 Be continuously connected (for a continuous shape); 

 Be the shape’s centered representation. 



95 

 

Multiple algorithms have been developed to generate the skeleton of a shape. Using the 

Hilditch's algorithm, multiple passes are performed on a binary pattern and on each pass, the 

algorithm checks all the pixels and decide to change a pixel from black to white, if it satisfies 

the following four conditions:  

1. 2 < = B(p1) < = 6 

2. A(p1)=1 

3. p2.p4.p8=0   OR    A(p2) != 1 

4. p2.p4.p6=0   OR    A(p4) != 1 

If a pixel is changed, go to step 1. Else, stop. 

The meaning of the notation is given in Figure 2.52. Every non-boundary pixel P1 has 

eight neighboring pixels P2 – P9 (Figure 2.52, left). Please note that the indexed capital Pi 

indicates the location of the pixel and the small pi is its value of 0 or 1. The algorithm decides 

whether to remove p1 or keep it as part of the resulting skeleton. For this purpose, 

two functions Fa and Fb are defined for the P1 neighboring pixels which are arranged 

in a clock-wise order to generate two values A and B:  

Fb (p1) = number of non-zero neighbors of p1 

Fa (p1) = number of 0, 1 patterns in the sequence p2,p3,p4,p5,p6,p7,p8,p9,p2 

Examples for two possible patterns and the generated values A and B, using the functions 

Fa and Fb, are given in Figure 2.52.  
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Figure 2.52: Examples for two possible patterns and the generated values A and B using 

the functions Fa and Fb. 

 

The Hilditch’s algorithm is simple and easy to implement. It’s a parallel-sequential process: 

all pixels are check at each pass and several passes are made until there is no change. 

Deficiency of the algorithm is that certain pattern will be erased completely and additional 

rules are needed to prevent for some of those possible pattern conditions. 

For watermarks, the skeletonization was applied to reduce the binary contour(s) of the 

object to a single pixel wide representations. The original image is transformed to binar y 

image foreground “1” and background “0”. The algorithm works by making successive 

passes on the image. On each pass, border pixels of the contour are identified and removed 

on the condition that they do not break the connectivity of the corresponding contour. 

Figure 2.53 displays the original binary image of the watermark and the result of its 

skeletonization. 
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Figure 2.53. Lilie watermark original image, its binary image and its skeleton. 

 

2.7   An alternative non-contact method for watermarks reproduction 

The previous sections in this chapter demonstrated the steps involved in watermark image 

processing. Depending on the quality of the captured image, different techniques need to be 

used. The quality of the image depends on the state of the original document and the 

reproduction technology used.  

Non-contact capturing of the watermark image is always preferable in order to prevent any 

damages to the original document. In some cases, this is the only allowed method. Digital 

imaging, monochromatic, RGB, or hyperspectral is a very good methodology in this regard. 

However, even with recto and verso images, digital signal processing may not be able to 

successfully segment and extract a quality watermark. One possible solution is presented next. 

It consists of using an image of a document of interest. If a hyperspectral imaging is used, the 

optimal image is selected and printed. One common method for selecting the optimal band is 

by using pixel spectrogram comparison. Visually, the spectrograms of a pixel from the 

watermark and a background pixel are displayed and the wavelength with maximum difference 

is selected. The process could be automated with evaluation on multiple watermark pixels. 

Next, a light screen is used to backlight the printed copy which can be easily traced to make 

a replica of the watermark as shown in Figure xx. 
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Figure 2.54: LED backlight with the preprocessed image of Fleur a six petals 

watermarks (left). The tracing is performed with black marker (right).  

The tracing is done without direct contact with the original material – very valuable option 

for many document in fragile condition. The process could be repeated until a satisfactory 

result is achieved. Figures 2.55 and 2.56 display examples of watermark from Summa 

Theologica reproduced with this method. 

 
Figure 2.55: Briquet’s Fleur a six petals watermark (A). A six-petal flower image from 

Summa Theologica after processing (B). The same watermark traced from the image 

(C). The watermark binary image (D) and its skeleton image (E). 
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As can be seen, the process results in a very well-drawn watermark which are reproduced 

without a contact with the original document. In Figure 2.55, Fleur a six petals watermark BR 

6509 from the Briquet collection is displayed on the left. In the center is the binary image of 

the same six-petals flower from Summa Theologica shown in the process of digital restoration 

with Bezier curves. On the right is the result of tracing performed with backlighting and a 

preprocessed image of the same watermark from Summa Theologica. 

Figure 2.56 shows the results from the same reproduction method for another watermark 

from Summa Theologica, previously displayed in Figure 2.50. After the image was 

preprocessed, tracing was performed on the binary image and on the inversed binary image. 

Tracing the inversed image is for demonstration purposes. In some cases, the inversed binary 

image has the advantage of extensively blocking the back light, making the tracing process 

more accurate. 

 
Figure 2.56. The preprocessed Letter R watermark image (1A) and its inverse (2A). 

The two images after trace reproduction (1B & 2B), binarization (1C & 2C), and after 

skeletonization (1D & 2D). 
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Figure 2.56 does not show any obvious differences between the use of the preprocessed 

original image and the tracing over the inversed image. Please note that the tracing of the six-

petal flower displayed in Figure 2.55 was performed with a ticker marker. The tracing of the 

letter R watermark was performed with a Sharpie type pen. The quality of the paper and the 

markers used for tracing are important to prevent spreading of the ink and making the edges of 

the watermark fuzzy. The skeletonization process removes the effect of the ink spreading. 

One practical advice is to use an image size that can be easily traced with uninterrupted 

continuous motion over a long portions of the watermarks. Tracing also could be performed 

with a digitizing panel and an active pen with a direct image overlay. It would be necessary to 

use a surface which responds to the stylus pen only and not the user hand contact.  There are 

many available devices which can be used. In general, they are more expensive that the LED 

Light Pad ($37) used for this work. 

 

2.8      Conclusions 

The literature review on watermarks research and the selection of references in this chapter 

clearly indicate: 

 the importance of digitization of historic documents; 

 the amount and dimensions of the work already done in this area; 

 the need to use better tools and techniques for imaging and image processing; 

 the unresolved issue with an efficient description and retrieval of watermarks. 

Some of the methods for watermark image processing were referenced and demonstrated 

by examples. The option for interactive restoration with segments drawn over the captured 

images was illustrated with good quality results. In addition, a new non-contact method for 
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watermark reproduction by tracing images of the original document was introduced with 

several examples. 

The chapter introduced the capability of hyperspectral imaging for forensic analysis of 

historic documents. Applied with available software algorithms for dimensionality reduction, 

HSI becomes a very powerful tool for paper and paper watermarks research. After introducing 

the possibilities with the use of hyper-spectral imaging, in the next chapter the emphasis is on 

a new method for watermark description with the goal to allow an automated search, matching, 

and retrieval. 
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CHAPTER 3 

AUTOMATIC IDENTIFICATION OF PAPER WATERMARKS 

3.1    Introduction 

  

Watermarks are the artefacts embedded into the paper during its production and caused by 

the intentionally added wire-made shape symbols, figures, or letters. Even without a close 

examination, it is easy to notice that most of the watermarks resemble contours, curvy-linear 

patterns, shapes, and simple or more complex figures. In this regard, any watermark image 

could be interpreted as a contour or already extracted object boundary. All methods used for 

description and representation of contour and boundaries are applicable to watermarks. It is 

highly desirable for a descriptor to be invariant to rotation, translation, and scale, easy to 

generate, to be compact and easy to compare, re-generative, and others [116, 160]. Additional 

criteria for descriptor selections are: 

 Information preserving methods; 

 Scalar transforms (compression) vs. space domain transforms (another image); 

 Deterministic vs. statistical and probability methods. 

As 2D data structures watermarks can be analyzed using shape factors and dimensions, 

shape moments, Contour slope sequence (CSS) and Fourier analysis of CSS, Radial function, 

Chain code, and combinations with additional techniques. More details for available shape 

description methods are presented next. 

3.2 Shape descriptors 

The generation of shape descriptors have been studied extensively and are well published 

and used [161-163]. Overall, shape descriptors fall into several categories: sequential boundary 

encoding, geometric representation, polygonal approximation (Guzman polygons), shape 
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moments, frequency domain descriptor (Fourier, wavelets, Curvelets, Gabor), and many others 

(Zernike moments, B-splines, etc.) [164, 165].  

A good shape/contour descriptor should have the following properties: 

 Good fidelity to the initial shape/contour; 

 Good discrimination between different shapes and contours; 

 Good behavior with shape/contour recognition operations : 

- Invariance with translation. 

- Invariance with rotation. 

- Invariance with scaling. 

In this section, we provide a condensed review of available methods for contours (shapes) 

description for completeness and to justify our selection of the chain code as a descriptor for 

the watermarks. Figure 3.1 displays a block-diagram with a summary of the shape and contour 

description methods. Many of the methods have more than one implementation with 

enhancements designed for better and/or faster performance. An extensive review of shape 

representation and description techniques is given by Zhang and Lu in [166]. 

 
Figure 3.1: Description methods for shapes and contours. 
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Simple contour metrics: The simplest form of descriptor is the length of the boundary 

itself. Length of the major axis, basic rectangle formed by the major and minor axis encloses 

the boundary and the ratio gives the eccentricity. Area and the perimeter give the compactness 

(perimeter2 / area). Obviously, the metric has very limited power but could be used as a 

prescreening criteria during the matching process. 

Statistical moments: Mean, variance, and higher order moments. 

Signature: A 1-dimentional representation of a 2-dimensional object (shape, contour). 

Polygonal Approximation: One classical method for compact boundary presentation is to 

fit geometric primitives (e.g. line segments) to the boundary and store only the parameters of 

these primitives instead of discrete points. This is useful because it reduces the effects of 

discrete pixelization of the contour. When the contours are tick (multiple pixels), the 

“tunneling” method is used when the straight line segments represent the contour by staying 

within its thickness. 

Contour slope sequence: The tangent angle of the slope at every contour point is 

calculated relative to the slope at the starting point. 

Contour tangent curves: If the direction of the tangent vector at every boundary point is 

calculated, we generate ψ(s) curve code of the tangent ψ as a function of the arc length s around 

the contour.  Selecting a zero-degree tangent as a reference point, the ψ(s) curve will start and 

end at zero. The ψ(s) code is inherently translational invariant and close to rotational invariance 

with accuracy limited only by the segmentation method. The ψ(s) code could become also 

scale invariant, if the length of the contour is normalized (with some loss of resolution). 



105 

 

Comparing successfully two ψ(s) curves requires rotation of the s axis and shift of the ψ axis 

so that the starting point is at zero. 

Curvature and Bending Energy: The first derivative of the ψ(s) curve describes the 

curvature at every point on the contour. The curvature representation is rotationally invariant. 

If the squared curvature points are integrated along the entire contour, the calculated single 

descriptor is known as bending energy. Bending energy is less descriptive but provides an 

additional discriminator which can be used for comparison. 

Extreme curvature points: The extremes points are located where the contour describing 

an object has exterior or interior corners. Known as key salient points they are very useful for 

analysis and comparison. 

R(s) Curves: If we calculate the length of the distances from a selected contour point to all 

other points on the contour, we compose a presentation known as the R(s) curve. Using 

correlation, the R(s) curves can be compared invariant to contour rotation. 

Radial function: In a similar fashion to the R(s) curves, the selected reference point could 

be a different point inside the contour (usually the centroid). The polar shape representation is 

called the radial function.  

Cord Distribution: Cord is any line connecting two points on the contour. There are many 

ways in which cords’ lengths and orientations can be calculated and compared. The histogram 

of the cords’ lengths is invariant to rotation. It is not scale-invariant but it scales linearly with 

the size of the object which contour it describes. The “angles” histogram of the cords’ angles 

is invariant to object size but it shifts with respect to contour’s rotation. 

Grid descriptor: The cells of a constructed grid are assigned the value of 1, if they are 

covered by the shape (or covered beyond a selected threshold), and 0, if they are outside the 
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shape (below the threshold) [171]. A shape number consisting of a binary sequence is created 

by scanning the grid in a left–right and top–bottom order, and this binary sequence is used as 

the shape descriptor to index the shape. For two shapes to be comparable using grid descriptors, 

several normalization processes have to be done to achieve scale, rotation, and translation 

invariance. 

Delaunay Triangulation Method: This approach of shape representation is histogram 

based. The corner points of a shape are used as the feature points of the object and a Delaunay 

triangulation of these feature points is constructed [164]. Consequently, a feature point 

histogram is obtained by discretizing the angles produced by this triangulation into a set of 

bins by counting the number of times each discrete angle occurs in the triangulation. A 

selection criteria for the angles ranges is necessary and varies with the shape types. The 

difference between two objects is the Euclidean distance between their corresponding feature 

point histograms. 

Medial axis transform: MAT is composed by all the points of the shape which have more 

than one closest boundary points (“prairie fire” formation concept). It has regenerative 

property. 

Convex Hull: The convex hull could be described as a minimal convex shape entirely 

bounding the contour. Selected metrics from the convex hull and the contour (mutual point, 

areas and perimeters ratios, etc.) may be used for additional features. 

Fourier Descriptors: The method obtains the object representation in the frequency 

domain as complex coefficients of the Fourier series expansion of the objects shape signature. 

The method starts by obtaining a feature vector of the object called shape signature. The 

features could be curvature based, radius based, or boundary coordinates based. Next step is a 
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discrete Fourier transform of the shape signature: the Fourier coefficients are obtained and 

used for shape representation and for shape similarity calculation. For example, when the 

sequence of boundary points (the contour points) are treated as points on the complex plane, 

translation changes only the zero coefficient. Rotation in the complex plane is a multiplication 

by ejθ. The change in object size is equivalent to simply multiplying x(k) and y(k) by some 

constant. Changing the start point in the spatial domain (in this case, k) is a phase-shift in the 

transform [165]. 

Zernike Moment Descriptor: The construction and use of orthogonal moments of an 

arbitrary high order based on the theory of orthogonal polynomials. Zernike moments are 

complimentary to chain codes, which are introduced next [164, 165]. 

Chain code: Introduce by Freeman in 1961 [167] chain code description of contours has 

some very intricate advantages. By encoding relative, rather than absolute position of the 

contour, the representation is relatively simple and translation invariant. It is also regenerative 

– the contour can be restore from its chain code without loss of information. In this regard, the 

chain code is a very efficient lossless compression method. Because the starting point pixel 

position in the image is necessary, one may consider the chain code as a combination of the 

coordinates of the starting point and the sequence of codes. Chain codes are boundary-based 

and represent the features of the shape’s outline. For comparison, Zernike moments are region-

based and represent the features of the whole shape so the two could be used in tandem to 

represent shapes [168]. 

Angular radial transform: The shape and contours of objects in images provide a 

powerful visual clue for identification and recognition of the objects. In particular, in binary 

images of watermarks, the shape feature is the most important visual feature – in general, there 
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is no color or texture in the image. Angular radial transform (ART), which is the region-based 

shape descriptor of MPEG-7, has the desirable properties for representing shape information 

using a small number of features. Because it has orthogonal basis functions, ART can represent 

the shape of an object in an image with no redundancy or overlap of information between the 

coefficients. The method employs a two-dimensional complex transform defined on a unit 

disk. It is rotation invariant, and has robustness to the noise. Unfortunately, it is 

computationally complex and a fast implementation is not available (yet). 

In [168], Hodge et al. continue to expand their work on a neural network-based shape 

matching algorithm that uses Johnson Counter codes coupled with chain codes. They 

demonstrate how the binary associative-memory neural network can index and match chain 

codes which elements are represented by Johnson codes. With previous reports presented at 

conferences, the authors focus on shape representation after edge detection and application of 

chain codes as a better alternative to content based image retrieval. The proposed approach 

was developed for shape matching in trademark retrieval system. 

The work of Hodge et al. is very relevant to the studies presented in this thesis. First, in 

[168], which was published in 2009, the authors have made a review of many shape coding 

and matching techniques. They conclude that “the recall accuracy for chain code shape 

retrieval was just below Zernike moments and well above invariant moments and edge 

histograms.” Second important aspect is the formulation of characteristics of the shape 

matching descriptor. The authors have made important statements regarding descriptor’s 

invariance and similarity. “A shape representation for figurative image retrieval should be 

invariant to translation, rotation and scale and similar shapes should have similar 

representations. Ideally the similarity of the representation should decrease monotonically as 
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the similarity of the shapes decreases.” [168, Section 3]. Third important aspect in the work of 

Hodge et al. is the obvious difficulties for chain code comparison. They have used several 

additional steps to represent the chain code and a binary neural shape matcher that represents 

shapes using a fusion of chain codes and Johnson Counter codes to allow distance-based 

matching. The fusion produces binary vectors which are integrated with a binary Random 

Access Memory (RAM-based) neural network (AURA) to allow rapid, efficient and accurate 

indexing and matching of shapes in shape databases. They convert the numeric chain code to 

a binary Johnson code equivalent, concatenate all Johnson codes together to form a vector, 

negate all vector elements and concatenate the original and negated vector to form the vectors 

for training the Correlation Matrix Memories (CMMs) are the building blocks for AURA 

systems [168]. The choice to combine the original vector with its negated presentation is 

questionable with respect to unnecessary data redundancy. The system is trained and tested 

with synthetic chain codes of equal lengths of 100, 200, and 300. Java random number 

generator in 0 to 7 range. It is not clear, if any rules are imposed on the generator in order not 

to compose unrealistic sequences (for example, after moving East to go back West for the next 

pixel). The point to make is that the codes are of equal length in order to be compared. 

The issue of equal chain code length is addressed by other researchers as well. Hodge et 

al. referred to the work of Lu [169], who introduced procedures for normalizing the C8 chain 

codes to ensure invariance to rotation and scaling. He has proposed orienting shapes along the 

principal (major) axis of the shape. With a minor axis perpendicular to the major axis, this 

forms a superimposed rectangle which may be subdivided into a grid of cells. To ensure scale 

normalization, the authors in [168] have fixed the perimeter-size of this grid so that it is equal 

for all shapes (for example, 4x4, 3x5, 2x6 or 1x7 grid cells all have equivalent perimeter length 
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of 16). Superimposing the most appropriate of these cells onto the shapes and starting from the 

top right cell, the shape presentation is normalized for rotation and scale and represented with 

equal length.   

Both the grid and the object sizes affect the binary number derived for an object Therefore 

objects must be normalized for scale with a fixed length of standardized major axis. 

Subsequently, scaling normalization is performed along the major and the minor axes 

proportionally. The minor axis is perpendicular to the major axis and of such length that a 

rectangle with sides of major axis and minor axis defines the minimum bounding rectangle of 

the object. 

Rotation changes the spatial relationships between the binary grid cells and the objects 

boundaries. This leads to different binary number representations for the same object. 

Therefore objects must be normalized for rotation. This is achieved by obtaining the major axis 

of the shape and subsequently rotating the shape to make the major axis parallel to the x axis. 

The rotation and scale invariance is very important and it will be revisited further to point out 

the deficiencies in the existing methods and propose a solution with a new method.  

Gabor wavelet, curvelet transform, edge-direction histogram and dendrograms 

methods have been applied to shape and contour description and matching with different 

degree of success [116, 157-163]. In general, the description methods can be divided in two 

types of very different approaches for contour shape modeling: conventional and structural. 

Conventional approaches treat the boundary as a whole, and a feature vector derived from the 

entire boundary is used to describe the shape. The measure of shape similarity is usually the 

Euclidean distance between the feature vectors. Structural approaches use certain criterion to 
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divide the shape boundary into segments, known as primitives, which are used to construct a 

string or a tree. The measure of shape similarity is string matching or graph matching. 

After reviewing the available contour descriptors and evaluating their performance on 

watermark images (including possible improvements), the chain code was selected for 

generation of unique template (signature) of watermarks. The next section presents the 

advantages of the chain codes: simplicity of generation and its regenerative property. It will be 

shown later that the regenerative property of the chain code allows a complete description of 

more complex images and nested contours by applying the process iteratively with consecutive 

removal of the described portions. This approach cannot be used with other shape and contour 

descriptors. 

 

3.3    Chain codes as an image descriptor  

Chain codes describe shapes using sequences of numbers. They are simple and flexible. 

Before exploring further the use of chain codes for the description of watermark, the original 

Freeman idea is presented. In the 2D space of an image, every pixel has eight neighboring 

pixels (Figure 3.2B). If the pixels are numbered counterclockwise from 0 to 7, the relative 

position of each of the neighboring pixels can be represented with a single number. The 8-

directional chain coding schema is shown on Figure 3.2B. In the literature, this is frequently 

referred as the classical Freeman configuration with eight neighboring pixels [167]. The 

selected labeling characters are actually irrelevant and one may choose any characters to map 

the pixels and directional connectivity. The orientation of labeling (clock-wise or counter-

clock-wise) and the position of the 0 are not strictly defined. The lack of standardization 

obviously results in non-compatibility. 
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The methods for generating the classical chain codes (CC) were introduced and described 

in [167]. Frequently it is referred to as F8 or as Freeman 8-directional chain code.  It is the 

most intuitive chain code. Introducing the 8-pixel connectivity, Freeman also specifies that the 

boundaries of digitalized shapes can be described by the horizontal and vertical neighboring 

pixels. If we restrict the relative description to only horizontal and vertical directions (Figure 

3.2A), only four characters are necessary, which can be represented with two bits only. 

Historically, 4-directional CC (four-pixel connectivity) for pattern classification were 

introduced by Duda and Hart in 1973 [170]. With 4-directional CC we lose the ability to 

represent the diagonally positioned neighboring pixels. In addition, the A8 chain codes have 

been developed in which the angle for motion to the next pixel is coded. The result of 

representation is very similar: an 8-character alphabet is used and processing techniques are 

equally applicable to F8 and A8 chain codes [168]. It is important to note that A8 representation 

compared to the F8 representation has the advantage of being rotationally invariant while the 

F8 is not. 

The 8-pixel connectivity chain code is used in this study for representation of paper 

watermarks. During the generation of the chain code, the algorithm starts from the top most 

left pixel and, moving counter-clockwise, evaluates the neighboring pixel position with value 

1. Formally, the CC generation can be defined with the following notation: 

𝐶𝐶(𝑖, 𝑗) =

{
 
 
 
 

 
 
 
 
 0,                𝑝(𝑖, 𝑗 + 1) = 1

1,         𝑝(𝑖 − 1, 𝑗 + 1) = 1

 2,                 𝑝(𝑖 − 1, 𝑗) = 1

 3,         𝑝(𝑖 − 1, 𝑗 − 1) = 1

 4,                 𝑝(𝑖, 𝑗 − 1) = 1

 5,         𝑝(𝑖 + 1, 𝑗 − 1) = 1

 6,                 𝑝(𝑖 + 1, 𝑗) = 1

  7,         𝑝(𝑖 + 1, 𝑗 + 1) = 1 

   (3.1) 
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The CC generation is illustrated using the synthetic pixel representation of number 2 on an 

8 x 8 pixels grid (Figure 3.2C). In this and future examples, we selected as a starting pixel to 

be the first pixel in the binary image scan from left-to-right and top-down. Following the simple 

rules, the chain code for binary image of #2 in Figure 7-C becomes {(2, 4), 0, 0, 6, 5, 5, 6, 6, 

0, 0}. The (2, 4) pair captures the indexes of the start pixel, which are row 2 and column 4, and 

follows the Matlab convention of indexing the top left corner has index (1, 1). These indexes 

will be offset by -1 if the chain code is generated in different programming language (C++ or 

Python, for example) because the frame indexes start at (0, 0). From the starting pixel indexes 

and the chain code sequence, the coded image can be restored (regenerative coding). The 

original directionality assignment is also important (clock- or counter-clockwise). 

Unfortunately, not only the direction but also the location of the starting alphabet character has 

not been standardized.  

  
Figure 3.2: Chain code generation schema with four and eight neighboring pixel. 

Nunes et al. [171] encoded the boundary edges of the shape instead of the pixels and 

therefore the walking direction should be specified. They proposed differential chain code 

(DCC), the first chain code with only three elements. Namely, the DCC alphabet is R for right, 

L for left, and S for straight. In 1999 Bribiesca introduced a new, nowadays very popular chain 

code, named the vertex chain code (VCC) [172]. While developed to resolve some of issues 
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with classical chain code, it has somewhat restricted applications and RST-variance is not 

resolved. VCC determines the number of boundary pixels in the raster junctions. It has an 

alphabet with only three codes. The Three OrThogonal (3OT) chain code with 3 symbols only 

was introduced in 2005 [173]. Its codes are determined as follows:  

 0 - when the current coding direction is the same as the coding direction of its 

predecessor; 

 1 - when the current coding direction is equal to its first predecessor whose coding 

direction is different than the direction of its predecessor; 

 2 - for all other directions.  

 

Some further developments of the VCC were introduced in [174]. In [175] the authors 

compare the classical (Freeman) CC with the VCC and describe a string-edit distance for shape 

boundaries comparison. They also suggest statistical approaches to solve the inherent 

rotational and scale variability of the chain codes. A partial solution to the rotational 

dependence of the CC is to encode not the relative direction of the next neighboring pixel, but 

the differences in the successive directions, generating a differential chain code (DCC), as 

proposed by Nunes et al. [171]. This can be computed by subtracting each element of the CC 

from the previous one and taking the result modulo n, where n is the connectivity used to 

generate the CC (4 or 8). This DCC resolves comparison of object rotations only in +/-90 

degrees increments. An example in Table 3.1 illustrates the generation of CC and its DCC. 

 Table 3.1: Example of CC, DCC, and shape numbers for a simple contour. 

Classical Freeman CC 0 0 6 5 5 6 6 0 0 

The difference CC 0 2 1 0 7 0 6 0 0 

The shape number 0 0 0 2 1 0 7 0 6 

 

A possible solution to invariance with respect to the starting point is to rotate some portion 

of the DCC so that it represents the smallest value viewed as an L-digit integer. Such a 
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normalized DCC is called a shape number (Table 3.1). Shape numbers are very sensitive to 

rotation, scaling, and to discrete pixel artifacts. Researchers have shown that resampling the 

grid along some principal axis of the contour (at some angle and sampling rate different from 

the original grid) can potentially account for rotation, resizing, and minor pixel artifacts. This 

does not provide a robust solution with repetitive results.  

Chain codes have been applied as representation methods for rasterized shapes within 

various scientific and engineering disciplines [176–184]. The chain code can be regarded as a 

sequence of commands, which control the clock-wise movement of a boundary (contour) pixel 

walker. Introducing the 8-pixel connectivity, Freeman also specifies that the boundaries of 

digitalized shapes can be described by the horizontal and vertical neighboring pixels only but 

with less resolution. 

All shape and contour descriptors reviewed above could be considered as a 1D function 

representing a 2D object boundaries and contours. CC, DCC, shape numbers, ψ(s) curve, R(s) 

curve, and the other descriptors could be used as a signature or feature vector representation. 

They have different advantages and shortcomings. In respect to potential signature presentation 

of digitalized paper watermark, we are most interested in generating unique signatures that are 

RST-invariant, easy to compute and compare. In the next section, new method is presented for 

constructing such descriptor. 

  

3.4    Chain code generation for watermarks (from an image to a chain code) 

Next we illustrate the steps for generating RST-invariant CC for the Lilie watermark [69]. 

As presented in Figure 3.3, the original gray-scale images are transformed to binary images. 

The next step is tinning of the watermark to reduce the binary image to a neighboring sequence 
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of single pixels. For this purpose, we used skeletonization morphology operation [116, 160, 

and 185]. We use the classical F8 Freeman CC with a starting point the first pixel of the 

watermark detected with left-to-right and top-down scanning of the binary skeleton image. 

 
Figure 3.3: CC generation for two watermarks after binary and skeleton transforming 

of the original images. 

 

Next, Figure 3.4 presents the results of the same process for four other watermark from 

[69]. Even at a smaller scale, the images demonstrate visually how different the generated 

chain codes are. The chain codes are displayed as graphs using the code number as a magnitude 

value. The watermark have different contour lengths and respectively different CC lengths of 

375, 485, 298, and 246 for the Anker, Vielfuber, Krone, and Hand watermarks. 

The definition of filigram is “a distinguishing mark impressed on paper during manufacture, 

visible when paper is held up to the light.” (https://www.vocabulary.com/dictionary/nl/filigram). 

Filigram was given as a synonym of the French filigrane. Simon Tatham, a mathematician and 

programmer, has introduced “filigrams” as “a type of pretty pictures generated by mathematical 

means” (http://www.chiark.greenend.org.uk/~sgtatham/filigram/). 

“Filigram ID” or “Filigrane ID” could be good choices to use as term for the chain coded 

watermark. However, after considerations, I have decided the representation of a watermark 

with CC to be introduced with the new terms, as follows: “chain code filigram” (CC-filigram) 

https://www.vocabulary.com/dictionary/nl/filigram
http://www.chiark.greenend.org.uk/~sgtatham/filigram/
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or the easier to use “C-gram”. The motivation for the terminology is further explained in 

Chapter 7. 

 
Figure 3.4: The Chain codes of the four watermarks are very different. 

 

One has to note that at this point the introduction of the CC as a descriptor is based on the 

single iteration involving the outermost contour of the watermarks. The application of CC for 

complete watermark representation is introduced and described in detail in Chapter 7. The 

process is further illustrated in the next section, where the reverse transform is used to form 

back the original image from a generated CC. 
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3.5    The reverse transform (from chain code back to the original image) 

The re-generative feature of the CC is illustrated on Figure 3.5. The re-generated 

watermark images are displayed on the first row in red color. They are superimposed on the 

original images using yellow color. The portions of the original watermarks images, which are 

not represented with the first iteration of the chain code generation, are in red. The remaining 

“red” differences are the segment to be processed during the following consecutive iterations. 

The CC algorithm will process them in left-to-right, top-down order. Also, the CC generation 

algorithm is design to follow clockwise the outermost contour. That is why all differences 

occur internal to the contours of the watermarks.  

 

Figure 3.5: Watermarks restored from their CC (top row) and displayed with yellow 

color on the bottom row for comparison with the original watermarks. Differences are 

in red. 
  

For the relatively simple watermarks in Figure 3.5, the differences, resulting from the 

original images and their contours, do not appear to be a substantial portion of the images. The 

chain codes based on the contours would not cause a matching problem for this small set of 

different watermarks. However, describing the watermarks completely is important when 

comparing very similar watermarks. We address this problem with the formation of a 
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Composite feature vector (CFV), introduced in Chapter 7.  Here, the emphasis is on the re-

generative property of the chain code. 

The re-generated image is an exact copy of the original image. This provides the ability to 

iteratively describe even the most complex watermark. The CC generation is followed with a 

re-generation of the described portion of the original image. This regenerated image is 

subtracted from the original and the next CC generation is performed on the remaining image. 

The impatient reader may refer to Chapter 7, which represents the iterative steps for complete 

description of complex images. 

 

3.6    Chain code as a lossless compression 

The pioneering work in the chain code compression has been done by Nunes et al. [171], 

who used Huffman codes on DCC [186] to achieve a near-lossless compression. Liu and Zalik 

[187] also used Huffman-based compression on their directional difference chain code 

(DDCC). Liu et al. [188] introduced three methods for vertex CC (VCC) with symbol 

combinations. Sanchez-Cruz et al. [189] introduced a modified 3OT (M_3OT) chain code, by 

introducing additional symbols in order to encode frequent combinations of 3OT chain code 

symbols 0 and 1. Sanchez-Cruz [190] have proposed a newer compression method for F8 by 

finding repetitive substrings within the chain code. Liu et al. [191] have proposed a quasi-

lossless chain code compression method, which replaces less frequent angular differences in 

DDCC with pairs of more frequent ones. They have also introduced a run-length encoding 

(RLE) scheme in order to further compress repetitive runs of 0_ angular differences. Recently, 

Zalik and Lukac have presented in [192] a new lossless chain code compression that does not 

rely on statistical assumptions (i.e. Huffman coding tables), but rather use a move-to-front 

transform (MTFT) to reduce the information entropy and then encode the transformed symbols 
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with adaptive run-length encoding (ARLE). According to the authors, currently this method 

provided the most efficient compression of VCC, 3OT, and normalized angle difference 

(NAD). 

In [222], Zalik et al. have presented a “universal” chain code compression method. The 

authors have described their universal method based on three-mode algorithm. First, the chain 

codes are converted into a binary stream, independent on the input chain code. Different 

binarization schemes are used for different chain codes, leading to universal input for further 

compression. Then, the compression is done using three modes: RLE0 compresses the runs of 

the 0-bits; LZ77 handles the repetitions within the bit stream; and COPY is an escape mode 

used, when the other two methods are unsuccessful. The authors conclude that the Freeman 

chain code in eight directions (F8) is more compressible than Freeman chain code in four 

directions (F4), the Vertex chain code (VCC), or even the Three Orthogonal chain code (3OT). 

The most compressible chain code is the normalized angle difference (NAD) chain code but it 

is sensitive to roughness of the geometric shape. 

After the watermark images are transformed to binary images and the skeletons are 

generated, the number of foreground pixels are substantially smaller compared to the size of 

the image. Furthermore, for simple contours watermarks, this number of foreground pixels is 

close to the length of the chain code for the contour. In the example cases presented previously, 

the original images are 100 x 100 pixels in JPG format resulting in sizes from 11KB to 19KB. 

The computed chain codes recorded as a text files are less than 1KB in size. Figure 3.6 shows 

the properties for the original JPG image (circled in red) and the properties of the chain code 

TXT file (circled in blue).  
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Figure 3.6: Comparing the size of the original watermark jpg image and its chain code. 

 

The result for this average size JPG file is an additional compression of about 27. As 

discussed previously, the compression is lossless because of the re-generative property of the 

chain code. With the development of the RST-invariant CC, the restored images are identical 

to the original images. 

Another advantage of the chain coding can be seen by pointing out that it needs only 8 

characters. With other words, 8-pixel CC needs an 8-character alphabet. When these characters 

are chosen to be the decimal digits 0 - 7, they can be represented only with three bits. Figure 

3.7 displays the CC for the watermark image file 004001001.jpg from the Bernstein dataset. 

The length of the CC is 585. These 585 decimal values can be converted to binary with a fix 

length of 3 bits. The 3-bit groups can be concatenated to form a sequence of any desired length. 

Additional compression of the original JPEG file can be achieved with decimal to binary 

conversion of the CC, followed by concatenation of the groups of three bits to form a sequences 

of desired length. The sequences can be represented with a higher basis for even greater 
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compact representation and storage. Tables 3.2 shows the original chain code for Bernstein 

#004001001 watermark with length 585. The chain code has indexes i = 1, 2, 3, …:, 584, 585. 

Table 3.2: The original chain code for Bernstein #004001001 watermark (585 bytes). 

index  1  2  3  4  5  6  7  8  .  i-1  i  i+1  .  585  
value  1  1  0  0  7  7  7  0  .  .  .  .  .  2  

The chain code with values after decimal to 3-bit binary conversion (i = 1, 2, 3, …:, 584, 

585) is shown in Table 3.3. 

Table 3.3: The original chain code represented in binary format (~220 bytes). 

index  1  2  3  4  5  6  7  8  .  i-1  i  i+1  .  585  
value  001  001  000  000  111  111  111  000  .  .  .  .  .  010  

 

The chain code with an index value from 1 to585 has a length of 585 x 3 = 1755 bits in 

binary representation or approximately 220 bytes. If the standard ASCII representation is used 

to convert sequences of eight bits to characters, some 8-bit groups will be non-printable 

characters. One possible solution is to use higher than eight base representation.  Figure 3.7 

demonstrates the decrease of representation length with the increase of representation base.  

 
Figure 3.7. Comparing the size of the watermark’s CC with different representations. 
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It is well known that increasing the encoding base from 16 (hex) to 32 and 64 increases the 

efficiency of representation. Unfortunately a Base128 encoder would not have sufficient 

printable ASCII characters: only 94 are available, excluding the whitespace. While creating a 

base 94 encoder theoretically would be more efficient than the lower bases, it turns out that 

base 85 is just as efficient with some implementation advantages which are outside the scope 

of this thesis. 

The character patterns in Figure 3.7 indicate that ASCII base 32 base encodes the original 

72 bits (9 bytes) as 15 characters. ASCII base 64 encodes the original 72 bits (9 bytes) as 12 

characters. This increases the data size in bits by about 33%. For this particular example, the 

ASCII base 85 encodes the original 72 bits with 12 characters as well. However, for longer 

lengths, ASCII base 85 represents 4 bytes as 5 characters, which increases data size by just 

20%. For example, the ASCII base 85 representation of 0010001000000111111111000  

(which is the concatenated string of the first 8 chain code values of the Bernstein #004001001 

watermark) is +p\#G. Furthermore, ASCII base 85 representation, is using an 85 character 

alphabet which are all printable. 

Typically, ASCII base 85 is using 32 bit groups. Figure 3.7, presents a 24 characters 

segment which is the initial part of the Cain code for the Bernstein watermark #004001001 in 

decimal values. The octal and hexadecimal codded values, and the ASCII conversions with 

base 32, base 64 and base 85 representations. The application of ASCII base 85 representation 

adopted for watermark chain codes in this work uses 24 bit groups because of the 3-bit 

representation of the 0 to 7 numeric decimal values. Simple consideration is the simultaneous 

divisibility by 3 and also by 8 (common denominator). To summarize, a 24-bit group represents 

the F8 CC values with a three bytes. The next possible length divisible by 3 and 8 is 48 but the 
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gain efficiency is minimal and the additional considerations described next made the selection 

of 24-bit groups for more efficient (compressed) representation. The represented study is only 

an exercise to extend the lossless data compression ability of the CC.  

If the CC values of the Bernstein watermark #004001001 are presented with 3-bit binary 

values and bits are grouped in 24, there will be 585 x 3 = 1755 bits and 1755 / 24 = 73.125 

groups. The preference is to have an integer number of groups. The natural thing is to append 

zeroes to the CC. which equals to adding 21 zeros at the end. So 1755 + 21 = 1776 for a total 

of 74 groups of 24 bits. At the beginning of the CC, another group of 24 bits is added with the 

first 12 bits giving the x pixel coordinate of the original image in 3-bit binary number 

presentation. The second 12 bits represent the y-coordinate of the CC’s start pixel. With 12 

bits the size of the images could be 4096 x 4096. A second (overhead) group of 24 bits is added 

after the very first one to indicate the number of zeroes used for padding. The result is 1 + 1 + 

74 = 76 groups of 24 to represent the watermark with length 585 bits. The actual overhead is 

24 + 21 = 45 bits because the first group with the start pixel coordinates is essential. Table 3.3 

presents the grouping of the binary bits for the first 8 CC values: 11007770. This forms four 

groups of six bits each. When they are concatenated, group of 24 bits is formed ready to be 

represented with ASCII base 85.  

Table 3.4: The original chain code forming the first 24-bit group. 
index  1-2  3-4  5-6  7-8  .  k-1  k  k+1  .  .  
value  001001  000000  111111  111000  .  .  .  .  .  .  

 

In general, ASCII base 85 doubles the compression achieved with the CC representation. 

The CC length depends on the complexity of the watermark.  For the Bernstein watermark 

#004001001, the ASCII base 85 results in 280 bytes representation of the 585 bytes (numeric 

decimal characters) CC. Overall, the CC compression ratio of the 15893 bytes jpeg image file 
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is reduced to 280 bytes or 15893 / 280 = 56.76 or more than 50 times compression. The 

compression capability is demonstrated as a potentially very useful characteristic of the CC 

which could be applied when the size of the stored data is the primary concern. In addition, 

error correction could be included, if desirable or necessary. 

Figure 3.8 displays the CC for Bernstein watermark #004001001 expressed as decimal 

numeric characters and its ASCII base 85 representation. Please refer to Appendix C for details 

of the example. One may notice that the representation with ASCII base 64 results in many 

repeatable characters, a factor that is typically used for further compressed representation. 

One advantage of the proposed compression is the simplicity of implementation compared 

to more complex methods. One possible disadvantage of additional representation step for 

reducing the size of the CC is the need for reversed conversion in order to take advantage of 

the developed CC distance measure which is based on the numeric decimal characters 

representation. 

 
Figure 3.8: CC for Bernstein watermark #004001001 expressed as 585 decimal 

numeric characters and its ASCII base 85 representation with 280 characters. 
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As recently shown by Sanchez-Cruz and Lopez-Valdez [24], different type chain codes can 

be directly converted from one to another. The use of different chain codes may add additional 

variability without sufficient gain to justify it. However, if needed, the conversion feature can 

be efficiently included in the proposed new algorithm for watermark representation. 

 

3.7   Limitations of chain codes 

Due to the method of their generation, chain codes (CC) for the same contour are different 

at different image orientation and scale.  Rotation variance will generate different sequence. 

Different size of the image will result in a different CC sequence with a different length. The 

variability with scale and rotation has been the main limiting factors for the broader application 

of the chain codes. To address the RST-variance of the CC, the authors of [224] propose 

minimized sum statistical direction code with a similarity measure based on its entropy but the 

presented results are very limited and not conclusive. In [225], chain code coherence vector 

and chain code distribution vector are presented and evaluated with proposed similarity 

metrics. In addition to statistical features CC distribution is considered to make the method 

invariant to translation and rotation and proportional to scale. 

 

3.8   Conclusions 

One of the most successful solution to chain code rotation variability was the introduction 

of the angular chain code A8. Both, rotational and scale variance was address with solution 

proposed by Lu [169] and commonly used by other researchers. For rotation invariance, it is 

based on aligning the major axis of a shape with the x axis in binary grid descriptors. For scale 

invariance, the major and minor axes are normalized with respect to a standard axis. In [168], 
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the authors used the method of Lu and further describe the shapes with fixed perimeter grid 

boxes to construct chain codes with the same length. The reason was the difficulty with 

comparing chain codes with different length. It is important to note that: boundary box based 

on major and minor axes is not necessarily the minimum boundary box; multiple major axes 

are possible to exist; aligning the major axis with the x-axis without additional considerations 

does not guaranty complete rotational invariance in 0-360 degrees space. 

Based on the literature search and review of available contour and shape descriptors, the 

chain code (CC) was selected for the application to watermark images. The reasons for that are 

stated here and justified in the following sections. The summary of criteria for selection of the 

CC is as follows: 

 The CC transform is simple, easy to implement, and fast to compute. 

 The CC transform is re-generative. 

 The CC transform provides a lossless compression which makes it even more 

desirable to use. 

 The existing (partial) solution of rotation and scale variance of the CC transform 

can be expanded to provide a complete invariance for the applications to watermark images. 

 Translational invariance is possible with a simple recording of the coordinates of 

the start point of the CCA complete solution to the variability of the CC and provides exact 

regeneration capability. 

Based on the observed characteristics watermark images and watermark imaging 

processes, rotation, scale, and translation invariant descriptor is mandatory (RST-invariant 

descriptor).  An additional variance also need to be addressed and it is associated with the recto 

and verso images of the same watermark. This leads to the development of a RSTV-invariant 
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descriptor based on F8 chain code which is described next. It is a significant improvement that 

will expand the use of CC as watermark descriptor and also will allow many new applications. 
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CHAPTER 4 

ROTATION, SCALE AND TRANSLATION INVARIANT CHAIN CODE 

 

4.1 Introduction 

In digital image processing two main factors have limited the application of chain code 

descriptors for shapes and object boundaries representation: their scale and rotation variance 

and the ability to effectively compare two chain codes. In this chapter, a new method is 

proposed and described that makes possible the representation of a paper watermark with 

rotation, scale, and translation invariant chain codes (RST-invariant CC). 

The property P is said to be invariant to the transformation T, iff a measurement of the 

property P commutes with the transformation T: 

𝑃(𝑇(𝐼)) = 𝑇(𝑃(𝐼))   (4.1) 

where I denotes an image in our case. 

In the brief review of available shape descriptors, we discussed the inherent variance with 

respect to rotation and scale. Our approach to generate RST-invariant CC is based on spatial 

registration of the watermark image before the CC generation. The rational is always to present 

to the CC generation algorithm a normalized watermark image with respect to rotation and 

scale. The normalization is achieved with the application of the circumscribed rectangle around 

the watermark. Circumscribed means "to draw around" and the official definition of a 

circumscribed rectangle is the smallest rectangle that contains all of a given set of points in 

coordinate geometry. 
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4.2 Watermark minimum boundary box (MBB)        

In order to normalized an image of a watermark and consecutively generate a RST-

invariant CC, we first find the minimum bounding box (MBB) for the binary image of the 

watermark. An example is presented using the anchor watermark and is displayed in yellow 

on Figure 4.1A.  

  

Figure 4.1: Capturing WM relative orientation and scale features (see text). 
 

First, the circumscribed rectangle of the watermark is aligned with the geometric horizontal 

and vertical axes (Figure 4.1 in blue color). Next, the minimum boundary box is drawn (Figure 

4.1 in yellow color). One may think of the MBB as the rectangle that will produce the smallest 

possible projection on a rotating axis.  

Definitions [163, pp. 626]: 

 Diameter of a boundary is defined as the Euclidian distance between the two points 

on the boundary (shape) that are furthest apart. 

 Major axis of the boundary is the segment connecting the two points on the 

boundary (shape) forming the diameter. 
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 Minor axis of a boundary is defined as the line perpendicular to the major axis and 

of such length that a box passing through the outer four points of intersection of the boundary 

with the two axes completely encloses the boundary (shape). 

In general, for irregular boundary (shape), the diameter is not necessarily unique and 

respectively the major and minor axes. 

The definitions are given in order to clarify the difference of the proposed new method for 

MBB and the rotation and scale solutions currently in use by some researchers in the field of 

shape and contour description. It is important to point out the difference of the proposed 

method to the one proposed by Lu [169] and used by other researchers. The new method 

defines and uses the minimum boundary box while the approach of Lu is to superimpose a 

rectangle which is aligned with the major axis of the shape. As can be seen in Figure 4.2, the 

axes defined rectangle is not necessary the minimum boundary box (MBB). In the figure, the 

major axes of two watermarks are displayed with dashed red lines and the superimposed 

rectangles that results by following the method of Lu are also displayed with dashed red 

contours. The yellow rectangles are the MBB for each of the two watermarks. Next to the 

watermarks, the set of yellow and red rectangles are copied and aligned for visual comparison. 

Due to the circular element present in watermark B, the superimposed rectangle and the yellow 

MBB have the same length of their short sides. (Figure 4.2B). 

One may think as the MBB in several different ways. It is the circumscribed rectangle (or 

square in special case) with the smallest area. It is the rectangle (square) with the smallest 

possible projection on an axis aligned with the short side of the rectangle. On the other hand, 

the major/minor axes based rectangle is based on maximum and minimum caliper 

measurements of a shape (boundary). 
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Figure 4.2: Comparison of superimposed rectangles. The red rectangles are based on 

major axis alignment (A). The yellow rectangle is the minimum boundary box drawn by 

the algorithm of the new method (B). 

 

It is possible to have more than one major axis and more than one MBB. For the new 

method, in case of more than one MBB is calculate, the one with the smaller angle of rotation 

counter-clockwise is selected and used. 

 

4.3 Minimum boundary box attributes  

The circumscribed box (SB) is depicted in blue color in Figure 4.1. In the original image 

the SB has corner coordinates (15, 13) for its top-left and coordinates (87, 87) for the bottom-

right corners. This results in a calculated area of 5328 pixels. The yellow color minimum 

boundary box (MBB) in Figure 4.1, has calculated dimensions of 64 x 77 pixels. Some 

additional data that could be used is: the area of the MBB (4928 pixels); the short side of the 

MBB is at 32 degree from the x-axis, measured counter-clockwise, and the long side is 

respectively at 122 degrees. The CC algorithm can be extended to calculate the area of the 

shape enclosed by the contour. The anchor’s area in this example is 1715 measured in pixels 

enclosed by the contour. From this data, it is possible to calculate two ratios: (object area / 

MBB area) and (object area / SB area). In addition, convex hull area can be used to form a 
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third ratio. This data could be used as differentiating parameters in a richer feature vector, 

details for which we will introduce later. 

 

4.4    Minimum boundary box for rotation and scale invariance 

Images captured at different relative orientation of the camera with respect to the 

watermark could be aligned with the support of the MBB. The assumption is the focal plane 

of the camera is parallel to the watermark plane and the imaging is at the same distance 

(rotationally variant images of the same size). The binary watermark image can be rotated so 

that the sides of the MBB are aligned with the x and y axes, as shown in Figure 4.1B. 

Remembering the angle of rotation and then generating the CC, will result in rotationally 

invariant re-generative representation: the same starting point to generate CC for all watermark 

images preprocessed with the rotational alignment step. 

The scale variability is resolved by scaling the binary watermark image to obtain a size that 

is the standard for the particular database or catalog, for example short side of MBB 150 pixels 

(Figure 4.1C). To clarify, in order to match a given watermark by comparing it to the 

watermarks in a database, before the generation of the chain code, perform the following 

preprocessing steps: 

1. Transform the image to binary; 

2. Perform morphological operations including skeletonization; 

3. Draw the MBB and obtain its parameters; 

4. Rotate the image to position at which the short side of the MBB is horizontal; 

5. Scale the image to MBB dimension used for the database. 
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Of course, some additional provisions have to be implemented in the algorithm. For 

example: 

 If the MBB is a square, make alignment with the smallest possible angle of rotation; 

 Always make alignment rotation to position the geometric center of gravity of the 

watermark closer to the x axis; 

 To resolve recto and versa variability, use horizontal rotation around the axis of the 

aligned MBB. 

4.5      Watermark recto and verso images 

Watermark images have an additional degree of freedom – they can be acquired recto 

and/or versa. The rotation and scaling normalization will result in two different images unless 

the watermark is symmetrical. In general, this is not the case and the processing have to account 

for the possibility of a “mirror” images (verso) of the watermark (recto). Similar (but different) 

relationship exist between the watermark as indented from the wires on the mold side of the 

paper compared to the watermark viewed from the felt side of the paper sheet. 

Figure 4.3 displays four watermarks from the Bernstein collection. They look like two pairs 

of watermarks with mirror images of each one. A natural question is if they are four different 

independent watermarks or two watermarks imaged recto and verso. 

 
Figure 4.3: Watermarks from Bernstein collection. Are they four separate watermarks 

or recto and verso images of two watermarks? 
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Figure 4.4 displays the skeleton representation of a Crown watermark recto and versa 

images with the minimum boundary boxes superimposed on the images. The two pairs of 

watermarks are visually mirror symmetrical to each other. One fast way to check for symmetry 

is to find some additional information. For example, divide the MBB-defined ROI on sub 

regions and count the non-zero pixels. Even simpler way is to locate the centroids of the 

images. The images in Figure 4.4 display the binary recto and versa images (black background) 

with the MBB. The locations of their respective centroids are marked on the binary skeleton 

images (white background). The centroid of the recto image is marked with blue star. The 

centroid of the verso image is marked with red x sign.  

 
Figure 4.4: Binary recto and versa images of Crown watermark with the location of 

their respective centroids. 

 

The difference of the centroid location is noticeable. The Y-coordinates of the centroids 

are the same. The X-coordinates differ by three pixels with respect to the left edge of the MBB 

in these 100 x 100 pixels images. Exploring other watermarks with similar measurements and 

observations, the proposed method for resolving the recto/verso difference (variability) is to 

include the centroid or additional measurements into the feature vector description of the 

watermarks. This approach creates V-invariant CC descriptor. To summarize, the RST-

invariance of the CC representation is extended to RSTV-invariant CC representation. In 

Chapter 5, the subtle visual difference of recto and verso images of close to symmetry 
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watermarks becomes very pronounced when their similarity measure is calculated based on 

the generated chain codes.  

The centroid (or other binary image statistics) may be used to test if some of the mirror 

images in the Bernstein collection are different watermarks or recto and verso images of the 

same watermark. Obviously, there are other image processing techniques that can be used. In 

Figure 4.5, the centroids for the images of Figure 3.4 are displayed overlaid on the skeleton 

representation of the images. The coordinates of the centroids indicate that the images are with 

exact mirror symmetry to each other, which is a clue of recto and verso images of the same 

watermark. 

 
Figure 4.5: Centroids of the watermark skeleton images indicating recto and verso 

identity. 

 

The Verso invariance of CC representation is further explore after the introduction of 

watermarks similarity measure based on CC descriptors. 
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4.6    Conclusions 

The inherent variance of shape descriptors including chain code can be overcome by 

orientation and scale normalization of the shape’s image. The approach to generate RST-

invariant CC is based on spatial registration of the watermark image before the CC generation. 

Normalization is achieved with the utilization of the circumscribed MBB of the watermark. 

This approach has a unique and repetitive solution. Remembering the angle for alignment 

rotation provides exact reversible restoration.  

Resizing the MBB provides scale normalization and a solution to scale variability. 

Including additional pixel distribution metrics or the centroid’s location, the generated 

feature vector may account for recto and verso variability of the watermarks. 

Additional provisions in the algorithm are necessary for special case contours and shapes 

to provide unambiguous CC generation. 

More complex contour configurations need iterative description with sequential removal 

of the described portions of the figure. 

The use of MBB results in ability to generate additional features which may be used as 

differentiating factors for an extended measure of shape (watermark) similarity.  
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CHAPTER 5 

COMPARISON OF RST-INVARIANT CHAIN CODES 

 

5.1 Introduction  

Ability to compare is based on the ability to measure the degree of similarity (or di-

similarity) with the proper use of an accepted metric or combination of metrics. The more 

precise and accurate are the metrics, the better is the confidence in the results. For images, the 

comparison is in a two-dimensional (matrix) space. For images, especially large one, the direct 

comparison is computationally intensive and respectively slow for larger datasets. The most 

common approach is to generate a template of the images – a sparse representation of features, 

and use these templates for comparison of the originals for which they are made. 

In general, each image in a dataset is represented by a n-dimensional feature vector F = f1, 

f2, ..., fN. Then, the similarity between a query image feature vector Q = q1, q2, ..., qN, and 

feature vectors in the database F is given by a metric measure. Initially, the commonly used 

similarity measures were tested to evaluate their performance with the CC-based feature 

vectors. Some of the typical measures which were tested are: 

L1 norm: The L1 norm is sometimes also called Manhattan or city block distance. The 

histogram intersection is identical to the L1 norm in case of normalized histograms. 

L2 norm: A similarity measure between two vectors, based on the Euclidean distance. 

Correlation coefficient: The correlation coefficient can be interpreted as the dot product 

of two standard vectors divided by the rank of these vectors. 

Chi-square measure: The Chi-square similarity measure is based on the well-known chi-

square test of equality. 
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Matusita distance: The Matusita distance describes a vector metric that fulfills the 

Cauchy-Schwartz inequality (generalized triangle inequality). 

Bhattacharyya: The Bhattacharyya similarity measure [6] is often interpreted as a 

geometric similarity measure. 

Probability distributions based metrics (Kullback-Leibler, Jensen-Shannon divergence, 

and others) were considered but not explored for testing in this study oriented to comparing 

the CC feature vectors. 

The original testing of existing methods had to resolve the issue of comparing feature 

vectors of different lengths. As shown, CCs are applicable for shape and contour description. 

The chain code of a watermark successfully forms a unique feature vector F in one-dimensional 

space representation of the two-dimensional watermark image. As described in Chapter 3, one 

of the main obstacles to successfully use CC as descriptors for identification are their variance 

to rotation and scale. Another reason is the absence of an efficient method for CC comparison. 

In the following sections of Chapter 5, additional distance metrics are described. They were 

reviewed as a candidates for similarity (distance) measures suitable for CC feature vectors. 

Finally, a newly defined distance metric is described that provides a distance metric for a 

deterministic comparison of RST-invariant chain codes with any (non-zero) length. 

 

5.2   Comparing chain codes with the same length 

Next, the capability to compare CCs is demonstrated without detail explanation of the 

comparison method which is presented in Section 5.4. Figure 5.1 displays a heat-map of the 

results for comparing watermark CCs to themselves. The two watermarks are Anker and Bell 

from the Bernstein collection. The matrix on the left is square with 375 x 375 comparing the 



140 

 

similarity of the CC of the Anker watermark to itself (Figure 5.1, left). The matrix on the right 

is 191 x 191 comparing the CC of the Bell watermark with a CC length of 191 (Figure 5.1, 

right). As expected, the distances of self-comparison are with 0 values. Visually the similarity 

is indicated with the dark blue color of the diagonal pixels indicating no difference. 

 
Figure 5.1: Distance metrics for CC compared to themselves. The calculated differences 

have 0 values.  The similarity score is the sum of the values on the diagonal. 
 

Figure 5.1 demonstrates two examples of the ability to successfully compare watermark 

CC to itself. In self-comparison the two CC are inherently the same length and respectively the 

heat-map matrices are square and symmetric. This is a very special and not very interesting 

case. However, it is important that the result of self-distance is 0. 

In the next section, the ability to compare CCs of different watermarks and with different 

length is demonstrated with an example followed by a description of the development of the 

CC distance metric in Section 5.4. 

  

5.3 Comparing chain codes with different length 

When the 4-directional CC is used, one may apply distance metrics develop for the 

comparison of the amino-acid sequences of DNA and RNA. The use of 4-directional CC is 
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limited to binary images guaranteed to have neighboring pixels in horizontal and vertical 

direction, which is not the general case. For 8-directional CC, the used methods are based on 

string comparison with different cost function for replacements to match. Histogram and 

different statistics of the CC are also used. After review of applicable algorithms, we develop 

a distance metric similar to template matching comparison in biometrics. For example, when 

the templates of test images are compared to the template in the database, the formed square 

matrix would have minimal values on its main diagonal. Needless to say, comparing a set of 

templates to themselves would produce a matrix with all zeros on the main diagonal. For the 

CC, we use similar approach. The example illustrated on Figure 5.2 is for comparison of the 

CCs of two watermarks: Anker with length 375 (top graph) and Bell with length 191 (bottom). 

Visually, the two chain codes look very different. The distance metric computation is presented 

with a heat map matrix with 375 rows and 191 columns. The sum of the values on the diagonal 

is 598 and indicates the degree of difference (dissimilarity) of the two CCs and respectively 

the two watermarks they represent. 

 

 
Figure 5.2: New Distance metric for CC comparison. The similarity score of 598 

 is the sum of the values on the diagonal. 
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5.4 Chain code distance (CCD) as a measure of watermark similarity 

Chain code (CC) is easy to generate and its regenerative property provides a true restoration 

of the original contour. When the coordinates of the start pixel are recorded, the restored image 

is exact. These attributes combined with the proposed solution for the RST-invariance, make 

the CC an attractive candidate for a contour descriptor. In addition, the recto and verso 

variability of watermark images was also addressed. For a complete success, one more problem 

needed to be resolved: development of a method for comparison of chain codes. 

In general, the CCs are of different length. Currently, algorithms for quantitative 

comparison of chain codes of different size do not exist. As previously noted, many authors 

have developed and used approaches to resolve the problem with rotation and scale variance 

of the chain codes and with the difference in length. Histograms of chain codes have been 

applied with limited success. 

Different measures of distance or similarity are applicable for different types of analyses. 

Multiple distance measures have been implemented in different programming languages and 

are readily available. Researchers continue to improve the efficiency of complex algorithms 

which make them applicable to large data sets. The characteristics of the data define the 

selection of the measuring distance. General and mixed data similarity is typically measured 

by feature-derived distances. Chain codes can be viewed as features generated from the 

watermark images. The watermark can be compared with image distances or with geo-spatial 

distance measures. For images, information theoretic and probabilistic based measures are used 

[226-227]. Spatial distance based measures generally consider the pairwise distances between 

the compared point sets. Examples are the average distance (the average of all pairwise 

distances) and the Mahalanobis distance, which compares estimates of the point sets as two 
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hyper-ellipses. The methods are not sensitive to the positions of the individual points.  A 

measurement that takes into consideration the spatial position of each individual point, is the 

Hausdorff distance - a max-min distance, which makes it capable of considering the spatial 

properties in the measurement, e.g., the boundary of an object (contour). However, in some 2-

dimensional applications, this makes it sensitive to outliers [227, 228]. 

When viewed as a sequences of numbers, there are many distance measures for numeric 

data that can be applied. For numeric data in general, the following distance (similarity) 

measures are commonly used: Manhattan, Euclidean, Squared Euclidean, and Normalized 

Squared Euclidian, Canberra, Cosine, Correlation, Binary, Bray-Curtis, Chessboard, Warping, 

Canonical warping, and others. Viewed as strings, the similarity of chain codes can be express 

with available string data comparison algorithms: Damerau-Levenshtein distance, Smith-

Waterman similarity, Hamming, Needleman-Wunsch similarity and some others. In this regard 

application of sequence alignment and sub-sequence positions have to be used as well. 

Additional distance measurements were considered for development CCs comparison: 

Hausdorff distance, Frechet distance, Jaccard distance (similarity of asymmetric binary 

attributes), difference with simple matching coefficient (market basket analysis), Tanimoto 

distance (a method of classification based on a similarity ratio, and a derived distance 

function), Marczewski-Steinhaus distance (more generalized Jaccard distance), and others 

[229-231]. The search was to find the most applicable distance measure suitable to the 

characteristics of the CCs. More specifically, CC are in general with different length and the 

length itself cannot be normalized. In pair-wise comparison, the length of the shorter chain 

could be extended to match the length of the longer chain. CC has a limited space presentation 

(8-character alphabet) which is known or even can be selected. For example, negative and 
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positive decimal values have been considered. Using alphabet {-4, -3, -2, -1, 1, 2, 3, 4} and 

absolute values for distance measure was explored and it is still an option. 

Many of the listed algorithms were considered and some of them were tested to measure 

the difference (similarity) of the chain codes generated from the binary images of the 

watermarks. While the difference in length could be viewed as a complication, several 

characteristics of the chain codes facilitates their comparison: they are a continuous sequence 

of positive real integer numbers and their numeric values are in a priory known space from 0 

to 7 only: bounded (normalized) data with no outliers. 

The directed Hausdorff distance H between two point sets A and B is the maximum of 

distances between each point x  ∈ A to its nearest neighbor y ∈ B. That is: 

𝑯(𝑿, 𝒀) = 𝒎𝒂𝒙
𝒙 ∈  𝑨

{{𝒎𝒊𝒏
𝒙 ∈  𝑩

‖𝒙, 𝒚‖}}  (5.1) 

where ‖…‖ is any norm e.g., the euclidean distance function. The characteristics and 

capabilities of Hausdorff distance measure makes it a good candidate for similarity 

measurement of CC. However, an examination of its definition reveals that 𝐻(𝑋, 𝑌)  ≠

𝐻(𝑌, 𝑋) and indicates that the directed Hausdorff distance is not symmetric. For example,  

H([1,3,6,7], [3,6]) = 2 and H([3,6], [1,3,6,7]) = 0  (5.2) 

For the intended matching comparison of one-to-many chain codes of watermarks, the 

comparison is in one direction: one CC to the CCs in a database. Nevertheless, it could be a 

major problem as illustrated by the example (5.2). The problem is solved by using the 

maximum value of the directed Hausdorff distances pair-wise in both directions, is an easy 

way to make the Hausdorff distance symmetric: 

𝑯(𝑿, 𝒀) =  𝒎𝒂𝒙
 

{𝑯(𝑿, 𝒀),𝑯(𝒀, 𝑿)}   (5.3) 

and remove the constrain of directional comparison difference. 
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More formal definition of the Hausdorff distance is given using infimum and supremum of 

two datasets comparison [233, 234]. Figure 5.3 is a simple illustration for two short chain codes 

of five and three data points. 

 

Figure 5.3: Supremum and infimum of two sets A and B. 

Hausdorff distance was developed and introduced by the German mathematician Felix 

Hausdorff [232]. It is also called Pompeiu–Hausdorff distance and is used to measure how far 

(in a metric space) two subsets are from each other. In image processing, one application of 

the Hausdorff distance is to find a given template in an arbitrary target image. The template 

and image are often pre-processed with an edge to make a binary representation. Every point 

in the binary image of the template is treated as a point in a set, the template "shape" set. The 

binary target image is treated as a set of points. The algorithm then tries to minimize the 

Hausdorff distance between the template and some area of the target image. The area in the 

target image with the minimal Hausdorff distance to the template, can be considered the best 

candidate for locating the template in the target [233]. 
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By definition, the Hausdorff distance can be considered the longest distance one can be 

forced to travel from a point in one of the two sets, to the other set. In other words, it is the 

greatest of all the distances from a point in one set to the closest point in the other set. That is 

a great characteristic for a distance measure: it gives the worst case similarity measure. 

The Hausdorff distance is used in many applications and have many implementations. 

Researchers have noted the importance to optimize the runtime and memory required for large 

datasets and how the performance vary in relation to the sets size, grid size, density, sparsity, 

and generality of the data [234, 235]. Fortunately, chain codes are a one-dimensional datasets 

which are also relatively small size (short length), equal density and without missing values 

(no sparsity). Unfortunately, Hausdorff distance cannot be used directly for the comparison of 

two chain codes. The CCs are bounded in [0, 7] space and two CCs are always overlapping in 

this space resulting in 0 Hausdorff distances. In next section, a modification of Hausdorff-like 

metric is presented which can be successfully used for comparison of datasets in very small 

bounded space. 

 

 

5.5 Application of CCD for watermarks comparison 

To evaluate the similarity of two CC, first we form replicas and tile the elements of the two 

CC. This allows the comparison of two arrays with different lengths. For lengths L1 and L2 

this forms L1 x L2 pairs of distances. The distance metric calculation is performed for every 

pair of values as the square root of the sum of the squared value differences at each 

corresponding index. The maximal minimum distance per index is retained traversing forward. 

As mentioned previously, to assure symmetry of the distance measure, the calculation is 



147 

 

performed traversing the array in reverse. The overall distance is the square root of the 

maximum of the two (forward and reverse) passes of the arrays. 

Figure 5.4 provides two more examples for comparison of watermarks based on their chain 

codes and chain codes distances. The heat map on the left is showing the CC differences (0 to 

7) at every index for watermark Anker and watermark Hand. The Chain code distance measure 

(similarity score) is 640 indicating high difference. The heat map on the right demonstrates the 

index differences between watermark Bell and watermark Hand. The overall distance 

difference score is 387.  

 

Figure 5.4: Comparison of watermarks based on their chain codes distances. The CC 

difference for watermarks Anker and Hand is 640 (left). The difference score between 

watermarks Bell and Hand is 387 (right). 

 

 

Figure 5.5 shows the results for self-comparison (a test for match) for two watermarks. On 

the left, the chain code of the watermark Anker is compared to itself. On the right, the chain 

code of the Bell watermark is compared to itself. As expected, the chain code distance measure 

is zero indicating a perfect match. 
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Figure 5.5: Chain code self-comparison for the watermark Anker (left) and for the 

watermark Bell (right). The difference measure is zero indicating a perfect match. 

 

Figure 5.6 displays the recto and versa images of Crown watermark and the CCs generated 

from the images. Visually, the images and the chain code patterns look similar. The perceived 

similarity is rejected by the application of the CCD metric. In Figure 5.7, the heat map on the 

left displays the self-comparison of the CC representing the recto image. On the right side is 

the heat map display for CC comparison of recto and verso images. The perceptually similar 

CC in Figure 5.6 are actually very different. The calculated distance value is 596. 

 
Figure 5.6: Chain code of Crown watermark recto (left) and verso (right). 

The Chain code have the same length and similar pattern. 
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Figure 5.7: Crown watermark recto and versa comparison. Self-comparison CCD is 0 

(left). The recto vs. verso CCD is 596. 

 

Next, the resolving capability of the new method is demonstrated with a set of watermarks 

from the same class. Figure 5.8 shows a set of 20 watermark images from the class Anchor. 

Visually, the watermarks appear similar, nevertheless different. It is interesting to observe that 

most of the anchors show the same orientation except the first image in the second row. The 

image reveals that the anchors are featured with a tiny cross atop and with cusp-like structures 

at the outer endings. The Anchor was a very popular watermark and for differentiation 

additional motives were added with time. The class Anchor possesses a large intra-class 

variation of shapes, i.e. many anchors have no crosses or show very different endings. Those 

characteristics are described in many of the datasets with anchor watermarks. The resolving 

capability of the chain code distance measure is tested using the class Anchor watermark 

images. Two images are selected at random, copied and added to the set of 20 images to form 

two duplicate pairs. The duplicates are used to test the matching (discriminating) fidelity of 

the CCD.  Figure 5.9 displays the distances between the chain codes for the original 20 images 

plus the two duplicates. 
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Figure 5.8: Watermark images of class Anchor. 
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Figure 5.9: Chain codes distances for class Anchor watermarks. Two watermark 

images are copied and added to the original dataset for testing. They have formed two 

matching pairs (3 & 6) and (7 & 11). 

 

Figure 5.9 displays the CC based distances for 22 watermarks images (20 original 

watermark with two duplicates added). After binarization, skeletonization, RST-invariant 

transformations, and CC generation, the total number of 22 CCs are compared. The self-

comparison results in 0 distances (blue color diagonal). The first duplicate forms a matched 

pair with a 0-distance at indexes 3 and 6 and (7&11). It is obvious that if the images are sorted 

in ascending order of their CCD, it will result in the complete similarity ranking for the images. 

The newly developed CCD also provides the ability for discrimination or identification of 

recto and verso watermark images. Figure 5.10 displays four watermarks from the Bernstein 
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collection with their horizontally flipped images. Those are the same watermark images which 

were previously displayed in Figure 4.3. 

 
Figure 5.10: The watermarks from Bernstein collection from Figure 4.3 with their 

mirror images. 

 

The application of the CCD generates the 8 x 8 similarity (difference) matrix which is 

displayed as heat map in Figure 5.11 with the calculated distance measures. 

 
Figure 5.11: CCD for the four watermarks and their mirror images. 
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In the matrix, image at position 2 (row and column) is the mirror reflection of image at 

position 1 (row and column). The image at position 4 is the mirror reflection of image at 

position 3 and so one for the next images. The calculated chain code distances are printed on 

the heat map representation of the symmetric CCD matrix. The CCD values generated for the 

mirror image of watermark 006003026 and watermark 006003027 at indexes (2, 3) and (3, 2) 

are 0. The CCD values generated for watermark 006003026 and the mirror image of watermark 

006003027 at indexes (1, 4) and (4, 1) are 40, indicating very close similarity. The distance 

differences of 0 and 40 is leading to the following (hypothetical) conclusion: Watermarks 

006003026 and 006003027 of the Bernstein collection are the same watermark represented 

with recto and verso images. Or they are well made twins, with the second figure attached 

flipped to the chain and laid wires. This is less likely but not impossible.  

Similar conclusion can be made for watermarks 010001002 and 010001003 of the 

Bernstein collection. The distance value is 76. Close examination of the skeleton images of the 

original and the mirror images prompts to investigate further the dependence of the CC on the 

skeletonization and, in general, the image preprocessing. 

 

5.6 Conclusions 

 

In Chapter 5, the development of new method for generation of RST-invariant chain codes 

was presented. The method provides capability for normalization of watermark images and 

therefor, accurate comparison of their generated chain codes (CC). The results prove the 

efficiency of CC-based templates for watermarks comparison. The RST-invariant CCs are 

lossless compressed representation of the watermark images with very high ratio of 

compression. Many possible distance metrics were reviewed as candidates for watermarks 

chain codes comparison. The implementation of a Hausdorff-like distance metric, modified 
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with respect to the chain codes characteristics, is described. It was demonstrated that the new 

distance metric performs efficiently and accurately. 

The CCD can be used for measuring the distances of the chain codes and respectively the 

similarity of watermarks. 
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CHAPTER 6 

AUTOMATIC IDENTIFICATION OF WATERMARKS WITH CHAIN CODES 

 

6.1 Introduction 

Identification is based on the ability to successfully compare an object of interest to a set 

of other objects. In identification systems, the user makes an implicit “one-to-many” search of 

the entire enrolled database. When the degree of similarity is sufficient, the object is identified. 

When the comparison does not result in a satisfactory outcome, the object is considered not 

present in the space of comparison. For images, a direct comparison is in a two-dimensional 

(matrix) space. For CC we compare in a one-dimensional (vector) space. As described in 

Chapter 3, the compression that CCs provide simplifies the comparison for matching process. 

However, one of the main obstacles to successfully use CC as descriptors for identification are 

their variance to rotation and scale. Another reason is the absence of an efficient method for 

CC comparison. In the following sections of Chapter 6, an approach is described that provides 

the performance testing results for the deterministic comparison of chain codes with any 

length. The test is performed with 250 watermarks dataset. For comparison, additional tests 

were conducted using modern image classification methods with deep learning convolutional 

neural networks and bag-of-visual-words. 

 

6.2    Watermark datasets 

An important note regarding the use of terminology is the referral to a collection of images 

as a “corpus”. Any additional information about the collection of images and how they are 

produced is referred to as the “database”. In this thesis, the preferred and most frequently used 



156 

 

term is “dataset” as related to the set of images only or the corpus. Using the corpus, CC 

representation of the watermarks are generated. The constructed searchable space is sufficient 

for one-to-many comparison and matching of the generated CCs. However, a relational 

connection with the corpus is necessary to maintain CC-to-watermark relationship. 

 

6.3    Performance evaluation 

The initial steps in an evaluation study are to decide what exactly the performance results 

are trying to determine. Scholars agree that there are at least three evaluation types: technology, 

scenario, or operational evaluation [236]. For the case of watermarks identification the goal is 

to demonstrate two aspects: 

1. Chain codes correctly, uniquely and persistently describe the watermarks. 

2. The newly developed distance metric based on the comparison of CC (similarity 

measure) accurately matches (identifies) a watermark if it has been enrolled in the relational 

database.   

“Accurately identifies” is interpreted as a performance with an acceptable degree of errors 

for a given number of comparisons. In the case of watermarks search and retrieval, the cost of 

false positive or false negative is the degree of annoyance to the user of the system. 

For watermarks available from datasets (databases), choice of the performance evaluation 

type, determines the technology evaluation approach with respect to the CC-based matching 

algorithm. The technology involved in the acquisition of the watermark images is not evaluated 

and a simplified assumption is that the images in the database are of similar and sufficient 

quality. Because the generation of CC is preceded with morphological preprocessing of the 

watermark images (binarization and skeletonization), the performance metrics indirectly 
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evaluate the fidelity of CC generation as well. When a system for identification of watermarks 

based on CC is installed, it has to be tested with operational and/or scenario type evaluation.  

In this thesis, the focus is on technology type evaluation of the proposed new method for 

automatic identification of watermarks based on CC. 

 

6.3.1   Dataset sample size 

In any study that involves evaluation of an algorithm, the size of the sample size is an 

important factor for the statistical significance of the results. Design of a good experimental 

work always includes the process of sample size selection. The sample size defines how 

accurately the performance errors can be measured. The larger the test sample size, the more 

accurate the results will be and with a better confidence level.  

The identification of watermarks is an implicit matching process. The match/non-match 

result is based on many pair-wise comparisons, i.e. one-to-many search for match. Before 

proceeding with the justification of the sample size for statistical significance, several 

definitions are presented. 

Confidence interval: Very often a 95% confident interval is used. For a parameter x that 

estimates a lower estimate L, and an upper estimate U, such that the probability of the true 

value being within the interval estimate is the stated value (e.g. P(x ∈ [L, U]) = 0.95). The 

smaller the test size the wider the confidence interval [L, U] will be [237-239]. 

When an algorithm with an observed performance close to 100% accuracy (respectively, 

close to zero probability of errors), it is challenging or impossible to use the available statistical 

test for sample size calculation. The formulae with p * (1 – p) = 0 term cannot be used. For 

these cases, the statisticians use the “Rule of 3” [238]. The rule is used to estimate the lowest 
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error rate that can be statistically established with a given number of (independent identically 

distributed) comparisons. This rule p ≈ 3/ n defines the value of the error rate p for which the 

probability of zero errors in n trials, is purely by chance. For a sample size n, with probability 

p0 = 0 the interval from 0 to 3/n is a 95% confidence interval for the rate of occurrences in 

the population. 

For a pair-wise matching with a success rate of 100%, the measured accuracy means that 

a negative result has not been observed to occur in n Bernoulli trials. In the case of CC 

comparisons, the matching process has only two possible outcomes (match/non-match) and 

can be considered a Bernoulli trial (or binomial trial). For example, if the sample size is N = 

100 the n = N! / (2 * (N -2)!) = N * (N -1) / 2 = 4950. Usually, a 95% confidence interval is 

used for the probability p of an event occurring for a randomly selected sample set in a given 

population. If we note the number of events by X, we therefore wish to find the values of the 

parameter p of a binomial distribution that give Pr(X = 0) ≥ 0.05.  

The rule can then be derived either from the Poisson approximation to the binomial 

distribution, or from the formula n * (1 - p) = (1 - p)n and by taking logarithms and keeping 

only the first term of the series expansion of the natural logarithm [240]. In short, using 

Taylor's theorem the factor of three is for n * ln(1 - p)  we apply ln(1 - p)= −ln(0.05) = ln(20) = 

2.9957 ≈ 3. So n * p = 3 or p = 3/n. For a sample size of 100, the result is p = 3/4950 ≈ 0.0006. 

Or for easier reference, given a measured performance with zero errors (p0 = 0), the statistically 

claimed performance with 95% confidence is that 1 in 1650 comparison trails may result in 

non-correct match. From p0 + p1 = 1, one could expect for only successes (p1 = 1) the 

confidence interval to be [1 – 3/n, 1]. 
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Conclusion: Based on this reasoning using the rule of three with 95% confidence and 

[0.9994, 1] confidence interval the measured accuracy could be extended to an error of 1 for 

1650 comparisons. 

The reverse problem: Using the rule of three, calculate the sample size needed for a study 

with 95% confidence and a desired calculated accuracy of 0.999 (0.1% error) given a measured 

(claimed) accuracy of 1 (100%). What is the required minimum sample size? 

Solution: From 0.001 * n = 3 we get n = 3000. If we have a sample size of 78 we perform 

78 * 77 / 2 = 3003 comparisons. To test and demonstrate the claimed accuracy we would need 

78 samples and could extend the performance accuracy to 0.999 with a 95% confidence.  

To summarize this topic, for confidence level of 90% it is the “rule of 2.3” and for 99% 

confidence level, we need to use the “rule of 4.6”. Using the “rule of 4.6” with 99% confidence 

level and 0.1% error, the result is n = 4.6/0.001 = 4600 trials. For that many trials the minimum 

sample size is 97 samples (97 * 96 / 2 = 4656). 

The “rule of 3” is used to estimate the lowest error rate that can be statistically established 

with a given number of (independent identically distributed) comparisons for the most 

commonly used confidence level of 95%. The identical distribution and independence of the 

CC generated for the watermarks in the dataset are open for discussion. Fortunately, in 

statistics, n greater than 30 is considered a threshold above which the rule of three is a good 

approximation to results from more sensitive tests. 

 

6.3.2   Receiver operating characteristics 

Receiver operating characteristic (ROC) curves are an accepted method for summarizing 

and visually presenting the performance of a detection system (radar, diagnostic test, pattern 
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matching and others). An ROC curve plots, parametrically as a function of the decision 

threshold, the rate of “false positives” (i.e. impostor attempts accepted) on the x-axis, against 

the corresponding rate of “true positives” (i.e. genuine attempts accepted) on the y-axis. ROC 

curves are threshold independent, allowing performance comparison of different systems 

under similar conditions, or of a single system under differing conditions. Figure 6.2 in the 

next section shows an example of ROC plots. The area under the ROC curve (AUC) indicates 

with a single value the overall performance of the detection system. A value of 1 represents a 

100% accuracy. A value below 0.5 is below the theoretical level of random processes. 

Obviously, AUC with values close to 1 (or 100%) are desirable because they indicate a well-

designed and well performing system (algorithm). 

 

6.3.3   Experimental results using CCD 

Next two figures present a summary of the matching performance of the generated CC. 

Figure 6.1 displays the normalized distances in 1 to N comparison for 250 WM from the 

Bernstein catalog collection [18]. Each image is preprocessed as described previously 

(binarization and skeletonization) and the generated CCs are stored in binary files with the 

same name as the original watermark images. The dataset images are presented in Appendix 

A.  

The ROC curve analysis for the CCs comparison presented in Figure 6.2, indicates an area 

under the curve (AUC) value of 0.99971 and the equal error rate (EER) is 0.000289. The results 

are from the comparison of the CC of watermarks images of the dataset using the described 

CCD metric. The ROC is presented in blue color on Figure 6.2. 
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Figure 6.1: Distance between the CC of 250 WM with pair-wise comparison. 

 

Next, we explore the robustness of the CC generation with different means of synthetic 

image degradation and respectively the identification of the watermarks using CCD metric. 

Synthetic distortion of the watermarks images was used to generate testing sample images. 

Table 6.1 displays the results of watermarks matching test (degree of similarity) based on the 

comparison of their CCD with four levels of imposed degradation. The degradation was with 

random synthetic distortion. The degradation was design not to exceed the indicated number 

of randomly changed CC value. The changes of CC’s values depend on the number of relative 

location change in consecutive neighboring pixels. The limiting threshold level for number of 

changes in % value of the length of the CC is given in the first column of Table 6.1.  The results 

from tests are given using the ROC values for the area under the curve (AUC) calculated at a 

given equal error rate (EER) and threshold. 



162 

 

Table 6.1: EER, AUC, and the threshold for different degree of distortion. 

Random 

distortion 

Limit 

level 

E

ER 

A

UC 

Th

reshold 

10% 

0

.002

5 

0

.99

89 

231

.9 

15% 

0

.018

1 

0

.99

17 

222

.3 

20% 

0

.032

2 

0

.98

23 

213

.9 

25% 

0

.072

2 

0

.97

95 

202

.4 

 

 
Figure 6.2: ROC based on CCD for the degree of degradations given in Table 6.1. 

 

The effect of the synthetic degradation is noticeable but the AUC value continue to be close 

to one, indicating the robustness of the CCD metric. Please note that only the initial portion of 

the ROC is displayed (FAR from 0 to 0.12). The CC representation of the watermarks forms a 

high fidelity feature vector with high entropy and noise immunity, which even after a 



163 

 

substantial degradation continues to perform well. While the CC’s values have been changed, 

it continues to retain a differentiating capability representing the watermark for comparison 

with other watermarks. 

The synthetic degradation is intended to simulate the overall performance with noisy CCs. 

The CCs are generated after skeletonization of the binary watermark images. Most pixels in 

the skeleton, in general, have two neighboring pixels. The CC generation algorithm is designed 

to process the image starting from outside contours and going clockwise. This information is 

used to specify the directional change of the CC due to simulated digitization noise. Figure 6.3 

displays four out of eight possible scenarios. 

 

 
Figure 6.3: The direction probability of CC formation. Due to the skeletonization, at 

pixel Pi, coming from pixel Pi-1, the direction of moving forward with higher probability 

is indicated with darker blue. 

 

The randomly selected index for value change Pi (dark blue), is examined backward to 

identify the neighbor Pi-1 it follows (the darkest blue color). Based on the direction from which 

the CC is formed, the probability of the forward going direction is indicated with the degree of 

blue color. 
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6.4    Alternative methods for watermark identification  

As already described, there are many methods available for shape and contour description. 

Most of them continue to be developed and applied to specific and different application. This 

thesis described a new method for description of watermark with CC after an initial 

preprocessing of the watermark images. In this chapter, modern methods for image matching 

are examined in order to compare their performance with the matching based on the new CCD 

metric. 

The first chapters of this thesis reviewed the Content Based Image Retrieval (CBIR) 

process that is mostly applied to the description search and retrieval of watermarks. Featuring 

an exponentially increasing number of images on the web, the era of big data demanded the 

need for scalable systems which allow efficient indexing, retrieval, re-ranking, and browsing: 

The Bag-of-Words (BoW) model was introduced and viewed as the state of the art in Content-

Based Image Retrieval (CBIR) systems since early 2000. In recent years, image representation 

based on the Convolutional Neural Network (CNN) has attracted more attention in image 

retrieval, and demonstrated impressive performance. Given this time of rapid evolution, this 

thesis explore the possibility of using CNN and BoW for watermark image retrieval methods.  

According to [249], the feature extraction and quantization schemes can be used to classify 

current methods into three types, i.e., SIFT-based, one-pass CNN-based, and multi-pass CNN-

based. The authors of the survey review milestones in BoW image retrieval, compares previous 

works that fall into different BoW steps, and shows that SIFT and CNN share common 

characteristics that can be incorporated in the BoW model. 

In the next section of this chapter we present the results from applying CNN and BoW to 

watermark images. 
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6.4.1   Machine learning and image matching 

Recent advances in deep learning with applications in image matching and retrieval have 

prompted the test of NN for watermark images recognition. Several new approaches in the 

architecture, activation function, and training of NNs for deep learning have produced 

remarkable results [241, 243]. The new technology components include: 

 Partially labeled data; 

 Rectifier linear unit; 

 Convolutional Neural network; 

 Dropout neurons. 

Most learning (training) algorithms are supervised or unsupervised. Partially labeled data 

provides a mixture of the two and provides additional opportunity. The Rectifier linear unit is 

becoming the standard activation function for the hidden layers of the deep learning NNs. In 

addition, the Linear or Softmax activation functions are used for the output layer. The Neuron 

dropout is a regularization technique in deep learning that prevents overfitting. This is 

important especially in multilayer, multiple neuron NN, in which a single or several dropout 

layers are included. One particularly appealing approach is to use a Convolutional neural 

networks (CNN). They have shown some record breaking performances with real image data 

and there is no need to generate features from the images in order to train/test the neural net. 

CNN input accept directly the image(s). The application of a five layer CNN for the recognition 

of watermark images is presented next. 
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6.4.2     Convolutional neural networks (CNN) 

After reviewing literature and implementing CNN structure in Matlab, with a limited 

exploration of the many optional settings, the NN structure that generated very good results is 

reported. Two convolutional layers with kernel size 5 x 5 are used. The output map for the first 

was 8 and for the second 16. After each convolutional layer, scaling down with factor of 2 was 

used. The computational complexity could be indicated by performing a single epoch during 

the very first run of the training. Different batch size were explored to speed up the training. 

Several important notes follow. 

It is critical to use image size that divides evenly by 4 (for the application of 5 x 5 

convolution kernel) and by 2 for each pooling layer of the NN. The possible starting image 

size depends on the convolutional kernel size as well. The size of the original watermark 

images in the Bernstein collection is 100 x 100 pixels (divisible by 4 and applicable for use 

with 5 x 5 convolutional kernel). Each layer of the implemented architecture changes the size 

of the input image to a map, one for each of the neurons (kernels / filters / features) in the layer. 

This image sizes after each layer are as follows. After the first convolution the 100 x 100 size 

becomes 96 x 96 pixels. There would be as many maps as the number of neurons in the layer. 

After the first down-scaling, the images are 48 x 48 pixels. After the second convolution, they 

are 44 x 44 which is an even number and could be scaled down by 2. In CNN terminology, the 

down-scaling is a result of the pooling, which in this case was an averaging over 2 x 2 pixel 

areas. 

The CNN are extensively used in the area of “Deep Learning” and are a subject of intensive 

research. New developments are improving the performance of new architectures. In many 

applications, pre-trained layer-wise network could be used on line (cloud based). The examples 
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presented in this thesis are with supervised learning using the classical sigmoid activation 

function. Recent advancements in deep learning appear to use different activation functions 

rectified linear unit (ReLU), parametric ReLU, exponential linear unit (ELU), soft exponential, 

soft plus, bent identity and others [241, 242]. Deep learning is considered the third stage of the 

NN development, a concept that was initiated in the 1940s. In 2006 Hinton proposed a radical 

new way of training deep NN. Recent advances in high performance GPU allows the use of 

larger and deeper architectures NN [243]. 

 

6.4.3      Watermarks dataset for use with CNN 

In general, the watermark dataset has a single representative of a given watermark class or, 

at most, several representatives which are grouped in a subclass. To train the NN the need for 

a large dataset is eminent. The solution to this problem is data augmentation. It is achieved by 

applying “label preserving transformations”. Several augmentation techniques have been 

developed specifically to test the performance of algorithm in the area of digital processing of 

images of historical documents. They include Kanungo noise, character degradation and 

geometric distortion [244].  

In [245], Kanungo et al. introduced a model to distort character edges.  First, the value of 

some foreground and background pixels are changed (foreground pixel changes to background 

and vice versa) according to a probability function based on selected pixel distances. The 

process continues by using a non-linear local selection process and a morphological closing 

operation to smooth the characters edges. This model works well with binary images and is 

widely used to simulate the presence of noise for assessing the performances of different 

document analysis methods. 
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The character degradation model proposed in [246], which is specifically designed to 

mimic typical noise regions in ancient documents such as ink splotches and white specks or 

streaks due to the age of the manuscripts. This kind of noise mostly appears in the 

neighborhood of the characters and can lead to touching and broken characters.  

The geometric surface deformation was proposed by J. Liang et al. in [247] to evaluate 

their restoration algorithm. First, this model maps every point in the plane of the original image 

to a point on a curved surface. The curved surface is then divided into planar strips (e.g. quadri-

laterals) that are mapped back to the image plane. In this thesis work, similar degradation 

model with different modulation surfaces such as sinusoidal and parabolic is used. 

To generate multiple representative watermark images, every image in the original set was 

synthetically transformed with ten different methods. The result was a set with sufficient size 

to be used for testing with CNN. Perhaps there are other transformations that could be used. 

Also, some transforms are not included intentionally. For example, the translation 

transformation does not results in any useful (different) result because the moved (translated 

on the plane) images are the same as the original. The shearing and stretching is easily made 

with tformarray() function of Matlab and the results are similar to the use of transformation 

using fitgeotrans() function. To better visual representation, Figure 6.4 displays the effect of 

the used transforms on a checkerboard image. 
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Figure 6.4: Synthetic image distortions. From left to right top row: original 

checkerboard image, rotation, affine, reflective and non-reflective similarity. Bottom 

row: projective, polynomial, piece-wise linear, barrel and pin-cushion transforms. 

 

 The used transforms are listed next with watermark image examples and short 

explanations. First, a rotation was performed consecutively three times at 90 degrees counter-

clockwise to generate three additional images from the original watermark image. 

Rotation 

 

In the next examples of transformations, the first of the images is the original watermark 

image. The following four are the results of the transforms performed on the rotated original 

images. 

 

Affine transformation – the affine2d() and imwarp() functions of Matlab are used. The 

particular transformational matrix T is: 

T = [ sc -ss  0 ; 
         ss  sc  0 ; 
         tx  ty  1 ] ; where sc = scale * cos(angle), ss = scale * sin(angle), tx = 0 and ty 

= 0. 
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Reflective similarity - The particular transformational matrix T is: 

T = [ sc      -ss    0 ; 
         a*ss  a*sc  0 ; 
         tx      ty      1 ] ;  where the parameter a = -1. 
 

 

 

Non-reflective similarity - The particular transformational matrix T is: 

T = [ sc     -ss     0 ; 
         a*ss  a*sc  0 ; 
         tx      ty      1 ] ;  where the parameter a = 1 or is simply omitted. 
 

 

 

Projective - A good illustration of the result is with a checker board above. The particular 

transformational matrix T for this example is: 

 

T = [ 1.0  0     0.001 ; 

         0.1  1.0  0.001 ; 

         0     0     1.0      ] ; 
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Polynomial – Using reshaping with random points, the image warping is performed. The 

polynomial transform was performed with fitgeotrans() function of Matlab. 

 

 

 

Piece-wise linear – The fitgeotrans(movingPoints,fixedPoints,'pwl') is used with 

movingPoints = [10 10; 10 30; 30 30; 30 10] and fixedPoints  = [10 10; 10 30; 32 32; 30 10]; 

 

 

Locally-varying with sinusoid – A mesh-grid [xi, yi] of the image is created and two new 

vectors u and v are formed u = xi + a1*sin(pi*xi/imid); and v = yi - a2*sin(pi*yi/imid); After 

that the new image is created using makeresampler() and tformarray() functions of Matlab. 

The tformarray() function is like imtransform(), but is intended for problems of mixed 

input/output     dimensionality and provides greater user control or customization.  
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The next figure helps to illustrate the barrel and pin-cushion distortion in images which are 

typically associated with the lenses of the optical system. 

 

Radial barrel distortion – The transformation is performed with conversion from 

Cartesian to polar coordinates and back by varying the amplitude of the cubic term for the 

radius and consecutively using the tformarray() function of Matlab. For this specific example, 

the radius is calculated using s = r + a * r^3 with a = 0.0001 value. 

 

 

Radial pin cushion distortion – The pin-cushion distortion is achieved by using a negative 

value for a. In this particular example, a = -0.000005. 

 

 

As indicated previously, the size of the input images are important for the proper operation 

of the CNN. The design of the neural network could be made to operate with different size 

input images. This would require addition of sublayers for image auto-resizing. It is better and 

more efficient to use an image set with the appropriate size for the CNN design. Several CNN 
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configurations were used. For example, configurations c8/p2/c16/p2 and c6/p2/c12/p2 which 

were explained previously. 

All of the transforms listed above have several parameters that can be modified to achieve 

different degree of change. The parameter values for the particular examples are given. One 

critical thing is that the transforms change the size of the original images. To resolve the 

problem, the original 100 x 100 binary images are padded with zeros: 100 x 50 on the left, 100 

x 49 on the right, 50 x 199 on top, and 49 x 199 on the bottom. This results in a 199 x 199 

(odd) size images with a defined horizontal and vertical center lines. After the transformations, 

the resultant images are cropped back to 100 x 100 size. This way they are ready for use with 

a CNN without implemented layers for auto-resizing. 

The following Figure 6.5 displays an example of 10 original watermark images. Figure 6.6 

presents some of the transformed images. 

 

 
Figure 6.5: WM images used in CNN example. 
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Figure 6.6: Examples of transformed images for CNN training. 
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All original images of the watermarks and the transformed images are displayed in 

Appendix B. The transformed and scaled images are displayed in Appendix C. 

6.4.4     Experimental results of watermarks matching using CNN 

In the Matlab implementation, the CNN’s architecture is stored in the structure with a cell 

array containing each of the five feature extraction layers. The output layer parameters are 

stored in a separate object. The CNN has six layers: an input layer, 2 convolution layers, 2 

subsampling (or "pooling") layers, and an output layer which performs the classification. It 

took some time to figure out many aspects of the CNN structure definition and training/test set 

generation. The CNN was trained with the augmented images and tested with the original 

images.  

The performance of the CNN with 100 x 100 size input images and 50 epochs is given in 

Figure 6.7. 

 
Figure 6.7: CNN train with 50 epochs and performance test results (insert) 

 for 100 x 100 size images. 
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Working with the original image size produced good results bur the individual epoch 

execution time was relatively long. After exploring with the original size of the images, the 

image size was reduced in order to speed up the training and respective testing. The next 

experiment was performed with images scaled down to one half on each axis (one quarter of 

the original image area). The original images were scaled to 56 x 56 pixels with MATLAB 

function imresize(I 0. 5). After each NN layer, the size changes from layer (1) 56 x 56, to 52 x 

52 pixels at layer (2), after the first convolution with 5 x 5. The image size at layer (3) is 26 x 

26, after the first pooling with 2 x 2 mask, and reduces further to 22 x 22, after the second 

convolution with 5 x 5 at layer (4). The final size is at layer (5) is 11 x 11 after the second 

pooling. 

 
Figure 6.8: An example of c8/p2/c16/p2 CNN architecture. 

 

Running the CNN implementation with several different layer configurations results in 

different times per epoch and accuracy performance. Following the resizing explanation, the 

CNN configuration can be written as c8/p2/c16/p2. Figure 6.8 illustrates the architecture of the 

CNN. The 8 neurons of the first convolution layer generate 8 separate maps and respectively, 

the 16 neurons of the second convolutional layer generate 16 separate maps. Using smaller 

number of neurons executes faster but achieves lower accuracy. For example, c8/p2/c16/p2 

architecture increased the running time per epoch (370 sec) without improving the accuracy 
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substantially compared to c6/p2/c12/p2 configuration (~280 sec) on an AMD A8-4500M, 1.8 

GHz Laptop to complete a single epoch.  

To further explore the performance and potentially improve the speed of execution, the use 

of images scaled to 28 x 28 pixels were used. The smaller image size did not degrade the 

performance result. The Matlab function imresize(I 0.275) was used in order to get 28 x 28 

pixels size images from the original images with size 100 x 100 pixels. Again, the size changes 

from layer (1) 28 x 28, to 24 x 24 pixels at layer (2), after the first convolution with 5 x 5. The 

image size at layer (3) is 12 x 12, after the first 2 x 2 pooling, and reduces further to 8 x 8, after 

the second convolution with 5 x 5 at layer (4). The final size is at layer (5) is 4 x 4 after the 

second pooling. 

Figure 6.9 presents the mean square error convergence for 100 epochs of training.  

 
Figure 6.9: Mean Square Error for c8/p2/c16/p2 CNN. 

 

The expanded dataset of 2500 samples were divided in training, validation and testing sets 

with 7:2:1 ratios using stratified partitioning. With 50 epochs of training, the achieved rank-1 

accuracy was 98.71%. The accuracy increased to 99.25% with 100 epochs of training. This is 
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a very impressive result which demonstrates the capabilities of CNN regardless the relatively 

small training sample size. It took about 230 seconds on AMD A8-4500M 1.8 GHz laptop to 

complete a single epoch. Scaling down the CNN architecture speeds up the training process 

but also results in lower accuracy. CNN configured as c6/p2/c12/p2 executed a single epoch 

on average for about 170 seconds with accuracy decreased below 90%. 

 

6.4.5    Bag of visual words 

In this section, to demonstrate the possible use of Deep Learning, Bag of Visual Words 

(BoVW) method for classification of digital images of paper watermarks is demonstrated. At 

least theoretically, the method is applicable for identifying to which class a given watermark 

belongs based on the constructed BoVW using the features of the watermarks of this class. 

One approach is to use Bag of Visual Words (BoVW) for classification of WM images. 

The original applications of this method was develop as bag-of-words (BoW). BoW has 

multiple implementations based on the features and classifiers used. The images however do 

not have words that are explicitly available, and the BoW model cannot be applied directly. 

Fortunately, using a method for feature extraction, the words of the image can be generated. 

The Scale-Invariant Feature Transform (SIFT) [248] is attractive to use because it is comprised 

of feature detector and descriptor, which is invariant to image translation, scaling, and rotation, 

and is robust to local geometric distortion. SIFT is also is partially invariant to illumination 

changes but it is not of interest to the watermarks binary images. With SIFT, an image can be 

transformed into a collection of local feature vectors, which can be viewed as prototypes of 

words in text. For this thesis, following several references and code examples, several BoVW 

were considered. In many of the references, authors use SIFT at several scales, spatial 
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histograms, Fisher vectors, spatial pyramids for extracting features. K-means is usually used 

for visual word dictionary construction. SVM is often use for classification. In this thesis, SIFT 

was used for features generation and Elkan’s k-means for fast dictionary construction. 

Implementation of fast k-means algorithm was not critical for this example with a small data 

set but it is critical for large datasets.  

The steps for implementing the BoVW can be summarized as follows: 

1. Extract features. 

2. Learn “visual vocabulary”. 

3. Quantize features using visual vocabulary. 

4. Represent images by frequencies of “visual words”. 

In general, the watermark data sets have single representatives for a given watermark. 

Obviously, we cannot train the BoVW with a single image. As already discussed in the 

application of CNN, the solution to this problem is data augmentation. It is achieved by 

applying “label preserving transformations”. The same methodology described in “Deep 

Learning with CNN” section was used to generate 10 sets of 40 images with 100x100 pixels 

each. 

Each augmented set of watermarks was stored in a separate subdirectory, forming a class 

for training and testing. Disjoint sets of images were randomly assigned for training and testing 

and a limit of 300 words was used. Several methods for features extraction (generation) were 

tested before SIFT was finally used due to its advantages described above.  

The purpose of the k-means clustering was to partition the set of vectors into groups around 

common mean vector, so the clustering process finds, in principle, the best dictionary or 

codebook to vector quantize the data. The Lloyd-based k-means algorithm was used, 
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alternating between optimizing the cluster centers and the data-to-center assignments. The 

process generates a matrix containing the cluster centers and a vector with assignments of the 

input data to the clusters. The cluster centers are also called means because it can be shown 

that, when the clustering is optimal, the centers are the means of the corresponding data points. 

 

6.4.6      Experimental results using BoVW 

Figure 6.10 presents the classification scores and the confusion matrices with achieved 

accuracies for three different training sessions. Experiments with different training size 

generated different results and, as expected, the classification improves with the increased 

number of training images. With only 15 training images per class, the achieved accuracy very 

poor even for the limited set of only 10 classes Figure 6.10. 

 
Figure 6.10: Classification accuracy of 48.13 % for 10 watermarks using limited 

training with 150 randomly selected watermark images. 
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Figure 6.11: Classification accuracy of 89.38 % with 30 images per class selected 

randomly for training (300 out of 400) and a disjoined set of 10 images for testing. 

 
Figure 6.12: Classification accuracy of 96.88 % with 39 images per class selected 

randomly for training (390 out of 400) and the rest for testing. 

 

The heat-maps in Figure 8 present the scores (top) and the confusion matrix (bottom). A 

rank-1 classification accuracy of 89.38% was obtained when 30 randomly selected images per 

class have been used for training. When 39 out of 40 images per class were randomly selected 

for training and the remaining single image for testing, a maximum rank-1 classification 

accuracy of 96.88% was achieved. 

It is possible to explain the high accuracy with the very small data set. On the other hand, 

the watermark images do not carry reach textual information. The result is a very good 

conformation about the applicability of BoVW for watermark images classification. The 
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reported results has to be viewed as exploratory work and prove of concept, rather than as 

development of a persistent system for watermark classification with BoVW. 

 

6.5    Conclusions 

Chain codes are an effective descriptor of watermarks with high accuracy and sufficient 

differentiation capability. With the developed method for numerical comparison of CCs with 

different length, the similarity measurement of CCs provides fast matching of watermarks. 

The CC representation of the watermarks forms a high fidelity feature vector with high 

entropy and noise immunity, which even after a substantial degradation continues to perform 

well. While the CC’s values have been changed, it continues to retain a differentiating 

capability representing the watermark for comparison with other watermarks. Testing the 

effect of the synthetic degradation indicates noticeable changes of the CCD but the AUC value 

continue to be close to one, indicating the robustness of the new distance metric. 

The use of CNN has the advantage of direct image comparison after initial training. One 

problem with the application to watermarks is the deficiency of large datasets for training. To 

illustrate the possibility of watermarks recognition with “deep learning”, a large dataset was 

built for training and testing using synthetic image degradation. The reported test results 

indicate the applicability of the CNN for watermark image recognition. 
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CHAPTER 7 

WATERMARK COMPOSITE FEATURE VECTOR 

 

7.1   Introduction  

There are many examples when watermarks belong to a group of very similar design and 

vary by elements added to, removed, or changed from the original design. It is desirable to be 

able to describe these minor differences and account for them during the identification process. 

We address the need for a complete description of the details of the watermarks by including 

additional descriptors to form what we named a Composite Feature Vector.  

7.2   Watermarks complexity 

Thousands of watermarks have been designed and used through the centuries. Thousands 

are reproduced and digitized. Watermarks vary from very simple and easy to replicate to very 

complex watermarks which were designed with the intent to be difficult to copy and prevent 

forgery of the marked paper. In this thesis, a framework is presented for automatic 

identification of watermarks based on the generated chain codes. It is important to note that 

more complex watermarks offer more content that could be used for identification based on 

modern image processing algorithms. Some watermarks require rigorous preprocessing before 

construction of good skeleton suitable for CC generation. Many watermark images are of good 

quality but the watermarks are with complex structures. Figure 7.1 displays some examples of 

such watermarks.  
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Figure 7.1: Examples of watermark images requiring rigorous preprocessing or with 

complex motives. 

For images of watermarks with high complexity, standard image based recognition will 

work better based on the reach texture content. Images that result in good quality binary 

representation and moderate complexity of motives could be represented with extended chain 

code arrays.  

7.3    Extended chain code arrays 

The recording of the extended chain code arrays is based on the iterative processing of the 

skeleton image of watermark and removal of the contour layers from outside of the watermark 

towards the center. The result is a set of CCs which are grouped and recorded with predefined 

order. The proposed format for recording is to use tags structure elements analogous to the tags 

used in HTML documents. The reason is flexibility and ability for on line posting and 

processing. HTML uses brackets < > to encase the tags. For instance, a paragraph is considered 

to be an html element constructed with the tags <P> and </P>. In the same fashion, the 

proposed chain code element (extended CC arrays) is defined to start with <CC> and end with 

</CC> tags. 
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7.4    Structure of the Composite feature vector 

As previously described, the CC consist of the x and y indexes of the CC start pixel and a 

sequence of coded direction of the neighboring pixels in clockwise traversing of a contour. As 

previously demonstrated, some of the watermarks elements are not included in the CC 

generated from the first pass of the algorithm. During the first pass, the algorithm only 

generates a CC for the outside boundary contour. The remaining watermark elements can be 

detected and described after consecutive removal of the described portions of the watermark. 

This is achieved using the re-generative property of the CC and subtraction from the original 

watermark binary image. This process is repeated until a predefined number of passes is 

completed or until the generated set of CC describes completely the watermark elements. For 

example, a criteria could be based on the rule of “no pixels left” or “less than a threshold 

number pixels left” after series of CC generation, re-generation and subtraction from the 

original image”. Alternative solution is to limit the number of iterative levels of description. 

As shown, the CCs are able to capture high degree of characteristic features which are 

sufficient differentiating representation of complex contours. 

Recording the coordinates of the CC’s start pixel position allows exact reverse transform 

from CC to the image. In addition, the two-value set of the start pixel coordinates is expanded 

with a third number which is the length of the CC. Borrowing the tag notation from HTML, as 

described previously, each CC record in the CFV is formatted in the following way: 

<CC> 

<SHA> 03, S, H, A</SHA>  

<01,X,Y,L1> X1, Y1, L1, c1, c2, c3…, cL1</01,X,Y,L01>  

<02,X,Y,L02> X2, Y2, L2, c1, c2, c3…, cL2</02,X,Y,L2> 
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<03,X,Y,L03> X3, Y3, L3, c1, c2, c3…, cL3</03,X,Y,L03> 

<MD>d1, d2,dc3…, dN</MD> 

<MD>d1, d2,dc3…, dN</MD> 

<!-- This could be any comment or additional information --> 

</CC> 

Following the <CC> header tag which indicated the start of a CFV, the <SHA> indicates 

the enclosed information is for the watermark CFV number of CC, length of the short and long 

sides of the MBB, and the angle of rotation of the MBB. The information is represented with 

a three chain codes. “S” indicate the length in pixels of the width (short side) and “H” indicates 

the height (longer side) of the MBB. “A” is the angle of rotation to align the MBB with the x-

y coordinates expressed floating point in the range 0.0 to 359.9. The top level information ends 

with </SHA>. 

Please note that the real records do not have spaces following the comma separated values. 

The notation here is presented with spaces for better readability. 

Next, the tag is <01,X,Y,L1> X1, Y1, L1, c1, c2, c3…, cL1</01,X,Y,L1> and includes 

start of the first CC array with location coordinates of the start pixel (X1, Y1) and the length 

of the CC (L1). The </XYL 01> indicates the end of the first CC array. In the same way, the 

<02,X,Y,L2> indicates that the second CC has start pixel at location (X2, Y2) and length of 

L2 decimal characters. The </02,X,Y,L02> indicates the end of the second CC array. This 

continues and the number of CC arrays has to be as indicated in the top level information which 

in the example above is three CC arrays. 

An expansion of the CFV includes additional data. The meta data is included in the 

<MD>d1, d2,dc3…, dN</MD> section of the CC. If present, it may indicate different ratios 
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that could be are computed and used as additional discriminating parameters. For more 

complex watermarks, values associated with the convex hull, centroid, and others could be 

added to the CFV. The Anker watermark used in the examples has an area of 1715 pixels, 

convex hull area of 3,566 pixels, and MBB area of 4928 pixels. This values could be used 

directly or to calculate useful ratios to further differentiate watermarks with close similarity. 

The HTML language uses <meta ………> for meta data tag format. This can be freely used in 

the CFV in addition to the specifically included meta data. Also, as typically used in html files, 

comment tags may be included in <!--    --> bracketed format. 

 

7.5    Composition and use of the CFV 

The proposed format facilitate the parsing of the CFV string. In the example, <SHA> tag 

indicates the top level information (header information) about the CFV. 

In general, CCs have different length. Including the length of the CC gives a second 

advantage: the database of the CC records can be indexed and divided in subsections by the 

length of the CC. For example, CC with length in the range 600 to 700 could be grouped 

together in a search sub-folder. Search for matching and identification will be performed based 

on the CC length and will speed up the process especially for large databases. 

The proposed tags for the recording of the CFV follows the established notation of HTML. 

It is designed to provide an easy and unambiguous way for parsing the information. The 

scalability of the CC’s structure provides flexibility for description of even very complex 

watermarks (multiple contour shells). The structure could be customized for a particular dataset 

(database). Following the proposed structure, will provide standardization and interoperability. 
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In general, the first CC will have the longest length – it is the outmost contour. In some 

cases, it is possible that the watermark has a motif that is in the upper left corner and will be 

processed first by the algorithm. To resolve these cases, the CC generation algorithm records 

the multiple chain codes sorted by length in descending order. 

 

7.6    Examples with CFV application 

The assembling of the content of the composite feature vector (CFV) is demonstrated with 

two examples cases. First, we present the CFV for relatively simple watermark. Second, we 

demonstrate the differences in the CFVs for a watermark from the same family which includes 

additional wires, resulting in additional markings on the paper. Structurally, the CFV for the 

two scenarios will be as follows: 

Simple contour watermark 

<CC> 

<01, S, H, A>  

<01, X1, Y1, L1>c1, c2, c3…, cL1</01, X1, Y1, L1> 

</CC> 

Watermark with additional motive 

<CC> 

<02, S, H, A>  

<01, X1, Y1, L1>c1, c2, c3…, cL1</01, X1, Y1, L1> 

  <02, X2, Y2, L2>c1, c2, c3…, cL2</02, X2, Y2, L2> 

</CC> 

Following the <CC> header of the CC string, for the simple watermark the <01, S, H, A> 

indicates the watermark is represented with a single CC. “S” and “H” indicate the length in 
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pixels of the width (short side) and height (longer side) of the MBB. “A” is the angle of rotation 

to align the MBB with the x-y coordinates expressed floating point in the range 0.0 to 359.9. 

The <01, X1, Y1, L1> indicates that this single CC has start pixel at location X1, Y1 and length 

of L1 decimal characters. 

Following the <CC> header of the more complex watermark, the <02, S, H, A> indicates 

the watermark is represented with two CCs. The <01, X1, Y1, L1> indicates that this first CC 

has start pixel at location (X1, Y1) and length of L1 decimal characters. The <02, X2, Y2, L2> 

indicates that this second CC has start pixel at location (X2, Y2) and length of L2 decimal 

characters. 

Figure 7.2 displays a group of class Bell watermarks. Starting with the simple watermark 

more elements have been added. The watermarks are used to illustrate the generation of the 

CFV. 

 
Figure 7.2: Watermarks of class Bell. From simple figure to one with two additional 

elements. 

 

Using the algorithm for generation of the chain code, the images are processed iteratively 

until less than 50 foreground pixels remain in the image after consecutively removing the 

regenerated image sections. Figure 7.3 displays the intermittent image results for watermark 

0069005. The algorithm generates the CC for the outermost contour, regenerate the processed 
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image segment  and subtract it from the original image. In Figure 7.3, the processed segment 

is superimposed in yellow color in every third frame. 

 
Figure 7.3: Example of image processing for generation of CCs and formation of the 

CFV. 

 

Next, the CFV of the watermarks are composed by ordering in descending order the length 

of the CCs. The size of the MBB is included with the rotation angle. For each chain code, the 

start pixel coordinates are also recorded as already explained. 

The CFV for the images in Figure 7.2 are listed next. As can be seen, the number of the 

CCs in the CFVs is equal to the number of contours in the original images. Parts of the records 

are printed in separate lines for readability. In general, every CFV is a continuous record with 

html type format. 

Simple contour watermark 006009001: 

<CC> 

<01,40,84,4.1> 

<01,33,70,493> 

121112121212122122212221122222222222222222222223222223223222100076766666665

667001122222232222100766656666666677012222222222221100766665665666666666566

666666667666676666673222223222232222222222122222222212212222344556666666666

665433222222221222344566667666666554435566666666666666666666655666566656656

565656555656700000000000007076666666666666767001222222222222221101000000000

000122332323232323232237667676767676767766773444444444444445455666666666666

6666344323222222222222234344444444444445222 </01,33,70,493> 

</CC> 

 

Watermark with additional motive 006009003: 

<CC> 

<02,40,84,4.1> 

<01,33,70,493>12111212121212212221222112222222222222222222222322222322322

210007676666666566700112222223222210076665666666667701222222222222110076666

566566666666656666666666766667666667322222322223222222222212222222221221222

234455666666666666543322222222122234456666766666655443556666666666666666666

665566656665665656565655565670000000000000707666666666666676700122222222222
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222110100000000000012233232323232323223766767676767676776677344444444444444

54556666666666666666344323222222222222234344444444444445222 </01,33,70,493> 

<02,5,36,106>077777777777701111111121110455565555555567777777777762333333

3333345455565555555111111121110123333333333334</02,5,36,106> 

</CC> 

 

Watermark with additional motive 006009004: 

<CC> 

<02,84,85,1.9> 

<01,6,46,238>122222122121221211212111111110111010101010010001000000000000

000700070070070770707777777777676767676766766667666666666666665666566566565

655655655555455545454544545444544444444444444444344344343443343433343233333

3232323232232232222322222222</01,6,46,238> 

<02,30,70,203>01221121212122122122122221222222222222222223222232221007666

666666701122223222122677000100766665655667666566666667666766667766667676677

676776670444444444444445566666665667654432322222222222344444444443444</02,3

0,70,203> 

</CC> 

 

Watermark with additional motive 006009005: 

 

<CC> 

<03,84,85,1.9> 

<01,6,46,238>122222122122121211212111111110111010101010010001000000000000

000700070070070770707777777777676767676766766667666666666666665666566566565

655655655555455545454544545444544444444444444444344344343443343433343233333

3232323232232232222322222222</01,6,46,238> 

<02,33,70,222>01221121212122122122122221222222222222222223222322221007666

666666701122223222122677666666666700123222222210076666566556766656666666766

676667666676766767767677667044444444444444556666666666665443232222222222234

4444444443444</02,33,70,222> 

<03,13,37,88>777777777771111111111265555555556677777777762333333333355555

5555562111111111223333333333</03,13,37,88> 

</CC> 

 

Figure 7.4 illustrates the use of the CFV for watermarks recognition. The images in Figure 

7.2 all have the Bell watermark and three of them have additional elements. As can be seen, 

based on the current approach, the matching is for images 006009001 and 006009003 and also 

for images 006009004 and 006009005. It is possible that the CFV generation has to be 

modified in order to capture special cases such as this one with an additional enclosing circle. 

One possible option is for the user to be able to interactively request RST processing after the 
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removal of the outermost contour. In this case, the matching will be based on the Bell shape 

and the watermarks will be grouped as a class. 

 
Figure 7.4: Recognition of similar watermarks with additional motives using CFV. 

 

 

7.7   Conclusions 

Chain codes demonstrate capability to be used as descriptors of watermarks. The RST-

invariant CCs combined with the CCD provide new opportunity for deterministic 

representation and matching of watermarks. The variability and complexity of watermarks 

requires the extension of the representation with a composite feature vector (CFV). 
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The structure of the vector provides scalability to allow complete description even of the 

most complex watermarks. The natural extension with meta-data, comments, graphics, and 

other standard tags available HTML can be easily implemented. Standardization of the CFV 

structure is the base for accurate and fast comparison of the watermarks they represent. 

The proposed tags for the recording of the CFV follows the established notation of HTML. 

It is designed to provide an easy and unambiguous way for parsing the information. 

Including the length of the CC gives a second advantage: the database of the CC records 

can be indexed and divided in subsections by the length of the CC. 
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CHAPTER 8 

SUMMARY OF PRESENTED WORK 

 

8.1   Discussion  

In this dissertation, I present a novel method for automatic classification, identification 

(matching) and retrieval of watermark images based on CC descriptors. The novel approach 

for generation of unique watermark descriptor based on RST-invariant CC is presented. In 

addition, the proposed method resolve the recto and verso variability of watermark images. 

This results in a RSTV-invariant representations of watermarks. 

A new term is introduced to name the watermark signatures based on the chain codes and 

the composite feature vector C-grams. 

The unique C-grams are truly reversible providing high-rate lossless compression.  

The development of a novel distance measure for CC comparison is also presented. The 

performance of the algorithm on large datasets is demonstrated using watermark images from 

well-known library catalogue collections. 

The existing techniques for watermark digitization are reviewed with respect to the 

produced image quality. The applicable methods for binary image formation, including 

morphological operators, are discussed and demonstrated. 

The work is completed as a part of the CODICES Project, which is conducted by a 

multidisciplinary team at UMKC, including faculty and graduate students from English, 

History, Chemistry, and Computer Science and Engineering departments. I would like to thank 

again Dr. Reza Derakhshani, Dr. Jeffrey Rydberg-Cox, Dr. Virginia Blanton, Dr. Nathan A. 
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Oyler, and the graduate students Chainy J. Folsom, Melissa M. Morris, and Sara Derakhshani 

for their collaboration during the work on the CODICES project. 

 

8.2   Conclusions 

One summary statement for the work presented in this thesis is the introduction of the C-

gram as a deterministic descriptor of watermarks. With a C-gram each watermark has its 

unique ID. 

We conclude that the work described in this thesis, titled “Framework for automatic 

identification of paper watermarks with chain codes” successfully achieved five important 

goals: 

1. Generation of unique numerical watermark descriptor based on chain code. 

2. New method for generation of rotation and scale invariant chain codes (RST-

invariant CC). 

3. Development of new method to compare two chain codes with different size – 

distance metric for CCs similarity measurements, CCD. 

4. Exact re-generative, very high ratio lossless compression of watermark images 

based on chain code. 

5. Development of a composite feature vector (CFV) for complete description and 

comparison of watermarks.  

 

Work accomplishments related to paper watermarks: 

 The overall achievements of the work described in this thesis can be summarized 

with the introduction of the C-gram of a watermark. 
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 The overall novel contribution of the work presented in this thesis provides for the 

first time a deterministic method for generation of complete numerical description of 

watermarks.  

 The CC length can be used for database indexing and accelerated searching.  

 The scalability of the CFV provides method for complete description of more 

complex watermarks. 

 The proposed structure of the CFV provides standardization and interoperability. 

 An alternative, non-contact watermarks reproduction method is presented 

applicable to digitization of valuable documents in fragile state. 

 

 

Work accomplishments related to the general field of pattern recognition: 

 Development of method for generation of rotation and scale invariant chain codes: 

RST-invariant CC. 

 Development of method for mirror image variance test and detection: RSTV-

invariant CC. 

 Complete description of complex contour (and shape boundaries). 

 Exact re-generation of complex and nested contours. 

 

8.3    Future work 

This thesis present the framework for automatic identification of watermarks based on their 

description with chain codes. The concept has been introduced and the implementation of 

working models for all necessary steps have been demonstrated using 250 watermarks from 

the Bernstein collection (Appendix A). The initial test indicate 100% recognition accuracy on 
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the 250 watermark images even after degradation. Next natural thing is to expand the 

application of the proposed method to more datasets. 

Presenting the framework to the scholars engaged in the field of filinogranology may result 

in many valuable suggestions which will result in improvements of the methodology. 

The future work may be summarize in three main areas: 

1. Testing with expanded watermark datasets. 

2. Refinement of the CFV. 

3. Development of an integrated GUI for watermark image processing. 

4. Complimentary extension of the filigranology C-gram integrated work 

environment with deep learning based capabilities for watermark image identification. 

The first area will reveal deficiencies and prompt further development of the proposed 

method. Most likely the performance within single databases will be good. Some additional 

components may be needed to provide interoperability across data collections. The results of 

work in this direction will provide necessary input for work in areas 2 and 3. 

It is possible to optimize the CCD. CC has a limited space presentation (8-character 

alphabet) which is a priory known or even can be selected. For example, negative and positive 

decimal values have been considered. Using alphabet {-4, -3, -2, -1, 1, 2, 3, 4} and absolute 

values for distance measure was explored but not completely and it is still an option. The 

location of the alphabet characters (values) is also a potential area for optimization. 

In this thesis, F8 CC representation was used and explored to result in the introduction of 

watermarks C-grams. It may be beneficial to explore some the other chain codes and compare 

performance with the F8 chain codes. 
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The CFV is intentionally designed as a scalable representation. Main work in this area 

could be done on standardization of the metadata capturing. 

Developing of GUI for watermarks preprocessing and CFV generation will be very 

beneficial to the scholars in the filigranology field. The application can be open source based 

on a general public license or on line accessible application hosted by an appropriate 

organization. My current vision for that is to design an interactive environment in which the 

user can navigate with selection of options to accomplish a complete and accurate CFV 

generation for any possible watermark. The use of such integrated environment will produce 

many new recommendations and valuable information about the possibilities and limitations 

of the proposed method for automatic watermarks identifications.  

With the development of the new deep learning methods for image identification, the user 

should have the ability to select the alternative methods. This is even more relevant for 

watermarks with high complexity. 

It is my desire and believe that the proposed framework for automatic identification of 

watermarks will benefit the work of many scholars working in the field of filigranology.  
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APPENDIX A 

WATERMARKS FROM THE BERNSTEIN COLLECTION USED IN THIS STUDY 

Two hundred and fifty images of watermarks from the Bernstein collection used in this 

study. 
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APPENDIX B 

THE ORIGINAL AND TRANSFORMED IMAGES OF WATERMARKS 
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APPENDIX C 

THE TRANSFORMED AND SCALED IMAGES OF WATERMARKS 

The original images of watermarks with size 100 x 100 pixels were transformed and scaled 

to 28 x 28 pixels images. 
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APPENDIX D 

EXAMPLE OF CHAIN CODE 

Example of chain code generated for Bernstein watermark #004001001 and its different 

representations. 

The Chain code representation as: 

 F8 decimal numeric characters:  

110077700100766665667770776776766676676666566766766700012222322223222232

232232223223232222112121121211211226670776776767776767665656565665656665656

656656666566700000122222122222222212212121111111101123222210077011000766665

445666744444323445455555555656566566666666656666701221222212221211101100000

000777766766665665655554455122222344445655667707666654443444443444456666666

656667007000011566654544456666655544323322222344443322326700000122122222222

344444544444443440110112222223344455566677344434433332222222222212111101000

700707777676670122223223222323451223343345554444522322222343222 

 

 Binary code with three bits: 

 

001001000000111111111000000001000000111110110110110101110110111111111000

111111110111111110111110110110111110110111110110110110101110110111110110111

110110111000000000001010010010010011010010010010011010010010010011010010011

010010011010010010011010010011010011010010010010001001010001010001001010001

010001001010001001010010110110111000111111110111111110111110111111111110111

110111110110101110101110101110101110110101110101110110110101110101110110101

110110101110110110110101110110111000000000000000001010010010010010001010010

010010010010010010010001010010001010001010001001001001001001001001000001001

010011010010010010001000000111111000001001000000000111110110110110101100100

101110110110111100100100100100011010011100100101100101101101101101101101101

110101110101110110101110110110110110110110110110101110110110110111000001010

010001010010010010001010010010001010001001001000001001000000000000000000000

000111111111111110110111110110110110101110110101110101101101101100100101101

001010010010010010011100100100100101110101101110110111111000111110110110110

101100100100011100100100100100011100100100100101110110110110110110110110101

110110110111000000111000000000000001001101110110110101100101100100100101110

110110110110101101101100100011010011011010010010010010011100100100100011011

010010011010110111000000000000000001010010001010010010010010010010010011100

100100100100101100100100100100100100011100100000001001000001001010010010010

010010011011100100100101101101110110110111111011100100100011100100011011011

011010010010010010010010010010010010001010001001001001000001000000000111000
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000111000111111111111110111110110111000001010010010010011010010011010010010

011010011100101001010010011011100011011100101101101100100100100101010010011

010010010010010011100011010010010 

 

 

 ASCII base 64 representation: 

 

4BA+212/4/3++2+322u32+3ABSSaSTSSaTSaSaTTSSJRRKKJRKW3H+/33/332uuuu1

12112u122u3AABSSRSSSSRSKKJJJJBKaSRA/BIA+21ku28kkaclltttuuu122221224KRSS

KSKJIJAAAA//2+212uttktKSSckl1u34+21kjkkjkku222123A4ABN21lkl221tkabSSTkkbSa3

AABSKSSSTkklkkkjkBIJSSSbklt237kjkbbSSSSSRRJIIA4HH/++3BSSaTSTTlKTcbltkkqT

SSTjSQA== 

 

 ASCII base 85 representation: 

 

,S0YQ&%:).q#>iXg[4^gmIpEr!D+W$9dH0%-

B`("dR]U".&'QfD9)PPp]#[8]'HNN?+&:"[G 

,K+!!#ng'Tu$5;CJ82,`kW4,XD8?!;gVD]5JsWV^7Y`D7]&@gMOCND7D#/OsqT3+HQ

R'&-(D 

O[G'q`P1#LbaX,O*q"no=N_(IY9=ESlG2*Q-

"PpJO8TrimA8/E6:.ZBrXhXoNMFf(WP"B2I8 

E9o*;Fr4rQJK%<8E=WpP"?p]7$7fXJ]IfZ[fn%G9dJ2PUtfilA<Nb:8N>-` 
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