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Abstract—Human-machine systems required a deep under-
standing of human behaviors. Most existing research on action
recognition has focused on discriminating between different
actions, however, the quality of executing an action has received
little attention thus far. In this paper, we study the quality
assessment of driving behaviors and present WiQ, a system
to assess the quality of actions based on radio signals. This
system includes three key components, a deep neural network
based learning engine to extract the quality information from
the changes of signal strength, a gradient based method to detect
the signal boundary for an individual action, and an activity-
based fusion policy to improve the recognition performance in a
noisy environment. By using the quality information, WiQ can
differentiate a triple body status with an accuracy of 97%, while
for identification among 15 drivers, the average accuracy is 88%.
Our results show that, via dedicated analysis of radio signals, a
fine-grained action characterization can be achieved, which can
facilitate a large variety of applications, such as smart driving
assistants.

I. INTRODUCTION

It is very important to understand fine-grained human behav-
iors for a human-machine system. The knowledge regarding
human behaviors is fundamental for better planning of a
Cyber-Physical System (CPS) [1], [2], [3]. For example, action
monitoring has the potential to support a broad array of ap-
plications such as elder or child safety, augmented reality, and
person identification. In addition, by observing the behaviors
of a person, one can obtain important clues to his intentions.
Automatic recognition of activities has emerged as a key
research area in human-computer interaction [1], [4].

While state-of-the-art systems achieve reasonable perfor-
mance for many action recognition tasks, research thus far
mainly focused on recognizing “which” action is being per-
formed. It can be more relevant for a specific application to
recognize whether this task is being performed correctly or
not. There are very limited studies on how to extract additional
action characteristics, such as the quality or correctness of the
execution of an action [5].

In this paper, we study the quality assessment of driving be-
haviors. A driving system is a typical human-machine system.
With the rapid development of automatic driving technology,
the driving process requires closer interactions between hu-
mans and automobiles (machine) and a careful investigation
of the behaviors of the driver [6]. There are several potential
applications for quality assessments of driving behaviors.
The first application is driving assistance. According to the
quality information, one can classify the driver as a novice
or as experienced, and then, for the former, the assistance
system can provide advices in complex traffic situation. The
second potential application is risk control. It provides an
important hint of fatigued driving if a driver repeatedly drives
at a low quality level. Additionally, long-term driving quality
information is meaningful for the car insurance industry.

We explore a technique for qualitative action recognition
based on narrowband radio signals. Currently, fatigue detection
systems generally rely on computer vision, on-body sensors
or on-vehicle sensors to monitor the behaviors of drivers and
detect the driver drowsiness [7]. In comparison, a radio-based
recognition system is non-intrusive, easy to deploy, and can
work well in NLOS (non-line-of-sight) scenarios. Additionally,
for old used cars or low-configuration cars, it is much easier
to install an radio-based system than a sensor-based system.

It is obvious that quality assessment is much more challeng-
ing than action recognition. Qualitative action characterization
has thus far only been demonstrated in constrained settings,
such as in sports or physical exercises [5], [8]. Even with
high-resolution cameras and other dedicated sensors, for gen-
eral activities, a deep understanding of the quality of action
execution has not been reached.

There are several technical challenges for quality recogni-
tion by radio signals such as modeling the action quality, the
method of signal fragments extraction, and how to mitigate the
effect of noise and interference. We present WiQ, a radio-based
system to assess the action quality by leveraging the changes
of radio signal strength. There are three key components in



2

this system:
• Deep neural network-based learning: The quality of

action is characterized by the relative variation (e.g., gra-
dient) of the received signal strength (RSS). A framework
based on the deep neural network is proposed to learn the
quality from the gradient sequence of the signal strength.

• Gradient-based boundary detection: As the signal
strength can vary sharply at the start and end points of an
action, a sudden gradient change is a strong indicator of
the action boundary. A gradient-based method is proposed
to extract the signal fragment for an individual action.

• Activity-based fusion: Typically, a driving task is com-
pleted by a series of actions, referred to as activity.
To mitigate the effect of surrounding noise, we take an
activity as a whole, fusing the information from all of
the actions to derive a sound observation of the action
quality.

We build a proof-of-concept prototype of WiQ with the
Universal Software Radio Peripheral (USRP) platform [9] and
evaluate the performance with a driving emulator. To the best
of our knowledge, this is the first study in which action quality
assessment is performed by using wireless signals and a deep
learning method. Our results show that, via dedicated analysis
of radio signal features, a fine-grained action characterization
can be achieved, which leads to a wide range of potential
applications, such as smart driving assistants, smart physical
exercise training, and healthcare monitoring.

The rest of this paper is organized as follows. Section II pro-
vides an overview of related works, and Section III describes
the challenges and basic ideas of our work. Section IV dis-
cusses the design of WiQ. Section V presents the experimental
results. Finally, we conclude this research in Section VI.

II. RELATED WORK

Action recognition systems generally adopt various tech-
niques such as computer vision [10], inertial sensors [11], ul-
trasonic [12], and infrared electromagnetic radiation. Recently,
we have witnessed the emergence of technologies that can
localize a user and track his activities based purely on radio
reflections off the person’s body [13], [14], [15]. The research
has pushed the limits of radiometric detection to a new level,
including motion detection [16], gesture recognition [17],
and localization [18]. By exploiting radio signals, one can
detect, e.g., motions behind walls and the breathing of a
person [19], [20], [21], [22], or even recognize multiple actions
simultaneously [13].

In general, there are two major stages in a radio recog-
nition system: feature extraction and classification. Thus far,
various signal features have been proposed: energy [23], fre-
quency [17], [12], temporal characteristics [13], [18], channel
state information [24], [25], [19], [15], angle characteris-
tics [16], etc. The RSS, as an energy feature, is easy to
obtain and has been used widely in action recognition [23]. In
comparison, channel state information (CSI) is a finer-grained
feature that can capture human motions effectively [15], [25].
Doppler shift, as a frequency feature, has been used in gesture
recognition [17]. Time of flight (TOF), as a temporal feature,

is used in 3D localization [18]. Finally, angle of arrival (AOA)
is used in direction inference and object imaging [26].

There are two major classification methods: 1) fingerprint-
based mapping, which takes advantage of machine learning
techniques to recognize actions [24], [19], [15], [25], and 2)
geometric mapping, which extracts the distance, direction or
other parameters to infer the locations or actions of inter-
est [16], [18], [17].

While several works have explored how to recognize ac-
tions, only a few have addressed the problem of analyzing the
action quality. In [8], a Programming by Demonstration (PbD)
method is used to study the action quality in weight lifting
exercises through Kinect and Razor inertial measurement
units. The sensors in a smart phone are utilized to monitor
the quality of exercises on a balance board [27]. Similarly,
Wii Fit uses a special balance board to analyze yoga, strength
and balance exercises. In addition, driving behavior analysis
systems generally rely on computer vision to detect eyelid
or head movement, on-body sensors to monitor brain waves
or heart rate, or pre-installed instruments to detect steering
wheel movements. Biobehavioral characteristics are used to
infer a driver’s habits or vigilance level [7], [28], [6]. While
promising, these techniques suffer from limitations, such as
physical contact with drivers (e.g., attaching electrodes), high
instrumentation overhead, sensitivity to lighting or the require-
ment of line-of-sight communication (i.e., a driver wearing
eye glasses can pose a serious problem for eye characteristic
detection). Different from the existing studies, we focus on
assessing the action quality based on radio signals.

III. BASIC IDEA

In this section, we first state the quality recognition problem
and then the design challenges. Afterwards, we discuss the
basic idea for characterizing the quality of actions.

A. Problem statement

It is critical to understand driving habits for many applica-
tions such as driver assistance. We consider two representative
tasks: (1) driver identification to determine which driver from a
set of candidates performs a driving action; and (2) body status
recognition to infer the driver’s vigilance level. When a person
is inattentive or fatigued, driving actions will be performed in
a different manner. That is, the quality of driving actions is
changed. It is therefore feasible to monitor the body status by
measuring the quality of driving actions.

A careful analysis of the action is required to capture the
unique feature of driving. As the driving action is generic, it is
insufficient to distinguish the driver or his status by identifying
actions alone. In fact, different drivers have different driving
styles, e.g., an experienced driver can stop a car smoothly,
while a novice may be forced to employ sudden braking.

In this study, the motions of a driver’s foot on the pedal are
tracked. Fig. 1(a) shows six types of actions for manual car
driving. Here, an action refers to a short motion that cannot
be partitioned further, i.e., a press or release of the pedal (e.g.,
clutch, brake and throttle). Moreover, an activity is defined as
a series of actions to complete a driving task. As shown in
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Fig. 1. Examples of the actions and typical activities for driving.

Fig. 1(b), several typical activities are included: ground-start,
parking, hill-start, acceleration and deceleration.

To capture the driving behaviors by radio signals, the
transmitter and receiver nodes are located on the two sides
of the pedals. The receiver reports the received signal strength
(RSS) per sampling point. More details about the experimental
setup are described in Section V.

B. Challenges

There are several technical challenges posed by quality
recognition based on narrowband radio signals.

Quality modeling: Currently, there is no common under-
standing regarding what defines the quality of an action. It
is argued that, if one can specify how to perform an action,
quality can be defined as the adherence of the execution of
an action to its specification [5], [8]. To measure quality, it is
therefore necessary to characterize the execution of an action
through a finer-grained motion analysis. For example, consider
the braking (BP) action in three driving behaviors, e.g., sudden
braking, parking, and slight deceleration. As shown in Table I,
though the action is the same, the quality is quite different:
(1) the movement of the brake in the first case is much faster
than the others; and (2) the movement distance of the brake
in the last case is smaller than the others.

TABLE I
COMPARISON OF THE ACTION QUALITY IN THREE BEHAVIORS.

Quality Sudden braking Parking Slight deceleration
Speed fast regular regular
Range large large small

There is currently no effective way to characterize the
execution of an action. Though many radio signal features
are proposed for action recognition, most of them are used to
recognize what types of actions are carried out.

Signal fragment extraction: As the radio signal is sampled
continuously over time, when multiple actions occur sequen-
tially, we need to partition the signal into several fragments,
i.e., one fragment for one action. As an example, Fig. 2(a)

shows the signal for the acceleration activity. To accelerate
with a gear shift, one should release the throttle (TR), press
the clutch (CP) and change the gear (which is invisible here),
release the clutch (CR) and press the throttle (TP) until a
desired speed is reached. To analyze the quality, the start and
end points of all the actions must be identified accurately.

There is no feasible solution to detect the signal boundary.
In [17], a gradient-based method is used to partition a Doppler
shift sequence. The Doppler shift information is, however, not
available in the most modern systems such as in wireless local-
area networks (WLANs). A method was recently proposed in
WiGest [1] to insert a special preamble to separate different
actions, which require interrupting the usual signal processing
routine. Neither can be adopted in our scenarios.

Robustness: Quality assessment can be easily misled by
noise or interference in the radio channel. As shown in
Fig. 2(b), when the signal to noise ratio (SNR) is low,
it is difficult to identify the action and extract the quality
information. Although a denoising method can be used to
reduce the effect of noise or interference, it is necessary to
have an effective way to sense the radio channel condition
and mitigate any negative effect on quality assessment.

C. Quality recognition

We characterize the quality of action with respect to motion
and we consider the duration of an execution and the speed
and distance of the pedal motion. We first discuss the case of
the throttle and then extend our discussion to the clutch and
brake.

The duration of an execution can be estimated after the
signal boundary of the action is detected. Let TS be the number
of sampling points in the fragment, an estimate of the duration
is (TS−1)×tu, where tu is the length of the sampling interval.

The movement speed can be captured by the change rate
(e.g., gradient) of signal strength. Fig. 3(a) shows the received
signal in the experiment: the throttle is pressed and released
quickly five times and then slowly another five times. When
the motion is faster, the change of signal strength is sharper
(e.g., the typical gradients are -18 and -9.47 for the two
cases, respectively). The gradient sequence of signal strength
is plotted in Fig. 3(b). The gradient magnitude is, on average,
much larger for a quicker motion. Thus, thee gradient of signal
strength is an effective metric to characterize the movement
speed.

The correlation between the pedal position and the signal
strength is exploited to estimate the motion distance. We press
the throttle (TP) to a small extent and hold for several seconds;
then press it to a large extent and hold for several seconds
and finally press it to the maximum degree. The same pattern
is repeated for the throttle-releasing (TR) in the opposite
order. The received signal strength is shown in Fig. 4. The
signal strength is distinct when the pedal position is different.
To infer the motion distance during the action execution, a
simple method is to compute the difference between the signal
strengths at the start and end points.

For the clutch and brake, it is slightly more complex. As
shown in Fig. 5, when the clutch is pressed, the signal strength
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Fig. 2. Received signal strength for the acceleration activity with (a) high SNR; (b) low SNR.

(a) RSS sequence

(b) Gradient Series
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Fig. 3. The RSS and the gradient when the throttle is pressed and released,
quickly for five times and then slowly for five times.
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Fig. 4. Received signal strength for the TP and TR actions when the throttle
is located at different positions.

first decreases and then increases. The change is no longer
monotonic, which is different from the throttle. A similar
observation can be drawn for the brake. To estimate the
motion distance, we detect the maximal (or minimal) point
during the execution of an action. If one such point is found,
letting SM be the signal strength, the motion distance can be
characterized by the oscillation range of signal strength, i.e.,
|SA − SM | + |SM − SE |, where SA and SE are the signal
strength at two boundary points, respectively.

As shown in Fig. 5, different patterns of signal strength
can be observed for distinct actions, e.g., the signal strength
decreases consistently during brake-pressing (BP) and always
increases during brake-releasing (BR). One can exploit the
patterns to discriminate among different actions.

IV. DESIGN OF WIQ
We first overview the basic procedure of WiQ and then

discuss in detail the three key components, e.g., the learning
engine, signal boundary detection, and decision fusion. We
finally discuss some possible extensions of WiQ.

A. Overview

WiQ first detects the signal boundary for each action, and
then recognizes the driving action and extracts the motion
quality, and finally identifies the driver or body status.

Fig. 6 shows the basic process of WiQ. There are three
layers, i.e., signal, recognition and application. The inputs
to the signal layer are the radio signals that capture the
driving behaviors. Due to the complex wireless propagation
and interaction with surrounding objects, the input values
are noisy. We leverage a wavelet-based denoising method to
mitigate the effect of the noise or interference. We here omit
the details of the method, which is given in [1]. Afterwards, a
signal boundary detection algorithm is applied to extract the
signal fragment corresponding to the individual action.

The input of the recognition layer is the fragmented signal
for an action. We first adopt a deep learning method to
recognize the action. Afterwards, the quality of the action is
extracted by a deep learning engine and provided to the upper
layer, together with the results of action recognition.

At the application layer, a classification decision is made.
For driver identification, the classification process determines
which driver performs the action. For body status recognition,
the process determines the driver’s status according to the
action quality. Additionally, a fusion policy is adopted to
improve the robustness and accuracy.
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Fig. 5. Received signal strength when the (a) clutch, (b) brake and (c) throttle are pressed and then released.

Fig. 6. Illustration of the basic process of WiQ.

Fig. 7. A convolutional neural network for quality recognition.

B. Quality recognition

There are two major stages in quality recognition: feature
extraction and classification (based on the quality of an ac-
tion). In the first stage, we adopt a convolutional neural net-
works (CNN). In addition, a normalized multilayer perceptron
(NMLP) is used for classification. Both CNN and NMLP are
supervised machine learning technique [10].

CNN is a representative deep learning method that uses
the multilayer neural networks to extract interesting features.
Deep learning, as an effective method of machine learning, has
achieved great success in image recognition, speech recogni-
tion and many other areas [10]. It has been used widely due
to its low dependence on prior-knowledge, small number of
parameters and a high training efficiency.

To recognize the quality of action, a five-layer CNN network
has been built and the structure is shown in Fig. 7. Basically,
there are two convolutional layers, two sub-sampling layers
and one fully-connected layer. In the first convolutional layer,

the size of a convolutional kernel is 3 × 3. Six different
kernels are adopted to generate six feature maps. At the second
convolutional layer, there are two kernels and the kernel size
is still 3 × 3. There are, in total, 12 feature maps as the
output of this layer. The goal of a convolutional layer is to
extract as many features as possible in an effective manner.
In comparison, a sub-sampling layer is devoted to combining
the lower-layer features and reducing the data size. There is
only one kernel in the sub-sampling layer and the size is 2×2.
The last layer of CNN is a fully-connected layer that combines
all the learned features. The output of the CNN network is a
vector of twelve dimensions, which is the input of the NMLP
classifier.

TABLE II
FEATURES OF GRADIENT FOR QUALITY RECOGNITION.

Category Feature Category Feature

Time duration tu ∗ (S − 1) Range B1 −B2

Gradient gA = max{g1, . . . , gS} B1 − gA

gI = min{g1, . . . , gS} B1 − gI

g = 1
S

∑S
i=1 gi B2 − gA

V ar =
∑S

i=1(gi − g)2 B2 − gI

TABLE III
FEATURES OF SIGNAL STRENGTH FOR ACTION RECOGNITION.

Feature Definition Feature Definition

Average 1
n

∑n
i=1 xi Kurtosis

1
n

∑n
i=1(xi−x)4

( 1
n
(xi−x)2)2

− 3

Range xmax − xmin IQR Q3 −Q1

MAD
∑

i=1 n|xi−x|
n

Sum
∑n

i=1 xi

Variance
∑n

i=1(xi − x)2 RMS
√∑n

i=1 x2
i

N

3rd C-Moment 1
n

∑n
i=1 x

3
i Skewness

1
n

∑n
i=1(xi−x)3

( 1
n
(xi−x)2)3/2

Suppose there are N quality classes in the classification.
A quality class can be a driver for driver identification or
a body status for body status recognition. Also, N is the
number of drivers or body statuses. For a sample (i.e., a
12-dimension vector), the NMLP computes an N -dimension
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normalized vector V [1 : N ], where
∑N

i=1 V [i] = 1 and V [i]
is the probability that the sample belongs to the ith class. In
general, the mth class is preferred when V [m] ≥ V [i] for all
1 ≤ i ≤ N . We use the NMLP to report the intermediate
results such as V , which plays an important role in the fusion
process.

Input of CNN: The quality of actions can be characterized
in terms of the duration time and the speed and distance of
movement. We partition a signal fragment into ten segments
and extract the quality information from the three aspects.
For each segment, rather than the original gradient, a ten-
dimension quality vector is generated. Table II summarizes the
quality vector, where g1, . . . , gS denote the gradient sequence,
S the number of sampling points, B1 the gradient at the start
point, and B2 that at the end point. In total, the input of CNN
is a 10× 10 matrix (or a 100-dimension vector).

Action recognition: We should first recognize the action.
The process is quite similar except for the input feature vector
and the number of classes, which are equal to that of all
actions. To generate the input vector, similarly, a fragment
is divided into ten segments and, for each segment, ten
statistical features are extracted. Table III shows the definitions
of features, where xi denote the signal strength at the ith
sampling point, x the average strength, and n the number of
sampling points.

Feature selection: Currently, there is no established theory
to characterize the effect of different features or parameter
choices on the action/quality recognition performance. It is of
great significance to address such a fundamental problem. At
this time, however, we have to choose the features according to
the results presented in previous work and the characteristics
of the concerned application.

First, to choose the features in Table III for action recog-
nition, we consider the series work of Stephan Sigg et al
as a reference [23], [29], [30]. These authors propose more
than ten features of RSSI, such as the mean and variance,
and investigate the discriminative capability of the features for
action recognition. One of the findings is that, the effectiveness
of features is tightly correlated with the signal propagation
environment, and an adaptive policy is required in feature
selection to achieve good performance.

Second, as shown before, the quality of actions is mainly
captured by the gradient of signal strength variance. For
example, when an action occurs suddenly and rapidly, the
received signal strength should change sharply, resulting in a
large gradient change. Therefore, we first obtain the gradient
information at each moment, and then get the typical “atomic”
statistics such as the mean, variance, and variation range of
the gradient, as shown in Table II.

For both quality recognition and action recognition, to
avoid feature selection by hand and achieve high classification
accuracy, we adopt a deep learning framework to automatically
fuse the features by multi-layer nonlinear processing.

C. Gradient-based signal boundary detection

As the radio signal is sampled continuously, when multiple
actions occur sequentially, the start and end points of each

action must be located accurately. The signal is separated into
many fragments, and each fragment corresponds to one action.
As shown in Fig. 1(b), there are usually three or more actions
in an activity to complete a driving task. To analyze the quality,
it is necessary to detect the signal boundary for each individual
action.

We propose to detect the signal boundary based on the
gradient changes of signal strength. As the signal strength
begins to change at the start point and becomes stable after the
end of an action, it is expected that the gradient could change
sharply at the boundary points. This is true for the actions
related to the throttle (see Fig. 3). For the actions related to
the clutch or the brake, there is another peak point in the
received signal sequence in addition to the boundary points.
As a result, a turning point can be detected by a sharp change
in the gradient during the execution of the action. Nevertheless,
around the turning point, the gradient always deviates from 0.
In comparison, the gradient before the start point or after the
end point is close to 0.

Algorithm 1: Computation of the boundary points.
Data: Gradient sequence GS[0 : G− 1]
Result: BP , boundary point sequence

1 y=L;
2 repeat
3 Compute the pre-average ar =

∑y−1
i=y−LGS[i]/L;

4 Compute the post-average ao =
∑y+L

i=y+1GS[i]/L;
5 if {abs(ao) > α ∗ abs(ar) and abs(ar) ≤ δ } then
6 Add y into BP as a start point;
7 if {abs(ar) > α ∗ abs(ao) and abs(ao) ≤ δ} then
8 Add y into BP as an end point;
9 y=y+Step;

10 until y > G− L
11 Prune the redundant boundary point in BP ;

The gradient-based boundary detection method is shown in
Algorithm 1. Basically, a sampling point is regarded as the
start of an action when (1) the average gradient before the
point approaches 0 and (2) the average gradient after the point
significantly deviates from 0. Alternately, a point is regarded
as the end of an action when (1) the average gradient after
the point approaches 0 and (2) the average gradient before the
point significantly deviates from 0.

An optimization framework is established to prune the
redundant points. The objection is to find the optimal number
(e.g., U ) of fragments and the intended sequence of fragments
to satisfy

max
1

U

U∑
u=1

pA(u) (1)

where for the uth fragment, the recognized action is A(u) with
probability pA(u). The advantage of (1) is that it is simple,
nonparametric and low in complexity. By incorporating more
constraints, such as the duration length, a more complex model
can be established, which can achieve higher precision.

Parameter setting: The idea of the proposed policy to
detect the boundary is inspired by previous study on wireless
communication [31]. Unfortunately, the method does not have
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a theoretical analysis though it has been used widely. There
are four parameters, two sliding parameters (i.e., L and Step)
and two threshold parameters (i.e., α and δ). In experiment, we
empirically set L = 5, Step = 2, α = 5 and δ = 0.5. Particularly,
when the SNR is low, we set δ = 0.8.

Taking α as an example, we find that, even when there is no
action, the received signal strength varies consistently and the
range of variation (i.e., ratio of the maximum signal strength
and the minimum one) can be as large as three. A similar
conclusion was drawn in previous work [32]. Therefore, we
set the threshold (α) to five to achieve a good tradeoff between
robustness and sensitivity. We also explore an adaptive policy
to set the threshold. To determine the threshold used at
time t, we track the signal strength for a long time interval
(approximately 1-2s) before time t. We compute the ratio of
the signal strength at each sampling point to the minimum
one during the interval and choose x as the threshold, where
at least 90% of the ratios are equal to or less than x. The
process is stopped when a start point is found and re-started
when an ending point is detected. With the adaptive policy,
the classification accuracy is close to the fixed setting used
in our experiment. We plan to investigate adaptive policy
improvements in the future. The processes to determine the
other parameters are similar.

D. Activity-based fusion
Identification of the driver or body status based on a single

action is vulnerable to noise or interference. To improve the
accuracy of quality recognition, WiQ adopts a fusion policy.
In general, multiple sensors or multiple classifiers are shown
to increase the recognition performance [33].

We propose an activity-based fusion policy to exploit the
temporal diversity. The activity is chosen as the fusion unit
for three reasons. First, as all the actions in an activity are
devoted to the same driving task, the driving style should be
stable. Second, as the duration is not very long, it is expected
that the wireless channel does not vary drastically. Finally, as
there are at least three or more actions in an activity, it is
sufficient to make a reliable decision based on all of them
together.

A weighted majority voting rule is adopted. There are many
available fusion rules, such as summation, majority voting,
Borda count and Bayesian fusion. Fig. 8 shows the basic
process of the fusion policy. Let Q1, . . . , QN denote all the
quality classes (e.g., drivers or body statuses) and A1, . . . , AM
all the actions. Consider an activity with M actions denoted
by a1, . . . , aM . Without loss of generality, suppose for each
ai, the action is classified as Aj with a probability of wi. The
role of wi is to capture the effect of the channel condition
(i.e., the better the channel is, the higher wi is). In addition,
letting p(i, k) denote the probability that the quality class of
ai is Qk and pk be the probability that the quality class of the
activity is Qk, we have

pk =

M∑
i=1

wi × p(i, k). (2)

Finally, Qq is preferred as the quality class of the activity
when pq = max{p1, . . . , pN }.

Fig. 8. Illustration of the fusion policy.

E. Discussions

We now discuss some practical issues and possible exten-
sions of WiQ.

Efficiency: Computational efficiency is known as one of the
major limitations of deep learning. As there is usually a large
number of parameters, the speed of a deep learning network is
slow. Thanks to the small network size, the efficiency of WiQ
is very high, e.g., only several microseconds are required to
process the signals of an activity.

Structure of activity: In practice, the driving actions are
not completely random and instead usually follow a special
order to complete a driving task. It is expected that better
performance will be achieved for action recognition or signal
boundary detection if the structure of the activity is exploited.

Online learning: Currently, only after an entire driving
activity is completed can the signals be extracted for analysis.
To work online, there are several challenges such as noise
reduction, in-time boundary detection and exploitation of the
history information to facilitate the real-time quality recogni-
tion.

Information fusion: The fusion policy explored combines
several intermediate classification results into a single deci-
sion. Rather than combination, a boosting method can be
adopted to train a better single classifier gradually. Moreover,
the performance can be improved further by using numerous
custom classifiers dedicated to specific activity subsets.

V. PERFORMANCE EVALUATION

We evaluate the performance by measurements in a testbed
with a driving emulator. Fig. 9 shows the experimental en-
vironment. The driving emulator includes three pedals: the
clutch, brake and throttle. We use a software radio, the
Universal Software Radio Peripheral (USRP) N210 [9], as the
transmitter and receiver nodes. The signal is transmitted un-
interruptedly at 800MHz with 1Mbps data rate. The sampling
rate is 200 samples per second at the receiver.

The drivers are asked to perform all six activities shown
in Fig. 1. The strategy is that (1) each driver repeats every
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Fig. 9. Experimental setup with a driving emulator.

activity 200 times regardless of the traffic conditions and (2) a
driver drives on a given road (urban or high-speed road). If the
number of activity execution is less than 200, the experiment is
repeated until the number reaches 200 on the same road. The
first strategy is adopted for the results presented in Section V
(A)-(C) and the second is adopted for Section V-(D). For
each action, there are approximately 400 samples. According
to the average SNR, all the samples are equally divided into
two categories, i.g., high-SNR (8-11 dB) and low-SNR (4-
8 dB). The average SNR difference of the two categories is
approximately 3.8dB.

The platform we used is a PC desktop with an 8-core Intel
Core i7 CPU running at 2.4GHz and 8GB of memory. We do
not use GPU to run the experiment. Unless otherwise specified,
each data point is obtained by averaging the results from 10
runs.

A. Action recognition

For each dataset in the high-SNR category, we choose 100
samples randomly for training and the remaining for test.
Fig. 10 and Fig. 11 show the results of recognition accuracy.
For example, the value (i.e., 13%) at position (4, 5) is the (er-
ror) probability that BR is recognized as TP. The recognition
accuracy is shown by the diagonal of the matrix. When the
training number of the CNN network is 10, the accuracy is
at least 86% and on average 95%. With more training (e.g.,
100 times), the performance becomes much better, i.e., the
average accuracy approaches 98%. Nevertheless, the impact
of noise or interference is severe on the performance of action
recognition. As shown in Fig. 12, for the low-SNR category,
the accuracy is as low as 39% and on average 65%.

More experiments are conducted with three drivers. To-
gether with the six actions, we have a total of 18 classes.
For each class, from the high-SNR samples, we randomly
select 100 of them for training and the remaining for test.
Fig. 13 shows the results when the training number is 1000.
As the number of class is much larger, the accuracy decreases
drastically, which can be as low as 26% and approximately
60% on average.

At the same time, there is a large number of cross-driver
errors, i.e., the action of a driver is recognized as that of the
other one. For example, the error probability between CP3 and
BP2 is 35% (CP3 to BP2) and 22% (BP2 to CP3). As a result,

there would be much more mistakes if we try to identify the
driver based on the action alone.

B. Capability of quality recognition

We now investigate the capability of the quality recogni-
tion in an intuitive manner. For simplicity, we consider two
dimensions of the quality, i.e., average gradient and duration.

First, we investigate the ability to distinguish the drivers.
Fig. 14 (a) shows the quality distribution for clutch-pressing
with different drivers. The points can be clustered into two
categories. Meanwhile, the difference between different clus-
ters is quite significant. That is, the driving style is stable for
the same person but distinct for different drivers.

Second, the sensitivity to the receiver position is inves-
tigated. Fig. 14 (b) shows the quality distribution for CP
with three receiver positions. Similarly, the points can be
categorized into three groups, indicating the dependence of the
quality on the receiver position. In wireless communications,
even when the receiver position is changed slightly, the signal
propagation characteristics can vary drastically. In practice,
when the node position is changed, the convolutional neural
network should be re-trained. In the following, the experiments
are performed with the same receiver position, i.e., the position
#1 in Fig. 14 (b).

C. Application with quality recognition

We investigate the performance of qualitative action recog-
nition. The training number of CNN is 100 by default.

Consider body status recognition first. As it is not easy to
carry out experiments to detect the fatigue status, our focus
turns to the detection of attention. WiQ tries to distinguish
the three body statuses: (1) normal, the normal state; (2)
light distraction, i.e., driving a car while reading a slowly
changing text (5 words per second); and (3) heavy distraction,
i.e., driving a car while reading a rapidly changing text (15
words per second). We use the 200 high-SNR samples in the
experiment: 100 samples are selected randomly to train the
neural network and the remaining samples are utilized for
testing. As shown in Fig. 15, the average accuracy is as high
as 97%. The results indicate that the quality information is
very useful in distinguishing the body condition of a driver.

Now consider driver identification. When the number of
drivers is large, it is much more challenging than the recog-
nition of the body status. There are 15 drivers in the experi-
ments, among which three have five years or more of driving
experience, five are novices, and the rest have 1−3 years of
experience.

First, the drivers are identified based on the quality of their
individual actions. There are 15 driver classes and Rank-k
means that, for a test sample, all classes are ranked according
to the probability computed by WiQ in descending order
(the correct class belongs to the set of the first k classes).
Fig. 16 shows the Rank-1 and Rank-3 recognition accuracy.
The Rank-1 accuracy is at least 56% and on average 78%.
In comparison with the results shown in Fig. 13, by using
the quality information, the ability to identify the drivers is
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improved significantly. The Rank-3 accuracy was at least 82%
and on average 95%.

Second, the performance can be improved further by the
activity-based fusion policy. For each activity, there are 200
samples. We partition them equally into the high-SNR and
low-SNR categories. Afterwards, we select 60 high-SNR
samples randomly for training and the remaining for testing.
Fig. 17 shows the results. The Rank-1 accuracy is always
higher than 72% and on average 88%. Additionally, the Rank-
3 accuracy approaches 97%. In other words, high identification
precision can be achieved by WiQ when the SNR is high.

For the low SNR scenario, we choose the set of test samples
randomly from the 100 low-SNR samples. The experiment was
repeated for approximately 100 times. Fig. 18 plots the average
Rank-1 accuracy. Though the accuracy is lower than that in the
high-SNR category, promising performance is achieved with
the help of the fusion strategy, i.e., the accuracy is as high as
80% and on average 75%.

In summary, WiQ can recognize the action accurately and
discriminate among different body statuses (or drivers) based
on the driving quality. For action recognition, the accuracy
is as high as 95% when the SNR is high. In addition, the
accuracy of body status recognition is as high as 97%. For
driver identification, the average Rank-1 accuracy is 88% with
high SNR and 75% when the SNR is low.

D. Comparative study

We present the results of the comparative study. We first
compare our method with other machine learning methods.
Then, we present the sensitivity results of quality recognition
on the gradient features. Finally, we discuss the driver category
recognition (i.e., finding the category for a given driver)
under various traffic conditions (urban vs. high-speed road).
In general, there are three driver categories, “Experienced”
(>3 years of driving experience), “Less experienced” (1-3
years of driving experience) and “Novice” (<1 year of driving
experience). In comparison with driver identification, driver
category recognition is a similar but easier task. The category
information is useful in practice. For example, the driving
assistant system can give more operable driving instructions
to novice drivers and more alert information to experienced
drivers.

To demonstrate the effectiveness of the deep convolutional
neural network (CNN), we choose k-nearest neighbor (kNN)
and support vector machine (SVM) [34] for comparison. For
kNN, we choose k=3 as it achieves the best performance in the
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TABLE IV
AVERAGE ERROR RATE OF ACTION RECOGNITION OF CNN, SVM AND

kNN WITH HIGH SNR AND DIFFERENT NUMBERS OF ITERATIONS. kNN
DOES NOT NEED ITERATION, AND THE RESULT IS SHOWN WHEN k=3.

Iteration Number 5 10 15 20 50 100

CNN 0.36 0.06 0.05 0.04 0.03 0.01

SVM 0.52 0.41 0.34 0.30 0.28 0.27

kNN 0.35

TABLE V
AVERAGE ERROR RATE OF ACTION RECOGNITION OF CNN, SVM AND
kNN WITH LOW SNR AND DIFFERENT NUMBERS OF ITERATIONS. THE

RESULT OF kNN IS SHOWN WHEN k=3.

Number of iterations 5 10 15 20 50 100

CNN 0.36 0.06 0.05 0.04 0.03 0.01

SVM 0.52 0.41 0.34 0.30 0.28 0.27

kNN 0.44

experiment. Table IV shows the average error rate of action
recognition with different numbers of iterations for CNN and
SVM with high SNR. Table V shows the results with low
SNR. First, with a large number of iterations, the precision of
CNN is very high, i.e., the error rate is only 1% with high
SNR. Even with low SNR, the average precision is still larger
than 70%. Second, CNN outperforms SVM significantly and
consistently. Though the error rate of SVM decreases with an
increase of the number of iterations, it is never lower than
27% with high SNR or 38% with low SNR. The performance
of kNN does not depend on the number of iterations and is
consistently worse than that of SVM and CNN.

TABLE VI
AVERAGE ERROR RATE OF BODY STATUS RECOGNITION WITH SVM AND
DIFFERENT SETS OF GRADIENT FEATURES. THE BEST PERFORMANCE IS

ACHIEVED WITH “G(3)+R(A)”.

SNR G(3) G(A) R(3) R(A) G(3)+R(A) G(A)+R(A) All

Low 0.49 0.36 0.50 0.42 0.41 0.30 0.31

HIgh 0.28 0.21 0.34 0.26 0.27 0.14 0.17

We investigate the sensitivity of quality recognition on the
gradient features. As the process of feature fusion in WiQ is
automatic, we choose SVM to conduct the experiment. Table
VI shows the average error rate of body status recognition
by SVM with 100 iterations. The features are selected from
Table I, where “G(3)” refers to {gA, gI , ḡ}, “R(3)” to {B1 −
B2, B1 − gA, B1 − gI}, “G(A)” to {gA, gI , ḡ, V ar}, and
“R(A)” to the five range features on the right of Table I. In
general, a lower error rate can be achieved with more features,
except that the result of “G(A)+R(A)” is better than that when
all features are used. Comparing the results in “G(3)” with
those in “G(A),” one can observe that the second-order metric
(i.e., the variance of the gradient) is quite effective for reducing
the error rate, e.g., by 14% with low SNR and 5% with high
SNR. It is generally insufficient to use the first-order statistics
alone in action quality recognition, i.e., the error rate is as
high as 27% with high SNR in “G(3)+R(A)” where all the
first-order statistics (except time duration) are used.

TABLE VII
DRIVER CATEGORY RECOGNITION WITH HIGH SNR ON THE URBAN ROAD.

HIGHER PRECISION IS ACHIEVED FOR NOVICES AS THEY HAVE
CONSISTENT NON-OPTIMAL DRIVING BEHAVIORS.

Exp. Less Exp. Novice

Exp. 0.85 0.09 0.06

Less Exp. 0.10 0.87 0.03

Novice 0.03 0.07 0.9

TABLE VIII
DRIVER CATEGORY RECOGNITION WITH HIGH SNR ON THE HIGH-SPEED

ROAD. NOVICES CAN BE RECOGNIZED ACCURATELY.

Exp. Less Exp. Novice

Exp. 0.92 0.06 0.02

Less Exp. 0.05 0.89 0.06

Novice 0.01 0.01 0.98

Finally, Table VII and Table VIII show the results of
driver category recognition on the urban and high-speed roads,
respectively. The results are obtained with high SNR. One can
see that the accuracy of quality recognition is lower in the
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urban environment. A possible reason is that a driver should
react differently to distinct traffic condition on the urban
road, resulting in difficulty in quality assessment. Moreover,
the results of novice are relatively better. This is because a
novice driver cannot adapt well to different traffic conditions,
resulting in unified (but not optimal) reaction behavior.

In summary, the comparative study indicates first, that the
deep neural network method outperforms kNN and SVM
consistently; second, that second-order statistics, such as vari-
ance, are critical for achieving high performance of quality
recognition; and third, that it is more challenging to recognize
driving quality under complex traffic conditions (e.g., urban
roads).

VI. CONCLUSIONS AND FUTURE WORK

We take the driving system as an example of human-
machine system and study the fine-grained recognition of
driving behaviors. Although action recognition has been stud-
ied extensively, the quality of actions is less understood.
We propose WiQ for qualitative action recognition by using
narrowband radio signals. It has three key components, deep
neural network-based learning, gradient-based signal boundary
detection, and activity-based fusion. Promising performance is
achieved for the challenging applications, e.g., the accuracy is
on average 88% for identification among 15 drivers. Currently,
the experiments are performed with a driving emulator. In the
future, we plan to further optimize the learning framework
and evaluate the performance of the proposed method in a
real environment.
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