
DisLoc: A Convex Partitioning Based Approach
for Distributed 3-D Localization in Wireless
Sensor Networks

著者 FAN Jin, HU Yidan, LUAN Tom H., DONG Mianxiong
journal or
publication title

IEEE Sensors Journal

volume 17
number 24
page range 8412-8423
year 2017-10-16
URL http://hdl.handle.net/10258/00009652

doi: info:doi:10.1109/JSEN.2017.2763155

DisLoc: a convex partitioning based approach for
Distributed 3D Localization in Wireless Sensor

Networks
Jin Fan∗, Yidan Hu†,Tom H. Luan‡, Mianxiong Dong§

∗Hangzhou DIANZI University,China
†University of Delaware,USA
‡Deakin University, Australia

§Muroran Institute of Technology, Japan
fanjin@hdu.edu.cn,yidanhu@udel.edu, tom.luan@deakin.edu.au,mx.dong@csse.muroran-it.ac.jp

Abstract—Accurate localization in wireless sensor networks
(WSNs) is fundamental to many applications, such as geographic
routing and position-aware data processing. This, however, is
challenging in large scale 3D WSNs due to the irregular topology,
such as holes in the path, of the network. The irregular topology
may cause overestimated Euclidean distance between nodes as
the communication path is bent, and accordingly introduces
severe errors in 3D WSN localization. As an effort towards
the issue, this work develops a distributed algorithm to achieve
accurate 3D WSN localization. Our proposal is composed of
two steps, segmentation and joint-localization. In specific, the
entire network is first divided into several subnetworks by
applying the approximate convex partitioning. A spatial convex
node recognition mechanism is developed to assist the network
segmentation which relies on the connectivity information only.
After that, each subnetwork is accurately localized by using the
multi-dimensional scaling (MDS) based algorithm. The proposed
localization algorithm also applies a new 3D coordinate transfor-
mation algorithm, which helps reduce the errors introduced by
coordinate integration between subnetworks and improve the lo-
calization accuracy. Using extensive simulations, we show that our
proposal can effectively segment a complex 3D sensor network
and significantly improve the localization rate in comparison with
existing solutions.

I. INTRODUCTION

The 3D WSNs, where nodes are deployed in a 3D topology,
have been witnessed in many Internet-of-Things applications,
such as safety monitoring of buildings, indoor fire detections.
The real-world topology of a 3D WSN, however, is typically
complicated and rarely in a simple or regular shape such as a
square or a disk. The complexity of the network topology ac-
cordingly brings significant challenges to existing localization
algorithms. For instance, the centralized localization schemes
[1] could fail when the network topology of a large scale WSN
is irregular. The irregular network shapes also challenge the
accuracy of localization scheme. For example, a number of
localization algorithms in literature assume the straight-line
shortest paths between nodes. The assumption is not valid
when the network topology is in a complex 3D shape. This is
because the shortest path between nodes may be bent, which
would result in significant errors in path distance estimation
and accordingly inaccurate localization [2].

Considering the challenges brought by the irregularity of
network topology, a number of methods have been developed
in literature[3][4][5] etc.. Tan et al. in[6] propose a convex
partitioning protocol to tackle the 2D/3D topology complexity
issue. However, these existing methods have been challenged
in many ways as the fundamental differences between the 2D
and 3D scenarios. For example, in 3D WSNs, the network
boundary condition becomes more complicated and the con-
nectivity of the network can be more diverse compared to the
2D scenario. There are a few centralized localization schemes,
such as three dimensional Distance Vector-Hop algorithm(3D-
DV-HOP)[7] and three dimensional multidimensional scaling
algorithm (3D-MDS)[8], which are capable of estimating node
location in a 3D scenario. However, these schemes either suffer
from the high computation complexity, or heavily depend on
strict assumptions of network configurations, such as dense
deployment of anchor nodes, the availability of depth informa-
tion, a relatively small network size [9] and etc. To summarize,
the existing schemes can hardly work effectively and effi-
ciently in a distributed manner with connectivity information
only (or with a constant number of anchors) in a large-scale
3D WSN of irregular topology.

This paper addresses the above challenges by developing a
distributed 3D localization approach in a large-scale 3D WSN.
Notably, as a 3D sensor network grows larger, it becomes more
intricate in topology on account of its close relations with
the surrounding deployment context. A distributed localization
algorithm is therefore highly desirable, which is the key to
achieve network localization at a low computational cost.
In this paper, a new localization protocol for 3D wireless
sensor networks based on network segmentations is proposed.
By accurately identifying the concave nodes in the topology,
our proposal first decomposes a 3D WSN into a number of
approximate convex subnetworks. In each subnetwork, the
improved MDS algorithm is adopted to realize the relative
map. After that, a new three-dimensional coordinate transfor-
mation algorithm inspired by Camera Calibration Principle
of computer vision is developed to integrate subnetworks
for absolute locations. The proposed spatial concave node

recognition algorithm is not exclusive, which can be applied
in different network connectivities.

The contribution of this paper can be summarized as fol-
lows:
• Algorithm Design: we proposed a fully distributed lo-

calization algorithm, named DisLoc, for large-scale 3D
WSNs with irregular network topology.

• Sub-optimal network partition: by accurately identifying
the concave nodes, DisLoc contains an efficient network
partition scheme, which decomposes a 3D WSN into a
number of approximate convex subnetworks. The number
of subnetworks is also optimized by proposed scheme.

• Real-world model Validation: by using extensive sim-
ulations, we show that DisLoc can achieve accurate
localizations at low cost in different real-world 3D WSN
topologies.

The rest of this paper is organized as follows. Section II
describes the related work in localization and the background
of convex decomposition scheme. Section III elaborates the
proposed approximate convex partition based localization al-
gorithm. We assess the performance of proposed algorithm
using simulations in Section IV, and the paper is concluded
in Section V.

II. RELATED WORKS

A. Distributed Vs Centralized Localization Schemes

A dominant approach of 3D localization is by employing
the centralized algorithm to compute the actual coordinate
of each unknown node. The centroid-based approach [10] is
one of the earliest works of connectivity-based localization.
In [10], a node estimates its location simply by calculating
its distance to the centroid of anchor nodes which are in the
communication range; and based on that the appropriate sub-
area will be selected as the node location. The localization
of this scheme can be determined with high accuracy if the
anchors are uniformly distributed with high density all over the
network. However, it cannot be applied in large scale ad hoc
WSNs for accurate localization as the high density deployment
of anchor nodes is not affordable for most of large scale WSN
applications in reality. Other centralized algorithms, such as
3D-DV-HOP [7] and 3D-MDS-MAP [8] are modified from
2D-plan scenarios. In a large scale wireless sensor network,
with the limited power and computation capability of each
sensor node, the centralized algorithms can be extremely
expensive at cost of computational and time complexity, and
therefore is not practical.

There is another attention in localization which uses the
connectivity information only. These schemes aim to produce
a relative coordinate system for a network without reliance
on extra hardware supplement [2][11]. Liu et al. [12] define
concavity to recognize concave nodes and decompose plane
wireless sensor networks. The experimental results of [3]
demonstrate that the error of the localization algorithm can be
reduced by 60-90% after the processing. CATL [6] is recently
proposed for 3D WSN localization. In CATL, notch nodes

where the hop-count of the shortest path between the nodes
deviates from the true Euclidean distance are firstly identified.
Then an iterative notch avoiding multilateration scheme is
adopted to realize the localization. The accuracy of CATL is
closely tied up with the proper deployment of anchor nodes.
As a result of the iterative operations, CATL has the drawback
of error propagation. Zhang et al. [4] use the concave node
definition to recognize concave nodes and perform convex
partitioning on the sensor network. It is demonstrated in [4]
that the convex partitioning approach could considerably en-
hance the performance of virtual-coordinate-based geographic
routing algorithms and connectivity-based localization routing
algorithms. It is also suggested that the concave nodes can be
seen as a typical supporting structure for general geometry-
related applications in wireless sensor networks.

B. Network Partitioning

Network segmentation has been intensively studied in lit-
erature [13], [14]. It is usually regarded as an optimization
problem that divides the network while minimizing or max-
imizing some given criteria or property in the computational
geometry. Most of these problems are, however, known to be
NP-hard [15].

Convex decomposition, with or without Steiner point, has
been researched for many years in computer graphics com-
munity [16], [17], [18]. Approximate convex decomposition
(ACD) aims at minimizing concavity along with obtaining
balanced partitions with perceivable components [19]. Wan
[20] extends ACD to incorporate both concavity and curva-
ture and prevents over-segmentation by avoiding cuts inside
pockets. However, these algorithms often work in a centralized
fashion and take the full coordinate information for granted,
which is not applicable for large-scale sensor networks. Three-
dimensional models are partitioned by projecting the model
into 2D plane [21], [22]. The projections are segmented
and mapped back on the original object. Nevertheless, the
segmentation boundaries become restricted with respect to
the choice of the projection planes and their orientation. The
application of this method into a 3D WSN scenario could be
infeasible due to the complex projection which involves the
node locations.

The approximate convex partition based localization in 3D
wireless sensor networks face several challenges. First of
all, there is a lack of understanding of concavity of a 3D
scenario. Secondly, recent convex partition schemes from the
literature are designed for continuous shapes in a centralized
manner. While for 3D distributed localization, the number of
approximate convex parts has to be minimized as the merge of
various coordination could bring non-negligible errors. Third,
due to the nature of the random deployment of 3D sensor
networks, it is impractical to manually identify convex/concave
regions during deployment or just extract a graph of the
network directly. Furthermore, in real-world application, the
sensor network is discrete and the nodes can only obtain
local information by message exchange. A low communication
complexity scheme is therefore necessarily required consider-

ing the limited resource at each sensor node. Lastly, it is not
straightforward to reconstruct a global map with the relative
coordinates after the network segmentation. The number of
partitions also has to be optimized for the localization accuracy
and algorithm complexity. Our work is then motivated to
address the above challenges in one framework.

III. ALGORITHM DESIGN

This section develops the proposed algorithm for large-
scale 3D WSNs based on network segmentations. By accu-
rately identifying the concave nodes, the proposed scheme
decomposes a 3D WSN into a number of approximate convex
subnetworks, and we adopted the state-of-art MDS algorithm
to achieve relative localization in each subnetwork. Finally,
the proposed scheme DisLoc unifies location of all the sub-
networks.

A. Overview

Since a real-world application of wireless sensor networks is
discrete and has subsequent boundary noise, it is impossible
to segment the network into strictly convex sections. As in
[8], the MDS-based localization can tolerate localization error
well due to its over-determined nature. Therefore, the discrete
3D network can be approximately divided into several convex
sections. It is assumed that the boundaries of the network
can be identified1. The proposed algorithm consists of the
following three steps:

1) 3D network segmentation. It decomposes a 3D wireless
sensor network into several approximate convex pieces.
It involves spatial concave node recognition, segmenta-
tion and partition recognition. The number of partitions
optimization is discussed in this part as well.

2) Distributed map establishment. An advanced MDS tech-
nique is adopted here to realize relative localization for
each approximate convex section.

3) Global map establishment. At last, we will merge all
partitions into a global map and identify the absolute
coordinates for each node. We develop a method which
is inspired by camera calibration principle of computer
vision. This coordinate merging method can reduce the
errors of coordinate integration between subnetworks
and improve the localization precision.

B. Network Segmentation

Network segmentation is designed to decompose a wire-
less sensor network into several approximate convex pieces.
It proceeds three steps including concave node recognition,
segmentation and partition recognition as follows.

1) Concave nodes Recognition: A concave node is a node
where the inward angle (the angle spanning across the sensing
area) is greater than π [6] as shown in Fig. 1 . Concave nodes
presented in the network can seriously disrupt the straight-
line course between nodes and result in the inaccuracy of

1boundary identification is out of the scope of this work. We pointer
interested readers to [23], [24], [25] for related schemes. In this paper, we
adopt the scheme in [25] in our simulation.

localization algorithms. As a special kind of nodes, concave
nodes also have following two features.

Feature I. Compared with the ordinary boundary nodes
(including convex nodes), the spatial coverage of a concave
node with k hops contains the largest number of nodes, as
shown in Fig. 1(a).

In a 3D WSN where nodes are evenly deployed, a boundary
node which has a greater coverage indicates that this node
have more neighbors within k steps (a step here indicates a
hop between two nodes). However, in general, sensor nodes
are not uniformly distributed in a network. As such, we define
relative coverage rate ϕk

i , which can be represented as (1).
The relative coverage rate ϕk

i is proposed to capture the effect
of network density.

ϕk
i =

∑k
j=1 x

j
i

Bi

Bi =

{
1
n

∑n
t=1 x

1
t n ≥ 1

1 n = 0

(1)

where Bi is the background distribution density of node i. xji
denotes the number of neighboring node for node i in j steps
, and n denotes the boundary neighbor number of node i in
one step.

Feature II. The maximum arc length of a spatial concave
node is longer than those of other boundary nodes, and this
maximum arc can be approximately described as the route
from the left kth neighbor to the right kth neighbor, as shown
in Fig. 2(b).

For a single node, as shown in Fig. 2(a), there is a pair
of neighbors A and B having the largest central angle than
other pairs such as a and b. Besides, this pair nodes are also
boundary nodes. We define the concept of path concavity Ψ
and calculate the path concavity for each candidate we selected
after rough selection.

Ψi =
Arci

π × k × dhop
(2)

where k represents a radius of k steps, dhop is the average
length of one step, and Arci is the longest arc length that
combines node neighbors in k steps. When ψ > 1 + ζ (i.e.,
the central angle is larger than π), set node i as a concave
node; otherwise, eliminate node i.

That is to say, we can identify concave nodes by calculating
the distance of all such pairs of boundary nodes and estimating
whether the longest one is longer than a threshold or not. If
the answer is yes, the current node is a concave node. The
shortest path between two neighbor nodes of a concave node
is used to simulate the corresponding arc length of a potential
concave node.

Using the shortest path of a pair of boundary nodes to
simulate the longest arc length, the following cases must be
considered when the network has a low connectivity (i.e., a
node has a fewer neighbors in k steps):

k

Step

(a) The coverage of a concave
node with k steps.

(b) The coverage of a convex node
with k steps.

(c) The coverage of an ordinary
node with k steps.

Fig. 1. Three types of boundary node coverage. The red dots denote the
currently selected boundary node, and the blue dots denote the boundary
nodes neighbor nodes in k steps

A BC

a

b

(a) A maximum route of concave
node.

(b) Possible distance between
neighbor pairs.

Fig. 2. The maximum route of concave nodes.

1) There is no shortest path between two nodes when the
node has low connectivity as shown in Figure 3. This
could lead to the situation where two boundary nodes do
not have a connecting path in a network. To solve this
problem, we introduce k+ l-step neighbors as pseudo k-
step nodes to help determine the shortest path, as shown
in Figure 4(a). We do not take the k− l neighbor nodes
as the assistant nodes because they may bring significant
reduction the length of the shortest path.

2) Spatial curve folding. Spatial curve folding is a unique
problem in 3D space, as shown in Figure 4(a). Although
there is a shortest path between two neighbor nodes in k
steps, due to the node connectivity and irregular distri-
bution, shortest path wrapping emerges in a segment of
the path, which increases the length of the shortest path.
This problem can be solved by adding assistant neighbor
nodes. If the shortest path is shortened after k+ lth step
nodes are introduced for the nominated nodes, then the
path folding occurs when only using the k-step neighbor

Fig. 3. The neighbor nodes of the nominated node cannot find the shortest
path in k steps.

(a) Spatial curve folding (b) Solution: Introduce nodes in
k + 1 steps

Fig. 4. Spatial curve folding problem and its solution.

nodes. Hence, the algorithm specifies the rule

dis(p1, p2) = min(f(Ai
k), f(Ai

k,k+1)) (3)

where dis(p1, p2) represents the distance between nodes
(p1, p2), f(Ai

k)represents the shortest path between
nodes (p1, p2) in the network topology, which is formed
by the k-step neighbor nodes of node i.

3) Fake concave node: fake concave nodes are those nom-
inated nodes that are a network boundary but that are
not close to the boundary line. Such nodes may have
a central angle slightly larger than π , as shown in
Figure 5. To avoid the incorrect recognition of concave
nodes, we adjust the threshold in Equation 2, i.e.,
ψi > 1 + ζ + ξ, where ξ > 0 is an empirical number.
The ξ is designed to rule out the fake concave node.

Based on above analysis, we propose Algorithm 1 to iden-
tify concave nodes based on the features presented. Algorithm
1 mainly consists of two phases: rough identifying and refined
recognition. The rough identifying phase, the algorithm selects

Fig. 5. Fake concave node

the nodes which have more neighboring nodes in k step
coverage and identify them as potential concave nodes. The
refined recognition is derived from the second feature.

Algorithm 1: Concave Nodes recognition
Require:

All boundary nodes.
The number of boundary nodes N.
A neighbor matrix A describes the connectivity
relationship between all nodes.
Threshold δ and ξ.

Ensure:
Concave nodes set CN.

1: for each boundary nodes i do
2: DO
3: Calculating the number of neighbors n whose

distances is less than k steps from a certain node i.
4: Calculating background B whose ;
5: if n/b < δ then
6: candidate set CNc=CNc

⋃
i;

7: end if
8: end for
9: for each nodes j in CNc do

10: calculating the neighbor set with k steps, Aj
k based on

A;
11: max=0;
12: for each two nodes (p1, p2) in Aj

k do
13: if A(p1, p2) = 1 then
14: dis(p1, p2);
15: if dis(p1, p2) > max then
16: max = dis(p1, p2);
17: end if
18: end if
19: end for
20: if max > ψ then
21: CN=CN

⋃
j;

22: end if
23: end for

In Algorithm 1, max is a temp flag which is used to find
the longest distance. dis refers to the hop distance from p1
to p2. Threshold δ is used for rough selection of concave
node recognition. δ is set to 3% for our following simulations,
which means the top 3% boundary nodes with highest relative
coverage rate is selected for the refinement. This empirical
threshold is identified through simulations. It is verified that
the nominated node set CN contains nearly all of the concave
nodes when using this threshold. ψ is adopted to identify
whether a candidate node is a concave node or not.

2) Convex Segmentation: Convex segmentation aims to
decompose a WSN W including concave nodes into several
convex pieces D, which is specified in Definition 1.

Definition 1. In a decomposition D of a wireless sensor
network, W is defined as a set of components {Wi}, such that
the union of the Wi is W , and every pair of Mi is interior

Fig. 6. The principle of segmentation.

disjoint: ∑
Wi = W

∀i 6=jMi

⋂
Mj = ∅

(4)

To achieve this goal, we need to obtain all concave subsets
from the original concave set. A concave subset contains all
concave nodes in one concave area. As shown in Fig. 6, the
original concave set can be divided into two concave subsets
which are denoted by red and blue nodes, respectively.

Intuitively, the hop distance between red concave nodes is
less than the step length from a red concave node to a blue
one. It means that the inter-class distance is different from
the intra-class distance. In this way, we only need to set an
appropriate distance threshold to classify all concave nodes.

Theorem 1. Converse of the mid-perpendicular plane the-
orem: If a point is equidistant from the endpoints of the
segment, it is on the mid-perpendicular plane of a segment.

After the process of concave nodes recognition using Fea-
ture 2, each concave node has a pair of nodes distributed
on the left and right, respectively. As shown in Fig. 7(a), a
red concave node C represents a concave region and its two
endpoints of the arc are denoted as yellow nodes A and B.
Because point A and B are the k steps neighbors of the node
C, then, we can believe that the distance AC is equal to the
distance BC. We also denote the middle point of line AB as
point O. Then, there is no doubt that AO = BO. According to
theorem 1, we can deduce that point O and C are on the mid-
perpendicular plane of line AB. In the same way, we also can
find other arbitrary points X are all on the mid-perpendicular
plane. Line AB and OC can determine a plan π. With the
help of plane π, we can derive Feature 3.

Feature 3. For all nodes X = x1, x2, · · · , xn in the
segmental plane, the distance from xi to the left boundary
node is equal to the distance between xi and the right boundary
node.

Proof: Firstly, we assume that there is a plane Ω which is
perpendicular to plane Π and point O is on the intersecting
line of two surface. Certainly, line AB is perpendicular to
plane Ω at point O. Then we choose an arbitrary point X in
plane Ω. Because point O and X are both in plane Ω, then

C

O
B

A

X



(a) Characteristic of segmental nodes.

:

B
A

3

Xj

Xi

(b) Segmental lines and its plane

Fig. 7. The principle of segmentation.

we can deduce that line XO is perpendicular to line AB and
∠AOX = ∠BOX . At here, in 4AOX and 4BOX , OA =
OB,OX = OX and ∠AOX = ∠BOX , then 4AOX ∼=
4BOX . So, XA = XB. It demonstrates that, for any nodes
X in the segmentation plane Ω, distance between the node A
and X is equal to the distance from B to X .

In this way, to define a segmental plane Ω, we only need to
find all the nodes which satisfies Feature 3 and denote them as
segmental nodes. The plane Ω is also a bisector of the inward
angle at each concave area.

3) Optimization the number of convex pieces: In general,
the bisector process typically has an acceptable segmental
result and all partitions generated by this convex segmentation
are convex polyhedrons, as it is proved in [26]. However,
more convex pieces indicates that more distributed coordinates
need to be merged at the final stage of localization. This may
bring significant errors for coordinate merging, and therefore
decrease the accuracy of localization. To address this issue,
we investigate in schemes to minimize the number of convex
pieces during network partition.

Using the segmentation method in Section III-B2, we
can get a segmental plane which bisect a concave area and
divide the area into several parts. The segmental planes can
be classified by two cases. One is that a plane will extend

through a concave region until it reaches the boundary area.
The other one is that a segmental plane will cross with other
segmental planes before it extends to the boundary area. As
shown in Fig. 8, plane ω belongs to the first category; and
plane α interacts plane β at line µ, which belongs to the
second circumstances. For the first case, there is no doubt
that the segmentation process can terminate and two convex
subnetworks can be obtained because of plane ω. However,
for the second case, the number of convex subnetworks will
be four. In a limited area, two intersected segmental planes
indicate that the concave regions are very close to each
other and the direction of each plane should not be parallel.
It indicates that these area may be overly segmented. For
example, as shown in Fig. 8, plane α and β belong to the
second circumstance. Two concave areas are not far from each
other and the difference between angle ϑ and ε is very obvious.
Then we try to merge the original segmentation by searching
for a line connecting the representative concave nodes C and
F .

Although connecting two concave nodes directly will de-
crease the degree of concave certainly, it is necessary to check
whether the generated partitions are all convex polyhedrons or
not. If there is at least one partition still concave, the merged
result should be discarded and the original result is reused.
Otherwise, an optimized result is obtained and used for the
following process, distributed localization. For checking, we
use inward angle to ensure the result of approximate convex
decomposition. In detail, as shown in Fig. 9(a), we will find
a node x in the line CF firstly. The node x, A and B are all
the kth neighbors of a representative concave node C. Then
we will calculate the approximated arc length Ãx and B̃x,
respectively, according to (5).

l = θ × r (5)

where θ is an angle and l is the arc length of this angle. r
represents a radius. Here, taking node C as an example, θ
is equal to angle ∠ACx and ∠BCx. r is the length of hop
distance.

Therefore, if Ãx or B̃x is larger than π × k, this merge
result should be discarded. This is because that the calculating
value indicates that at lest one generated polyhedron is still
concave. Similarly, for the concave area F , we do the same
evaluated process to determine that whether the optimized
result is effective.

In all, the process of optimized convex segmentation can be
described as algorithm 2 and the pseudo optimal results are
shown in Fig. 9(b).

4) Partition Recognition: The partition recognition phase
aims to recognize the partition edges of two neighboring
subnetworks and notify the nodes of the partition they belong
to. The flooding mechanism is adopted here. The key chal-
lenge is how to confine the flooding scheme within certain
partition without penetrating to other parts of the network. To
achieve this goal, we proceed three operations, isolated nodes
classification, flooding and extending.












Fig. 8. Merge circumstance.





A
B C


D
EF

(a) Merge principle

 A
B C



D
EF



(b) Optimized segmental result

Fig. 9. Optimized process and result.

Isolated nodes classification The result of segmentation
phase can provide a natural border plane between two par-
titions. However, it is only a rough boundary and can not
indicate which partition these nodes actually belong to. We
construct a thick volume area to prevent the flooding scheme
penetrating from different polyhedron. The isolated nodes are
used to mark the termination of flooding process. We assume
that there exist a coordinator in the network which is in charge
of node classification of the network. In our implementation,
all the k-hop neighbors of the segmental nodes (nodes in the
segmental plane), including the segmental nodes themselves,
constitute a thick volume area. All those k-hop neighbors are
called as volume nodes. Then, no matter segmental nodes or
volume nodes, their neighbor relationship is seen as temporary
invalid from the neighbor matrix. These nodes then be recog-
nized as isolated nodes. Then we successfully classified sensor

Algorithm 2: Optimized Convex Segmentation
Require:

Two concave area nodes whose segmental plane is
crossing.

Ensure:
Optimized segmentation for concave nodes.

1: Find a shortest route Sr between two representative
concave nodes;

2: Find the k − hop neighbor X;
3: Calculating the corresponding arc length l for each

segmental inward angle.
4: if l > π × k then
5: Readopt bisector segmental plane;
6: else
7: Sr and it first neighbors will be denoted as segmental

plane.
8: end if

nodes into four categories: boundary nodes, isolated volume
nodes, isolated segmental nodes and general nodes.

Flooding. Choosing a certain number of general nodes
which belong to different polyhedron and keeping flooding for
each piece. Recall that the number of concave area is known
which has been determined in the very first phase of convex
segmentation and the optimized phase.

It is assumed that each node will have a flag to represent
its attribute after the isolated node identification. First of all,
we randomly select one general node and denote it an unique
clustering number. The node selected then flood the cluster
number to its one-hop neighbors. These neighbors classify
themselves as the same clustering number and keep flooding to
their neighbors again. This flooding process of a single original
node is terminated until all connected neighbors(which has to
be general nodes) are denoted as the same number. Another
original node is then selected in the remaining general nodes
and keeps flooding as the same process. In this end, all
general nodes are classified as general nodes which know their
clustering number.

Extending. Segmental volume nodes are still isolated nodes
and they need to be classified to different parts as well. For
this nodes, we make those classified general nodes extending
their boundaries. For a certain polyhedron P , if a general
node, p, is close to P ’s boundary , it recovers its relationship
with volume nodes and extends one-hop to make those one-
hop neighbors as the same cluster with p. After that, we move
to another polyhedron to do the same extension. The process
of extension terminates until all volume nodes are classified
into different polyhedrons.

In detail, algorithm of recognition can be described as
algorithm 3.

C. Distributed Map Establishment

After network segmentation phase, the whole 3D network is
divided into several subnetworks. Each subnetwork is regarded
as a cluster. We can obtain the relative coordinates of nodes in

Algorithm 3: Partition Recognition
Require:

All nodes and their attributes.
A neighbor matrix A describes the connectivity
relationship between all nodes.
The optimized number No of polyhedrons.

Ensure:
All nodes with a specific cluster number.

1: for each isolated segmental nodes i do
2: DO
3: Search all neighbors n whose distances is less than k

steps from a certain node i.
4: IBN ← IBN

⋃
n;

5: A(n,:)=0,A(:,n)=0;
6: end for
7: for each optimized polyhedron j do
8: randomly choose a node nj and denote the cluster

number j;
9: create a new queue Q;

10: Q.push(the node nj);
11: while !Q.empty do
12: nj1=Q.pop;
13: Q.push(all first neighbors of the node nj1);
14: denote the nodes nj1 as cluster j;
15: end while
16: end for

each cluster using the MDS-MAP algorithm, with the details
described as below.

We assume in each subnetwork, there exists a localization
coordinator(could be arbitrary node), and the coordinator is in
charge of the process of local relative map establishment. ni
is denoted as the number of sensor nodes in each subnetwork.

In each subnetwork, the shortest hop count between two
arbitrary adjacent nodes in the whole network can be obtained
by the Floyd algorithm, and all of these hop count distances
is saved in a distance matrix named by neibMatrix . Based
on the neibMatrix and MDS-MAP algorithm, the relative
coordinates of each cluster can be calculated. The MDS-MAP
algorithm deployed consists of 4 steps:

1) Step 1 The shortest hop counts between all pairs of
nodes in the whole network can be computed by Floyd
algorithm, and it can construct the n×n distance ma-
trix(n nodes in the network) neibMatrix. Here, the time
complexity of this algorithm is O(n3i), where ni is the
number of nodes for a subnetwork.

2) Step 2 Compute the square of all elements in the
matrix neibMatrix and obtain the square matrix
neibMatrix2. Then compute the inner product matrix B
of neibMatrix2, B = −(1/2)EneibMatrix2E, here
E represents nth identity matrix.

3) Step 3 MDS applies SVD(singular value decomposition)
on Matrix B to extract all eigenvalues and their corre-
sponding eigenvectors of matrix B.

4) Step 4 Take the first three largest eigenvalues to con-
struct the relative coordinates of this cluster and the
relative map of this cluster is established. Note that
in MDS-based localization scheme, only the first three
largest eigenvalues are used for 3D coordinates. Thus we
can use the power method of a matrix only 3 times to
obtain these three eigenvalues and eigenvectors, instead
of all eigenvalues and eigenvectors. The power method
(also known as the power iteration) of a matrix B is
designed for extracting the dominant eigenvalue (i.e.,
the first eigenvalue with the largest magnitude) and the
corresponding eigenvector.

For each subnetwork, it will execute MDS-MAP algorithm to
localize those nodes. The procedure of local map establishment
is fully distributed for each subnetwork.

D. Global Map Establishment

After obtaining the relative map of each cluster, we need
to convert the distributed map into a global map. The global
map is established from merging these different clusters. The
merging method is to find two adjacent clusters which have
the most common nodes and then merge them into one cluster
(This is discussed in our previous work [9]). When all
clusters are merged into one cluster , the merging process
stops and the global map establishment is completed. At the
end, all the absolute coordinates of the unknown nodes have
been estimated. In our algorithm, we choose 3D Coordinate
Transformation Algorithm as the practice of merging two
adjacent clusters. The merging process is shown as follow.

Suppose two adjacent clusters are cluster M and cluster N,
and node p is a common node of cluster M and cluster N.
The 3D relative coordinates of P are (xM , yM , zM) in cluster
M, while in cluster B is (xN , yN , zN). We merge the two
coordinates based on the following formula.

xM
yM
zM
1

 = MNM


xN
yN
zN
1

 =

[
R T
O 1

]
xN
yN
zN
1

 (6)

MNM is the coordinate transformation matrix from cluster
N to cluster M. there are 12 variables, which expressed the
rotation matrix R and translational matrix T = [Tx, Ty, Tz]T ,

the rotation matrix R =

 R1 R2 R3

R4 R5 R6

R7 R8 R9

 should meet the

orthogonal condition:

R2
1 +R2

4 +R2
7 = 1

R2
2 +R2

5 +R2
8 = 1

R2
3 +R2

6 +R2
9 = 1

R1R2 +R4R5 +R7R8 = 0

R1R3 +R4R6 +R7R9 = 0

R2R3 +R5R6 +R8R9 = 0

Then the translation formula can be described more specifi-
cally, 

xM
yM
zM
1

 =


R1 R2 R3 Tx
R4 R5 R6 Ty
R7 R8 R9 Tz
0 0 0 1



xN
yN
zN
1

 (7)

Then put n pairs of common nodes coordinates of cluster
M and cluster N (xMi, yMi, zMi), (xNi, yNi, zNi) (i = 1,
2, ..., n) into (3), we can get (4) as follows:

[
xM1, yM1, zM1, xM2, yM2, zM2, . . . , xMn, yMn, zMn

]T
=

xN1 yN1 zN11 0 0 0 0 0 0 0 0
0 0 0 0xN1 yN1 zN11 0 0 0 0
0 0 0 0 0 0 0 0xN1 yN1 zN11

xN2 yN2 zN21 0 0 0 0 0 0 0 0
0 0 0 0xN2 yN2 zN21 0 0 0 0
0 0 0 0 0 0 0 0xN2 yN2 zN21
...

...
...

...
...

...
...

...
...

...
...

...
xNnyNnzNn1 0 0 0 0 0 0 0 0
0 0 0 0xNnyNnzNn1 0 0 0 0
0 0 0 0 0 0 0 0xNnyNnzNn1


×
[
R1, R2, R3, Tx, R4, R5, R6, Ty, R7, R8, R9, Tz

]T
(8)

Having the equation solved, we can get 12 parameters of
transformation matrix. We can then figure out the merging
coordinates of cluster M and cluster N based on the parameters
derived. Repeat the merging step until there is only one cluster
which contains all the relative nodes coordinates of all clusters.
In these steps, the time complexity is O(n3i), where ni is
the number of nodes in a subnetwork. Based on the anchor
nodes we deployed, we can calculate the absolute coordinates
of all nodes based on the above 3D Coordinate Transformation
Algorithm, and the global map can be established.

E. Time complexity

The time consuming of the algorithms is relative to the
computational complexity. The whole framework consist three
steps: 3D segmentation, Distributed map establishment and
Global map establishment. Given n sensor nodes in a 3D WSN
and the network has been partitioned into k subnetworks.

For 3D segmentation, it mainly includes four parts: concave
node recognition, isolating segmental nodesoptimizing polyhe-
dron and partition recognition. For concave node recognition,
we only deal with the boundary nodes which could be seen
as a relative small portion of the whole network. In segmental
node isolation part, we only focus on all segmental nodes and
find neighbors within limited steps. Thus, the time complexity
is related to the number of segmental nodes and boundary
nodes which are very small when compared with the number
of all nodes in WSN. For optimizing polyhedron and partition
recognition, the time complexity is related to the number of
nodes belong to one cluster. Generally, all nodes in WSN will
be visited and get its cluster number only once. Therefore, the
time complexity in algorithm 3 is pretty small.

Distributed Map Establishment phase definitely is the most
time-consuming part of the proposed DisLoc algorithm. The
time complexity of identifying the coordinates in different par-
tition is O(kn3

i), where k represents the number of partitions
and ni represents the number of sensor node in each partition.

The merging phase has the time complexity of O(n).
Therefore, the time complexity of DisLoc is O(kn3i), which
decreases the time complexity significantly compared with
existing techniques such as 3D-MDS and 3D-DVHOP.

IV. SIMULATION

A. Simulation Setup

We evaluate proposed DisLoc algorithm on four represen-
tative topologies of real-world applications: the 5-shape topol-
ogy as a 5-shaped coal mine tunnel, the Fei-shape topology as
Hangzhou East Express railway station, the H-shape topology
as an H-Shape terminal building, and the C-shape topology as
an ordinary building entrance. The simulated topologies are
shown in Fig.10 to Fig.13, respectively. For simplicity, we
use type5, typeF, typeH, typeC to refer to the four different
network topologies in the rest of the paper.

For all these topologies above, the sensor nodes are uni-
formly distributed in networks. All the sensor nodes have the
same communication range by default, denoted by R. Each
pair of nodes are connected if the Euclidean distance between
them is no greater than R. The Logarithmic Attenuation Model
is selected as the communication model to simulate the real-
time communications among sensors.

The performance of proposed algorithm is assessed by the
average localization error which is defined as follows. Let d
denote the distance between two neighboring nodes computed
based on the established coordinates, and let d̂ denote the
ground-truth distance between the two neighboring nodes. The
average location error is defined as

∣∣∣d− d̂∣∣∣/R.
Fig. 10 to Fig. 13 show the localization results under differ-

ent topologies, respectively, including the network segmenta-
tion results, anchor nodes deployment and average localization
error. There are 2249 sensor nodes randomly deployed in 5-
shape topology region shown in Fig. 10(a). 1799 sensor nodes
are deployed in typeC topology shown in Fig. 11(a). 3198
sensor nodes are deployed in Fei-sharp topology region shown
in Fig. 12(a), and 3994 sensor nodes are deployed in H-sharp
topology region as shown in Fig. 13(a).

As displayed in Fig. 10 to Fig. 13, the first column chart
shows the network topology deployment. The second colunm
shows the results of network segmentation. The third column
shows the deployment of anchor nodes colored by red de-
ployment, and the last column shows the localization error. To
make the localization results easier to read, both the true loca-
tion and estimated location of a node are plotted in Fig. 10(d),
Fig. 11(d), Fig. 12(d) and Fig. 13(d), respectively. A light-blue
line which connects these two locations, represents the sheer
localization error. The longer line apparently represents the
larger error.

0

100

200

300

400

500

600

700

800 0

500

1000

1500

0

200

400

(a) Network topology

0

200

400

600

800 0

500

1000

1500
0

200

400

(b) Segmentation results

0

100
200

300
400

500

600
700

800 0

500

1000

1500

0

200

400

(c) partition recognition and anchor
nodes deployment

−200

0

200

400

600

800

1000
−200 0 200 400 600 800 1000 1200 1400 1600

−200

0

200

400

(d) Localization results

Fig. 10. Simulation Results for 5-shape

0

200

400

600

800

1000 0

200

400

600

800

1000

0

100

200

300

(a) Network topology

0

200

400

600

800

1000 0

200

400

600

800

1000

0

100

200

300

(b) Segmentation results

0
200

400
600

800
1000

0

200

400

600

800

1000

0

100

200

300

(c) Partition recognition and anchor
nodes deployment

−200
0

200
400

600
800

1000
1200

−200

0

200

400

600

800

1000

1200

−500

0

500

(d) Localization results

Fig. 11. Simulation Results for C-shape

0
200

400
600

800
1000

0

200

400

600

800

1000

1200

1400

1600

0
100
200

(a) Network topology

0
200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

0

100

200

(b) Segmentation results

0
200

400
600

800
1000

0

200

400

600

800

1000

1200

1400

1600

0

100
200

(c) Partition recognition and anchor
nodes deployment

−200 0 200 400 600 800 1000 1200

−500

0

500

1000

1500

2000

0
100
200

(d) Localization results

Fig. 12. Simulation Results for Fei-shape

0

500

1000

1500

0

500

1000

1500

0

200

400

(a) Network topology

0

500

1000

1500

0

500

1000

1500

0

200

400

(b) Segmentation results

0

500

1000

1500

0

500

1000

1500

0

200

400

(c) Partition recognition and anchor
nodes deployment

0
500

1000
1500

−500

0

500

1000

1500

2000

−500

0

500

(d) Localization results

Fig. 13. Simulation Results for H-shape

As shown in Fig. 10(b), Fig. 11(b), Fig. 12(b) and Fig. 13(b),
respectively, the proposed algorithm could successfully de-
compose 3D networks and achieve an acceptable number
of partitions. Given a reasonable number of anchor nodes
deployed, the respective localization error is displayed in
Fig. 10(d), Fig. 11(d), Fig. 12(d) and Fig. 13(d), respectively.
It is apparent that DisLoc performs better in terms of average
localization error when the topology is relative simple (the
number of partitions is relatively small). It can be explained
as that the error could be accumulated during the process of
merging subnetworks, especially when the network has to be
segmented into a good many ones.

We then compare the algorithm performance with previous
work D3D-MDS in terms of accuracy. We choose C shape
topology as the experimental environment. For comparison,
localization error is observed under different network con-
nectivity. The comparison result is shown in the following
Fig. 14. As can be obviously seen from the simulation results
of Fig. 14, the localization error decreases when the network
connectivity increases. It can be seen that the proposed al-
gorithm can achieve better performance than the D3D-MDS
algorithm. For the same network connectivity, the localization
error is smaller when the proposed algorithm is applied in
the same WSNs environment. For example, when the network
connectivity is 14, the localization error of the proposed
algorithm is about 59%, while the localization error of D3D-
MDS is about 99.65%.

10 12 14 16 18 20 22
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

network connectivity

Lo
ca

liz
at

io
n

er
ro

r

D3D−MDS
our Algorithm

Fig. 14. Comparison result with D3D algorithm

B. performance evaluation

Through intensive experiments, we realize that the number
of common nodes in III-D and anchor nodes deployments both
have great influence on the localization results.

From the previous discussion of network segmentation, it
is known that common nodes are extremely crucial to the
network segmentation and the following merge. It relates to the
volume area mentioned in III-B4. In this section, the number of
common nodes is tuned in Fig. 15 with respective algorithm
accuracy. Anchor nodes deployment will significantly affect

1 1.5 2 2.5 3 3.5 4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Common Node

Lo
ca

liz
at

io
n

er
ro

r

type5
typeC
typeF

Fig. 15. The impact of common nodes

the localization result as well. Fig. 15 shows the performance
variance with different anchor node deployments.

1) Impact of common nodes: In Fig. 15, the number of
common nodes is based on the common nodes set c, which
includes the initiative set and its neighbors. c = 1, represents
that the common node set is the initiative set. When common
node value c is set to 2, 3 or 4, it indicates that the common
node set including the initiative set and its one, two or three
hop neighbors, respectively. It can be seen from Fig 15 that the
localization error is relatively low when the common node set
is the initiative set and its two hop neighbors. This conclusion
can help merge two adjacent subsection.

2) Impact of anchor nodes: In general, the localization
error decreases as the number of anchor nodes increases
within the limits. To observe the impact of anchor nodes, we
change the number of anchor nodes to investigate its impact
on algorithm performance in terms of localization accuracy. It
can be seen from Fig. 16 that the variance of localization error
is quite consistent when the number of anchor nodes is more
than 20. It shows that the localization can be realized only
with a very small proportion of anchor nodes. For example,
when the number of anchor nodes is 20, this number implies
that limited anchor node ratio was adopted for presented
four simulation scenarios.(i.e. for 5-sharp, the ratio of anchor
nodes is 0.89%, 0.63% in Fei-sharp, 0.5% in H-sharp and
1.1% in C-sharp). It can be explained by MDS algorithm
analysisthat theoretically, only four anchor nodes are required
for a centralized localization algorithm . Due to the complexity
brought by the 3D sensor network, we achieve reasonable
results by deploying a small portion of anchor nodes.

V. CONCLUSION

This paper has developed DisLoc, a novel distributed local-
ization algorithm, for a 3D WSN when the network is in a
irregular shape. DisLoc has addressed a series of challenges

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Anchor node number

Lo
ca

liz
at

io
n

er
ro

r

type5
typeC
typeF
typeH

Fig. 16. The impact of anchor nodes

using fully distributed algorithms including spatial convex
node identification, network segmentation, local localization
and global map reconstruction. DisLoc works in a fashion
that is distributed, low message and computation overhead.
Using extensive simulations, it has been shown that DisLoc
can achieve high efficiency and accuracy as compared with
existing proposals.

In future, we plan to set up a real-world 3d sensor network
to assess the performance of DisLoc, and apply DisLoc to the
advanced service applications in sensor networks.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foun-
dation of China under Grant Nos. 61401135.

REFERENCES

[1] S. Lederer, Y. Wang, and J. Gao, “Connectivity-based localization of
large-scale sensor networks with complex shape,” ACM Transactions on
Sensor Networks, vol. 5, no. 4, p. 31, 2009.

[2] M. Li and Y. Liu, “Rendered path: range-free localization in anisotropic
sensor networks with holes,” Networking IEEE/ACM Transactions on,
vol. 18, no. 1, pp. 51–62, 2010.

[3] W. Liu, D. Wang, H. Jiang, W. Liu, and C. Wang, “Approximate convex
decomposition based localization in wireless sensor networks,” in IEEE
Infocom. IEEE, 2012, pp. 1853–1861.

[4] S. Zhang, G. Tan, H. Jiang, B. Li, and C. Wang, “On the utility of
concave nodes in geometric processing of large-scale sensor networks,”
IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 132–
143, 2014.

[5] M. Jin, S. Xia, H. Wu, and X. Gu, “Scalable and fully distributed
localization with mere connectivity,” in IEEE Infocom. IEEE, 2011,
pp. 3164–3172.

[6] G. Tan, H. Jiang, S. Zhang, Z. Yin, and A.-M. Kermarrec, “Connectivity-
based and anchor-free localization in large-scale 2d/3d sensor networks,”
ACM Transactions on Sensor Networks, vol. 10, no. 1, p. 6, 2013.

[7] D. Niculescu and B. Nath, “Ad hoc positioning system (aps),” in IEEE
Globecom, vol. 5. IEEE, 2001, pp. 2926–2931.

[8] Y. Shang and W. Ruml, “Improved mds-based localization,” in IEEE
Infocom, vol. 4. IEEE, 2004, pp. 2640–2651.

[9] J. Fan, B. Zhang, and G. Dai, “D3d-mds: a distributed 3d localization
scheme for an irregular wireless sensor network using multidimensional
scaling,” International Journal of Distributed Sensor Networks, 2015.

[10] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low-cost outdoor
localization for very small devices,” IEEE Personal Communications,
vol. 7, no. 5, pp. 28–34, 2000.

[11] W. Xi, Y. He, Y. Liu, J. Zhao, L. Mo, Z. Yang, J. Wang, and X. Li,
“Locating sensors in the wild: pursuit of ranging quality,” in Interna-
tional Conference on Embedded Networked Sensor Systems, SENSYS
2010, Zurich, Switzerland, November, 2010, pp. 295–308.

[12] W. Liu, D. Wang, H. Jiang, W. Liu, and C. Wang, “An approximate con-
vex decomposition protocol for wireless sensor network localization in
arbitrary-shaped fields,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 12, pp. 3264–3274, 2015.

[13] J.-M. Lien and N. M. Amato, “Approximate convex decomposition of
polyhedra,” in Proceedings of the 2007 ACM symposium on Solid and
physical modeling. ACM, 2007, pp. 121–131.

[14] X. Zhu, R. Sarkar, and J. Gao, “Shape segmentation and applications in
sensor networks,” in IEEE Infocom. IEEE, 2007, pp. 1838–1846.

[15] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate con-
vex decomposition using relative concavity,” Computer-Aided Design,
vol. 45, no. 2, pp. 494–504, 2013.

[16] P. K. Agarwal, E. Flato, and D. Halperin, “Polygon decomposition for
efficient construction of minkowski sums,” in European Symposium on
Algorithms. Springer, 2000, pp. 20–31.

[17] B. Chazelle and D. P. Dobkin, “Optimal convex decompositions,”
Computational Geometry, vol. 4, no. 5, pp. 63–133, 1985.

[18] J.-M. Lien and N. M. Amato, “Approximate convex decomposition of
polygons,” Computational Geometry, vol. 35, no. 1-2, pp. 100–123,
2006.

[19] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate con-
vex decomposition using relative concavity,” Computer-Aided Design,
vol. 45, no. 2, pp. 494–504, 2013.

[20] L. Wan, “Parts-based 2d shape decomposition by convex hull,” in
Shape Modeling and Applications, 2009. SMI 2009. IEEE International
Conference on. IEEE, 2009, pp. 89–95.

[21] H. Liu, W. Liu, and L. J. Latecki, “Convex shape decomposition,” in
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on. IEEE, 2010, pp. 97–104.

[22] Z. Ren, J. Yuan, C. Li, and W. Liu, “Minimum near-convex decomposi-
tion for robust shape representation,” in Computer Vision (ICCV), 2011
IEEE International Conference on. IEEE, 2011, pp. 303–310.

[23] D. Dong, Y. Liu, and X. Liao, “Fine-grained boundary recognition in
wireless ad hoc and sensor networks by topological methods,” in ACM
MobiHoc. ACM, 2009, pp. 135–144.

[24] O. Saukh, R. Sauter, M. Gauger, and P. J. Marrón, “On boundary
recognition without location information in wireless sensor networks,”
ACM Transactions on Sensor Networks, vol. 6, no. 3, p. 20, 2010.

[25] Y. Wang, J. Gao, and J. S. Mitchell, “Boundary recognition in sensor
networks by topological methods,” in ACM MobiCom. ACM, 2006,
pp. 122–133.

[26] G. Tan, H. Jiang, J. Liu, and A.-M. Kermarrec, “Convex partitioning
of large-scale sensor networks in complex fields: Algorithms and appli-
cations,” ACM Transactions on Sensor Networks, vol. 10, no. 3, p. 41,
2014.

