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Abstract. This paper presents a new approach com-
bining Branch and Price (B&P) with metaheuristics
to derive various high-quality schedules as solutions
to a nurse scheduling problem (nurse rostering prob-
lem). There are two main features of our approach.
The first is the combination of B&P and metaheuris-
tics, and the second is the implementation of an effi-
cient B&P algorithm. Through applying our approach
to widely used benchmark instances, the effectiveness
of our approach is determined.

Keywords: nurse scheduling problem，branch-and-
price, metaheuristics, evolutionary multi-objective opti-
mization

1. Introduction

The nurse scheduling problem (NSP), also called the
nurse rostering problem, is a typical scheduling problem
and well known as an NP-hard problem. The characteris-
tics of NSP are that constraints are intricately entangled,
making it very difficult to find a schedule with no con-
straint violations.

According to a report by Ikegami[1], most chief nurses
spend an average of 11 hours creating a shift schedule ev-
ery month.

Therefore, there is a strong need for a way to create
a shift schedule automatically. There have been many
approaches to NSP proposed. These approaches can be
divided into two categories: the mathematical program-
matic exact approach and the heuristic approach. These
approaches have completely different features. The math-
ematics approach can derive an exact, optimal solution,
but it is difficult to apply this approach to large-scale prob-
lems involving a large number of nurses, and it cannot be
used to create a variety of schedules. On the other hand,
the heuristic approach is good for creating various sched-
ules at one time, and it is better than the mathematics ap-
proach for attaining good solutions to large-scale prob-
lems. However, the quality of solutions derived by the
heuristic approach is not assured, and it is difficult to get
an acceptable schedule in high-difficulty problem situa-
tions.

Recently, the branch and price (B&P) has interested

many researchers because of its high usefulness for many
combinational problems, such as the traveling salesman
problem, vehicle routing problem, and NSP. The B&P is
a combination approach of column generation plus branch
and bound, and its implementation requires a certain de-
gree of knowledge and technique. In addition, for it to
be effective, ingenuities in the area of tree searching and
branching should be adequately considered.

Maenhout and Vanhoucke took up an implementation
of B&P for the NSP and investigated how much influence
the different settings of parameters have on the results[2].
Burke and Curtois provided an effective approach to B&P
for NSP and presented outstanding results for different
benchmark instances[3].

However, like other mathematical programming meth-
ods, the B&P approach cannot produce various types of
high-quality schedules. Since it is very difficult to prede-
fine every criterion and every constraint as a mathematical
model in many actual hospitals, most head nurses want
several candidate schedules with different nurse assign-
ments. However, no existing B&P approaches can resolve
this big problem.

We therefore present a new approach that uses B&P to
derive many different, high-quality schedules within prac-
ticable computing times.

The key element of our approach is a combination of a
mathematical programming method (B&P) and a heuris-
tic algorithm. Please note that the aim of our approach
is not to solve a large-scale problem but to derive many
high-quality schedules. There are two features of our
approach. The first is a more efficient implementation
of B&P, and the second is a combination of B&P and a
heuristic algorithm. In order to obtain many high-quality
and high-diversity schedules, we choose the evolution-
ary multi-objective optimization (EMO) algorithm as the
heuristic algorithm. In our approach, B&P first derives
an exact schedule, and the EMO attempts to derive many
different schedules having almost the same qualities as
the optimal one. An important point is that EMO uses
the solution derived by B&P as an initial solution to im-
prove search efficiency. In this paper, we have termed our
approach “B&P-EMO”.

We used open benchmark instances on the website
“Employee Shift Scheduling Benchmark Data Sets” [4] to
verify the effectiveness of our B&P-EMO. This website
has a collection of many different benchmark instances
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Fig. 1. Example of a nurse schedule

that have been used in related papers, and it offers these
instances and the most satisfactory solutions to the pub-
lic. These instances are categorized according to the size
of the problems. Some typical problems on this website
are listed below.

Small:

• 14 days, 11 nurses, 1 shift types (Musa[5])
• 7 days, 14 nurses, 2 shift types (Ozkarahan[6])

Medium:

• 30 days, 28 nurses, 2 shift types (Ikegami-2Shift-
DATA1[7])

• 31 days, 16 nurses, 4 shift types (ORTEC01[8])

Large:

• 42 days, 51 nurses, 8 shift types (ERRVH)
• 42 days, 54 nurses, 12 shift types (MER)

In this paper, we present two different cases using
medium- and small-sized instances from our experience.
The first compares the results of our implementation of
B&P with those of previous B&P approaches, and the sec-
ond verifies the variety of solutions derived by our B&P-
EMO.

This paper is organized as follows. After an explana-
tion of the NSP in section 2, we present an outline of
B&P in section 3. In section 4, we present our original
approach, B&P-EMO, which has two original features:
effective implementation of B&P and a combination of
B&P and heuristic algorithm. Next, the results of apply-
ing B&P-EMO to benchmark instances are given in sec-
tion 5. The last section contains our conclusions.

2. Nurse scheduling problem

The NSP aims to create a work schedule for nurses dur-
ing a specific period, such as two weeks or a month. This
schedule is made up of a list of all nurses’ names with
their work hours, as shown in Fig. 1. In this paper, this
list matrix is defined as the number of nursesm and the
number of periodsn (m×n matrix).

There are two different types of constraints in the NSP,
hard and soft constraints, depending on their degree of im-
portance. A hard constraint must definitely be satisfied,
while a soft constraint does not necessarily have to. A
schedule with unsatisfied hard constraints is not accept-
able in a hospital setting. On the other hand, schedules
with unsatisfied soft constraints can be used, but those
with fewer violations of soft constraints are preferable.
Therefore, a top goal of the NSP is to find a solution that
satisfies every hard constraint.

The following are some of typical NSP constraints.
• Constraints in lengthwise direction (related to the
quality of medical services)
• The number of nurses required per working term
• The number of groups
• Constraints in widthwise direction (related to the
quality of a nurse’s life)
• The number of working days for each nurse
• Regular working pattern

The above constraints can be divided into two cate-
gories: lengthwise constraints and widthwise constraints.
Most of the lengthwise constraints are related to the qual-
ity of medical services; most of the widthwise constraints
are related to the quality of the nurses’ lives.

2.1. Formulation of NSP
In most cases of NSP’s application, the schedule of a

specific period is treated as optimization parameters and
the objective of NSP is set to minimize the amount of con-
straint violations.

The following formula is used in both the B&P and
EMO1. Equations (1) to (5) represent parameters related
to the nurse schedule. The nurse schedule is defined as the
number of nursesm and the number of periodsn (m×n
matrix Xm×n). Each elementxpq of the matrix Xm×n
means a work shiftwr(r=1...s), such as day shift or night
shift, on dateq for nursep.

We considered all constraints as either lengthwise or
widthwise constraints. (6) presents the formulation of the
objective function as the sum of constraint violations in
the case of dividing constraints into two parts:f service(X)
and f people(X). The equations in (6) correspond to (7) and
(8).

X
m×n

=


x11 x12 · · · x1n
...

...
. ..

...
xp1 xp2 · · · xpn
...

...
. ..

...
xm1 xm2 · · · xmn

 (1)

xpq = wr (p∈ M,q∈ N,wr ∈W) (2)

M = {1,2, · · · ,m} (3)

N = {1,2, · · · ,n} (4)

W = {w1,w2, · · · ,ws} (5)

1. In EMO, (6) is used as the first objective and diversity of population is
used as the second objective (See section 4.3.3).
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Minimize f (X) = f service(X)+ f people(X) . . (6)

f service(X) =
k

∑
i=1

ωservice
i ci

service(X) . . . . . (7)

f people(X) =
l

∑
i=1

ωpeople
i ci

people(X) . . . . . (8)

Each constraint has own weight based on its level of
priority-a constraint with higher priority is given a heav-
ier weighting. The meaning of each symbol in the above
equations is as follows.k is the number of lengthwise
constraints.l is the number of widthwise constraints.ci is
the number of violations of constrainti. ωi is the weight
of constrainti.

3. Branch and price on NSP

Many exact mathematical techniques, such as the
branch and bound method, have been put forward for the
NSP. Among them, the Branch and Price (B&P) has been
proven to be effective by Maenhout[2] and E.K Burke[3].
B&P is a methodology that can derive an exact solution
by combining column generation and branch and bound
(B&B), and it has been widely applied to assignment
problems. In this section, we present the general flow of
B&P algorithm and procedures of column generation and
B&B.

1: procedure ALGORITHM B&P NSP
2: Construct Initial Heuristic Solution
3: while IP2 optimal solution is not metdo
4: [Column generation procedure]
5: while LP3 optimal solution is not metdo
6: [Solve Restricted Master Problem
7: Get Dual Cost4

8: Solve Pricing Problem]
9: end while

10: [Branch and Bound operation]
11: if LowerBound< UpperBoundthen
12: Apply Branching　　
13: else
14: Apply Bounding
15: end if
16: end while
17: end procedure

B&P can be seen as a method of applying column gen-
eration to each subproblem in B&B. The bounding and
the branching operations of B&B are performed based on
the information derived by column generation. In B&P, an
exact real number solution of a relaxation problem in each
subproblem can be derived by column generation, and an
exact integer number solution (exact solution of original

2. Integer Programming
3. Linear Programming
4. The value of optimal dual variables in linear programming.

problem) can be derived through the B&B framework.

3.1. Column generation

In column generation, solutions are obtained by enu-
merating subsets of promising solutions and solving them
as set-covering problems. Therefore, column generation
can efficiently obtain a real valued optimal solution for
problems with many variables and constraints.

In the column generation phase, a linear program called
the master problem (MP) is optimized.

v(MP) := min∑
j∈J

c jλ j

subject to∑
j∈J

a jλ j ≥ b (9)

λ j ≥ 0, j ∈ J

In the above equation,|J| = n is the number of variables
andm is the number of constraints. Since|J| is usually
huge, it is difficult to obtain an optimal solution on MP.
Therefore, therestricted master problem(RMP), which
contains only the subsetJ′ ⊆ J of variables, is used instead
of the MP.

In equation (9),λ j denotes thejth column. c j anda j
denote a cost and a variable forλ j , respectively.λ ∗ de-
notes optimal primal solutions for the RMP (Ifλ j = 1,
thenλ j is included inλ ∗. Otherwise, ifλ j = 0, thenλ j
is not included inλ ∗.). π∗ denotes optimal dual solutions
for the RMP. In most cases, RMP is solved by the simplex
method. In the pricing step of the simplex method, we
looked for a non-basis variable that is negative reduced
cost and added it as a new basis variable. To accomplish
this in column generation, the following pricing problem
(or subproblem) PP must be solved.

v(PP) := min{c j −π∗a j | j ∈ J} (10)

Whenv(PP)< 0, the variableλ j and its coefficient col-
umn (c j , a j ) corresponding toj, which is to minimize
v(PP), is added to the RMP. This is optimally solved to
obtain optimal dual variable values (dual costs), and the
process iterates until no column provides further improve-
ment. If no new columns with negative values can be
found, the solutionλ ∗ to the restricted master problem
can be considered to be optimally solved and this solution
is also considered to be the optimal solution of the master
problem (9).

The flow of the column generation is as follows.
Step 0 Prepare an initial set of columns, and con-
struct a restricted master problem (RMP) which is
a set covering problem only using the initial set of
columns.

Step 1 Construct a linear relaxation problem relaxing
the integer constraint of RMP, and obtain the optimal
primal solutionλ ∗ and optimal dual solutionπ∗ to
the covering problem.

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 3
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Date 1 Date 2 Date 3

s1 s2 s3 s1 s2 s3 s1 s2 s3

Nurse 1 0.2 0.8 0 0.5 0 0.5 0.3 0.3 0.4

Nurse 2 0.5 0.5 0 0.2 0.2 0.6 0.2 0.6 0.2

Nurse 3 0 0.3 0.7 0.6 0.4 0 0.3 0.4 0.3

Date 1 Date 2 Date 3

s1 s2 s3 s1 s2 s3 s1 s2 s3

Nurse 1 0.2 0.8 0 0.5 0 0.5 0.3 0.3 0.4

Nurse 2 0.5 0.5 0 0.2 0.2 0.6 0.2 0.6 0.2

Nurse 3 1 0 0 0.6 0.4 0 0.3 0.4 0.3

Date 1 Date 2 Date 3

s1 s2 s3 s1 s2 s3 s1 s2 s3

Nurse 1 0.2 0.8 0 0.5 0 0.5 0.3 0.3 0.4

Nurse 2 0.5 0.5 0 0.2 0.2 0.6 0.2 0.6 0.2

Nurse 3 0 0 1 0.6 0.4 0 0.3 0.4 0.3

Date 1 Date 2 Date 3

s1 s2 s3 s1 s2 s3 s1 s2 s3

Nurse 1 0.2 0.8 0 0.5 0 0.5 0.3 0.3 0.4

Nurse 2 0.5 0.5 0 0.2 0.2 0.6 0.2 0.6 0.2

Nurse 3 0 1 0 0.6 0.4 0 0.3 0.4 0.3

s1 s2 s3

1 0 0

s1 s2 s3

0 1 0

s1 s2 s3

0 0 1

Fig. 2. Example graph for the part of branching tree

Nurse n

Date 1 Date 2 … Date 27 Date 28

D N O D N O

…

D N O D N O

0 0 1 1 0 0 0 1 0 1 0 0

Fig. 3. Example of column for one nurse

Step 2 Search the column in which the reduced cost
(rc) is negative (rc< 0) by solving the pricing prob-
lem (PP) using the information of optimal dual solu-
tion π∗.
Step 2-1 If a column with negative reduced cost can

be found, add that column to the RMP, and pro-
ceed to Step 1.

Step 2-2 If such a column is not found, terminate
the process and assume that an optimal solution to
the RMP has been obtained.

For the details of column generation, please refer to
Desrosiers and L̈ubbecke’s study[9].

It is possible to obtain an optimal solution and opti-
mum value for the linear relaxation problem by using the
column generation procedure described above. This opti-
mum value is the lower bound value of the original prob-
lem in the B&B, and it can be used for the bounding op-
eration. In addition, information for branching can be ob-
tained by finding an optimal solution for each linear re-
laxation problem. And a real value of a variable in the
optimal solution of linear relaxation problem changed to
an integer value in the branching phase.

When applying the column generation to the NSP, each
column represents the schedule of each nurse during a
certain period, as in Fig. 3. The schedule in Fig. 3 rep-
resents the monthly schedule of one nurse, Off - Day -
... - Night Day. Column generation can obtain a sched-
ule like the one in Fig. 2 by repeating two processes. The
first process is to generate a schedule (column) for each
nurse. These schedules are stored in a column set called
a column pool. The second process is to solve the RMP
composed of a column pool as a set of cover problems.
A schedule like the one in Fig. 2 is obtained by solving

a set of cover problems. In most cases, tabu-search and
dynamic programming are used to generate new columns.

3.2. Branch and Bound

An example of branching tree on NSP is shown in
Fig. 2. In each node on the branching tree, a subprob-
lem is created by fixing a part of shifts (s1, s2, s3) on a
schedule of nurses. In B&P, column generation is used to
extract exact solutions to relaxation problems in subprob-
lems.

After applying column generation, the values of lower
bound (LB) and upper bound (UB) are compared in a
branching strategy. LB is defined by an exact solution
to the relaxation problem in each subproblem, and UB is
calculated as the minimum objective value of the results
obtained. Therefore, LB is a real number value, while UB
is an integer number value. If LB is smaller than the value
of UB, the branching operation is performed. Otherwise,
the bounding operation is called. When all nodes (sub-
problems) are solved, B&B is terminated.

As mentioned above, B&P can derive a high-quality
solution within feasible times by combining two mecha-
nisms: column generation and B&B.

For a detailed explanation of how to implement B&P
for NSP, please refer to Maenhout and Vanhoucke’s
study[2].

4. Proposal Approach

In this paper, we propose an effective new approach
using B&P and heuristics to derive many high-quality
schedules. Our approach first uses B&P to produce an op-
timal schedule and then attempts to derive different sched-
ules of almost the same quality with a heuristics algo-
rithm. We use the evolutionary multi-objective optimiza-
tion (EMO) algorithm as a heuristics algorithm because
EMO is well suited to finding various solutions of roughly
equal quality. Therefore, we call our approach B&P-EMO
in this paper.
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Fig. 4. Framework of B&P-EMO

In this section, we first outline the B&P-EMO and then
describe the two mechanisms of B&P-EMO in detail.

4.1. Outline of B&P-EMO

B&P-EMO first uses the B&P algorithm to find an opti-
mal schedule. However, as the B&P algorithm cannot ob-
tain different solutions directly, B&P-EMO applies EMO
algorithms to derive various schedules. The use of the op-
timal schedule obtained by B&P as an initial solution of
EMO is an important aspect of B&P-EMO. This makes
it possible for EMO to search from the optimal sched-
ule, finding solutions of nearly the same quality very effi-
ciently.

The framework of B&P-EMO is shown in Fig. 4. B&P-
EMO first uses the B&P algorithm to attempt to find an
optimal schedule, and then uses the EMO algorithm to at-
tempt to derive more schedules of nearly the same quality.

The B&P-EMO has two distinguishing points.

• An efficient implementation of B&P algorithm

• A combination of B&P and metaheuristics (EMO)

These two points are detailed below.

4.2. Implementation of B&P algorithm

In order to improve the search efficiency of B&P, we
implemented the following two ingenuities.

• A branching strategy considering the space effi-
ciency and completeness of branch and bound

• The addition of an adjustment parameter for control-
ling the computing costs of dynamic programming
to solve the pricing problem in column generation

These are explained in detail below.

4.2.1. Branching Strategy Considering Space Efficiency
and Completeness

It is known that one of the most important keys to
the B&P algorithm is how to implement an efficient tree
search strategy. In most cases, a depth-first or breadth-first
search is used in B&B. Though depth-first has a low com-
puting cost, the comprehensiveness of this strategy is low
in the search space. On the other hand, though breadth-
first can search with high completeness, this strategy has a
high computing cost. Therefore, we chose a search strat-
egy that combines the space efficiency of the depth-first
search with the completeness of the breadth-first search.

The concept of our search strategy is shown in Fig. 5.
In this figure, the search point goes back to root node and
tries to search another branching node when a bounding
operation is performed. The purpose of this switching in
our search strategy is to find an integer solution with good
quality at an early stage of the search. The feature of our
search strategy enables us to find high-quality integer so-
lutions faster than is possible with a breadth-first search,
and high-quality integer solutions are used in the bound-
ing operation of B&B as the upper bound.

4.2.2. Adjustment Parameter for Controlling Computing
Costs in Dynamic Programming

In our B&P, dynamic programming (DP) is used to cre-
ate new columns in column generation. The DP in our
research was implemented by refering to Burke and Cur-
tois’ mechanism[3]. In their approach, DP is treated as a
resource-constrained shortest path problem. Fig. 6 shows
an example graph in an instance with two shifts, Day and
Night. This graph consists of ann th multistage network,
and each stage corresponds to one workday of one nurse.
In this figure, either Day, Night, or Off should be selected
for each day. Their DP has two characteristics that make
the search more efficient. The first is that path weights of
network are represented by dual costs of RMP. The second
is that infeasible routes are excluded in advance. These
characteristics help to create new columns (new sched-
ules) in PP more efficiently.

However, finding an exact solution in the pricing prob-
lem (PP) of column generation has large computing costs
in this DP. This is because this PP of column genera-
tion needs to be re-optimized every time a new column
is added, and this computation will be repeated until an
optimal a solution of RMP cannot be improved.

Therefore, we add a threshold as an adjustment parame-
ter when the PP of column generation is solved. The main
benefit of this additional parameter is the PP can be solved
roughly according to the situation in order to reduce com-
putational costs. In our approach, the computational cost
of solving PP will decrease when UB or LB is updated in
a previous iteration. Conversely, when UB or LB is not
updated in a previous iteration, this computational cost
will not be saved.

In this study, we have tried to find a high-quality sched-
ule within practicable times by using B&P having these
two characteristics.

Vol.0 No.0, 200x Journal of Advanced Computational Intelligence 5
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Fig. 5. Example graph of our searching strategy on B&B
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Fig. 6. Example graph for the shortest path problem

4.3. A Combination of B&P and Metaheuristics
(EMO)

The B&P algorithm can only derive one optimal solu-
tion, as is the case with other mathematical programming
approaches. In this study, we have tried to combine B&P
and a heuristics algorithm to obtain many highly diverse
solutions of almost the same quality as that of the optimal
one. Therefore, we used the evolutionary multi-objective
optimization (EMO) algorithm as a heuristic approach,
because EMO based on multiple criteria is well suited to
finding various non-dominated solutions.

The following is an outline of our EMO algorithm after
B&P is applied.

Step 0 Initialization 　
Set solution derived by B&P algorithm to initial so-
lution of EMO. Copy this initial solution to popula-
tion P.

Step 1 Selection of individual for modification　
Select one individualX ∈ P for modification. If the
population was updated in the previous generation,
select the best individual in the population. Other-
wise, choose a non-dominated solution.

Step 2 Update of solution　
Create new individuals by applying lengthwise per-
turbation to the selected individualX. Select best
the solution from created individuals asCbest. Create
new individualY by applying widthwise perturbation
to Cbest. If f (Cbest) > f (Y), then replaceCbest by Y
(Cbest=Y).

Step 3 Updating of population　
Add Cbest to populationP according to updating cri-
teria in section 4.3.3.

1 2 3 4 5

Staff A D N N N

Staff B N D D D D

Staff C N N D

Staff D D D N N

Staff E N D D N

1 2 3 4 5

Staff A D N N N

Staff B N D N N D

Staff C N N D

Staff D D D D D

Staff E N D D N

original schedule new schedule

Fig. 7. Example of lengthwise perturbation

Step 4 Termination criteria 　
If the number of evaluations reaches a threshold, the
search of EMO is finished. Otherwise, go back to
Step 1.

The main aim of this EMO algorithm is to find various
solutions of nearly the same quality as that of the opti-
mal one. Therefore, our EMO algorithm was designed in
consideration of the following two things.

• Modifying solutions very carefully so as not to vio-
late satisfied constraints

• Using two criteria in the Step 3 when to update popu-
lation: Pareto optimality and diversity of population.

Our EMO approach attempts to make new candidate
solutions by modifying the (parent) solution very care-
fully in order to avoid lowering the quality of the solution.
Specifically, our EMO approach uses two different ex-
changing operations, namely, lengthwise and widthwise
perturbations, alternately and selects the best one after ap-
plying one operation but before applying the other opera-
tion in Step 2 above. Our EMO approach also uses diver-
sity of population as a second criterion in order to obtain
various solutions. Details of these features of our EMO
approach follow.

4.3.1. Operator of Lengthwise Perturbation

An example of lengthwise perturbation is shown in
Fig. 7. In this operation, new individual schedules are
created by exchanging consecutive shift patterns between
nurses on the same date. First, some nurses are selected
and some new individual schedules are created by per-
turbing the shift patterns of the selected nurses. Then, the
best individual schedule is selected from the ones created.

4.3.2. Operator of Widthwise Perturbation

An example of widthwise perturbation is shown in
Fig. 8. In this operation, a new individual schedule is cre-
ated by changing the shifts of a specific nurse to different
dates. These changes are applied to a particular nurse so
as not to violate the constraint related to the number of
working days.

Changing the shifts of one nurse risks violating length-
wise constraints. Therefore, shift patterns are changed af-
ter investigating lengthwise constraints.

6 Journal of Advanced Computational Intelligence Vol.0 No.0, 200x
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1 2 3 4 5

Staff A D N N N

Staff B N D D D D

Staff C N N D

Staff D D D N N

Staff E N D D N

1 2 3 4 5

Staff A D N N N

Staff B N D D D D

Staff C N N D

Staff D D N N D

Staff E N D D N

original schedule new schedule

Fig. 8. Example of widthwise perturbation

4.3.3. Updating of Population to Improve Optimality and
Diversity of Solutions

In updating a population, whether a new individual
schedule that was created by applying each operator is
to be added to the population is judged on two criteria:
Pareto optimality and diversity of archive population. In
EMO, (6) (Section 2.1) is used as the first objective func-
tion and the Hamming distance between a new individual
schedule and the archive population is used as the second
objective in order to derive various high-quality solutions.

Because two criteria based on optimality and diversity
are used, solutions with not only high optimality but also
high uniqueness can be found. Therefore, updating using
these two criteria improves both the accuracy and diver-
sity of the population.

5. Numerical Experiments

In this paper, we verified the effectiveness of B&P-
EMO by applying our approach to several open bench-
mark instances. These instances were published on
the website of Nottingham University (Employee Shift
Scheduling Benchmark Data Sets)[4].

In this section, we present two different experiments.

1. An experiment to compare our approach with other
existing approaches, such as E. K. Burke and T. Cur-
tois’s algorithms[3].

2. An experiment to show the diversity of the solutions
derived by our approach.

In the first experiment, we tried to compare the quality
as well as the computational cost of the solutions derived
by our approach to those derived by other approaches.

In the second experiment, we tried to ascertain whether
B&P-EMO could derive many different schedules having
almost the same quality as that of the optimal one. The
features of the benchmark test instances are shown in Ta-
ble 1. Each numerical experiment is described below.

5.1. [experiment 1] Comparison of Search Abilities
of our B&P Algorithm and Other Existing Al-
gorithms

Table 2 presents the evaluation values of derived best
solutions (UB) and computing times (t) (sec) used in our

B&P and Burke’s B&P[3]. It also presents evaluation val-
ues of solutions at the time of 600 (sec).

Table 2 indicates that our B&P algorithm was able to
derive schedules equal to or greater than those derived by
Burke’s B&P in all instances. In addition, it is clearly evi-
dent that our B&P algorithm was able to derive optimal
solutions in a very short time in small-scale instances,
such as Millar-2Shift-DATA1 and LLR. Furthermore, in
medium-scale instances such as Valouxis-1 and BCDT-
Sep, our B&P algorithm derived optimal solutions faster
than did Burke’s algorithm.

Comparing evaluation values of solutions at 600 (sec)
indicates that our algorithm derived higher-quality solu-
tions at an early stage.

On the other hand, while our algorithm needed more
computational time than Burke’s algorithm did in the in-
stance of Azaiez, it derived optimal schedules faster in
other instances.

These results confirm that our algorithm can derive op-
timal solutions within realistic computational times on all
scales.

5.2. [experiment 2] Evaluation Related to Diver-
sity of Solutions Derived by our Metaheuris-
tics (EMO) Algorithm

In this experiment, the size of the population was 32,
the maximum number of evaluations was 1 million, and
the number of trials was 5.

Table 3 shows the number of schedules derived by our
EMO algorithm. These schedules consist of different shift
patterns and are almost equal in quality to the optimal
schedule derived by our B&P algorithm. Table 3 indi-
cates the minimum, average, and maximum values of the
variances of these schedules in all trials.

In the LLR instance, our EMO algorithm successfully
generated 20,000 schedules with different shift patterns
from one optimal schedule. On the other hand, in the
BCDT-Sep instance, our EMO algorithm was only able
to derive 450 different schedules. It is interesting to note
that the search space of LLR is smaller than that of BCDT-
Sep.

These results seem to indicate that it is also difficult
for our EMO algorithm to find different schedules in in-
stances in which the B&P algorithm has difficulty finding
an optimal solution.

However, since our EMO algorithm derived at least 400
or more multiple schedules in all instances, we conclude
that our EMO algorithm successfully found many differ-
ent schedules of almost the same quality as that of the
optimal one in all instances.

Moreover, the results in Fig. 9 to Fig. 13 show the Ham-
ming distances of the solutions derived from the initial so-
lution in all instances. For example, the bottom of Fig. 9
indicates that our EMO algorithm derived 58.2 schedules
having small (from 1 to 10) Hamming distance values
from the optimal solution derived by B&P

Fig. 9 and Fig. 10 show the results of Millar-2Shift-
DATA1 and LLR. The theoretical upper limits of the
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Table 1. Benchmark instances

Instance staff shift types Length(days) skill types Best known Reference
Millar-2Shift-DATA1 8 2 14 1 0 Ikegami and Niwa[10]
LLR 27 3 7 1 301 Li et al.[11]
Azaiez 13 2 28 2 0 Azaiez & Al sharif[12]
Valouxis-1 16 3 28 1 20 Valouxis and Housos[13]
BCDT-Sep 20 4 30 1 100 Bellanti et al.[14]

Table 2. Results for proposed B&P and Burke B&P on benchmark instances

Instance Our B&P Burke B&P Our B&P Burke B&P
UB t(s) UB t(s) UB t(s) UB t(s)

Millar-2Shift-DATA1 0 2.1 0 <0.1 0 600.0 0 600.0
LLR 301 2.3 301 0.8 301 600.0 301 600.0
Azaiez 0 56.6 0 0.3 0 600.0 0 600.0
Valouxis-1 20 73.0 80 909.6 20 600.0 160 600.0
BCDT-Sep 100 1547.9 100 6239.5 130 600.0 330 600.0

Table 3. The diversity of solutions derived by our B&P-
EMO algorithm

Instance Diversity of solutions
min ave max

Millar-2Shift-DATA1 2233 2359.6 2575
LLR 19190 19827.6 20331
Azaiez 3673 3910.4 4207
Valouxis-1 3613 4255.8 4526
BCDT-Sep 408 451.0 500

Hamming distance in these instances are 112 for the
Millar-2Shift-DATA1 and 189 for the LLR. In these in-
stances, our EMO algorithm derived schedules having
one-third and more Hamming distance from the theoreti-
cal upper limit.

Fig. 11 and Fig. 12 show the Azaiez and Valouxis-1 re-
sults. Although there are no large differences between the
theoretical upper limits in these instances, the maximum
Hamming distances of the schedules derived by our EMO
algorithm are completely different. In the case of Azaiez,
the maximum Hamming distance was over 180, but this
value was only over 60 for Valouxis-1. This result indi-
cates that the performance of our EMO algorithm could
depend not only on the scale of the instance but also on
the other instances’ settings, including constraints.

Fig. 13 presents the results of BCDT-Sep. Although
BCDT-Sep has a higher theoretical upper limit of Ham-
ming distance, our EMO algorithm was only able to de-
rive schedules having 21 to 30 Hamming distance. How-
ever, over 250 schedules with 11 to 20 Hamming distance
were derived, and we believe this number of schedules to
be sufficient.

We also tried to analyze the contents of the derived
schedules. Fig. 14 and Fig. 15 present the schedules of
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Fig. 11. Azaiez results
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Fig. 12. Valouxis-1 results

Azaiez and Valouxis-1. In these figures, the upper sched-
ule is the initial schedule derived by our B&P algorithm,
and the lower one is a schedule with maximum Ham-
ming distance derived by our EMO algorithm. Red back-
grounds in these schedules indicate shifts changed from
those in the initial schedule.

These results show that most parts of the initial sched-
ule were changed; only the schedule of Valouxis-1 re-
mained largely unchanged. This tendency corresponded
to that of the results of Hamming distances (Fig. 11 and
Fig. 12).

These results indicate that the performance of our EMO
algorithm depends on the characteristics of the instances,
but the EMO algorithm successfully derived highly di-
verse schedules with in most instances.

6. Conclusion

In this paper, we proposed B&P-EMO, a new approach
to solving the nurse scheduling problem. B&P-EMO is an
algorithm that combines branch & price with metaheuris-
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Fig. 13. BCDT-Sep results

tics (EMO algorithm). The main feature of B&P-EMO
is that it can derive many different schedules of almost
the same quality as that of the optimal schedule within a
practicable computational time.

The important points of B&P-EMO are the following
two mechanisms.

B&P algorithm In the branch and bound method, we
adopted a search strategy considering convergence
and completeness, and we implemented a dynamic
adjustment mechanism to save computational cost in
the dynamic programming of the column generation
method.

EMO algorithm The EMO algorithm created new
schedules by replacing shifts in the lengthwise and
widthwise directions of the schedule. In addition, by
considering the criterion of diversity in updating the
population, the EMO algorithm can improve the di-
versity of population.

We also investigated the effectiveness of our B&P-
EMO by applying B&P-EMO to several benchmark test
instances published on Nottingham University’s web-
site[4]. Through these numerical experiments, we suc-
ceeded in obtaining the following results, confirming the
effectiveness of our B&P-EMO.

• Optimal schedules were derived within realistic
times in all instances.

• Many different schedules of almost the same quality
as that of an optimum schedule were derived.

In future works, we will present the characteristics of
the derived schedules automatically by analyzing the re-
lationships between the schedules.
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