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ABSTRACT 

Statistical distributions and models are used in many applied areas such as economics, 

engineering, social, health and biological sciences. In this era of inexpensive and faster personnel 

computers, practitioners of statistics and scientists in various disciplines have no difficulty in 

fitting a probability model to describe the distributions of a real-life data set. Traditional 

enviromentric theory and practice have been occupied with randomization and replication. But in 

environmental and ecological work, observations also fall in the non-experimental, non-replicated 

and non-random catogries.The problems of model specification and data interpretation then 

acquire special importance and great concern. The theory of weighted distributions provides a 

unifying approach for these problems. Weighted distributions take into account the method of 

ascertainment, by adjusting the probabilities of actual occurrence of events to arrive at a 

specification of the probabilities of those events as observed and recorded. Failure to make such 

adjustments can lead to incorrect conclusions. The weighted distributions arise when the 

observations generated from a stochastic process are not given equal chance of being recorded; 

instead they are recorded according to some weight function. When the weight function depends 

on the lengths of the units of interest, the resulting distribution is called length biased. More 

generally, when the sampling mechanism selects units with probability proportional to some 

measure of the unit size, resulting distribution is called size-biased. Size-biased distributions are a 

special case of the more general form known as weighted distributions. These distributions arise in 

practice when observations from a sample are recorded with unequal probability. In Bayesian 

Statistics, the posterior distribution summarizes the current state of knowledge about all the 

uncertain quantities including unobservable parameters. In this thesis, the efforts have been made 

to study the areas. The thesis is divided into five chapters: 

Chapter 1 is devoted to the introduction and genesis of the probability Distributions, Definitions, 

pre-requisites and other preliminaries for the use in the subsequent chapter. An extensive survey of 

the literature available on the topic has also been reviewed. The first chapter provides a strong 

basis for the development of the rest of the chapters. 

Chapter 2 deals with the introduction to Gamma, Beta and Exponential distributions. We have 

proposed a new class of Size-biased classical Gamma, beta and exponential distributions. The 
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structural and characterizing properties including moments, moment generating function, 

characteristic function, Shannon‟s entropy, Fisher‟s information matrix etc. have been derived and 

studied. Some important theorems are derived and the relation with other related distributions are 

identified. Also, a likelihood ratio tests for size-biasedness is conducted. A new moment method 

of estimation has been proposed to estimate the parameters of the new models. The estimation of 

parameters of new models has been obtained by employing the methods of moments, maximum 

likelihood and Bayesian method of estimation. The Bayesian estimation of Size biased Gamma 

and exponential Distributions have been obtained by using squared-error and Al-Bayyati‟s (2002) 

new loss function under different priors. The survival functions of size biased gamma and 

exponential distributions have been derived under Jaffrey‟s and extension of Jaffrey‟s prior. A 

simulation study has been performed for the comparison of Bayes‟ estimators with the MLE 

estimator, when sample sizes are assumed to be low, median and high. 

Generalized Gamma distribution has been considered in Chapter 3, we provide a new class of 

Size-biased Generalized Gamma distribution. The Structural properties of the new model 

including moments, hazard function, reverse hazard functions, coefficient of variation, mode, 

moment generating function, characteristic function, Shannon‟s entropy, Generalized entropy, 

entropy estimation, AIC and BIC and Fisher‟s information matrix has been obtained. Some 

important theorems have been derived and the relation with other related distributions are 

identified. Also; a likelihood ratio test for size-biasedness is conducted. A new moment method of 

estimation has been proposed to estimate the parameters of the new model. The estimation of 

parameters of new model has been obtained by employing the methods of moments, maximum 

likelihood and Bayesian method of estimation. The Bayesian estimation of parameters of Size-

biased Generalized Gamma distribution are obtained by using squared-error and Al-Bayyati‟s  new 

loss function under different priors. The survival functions of size biased Generalized Gamma 

distribution have been derived and studied under Jaffrey‟s and extension of Jaffrey‟s prior. A 

simulation study has been performed for the comparison of Bayes‟ estimators with the MLE 

estimator, when sample sizes are assumed to be low, median and high. Also, it has been observed 

that Bayes‟ estimator provides better results and estimates as compared to classical estimators. In 

this chapter, the AIC and BIC values of exponential model are smaller as compared to Size biased 

exponential and Size biased Gamma model, so exponential model is more preferable than the other 

models for the real data in hand. 
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Chapter 4 Completely devoted to introduction to Generalized Beta distribution of first and second 

kind. We have considered a new class of Weighted Generalized Beta distribution of first kind, 

Size-biased Generalized Beta distribution of first kind and Size-biased Generalized Beta 

distribution of second kind. The Structural properties of these new models including mean, 

variance, coefficient of variation, mode and harmonic mean has been derived. Also, a likelihood 

ratio test for size-biasedness is conducted. A new moment method of estimation has been proposed 

to estimate the parameters of these new models. The estimation of parameters of these new models 

has been obtained by employing the method of moments. A simulation study has been performed 

for the comparison of Bayes‟ estimators with the MLE estimator, when sample sizes are assumed 

to be low, median and high. Also, it has been observed that Bayes‟ estimator under squared error 

and Al-Bayyati‟s loss function provides better results and estimates as compared to classical 

estimators. 

Generalized Rayleigh distribution has been studied in Chapter 5. We have proposed a new class 

of Size-biased Generalized Rayleigh distribution. The Structural properties of the new model 

including moments, hazard function, reverse hazard functions, coefficient of variation, mode, 

moment generating function, characteristic function, Shannon‟s entropy and Fisher‟s information 

matrix have been derived. Also, a likelihood ratio test for size-biasedness is conducted. A new 

moment method of estimation has been proposed to estimate the parameters of the new model. The 

estimation of parameters of new model has been obtained by employing the methods of moments, 

maximum likelihood and Bayesian method of estimation. The Bayesian estimation of parameters 

of Size-biased Generalized Rayleigh distribution are obtained by using squared-error and Al-

Bayyati‟s (2002) new loss function under different priors. A simulation study has been performed 

to compare the Bayes‟ estimators with the MLE estimator, when sample sizes are assumed to be 

low, median and high. Also, it has been observed that Bayes‟ estimator under squared error and 

Al-Bayyati‟s loss function provides better results and estimates as compared to classical 

estimators. 
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CHAPTER – 1 

INTRODUCTION 

 

 

1.1 Introduction  

ncertainty plays an important role in our lives. A satisfactory description of 

uncertainty is by means of probability. The probability is a powerful tool of 

maintaining, understanding, and controlling this important concept in our 

decision making. Statistical distributions and models are used in many applied areas such 

as economics, engineering, social, health and biological sciences. In this era of 

inexpensive and faster personnel computers, practitioners of statistics and scientists in 

various disciplines have no difficulty in fitting a probability model to describe the 

distributions of a real-life data set. Indeed, statistical distributions are used to model a 

wide range of practical problems. Successful applications of these probability models 

require a thorough understanding of the theory and familiarity with the practical situations 

where some distributions can be postulated.  

In modern life, it has become a fashion to describe phenomena in quantitative terms for its 

investigation. In scientific researchers we prefer studying the results of the investigations 

in quantitative rather than qualitative terms. Indeed, the degree of dependence on 

quantitative methods has come to be regarded as the measure of the maturity of any 

science. In studying the phenomenon, a statistician builds up a suitable model for the 

probability law that is actually in operation. One has to decide whether the underlying 

distribution should approximately be regarded as discrete or continuous or of a mixed 

type. One of the twin functions of statistical theory is to suggest probability models that 

may be appropriate for different types of situations and to classify them into broad 

groups. A mathematical model or a function which associates different probabilities with 

U 
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the various outcomes of a random experiment which are eventually quantified in that a 

real value of each outcome is assigned is known as “probability distribution function”.  

1.2 Some basic Probability Distributions 

The probability distributions form a basic and promising field of study in the domain of 

statistics. These distributions provide a simple and rational concept of stochastic models. 

In fact, the moment one gets into a stochastic problem where nothing more than counting 

is involved, one is dealing with discrete distributions. 

The field of discrete distributions has been found to have tremendous potential for wider 

and deeper exploration. The last fifty years or so have seen a vast amount of literature 

appearing in this field. A large number of discrete distributions have been evolved in 

recent past and in a very short span of time the number of these discrete distributions has 

gone very high. The obvious reason for this is that a distribution stands on some stipulated 

assumptions and any variation in these stipulated assumptions leads to a different 

distribution to represent a different situation. A distribution essentially needs revision and 

modification depending upon the nature of change in the situation and this gives rise to a 

new distribution. 

In almost all the basic discrete distributions, two important assumptions are made. (i) The 

trials are independent and (ii) the probability of success at each trial is constant. It has 

been observed that the probability of occurrence of an event does not always remain 

constant and the trails are not independent. This opens a direction for the generalization of 

classical discrete distributions and many researchers have obtained different 

generalizations of these distributions dropping the assumption of independence of trials 

and constant probability of success at each trial. 

Presently, there exist a large number of generalizations of basic discrete distributions in 

the statistical literature. These distributions are classified as compound, mixed, modified, 

contagious or generalized distributions. A good account of these distributions is available 

in Johnson and Kotz (1969) and Johnson, Kotz and Kemp (1992). 

In case of continuous distributions, when we deal with variables like heights and weights, 

we find that such variables can take a non-enumerable infinite set of values or more 
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precisely they can take any values in the given interval 𝑎 ≤ 𝑥 ≤ 𝑏 of the arithmetic 

continuum.  Such variates are called continuous variates and their probability distributions 

are accordingly known as continuous probability distributions. Mathematicians also call 

such a distribution absolutely continuous, since its cumulative distribution function is 

absolutely continuous with respect to the Lebesgue measure λ. Formally, if X is a 

continuous random variable, then it has a probability density function ƒ(x), and therefore 

its probability of falling into a given interval, say [a, b] is given by the integral    

   

b

a

dxxfbXaPr

                                                                           

(1.2) 

In particular, the probability for X to take any single value a is zero, because an integral 

with coinciding upper and lower limits is always equal to zero. The definition states that a 

continuous probability distribution must possess a density, or equivalently, its cumulative 

distribution function is absolutely continuous. This requirement is stronger than simple 

continuity of the cumulative distribution function, and there is neither a special class of 

distributions, singular distributions, which are neither continuous nor discrete nor a 

mixture of those. We discuss below some important continuous probability distributions.  

1.2.1 Normal Distribution 

The normal distribution plays a very important role in the statistical theory as well as 

methods. The names of the great mathematician such as Gauss, Laplace, Legendre & 

others are associated with the discovery & use of the distribution of errors of 

measurement. The earliest published derivation of the normal distribution was an 

approximation to a binomial distribution by De-Morvie (1738). Laplace (1774) obtained 

the normal distribution as an approximation to hyper-geometric distribution and 

advocated tabulation of the probability integral )(x .The work of Gauss (1809, 1816) 

respectively established techniques based on the normal distribution which became 

standard methods used during the nineteenth century. Davis (1952) has shown that the 

normal distributions give quite a good fit for the failure time data. Bazovsky (1961) 

discussed the use of the normal distribution in life testing & reliability problems. 
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      Mathematically, a random variable X is said to have normal distribution with location 

parameter   and scale parameter  if its probability density function is given by 

  0,;;
2

)(
exp

2

1
2

2








 

 





x

x
xf              (1.2.1)                                                 

Some of its important properties are discussed below: 

 (i) The normal distribution curve is bell shaped &symmetrical about the line x  

(ii) The mean, median and mode of the normal distribution coincide. 

(iii) The area under the normal curve within its range  to  in always unity i.e.  













 

1
2

)(
exp

2

1
2

2

dx
x






                                  

(1.2.2) 

(iv) All odd order moments of the normal distribution are zero. 

(v) The first raw moments, i.e. mean .3,3,0,,
2

2

2

43

2

2    

(vi) The maximum probability say,   )(xfMax  of the normal curve occurs at the x  

whereas  
 2

1
)( xfMax . As  increase )(xf  decreases and the curve becomes more 

and more flat and vice-versa. 

(vii) Moment generating function of the normal distribution ),:( 2xN  is 
















 

 




22

2

2

2

1
exp

2

)(
exp)(exp

2

1
)( ttdx

x
txtM X 






       

(1.2.3) 

(viii) Characteristic function of normal distribution ),:( 2xN is  
















 

 




22

2

2

2

1
exp

2

)(
exp)(exp

2

1
)( ttidx

x
itxtX 





        

(1.2.4) 

(ix) The point of inflexion of the normal curve is given by  x   and at this point. 

2

1

2

1
)(



 exf


 

(x) Most of the discrete distributions such as binomial, Poisson, etc tend to normal 

distribution as n increase i.e. n . 
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(xi) Many variables which are not normally distributed can be normalized through 

suitable transformations. 

1.2.2 Gamma Distribution 

      Gamma distribution has been quite extensively used as a lifetime model, though not 

censored. The gamma distribution is most widely used model for precipitation data. It fits 

a wide variety of lifetime data adequately, besides failure process models that lead to it. 

Inference for gamma model has been considered by Engelhard and Bain (1978), Choa and 

Glaser (1978), Prentice (2002) and Lawless (2003) have made significant contributions. 

A random variable X is said to have a two parameter Gamma distribution if its p.d.f is 

given by 

      
 

0,;0;exp
1

,;
1























x
xx

xf

                                    
)5.2.1(  

where is a scale parameter and   is sometimes called the index or shape parameter.

 
 is the well known gamma function. For 1 , the gamma distribution reduces to the 

one parameter exponential distribution with parameter   and its pdf 

  0;0;exp
1










 


x
x

xf

            
(1.2.6)

 

For α =1, the distribution is called the one parameter gamma distribution with pdf 

 
 

  0;0;exp;
1













xx
x

xf

            
(1.2.7)

 

The moments of gamma distribution are 

                  2

21   XVandXE           (1.2.8)
 

The moment generating function of gamma distribution is  

                     

  



 ttM x 1)(

                
(1.2.9)                                                                                                              

 
Gamma distribution does not fit a wide variety of lifetime data adequately; however, there 

are failure process models that lead to it. It also arises in some situations involving the 

exponential distribution, because of the well known results that the sums of independently 

and identically distributed exponential random variables have a gamma distribution.
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1.2.3 Exponential Distribution 

The exponential distribution occurs when describing the lengths of the inter-arrival times 

in a homogeneous Poisson process. Exponential variables can also be used to model 

situations where certain events occur with a constant probability per unit length, such as 

the distance between mutations on a DNA strand, or between road kills on a given road. 

In queuing theory, the service times of agents in a system (e.g. how long it takes for a 

bank teller etc. to serve a customer) are often modeled as exponentially distributed 

variables. Reliability theory and reliability engineering also make extensive use of the 

exponential distribution. Because of the memory less property of this distribution, it is 

well-suited to the model that a constant hazard rate portion of the bathtub curve used in 

reliability theory. 

A random variable X has an exponential distribution with parameter  0  if its 

probability density function is of the form 

    0;0;exp   xxxf              (1.2.10)                                                         

with mean 


1
 and variance

2

1


 respectively. 

The distribution is often written using the parameterization



1

 , in which the pdf 

becomes 

  0,exp
1








 
 x

x
xf

                     
(1.2.11) 

The parameter  is called rate parameter with mean   and variance 2  respectively.  

The most important properties of the exponential distribution is the memory less property 

i.e., probability of its surviving an additional h hours is exactly the same as the probability 

of surviving h hours of a new item. 

    yXPxX|yxXP 
        (1.2.12) 

where X is the time we need to wait before a certain events occurs. This property says that 

events happens during a time interval of length y is independent of how much time has 

already elapsed (x) without the event happening. 

The pdf of two parameter exponential distribution is given by 
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















)(
exp

1
),;(

x
xf ; 0,   x

       (1.2.13) 

1.2.4 Erlang Distribution 

The Erlang distribution is a continuous probability distribution with wide applicability 

primarily due to its relation to the exponential and Gamma distributions. The queuing 

theory had its origin in 1909, when Erlang (1878-1929) published his fundamental paper 

relating to the study of congestion in telephone traffic (Brockmeyer et. al. (1948)). The 

literature on the theory of queues and on the diverse field of its applications has grown 

tremendously over the years. The analysis for such an Erlangian queue is now folklore in 

the queuing literature. The Erlang distribution is the distribution of sum of exponential 

varieties. This distribution can be expressed as a waiting time and message length in 

telephone traffic. If the duration of individual calls are exponentially distributed then the 

duration of succession of calls follows Erlang distribution. The Erlang variate becomes 

Gamma variate when its shape parameter is an integer (Evans et. al. (2000)).Harischandra 

and Subba Rao (1988) discussed some problems of classical inference for the Erlangian 

queue. Bhattacharyya and Singh (1994) obtained Bayes‟ estimator for the Erlangian 

queue under two prior densities. Wiper (1998) studied Er/M/1 and Er/M/cm queues under 

Bayesian setup and estimated equilibrium probabilities of the queue size and waiting time 

distributions using conditional Monte-Carlo simulation methods. Jain (2001) discussed 

the problem of the change point for the inter arrival time distribution in the context of 

exponential families for the Ek/GIc queuing system and obtained Bayes‟ estimates of the 

posterior probabilities and the positions of change from the Erlang distribution. Nair et al. 

(2003) studied Erlang distribution as a model for ocean wave periods and obtained 

different characteristics of this distribution under classical set up. Suri et al (2009) used 

Erlang distribution to design a simulator for time estimation of project management 

process. The distribution is also used in the fields of stochastic processes and bio-

mathematics. The probability density function of Erlang distribution is given as: 

 
 

0,,;
1













xfor
k

ex
kxf

xkk

       
(1.2.14) 
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The parameter k is called the shape parameter and the parameter  is called the rate 

parameter. An alternative, but equivalent, parameterization (gamma distribution) uses the 

scale parameter  which is the reciprocal of the rate parameter (i.e,



1

 ): 

 
 

0,,;
1















xfor
k

ex
kxf

k

x

k

          
(1.2.15) 

When the scale parameter  equals 2, the distribution simplifies to the chi-square 

distribution with 2k degrees of freedom. It can therefore be regarded as a generalized-chi-

squared distribution, for even degrees of freedom. 

The cumulative distribution function of the Erlang distribution is: 

 
 
 !1

,
,;




k

xk
kxF


               (1.2.16)                      

where  . is the lower incomplete gamma function. The CDF may also be expressed as 

     nx
k

n

xe
n

kxF  





1

0 !

1
1,;             (1.2.17)                                           

The mean and variance of Erlang distribution are given by: 

                       



k

1
             

(1.2.18) 

                       
22



k


            

(1.2.19) 

When the shape parameter k equals 1, the distribution simplifies to the exponential 

distribution. The Erlang distribution is a special case of the Gamma distribution where the 

shape parameter k  is an integer. In the Gamma distribution, this parameter is not restricted 

to the integers. 

1.2.5 Rayleigh distribution 

The Rayleigh distribution is often used in physics related fields to model processes such 

as sound and light radiation, wave heights, and wind speed, as well as in communication 

theory to describe hourly median and instantaneous peak power of received radio signals. 

It has been used to model the frequency of different wind speeds over a year at wind 
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turbine sites and daily average wind speed. The Rayleigh distribution (RD) is considered 

to be a very useful life distribution. Rayleigh distribution is an important distribution in 

statistics and operations research. It is applied in several areas such as health, agriculture, 

biology, and other sciences. One major application of this model is used in analyzing 

wind speed data. This distribution is a special case of the two parameter Weibull 

distribution with the shape parameter equal to 2.This model was first introduced by 

Rayleigh (1980), Siddiqui (1962) discussed the origin and properties of the Rayleigh 

distribution. Inference for model Rayleigh model has been considered by Sinha and 

Howlader (1993) and Abd Elfattah et al. (2006).Ahmed et.al (2013) estimates the 

parameter of Rayleigh distribution using R-software. 

The probability density function of Rayleigh distribution is given as: 

(1.2.20)0,0
2

exp);(
2

2

2









 


 xfor

xx
xf  

As an example of how it arises, the wind speed will have a Rayleigh distribution if the 

components of the two-dimensional wind velocity vector are uncorrelated and normally 

distributed with equal variance.  

1.2.6 Beta Distribution 

The Beta function was introduced by Leonhard Euler. The "problem in the doctrine of 

chances" that Bayes‟ treated produced a beta distribution for the posterior density of the 

probability of a success in Bernoulli trials. In early literature, the distribution was 

commonly referred to by its designation in the Pearson family of curves. Pearson is the 

English mathematician responsible for creating mathematical statistics. He created the 

Pearson Type I method which is a generalization of the Beta distribution to help model 

visibly skewed observations. The differences between the two are trivial and they can be 

set equal given proper parameters. The Beta distribution was standardized by Corrado 

Gini (1911) “A First Course in Mathematical Statistics, (1946)”. Beta distributions are 

very versatile and a variety of uncertainties can be usefully modeled by them. 
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1.2.6.1 Beta Distribution of First Kind 

A random variable X is said to have a Beta distribution of first kind with parameters a and 

b (a, b > 0) if its probability density function is given as: 

   (1.2.21)00,10;)1(
),(

1
),;( 11   bandaxxx

ba
baxf ba



dtttbawhere b

o

a 1

1

1 )1(),(   

 

denotes the beta function 

The cumulative distribution function often called incomplete beta function is given by 

10,)1(

1,1

),(

1̀

0,0

)(
0

11 



















 
 xdxxx

x

baB

x

XF
x

ba

       

(1.2.22) 

1.2.6.2 Beta Distribution of second Kind 

A continuous random variable X is said to have a beta distribution of second kind with 

parameters a and b if probability density function (pdf) is: 

ba

a

x

x

ba
baxf








)1(),(

1
),;(

1

                   

(1.2.23) 

00,10  bandaxfor  

dtttba b

o

a 1

1

1 )1(),(where   

 

denotes the beta function. 

1.2.7 Weibull Distribution 

The Weibull distribution is one of the important distributions in reliability theory. It is the 

distribution that received maximum attention in the past few decades. The distribution is 

named after Waloddi Weibull (1939), a Swedish physicist represent the distribution of the 

breaking strength of materials. Numerous articles have been written demonstrating 

applications of the Weibull distribution in various sciences.  It is widely used to analyze 

the cumulative loss of performance of a complex system in systems engineering.  In 

general, it can be used to describe the data on waiting time futile an event occurs. 

Although a Weibull distribution may be a good choice to describe the data on lifetimes or 

strength data but in some practical situations Weibull distribution does not provide a 
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reasonable parametric fit where the underlying failure rates are non constant, in that 

situation compounding procedure provides us the way out. 

Mathematically, a random variable X is said to have a Weibull distribution if its pdf is of 

the form 

    0,0,0;,; 1   


 xexxf x
                   (1.2. 24) 

where α and β are the parameters of the distribution. 

The mean and variance of the Weibull distribution (1.2.24) are given as 

  1  =
1

β
Г(1 +

1

𝛼
)                   (1.2.25) 

    
2 =  

1

β
2  Г  1 +

2

α
 −  Г(1 +

1

α
) 

2
               (1.2.26) 

1.2.8 Generalized Beta Distribution (GBD) of first kind 

A random variable X is said to have a generalized beta distribution of first kind and its 

probability density function is given by 

01

,0

),(
),,,;(

1

1 





























 xfor
b

x
x

otherwise

qpb

a
qpbaxf

q
a

ap

ap
                      (1.2.27)                       

where qpa ,,  are shape parameters and b is a scale parameter,
qp

qp
qp




),(  is a beta 

function, qpba ,,,  are positive real values. 

The kth moment of generalized beta distribution of first kind is given by McDonald 

(1995): 

 
),(

,

)(
qp

q
a

k
pb

XE

k

k



 









                                  (1.2.28)                                                                                  

And 
),(

,
1

)(
qp

q
a

pb

XE


 









                                             (1.2.29)                                                    

1.2.9 Generalized Beta Distribution of second kind 
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The probability density function (pdf) of the generalized beta distribution of second kind 

(GBD2) is given by: 

0

,0

1),(

),,,;(
1































xfor

otherwise

b

x
qpb

ax
qpbaxf

qp
a

ap

ap


                                  (1.2.30) 

Where qpa ,,  are shape parameters and b is a scale parameter,
qp

qp
qp




),(  is a beta 

function, qpba ,,, are positive real values. 

The rth moment of generalized beta distribution of second kind is given by:

qp

a

r
q

a

r
pb

XE

r

r






















)(                       (1.2.31) 

and
qp

a
q

a
pb

XE























11

)(                                                          (1.2.32) 

1.2.10 Generalized Rayleigh Distribution 

The probability distribution of Generalized Rayleigh distribution is given as: 

                otherwise

andkxfor
x

k

k
kxf

k

k

,0

0,0exp
1

),;(
1























 






                 

(1.2.33)

 
The generalized Rayleigh distribution (GRD) is considered to be a very useful life-time 

distribution. Rayleigh distribution is an important distribution in statistics and operations 

research. It is applied in several areas such as health, agriculture, biology, and other 

sciences. Surles and Padgett (2005) introduced two-parameter Burr Type X distribution 

and correctly named as the generalized Rayleigh distribution. The two-parameter 

generalized Rayleigh distribution is a particular member of the generalized Weibull 

distribution, originally proposed by Mudholkar and Srivastava (1993). 

Its mean and variance are given by: 
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
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                                                                                  (1.2.34) 

   


















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                 (1.2.35) 

 

1.2.12 Amoroso distribution                                                

The Amoroso (generalized gamma, Stacy-Mihram) distribution is a four parameter, 

continuous, univariate, unimodal probability density, with semi infinite range. The 

functional form in the most straightforward parameterization is: 
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(1.2.36) 

0,,,,,  RinaxFor  

Support 0,0,   ifaxifax  

This distribution was originally developed to model lifetimes by Amoroso (1925). It 

occurs as the Weibullization of the standard gamma distribution and, with integer , in 

extreme value statistics. The Amoroso distribution is itself a limiting form of various 

more general distributions, most notable the generalized beta and generalized beta prime 

distributions.  

A useful and important property of the Amoroso distribution is that many common and 

interesting probability distributions are special cases or limiting forms. This provides a 

convenient method for systemizing a significant fraction of the probability distributions 

that are encountered in practice, provides a consistent parameterization for those 

distributions and the need to enumerate the properties (mean, mode, variance, entropy and 

so on) of each and every specialization. 

 



14 
 

1.2.13 Generalized inverse Gaussian distribution 

In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is 

a three-parameter family of continuous probability distribution with probability density 

function  

 
 

  0;
2

21

2


















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
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
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bax

p
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(1.2.37) 

Where 
pk  is a modified Bessel function of the second kind, a > 0, b > 0 and p is a real 

parameter. It is used extensively in Geo-statistics, statistical linguistics, finance, etc. This 

distribution was first proposed by Étienne Halphen (1993).It was rediscovered and 

popularized by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian 

distribution. It is also known as the Sichel distribution, after Herbert Sichel. The inverse 

Gaussian and Gamma distributions are special cases of the generalized inverse Gaussian 

distribution for p = -1/2 and b = 0, respectively. The mean and variance of generalized 

inverse Gaussian distribution are given as: 

 
 abka

abkb
XE

p

p 1
)(


                                                                                      (1.2.38) 
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1.3 Introduction to Size biased Probability Distributions  

Traditional enviromentric theory and practice have been occupied with randomization and 

replication. But in environmental and ecological work, observations also fall in the non-

experimental, non-replicated and non-random catogaries. The problems of model 

specification and data interpretation then acquire special importance and great concern. 

The theory of weighted distributions provides a unifying approach for these problems. 

Weighted distributions take into account the method of ascertainment, by adjusting the 

probabilities of actual occurrence of events to arrive at a specification of the probabilities 
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of those events as observed and recorded. Failure to make such adjustments can lead to 

incorrect conclusions. 

The concept of weighted distributions can be traced to the work of Fisher (1934), in 

connection with his studies on how methods of ascertainment can influence the form of 

distribution of recorded observations. Later it was introduced and formulated in general 

terms by Rao (1965), in connection with modeling statistical data where the usual practice 

of using standard distributions for the purpose was not found to be appropriate. In Rao‟s 

paper (1965), he identified various situations that can be modeled by weighted 

distributions. These situations refer to instances where the recorded observations cannot 

be considered as a random sample from the original distributions. This may occur due to 

non-observability of some events or damage caused to the original observation resulting 

in a reduced value or adoption of a sampling procedure which gives unequal chances to 

the units in the original. The concept of weighted distributions can be traced to the study 

of the effect of methods of ascertainment upon estimation of frequencies by Fisher 

(1934). In extending the basic ideas of Fisher, Rao [(1934, 1965)] saw the need for a 

unifying concept and identified various sampling situations that can be modeled by what 

he called weighted distributions. The weighted distributions arise when the observations 

generated from a stochastic process are not given equal chance of being recorded; instead 

they are recorded according to some weighted function. When the weight function 

depends on the lengths of the units of interest, the resulting distribution is called length 

biased. More generally, when the sampling mechanism selects units with probability 

proportional to measure of the unit size, resulting distribution is called size-biased. Size 

biased distributions are a special case of the more general form known as weighted 

distributions. First introduced by Fisher (1934) to model ascertainment bias, these were 

later formalized in a unifying theory by Rao (1965). These distributions arise in practice 

when observations from a sample are recorded with unequal probability and provide 

unifying approach for the problems when the observations fall in the non –experimental, 

non –replicated and non –random categories. Van Deusen (1998) arrived at size biased 

distribution theory independently and applied it to fitting distributions of diameter at 

breast height (DBH), data arising from horizontal point sampling (HPS) (Grosenbaugh) 
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inventories. Subsequently, Lappi and Bailey (1987) used weighted distributions to 

analyze HPS diameter increment data. In ecology, Dennis and Patil (1984) used stochastic 

differential equations to arrive at a weighted gamma distribution as the stationary 

probability density function (PDF) for the stochastic population model with predation 

effects. Gove (2003) reviewed some of the more recent results on size-biased distributions 

pertaining to parameter estimation in forestry. Warren (1975) was the first to apply the 

size biased distributions in connection with sampling wood cells. More recently; these 

distributions were used to recover the distribution of canopy heights from airborne laser 

scanner measurements. In fisheries, Taillie et al (1995) modeled populations of fish stocks 

using weights. Most of the statistical applications of weighted distributions, especially to 

the analysis of data relating to human populations and ecology, can be found in Patil and 

Rao (1997, 1978). In a series of papers with co-authors, Patil ((1988), (1993), (1981), 

(1991) and (1996)) has pursued weighted distributions for purposes of encountered data 

analysis, equilibrium population analysis subject to harvesting and predation, meta 

analysis incorporating publication bias and heterogeneity, modeling clustering and 

extraneous variation, etc. Sandal C.E (1964) derived the method of estimation of 

parameters of the gamma distribution. Ahmed et al (2013b) discussed the size-biased 

Generalized Gamma distribution with its structural properties, estimates the parameters of 

new model by using new moment method of estimation and its characterizations and also 

discussed some important information measures of size biased generalized gamma 

distribution(discussed in chapter 3th). The usefulness and applications of weighted 

distributions to biased samples in various areas including medicine, ecology, reliability, 

and branching processes can be seen in Patil and Rao (1978), Gupta and 

Kirmani(1990),Gupta and Keating (1985),Oluyede (1999) and in references there in. 

Reshi et al (2013a) estimates the parameter of the size biased generalized Rayleigh 

distribution under the extended Jeffrey‟s prior assuming two different loss functions 

(discussed in chapter 5th). Within the context of cell kinetics and the early detection of 

disease, Zelen (1974) introduced weighted distributions to represent what he broadly 

perceived as length-biased sampling (introduced earlier in Cox, D.R. (1962)). For 

additional and important results on weighted distributions Rao (1997), Patil and Ord 
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(1997), Zelen and Feinleib (1969), Application examples for weighted distributions see 

El-Shaarawi and Walter (2002). Jing (2010) introduced the weighted inverse Weibull 

distribution and beta-inverse Weibull distribution, theoretical properties of them, Castillo 

and Perez-Casany (1998) introduced new exponential families, that come from the 

concept of weighted distribution, that include and generalize the Poisson distribution, 

Shaban and Boudrissa (2000) have shown that the length biased version of the Weibull 

distribution known as Weibull Length-biased (WLB) distribution is unimodal throughout 

examining its shape, with other properties, Das and Roy (2011) discussed the length-

biased Weighted Generalized Rayleigh distribution with its properties, also they have 

develop the length-biased from of the weighted Weibull distribution. Patil and Ord (1976) 

introduced the concept of size-biased sampling and weighted distributions by identifying 

some of the situations where the underlying models retain their form. Other contributions 

have been made by (Oluyede and George (2000), Ghitany and Al-Mutairi (2008), 

Oluyede and Terbeche (2007). The statistical interpretation of length-biased distributions 

was originally identified by Cox (1962) in the context of renewal theory. Length-biased 

sampling situations may occur in clinical trials, reliability theory, and survival analysis 

and population studies, where a proper sampling frame is absent. In such situations, items 

are sampled at a rate proportional to their length, so that larger values of the quantity 

being measured are sampled with higher probabilities. Numerous works on various 

aspects of length-biased sampling are available in literature which include family size and 

sex ratio , wild life population and line transect sampling , analysis of family data, cell 

cycle analysis , efficacy of early screening for disease, aerial survey and visibility bias 

Patil and Rao (1978).  

1.3.1 Materials and Methods 

Suppose X is a non-negative random variable with its natural probability density function

);( xf , where the natural parameter is . Suppose a realization x of X under );( xf  

enters the investigator‟s record with probability proportional to );( xw , so that the weight 

function );( xw  is a non-negative function with the parameter   representing the 
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recording mechanism. Clearly, the recorded x is not an observation on X , but on the 

random variable wX , having a pdf 

0;

)()(

);();(
),;(

0






x

xfxw

xfxw
xfw


                     (1.3.1)   

Assuming that 



0

)()()( dxxfxwXE

 

i,e the first moment of w(x) exists.  

By taking weight w(x) = x we obtain length biased distribution. Where w is the 

normalizing factor obtained to make the total probability equal to unity by choosing 

)],([ xwEw  .The variable WX is called weighted version of X , and its distribution is 

related to that of X and is called the weighted distribution with weight function w .For 

example, when xxw );(   , in that case w   is called the size-biased version of X

.The distribution of *X is called the size-biased distribution with pdf  






);(
);(

* xfx
xf 

          
(1.3.2) 

where  .XE The pdf );(
*

xf  is called length biased or size- biased version of );( xf

, and the corresponding observational mechanism is called length or size- biased 

sampling. Weighted distributions have seen much use as a tool in the selection of 

appropriate models for observed data drawn without a proper frame. In many situations 

the model given above is appropriate, and the statistical problems that arise are the 

determination of a suitable weighted function, );( xw  and drawing inferences on . 

Appropriate statistical modeling helps accomplish unbiased inference in spite of the 

biased data and, at times, even provides a more informative and economic setup.  

These weight functions are also useful for modeling through the identities connecting the 

original and weighted random variables. Moreover, different assumptions on the 

relationship between the original and weighted distributions can generate interesting and 

useful characterizations theorems. 
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1.3.1 Binomial Distribution  

 The distribution was derived by James Bernoulli in his treatise Ars Conjectandi, 

published in (1713).The distribution arises when „n‟ independent trials are made with a 

constant probability „p‟ of success at each trial, each trial resulting either in a success or 

in a failure. In this case the random variable X is the number of successes and its 

distribution is given by 

   xnxn

x qp )x(p]xX[ P  , x = 0, 1, 2, n             (1.3.3) 

where q + p =1, p > 0, q > 0 and n is a positive integer.  

The probabilities in (1.3.3) are terms of binomial expansion of (q + p)n hence the name 

binomial distribution. When n = 1, binomial distribution (1.3.3) reduces to Bernoulli 

distribution. 

1.3.1.1 Size-Biased Binomial Distribution (SBBD) 

A size-biased binomial distribution(SBBD), a particular case of the weighted binomial 

distribution, taking weights as the variate value can be obtained from(1.3.3) as 

         npxXP.x
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
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  1xXP.x
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1x
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

 

    P   1,2...... x; q p 
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1n
xx xn1x 












 

                                             (1.3.4) 

The mean and variance of size-biased distribution (1.3.4) are given as 

        qnpmean1                                                                        (1.3.5) 

         pq1niancevar2                                                               (1.3.6) 

1.3.2 Poisson Distribution  

There are many situations where the number of independent trials is infinitely large but 

the probability of success is so small that the expected number of success is of moderate 

size. For such situations the distribution is the Poisson Distribution (PD) which was 

obtained by S.D Poisson (1837) as a limiting case of the Binomial distribution. He took n, 
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the number of independent trials, very large tending to infinity and p sufficiently small 

such that np = 1, where 1 is a finite number and obtained the probability mass function 

(pmf) of the distribution as   

!x

)(e
)x(p]xX[P

x

1
1 




 ; x = 0, 1, 2,  and 1 > 0          (1.3.7) 

For some reasons Johnson and David (1952) preferred to give credit to De Moivre (1718) 

rather than to S.D. Poisson for discovering of Poisson distribution. The distribution is so 

important among the discrete distributions that even Fisher, once remarked „Among 

discontinuous distributions‟, the Poisson series is of the first importance. Johnson, Kotz 

and Kemp (1992) have discussed the genesis of Poisson distribution in detail. Munir 

Ahmad and Ayesha Roohi (2004) have discussed the characterization of the Poisson 

distribution. The Poisson distribution has been described as playing a “similar role with 

respect to discrete distribution to that of the normal for absolutely continuous distribution. 

The unique property of Poisson distribution in discrete distributions is the equality of 

mean and variance.  

               11 mean                                             (1.3.8) 

     12 iancevar                                     (1.3.9) 

1.3.2.1 Size- Biased Poisson distribution (SBPD)   

  A size-biased Poisson distribution can be obtained from (1.3.7) as 

              1

0x

xXP x 




 

             1xXP.x
1

1x1
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         
 

1,2...... x;
! 1x

e
xXP

1
1x

1 







                                           (1.3.10)         

1.3.3 Negative Binomial Distribution  

The Negative Binomial Distribution provides a good fit to the situations where the mean 

is always less than the variance. Montmort (1914) gave the derivative of this distribution 

in, (although Pascal (1679) discussed a special form of the distribution much earlier. 
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Pascal obtained the distribution for getting „r‟ successes and „x‟ failures in exactly (r + x) 

independent trials, where x is the value of a random variable. The pmf of the distribution is 

given by 

   
xrxr )q(p  

  x

r
q p  

1r    

1rx
)xX(P       








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










 ; x=0, 1, 2….                (1.3.11) 

where parameters satisfy 

 q = 1  p and 0 < p < 1 and r = 1, 2, 3 … 

1.3.3.1 Size-Biased Negative Binomial Distribution (SBNBD) 

A size-biased negative binomial distribution can be obtained from (1.3.11) as 

              rpxXP.x
n

0x


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The mean and variance of size-biased distribution (1.3.12) are given as 

     
qq

rp
mean

1
1

                                                                    (1.3.13) 

     
222

 
variance

q

p

q

rp
                                                        (1.3.14) 

1.3.4 Logarithmic Series Distribution  

The Logarithmic Series Distribution is one of the most widely used basic distributions. It 

is the importance and superb potentiality of the LSD in describing the empirical situations 

that have attracted the attention of the statisticians which have caused the manifold 

developments of the distribution during a very short span of time. The LSD is wider in 

scope and simple in nature. Therefore, it finds its key place as a promising distribution in 

describing important phenomena of various fields. The distribution was first obtained by 

the Fisher (1943) as a limiting case of the zero-truncated negative binomial distribution. 

The probability mass function of LSD is given by 
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)](1 [log
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  )x(p]xX[P

x


  and 0 <  < 1 ; x = 1, 2           (1.3.15) 

x

 
  )x(p]xX[P

x
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(1.3.16) 

where 
)](1 [log

1
 




                                                                               (1.3.17)
 

The important structural properties of the distribution have been described by Patil and 

Taillie (1989). Johnson and Kotz (1970), Johnson, Kotz and Kemp (1992) have presented 

a brief description of the most of the important features of the distribution. Katti and Rao 

(1965) have used mixture of LSD (log Poisson) and its truncated form (log zero-Poisson) 

to represent a wide variety of data. They have also provided with the tables for the 

probabilities to make its use easy. Though the LSD gives very satisfactory fit in all these 

situations. 

1.3.4.1 Size-Biased Logarithmic Series Distribution 

A size-biased logarithmic series distribution can be obtained from (1.3.16) as 
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 





                                                                (1.3.18) 

         1,2...... x; 1xXP 1x  
                                            (1.2.19) 

1.3.5 Generalized Negative Binomial Distribution  

On account of wide-variety of available discrete distributions besides binomial, Poisson 

and negative binomial, to choose the most suitable was the problem for research workers 

in applied fields.With the aim of reducing this problem, the generalized negative binomial 

distribution (GNBD) was first introduced by Jain and Consul (1971).With probability 

function given by compounding the negative binomial distribution with another parameter 

which takes into account the variations in the mean and the variance. The parameter is 

such that both mean and variance are positively correlated with the value of the 

parameter, though the variance increase or decrease faster than the mean. Its value gives 
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an indication of the nature of the data and its variation from binomial to negative binomial 

distribution. The probability function of Generalized Negative Binomial Distribution 

(GNBD) is given by: 

 

10or  0t when for x 0;               

0,1,2..... x;)1( 
)1xxm(!x

)xm(m
]xX[P xxmx
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 

              (1.3.20) 

 where 0 <  <1, m>0 and 
-10or  0   and t is the largest positive integer for 

which   0t11m   

It can be easily seen that the distribution reduces to the classical negative binomial 

distribution (1.3.20) at  = 1, to the classical binomial distribution (1.2.1) at  = 0 and for 

 = ½ this distribution resembles with the Poisson distribution (1.3.1) 

1.3.5.1 Size-biased Generalized Negative Binomial Distribution  

A size biased generalized negative binomial distribution  a particular case of the weighted 

generalized negative binomial, taking weights as the variate value can be obtained from 

(1.3.20) as: 
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 This gives the size-biased generalized negative binomial distribution (SBGNBD) as  
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                (1.3.21)  

At 1 and 0  , we get size biased binomial SBBD (1.3.21) and size biased negative 

binomial distributions SBNBD (1.3.12) respectively. 

 

1.3.6 Generalized Geometric Series Distribution  

As the geometric series distribution is a particular case of negative binomial distribution, 

it is supposed that a particular case of GNBD may give a generalized geometric series 

distribution. Mishra (1982) using the results of lattice path analysis obtained the following 

distribution. 
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


  ; x = 0, 1, 2,         (1.3.22) 

where P[X=x] = 0 for x  m if 1+  m < 0 and which is the same as obtained by taking 

m=1 in the GNBD (1.3.20). 

Needless to say that, the GGSD is a member of Lagrangian distribution and can be 

obtained by taking g(t) = (1+t) and f(t) = (1+t). It can be seen that at  = 1, it 

reduces to the one parameter geometric series distribution and hence it is called as 

generalized geometric series distribution. 

 The moments of this distribution can be found simply by putting m = 1 in the 

expressions for moments of the GNBD. As it is a particular case of the GNBD, all the 

properties of the GNBD are supposed to be possessed by the GGSD also. 

 1.3.6.1 Size- Biased Generalized Geometric Series Distribution  

The pmf of size-biased GGSD can be obtained by putting m=1 in size-biased GNBD 

(1.3.22)  
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                    (1.3.23) 

1.3.7 Generalized Poisson Distribution  

The generalized Poisson distributions (GPDs) arise when the populations are Poissonian 

type having unequal mean and variance. Consul and Jain (1973a) are the early workers 

who derived a class of discrete distributions of the Poissonian type. The different aspects 

of these distributions have been studied by Consul and Jain (1973b), Jain (1975), Consul 

and Shoukri (1985, 1986), Consul (1986), Famoye and Lee (1992), Tuenter (2000). The 

detailed review works on the book authored by Consul (1989) have been done by Kemp 

(1992). Consul and Jain (1973a) defined the Generalized Poisson Distribution by taking 

m and  very large and  very small, such that m = 1 and m =  where 1 is finite and 

positive and < 1, in GNBD, the pmf is given by 
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; x = 0, 1, 2…         (1.3.24) 
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For
2 0  , the distribution (1.3.24) reduces to Poisson distribution. The model (1.3.24) has 

been found to be a member of the Consul and Shenton‟s (1972) family of Lagrangian 

distributions.  

1.3.7.1 Zero-Truncated Generalized Poisson Distribution  

Shoukri and Consul (1989) redefined the distribution (1.3.24) by taking
1   and 

2    

as 
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                (1.3.25) 

The distribution (1.3.25) can be truncated at x = 0 and is defined with the probability 

function as: 
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              (1.3.26) 

For  = 0, the distributions (1.3.25) and (1.3.26) reduce to Poisson distribution and David 

and Johnson‟s (1952) truncated Poisson distribution. The different aspects of the 

distribution have been studied by Consul and Famoye (1990), Jani and Shah (1981), 

Hassan and Mir (2007a), Hassan et al (2007b). A brief list of authors and their works can 

be seen in Consul (1989), Johnson, Kotz and Kemp (2005) and Consul and Famoye 

(2006). 

1.3.7.2 Size-Biased Generalized Poisson distribution (SBGPD) 

 The pmf of size-biased generalized Poisson distribution can be obtained as 
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This gives the pmf of SBGPD as 
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                        111 1,1 
 

Mir et al (2013) proposed the probability density function of Size-biased Generalized 

Poisson distribution.
 

At 02  , we get size-biased Poisson distribution (1.3.8). 
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The mean and variance of the distribution is given as 
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The Graphical representation of Size biased generalized Poisson distribution in figures 

1,2,3,4 and 5 considering various values of 
1 and

2 . 

 

 

 

In figure 1, for each small value of
1 , the SBGPD curve changes from L-shaped to 

symmetric and with the considerable change in the value of
1 , it becomes positively 

skewed. In figures 2, 3 and 4, we consider 2 0.09,0.1,0.5  . For each small value of
1 , the 

SBGPD curve is unimodal and extremely positively skewed. But it gradually changes to 

bell-shaped as the value of 
1  and 

2 increase. In figure 5, we take 
1 5.0  and the different 

Figure 1- Size-Biased Generalized Poisson 

Distribution (Lambda2=0.05)
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Figure 2-Size-Biased Generalized Poisson 

Distribution (Lambda2=0.09)
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Figure 3- Size-Biased Generalized Poisson 

Distribution (Lambda2=0.1)
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Figure 4-Size-Biased Generalized Poisson 

Distribution( Lambda2=0.5)
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Figure5- Size-Biased Generalized Poisson 

Distribution(Lambda1=5.0)
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values of
2 . It is observed that the variation in the values of 

2  alters the shape of the 

distribution substantially. For larger values of
2  the bell-shaped form becomes more 

flattened. 

1.3.8 Generalized Logarithmic Series Distribution  

A Generalized Logarithmic Series Distribution (GLSD) was obtained by Jain and Gupta 

(1973) with probability function 
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  ; x =1, 2, 3,       (1.3.30) 

0 <  < 1,  < 1 

At =1 in (1.3.30), the distribution is reduced to the logarithmic series distribution 

(1.3.15). Many others have also obtained the GLSD using different approaches. Mishra 

(1979) obtained it as a limiting case of zero-truncated GNBD; whereas Jani (1977) 

obtained it as a member of Modified Power Series Distribution (MPSD). Patel (1981) 

found it independently again as a limiting case of the zero-truncated GNBD. Mishra et al 

(1996) estimates the parameters of Generalized Logarithmic Series Distribution using 

Bayesian approach. 

1.3.8.1 Size-Biased Generalized Logarithmic Series Distribution  

The size-biased generalized logarithmic series distribution can be obtained from (1.3.30) 

as 
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This gives the pmf of SBGLSD as 
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At 1 , we get size-biased logarithmic distribution (1.3.17). 
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1.3.9 Geeta Distribution 

         Consul (1990a) defined the Geeta distribution over the set of all positive integers 

with the probability mass function as 

1
  11
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x x x
x

P X x
xx
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

 
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 ;x=1,2…                                    (1.3.32) 

   
11      and 0 1    

The Geeta distribution has a maximum at x=1 and is L-shaped for all values of   and  . It 

may have a short tail or a long tail depending upon the values of   and  . Its mean and 

variance are given by 

1(1 )(1 )                                                                                    (1.3.33) 
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The family of Geeta probability models belongs to the classes of the modified power 

series distributions (MPSD) and the Lagrangian series distributions. Consul (1990b) also 

expressed it as a location-parameter probability distribution given below: 
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;x=1,2,3….            (1.3.35) 

1.3.9.1 Size-biased Geeta Distribution  

A size-biased Geeta distribution (SBGET) is obtained by taking the weight of the Geeta 

distribution (1.3.32) as x. 

We have from (1.3.32) and (1.3.33) 

             1
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    This gives the size-biased Geeta distribution (SBGET) as  

         
1 1

2

  2
[ ] (1 ) (1 )

  1

x x x
x

P X x
x




    
 

    
 

;x=1,2…                        (1.3.36) 
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The mean and variance of SBGET are given by 
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1.3.10 Consul Distribution 

    The probability function of Consul distribution is defined as  
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;   x=1, 2…                                           (1.3.39) 
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It reduces to the geometric distribution when 1  . For this reason the distribution is also 

called as generalized geometric distribution. Famoye (1997) obtained the model (1.3.39) 

by using Lagrange expansion on the pgf of a geometric distribution and called it a 

generalized geometric distribution. He studied some of its properties and applications. 

Most of the interesting properties of the distribution can be seen in Consul and Famoye 

(2006). Consul (1990) showed that the model (1.3.39) belongs to the class of location-

parameter discrete distributions. The moments of the model (1.3.39) are given as 

1(1 )                                                                                              (1.3.40) 
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2 3(1 )(1 )                                                                                        (1.3.42) 

The model (1.3.39) can be expressed as a location-parameter probability distribution in 

the form  
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1.3.10.1 Size-biased Consul Distribution  

The probability function of the size-biased Consul distribution (SBCOND) is given as  
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The mean and variance of SBCOND are given by 
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1.4 Akaike and Bayesian information criterion 

In order to introducing of an approach for model selection, we remember Akaike and 

Bayesian information criterion based on entropy estimation. Akaike‟s information 

criterion, developed by Hirotsugu Akaike (1973) under the name of” an information 

criterion” (AIC) in 1971 and proposed in Akaike (1974), is a measure of the goodness of 

fit of an estimated statistical model. The concept of entropy, in effect offering a relative 

measure of the information lost when a given model is used to describe reality and can be 

said to describe the tradeoff between bias and variance in model construction, or loosely 

speaking that of precision and complexity of the model. The AIC is not a test of the model 

in the sense of hypothesis testing; rather it is a test between models - a tool for model 

selection. Given a data set, several competing models may be ranked according to their 

AIC, with the one having the lowest AIC being the best. From the AIC value one may 

infer that e.g. the top three models are in a tie and the rest are far worse, but it would be 

arbitrary to assign a value above which a given model is “rejected”. In the general case, 

the AIC is 

 ̂log22 LKAIC               (1.4.1) 

Where k is the number of parameters in the statistical model and L is the maximized value 

of the likelihood function for the estimated model. 
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The Bayesian information criterion (BIC) or Schwarz Criterion is a criterion for model 

selection among a class of parametric models with different numbers of parameters. 

Choosing a model to optimize BIC is a form of regularization. It is very closely related to 

AIC. In BIC, the penalty for additional parameters is stronger than that of the AIC. 

The formula for the BIC is 

 ̂log2log LnKBIC  .             (1.4.2) 

1.5 Shannon’s entropy 

In information theory, entropy is a measure of the uncertainty in a random variable. In 

this context, the term usually refers to the Shannon entropy, which quantifies the expected 

value of the information contained in a message. Entropy is typically measured in bits, 

nats or bans. Shannon entropy is the average unpredictability in a random variable, which 

is equivalent to its information context. Shannon entropy provides an absolute limit on the 

best possible lossless encoding or compression of any communication, assuming that the 

communication may be represented as a sequence of independent and identical distributed 

random variables. This definition of "entropy" was introduced by Claude. E. Shannon 

(1948) paper “A Mathematical theory of Communication". Shannon's definition of 

entropy, when applied to an information source, can determine the minimum channel 

capacity required to reliably transmit the source as encoded binary digits. It measures the 

information contained in a message as opposed to the portion of the message that is 

determined (or predictable). Entropy is a measure of unpredictability or information 

content. The concept of Shannon‟s entropy is the central role of information theory, 

sometimes referred as measure of uncertainty. The entropy of a random variable is 

defined in terms of its probability distribution and can be shown to be a good measure of 

randomness or uncertainty. Henceforth we assume that log is to the base 2 and entropy is 

expressed in bits. The concept of entropy was extensively used in literature as a 

quantitative measure of uncertainty associated with random phenomena. In the context of 

equilibrium thermodynamics, physicists originally developed the notion of entropy which 

was later extended through the development of statistical mechanics and information 

theory. Shannon (1948) was the one who formally introduced entropy, known as 
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Shannon's entropy or Shannon's information measure into information theory. For 

deriving the entropy of Probability distributions, we need the following two definitions 

that are more discussed in Cover et al (1991). 

Definition 1.5.1: The entropy of the discrete alphabet random variable f defined on the 

probability space is given by: 
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(1.5.1) 

It is obvious that 
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Definition 1.5.2: The oblivious generalizations of the definition of entropy for a 

probability density function f defined on the real line as: 
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(1.5.2) 

1.6 Generalized entropy 

The generalized entropy index is a general formula for measuring redundancy in data. The 

redundancy can be viewed as inequality, lack of diversity, non-randomness, 

compressibility, or segregation in the data. The primary use is for income equality. It is 

equal to the definition of redundancy in information theory that is based on Shannon 

entropy when α = 1 which is also called the Theil Index (TT) in income inequality 

research. Completely "diverse" data has no redundancy so that GE=0, so that it increases 

in the opposite direction of a Diversity index. It increases with order rather than disorder, 

so it is a negated measure of entropy. Generalized entropy is often used in econometrics. 

It is indexed by a single parameter . The generalized entropy is defined to be  
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1.7 Fisher’s information matrix 

 Fisher information (sometimes simply called information) is the variance of the score or 

the expected value of the observed information. In Bayesian statistics, the asymptotic 

distribution of the posterior mode depends on the Fisher information and not on the prior. 

The role of the Fisher information in the asymptotic theory of maximum likelihood 

estimator was emphasized by the statistician R. A Fisher. The Fisher information is also 

used in the calculation of the Jeffrey‟s prior, which is used in Bayesian statistics. The 

Fisher-information matrix is used to calculate the covariance matrices associated with 

maximum-likelihood estimates. It can also be used in the formulation of test statistics, 

such as the Wald‟s test. The Fisher information was discussed by several early 

statisticians, notably Edgeworth (1908). The Fisher information is a way of measuring the 

amount of information that an observable random variable X carries about an unknown 

parameter θ upon which the probability of X depends. The probability function for X, 

which is also the likelihood function for θ, is a function f (X; θ); it is the probability mass 

function (or probability density function of the random variable X conditional on the 

value of θ. The partial derivative with respect to θ of the natural logarithm of the 

likelihood function is called the score. The Fisher information is that a random variable 

„X‟ contains about the parameter θ is given by;     
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Now, if log f(x; θ) is twice differentiable with respect to θ under certain regularity 

conditions, Fisher‟s information is given by: 
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1.8 Estimation Techniques 

There are a few occasions when population is studied as a whole. As a matter of fact, 

generally a sample is drawn from the population and population constants are determined 

on the basis of sample values. Population parameters are usually those constant which 
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occur in probability density or mass function or the moments or some other constants of 

the population like median.  

We know that various sampling procedures do exist and also there are many techniques to 

determine the value of population constants through sample values. The constant 

determined through sample observations which stands for population parameter θ or a 

function t (θ) though f (θ) in many cases is equal to θ.  

The choice of a technique depends on the type of the estimator vis-a-vis estimate and the 

purpose of study. The goodness of an estimator is governed by certain properties. An 

estimator possessing the maximum properties will be considered as a good estimator.  

So in estimation theory we are concerned with the properties of estimators and methods of 

estimation. The merits of an estimator are judged by the properties of the distribution of 

estimates obtained through estimators i.e. by the properties of the sampling distribution. 

Further, it is emphasized that estimation is possible only if there is a random sample.  

The theory of estimation was founded by Fisher (1930) in a series of fundamental papers 

and is divided into two groups (i) point estimation and (ii) Internal estimation. In point 

estimation, a sample statistic (numerical values) is used to provide an estimate of the 

population parameter whereas in Interval Estimation, probable range is specified within 

which the true value of the parameter might be expected to lie.  

The word estimator stands for the function, and the word, estimate stands for a value of 

that function. In estimator, we take a random sample from the distribution to elicit some 

information about some unknown parameter  . That is, we repeat the experiment n 

independent times, observe the sample n
xxx ,...,,

21 . The function of n
xxx ,...,,

21  use to 

estimate  ; say the statistic ),...,,( 21 nxxxU called an estimator of . We want it to be such 

that the computed estimate ),...,,(
21 n

xxxU  is usually close to  .Thus any statistic whose 

values are used to estimate )(r  where r (.) is some function of the parameter , is defined 

to be an estimator )(r  . An estimator is always a statistic which is both a random variable 

and a function. 
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1.8.1 Methods of estimation 

A number of methods to estimate the unknown parameters have been in use. The common 

used methods are: 

a) Method of moment. 

b) Method of maximum likelihood estimation. 

c) Bayesian method of estimation.     

1.8.2 Method of Moment 

The method of moments is a method of estimation of population parameters such as mean, 

variance, median, etc. (which need not be moments), by equating sample moments with 

unobservable population moments and then solving those equations for the quantities to be 

estimated. One of the simplest and oldest methods of estimation is the substitution 

principle. The method of moments was discovered and studied in detail by Karl Pearson. 

The method of moments is special case when we need to estimate some known function 

of finite number of unknown moments. 

Let ),...,,;(
21 k

yf   be density function of the parent population with k parameters

k
 ,..,,

21
. If 'r denotes the rth moment about origin, then 






 kryfy k

r

r ,....,2,1);,...,,;( 21   

In general ',...,','
21 k

 will be functions of the parameters k
 ,...,,

21 .Let 

niy
i

,...,3,2,1,   n be a random sample of size n from the given population. The 

method of moments consists in solving the k-equation (i) for k
 ,...,,

21  in terms of 

',...,','
21 k

  and then replacing these moments by the sample moments 

e.g. kimmm
kiki

,...,2,1);',...,','()ˆ,...,ˆ,ˆ(ˆˆ
2121

                            

Where mi is the ith moment about origin in the sample. 

Then by the method of moments
k
 ˆ,...,ˆ,ˆ

21
are the estimators of respectively. 
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1.8.3 Method of maximum likelihood estimation (MLE) 

The most general method of estimation known is the method of maximum likelihood 

estimators (MLE) which was initially formulated by C.F.Gauss but as a general method of 

estimation was first introduced by Fisher in the early (1920) and later on developed by 

him in a series of papers. He demonstrated the advantages of this method by showing that 

it yields sufficient estimators, which are asymptotically MVUES‟s. Thus, the essential 

feature of this method is that we look at the value of the random sample and then choose 

our estimate of the unknown population parameter, the value of which the probability of 

obtaining the observed data is maximum. If the observed data sample values are 

n
xxx ,........,,

21
 we can write in the discrete case. 

),...,,(),.......,,( 212211 nnn xxxfxXxXxXP 
          (1.8.1) 

which is just the value of joint probability distribution of the random values 

n
xxx ,...,,

21
 at the sample point 

n
xxx ,...,,

21
 since the sample values has been 

observed and are therefore fixed numbers, we regard );...,,(
,21


n

xxxf  as the value of a 

function of the parameter  , referred to as the likelihood function. A similar definition 

applies when the random sample comes from a continuous population but in that case

);...,,(
,21


n

xxxf  is the value of joint pdf at the sample point 
n

xxx ,...,,
21

 i.e.; the 

likelihood function at the sample value 
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xxx ,...,,
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(1.8.2) 

Since the principle of maximum likelihood consists in finding an estimator of the 

parameter which maximizes L for variation in the parameter. Thus if there exists a 

function ),....,,(ˆˆ
21 n

xxx   of the sample values which maximizes L for variation in , 

then ̂  is to be taken as the estimator of  . ̂  is usually called ML estimators. Thus ̂  is the 

solution if and only if 
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(1.8.3) 

Since L > 0, so Log L which shows that L and Log L attains their extreme values at the ̂  

. Therefore, the equation becomes 
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             (1.8.4) 

a form which is more convenient from practical point of view. 

1.8.4 Bayesian Method of Estimation 

Bayesian approach to statistical inference exploits the idea that the only satisfactory 

description of uncertainty is by means of probability. Bayesian statistics is an approach in 

which estimates are based on a synthesis of a prior distribution and current sample data. 

Bayesian statistics requires the mathematics of probability and the interpretation of 

probability which most closely corresponds to the standard use of this word in everyday 

language: it is no accident that some of the more important seminal books on Bayesian 

statistics such as the works of De Laplace (1812), Jeffery‟s (1939) and de Finetti (1970) 

are actually entitled “probability theory”. Indeed, Bayesian methods (i) reduce statistical 

inference to problems in probability theory, thereby minimizing the need for completely 

new concepts, and (ii) serve to discriminate among conventional statistical techniques 

either providing a logical justification to some (and making explicit the conditions which 

they are valid) or proving the logical in consistency of others.  

Bayesian statistics have been used to deal with a wide variety of problems in many 

scientific and engineering areas. Whenever a quantity is to be inferred, or some 

conclusion is to be drawn, from observed data, Bayesian principles and tools can be used.  

The idea that forms the basis of the Bayesian approach is as: 

i. Since we are uncertain about the true value of the parameters, we will consider them 

to be random variables. 

ii. The rules of probability are used directly to make inferences about the parameters.   

iii. Probability statements about parameters must be interpreted as “degree of belief”. 

The prior distribution must be subjective. 

iv. We revise our beliefs about parameters after getting the data by using Bayes‟ 

theorem. This gives our posterior distribution which gives the relative weights to 

each parameter value after analyzing the data. 

     Bayesian statistics is predictive, unlike conventional frequentist statistics. This 

means we can easily find the conditional probability distribution of the next observation 
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given the sample data. Bayesian approach to statistics is very different from the classical 

methodology, it formally seeks use of prior information and Bayes‟ theorem provides the 

basis for making use of this information. When significant prior is available, the Bayesian 

approach shows how to utilize it sensibly. This is not possible with the most non-

Bayesian approaches. The business of statistics is to provide information or conclusions 

about uncertain quantities. The language of uncertainty is possible. Bayesian approach 

consistently uses this language to directly address uncertainty.  

The classical or frequentists interpret probability as the limit of the success ratio as the 

number of trails „n‟ conceptually tends to infinity. Under this interpretation the parameter 

 in a statistical model is treated as an unknown constant and the sample of observations is 

regarded as the random sample from some underlying distribution. The classical school 

believes in Fishers Likelihood Principle which claims that all the information about the 

unknown parameter(s) is contained in the sample as summarized by the likelihood 

function. This principle leads to Fishers maximum likelihood estimator. 

In Bayesian framework, the parameter is justifiably regarded as a random variable and the 

data once obtained is given or fixed for example, in the exponential model the mean life   

may be regarded as varying from batch to batch overtime and this variation is represented 

by a probability distribution over parameter space  . Thus the basic difference in the two 

approaches may be explained in the single sentence that to a frequentist, the parameter is 

constant and he is suspicious about the data, where as to a Bayesian data is given (or 

fixed) and he is suspicious about the parameter.  Bayesian approach is an excellent 

alternative to use large sample procedures and is likely to be more reasonable for 

moderate and especially small sample sizes where non Bayesian procedures break down 

(e.g., Berger 1985). 

1.8.4.1 Bayes Theorem 

Bayesian analysis is based upon a theorem first developed by an 18th century English 

mathematician, logician, and clergy man Thomas Bayes (1701-1761). He developed the 

theorem in his study of the theory of logic and inductive reasoning. The theorem provides 

a mathematical basis for relating the degree to which an observation (or new information) 
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confirms the various hypothesized causes or state of nature. His major mathematical 

works, including the theorem, were published in 1763. Later, in 1774 the theorem was 

proved independently by Laplace. Bayes‟ theorem is an essential element of the Bayesian 

approach to statistical inference is the direct qualification of uncertainty in terms of 

probabilistic statements. Often, we begin our analysis with initial or prior probability 

estimates for specific events of interest then, from sources such as a sample, a special 

report, a product test and so on we obtain some additional information about the events. 

Given this new information we update the prior probability values by calculating revised 

probabilities, referred to as posterior probabilities. The steps in this probability revision 

process are shown in the following diagram                                                               

 

 

 

 

Suppose that
nxxxX ,....,, 21

'   is a vector of n observations whose probability distribution 

 θ|XP  depends upon the values of k parameters
k ,....,, 21

' θ .  Suppose also that θ  

itself has a probability distribution  θP . Then,  
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Given the observed data X, the conditional distribution of θ  is       
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where the sum or the integral is taken over the admissible range ofθ , and where E 

indicates averaging with respect to distribution of θ (e.g., Box and Tiao, 1973; Gelman, 

Carlin, Stern and Rubin, 1995; Lee, 1997 and Carlin and Louis, 2001). Thus, we may 

write (1.8.6) alternatively as 
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which is referred to as Bayes theorem. In this expression, )(θP  which tells us what is 

known aboutθ  without knowledge of data, is called prior distribution of θ , or the 

distribution of θ  a priori the density )|( θXP  is likelihood function of θ  which represents 

the contribution of X(data) to knowledge about θ  (e.g., Berger,1985 and Zellner, 1986). 

Correspondingly, ),|( XP θ which tells us what is known about θ  given knowledge of the 

data X, is called the posterior distribution of θ  given X. The quantity „k‟ is a normalizing 

constant.  

The term „Bayesian‟ however, came into use only around 1950 and in fact it is not clear 

that Bayes‟ would endorsed the very broad interpretation of probability now called 

“Bayesian”. Laplace independently proved a more general version of Bayes‟ theorem and 

put it to good use in solving problems in celestial mechanics, medical statistics and, by 

some accounts, even jurisprudence. 

1.8.4.2 Sequential Nature of Bayes’ Theorem: 

Now given the data X, )|( XP in (1.8.6) may be regarded as a function not of X but of  . 

When so regarded, following Fisher (1922), it is called the likelihood function of   

forgiven X and can be written as )|( XL  .We can thus write Bayes‟ formula as  

)()|()|(  PXLXP              (1.8.8) 

The theorem in (1.8.8) is appealing because it provides a mathematical formulation of 

how previous knowledge may be combined with new knowledge. Indeed the theorem 

allows us to continually update information about a set of parameters   as more 

observations are taken. Thus, suppose we have an initial sample of observations X1, then 

Bayes initial formula gives, 

)|()()|( 11 XLPXP 
            (1.8.9)    

Now suppose we have a second sample of observation X2, distributed independently of 

first sample, then 

)|()|()(),|( 2121 XLXLPXXP    

),|( 21 XXP  )|()|( 21 XLXP 
         (1.8.10)       
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The expression (1.8.10) precisely of the same form as (1.8.9) except that )X|(P 1 , the 

posterior distribution for   given X1, plays the role of the prior distribution for the second 

sample. Obviously this process can be repeated any number of times. In particular, if we 

have n independent observations the posterior distribution can, if desired, be recalculated 

after each new observation, so that at the mth stage the likelihood associated with the mth 

observation is combined with the posterior distribution of   after m-1 observations to give 

the new posterior distribution. 

nmXLXXXPXXXP mmm ,.......,2,1:)|(),.......,,|(),........,,|( 12121            (1.8.11)  

where )|()()|( 11 XLPXP  .  

Thus, Bayes‟ theorem describes in a fundamental way, the process of learning from 

experience and shows how knowledge about the state of nature represented by   is 

continually modified as new data becomes available (e.g., Box and Tiao, 1973). 

1.8.4.3 Likelihood to Bayesian Analysis: 

An informal summary of the likelihood principle may be that the inferences from data to 

hypothesis should depend on how likely the actual data are under competing hypothesis 

and not on how likely imaginary data would have been under a single “null” hypothesis or 

any other properties of merely possible data. 

A more precise interpretation may be that inference procedures which make inferences 

about simple hypothesis should not be justified by appealing to probabilities assigned to 

observations that have not occurred. The usual interpretation is that any two probability 

models with the same likelihood function yield the same inference for  . Some authors 

mistakenly claim that frequentist inference, such as the use of maximum likelihood 

estimation (MLE), obeys the likelihood, though it does not. Some argue that, although the 

subject of priors gets more attention, the true contention between frequentist and Bayesian 

inference is the likelihood principle, which Bayesian inference obeys, and frequentist 

inference does not. Some Bayesians have argued that Bayesian inference is incompatible 

with the likelihood principle on the grounds that there is no such thing as an isolated 

likelihood function Bayarri and DeGroot (1987). They argue that in a Bayesian analysis 
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there is no principled distinction between the likelihood function and the prior probability 

function.  

Although the likelihood principle is implicit in Bayesian statistics, it was developed as a 

separate principle by Barnard (1949), and became a focus of interest when Birnbaum 

(1962) showed that it followed from the widely accepted sufficiency and conditionality 

principles Bernardo and Smith (2000). Using Bayes‟ rule with a chosen probability model 

means that the data X affect posterior inference only through the function )|( XL , 

which, when regarded as a function of  , for fixed X, is called the `likelihood function'. In 

this way Bayesian inference obeys what is sometimes called the `likelihood principle', 

which states that for a given sample of data, any two probability models )|( XL  that 

have the same likelihood function yield the same inference for   Gelman et.al. (1995). 

The likelihood principle, by itself, is not sufficient to build a method of inference but 

should be regarded as a minimum requirement of any viable form of inference. This is a 

controversial point of view for anyone familiar with modern econometrics literature. 

Much of this literature is devoted to methods that do not obey the likelihood principle 

(Rossi, Allenby, and McCulloch, 2005). 

Suppose )|( XL   is the assumed likelihood function. Under MLE estimation, we would 

compute the mode (the maximal value of L, as a function of   given the data X) of the 

likelihood function and use the local curvature to construct the confidence intervals.  

Hypothesis testing follows using likelihood ratio (LR) statistics. The strength of ML 

estimation rely on its large sample properties, namely that when the sample size is 

sufficiently large, we can assume both normality of the test statistic about its mean and 

that LR tests follows 
2  distributions. These nice features don‟t necessarily hold for small 

samples Gianola & Fernando (1986).  

An alternate way to proceed is to start with some initial knowledge/guess about the 

distribution of the unknown parameter(s), )(P  . From Bayes‟ theorem the data (likelihood) 

augments the prior distribution to produce a posterior distribution, 

)(P)|X(P
)X(P

1
)X|(P 

                   
(1.8.12)   
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               (normalizing constant) )(P)|X(P         (1.8.13)  

              = constant .likelihood .prior                                                             (1.8.14) 

As )|()|( XLXP   is just the likelihood function. 1/P(X) is constant (with respect to 

), because our concern is the distribution over . Because of this, the posterior is often 

written as  

)()|()|( 1  PXLXP
           (1.8.15) 

where the symbol    means “proportional to” (equal up to a constant). Note that the 

constant P(X) normalizes )()|(  PXP  to one, and hence can be obtained by integration 




 dPXPXP )()|()(

          

(1.8.16) 

The dependence of the posterior on the prior (which can easily be assessed by trying 

different prior) provides an indication of how much information on the unknown 

parameter values is contained in the data. If the posterior is highly dependent on the prior, 

then the data likely has little signal, while if the posterior is largely unaffected under 

different priors, the data are likely highly informative. To see this taking logs on equation 

(1.8.15) (and ignoring the normalizing constant) gives 

Log (posterior) =log (likelihood) +log (prior)                                               (1.8.17) 

The Standard Likelihood  

When the integral  d)X|(L  taken over the admissible range of  is finite, then 

occasionally it will be convenient to refer to the quantity 

 



d)X|(l

)X|(l

        

     (1.8.18) 

We shall call this the standardized likelihood that is the likelihood scaled so that the area, 

volume or hyper volume under the curve, surface or hyper surface is one. 

1.8.4.4 Prior Distribution and Some Important Types of Priors 

A prior distribution of a parameter is the probability that represents uncertainty about the 

parameter before the current data are examined. A random variable can be thought of as a 

variable that takes on a set of values with specified probability. In frequentist statistics, 
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parameters are not repeatable random things but are fixed quantities, which mean that 

they cannot be considered as random variables. In contrast, in Bayesian statistics anything 

about which we are uncertain, including the true value of the parameter, can be thought of 

as being a random variable to which we can assign a probability distribution, known 

specifically as prior information. A fundamental feature of the Bayesian approach to 

statistics is the use of prior information in addition to the (sample) data. A proper 

Bayesian analysis will always incorporate genuine prior information, which will help to 

strengthen inferences about the true value of the parameter and ensure that any relevant 

information about it is not wasted. 

Obviously, a important feature of any Bayesian analysis is the use of prior. According to 

Diaconis and Ylvisaker (1985), there are three distinct Bayesian approaches for the 

selection of prior distributions. The classical Bayesian approach considers flat priors to 

represent objectivity in the analysis. The modern approach allows the priors to have 

characteristics like closure under sampling (conjugacy) suggested by G.Barnard (1954) 

and later developed by Raiffa & Schlaifer (1961)) and specification of hyper parameter 

values according to some specific criteria. The third approach is followed by subjective 

Bayesians, depends on elicitation of prior distributions based on pre-existing scientific 

knowledge in the area of investigation. 

Some standard approaches of priors are discussed in brief as: 

i) Non-informative Priors: A prior distribution is non-informative if the prior is “flat” 

relative to the likelihood function. Such a prior is also known as “vague” or “diffuse” 

prior. Thus, a prior )(P   is non-informative if it has minimal impact on the posterior 

distribution of  . We may prefer non-informative priors because they appear to be more 

objective. Non-informative priors provide a formal way of expressing ignorance of the 

value of the parameter over the permitted range Jeffery (1961).  

ii) Informative prior: An informative prior is a prior that is not dominated by the 

likelihood and that has an impact on the posterior distribution. If a prior distribution 

dominates the likelihood, it is clearly an informative prior. On the other hand, the proper 

use of prior distributions illustrates the power of the Bayesian method: information 
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gathered from the previous study, past experience, or expert opinion can be combined 

with current information in a natural way. 

iii) Improper prior: A prior  )(P   is said to be improper if   dP )( . For example, 

a uniform prior distribution on the real line, ,1)(P   for   , is an improper 

prior. Improper priors are often used in Bayesian inference since they usually yield non-

informative priors and proper posterior distributions. Improper prior distributions can lead 

to posterior impropriety (improper posterior distribution). To determine whether a 

posterior distribution is proper, you need to make sure that the normalizing constant 

 dPXL )()|(  is finite for all x. If an improper prior distribution leads to an improper 

posterior distribution, inference based on the improper posterior distribution is invalid. 

iv) Conjugate Priors: A prior is said to be a conjugate prior for a family of distributions 

if the prior and posterior distributions are from the same family, which means that the 

form of the posterior has the same distributional form as the prior distribution. For 

example, if the likelihood is binomial, ),(~ nBX  a conjugate prior on   is the beta 

distribution; it follows that the posterior distribution of  is also a beta distribution. Other 

commonly used conjugate prior/likelihood combinations include the normal/normal, 

gamma/Poisson, gamma/gamma, and gamma/beta cases. The development of conjugate 

priors was partially driven by a desire for computational convenience-conjugacy provides 

a practical way to obtain the posterior distributions. 

v) Jeffery’s’ Prior: A very useful prior is Jeffery‟s‟ prior (1961). It satisfies the local 

uniformity property: a prior that does not change much over the region in which the 

likelihood is significant and does not assume large values outside that range. It is based on 

the Fisher information matrix. Jeffrey‟s prior is defined as 

2/1
)()(


 IP
            (1.8.19)

 

where )(I  denotes the Fisher information matrix based on the likelihood function  























2

2 )|(log
)(

XL
EI

          

(1.8.20) 

http://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/statug_introbayes_sect013.htm#jeff_h_61
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Jeffrey‟s prior is locally uniform and hence non-informative. It provides an automated 

scheme for finding a non-informative prior for any parametric model )|( XL . Another 

appealing property of Jeffrey‟s prior is that it is invariant with respect to one-to-one 

transformations. The invariance property means that if you have a locally uniform prior 

on   and )(  is a one-to-one function of , then   1
)('.))((


 PP is a locally 

uniform prior for )( . This invariance principle carries through to multidimensional 

parameters as well. While Jeffrey‟s prior provides a general recipe for obtaining non-

informative priors, it has some shortcomings: the prior is improper for many models, and 

it can lead to improper posterior in some cases; and the prior can be cumbersome to use in 

high dimensions. 

Bayesian analysis syntheses two sources of information about the unknown parameters of 

interest. The first of these is the sample data, expressed formally by the likelihood 

function. The second is the prior distribution, which represents additional information that 

is available to investigator. Suppose we have a random sample of size n say n
xxx ....,,

21  

which we regard as independent identically distributed random variables with distribution 

function )|( XF and pdf )|( xf  and where   a labeling parameter, real valued or a 

vector valued as the case may be. Also we assume that we do not know the exact value of 

parameter   there are cases in which one can assume a little more about a parameter. Here 

  is the parameter space. We could assume that   is itself a random variable with 

distribution function )(F or pdf )(P . 

Now suppose n items are put to test and it is assumed that their recorded life items from a 

random sample of size n from a population with pdf )|( xf  to be specific we will assume 

 to be real valued. We agree to regard   itself as random variable with a pdf )(P . The 

joint pdf of )(P  is given by 

)|....,,()|()....,,|( ,21

1

,21 












 


n

n

i

in xxxLxfxxxP

       

(1.8.21) 

The marginal pdf of (
n

xxx ....,,
,21

) is given by 
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 dxxxpxxxp
nn

)|....,,()....,,(
,21,21 





        

(1.8.22) 

And the conditional pdf of   given data (
nxxx ....,, ,21

) is given by 

)....,,(
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,21

,21

n

n
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xxxp

xxxp
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
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,21
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(1.8.23) 

Thus, prior to obtaining (
n

xxx ....,,
,21

) the variations inwhere represented by )(P  , 

known as prior distribution on   however, after the data (
n

xxx ....,,
,21

) has been 

obtained in the light of the new information, the variation in   are represented by

)....,,|(
,21 n

xxxP   the posterior distribution of  . The uncertainty about the parameter  . 

Prior to experiment is represented by prior pdf )(P   and the same after the experiment is 

represented by posterior pdf )....,,|(
,21 n

xxxP   this process is the straight forward 

application pdf the Bayes theorem. Once the posterior distribution has been obtained it 

becomes the main object of study. 

1.8.4.5 Marginal and Conditional inferences   

Often only a subset of unknown parameter is really of concern to us, the rest being 

nuisance parameter that are of no concern to us. A very strong feature of Bayesian 

analysis is that we can remove the effect of nuisance parameters by simply integrating 

them out of the posterior distribution to generate a marginal posterior distribution for the 

parameters of interest. For example, if   is partitioned as  21, , with 
1  a p dimensional 

vector and 
2  as (k-p) dimensional vector, then the marginal posterior density for 

1  is 

given by 

 

   

   









R

R

dPxP

dPxP

xP

|

|

| 2

2

1

        

(1.8.24) 

Similarly, the marginal posterior density for 
2  is given by 
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 
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(1.8.25) 

The requirement of orthogonality between nuisance parameter and the parameter of 

interest is not required in this frame work Cox and Reid (1987). Moreover, marginal 

posterior densities are better substitutes of conditional profile likelihoods. 

Conditional inferences for 
1 given

2 ; and
2  given 

1  can also be made using the 

posteriors 

 
 

    
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(1.8.26) 

and  
 

    



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|,|
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PxP
xP                  (1.8.27) 

Marginal and conditional inferences procedures are two entirely different things. In the 

former, we ignore one of the components of   by integrating it out from the joint posterior 

 xP | , while in the later we control (or adjust) one of the components of   Khan 

(1997). 

1.8.4.6 Predictive Distribution 

It is the pdf (or pmf) of the as yet unobserved observation x  given sample information X. 

let us write )|(),|,()|,( yPyxfyxf   as the joint pdf of x  and the parameter  , given 

the sample information Y.  Here  Yxf ,|   is the conditional pdf for x  given   and X, 

where )Y|(P    is the conditional pdf for   given Y the predictor pdf )|( yxf  is obtained as: 

   dypyxfdyxfyxf )|(),|()|,()|(
       

(1.8.28) 

In case, the unobserved observation of x  is independent of sample information Y, that is x  

and y have independent conditional pdf‟s then 

  dypyxfyxf )|()|()|(
                     

(1.8.29)
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1.8.4.7 Methods of Posterior Modes 

Asymptotic normality of the posterior is the basic tool of large sample Bayesian 

inference. Under certain regularity conditions, in particular, if the likelihood is a 

continuous function of    and that the maximum likelihood estimate, ̂of   is not the 

boundary of the parameter space, the unimodal and almost symmetric posterior 

distribution of    approaches normality with mean ̂  and precision )ˆ(I  , Fisher 

Information evaluated at ̂  ,for large sample sizes. It may be noted that for large samples, 

the likelihood dominates the prior distribution and, therefore the knowledge of likelihood 

is enough to obtain the normal approximation. Gelman  et al. (1995) give a number of 

counter examples to illustrate limitations of the large sample approximation to the 

posterior distribution. The Bayesian approach to parametric inference is conceptually 

simple and probabilistically elegant. However its numerical implication is not convenient 

since the posterior distributions are available as complicated functions. Although these 

approximations provide useful results in applications, neither gives any account for the 

cases when the mode is at boundary. 

In the development of new simulation techniques, Laplace‟s method uses asymptotic 

arguments. Laplace‟s method is easier to implement and thus faster than the Monte Carlo 

methods, such as Gibbs sampling (Gelfand and Smith 1990), which requires a large 

number of simulations from the conditional densities. Laplace approximations to marginal 

densities and expectations can provide further insights to the problem at hand. 

1.8.4.8 Normal approximation to posterior distribution 

The numerical implementation of a Bayesian procedure is not always straight forward 

since the involved posterior distribution is complicate functions. One of the important 

steps in simplifying the computations is to investigate the large sample behavior of the 

posterior distribution and its characteristics. The basic result of the large sample Bayesian 

inference is that the posterior distribution of the parameter approaches a normal 

distribution. Relatively little has been written on the practical implications of asymptotic 

theory for Bayesian analysis. The overview by Edwards, Lindeman, and Savage (1963) 

remains one of the best and includes a detailed discussion of the principle of „stable 
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estimation‟ or when prior information can be satisfactorily approximated by a uniform 

density function. Some good sources on the topic from the Bayesian point of view include 

Lindley (1958), Pratt (1965), and Berger and Wolpert (1984). An example of the use of 

the normal approximation with small samples is provided by Rubin and Schenker (1987), 

who approximated the posterior distribution of the logit of the binomial parameter in real 

application and evaluate the frequentists operating characteristics of their procedure. 

Clogg et al. (1991) provide additional discussion of this approach in a more complicated 

setting. Sequential monitoring and analysis of clinical trials in medical research is an 

important area of practical application that has been dominated by frequentists thinking 

but has recently seen considerable discussion of the merits of a Bayesian approach; a 

recent review is provided by Freedman, Spiegel halter and Parmer (1994), Khan, A.A 

(1997) and Khan et al. (1996). 

If the posterior distribution  yP |  is unimodal and roughly symmetric, it is convenient 

to approximate it by a normal distribution centered at the mode; that is logarithm of the 

posterior is approximated by a quadratic function, yielding the approximation 

     




 

1
ˆ,ˆ~| INyP  

where    
2

2 |logˆ










xP
I                                      (1.8.30) 

if the mode, ̂  is in the interior parameter space, then  I is  positive; if ̂ is a vector 

parameter, then   I is a matrix. 

1.8.4.9 Laplace’s Approximation  

Laplace‟s method is a family of asymptotic methods used to approximate integrals 

presented as a potential candidate for the tool box of techniques used for knowledge 

acquisition and probabilistic inference in belief networks with continuous variables. The 

method is promising for computing approximation for Bayes‟ factor for use in the context 

of model selection, model uncertainty and mixtures of pdf‟s. It is simple and remarkable 

method of asymptotic expansion of integrals generally attributed to Laplace (Laplace, 

1986, 1774, Stigler, 1986) is widely used in applied mathematics. This method has been 

applied by many authors (Lindley, 1961, 1980; Mostller and Wallace, 1964; Johnson, 
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1970; DiCiccio, 1986; Hartigan, 1965; Khan et al., 1996; and Tierney and Kadane, 1986 

to find approximations to the ratios of integrals of the interest, especially in Bayesian 

analysis. If we approximate the integrals involved in the posterior density using 

approximation  

           12

1

2 1|ˆlogexpˆ2| 


 nOxPIXP
k

   
 

where )(I


  stands for determinant of )(I


  then posterior density can be approximated 

with error of order  1nO   i.e.  

             12

1

2 1|ˆlog|logexpˆ2| 
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         (1.8.31) 

Approximation (1.8.31) is the well known Laplace‟s approximation of integrals Tierney 

and Kadane (1986). Laplace‟s approximation (1.9.2b) of posterior density can be 

compared with normal approximation which has error of order )( 2

1


nO . Perhaps more 

importantly, Laplace‟s approximation is of order )1( nO uniformly on any neighborhood 

of the mode. This means that it should provide a good approximation in the tails of 

distribution also (e.g., Tierney and Kadane, 1986; Tierney, Kass and Kadane, 1989a; and 

Wong and Li, 1992). 
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CHAPTER – 2 

SIZE-BIASED CLASSICAL CONTINUOUS 

DISTRIBUTIONS 

 

 

 

 

 

2.1 Introduction 

 amma distribution is a two-parameter family of continuous probability 

distributions .This distribution is used as a lifetime model Gupta and Groll 

(1961), though not, nearly as much as the Weibull distribution. It is most 

widely used model for precipitation data. It also arises in some situations involving the 

exponential distribution; because of the well known results that the sum of independently 

and identically distributed exponential random variables has a Gamma distribution. 

Inference for Gamma model has been considered by Engelhard and Bain (1978),Chao and 

Glaser (1978), Jamali et al. (2006), Kalbfleisch and Prentice (2002), Lawless (2003), 

Zaman et al. (2005), Saal et al. (2008), Ahmad (2006) & Ahmad et al. (2011) has made 

significant contributions. It is frequently a probability model for waiting times; for 

instance, in life testing, the waiting time until death is a random variable that is frequently 

modeled with a Gamma distribution. 

The probability density function of Gamma distribution is given by:  

0,;),;( 1 


  



 



xexf x

               
(2.1.1)  

where  and
 are parameters;  is a scale parameter and   is sometimes called the 

index or shape parameter.    is the well-known Gamma function which for integral 

values of equals )!1(  . For  =1, the distribution reduces to exponential distribution. 

G 
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The moments of the Gamma Distribution are: 

2
)()(








 xVandxE

 

The hazard function of the model can be increasing, decreasing or constant depending on 

α > 1, α < 1 or α = 1 respectively. Whereas as in exponential distribution, the hazard rate 

is constant (1/α). 

In this chapter, we have considered a new general class of Size biased Gamma, Beta and 

exponential distributions. Several structural properties of these new models have been 

discussed. The estimation of parameters of these new models is obtained by employing 

the methods of moments, maximum likelihood and Bayesian method of estimation. The 

Bayes‟ estimators are obtained by using Jeffrey‟s and extension of Jeffrey‟s prior under 

different loss functions. A comparison has been made of the Bayes‟ estimator with the 

corresponding maximum likelihood estimator. Also, a likelihood ratio test of size- 

biasedness is conducted. A simulation study has been performed for the comparison of 

Bayes‟ estimators with the MLE estimator.  

2.2 Size biased Gamma Distribution 

A size- biased Gamma distribution (SBGMD) is obtained by applying the weights
cx , 

where c =1 to the Gamma distribution. 
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This gives the size –biased Gamma distribution (SBGMD) as: 
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 xexf x
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1

                                                           (2.2.1) 

                      = 0, otherwise; 0 < x <  
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where 0and0   are parameters; is a scale parameter and   is sometimes called 

the index or shape parameter. 

 

Special Cases 

Case 1: When 0 , then Size-biased Gamma distribution (SBGMD) (2.2.1) reduces to 

exponential distribution (EPD) with probability density function as: 

xexf  );( ;  x0                                                                            (2.2.2) 

Case 2: When 1 , then Size-biased Gamma distribution (SBGMD) (2.2.1) reduces to 

size biased exponential distribution (SBEPD) with probability density function as:  

xexxf   2);( ;  x0                                                                         (2.2.3) 

Case 3:  When ,1  then Size-biased Gamma distribution (SBGMD) (2.2.1) reduces to 

one parameter size biased Gamma distribution with probability density as: 

0;
!

)1;( 






xe

xf
x

                                   
(2.2.4) 

2.3 Structural Properties of the Size-biased Gamma Distribution 

In this section, we derive some important properties of Size-biased Gamma distribution. 

2. 3.1 Moments of Size -biased Gamma distribution 

The rth moment of Size-biased Gamma distribution (2.2.1) about origin is obtained as:
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(2.3.1) 

Using above relation (2.3.1), the mean and variance of the SBGMD is given as 






1
1


                                                                     (2.3.2) 
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22
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                                                                                                  (2.3.3)
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2.3.2 Moment generating function:

 

 

The moment generating of SBG distribution can be obtained as:    

   dxxfeeE txtx 1,;
0

 




 

 
 

dxxeeeE xtxtx 




 



  1

1

0  

 
 

dxxeeeE xtxtx 




 



  1

1

0  

 
 

  dxxeeE xttx 




 






0

1

1
 

  

 
  1

1
















t
eE tx

       

 
1



















t
eE tx

              

(2.3.4) 

2.3.3 Characteristic function:  

The characteristic function of SBG distribution is obtained as 
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For values of  and  , we get the following table. 

Distribution name 


 



 

Mean variance C.V MGF CF 

Exponential 

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1


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2.3.4 Shannon’s entropy of size-biased Gamma Distribution 

Shannon‟s entropy is obtained as: 
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 (2.3.6) 

Now,
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Put,  txtx
dt
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Using equation (2.3.7) in equation (2.3.6), we get the Shannon‟s entropy of Size-Biased 

Gamma Distribution 
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2.3.5 Fisher’s information matrix of size-biased Gamma Distribution 

The Gamma distribution has a probability density function of the form 
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Applying log on both sides in equation (2.3.9), we have 
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Differentiating equation (2.3.10) partially with respect to α and β, we get 
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Where, 
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Taking expectations on both sides of the equations, we get
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Now, the Fisher‟s information matrix of size-biased Gamma Distribution is given by: 
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The above relation (2.3.19) is the Fisher‟s information matrix of Size-biased Gamma 

Distribution. 

2.3.6. Characterization of Size biased Gamma distribution. 

Theorem 1: If X and Y are independent size biased Gamma varieties with parameters 

1and1    respectively .The distribution of U=X+Y, are independent and follows 
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size biased Gamma distribution with parameter 2   and Z=
Y

X
 follows size biased 

beta distribution of second kind with parameters  1,1   . 

Proof: If X )1(~ SBG , then 
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Since X and Y are independently distributed, their joint probability differential is given by 

the compound probability theorem as shown below: 
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Put U=X+Y, Z=
Y
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As X and Y ranges from to0 , both U and Z ranges from to0 .Hence the joint 

probability differential of random variables U and Z becomes: 
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)2().1,1(2),(   SBGSBZUf                                                  (2.3.17) 

Hence, U and Z are independently distributed; U is a size biased Gamma distribution with 

parameter 2   and Z as a size biased beta distribution of second kind with 

parameters  1,1   . 
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Theorem 2: If X and Y are independent size biased Gamma varieties with parameters 

11   and  respectively. Then the distribution of Z= YX  are independent and 

follows size biased Gamma distribution with parameter 2   and U =
YX

X


follows 

size biased beta distribution of first kind with parameters  1,1   . 

Proof: If X )1(~ SBG , Then  
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Since X and Y are independently distributed, their joint probability differential is given by 

the compound probability theorem as shown below: 
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Put U=
YX

X


, Z=X+Y 
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As X and Y ranges from to0 , but U ranges from 0 to 1 and Z ranges from to0 .Hence 

the joint probability differential of random variables U and Z becomes: 

dxdyJYXfZUf ),(),(   

 
    

 
  dUUedZZZZUf U 12

0

1111

2

1
.1

1,1

1
),( 




 



 


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Hence, U and Z are independently distributed; U follows as a size biased beta distribution 

of first kind with parameters  1,1    and Z as a size Gamma biased distribution with 

parameter 2   . 
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Theorem 3: If    1,~,1~  vSBGYandvSBX  be independent random variables, 

then XY is distributed as a size biased Gamma variate with parameters 

).1,(~,,,1   SBGXYeiand
 

Proof: Since X and Y are independently distributed, their joint probability differential is 

given by the compound probability theorem as shown below: 
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Let us transform to the new variables U and Z by the transformation: 
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Integrating w.r.to z in the range 0 < Z < 1, the marginal p.d.f of U is given as: 
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Hence U=XY, is distributed as a size biased Gamma variate with parameters 

).1,(~,,,1and   SBGXYei
 

  

2.5.7 Test for Size-biasedness of Size biased Gamma Distribution 

Let X1, X2, X3… Xn be random samples can be drawn from Gamma distribution or size-

biased Gamma distribution. We test the hypothesis 
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For testing whether the random sample of size n comes from the Gamma distribution or 

Size-biased Gamma distribution, then the following test statistic is used. 
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We reject the null hypothesis. 
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Equalivalently, we rejected the null hypothesis where 

 

                                                        (2.3.24)  

For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. 

2.6 Estimation of parameters 

In this section, we discuss the various estimation methods for size biased Gamma 

Distribution and verifying their efficiencies. 
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In the method of moments replacing the population mean and variance by the 

corresponding sample mean and variance, we get the following estimates 

𝛼 =
𝑥 

𝑠2                                                                                                              (2.5.1) 

𝛽 =
𝑥 2

𝑠2 − 1                                                                                                       (2.5.2) 

2. 6 Method of maximum likelihood estimation (MLE) 

Let nxxxx .......,, 321 be a random sample can be drawn from the size biased Gamma 

distribution, and then the corresponding likelihood function is given as 
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The log likelihood of (2.6.1) can be written as 
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Solving the above equation gives the MLE estimate of 𝛽. 

2.7 Bayesian method of estimation 

Bayesian analysis is an important approach to statistics, which formally seeks use of prior 

information and Bayes‟ Theorem provides the formal basis for using this information. In 

this approach, parameters are treated as random variables and data remains fixed.  
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2.7.1 Parameter estimation under squared error loss function 

In this section, two different prior distributions are used for estimating the parameter of 

the size biased Gamma distribution namely; Jeffery‟s prior and extension of Jeffrey‟s 

prior information. 

2.7.1.1 Bayes’ estimation of parameter of size biased Gamma distribution under 

Jeffrey’s prior 

Consider there are n recorded values,  nxxx ,...1  from (2.2.1). We consider the extended 

Jeffrey‟s prior as: 
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Then the joint probability density function is given by 
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   And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 

 xp    dxf


0

,     

   xp
 

  




 



dex

nk nn
n

i

x

in

n

i

i
1

10

1

1

1 











                                                                

  
 

  
 

nn
n

i

i

n

i

in

x

nn
x

nk
xp
























 

 





1

11

)1(

                                                            (2.7.2) 

The posterior PDF of   has the following form  
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By using a squared error loss function    21
ˆ,ˆ   cl   for some constant c, the risk 

function is: 
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(2.7.5) 

2.7.1.2 Estimation of Survival function: 

By using posterior probability density function, we can find the Survival function, such 

that 
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2.7.1.3 Bayes’ estimation of parameter of size biased Gamma distribution using 

extension of Jeffrey’s prior.

 
We consider the extended Jeffrey‟s prior are given as: 
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Then the joint probability density function is given by: 
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(2.7.8) 

 And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    21
ˆ,ˆ   cl   for some constant c, the risk 

function is: 
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(2.7.12)

 

The Bayes‟ estimator under a precautionary loss function is denoted by ̂ , and is given by 

the following equation: 
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The risk function under precautionary loss function is given by: 
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Remark: Replacing c1= 1/2 in (2.7.12), the same Bayes‟ estimator is obtained as in 

(2.7.5) corresponding to the Jeffrey‟s prior. By Replacing c1= 3/2 in (2.7.12), the Bayes‟ 

estimator becomes the estimator under Hartigan‟s prior (Hartigan (1964)). By Replacing 

c1= 0   in (2.7.12), thus we get uniform prior. 

2.7.1.3 Estimation of Survival function:

  

By using posterior probability density 

function, we can found the Survival function, such that 

   dxexS x

1

0

2 )(ˆ 




 

 

 










d
cnn

x

exS

cnn
n

i

i

cnn
xx

n

i

i


































 

0 1

12

1112

2
12

)(ˆ

1

11

 12

1

1
1

1

)(ˆ
































cnn

n

i

i

n

i

i

xx

x

xS



                                                                             

(2.7.14) 

2.7.2 Parameter estimation under a new loss function. 

This section uses a new loss function introduced by Al-Bayyati (2002). Employing this 

loss function, we obtain Bayes‟ estimators under Jeffrey‟s and extension of Jeffrey‟s prior 

information. 

Al-Bayyati introduced a new loss function of the form: 

    .;ˆ,ˆ
2

2
2 Rcl

c

A                                                                             (2.7.15) 

Here, this loss function is used to obtain the estimator of the parameter of the size biased 

Gamma distribution. 

2.7.2.1 Bayes’ estimation of parameter of size biased Gamma distribution under 

Jeffrey’s prior. 

By using the loss function in the form given in (2.7.15), we obtained the following risk 

function: 
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The Bayes‟ estimator under a precautionary loss function is denoted by ̂ , and is given by 

the following equation: 

 2
1

2ˆ  EP    and the corresponding Bayes‟ estimator comes out to be: 
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(2.7.17) 

The risk function under precautionary loss function is given by: 

 

(2.7.18)  

 

Remark: Replacing c2 = 0 in (2.7.17), the same Bayes‟ estimator is obtained as in (2.7.5) 

corresponding to the Jeffrey‟s prior. By Replacing c2 =-2 in (2.7.17), the Bayes‟ estimator 

becomes the estimator under Hartigan‟s prior (Hartigan (1964)). By Replacing c2 =1 in 

(2.7.17), thus we get uniform prior.
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 2.7.2.2 Bayes’ estimation of parameter of size biased Gamma distribution using 

extension of Jeffrey’s prior. 

By using the loss function in the form given in (2.7.15), we obtained the following risk 

function: 
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The Bayes‟ estimator under a precautionary loss function is denoted by ̂ , and is given by 

the following equation:  2
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The risk function under precautionary loss function is given by:
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Remark: Replacing c1= 1/2   and c2 = 0 in (2.7.20), the same Bayes‟ estimator is obtained 

as in (2.7.5) corresponding to the Jeffrey‟s prior. By Replacing c1= 3/2   and c2 =0 in 

(2.7.20), the Bayes estimator becomes the estimator under Hartigan‟s prior (Hartigan 

(1964)). By Replacing c1= 0   and c2 =0 in (2.7.20), thus we get uniform prior. 

2.7.3 Simulation Study of Size biased Gamma Distribution 

In our simulation study, we choose a sample size of n=25, 50 and 100 to represent small, 

medium and large data set. The scale parameter is estimated for Size biased Gamma 

Distribution with Maximum Likelihood and Bayesian using Jeffrey‟s & extension of 

Jeffrey‟s prior methods. For the scale parameter we have considered   = 1.5, .2.0 and 

2.5.The values of Jeffrey‟s extension were c1 = 0.5, 1.0, 1.5 and 2.0. The value for the loss 

parameter c2 = -1, 0 and +1.This was iterated 5000 times and the scale parameter for each 

method was calculated. A simulation study was conducted using R-software to examine 

and compare the performance of the estimates for different sample sizes with different 

values for the Extension of Jeffrey‟s‟ prior and the loss functions. The results are 

presented in tables (2.1), (2.2) for different selections of the parameters and c extension of 

Jeffrey‟s prior.  

Table 2.1: Structural properties of Size biased classical Gamma distribution 

n   1  Mean
 

variance
 

S.D C.V
 Shannon’s 

Entropy 

25 1.0 1.5 0.515819 0.219917 0.468954 1.099935 1.639386 

1.5 2.0 2.647555 1.128777 1.062439 2.491958 1.998861 

2.0 2.5 3.073902 1.310549 1.144792 2.685118 1.905132 

50 1.0 1.5 0.942166 0.401689 0.633790 1.486559 1.694657 

1.5 2.0 2.221208 0.947005 0.973142 2.282511 2.026569 

2.0 2.5 3.500249 1.492321 1.221606 2.865285 1.938364 

100 1.0 1.5 1.368513 0.583461 0.763846 1.791607 1.744428 

1.5 2.0 1.794861 0.765233 0.874776 2.051794 2.052823 

2.0 2.5 3.926596 1.674093 1.293867 3.034775 1.969526 
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Table 2.2: Mean Squared Error for under̂  Jeffrey’s prior 

n   1  
ML  sl  Nl  

C2=-1.0 C2=0 C2=1.0 

25 

1.0 1.5 0.694831 0.694831 0.598016 0.694831 0.544739 

1.5 2.0 1.616179 1.616179 1.349812 1.585304 1.436083 

2.0 2.5 2.485953 2.485953 2.597593 2.456618 2.389094 

50 

1.0 1.5 0.610410 0.610409 0.5293161 0.530716 0.513424 

1.5 2.0 1.311115 1.311115 1.185384 1.311115 1.209764 

2.0 2.5 2.359689 2.379689 2.282167 2.359689 2.331872 

100 

1.0 1.5 0.466204 0.466204 0.3765582 0.466204 0.378032 

1.5 2.0 1.204456 1.204456 1.138956 1.127385 1.136965 

2.0 2.5 2.274085 2.274065 2.144278 2.274065 2.284561 

Table 2.3: Mean Squared Error for (̂ ) under extension of Jeffrey’s prior 

 

 

n 

 

  

 

1  

 

C1 

 

ML  

 

sl  
Nl  

C2=-1.0    C2=0 C2=1.0 

25 1.0 1.5 0.5 

1.0 

1.5 

2.0 

1.751815 

1.751815 

1.751815 

1.751815 

0.605711 

0.678151 

0.756965 

1.743262 

0.491789 

0.785964 

0.796710 

1.551585 

0.605711 

0.678151 

0.707501 

1.743262 

0.675668 

0.715066 

0.761006 

1.873616 

2.0 2.5 0.5 

1.0 

1.5 

2.0 

1.465009 

1.465009 

1.465009 

1.465009 

1.465009 

1.664499 

1.579438 

1.685124 

1.530603 

1.393877 

1.178935 

1.469333 

1.478005 

1.154286 

1.336005 

1.685124 

1.525623 

1.600484 

0.743068 

1.753295 

50 1.0 1.5 0.5 

1.0 

1.5 

2.0 

0.523688 

0.523688 

0.523688 

0.523688 

0.523688 

0.581831 

0.580325 

0.718147 

0.442794 

0.591908 

0.357746 

0.737926 

0.523688 

0.581831 

0.441632 

0.471831 

0.621982 

0.553100 

0.602326 

0.421187 

2.0 2.5 0.5 

1.0 

1.5 

2.0 

1.170480 

1.170480 

1.170480 

1.170480 

1.170480 

1.275611 

1.421131 

1.656525 

1.203897 

1.309292 

1.148665 

1.365212 

1.132317 

1.181767 

1.221135 

1.656525 

1.095543 

0.993167 

0.904535 

1.532779 

100 1.0 1.5 0.5 

1.0 

1.5 

2.0 

0.494552 

0.494552 

0.494552 

0.494552 

0.494552 

0.522866 

0.523018 

0.499482 

0.357457 

0.532341 

0.332578 

0.459488 

0.494552 

0.574154 

0.405039 

0.469988 

0.560155 

0.410739 

0.480748 

0.344415 

2.0 2.5 0.5 

1.0 

1.5 

2.0 

1.069772 

1.069772 

1.069772 

1.069772 

1.069772 

1.195533 

1.129912 

1.346683 

1.192434 

1.222817 

1.146871 

1.317127 

1.069772 

1.164875 

0.8618621 

1.346683 

0.981817 

0.879562 

1.321517 

1.250574 

ML= Maximum Likelihood, SL=Squared Error Loss Function, NL= New Loss Function, 

In table 2.2, Bayes‟ estimation with New Loss function under Jeffrey‟s prior provides the 

smallest values in most cases especially when loss parameter C2 is ±1. Similarly, in table 
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2.3, Bayes‟ estimation with New Loss function under extension of Jeffrey‟s prior provides 

the smallest values in most cases especially when loss parameter C2 is ± 1 whether the 

extension of Jeffrey‟s prior is 0.5, 1.0, 1.5 or 2.0. 

2.8 Beta distribution of first kind 

 A continuous random variable X is said to be beta distribution of first kind with 

parameters a and b and its probability density function (pdf) is given by: 
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Many of the finite range distributions encountered in practice can be easily transformed 

into the standard distribution. In reliability and life testing experiments, many times the 

data are modeled by finite range distributions. Many generalizations of beta distributions 

involving algebraic and exponential functions have been proposed in the literature; see in 

Johnson et al. (2004) and Gupta and NadarSajah (2004) for detailed accounts. 

2.9 Size-Biased Beta Distribution of first kind 

A size biased beta distribution of first kind (SBBD1) is obtained by applying the weights
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where )1,;( baxf  represents a probability density function. This gives the size –biased 

beta distribution of first kind (SBBD1) as: 
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2.10  Structural properties of size biased beta distribution of first kind 

In this section, we derive some important properties of Size-biased beta distribution of 

first kind.
 

2.10.1 Moments of Size biased beta distribution of first kind 

The rth moment of Size biased beta distribution of first kind (2.9.1) about origin is 

obtained as: 
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Using the equation (2.10.1), the mean of the SBBD1 is given by
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Using the equation (2.10.1), the second moments of the SBBD1 is given by
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Using the equations (2.10.2) and (2.10.3) the variance of the SBBD1 is given by
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Using the equation (2.10.1), the third and fourth moments of the SBBD1 are given by
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The coefficient of variation of Size biased beta distribution is given as: 
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2.10.2 Harmonic mean of Size biased Beta distribution of first kind

 
The harmonic mean (H) is given as: 
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2.10.3 Mode of size biased beta distribution of first kind 

The probability distribution of Size- biased Beta distribution of first kind is: 
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In order to discuss monotonicity of size biased beta distribution of first kind. We take the 

logarithm of its pdf: 
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Therefore, the mode of size biased beta distribution of first kind is given as: 
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2.10.4 Simulation Study of Size biased Beta distribution of first kind 

In our simulation study, we choose a sample size of n=25, 50 and 100 to represent small, 

medium and large data set. For the scale parameter we have considered            𝜃=0.5, 1.0 

and 1.5. This was iterated 2000 times and the structural properties were calculated. A 

simulation study was conducted R-software to obtain the structural properties – mean, 

median, mode, variance, standard deviation and coefficient of variation. The results are 

presented in table (2.4) for different values of the parameters and having different sample 

sizes. 
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Table 2.4: Structural properties of Size biased Beta distribution of first kind 

n a+1 b
 

Mean
 

variance
 

Mode H.M
 

S.D C.V   

25 1.5 2.0 0.4285714 0.05442177 0.3243333 0.2012413 0.2332847 0.5443310 

2.0 2.5 0.4323456 0.03756533 0.3276546 0.2434578 0.1938178 0.4482937 

2.5 3.0 0.4024565 0.04563651 0.3367899 0.2356788 0.2136270 0.5308077 

50 1.5 2.0 0.4356746 0.06245671 0.3567888 0.2144566 0.2499134 0.5736240 

2.0 2.5 0.4245678 0.03934564 0.3123556 0.1956677 0.1983574 0.4671984 

2.5 3.0 0.3905663 0.03456367 0.3346778 0.2567890 0.1859131 0.4760091 

100 1.5 2.0 0.4367899 0.06345889 0.3435678 0.1899909 0.2519105 0.5767315 

2.0 2.5 0.4599456 0.03245677 0.3134566 0.2456678 0.1801576 0.3916933 

2.5 3.0 0.4435632 0.04577788 0.3534677 0.2096778 0.2139577 0.4823613 

 

2.11. Estimation of parameters of Size-biased Beta distribution of first kind 

In this method of moments replacing the population mean and variance by the 

corresponding sample mean and variance, we have: 
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Substitute the value of â  in the above equation; we can get the estimated value of 

parameter b. 
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2.12 Test for Size-biased beta distribution of first kind. 

Let X1, X2, X3… Xn be random samples can be drawn from beta distribution of first kind 

or size-biased beta distribution of first kind. We test the hypothesis 

),1;()(:v),,()(:
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1
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For test whether the random sample of size n comes from the beta distribution of first 

kind or Size-biased beta distribution of first kind the following test statistic is used. 
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Equalivalently, we rejected the null hypothesis where 

                                                                          

                       (2.12.2)                                                

For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. 

2.13 Exponential distribution 

The exponential distribution occupies an important position in the analysis of data. In 

probability theory and statistics, the exponential distribution is a family of continuous 

probability distribution. Historically, the exponential distribution was the first lifetime 

model for which statistical methods were extensively developed. It describes the time 

between events in the Poisson process i.e., a process in which events occur continuously 

and independently at a constant rate. The exponential distribution occurs naturally when 
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describing the lengths of the inter arrival times in a homogeneous Poisson process. 

Exponential variables can also be used to model situations where certain events occur 

with a constant probability per unit length, such as the distance between mutations on a 

DNA strand, or between road kills on a given road. Reliability theory and reliability 

engineering also make extensive use of the exponential distribution. Because of the 

memory less property of this distribution, it is well-suited to model the constant hazard 

rate portion of the bathtub curve used in reliability theory. Failure rate is the frequency 

with which an engineered system or component fails, expressed for example in failures 

per hour. It is important in reliability engineering. By calculating the failure rate for 

smaller and smaller intervals of time, the interval becomes infinitely small. Work by 

Sukhatmi (1937), Epstein and Sobel (1955) and Epstein (1954), Bartholomew (1957), 

gave numerous results and popularized the exponential Distribution as a lifetime 

distribution, especially in the area of industrial life testing. Many authors have contributed 

to the statistical methodology of the distribution. The lengthy bibliographies of 

Mendenhall (1958), Govindara julu (1964), Johnson and Kotz (1970), Johnson, Kotz and 

Balakrishnan (1994) and Lawless (2003), Ahmad (2006), Ahmed et. al. (2007 & 2010), 

contains a large number of papers in this area. 

A random variable X has an exponential distribution with parameter  0  if its 

probability density function is of the form 

    0;0,exp   xxxf                                                         (2.13.1) 

with mean 


1
 and variance

2

1


 respectively. 

2.14 Size biased exponential distribution 

A size biased exponential distribution (SBED) is obtained by applying the weights cx , 

where c =1 to the weighted exponential distribution. 

We have from relation (2.13.1), we have  
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Where );( xf  represents a probability density function. This gives the Size biased 

exponential distribution as: 

  0;; 2    xexxf      

                                                                              

(2.14.1) 

2.15 Structural Properties of the Size-biased exponential Distribution 

In this section, we derive some properties of Size-biased exponential distribution. 

2.15.1 Method of Moments 

The rth moment of Size biased exponential distribution (2.14.1) about origin is obtained 

as 
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Using above relation, the mean and variance of the SBEPD are given as                          

                                                                                                      (2.15.2)  

                    

22

2


                                                                                                          (2.15.3) 

2.16 Estimation of parameters 

In this section, we discuss the various estimation methods for size biased exponential 

distribution and verifying their efficiencies. 

2.16.1   Methods of Moments  

In the method of moments replacing the population mean and variance by the 

corresponding sample mean and variance, we have 


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2
1 



81 
 

         

x
1

    

 
Then     

x

2ˆ     
                                                                       (2.16.1)        

 

2.16.2 Maximum likelihood estimation  

Let ),,,( 21 nxxx   be a random sample of size n having the probability density function as  
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Then, the likelihood function is given by  
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2.16.3 Parameter estimation under squared error loss function 

In this section, two different prior distributions are used for estimating the parameter of 

the size biased exponential distribution namely; Jeffery‟s prior and extension of Jeffrey‟s 

prior information. 

2.16.3.1 Bayes’ estimation of parameter of size biased exponential distribution under 

Jeffrey’s prior 

Consider there are n recorded values,  nxxx ,...1  from (2.14.1). We consider the extended 

Jeffrey‟s prior as:      Ig   
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Then the joint probability density function is given by: 
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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using a squared error loss function    2ˆ,ˆ   cL  for some constant c, the risk function 

is: 
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This coincides with maximum likelihood estimator. 

2.16.3.2 Estimator of survival function 

By using conditional density function, we can found the survival function such that 
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2.16.3.3 Bayes’ estimation of parameter of size biased exponential distribution using 

extension of Jeffrey’s prior 

We consider the extended Jeffrey‟s prior are given as: 
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Then the joint probability density function is given by:
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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(2.16.3.10)    

By using a squared error loss function    2ˆ,ˆ   cL  for some constant c, the risk 

function is: 
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The Bayes‟ estimator under a precautionary loss function is denoted by̂ , and is given by 

the following equation: 

 2
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The risk function under precautionary loss function is given by: 
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Remarks1: If
2

1
1 c , we get, the Jeffrey‟s prior and the corresponding Bayes‟ estimator is 

x
x

n
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22ˆ
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2 


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 ,If
2

3
1 c , we get, the Hartigan prior [Hartigan [1964]] and the 
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2.16.3.4 Estimator using new extension of survival function 
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2.16.4 Parameter estimation under a new loss function. 

We use a new loss function introduced by Al-Bayyati (2002). Employing this loss 

function, we obtain Bayes‟ estimators using Jeffrey‟s and extension of Jeffrey‟s prior 

information. 

Al-Bayyati introduced a new loss function of the form: 

    .;ˆ,ˆ
2

2
2 Rcl

c

A
                                                                       (2.16.4.1)           
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Here, this loss function is used to obtain the estimator of the parameter of the size biased 

exponential distribution. 

2.16.4.1 Bayes’ estimation of parameter of size biased exponential distribution under 

Jeffrey’s prior. 

By using the loss function in the form given in (2.16.4.1), we obtained the following risk 

function: 
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2.16.4.2 Bayes’ estimation of parameter of size biased exponential distribution using 

extension of Jeffrey’s prior. 

By using the loss function in the form given in (2.16.4.1), we obtained the following risk 

function: 
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(2.16.4.5) 

Remarks 3: If
2

1
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2.17 Simulation Study of size-biased exponential distribution 

In our simulation study, we chose a sample size of n=25, 50 and 100 to represent small, 

medium and large data set. The scale parameter is estimated for size-biased exponential 

distribution by the methods of Maximum Likelihood and Bayesian using Jeffrey‟s & 

extension of Jeffrey‟s prior. For the scale parameter we have considered = 1.0 and 1.5. 

The values of Jeffrey‟s extension were c1 = 0.5, 1.0, 1.5 and 2.0. The value for the loss 

parameter c2 is 1, 0 and -1. This was iterated 5000 times and the scale parameter for each 

method was calculated. A simulation study was conducted using R-software to examine 

and compare the performance of the estimates for different sample sizes with different 

values for the Extension of Jeffrey‟s‟ prior and the loss functions. The results are 

presented in tables (2.6), (2.7) for different selections of the parameters and c extension of 

Jeffrey‟s prior.  
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Table 2.5: Structural properties of Size biased exponential distribution 

n   Mean
 

variance
 

S.D C.V
 Shannon’s 

Entropy 

25 1.5 0.8526943 0.03635438 0.1906682 0.2236067 0.5945349 

2.0 0.9867888 0.05156773 0.2270853 0.2301255 0.3068528 

2.5 0.8056772 0.03245661 0.1801572 0.2236097 0.0837092 

50 1.5 0.9289910 0.03867889 0.1966695 0.2117023 0.6134556 

2.0 1.0234671 0.04899090 0.2213389 0.2162638 0.3356778 

2.5 0.7945678 0.03156767 0.1776729 0.2721779 0.0967888 

100 1.5 0.9368991 0.03789921 0.1946772 0.2077889 0.6356778 

2.0 0.9856778 0.05356778 0.2314471 0.2348102 0.3556778 

2.5 0.8345677 0.03335664 0.1826380 0.2188414 0.1078867 

 

        Table 2.6: Mean Squared Error for ( ) under Jeffrey’s prior 

 

Table2.7: Mean Squared Error for ( ) under extension of Jeffrey’s prior 

n θ C1 θML θSL 
θNL 

C2=1.0 C2=0 C2=-1.0 

25 1.0 0.5 

1.0 

1.5 

2.0 

0.046714 

0.046714 

0.046714 

0.046714 

0.046714 

0.044122 

0.041605 

0.039161 

0.049379 

0.046714 

0.044122 

0.041605 

0.046714 

0.044122 

0.041605 

0.039161 

0.044122 

0.041605 

0.039161 

0.036791 

n θ θML θSL 

θNL 

C2=1.0 C2=0 C2=-1.0 

25 0.5 0.220509 0.220509 0.239097 0.220509 0.202673 

1.0 0.046714 0.046714 0.049379 0.046714 0.044122 

1.5 0.281341 0.281341 0.261145 0.281341 0.302288 

50 0.5 0.121840 0.121840 0.127840 0.121840 0.115985 

1.0 0.010920 0.010920 0.008897 0.010920 0.013150 

1.5 0.254824 0.254824 0.258140 0.254824 0.251529 

10

0 

0.5 0.092848 0.092848 0.101594 0.092848 0.084176 

1.0 0.000925 0.000925 0.000121 0.002480 0.002480 

1.5 0.180579 0.180579 0.177164 0.180579 0.1840687 
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1.5 0.5 

1.0 

1.5 

2.0 

0.281341 

0.281341 

0.281341 

0.281341 

0.281341 

0.302288 

0.323987 

0.346439 

0.261145 

0.281341 

0.302288 

0.323987 

0.281341 

0.302288 

0.323987 

0.346439 

0.302288 

0.323987 

0.346439 

0.369642 

50 1.0 0.5 

1.0 

1.5 

2.0 

0.010920 

0.010920 

0.010920 

0.010920 

0.010920 

0.013150 

0.015588 

0.018233 

0.008897 

0.010920 

0.013150 

0.015588 

0.010920 

0.013150 

0.015588 

0.018233 

0.013150 

0.015588 

0.018233 

0.021084 

1.5 0.5 

1.0 

1.5 

2.0 

0.254824 

0.254824 

0.254824 

0.254824 

0.254824 

0.251529 

0.248256 

0.245004 

0.258140 

0.254824 

0.251529 

0.248256 

0.254824 

0.251529 

0.248256 

0.245004 

0.251529 

0.248256 

0.245004 

0.241774 

100 

 

1.0 0.5 

1.0 

1.5 

2.0 

0.000925 

0.000925 

0.000925 

0.000925 

0.000925 

0.002480 

0.004788 

0.007848 

0.000121 

0.000925 

0.002480 

0.004788 

0.000925 

0.002480 

0.004788 

0.007848 

0.002480 

0.004788 

0.007848 

0.011660 

1.5 0.5 

1.0 

1.5 

2.0 

0.180579 

0.180579 

0.180579 

0.180579 

0.180579 

0.184068 

0.187631 

0.191268 

0.177164 

0.180579 

0.184068 

0.187631 

0.180579 

0.184068 

0.187631 

0.191268 

0.184068 

0.187631 

0.191268 

0.194979 

ML= Maximum Likelihood, SL=Squared Error Loss Function, NL= New Loss Function 

In table 2.6, Bayes‟ estimation with New Loss function under Jeffrey‟s prior provides the 

smallest values in most cases especially when loss parameter C2 is ±1. Similarly in table 

2.7, Bayes‟ estimation with New Loss function under extension of Jeffrey‟s prior provides 

the smallest values in most cases especially when loss parameter C2 is ± 1 whether the 

extension of Jeffrey‟s prior is 0.5, 1.0, 1.5 or 2.0.  Moreover, when the sample size 

increases from 25 to 100, the MSE decreases quite significantly.  
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CHAPTER – 3 

SIZE-BIASED GENERALIZED  

GAMMA DISTRIBUTION  

 

 

 

3.1 INTRODUCTION  

he generalized Gamma (GG) distribution presents a flexible family in the 

varieties of shapes and hazard functions for modeling duration. The study of life 

testing models begins with the estimation of the unknown parameters involved 

in the models. Amorose Stacy (1962) proposed a generalized Gamma model and studied 

its characteristics. Shukla and Kumar (2006) used this model in a bit little transformed 

form to cover more real life situations. Distributions that are used in duration analysis in 

economics include exponential, lognormal, Gamma, and Weibull. Stacy and Mihram 

(1965) and Harter (1967) have derived maximum likelihood estimators of generalized 

Gamma model under different situations. Prantice (1974) has considered maximum 

likelihood estimators for generalized Gamma model by using the technique of 

reparametrization. The GG family, which encompasses exponential, Gamma, and Weibull 

as subfamilies, and lognormal as a limiting distribution, has been used in economics by 

Jaggia (1991). Some authors like Yamaguchi (1992) and Allenby et al (1999) have argued 

that the flexibility of GG makes it suitable for duration analysis, while others have 

advocated use of simpler models because of estimation difficulties caused by the 

complexity of GG parameter structure. Obviously, there would be no need to endure the 

costs associated with the application of a complex GG model if the data do not 

T 
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discriminate between the GG and members of its subfamilies, or if the fit of a simpler 

model to the data is as good as that for the complex GG. Hager and Bain (1970) inhibited 

applications of the GG model. However, despite its long history and growing use in 

various applications, the GG family and its properties has been remarkably presented in 

different papers. Maximum-likelihood estimation of the parameters and quasi maximum 

likelihood estimators for its subfamily (two-parameter Gamma distribution) can be found 

in Stacy (1973). Hwang T. et al (2006) introduced a new moment estimation of 

parameters of the generalized Gamma distribution using its characterization. In 

information theory, thus far a maximum entropy (ME) derivation of GG is found in Kapur 

(1989), where it is referred to as generalized Weibull distribution, and the entropy of GG 

has appeared in the context of flexible families of distributions. Some concepts of this 

family in information theory has introduced by Dadpay et al (2007).  

The pdf of the generalized Gamma distribution is given by:
 

0,,0,)(),,;( )(1 
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  kandxforex
k

kxf xk 
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                  (3.1.1)  

where  .

 

is the Gamma function, K and   are shape parameters, and   is the scale 

parameter. The generalized Gamma family is flexible in that it includes several well-

known models as subfamilies. The subfamilies of generalized Gamma thus far considered 

in the literature are exponential, Gamma and Weibull. The lognormal distribution is also 

obtained as a limiting distribution when n .
 

The CDF of the generalized Gamma distribution is given by: 
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The Structural properties of the generalized Gamma distribution are given as: 
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 (3.1.4) 

In this chapter, a new class of Size biased Generalized Gamma distribution have been 

considered. The several structural properties, reliability and information measures are 

introduced and derived. The estimation of parameters of this new model is obtained by 

employing the new methods of moments, maximum likelihood and Bayesian method of 

estimation. The Bayes‟ estimators are obtained by using Jeffrey‟s and extension of Jeffrey‟s 

prior under different loss functions. A comparison has been made of the Bayes‟ estimator 

with the corresponding maximum likelihood estimator. Also, a likelihood ratio test of size 

biased generalized Gamma distribution is to be conducted. A simulation study has been 

performed for the comparison of Bayes‟ estimators with the MLE estimator. Also, survival 

functions of new model are derived using Jeffrey and extension of Jeffrey prior. It has been 

observed that Bayes‟ estimator provides better results and estimates as compared to 

classical estimators. In this chapter, the AIC, BIC and DIC values of exponential model are 

smaller as compared to size biased Gamma and size biased exponential models, so 

exponential model is more preferable than the size biased Gamma and size biased 

exponential models for the real data in hand. 

3.2 Size biased Generalized Gamma Distribution 

A size- biased Generalized Gamma distribution (SBGGMD) is obtained by applying the 

weights cx , where c =1 to the Generalized Gamma distribution. 
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where ),,;( kxf s   represents a probability density function. This gives the size -biased 

generalized Gamma distribution (SBGGMD) and its pdf is given by
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                                                           (3.2.1)

 

For 10,0,0   kandk  

where  .

 

is the Gamma function, K and   are shape parameters, and   is the scale 

parameter. 

3.2.1 Special cases 

1. When ,1 k then Size biased Generalized Gamma distribution reduced to Size-

biased exponential distribution and its probability distribution is given by 

     0;);( 2    x
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2. When 1 then Size biased Generalized Gamma distribution reduced to size-biased 

Gamma distribution and its probability distribution is given by 
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3. When 10  andk then Size biased Generalized Gamma distribution reduced to 

exponential  distribution and its probability distribution is given by 
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3.2.2 Hazard functions 

The hazard function for the Size biased generalized Gamma distribution is given as: 
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The reverse hazard function for the Size biased generalized Gamma distribution is given 

as: 
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Theorem 3.2.2.1: Let  kxf ,,;   be a twice differentiable probability density function of 

a continuous random variable X. Define  
 kxf
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 where  kxf ,,;   

is the first derivative of  kxf ,,;  with respect to x. Furthermore, suppose that the first 

derivative of  kxn ,,;   exist. 

a) If   ,0,,;  kxn  for all x > 0, then the hazard function is monotonically decreasing. 

b) If   ,0,,;  kxn  for all x > 0, then the hazard function is monotonically increasing.  

c) Suppose there exist 0x  such that   ,0,0,,; 0xxallforkxn     0,,;0  kxn    
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upside down bathtub shape. 

Proof: Using equation (3.2.1), the derivative of the  kxf ,,;  is given by: 
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(3.2.7) 

a) If 1 , then   ,0,,;  kxn  for all x > 0, then the hazard function is monotonically 

increasing. 
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b) If 1 , then   ,0,,;  kxn   then the hazard function is monotonically decreasing. 

c) If 10   , then the hazard function is upside down bathtub shape. 

3.3 Structural properties of Size biased Generalized Gamma Distribution 

In this section, we derive some structural properties of Size-biased generalized Gamma 

distribution. 

3.3.1 Moments of Size biased Generalized Gamma distribution 

Using equation (3.2.1), the mth moments are obtained as: 
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On solving the above equation (3.3.1), we get
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Using the equation (3.3.2), the mean and variance of the SBGGMD are given as:
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The coefficient of variation of SBGGMD is given by 
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3.3.2 Mode of Size biased generalized Gamma distribution: 

The probability distribution of size biased Generalized Gamma distribution can be 

obtained as: 
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In order to discuss monotonicity of size biased Generalized Gamma distribution. We take 

the logarithm of its pdf: 
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The mode of size generalized Gamma distribution is given as:  
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3.3.3 Moment generating function of Size biased Generalized Gamma Distribution 

The moment generating function of SBGG distribution is obtained as:    
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Substitute 1  in the above relation, we have 
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3.3.4 Characteristic function of Size biased Generalized Gamma Distribution 

The Characteristic function of SBG distribution is obtained as:     
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Substitute 1  in the above relation, we have 
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(3.3.15) 

3.3.5 Shannon’s entropy of size-biased Generalized Gamma Distribution 

For deriving the entropy of the size-biased Generalized Gamma distribution, we need the 

two definitions that are more details of them can be found in Cover (1991).
 

Theorem.3.5.5.1 Let  nxxxx ...,, 321  be an n positive identical independently distributed 

random samples drawn from a population having a size-biased generalized Gamma 

density 
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Then Shannon‟s entropy of Size-biased Generalized Gamma Distribution   is: 
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Proof:  Shannon‟s entropy of Size biased Generalized Gamma Distribution is obtained as: 
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Substitute the value of equation (3.3.18) in equation (3.3.16), we have
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 (3.3.19) 

3.3.6 The generalized entropy of size-biased Generalized Gamma Distribution
 

Generalized entropy is often used in econometrics. It is indexed by a single parameter

.The generalized entropy is defined to be  
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3.3.7 Fisher’s information matrix of size-biased Generalized Gamma Distribution 

The Size biased generalized Gamma distribution has a probability density function of the 

form: 
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Applying log on both sides in equation, we have
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Differentiating equation (3.3.19) partially with respect to ,  and k  we get 
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Differentiating again the above equation partially with respect to ,  and k  we have 
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Taking expectations on both sides of the above equations, we get
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Substitute the values of equations (3.3.37), (3.3.38) and (3.3.39) in the above entries of a 

Fisher information matrix, we get 

   









































1

1
1

1
1

1

)1,1(
2 k

kkk

I
           

 




























































1

1
1

1
1

1loglog
1

)2,1(

2

k

kkkk

I

 


)3,1(I

 







































































1

1
1

1
11

)1,2(

k

kkkk

I
  



107 
 





























 

















 























1

1
11

2
11

)2,2(
2

32

k

kkkk

I

 






































2

2 11

log)3,2(










kk

I
                  

2
)1,3(




I

                                            















































 













1

1

1

1
log)2,3( 2

2
k

k

k

I
                    






































 1

1

1

)3,3( 2 k

k

k

I
      

3.3.8 Entropy estimation:       

Consider the pdf of size biased generalized Gamma distribution (3.2.1) 
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The Shannon‟s entropy of Size-biased Generalized Gamma Distribution is given as:
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3.3.9 Akaike and Bayesian information criterion 

The AIC and BIC methodology attempts to find the model that best explains the data with 

a minimum of their values, from (3.3.45) we have 
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3.4 Test for Size-biasedness of Size biased generalized Gamma distribution 

Let X1, X2, X3… Xn be random samples can be drawn from generalized Gamma 

distribution or Size biased generalized Gamma distribution. We test the hypothesis 
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We reject the null hypothesis. 
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Equalivalently, we rejected the null hypothesis where 

 

 

 

For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. Also, 

we can reject the reject the null hypothesis, when probability value s given by: 
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3.5 Estimation of parameters in the size-biased Generalized Gamma Distribution. 

In this section, we obtain estimates of the parameters for the Size-biased Generalized 

Gamma distribution by employing the method of moment (MOM) and maximum 

likelihood (ML) estimators. 
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3.5.1 Method of Moment Estimators
 

Let X1, X2, X3… Xn be an independent random samples from the SBGGMD with weight 

c=1. The method of moment estimators are obtained by setting the raw moments equal to 

the sample moments, that is E(Xr)=Mr where is the sample moment Mr corresponding to 

the E(Xr) .The following equations are obtained using the first and second sample 

moments.
 


























n

i

jX
n

k

k

1

1

1

2






            

(3.5.1)

 


























n

i

jX
n

k

k

1

2

2

1

1

3






                    

(3.5.2)

 

kWhena and).(1  are fixed and from equation (3.5.1), we obtain an estimate ̂ for , that 
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1(b). When  and1 are fixed and dividing (3.5.1) by equations (3.5.2), we get 
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1.(c): When kand  are fixed, the estimate for   can be obtained by numerical methods. 

3.5.2 Maximum likelihood Estimators 

Let nXXX ,...,, 21  be a random sample from a Size-biased Generalized Gamma 

Distribution. Then the likelihood function of SBGGMD is given by 
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Using equation (3.5.5), the log likelihood function is given by  
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Now differentiate log ),,;(* kXL  with respect to kand, , we get
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Equating these equations to zero, leads to the normal equations:
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1. When  and  are fixed, It follows from equation (3.5.7), that 
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2. When kand  are fixed, It follows from equation (3.5.9), that 
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3.  When kand  are fixed, the estimate for   can be obtained by numerical 

methods. 

3.6. New method of estimation of Size-Biased Generalized Gamma Distribution 

Although Prentice (1974) have presented a procedure to obtain the three parameters of the 

generalized Gamma distribution, his procedure still quit complicated. In this research, we 

propose a simple procedure to obtain the three estimators by using its characterization and 

moment estimation approach. Note that Hwang .T and Huang. P (2006)  have obtained 

more general characterizations with the independence of sample coefficient of variation 

nV  with sample mean nX  as one of its special cases when random samples are drawn 

from the generalized Gamma distribution. Their characterization is used to derive the 

expectation and the variance of 2

nV  and then the new estimators for the three parameters 

of size-biased generalized Gamma distribution are proposed. For deriving new moment 

estimators of three parameters of the size-biased generalized Gamma distribution, we need 

the following theorem obtained by using the similar approach of Hwang .T and Huang .P 

(Theorems of 2006). 

Theorem 3.6.1: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a size-biased generalized 

Gamma density 



113 
 

0,0,0,0,)(
1

),,;( )( 











  kxex

k

kxf xk

S 








 

Then 






















































1

231

)(
22

2

k

kkk

SE n  

Proof: We know that  

,...3,2,1,
1

1̀

)( 


















 


 m

k

m
k

XE
m

m





     




























1

2

)(

k

k

XE n  

 












































1

2
)1(

13

2

2

2

knk

knKk

XE n  

And )(.)(
2

nn XVnSE   






















































1

231

)(
22

2

2

k

kkk

SE n

                                                    

(3.6.1) 

where nX  and 2

nS  are respectively their sample mean and sample variance. 

Theorem 3.6.2: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a size-biased generalized 

Gamma density 
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where nX  and 2

nS  are respectively their sample mean and sample variance. 
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Thus 3.6.2 is established. 

Theorem 3.6.4: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a size-biased generalized 

Gamma density, then  1
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Proof: Furthermore, if SBGG distribution, we have 
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And it can be show that 
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After comparing the above equations, we have 
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 is an asymptotically unbiased estimator of the square of the 

population coefficient of variation. Hence, we conclude that the independence of the 

sample mean nX  and the sample coefficient of variation 
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n
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S
V   is equivalent to that 

)(xf is a size-biased generalized Gamma density where nS is the sample standard 

deviation. 

 From )2.3.3(  and we know that 
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Then we can solve numerically via moment method the below equations for estimating of 

SBGG parameters 
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3.7 Bayesian Method of Estimation 

Bayesian analysis is an important approach to statistics, which formally seeks use of prior 

information and Bayes‟ Theorem provides the formal basis for using this information. In 

this approach, parameters are treated as random variables and data is treated fixed. 

3.7.1 Parameter estimation under squared error loss function. 

In this section, two different prior distributions are used for estimating the parameter of 

the size biased Generalized Gamma distribution namely; Jeffery‟s prior and extension of 

Jeffrey‟s prior information. 
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3.7.1.1Bayes estimation of parameter of size biased Generalized Gamma distribution 

under Jeffrey’s prior. 

Consider there are n recorded values,  nxxx ,...1  from (3.2.1). We consider the extended 

Jeffrey‟s prior as: 
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Then the joint probability density function is given by: 
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 And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    21
ˆ,ˆ   cl   for some constant c, the risk 

function is: 
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3.7.1.2 Estimation of Survival function 

 By using posterior probability density function, we can found the Survival function, such 

that 
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3.7.1.3 Bayes’ estimation of parameter of size biased Generalized Gamma 

distribution under the extension Jeffrey’s prior 

Consider there are n recorded values,  nxxx ,...1  from (3.2.1). We consider the extended 

Jeffrey‟s prior as: 
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Then the joint probability density function is given by: 
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 And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    21
ˆ,ˆ   cl   for some constant c, the risk 

function is: 
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3.7.1.4 Estimation of Survival function:   

By using posterior probability density function, we can found the Survival function, such 

that 
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3.7.2 Parameter estimation under a new loss function. 

This section uses a new loss function introduced by Al-Bayyati (2002). Employing this 

loss function, we obtain Bayes‟ estimators using Jeffrey‟s and extension of Jeffrey‟s prior 

information. 

Al-Bayyati introduced a new loss function of the form: 

    .;ˆ,ˆ
2

2
2 Rcl

c

A                                                                             (3.7.13) 

Here, this loss function is used to obtain the estimator of the parameter of the size biased 

Generalized Gamma distribution. 
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3.7.2.1 Bayes’ estimation of parameter of size biased Generalized Gamma 

distribution under Jeffrey’s prior. 

By using the loss function in the form given in (2.7.13), we obtained the following risk 

function: 
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(3.7.14) 

 

Remark 3.1: Replacing c2 = 0 in (3.7.14), the same Bayes‟ estimator is obtained as in 

(3.7.5) corresponding to the Jeffrey‟s prior. By replacing and c2 =-2 in (3.7.14), the Bayes‟ 

estimator becomes the estimator under Hartigan‟s prior (Hartigan (1964)). By replacing c2 

=1 in (3.7.14), thus we get uniform prior. 

 3.7.2.2 Bayes’ estimation of parameter of size biased Generalized Gamma 

distribution using extension of Jeffrey’s prior. 

By using the loss function in the form given in (3.7.13), we obtained the following risk 

function: 
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(3.7.15) 

Remark 3.2: Replacing c1= 1/2   and c2 = 0 in (3.7.15), the same Bayes‟ estimator is 

obtained as in (3.7.5) corresponding to the Jeffrey‟s prior. By replacing c1= 3/2   and c2 =0 

in (3.7.15), the Bayes‟ estimator becomes the estimator under Hartigan‟s prior (Hartigan 

(1964)). By replacing c1= 0   and c2 =0 in (3.7.15), thus we get uniform prior. 

3.8 Simulation Study of Size biased Generalized Gamma Distribution: 

For description of this manner, we generate  different random samples of size 25,50 and 

100 from the Size biased Generalized Gamma distribution, a simulation study is carried 

out 10,000  times for each pairs of  k,,  where  0.2,5.1,0.1 ,  5.1,0.1,5.0  and 

 0.1,0.1,5.0k . 

Table 3.1: AIC and BIC criteria of Size-biased Generalized Gamma Distribution. 

n     k 
Shannon’s 

entropy 
AIC BIC 

25 1.0 0.5 0.5 26.66715 1339.358 1343.014 

1.5 1.0 1.0 26.34335 1323.168 1326.824 

2.0 1.5 1.0 26.25954 1318.977 1322.634 

50 1.0 0.5 0.5 13.53889 1359.889 1365.625 

1.5 1.0 1.0 13.16118 1322.118 1327.854 

2.0 1.5 1.0 13.12484 1318.484 1324.220 
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100 1.0 0.5 0.5 6.968103 1399.621 1407.436 

1.5 1.0 1.0 6.617217 1329.443 1337.259 

2.0 1.5 1.0 6.539594 1313.918 1321.734 

 

From the above table 3.1, we can conclude that the Size-biased Generalized Gamma 

Distribution have the smallest AIC and BIC values when sample size is 100 and scale 

parameter is 2.0 and shape parameters are 5.1 , k=1.0. 

Table 3.2: AIC and BIC criteria of different subfamilies of Size-biased Generalized 

Gamma Distribution 

n Distribution 
Shannon’s 

entropy 
AIC BIC 

25 Size biased Gamma 1.639386 85.9693 88.40705 

Size biased exponential 0.5945349 31.72674 32.94562 

Exponential 0.4812101 26.0605 27.27938 

50 Size biased Gamma 1.694657 173.4657 177.2897 

Size biased exponential 0.6134556 63.34556 65.25758 

Exponential 0.378411 39.8411 41.75312 

100 Size biased Gamma 2.052823 414.5646 419.7749 

Size biased exponential 0.6356778 129.1356 131.7407 

Exponential 0.221281 46.2562 48.86137 

 

From the above table 3.2, it has been observed that the exponential distribution have the 

smallest AIC and BIC values as compared to other family of Size-biased Generalized Gamma 

Distribution, when sample sizes of distributions are 25, 50 and 100.Hence we can concluded 

that the exponential distribution gives better results and estimates as compared to Size biased 

exponential and Size biased Gamma distributions. 

 

 



125 
 

3.8.1 Estimation of Parameters 

In our simulation study, we choose a sample size of n=25, 50 and 100 to represent small, 

medium and large data set. The scale parameter is estimated for Size biased Generalized 

Gamma Distribution with Maximum Likelihood and Bayesian using Jeffrey‟s & extension of 

Jeffrey‟s prior methods. For the scale parameter we have considered   = 1.0, 1.5 and .2.0 

.The values of Jeffrey‟s extension were c1 = 0.5, 1.0, 1.5 and 2.0. The value for the loss 

parameter a = -1, 0 and +1.This was iterated 5000 times and the scale parameter for each 

method was calculated. A simulation study was conducted using R-software to examine and 

compare the performance of the estimates for different sample sizes with different values for 

the Extension of Jeffrey‟s‟ prior and the loss functions. The results are presented in tables for 

different selections of the parameters and c extension of Jeffrey‟s prior. 

Table 3.3: Mean Squared Error for ̂  𝐮nder Jeffrey’s prior 

n 

 

  

 

  

 

k 

 

ML  

 

sl  

Nl  

C2=-1.0 C2=0 C2=1.0 

25 1.0 0.5 0.5 0.5811284 0.5811284 0.5715454 0.5811284 0.5907911 

1.5 1.0 1.0 0.5678211 0.5678211 0.553246 0.5678211 0.5834567 

2.0 1.5 1.0 0.4122289 0.4122289 0.3834204 0.4122289 0.4420807 

50 1.0 0.5 0.5 0.2566281 0.2566281 0.2366366 0.2566281 0.2774302 

1.5 1.0 1.0 0.3692554 0.3692554 0.3299744 0.3692554 0.3828399 

2.0 1.5 1.0 0.3274210 0.3274210 0.3152655 0.3274210 0.3398064 

100 1.0 0.5 0.5 0.1638196 0.1638196 0.1565776 0.1638196 0.1712253 

1.5 1.0 1.0 0.2922827 0.2922827 0.2866838 0.2922827 0.2979358 

2.0 1.5 1.0 0.2910748 0.2910748 0.2854935 0.2910748 0.2967102 
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Table 3.4: Mean Squared Error for ( ) under extension of Jeffrey’s prior. 

 

n 

 

  

 

  

 

k 

 

C1 

 

ML  

 

sl  

Nl  

C2=-1.0 C2=0 C2=1.0 

25 

1.0 0.5 0.5 

0.5 

1.0 

1.5 

2.0 

0.5811284 

0.5811284 

0.5811284 

0.5811284 

0.5811284 

0.5715454 

0.562042 

0.5526183 

0.5715454 

0.562042 

0.5526183 

0.5432743 

0.5811284 

0.5715454 

0.562042 

0.5526183 

0.5907911 

0.5811284 

0.5715454 

0.562042 

2.0 1.5 1.0 

0.5 

1.0 

1.5 

2.0 

0.4122289 

0.4122289 

0.4122289 

0.4122289 

0.4122289 

0.3834204 

0.3556554 

0.3289338 

0.3834204 

0.4122289 

0.3834204 

0.3032556 

0.4122289 

0.3834204 

0.3556554 

0.3289338 

0.4420807 

0.3556554 

0.3289338 

0.3556554 

50 

1.0 0.5 0.5 

0.5 

1.0 

1.5 

2.0 

0.2566281 

0.2566281 

0.2566281 

0.2566281 

0.2566281 

0.2366366 

0.2174556 

0.1990852 

0.2366366 

0.2174556 

0.1990852 

0.1815254 

0.2566281 

0.2366366 

0.2174556 

0.1990852 

0.2774302 

0.2566281 

0.2366366 

0.2174556 

2.0 1.5 1.0 

0.5 

1.0 

1.5 

2.0 

0.327421 

0.327421 

0.327421 

0.327421 

0.327421 

0.3152655 

0.3033399 

0.2916442 

0.3152655 

0.3033399 

0.2916442 

0.2801784 

0.327421 

0.3152655 

0.3033399 

0.2916442 

0.3398064 

0.327421 

0.3152655 

0.3033399 

100 

1.0 0.5 0.5 

0.5 

1.0 

1.5 

2.0 

0.1638196 

0.1638196 

0.1638196 

0.1638196 

0.1638196 

0.1565776 

0.1494993 

0.1425847 

0.1565776 

0.1494993 

0.1425847 

0.1358339 

0.1638196 

0.1565776 

0.1494993 

0.1425847 

0.1712253 

0.1638196 

0.1712253 

0.1494993 

2.0 1.5 1.0 

0.5 

1.0 

1.5 

2.0 

0.2910748 

0.2910748 

0.2910748 

0.2910748 

0.2910748 

0.2854935 

0.2799663 

0.274493 

0.2854935 

0.2799663 

0.274493 

0.2690738 

0.2910748 

0.2854935 

0.2799663 

0.274493 

0.2967102 

0.2910748 

0.2854935 

0.2799663 

ML= Maximum Likelihood, SL=Squared Error Loss Function, NL= New Loss Function, 

In table 3.3, Bayes‟ estimation with New Loss function under Jeffrey‟s prior provides the 

smallest values in most cases especially when loss parameter C2 is ± 1. Similarly, in table 3.4, 

Bayes‟ estimation with New Loss function under extension of Jeffrey‟s prior provides the 

smallest values in most cases especially when loss parameter C2 is ± 1 whether the extension 

of Jeffrey‟s prior is 0.5, 1.0, 1.5 or 2.0.   
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CHAPTER – 4 

WEIGHTED AND SIZE – BIASED GENERALIZED BETA 

DISTRIBUTIONS 

 

 

 

 

 

 

4.1. Introduction 

eta distributions are very versatile and a variety of uncertainties can be usefully 

modeled by them. Many of the finite range distributions encountered in practice 

can be easily transformed into the standard distribution. In reliability and life 

testing experiments, many times the data are modeled by finite range distributions, see for 

example Barlow and Proschan (1975). Many generalizations of beta distributions 

involving algebraic and exponential functions have been proposed in the literature; see in 

Johnson et al. (2004) and Gupta and NadarSajah (2004) for detailed accounts. 

J.B.McDonald (1984) introduced the generalized beta distribution of first kind. It captures 

the characteristics of income distribution including skewness, peakedness in low-middle 

range, and long right hand tail. The Generalized Beta distribution of first kind includes 

several other distributions as special or limiting cases, such as generalized gamma (GGD), 

Dagum, beta of the second kind (BD2), Sing-Maddala (SM), gamma, Weibull and 

exponential distributions. 

The probability density function (pdf) of the generalized beta distribution of first kind 

(GBD1) is given by: 

B 
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Where qpa ,,  are shape parameters and b is a scale parameter,
qp

qp
qp




),(  is a beta 
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The cth moment of generalized beta distribution of first kind is given by McDonald 

(1995): 
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Put c =1 in relation (4.1.2), we have 
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In this chapter, we have introduce a new class of weighted Generalized Beta distribution of 

first kind, Size biased Generalized Beta distribution of first and second kind. The several 

structural properties of these probability models includes mean, variance, coefficient of 

variation, mode and harmonic mean has been studied and derived. The estimation of 

parameters of this new model is obtained by employing the new methods of moments Also, 

a likelihood ratio test of Weighted and size biased probability distributions are to be 

conducted. Some important theorems have been derived to estimates the parameters of four 

parametric weighted and size-biased beta distributions. It was found that the square of the 

sample coefficient of variation is asymptotically unbiased estimator of square of the 

population coefficient of variation. 

4.4 Derivation of Weighted Generalized Beta Distribution of first kind 

A Weighted generalized Beta distribution of first kind (WGBD1) is obtained by applying 

the weights cx , to the weighted Generalized Beta distribution of first kind. 

We have from relation (4.1.1) and (4.1.2), we have 
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Where ),,,;(
*

qpbaxfw  represents a probability density function. This gives the weighted 

generalized beta distribution of first kind (WGBD1) as:

)1.2.4(1

,

),,,;(

1

1*









































q
a

cap

cap
w

b

x
x

q
a

c
pb

a
qpbaxf



 

where qpa ,,  are shape parameters and b is a scale parameter,
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is a beta function, qpba ,,, are positive real values.

 4.2.1 Special cases 

1.  The distribution like the weighted beta distributions of first kind as special case when

1 ba , then the probability density function is given as: 
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2.  

The distribution like the Size-biased beta distribution of first kind as particular case when

1 cba , then the probability density function is given as:

 

 
  )3.2.4(0,0,1

,1

1
),;(

1*






qpxx

qp
qpxf

qp

s


 

3. The distribution like the area-biased beta distribution of first kind as particular case 

when 2,1  cba , then the probability density function is given as:
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4.3 Structural properties of weighted Generalized beta distribution of first kind
 

In this section, we derive some structural properties of weighted generalized beta 

distribution of first kind. 

4.3.1 Moments of Weighted Generalized beta distribution of first kind 

The rth moment of weighted generalized beta distribution of first kind (4.2.1) about origin 

is obtained as: 
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Using the equation (4.3.1), the mean and second moment of the WGBD1 is given by
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Using the equation (4.3.2) and (4.3.3), the variance of the WGBD1 is given by
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The Coefficient of variation of Weighted Generalized Beta Distribution of first kind is:
 

1

,
1

,,
2

2










 


















 




q
a

c
p

q
a

c
pq

a

c
p

CV





                                                         (4.3.5) 

4.3.2 Mode of weighted generalized beta distribution of first kind 

The probability distribution of weighted Generalized Beta distribution of first kind is 

given as: 
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In order to discuss monotonicity of weighted generalized beta distribution of first kind. 

We take the logarithm of its pdf: 
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Where C is a constant. Note that 

   
 aa

aaa

w

xbx

axqxbcap

x

qpbaxf








 1)1(),,,;(ln
*

 

 

 

Where qpa ,, are shape parameters and b is a scale parameter, It follows that 
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The mode of weighted generalized beta distribution of first kind is given as: 
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4.3.3 Harmonic mean of weighted generalized beta distribution of first kind  

The probability distribution of weighted Generalized Beta distribution of first kind is 

given by: 
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The harmonic mean (H) is obtained as: 
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(4.3.9) 

4. 4 Estimation of parameters of the weighted Generalized Beta Distribution of first 

kind 

In this section, we obtain estimates of the parameters for the weighted Generalized Beta 

distribution of first kind by employing the new method of moment (MOM) estimator. 

New Method of Moment Estimators
 

Let X1, X2, X3… Xn be an independent sample from the WGBD1. The method of moment 

estimators are obtained by setting the row moments equal to the sample moments, that is 

E (Xr) = Mr where is the sample moment Mr corresponding to the E (Xr). The following 

equations are obtained using the first and second sample moments.
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Case 1: When p and q are fixed and a=1, then 
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Case 2: When p and b are fixed and a=1, then dividing equation (4.4.1) by (4.4.2), we 

have: 
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Case 3: When b and q are fixed and a=1, then dividing equation (4.4.1) by (4.4.2), we 

have:

 

)1(

)1(

2 




cpb

cqp

M

X

 
)1(ˆ

2

2 


 c
MXb

qM
p

                                                                                    

(4.4.5)

 Case 4: When p and q are fixed, b=1 then we can calculate the value of â  estimator by 

numerical methods. 

4.5 New moment estimation method of Weighted Generalized Beta distribution of 

first kind 
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Although Prentice (1974) have presented a procedure to obtain the three parameters of the 

generalized gamma distribution, his procedure still quit complicated. In this research, we 

propose a simple procedure to obtained three estimators by using its characterization and 

moment estimation approach. Note that Hwang .T and Huang. P (2006)  have obtained 

more general characterizations with the independence of sample coefficient of variation 

nV  with sample mean nX  as one of its special cases when random samples are drawn 

from the generalized gamma distribution. Their characterization is used to derive the 

expectation and the variance of 2

nV  and then the new estimators for the three parameters 

of size-biased generalized gamma distribution are proposed. For deriving new moment 

estimators of three parameters of the weighted generalized Beta distribution of first kind, 

we need the following theorem obtained by using the similar approach of Ahmed et al 

(Theorems of 2013). 

Theorem 4.5.1: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a weighted generalized Beta 

distribution of first kind 
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Where nX  and 
2

nS  are respectively their sample mean and sample variance. 

Theorem 4.5.2: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a weighted generalized Beta 

distribution of first kind 
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Where nX  and 
2

nS  are respectively their sample mean and sample variance. 

Proof: By theorem 4.5.1, we have 
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Applying theorem 4.5.1 to the above identity yields that 
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Thus 4.5.2 is established. 

Theorem 4.5.3: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a weighted generalized Beta 

distribution of first kind. 
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Furthermore, if WGBD1 distribution, we have 
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And it can be show that 
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Comparing above two equations, we have  

Note that   
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coefficient of variation. Thus,
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S
 is an asymptotically unbiased estimator of the square 

of the population coefficient of variation. 
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4.6. Test for weighted generalized beta distribution of first kind 

Let X1, X2, X3… Xn be random samples can be drawn from generalized beta distribution 

of first kind or weighted generalized beta distribution of first kind. We test the hypothesis 
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To test whether the random sample of size n comes from the generalized beta distribution 

of first kind or weighted generalized beta distribution of first kind the following test 

statistic is used. 
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For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. Also, 

we can reject the reject the null hypothesis, when probability value s given by: 
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4.7 Size-Biased Generalized Beta Distribution of first kind: 

A size biased generalized beta distribution of first kind (SBGBD1) is obtained by 

applying the weights cx , where c =1 to the weighted Generalized beta distribution of first 

kind. 

We have from relation (4.1.1) and (4.1.2),  
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Where ),,,;(* qpbaxf  represents a probability density function. This gives the size –

biased generalized beta distribution of first kind (SBGBD1) as: 
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4.9 Structural properties of  Size- biased  Generalized beta distribution of first kind: 

In this section, we derive some structural properties of Size-biased generalized beta 

distribution of first kind.
 

4.8.1 Moments of Size- biased Generalized beta distribution of first kind: 

The rth moment of Size biased generalized beta distribution of first kind (4.7.1) about 

origin is obtained as: 
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Using the equation (4.8.1), the mean and variance of the SBGBD1 is given by
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The Coefficient of variation of Size- biased Generalized Beta Distribution of first kind is 

given as:
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Where, the first four moments about origin are given as:
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4.8.2 Mode of Size-biased generalized beta distribution of first kind  

The probability distribution of Size-biased Generalized Beta distribution of first kind is 

given as: 
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order to discuss monotonicity of size-biased generalized beta distribution of first kind. We 

take the logarithm of its pdf: 
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Where qpa ,, are shape parameters and b is a scale parameter, It follows that 
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The mode of size-biased generalized beta distribution of first kind is: 
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4.8.3 Harmonic mean of Size-biased generalized beta distribution of first kind  
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The probability distribution of Size-biased Generalized Beta distribution of first kind is 

given as: 
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The 

harmonic mean (H) is obtained as: 
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4.9. Estimation of parameters in the size-biased Generalized Beta Distribution of 

first kind 

In this section, we obtain estimates of the parameters for the Size-biased Generalized Beta 

distribution of first kind by employing the new method of moment (MOM) estimator. 

 

4.9.1 New Method of Moment Estimators
 

Let X1, X2, X3… Xn be an independent sample from the SBGBD1with weight c=1. The 

method of moment estimators are obtained by setting the row moments equal to the 

sample moments, that is E(Xr) = Mr where is the sample moment Mr  corresponding to the 

E(Xr). The following equations are obtained using the first and second sample moments.
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Case 1: When p and q are fixed and a=1, then
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Case 2: When p and b are fixed and a=1, then dividing equation (4.9.1) by (4.9.2), we 

have: 
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Case 3: When b and q are fixed and a=1, then dividing equation (4.9.1) by (4.9.2), we 
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Case 4: When p and q are fixed, b=1 then we can calculate the value of â  estimator by 

numerical methods. 

4.10 Test for size-biased generalized beta distribution of second kind 

Let X1, X2, X3…Xn be a random samples drawn from generalized beta distribution of first 

kind or size-biased generalized beta distribution of first kind. We test the hypothesis 
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We reject the null hypothesis 
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Equalivalently, we rejected the null hypothesis where 

 

 

For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. 

4.11 Generalized Beta Distribution of Second kind. 

The probability density function (pdf) of the generalized beta distribution of second kind 

(GBD2) is given by: 
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Where qpa ,,  are shape parameters and b is a scale parameter,
qp
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),(  is a beta 

function, qpba ,,, and are positive real values. 

The rth moment of generalized beta distribution of second kind is given as: 
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Put r =1 in relation (4.11.2), we have 
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4.12  Size Biased Generalized Beta Distribution of first kind 

A size biased generalized beta distribution of second kind (SBGBD2) is obtained by 

applying the weights cx , where c =1 to the weighted Generalized beta distribution of 

second kind. 

We have from relation (4.11.1) and (4.11.3) 



),,,;(
),,,;(

* qpbaxfx
qpbaxf 

dx

a
q

a
pb

qp

b

x
qpb

xa
xqpbaxf

qp
a

ap

ap
















































 11
.

1),(

),,,;(
1

0

*



qp
a

ap

ap

b

x

a
q

a
pb

xa
qpbaxf







































1
1

,
1

),,,;(

1

*



Where 

),,,;(* qpbaxf  represents a probability density function. This gives the size –biased 

generalized beta distribution of second kind (SBGBD2) as:
 

(4.12.1)
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where qpa ,, are shape parameters and b is a scale parameter. 
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Special case: The distribution like the Size-biased beta distribution of second kind as 

special case ( )1 ba , then the probability density function is given as: 
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4.13 Structural properties of  Size- biased  Generalized beta distribution of second  

kind 

In this section, we derive some structural properties of Size-biased generalized beta 

distribution of kind.
 

4.13.1 Moments of Size- biased generalized beta distribution of second kind: 

The rth moment of Size biased generalized beta distribution of second kind (4.12.1) about 

origin is obtained as: 
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Using the equation (4.13.1), the mean and variance of the SBGBD2 is given by
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The Coefficient of variation of Size- biased Generalized Beta Distribution of second kind 

is:
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4.13.2 Mode of Size-biased generalized beta distribution of first second  

The probability distribution of Size-biased Generalized Beta distribution of second kind is 

given by: 
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order to discuss monotonicity of size-biased generalized beta distribution of second kind. 
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Where C is a constant. Note that 
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Therefore, the mode of size-biased generalized beta distribution of second kind is given 

as: 
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4.13.3 Harmonic mean of Size-biased generalized beta distribution of second kind  

The probability distribution of Size-biased Generalized Beta distribution of second kind is 

given as: 
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The harmonic mean (H) is obtained as: 
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4.14 Estimation of parameters in the size-biased Generalized Beta Distribution of 

second kind 

In this section, we obtain estimates of the parameters for the Size-biased Generalized Beta 

distribution of second kind by employing the new method of moment (MOM) estimator. 

4.14.1 New Method of Moment Estimators
 

Let X1, X2, X3… Xn be an independent random samples from the SBGBD2 with weight 

c=1. The method of moment estimators are obtained by setting the raw moments equal to 

the sample moments, that is E(Xr) = Mr where is the sample moment Mr  corresponding to 

the .E(Xr) The following equations are obtained using the first and second sample 

moments.
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Case 1: When p and q are fixed and a=1, then 
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Case 2:  When p and b are fixed and a=1, then dividing equation (4.14.2) by (4.14.1), we 

have: 

)3()3(

)2()2(

2 




qpb

qp

M

X

 
)4.14.4(3)2(ˆ

2


M

X
bpq Case 

3: When b and q are fixed and a=1, then dividing equation (4.14.1) by (4.14.2), we have: 
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Case 4: When p and q are fixed, b =1 then we can calculate the value of â estimator by 

numerical methods. 

 

4.14.2: New method of estimation of Size- biased generalized Beta distribution of 

second kind 
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This section is based on a new moment estimation method of parameters of SBG family 

using its characterization. The characterization is used to derive the expectation and the 

variance of 2

nV  and then the new estimators for the four parameters of size-biased 

generalized Beta distribution of second kind are proposed. For deriving new moment 

estimators of three parameters of the size-biased generalized Beta distribution of second 

kind, we need the following theorem obtained by using the similar approach of Ahmed et 

al (Theorems of 2013). 

Theorem 4.14.2.1: Let 3n and let nXXXX ...,, 321  be an n positive identical independently 

distributed random samples drawn from a population having a Size- biased generalized 

Beta distribution of second kind. 
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Where nX  and 2

nS  are respectively their sample mean and sample variance. 

Theorem 4.14.2.2: Let 3n and let nXXXX ...,, 321  be a n positive identical 

independently distributed random samples drawn from a population having a Size- biased 

generalized Beta distribution of second kind 
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Where nX  and 
2

nS  are respectively their sample mean and sample variance. 

Proof: By theorem 4.14.2.1, we have 
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Applying theorem 4.14.2.2 to the above identity yields that 
















 

















 

















 

















 
















q
a

c
pnq

a

c
pq

a

c
p

q
a

c
pq

a

c
pq

a

c
pn

X

S
E

n

n

,
1

)1(,,
2

,
1

,,
2

2

2

2

2





                (4.14.7) 

Thus 4.14.2.2 is established. 

Theorem 4.14.2.3: Let 3n and let nXXXX ...,, 321  be a n positive identical 

independently distributed random samples drawn from a population having a Size- biased 

generalized Beta distribution of second kind 
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Furthermore, if SBGBD2 distribution, we have 
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And it can be show that 
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Comparing above two equations, we have  

Note that   
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E  as n  and that this limit is the square of the population 

coefficient of variation. Thus,
2
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X

S
 is an asymptotically unbiased estimator of the square 

of the population coefficient of variation. 

4.15 Test for size-biased generalized beta distribution of second kind. 

Let X1, X2, X3… Xn be random samples can be drawn from generalized beta distribution 

of second kind or size-biased generalized beta distribution of second kind.  

We test the hypothesis  
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To test whether the random sample of size n comes from the generalized beta distribution 

of second kind or size-biased generalized beta distribution of second kind the following 

test statistic is used. 
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For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution.      
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CHAPTER – 5 

SIZE-BIASED GENERALIZED RAYLEIGH 

DISTRIBUTION 

 
 

 

5.1 Introduction 

ayleigh distribution is an important distribution in statistics and operations 

research. It is applied in several areas such as health, agriculture, biology, and 

other sciences. In statistic literature, the Rayleigh distribution is a continuous 

probability distribution. The problem of estimating the unknown parameters in statistical 

distributions used to study a certain phenomenon is one of the important problems facing 

constantly those who are interested in applied statistics. This distribution was introduced 

by Lord Rayleigh (1980). Surles and Padgett (2005) introduced two-parameter Burr Type 

X distribution and correctly named as the generalized Rayleigh distribution. The two-

parameter generalized Rayleigh distribution is a particular member of the generalized 

Weibull distribution, originally proposed by Mudholkar and Srivastava (1993).Several 

aspects of the one-parameter (scale parameter equals one) generalized Rayleigh 

R 
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distribution were studied by Sartawi and Abu-Salih (1991), and Surles and Padgett (1998). 

It presents a flexible family in the varieties of shapes and is suitable for modeling data 

with different types of hazard rate function: increasing, decreasing and upside down 

bathtub shape (UBT).The Generalized Rayleigh distribution includes several other 

distributions as special or limiting cases, such as gamma, Weibull and exponential 

distributions.  

The probability distribution of Generalized Rayleigh distribution is given as: 
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Its mean and variance are given by: 

     























k

k
k

1

2
1



                                                                                                 (5.1.2) 

2
12

2
1

2

1

2































































k

k

k

k
kk 

                                                                                (5.1.3) 

In this chapter, we have introduced a new class of Size biased Generalized Rayleigh 

distribution. The several structural properties, reliability and information measures are 

introduced and derived. The estimation of parameters of this new model is obtained by 

employing the new methods of moments, maximum likelihood and Bayesian method of 

estimation. The Bayes‟ estimators are obtained by using Jeffrey‟s and extension of Jeffrey‟s 

prior under different loss functions. A comparison has been made of the Bayes‟ estimator 

with the corresponding maximum likelihood estimator. Also, a likelihood ratio test of size 

biased generalized Rayleigh distribution is to be conducted. A simulation study has been 

performed for the comparison of Bayes‟ estimators with the MLE estimator. Also, survival 

functions of new model are derived using Jeffrey and extension of Jeffrey prior. It has been 
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observed that Bayes‟ estimator provides better results and estimates as compared to 

classical estimators.  

5.2 Size Biased Generalized Rayleigh Distribution 

A size biased generalized Rayleigh distribution (SBGRD) is obtained by applying the 

weights cx , where c =1 to the weighted Generalized Rayleigh distribution. 

We have from relation (5.1.1) and (5.1.2) 
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This gives the size-biased generalized Rayleigh distribution (SBGRD) as: 
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The CDF of the Size biased generalized Rayleigh distribution is given by: 
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(5.2.2) 

5.2.1 Special Cases 

The distribution like the Size-biased exponential distributions as a special case when k = 

1, then the probability density function is given as: 

otherwise
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The distribution like the Size-biased Rayleigh distribution as a special case, when k=2 

then the probability density function is given as:
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5.2.2 Hazard functions 

The hazard function for the Size biased generalized Rayleigh distribution is given as: 
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(5.2.3) 

The reverse hazard function for the Size biased generalized Rayleigh distribution is given 

as: 
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Theorem 5.2.3: Let  kxf ,;  be a twice differentiable probability density function of a 

continuous random variable X. Define  
 kxf
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kxn
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 ,where  kxf ,;  is the first 

derivative of  kxf ,; with respect to x. Furthermore, suppose that the first derivative of 

 kxn ,;  exist. 

a) If   ,0,;  kxn  for all x > 0, then the hazard function is monotonically decreasing. 

b) If   ,0,;  kxn  for all x > 0, then the hazard function is monotonically increasing.  

c) Suppose there exist 0x  such that   ,0,0,; 0xxallforkxn     0,;0  kxn    

And   00allfor,0,; xkxn   . In addition, 
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, then the hazard function is 

upside down bathtub shape. 
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Proof: Using equation (5.2.1), the derivative of the  kxf ,; is given by: 
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(5.2.5) 

Collory: 

 a) If 1k , then   ,0,;  kxn  for all x > 0, then the hazard function is monotonically 

increasing. 

b) If 1k , then   ,0,;  kxn   then the hazard function is monotonically decreasing. 

c) If 10  k ,  then the hazard function is upside down bathtub shape. 

5.2 Structural properties of  Size-biased generalized Rayleigh distribution 

In this section, we derive some structural properties of Size-biased generalized Rayleigh 

distribution. 

5.3.1 Moments of Size-biased generalized Rayleigh distribution (SBGRD)  

The rth moment of SBGRD (5.2.1) about origin is obtained as: 
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By putting r = 1, 2 in equation (5.3.1), the mean, variance and coefficient of variation are 

given as:  
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     5.3.2 Moment generating function of Size-biased generalized Rayleigh distribution 

The moment generating function of Size-biased generalized Rayleigh distribution is 

obtained as: 
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(5.3.5) 

 

 

5.3.3 Characteristic function of Size-biased generalized Rayleigh distribution 

The Characteristic function of Size-biased generalized Rayleigh distribution is obtained 

as: 
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5.3.4 Shannon’s entropy of size-biased Generalized Rayleigh Distribution 

The Shannon entropy of a random variable X is a measure of the uncertainty and is given 

by   xfE (log , where )(xf is the probability function of the random variable X.Shannon 

entropy of Size biased Generalized Rayleigh Distribution are obtained as: 
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Substitute the values of equations (5.3.7), (5.3.8), (5.3.9) in equation (5.3.10), we get the 

Shannon‟s entropy of Size-biased generalized Rayleigh distribution which is given as: 
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The above relation (5.3.11) represents the Shannon‟s entropy of Size-biased generalized 

Rayleigh distribution. 

5.3.5 Fisher’s information matrix of size-biased Generalized Rayleigh Distribution  

The Size biased generalized Rayleigh distribution has a probability density function of the 

form: 
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Differentiating equation (3.3.19) partially with respect to   and k  , we get 
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Differentiating again the above equation partially with respect to   and k  we have 
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Taking expectations on both sides of the above equations, we get
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Substitute the values of equation (5.3.18) in the above entries of a Fisher information 

matrix, we get 
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5.3.6 Test for Size-biasedness of Size biased generalized Rayleigh distribution. 

Let X1, X2, X3… Xn be random samples can be drawn from generalized Rayleigh 

distribution or Size biased generalized Rayleigh distribution. We test the hypothesis 
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To test whether the random sample of size n comes from the generalized Rayleigh 
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statistic is used. 
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We reject the null hypothesis. 
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Equalivalently, we rejected the null hypothesis where 
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For a large sample size of n, log2 is distributed as a Chi-square distribution with one 

degree of freedom. Thus, the p-value is obtained from the Chi-square distribution. Also, 

we can reject the reject the null hypothesis, when probability value s given by: 
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5.3 Estimation of parameters 

In this section, we discuss the various estimation methods for size biased Generalized 

Rayleigh distribution and verifying their efficiencies. 

5.4.1 Methods of Moments 

Replacing sample moments with population moments, we get   
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From above two equations, we get  
















































k

kkkk

X

S

3

3242

2

223

4

2

                                                                  (5.4.3) 

Solving above equation for k , we get the estimate for k  and substituting that value in 

equation (5.4.1), we get the estimate of . 

5.5 Method of Maximum Likelihood estimator 
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Maximum likelihood estimation has been the most widely used method for estimating the 

parameters of the Size biased generalized Rayleigh distribution. Let nxxxx .......,, 321 be a 

random sample from the size biased generalized Rayleigh distribution, and then the 

corresponding likelihood function is given as
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The log-likelihood function is: 
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Now, we obtain the normal equations, we get 
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After solving equation (5.5.3), we have 
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Substitute the value of ̂ in equation (5.5.4), we get the estimate of k . 

5.6 Bayesian analysis of Size Biased Generalized Rayleigh Distribution  

Bayesian analysis is an important approach to statistics, which formally seeks use of prior 

information and Bayes‟ Theorem provides the formal basis for using this information. In 

this approach, parameters are treated as random variables and data is treated fixed. 

Ghafoor et al. (2005) and Rahul et al. (2009) have discussed the application of Bayesian 

methods. An important requisite in Bayesian estimation is the appropriate choice of 
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prior(s) for the parameters. Very often, priors are chosen according to ones subjective 

knowledge and beliefs. However, if one has adequate information about the parameter(s) 

one should use informative prior(s), otherwise it is preferable to use non informative 

prior(s).  

5.6.1 Parameter estimation under squared error loss function 

In this section, two different prior distributions are used for estimating the parameter of 

the size biased generalized Rayleigh distribution namely; Jeffery‟s prior and extension of 

Jeffrey‟s prior information. 

 5.6.1.1 Bayes’ estimation of parameter of size biased generalized Rayleigh 

distribution under Jeffrey’s prior 

Consider there are n recorded values,  nxxx ,...1  from (5.2.1). We consider the extended 

Jeffrey‟s prior as: 

     Ig   

Where   
 















2

2 ,;log






kxf
nEI  is the Fisher‟s information matrix. For the model 

(5.2.1),  

 



1

kg 

                                                                                                           
 

Then the joint probability density function is given by: 
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The posterior PDF of   has the following form 
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By using a squared error loss function    2ˆ,ˆ   cL  for some constant c, the risk 

function is: 
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5.6.1.2 Bayes’ estimation of parameter of size biased generalized Rayleigh 

distribution using extension of Jeffrey’s prior 

We consider the extended Jeffrey‟s prior are given as: 
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And the corresponding marginal PDF of  nxxx ,...1  is obtained as: 
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The Posterior PDF of   has the following form 
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By using a squared error loss function    2ˆ,ˆ   cL  for some constant c, the risk 

function is: 
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The Bayes‟ estimator under a precautionary loss function is denoted by ̂ , and is given by 

the following equation: 
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The risk function under precautionary loss function is given by: 
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5.6.2 Parameter estimation under a new loss function. 

This section uses a new loss function introduced by Al-Bayyati (2005). Employing this 

loss function, we obtain Bayes‟ estimators using Jeffrey‟s and extension of Jeffrey‟s prior 

information. 

Al-Bayyati introduced a new loss function of the form: 

    .;ˆ,ˆ 2

2
2 Rcl

c

A                                                                        (5.6.9) 
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Here, this loss function is used to obtain the estimator of the parameter of the size biased 

generalized Rayleigh distribution. 

5.6.2.1 Bayes’ estimation of parameter of size biased generalized Rayleigh 

distribution under Jeffrey’s prior. 

By using the loss function in the form given in (5.6.9), we obtained the following risk 

function: 
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Remarks: 

If 02 c , we get, the Jeffrey‟s prior and the corresponding Bayes‟ estimator is: 
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If 12 c , we get, the Hartigan prior [Hartigan (1964)] and the corresponding Bayes‟ 

estimator becomes: 
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If 02 c , we get, the uniform prior and the corresponding Bayes‟ estimator becomes: 
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5.6.2.2 Bayes’ estimation of parameter of size biased generalized Rayleigh 

distribution using extension of Jeffrey’s prior. 

By using the loss function in the form given in (5.6.9), we obtained the following risk 

function: 
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If
2

1
1 c  and 02 c , we get, the Jeffrey‟s prior and the corresponding Bayes‟ estimator is: 
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If
2

3
1 c  and 02 c , we get, the Hartigan prior [Hartigan [(1964)] and the corresponding 

Bayes‟ estimator becomes: 
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If 01 c  and 02 c , we get the uniform prior and the corresponding Bayes‟ estimator 

becomes: 
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The Bayes‟ estimator under a precautionary loss function is denoted by ̂ , and is given by 

the following equation: 

 2
1

2ˆ  EP    and the corresponding Bayes‟ estimator comes out to be: 
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The risk function under precautionary loss function is given by: 
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5.7 New method of estimation of Size biased Generalized Rayleigh   distribution.  

Note that Hwang T. and Huang P. (2006) have obtained more general characterizations 

with the independence of sample coefficient of variation nV  with sample mean nX  as one 

of its special cases when random samples are drawn from the generalized gamma 

distribution. Their characterization is used to derive the expectation and the variance of 

2

nV  and then the new estimators for the three parameters of size-biased generalized 

Rayleigh distribution are proposed. For deriving new moment estimators of three 

parameters of the size-biased generalized Rayleigh distribution, we need the following 
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theorem obtained by using the similar approach of Hwang .T and Huang .P (Theorems of 

2006). 

Theorem 5.7.1: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random variables having a probability density function )(xf .Then the 

independence of the sample mean nX  and the sample coefficient of variation 
n

n
n

X

S
V   is 

equivalent to that )(xf is a size-biased generalized Rayleigh distribution where  nS is the 

sample standard deviation. 

The next theorem is easy to prove and need to derive the expectation and the variance of

2
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S
V , where nX  and nS  are respectively the sample mean and the sample 

standard deviation. 

Theorem 5.7.2: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a size-biased generalized 

Rayleigh distribution  
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Where nX  and 
2

nS  are respectively their sample mean and sample variance. 

Theorem 5.7.3: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a size-biased generalized 

Rayleigh distribution 
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Where nX  and 
2

nS  are respectively their sample mean and sample variance. 

Proof: By theorem 5.7.1, we have 
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Applying theorem 5.7.2 to the above identity yields that 
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Thus 5.7.3 is established. 

Theorem 5.7.4: Let 3n and let nXXXX ...,, 321  be a n positive identical independently 

distributed random samples drawn from a population having a size-biased generalized 

Rayleigh distribution 

 
















































k

kkk
SE

k

n
2

324

)(
2

2

2

2



 

  

   

  












































































k
n

kk

kkk
n

X

S
E

n

n

3
1

24

324

2

2

2

                                                                    

Furthermore, if SBGR distribution, we have 
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And it can be show that 
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Comparing above two equations, we have  
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Note that   2
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E  as n  and that this limit is the square of the population 

coefficient of variation. Thus,
2

2

n

n

X

S
 is an asymptotically unbiased estimator of the square 

of the population coefficient of variation. 

5.8 Simulation Study of Size biased Generalized Rayleigh distribution 

In our simulation study, we chose a sample size of n=25, 50 and 75 to represent small, 

medium and large data set. The scale parameter is estimated for Size biased Generalized 

Rayleigh distribution by the methods of Maximum Likelihood and Bayesian using 

Jeffrey‟s & extension of Jeffrey‟s prior methods. For the scale parameter we have 

considered = 0.5 and 1.0. The values of Jeffrey‟s extension were c1 = 0.5, 1.0, 1.5 and 

2.0. The value for the loss parameter c2 = 0 and   1.0. This was iterated 5000 times and 

the scale parameter for each method was calculated. A simulation study was conducted 

using R-software to examine and compare the performance of the estimates for different 

sample sizes with different values for the Extension of Jeffrey‟s‟ prior and the loss 

functions. The results are presented in tables for different selections of the parameters and 

c extension of Jeffrey‟s prior. 

Table 5.1Structural properties of Size biased Generalized Rayleigh distribution 

n   k  Mean
 

variance
 

S.D C.V
 Shannon’s 

Entropy 

25 0.5 1.0 1.3057878 0.0013881 0.0372575 0.028532 3.414851 

1.0 1.5 1.310549 0.0182512 0.1350972 0.103084 4.724048 

50 0.5 1.0 0.3054362 0.0011856 0.0344329 0.112733 1.879161 

1.0 1.5 0.3199525 0.0407701 0.2019163 0.631082 2.362021 

75 0.5 1.0 1.3256778 1.425e-05 0.0037708 0.002844 1.365678 

1.0 1.5 1.310549 0.0319192 0.1786595 0.136324 1.181019 
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Table 5.2 Mean Squared Error for ( ) under Jeffrey’s prior 

n θ k θML θSL 

θNL 

C2=-1.0 C2=-0 C2=1.0 

25 

0.5 1.0 0.4184437 0.02261071 0.02053641 0.02261071 0.02469849 

1.0 1.5 0.35385413 0.35744087 0.35031408 0.35744087 0.36473563 

50 

0.5 1.0 0.3912145 0.01621413 0.01527433 0.01621413 0.01716265 

1.0 1.0 0.3218592 0.3243453 0.3193622 0.3243453 0.3292847 

75 

0.5 1.0 0.3897367 0.01572284 0.01517348 0.01572284 0.16547846 

1.0 1.0 0.2638086 0.2654711 0.2621403 0.2654711 0.2687786 

 

Table 5.3: Mean Squared Error for ( ) under extension of Jeffrey’s prior 

n θ k C1 θML θSL 
θNL 

C2=-1.0 C2=0 C2=1.0 

 

 

 

 

25 

0.5 1.0 0.5 

1.0 

1.5 

2.0 

0.41844371 

0.41844371 

0.41844372 

0.41844371 

0.02261071 

0.02365331 

0.02469849 

0.02574551 

0.02053641 

0.02157146 

0.02261071 

0.02365331 

0.02261071 

0.02365331 

0.02469849 

0.02574551 

0.02469849 

0.02574551 

0.02679371 

0.02784246 

1.0 1.0 0.5 

1.0 

1.5 

2.0 

0.35385413 

0.35385413 

0.35385413 

0.35385413 

0.35744087 

0.36106952 

0.36473563 

0.36843503 

0.35031408 

0.35385413 

0.35744087 

0.36106952 

0.35744087 

0.36106952 

0.36473563 

0.36843503 

0.36473563 

0.36843503 

0.37216383 

0.37591841 

 

 

 

 

50 

0.5 1.0 0.5 

1.0 

1.5 

2.0 

0.39121450 

0.39121450 

0.39121450 

0.39121450 

0.01621413 

0.01668737 

0.01716265 

0.01763985 

0.01527433 

0.01574307 

0.01621413 

0.01668737 

0.01621413 

0.01668737 

0.01716265 

0.01763985 

0.01716265 

0.01763985 

0.01811884 

0.0185995 

1.0 1.0 0.5 

1.0 

1.5 

2.0 

0.33218592 

0.33218592 

0.33218592 

0.33218592 

0.3243453 

0.3268205 

0.3292847 

0.3317378 

0.3193622 

0.3218592 

0.3243453 

0.3268205 

0.3243453 

0.3268205 

0.3292847 

0.3317378 

0.3292847 

0.3317378 

0.3341798 

0.3366108 

 

 

 

 

75 

0.5 1.0 0.5 

1.0 

1.5 

2.0 

0.38973671 

0.38973671 

0.38973671 

0.38973671 

0.01572284 

0.0163256 

0.01507789 

0.01604798 

0.01517348 

0.01544774 

0.01468892 

0.01543174 

0.01572284 

0.0153256 

0.01507789 

0.01604798 

0.01654786 

0.01653488 

0.01569146 

0.01666804 

1.0 1.0 0.5 

1.0 

0.26547112 

0.26547112 

0.2654711 

0.2671278 

0.2621403 

0.2638086 

0.26547112 

0.2671278 

0.2687786 

0.2704236 
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1.5 

2.0 

0.26547112 

0.26547112 

0.2687786 

0.2704236 

0.2654711 

0.2671278 

0.2687786 

0.2704236 

0.2720628 

0.2736962 

ML= Maximum Likelihood, SL=Squared Error Loss Function, NL= New Loss Function, 

In table 5.2, Bayes‟estimation with New Loss function under Jeffrey‟s prior provides the 

smallest values in most cases especially when loss parameter C2 is -1. Similarly, in table 

5.3, Bayes‟ estimation with New Loss function under extension of Jeffrey‟s prior provides 

the smallest values in most cases especially when loss parameter C2 is - 1 whether the 

extension of Jeffrey‟s prior is 0.5, 1.0, 1.5 or 2.0.  Moreover, when the sample size 

increases from 25 to 75, the MSE decreases quite significantly.  
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CHAPTER – 6 

SUMMARY AND CONCLUSIONS  

 

 

 

 

 

he main focus in the present work has been made on the size biased probability 

distributions, particularly of some basic and most widely used member of it. 

Various contributions have been made about these distributions by various 

Statisticians and mathematicians in the past. All these which are still scattered in various 

journals of Statistics and Mathematics have been reviewed and critically examined. Size-

biased probability distributions are a special case of a general form known as weighted 

distributions. The Size biased Distributions are obtained by taking the weights as the 

variate values has been defined. We have proposed a new general class of Size biased 

Gamma, Beta and exponential distributions. The size biased Gamma (SBG) Distribution 

that is a flexible distribution in statistical literature, and has size biased exponential and 

exponential distribution as a subfamilies are introduced and also consists of presentation 

of general review of some important properties of SBG family. The power and 

logarithmic moments of this family is defined. Some important theorems of SBG family 

has been derived and studied, also identify the relation of SBG family with other related 

distributions. The estimation of parameters of these new models is obtained by employing 

the methods of moments, maximum likelihood and Bayesian method of estimation. We 

have also present Bayes‟ estimator of the parameter of Size biased classical Distribution 

that stems from an extension of Jeffery‟s prior (Al-Kutubi (2005)) with a new loss 

function (Al-Bayyati (2002)). We are proposing four different types of estimators. Under 

squared error loss function, there are two estimators formed by using Jaffrey prior and an 

T 
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extension of Jaffrey‟s prior. The two remaining estimators are derived using the same 

Jeffrey‟s prior and extension of Jeffrey‟s prior under a new loss function. We are also 

derive the survival function of the size biased Gamma and exponential distributions. A 

comparison has been made of the Bayes‟ estimator with the corresponding maximum 

likelihood estimator. Also, a likelihood ratio test of size-biasedness is conducted. A 

simulation study has been performed for the comparison of Bayes‟ estimators with the 

MLE estimator. We have considered a new class of Size biased Generalized Gamma 

Distribution. The several structural properties, reliability and information measures of 

Size biased Generalized Gamma model are introduced and derived. The estimation of 

parameters of this new model is obtained by employing the new methods of moments, 

maximum likelihood and Bayesian method of estimation. The Bayes‟ estimators are 

obtained by using Jeffrey‟s and extension of Jeffrey‟s prior under different loss functions. 

A comparison has been made of the Bayes‟ estimator with the corresponding maximum 

likelihood estimator. Also, a likelihood ratio test of size biased generalized gamma 

distribution is to be conducted. We have derived the survival function of the size biased 

Generalized Gamma distribution. A simulation study has been performed for the 

comparison of Bayes‟ estimators with the MLE estimator. We have derived the survival 

functions of the size biased Generalized Gamma distribution under Jaffrey and extension 

of Jaffrey‟s prior. It has been observed that Bayes‟ estimator provides better results and 

estimates as compared to classical estimators. In this chapter third , the AIC, and BIC 

values of exponential model are smaller as compared to size biased Gamma and size 

biased exponential models, so exponential model is more preferable than the size biased 

Gamma and size biased exponential models for the real data in hand. In this chapter 

fourth, a new class of weighted Generalized Beta Distribution of first kind, Size biased 

Generalized Beta Distribution of first and second kind has been considered. The several 

structural properties, of these probability models includes mean, variance, coefficient of 

variation, mode and harmonic mean has been studied and derived. The estimation of 

parameters of this new model is obtained by employing the new methods of moments 

Also, a likelihood ratio test of Weighted and size biased probability distributions are to be 

conducted. Some important theorems have been derived to estimates the parameters of 
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four parametric weighted and size-biased beta distributions. It was found that the square 

of the sample coefficient of variation is asymptotically unbiased estimator of square of the 

population coefficient of variation. In this chapter fifth, we have made an attempt to 

introduce a new class of Size biased Generalized Rayleigh distribution. The several 

structural properties, reliability and information measures are introduced and derived. The 

estimation of parameters of this new model is obtained by employing the new methods of 

moments, maximum likelihood and Bayesian method of estimation. The Bayes‟ 

estimators are obtained by using Jeffrey‟s and extension of Jeffrey‟s prior under different 

loss functions. A comparison has been made of the Bayes‟ estimator with the 

corresponding maximum likelihood estimator. Also, a likelihood ratio test of size biased 

generalized Rayleigh distribution is to be conducted. A simulation study has been 

performed for the comparison of Bayes‟ estimators with the MLE estimator. Also, 

survival functions of new model are derived using Jeffrey and extension of Jeffrey prior. 

It has been observed that Bayes‟ estimator provides better results and estimates as 

compared to classical estimators. The main objective of the research work is to introduce 

new class of Size biased probability distributions and obtain its structural and 

characterizing properties.Also,estimates the parameters of these new models by using 

different estimation techniques includes method of moment, method of maximum 

likelihood estimator and Bayesian method of estimation etc.Simulate the data in different 

Statistical packages and estimate the parameters and compared the estimators with 

different estimation techniques and interpret the  whole data, draw your  valid conclusion.  

The work is expected to be useful to those who are interested in applied estimation theory 

in general and estimations of probability distributions in particular .This work suggests 

about some new classes, different forms and new estimation procedures for these 

distributions. 
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