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ABSTRACT

In Chapter 1, we present a brief introduction of spectra of graphs and some

definitions. Chapter 2 is a brief review of energy of graphs. We obtain sufficient

conditions for the existence of non A-cospectral equienergetic graphs. We also

obtain sufficient conditions for the existence of hyperenergetic graphs. In Chapter

3, we study the Laplacian energy of graphs. We obtain bounds for the Laplacian

energy of graphs in terms of the number of vertices n, the number of edges m,

maximum degree ∆ and clique number ω, which improve some previously known

bounds. We also construct some new families of non L-cospectral L-equienergetic

graphs. In Chapter 4, we study the relation between energy and Laplacian energy

of graphs. We give various constructions of the families of graphs G for which

energy is greater than the corresponding Laplacian energy. We also give a con-

struction of non bipartite graphs for which energy is less than the corresponding

Laplacian energy. In Chapter 5, we study Laplacian-energy-like invariant LEL(G)

and Kirchhoff index Kf(G) of graphs. We obtain a lower bound for LEL(G) and

an upper bound for Kf(G) in terms of the number of vertices n, the number of

edges m, maximum degree ∆ and a positive real number k. We consider the re-

lation between LEL(G) and Kf(G) and obtain some sufficient conditions for a

graph G or its complement G to satisfy the inequality LEL(G) > Kf(G). As a

consequence, we arrive at a complete comparison of LEL(G) and Kf(G) for the

complement of a tree, unicyclic graphs, bicyclic graphs, tricyclic graphs and tetra-

cyclic graphs. In Chapter 6, we study the Laplacian energy of digraphs. We obtain
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bounds for the Laplacian energy of digraphs in terms of the number of vertices

n, the number of arcs m and numbers M,M1, K, which improve some previously

known bounds.
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CHAPTER 1

Introduction

1.1 Background

Spectral graph theory (Algebraic graph theory) which emerged in 1950s and

1960s is the study of properties of a graph in relationship to the characteristic

polynomial, eigenvalues and eigenvectors of matrices associated to the graph. The

major source of research in spectral graph theory has been the study of relation-

ship between the structural and spectral properties of graphs. Another source has

research in quantum chemistry. Just as astronomers study stellar spectra to deter-

mine the make-up of distant stars, one of the main goals in spectral graph theory

is to deduce the principal properties and structure of a graph from its graph spec-

trum (or from a short list of easily computable invariants). The spectral approach

for general graphs is a step in this direction. It has been seen that eigenvalues

are closely related to almost all major invariants of a graph, linking one extremal

property to another. Evidently, eigenvalues play a central role in our fundamen-

tal understanding of graphs. The study of graph eigenvalues realizes increasingly

rich connections with many other areas of mathematics. A particularly important

development is the interaction between spectral graph theory and differential ge-

ometry. There is an interesting analogy between spectral Riemannian geometry

and spectral graph theory. The concepts and methods of spectral geometry bring

useful tools and crucial insights to the study of graph eigenvalues, which in turn

lead to new directions and results in spectral geometry. Algebraic spectral meth-

ods are also very useful, especially for extremal examples and constructions. The

1980 monograph ‘spectra of graphs’ by Cvetković, Doob and Sach [28] summarised

nearly all research to date in the area. In 1988 it was updated by the survey ‘Re-

cent results in the theory of graph spectra’. The third edition of spectra of graphs

(1995) contains a summary of the further contributions to the subject. Since then

the theory has been developed to a greater extent and many research papers have

been published. It is important to mention that spectral graph theory has a wide

range of applications to other areas of mathematics and to other areas of sciences

which include Computer Science, Physics, Chemistry, Biology, Statistics etc.

One of the richest theories in spectral graph theory is the energy of graphs.
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The concept of energy of a graph is formulated from the pioneering work of Hückel

[60, 83] who made certain simplification of Schrodinger’s wave equations [28].

Chemists are interested in finding the wave functions and energy levels of a given

molecule. The wave functions φ are the solutions of Schrodinger’s wave equation

(H − E)φ = 0, where H is the energy operator and E is the electron energy. In

order to solve this equation for molecules, Hückel [83] replaced the Schrodinger’s

wave function by the speculation equation det(H −ES) = 0, where H = αI + βA

and S = I+σA. Here α (the Coulomb integral for carbon atom), β (the resonance

integral for two carbon atoms) and σ are all constants. If we normalize the system

so that α = 0 (the zero energy reference point) and β = 1 (the energy unit), then

H is the adjacency matrix A(G) of the associated graph G. The wave functions φ

are then the eigenvalues of A(G). Both wave functions and energy levels can be

measured experimentally and accord well with the predictions of Hückel theory.

The spectra of graphs can be used to calculate the energy levels of a conju-

gated hydrocarbon as calculated with Hückel Molecular Orbital (HMO) method.

The details of Hückel theory and how it is related to spectral graph theory can be

found in [28].

To study the energy levels of general class of graphs certainly help us in deter-

mining the energy levels of various classes of conjugated hydrocarbons in chemistry.

Considerable work on this aspect has been done from Hückel [83] till today.

Conjugated hydrocarbons are of great importance for both science and tech-

nology. A conjugated hydrocarbon can be characterized as a molecule composed

entirely of carbon and hydrogen atoms, every carbon atom having exactly three

neighbours (which may be either carbon or hydrogen atoms). For example, benzene

is a conjugated hydrocarbon. There are theoretical reasons [60, 130] to associate

a graph with a conjugated hydrocarbon according to the following rule:

Every carbon atom is represented by a vertex and every carbon-carbon sigma

bond by an edge, hydrogen atoms are ignored, e.g., the molecular graph of benzene

is C6, a cycle on six vertices.

An important quantum-chemical characteristic of a conjugated molecule is its

total π-electron energy. Within the Hückel Molecular Orbital (HMO) theory this

quantity can be reduced to
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E = E(G) =
n∑
j=1

|xj|,

where xj, j = 1, 2, . . . , n, are the eigenvalues of the respective molecular graph.

Gutman [72] in 1978 defined the concept of energy for graphs. This concept

became so popular that more than 300 papers have been published in this direction

till date. At the beginning some chemical problems were given graph theoretical

shape and were solved using spectral graph theory. One such problem can be seen

in [74]. Upper and lower bounds for energy were obtained for different classes

of graphs which can be used to estimate the total π-electron energy of molecular

graphs. Peña and Rada [115] in 2007 extended the concept of energy to digraphs

and defined the energy of a digraph as the sum of the absolute values of real parts

of eigenvalues of the digraph. They obtained Coulson’s integral formula for energy

of digraphs and also characterized unicyclic digraphs with minimal and maximal

energy.

As one can associate various matrices (like Laplacian matrix, signless Lapla-

cian matrix, distance matrix, normalized Laplacian/signless Laplacian matrix,

Randic matrix etc) to a graph. It is natural to define an energy like quantity

for these matrices. Since average of the eigenvalues of the matrix A(G) is zero,

the energy of a graph G can be viewed as the sum of the absolute deviation of

the eigenvalues of the matrix A(G) from their average. Motivated by this, Gut-

man and Zhou [65] in 2006 considered the sum of the absolute deviations of the

eigenvalues of the Laplacian matrix L(G) from their average 2m
n

and called this

quantity as the Laplacian energy LE(G) of graph G, that is,

LE(G) =
n∑
j=1

|µj −
2m

n
|.

It was shown that both energy and Laplacian energy share various properties but

there are some differences, as well. In fact, it is shown in [123] that the Laplacian

energy has remarkable chemical applications beyond the molecular orbital theory

of conjugated molecules. Laplacian graph energy is a broad measure of graph

complexity. Song et al. [132] have introduced component-wise Laplacian graph

energy, as a complexity measure useful to filter image description hierarchies. Var-

ious upper and lower bounds have been established for Laplacian energy for any
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graph in general and in particular, for different classes of graphs, which connects

it with various graph parameters.

From the definition of energy and Laplacian energy, one can observe that both

these energies represent the sum of the absolute deviation of corresponding eigen-

values from their average value. Thus, we can define the energy of a given matrix

M , and call it as M -energy, as the sum of the absolute deviation of eigenvalues

of M from their average value. This way, the energy of a graph is its A-energy

and the Laplacian energy of a graph is its L-energy. Other types of energy can

be defined in the same way, the difference being only in the matrix under consid-

eration: for example, the energy of a distance matrix is studied in [84]. Among

those found in literature, it is the Laplacian-energy-like invariant only, defined by

Liu and Liu [98], that does not fit this setting (which at the end, may happen to

be to its advantage, as a number of extremal problems for Laplacian-energy-like

invariant can be solved by considering the coefficients of characteristic polynomial

of L(G) and finding transformations which are monotone on these coefficients).

On the other hand, Nikiforov [110] has recently introduced another concept

of the energy of a complex matrix M as the sum of the singular values of M , which

made possible to determine the energy of random graphs.

Various Laplacian spectrum based graph invariants other than Laplacian en-

ergy were considered by different researchers for application point of view, among

those the most studied are Laplacian-energy-like invariant LEL(G) and Kirchhoff

index Kf(G) of a graph G. The Laplacian-energy-like invariant was put forward

by Liu and Liu [98] in 2008 as the sum of the square roots of the Laplacian eigen-

values of G, that is,

LEL(G) =
n∑
j=1

√
µj.

Stevanoić et al. [134] showed that LEL(G) of a graph G describes well the prop-

erties which are accounted by the majority of molecular descriptors: motor octane

number, entropy, molar volume, molar refraction, particularly the acentric fac-

tor AF parameter, but also more difficult properties like boiling point, melting

point and partition coefficient LogP . In a set of polycyclic aromatic hydrocar-

bons, LEL(G) of a graph was proved [134] to be as good as the Randić index (a

connectivity index) and better than the Wiener index (a distance based index).

The Kirchhoff index Kf(G) of a connected graph G was put forward by Gut-
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man and Mohar [64] and Zhu [161], as the number of vertices times the sum of the

reciprocals of positive Laplacian eigenvalues of graph G, that is,

Kf(G) = n
n−1∑
j=1

1

µj
.

This index is also named as total effective resistance [90] or the effective graph

resistance [40], and like the Wiener index have found applications in chemistry,

electrical network, Markov chains, averaging networks, experiment design, and

Euclidean distance embeddings, see [18, 56, 90, 91].

In 2009, Adiga and Smitha [4], motivated by skew energy put forward by

Adiga et al. [2] for a digraph D , considered the skew adjacency matrix S(D) = (sij)

of a digraph D , which is defined as, sij = 1, if (vi, vj) is an arc, sij = −1, if (vj, vi)

is an arc and 0, otherwise. Following the definition of Laplacian energy by Lazic

[95], they extended the concept of Laplacian energy to digraphs by defining it,

as the sum of the absolute values of the eigenvalues of the matrix D(D)− S(D).

Nearly, in the same year, Adiga and Khoshbakht [3] following the definition of

Laplacian energy by Gutman et al. defined the Skew Laplacian energy SLEg(D)

of the digraph D as the sum of the absolute deviations of the eigenvalues of the

matrix D(D)−S(D) from the average degree 2m
n

. Both these definitions of Lapla-

cian energy of a digraph do not get the familiarity among the researchers as the

matrix D(D)− S(D) does not specify the indegree and outdegree of a digraph.

In 2010, Kissani and Mizoguchi [89] introduced a different way of defining the

Laplacian energy for directed graphs, in which only the outdegrees of the vertices

are considered rather than both the outdegrees and indegrees. Moreover, Kissani

and Mizoguchi [89] established some relation between the Laplacian energy of a

graph (as put forward by Lazic [95]) and the Laplacian energy LEk(D) of the cor-

responding digraph D and used the so-called minimization maximum out-degree

(MMO) algorithm [10] to determine the digraphs with minimum Laplacian energy.

The shortage of this definition is that it does not make use of the inadjacency in-

formation of a digraph.

Recently (in 2013) Cai et al. [22] defined a new type of skew Laplacian ma-

trix S̃L(D) of a digraph D . Let D+(D) and D−(D) be respectively the diagonal

matrices of vertex outdegree and vertex indegree and let A+(D) and A−(D) be

respectively the outadjacency and inadjacency matrix of the digraph D . If A(G)
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is the adjacency matrix of the underlying graph G of the digraph D , then it is

clear that A(G) = A+(D) + A−(D) and S(D) = A+(D)− A−(D), where S(D) is

the skew adjacency matrix of the digraph D . The matrix S̃L(D) = D̃(D)−S(D),

where D̃(D) = D+(D) −D−(D) is called, by Cai et al. [22], the skew Laplacian

matrix of the digraph D . Following the definition of matrix energy by Nikifrov

[110], Cai et al. [22] defined the skew Laplacian energy of a digraph D , as the sum

of the absolute values of the eigenvalues of the matrix S̃L(D), that is

SLE(D) =
n∑
i=1

|νi|,

where ν1, ν2, . . . , νn are the eigenvalues of S̃L(D) and obtained various bounds.

This definition seems to be well chosen as the matrix S̃L(D) specify the inadja-

cency, outadjacency, indegree and outdegree of a digraph D .

1.2 Basic Definitions

Definition 1.2.1. Graph. A graph G is a pair (V,E ), where V is a nonempty set

of objects called vertices and E is a subset of V (2), (the set of distinct unordered

pairs of distinct elements of V ). The elements of E are called edges of G.

Definition 1.2.2. Multigraph. A multigraph G is a pair (V,E ), where V is a

nonempty set of vertices and E is a multiset of unordered pairs of distinct elements

of V . The number of times an edge occurs in G is called its multiplicity and edges

with multiplicity greater than one are called multiple edges.

Definition 1.2.3. General graph. A general graph G is a pair (V,E ), where V

is a non empty set of vertices and E is a multiset of unordered pairs of elements

of V . We denote by (u, v) an edge from vertex u to vertex v. An edge of the form

(u, u), where u ∈ V , is called loop of G and edges which are not loops are called

proper edges. The number of times a loop occurs is called its multiplicity. A loop

with multiplicity greater than one is called a multiple loop.

Definition 1.2.4. Subgraph of a graph. Let G = (V,E ) be a graph, H = (U,E ′)

is the subgraph of G whenever U ⊆ V and E ′ ⊆ E . If U = V the subgraph is said

to be spanning. An induced subgraph 〈U〉 is the subset of V together with all the

edges of G between the vertices in U .
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Definition 1.2.5. Bipartite graph. A graph G(V,E ) is said to be bipartite, if its

vertex set V can be partitioned into two parts, say V1 and V2 such that each edge

has one end in V1 and other in V2.

Definition 1.2.6. Degree. Degree of a vertex v in a graph G(V,E ) is the number

of edges incident on v and is denoted by dv or d(v).

Definition 1.2.7. k-Regular graph. A graph G(V,E ) is said to be k-regular if

for every vertex v ∈ V , dv = k.

Definition 1.2.8. Path. A path of length n−1 (n ≥ 2), denoted by Pn, is a graph

with n vertices v1, v2, . . . , vn and with n−1 edges (vi, vi+1), where i = 1, 2, . . . , n−1.

Definition 1.2.9. Cycle. A cycle of length n, denoted by Cn, is the graph with

vertex set v1, v2, . . . , vn having edges (vi, vi+1), i = 1, 2, . . . , n− 1 and (vn, v1).

Definition 1.2.10. Connectedness in graphs. A graph G(V,E ) is said to be

connected if for every pair of vertices u and v there is a path from one to other.

Definition 1.2.11. Matching. Let G(V,E ) be a graph with n vertices and m

edges. A k-matching of G is a collection of k independent edges (i.e., edges which

do not share a vertex) of G.

Definition 1.2.12. Clique. Let G = (V,E ) be a graph with n vertices and m

edges. A maximal complete subgraph of G is a clique of G. The order of a maxi-

mum clique of G is the clique number of G and is denoted by ω(G).

Definition 1.2.13. Independent set. Let G = (V,E ) be a graph with n vertices

and m edges. A vertex subset U of a graph G is said to be an independent set of

G, if the induced subgraph < U > is an empty graph. An independent set of G

with maximum number of vertices is called a maximum independent set of G. The

number of vertices in a maximum independent set of G is called the independence

number of G and is denoted by α(G).

Definition 1.2.14. Cartesian product. The Cartesian product of two graphs

G1(V1,E1) andG2(V2,E2) denoted byG1×G2 is the graph (V,E ), where V = V1×V2

and ((x1, x2), (y1, y2)) ∈ E if either x1 = y1 and (x2, y2) ∈ E2 or (x1, y1) ∈ E1 and

x2 = y2.

Definition 1.2.15. Kronecker product. The Kronecker product of two graphs

G1(V1,E1) andG2(V2,E2) denoted byG1⊗G2 is the graph (V,E ), where V = V1×V2
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and ((x1, x2), (y1, y2)) ∈ E if (x1, y1) ∈ E1 and (x2, y2) ∈ E2.

Definition 1.2.16. (i)Elementary figure. We call a graph to be an elementary

figure if it is either K2 or a cycle Cp, p ≥ 3.

(ii)Basic figure. A graph whose components are elementary figures is called a basic

figure.

Definition 1.2.17. Double graph of a graph. The double graph D[G] of G is

a graph obtained by taking two copies of G and joining each vertex in one copy

with the neighbours of corresponding vertex in another copy. The k-fold graph

Dk[G] of the graph G is obtained by taking k copies of the graph G and joining

each vertex in one of the copy with the neighbours of the corresponding vertex in

all the other copies. If Tn is the graph obtained from the complete graph Kn by

adding a loop at each of the vertex, it is easy to see that Dk[G] = G⊗ Tk.

Definition 1.2.18. Strong double graph of a graph. The strong double graph of

a graph G with vertex set V (G) = {v1, v2, . . . , vn} is the graph SD(G) obtained by

taking two copies of the graph G and joining each vertex vi in one copy with the

closed neighbourhood N [vi] = N(vi)∪{vi} of the corresponding vertex in another

copy.

For a graph G, let SD1(G) = SD(G), SD2(G) = SD(SD(G)), · · ·SDt(G) =

SD(SDt−1(G)). Then SDt(G) is called the t-th iterated strong double graph of

the graph G.

Definition 1.2.19. Extended double cover of a graph. The extended double

cover of a graph G with vertex set V (G) = {v1, v2, . . . , vn} is a bipartite graph G∗

with bipartition (X, Y), X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, where two

vertices xi and yj are adjacent if and only if i = j or vi adjacent vj in G.

Given a graph G, let G1∗ = G∗, G2∗ = (G∗)∗, · · · , Gk∗ = (G(k−1)∗)∗. Then Gk∗

is called the k-th iterated extended double cover graph of the graph G.

Definition 1.2.20. Digraph (or directed graph). A digraph D is a pair (V,A ),

where V is a nonempty set of objects called vertices and A is a subset of V (2),

(the set of distinct ordered pairs of distinct elements of V ). The elements of A

are called arcs of D .

Definition 1.2.21. Multidigraph. A multidigraph D is a pair (V,A ), where

V is a nonempty set of vertices and A is a multiset of ordered pairs of distinct
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elements of V . The number of times an arc occurs in D is called its multiplicity

and arcs with multiplicity greater than one are called multiple arcs.

Definition 1.2.22. General digraph. A general digraph D is a pair (V,A ),

where V is a nonempty set of vertices and A is a multiset of ordered pairs of

elements of V . We denote by (u, v) an arc from vertex u to vertex v. An arc of

the form (u, u), where u ∈ V , is called loop of D and arcs which are not loops are

called proper arcs. The number of times a loop occurs is called its multiplicity. A

loop with multiplicity greater than one is called a multiple loop.

Definition 1.2.23. Subdigraph of a digraph. Let D = (V,A ) be a digraph,

H = (U,A ′) is the subdigraph of D whenever U ⊆ V and A ′ ⊆ A . If U = V the

subdigraph is said to be spanning. An induced subdigraph 〈U〉 is a subset of V

together with all the arcs of D between the vertices of U .

Definition 1.2.24. Outdegree and indegree. In a digraph D = (V,A ), the out-

degree of a vertex v is the number of vertices to which the vertex v is adjacent, it

is denoted by d+(v) or d+
v . Similarly the indegree of a vertex v in a digraph D is

the number of vertices from which v is adjacent and it is denoted by d−(v) or d−v .

If d+
v = d−v = k, then the digraph is said to be k-regular. A vertex v is said to be

isolated if d+
v = d−v = 0.

Definition 1.2.25. Two digraphs D1 and D2 are said to be isomorphic if their

underlying graphs are isomorphic and the direction of arcs are same and we write

D1
∼= D2.

Definition 1.2.26. Complement of a Digraph. The complement of digraph

D = (V,A ) is denoted by D̄ . It has a vertex set V and (u, v) ∈ Ā if and only

if (u, v) /∈ A . D̄ is the relative complement of D in K∗n, where K∗n is a complete

symmetric digraph, i.e., a digraph in which for every pair of vertices there is a

directed arc from one to other.

Definition 1.2.27. Self complementary digraph. A digraph D is said to be self

complementary if D ∼= D̄ , and D is said to be self converse if D ∼= D ′, where D ′

is the digraph obtained from D by reversing the direction of arcs.

Definition 1.2.28. Directed Path. A path of length n − 1 (n ≥ 2), denoted by

Pn, is a digraph with n vertices v1, v2, . . . , vn and with n− 1 arcs (vi, vi+1), where

i = 1, 2, . . . , n− 1.
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Definition 1.2.29. Directed cycle. A cycle of length n, denoted by Cn, is the

digraph with vertex set v1, v2, . . . , vn having arcs (vi, vi+1), i = 1, 2, . . . , n− 1 and

(vn, v1). A digraph is acyclic if it has no directed cycles.

Definition 1.2.30. Strong connectedness. A digraph D is called strongly con-

nected if for any two vertices there is a path from one to other. The strong

components of a digraph are the maximally strongly connected subdigraphs.

Definition 1.2.31. Oriented graph. An oriented graph is a digraph with no

symmetric pairs of directed arcs and without loops. An orientation of a graph G

is a digraph obtained by giving an arbitrary direction to each edge of G.
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CHAPTER 2

On the energy of graphs

In this chapter, we study the energy of graphs and present some well known

results on energy of graphs. We obtain lower and upper bounds for the energy

of KKj
n. We consider double graphs, extended double graphs and strong double

graphs of a graph. Using these graphs we construct some new families of non

A-cospectral equienergetic graphs and bipartite graphs on n ≡ 0 (mod 2). We

obtain a sufficient condition for the existence of non A-cospectral equienergetic

bipartite graphs on n ≡ 0 (mod 4) and a sufficient condition for the existence of

non A-cospectral equienergetic bipartite graphs on n ≡ 0 (mod 2). We give vari-

ous methods for the construction of new families of non isomorphic A-cospectral

graphs. We also obtain sufficient conditions for the existence of hyperenergetic

graphs and hyperenergetic bipartite graphs for n ≡ 0 (mod 2).

2.1 Introduction

Let G be a graph with n vertices v1, v2, . . . , vn and m edges. The adjacency

matrix of G is the n× n matrix A = A(G) = (aij), where

aij =

{
1, if there is an edge from vi to vj,

0, otherwise.

The characteristic polynomial det(xI−A(G)) = |xI−A(G)| of the adjacency

matrix A(G) of G is called the adjacency characteristic polynomial of G and is

denoted by φ(G, x). It is clear from the definition that the matrix A is a real sym-

metric matrix, so all its eigenvalues are real. The eigenvalues of A(G) are called

the adjacency eigenvalues (A-eigenvalues) of G. The set of distinct A-eigenvalues

of G together with their multiplicities is called the A-spectrum of G. If G has k

distinct A-eigenvalues λ1, λ2, . . . , λk with respective multiplicities m1,m2, . . . ,mk,

then we write the A-spectrum of G as SpecA(G) = {λ[m1]
1 , λ

[m2]
2 , . . . , λ

[mk]
k }.

The following result relates the coefficients of the adjacency characteristic

polynomial of a graph with the structure of the graph and is known as Sach’s
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Theorem [28].

Theorem 2.1.1. Let G be a graph of order n with adjacency characteristic poly-

nomial

φ(G, x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an,

then

aj =
∑
L∈£j

(−1)p(L)2|c(L)|,

for all j = 1, 2, . . . , n, where £j is the set of all basic figures L of G of order j,

p(L) denotes the number of components of L and c(L) denotes the set of all cycles

of L.

A graph is bipartite if and only if it contains no odd cycles. As basic figures

of odd order must possess at least one odd cycle, therefore for a bipartite graph

£2j+1 = ∅, for all j ≥ 0 and hence a2j+1 = 0, for all j ≥ 0. Consequently, the

adjacency characteristic polynomial of a bipartite graph B takes the form

φ(B, x) =

bn
2
c∑

j=0

a2jx
n−2j.

The even coefficients of a bipartite graph alternate in sign [28], i.e., (−1)ja2j ≥
0, for all j. Therefore,

φ(B, x) = xn +

bn
2
c∑

j=1

(−1)jb2jx
n−2j,

where a2j = (−1)jb2j and b2j are non negative integers.
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2.2 Energy of graphs

Definition 2.2.1. Energy of a graph. Let G be a graph of order n with A-

eigenvalues λ1, λ2, . . . , λn. The energy of G is defined as

E(G) =
n∑
j=1

|λj|.

This concept was first introduced in 1978 by Gutman [72]. The following is

the integral representation for the energy of a graph (also known as the Coulson’s

integral formula).

Theorem 2.2.2. Let G be a graph with n vertices having A-characteristic poly-

nomial φ(G, x). Then

E(G) =
n∑
j=1

|λj| =
1

π

∞∫
−∞

(n− ixφ′(G, ix)

φ(G, ix)
)dx,

where λ1, λ2, . . . , λn are the A-eigenvalues of graph G, i =
√
−1 and

∞∫
−∞

F (x)dx

denotes the principle value of the respective integral.

The following observations [73] follow from Coulson’s integral formula.

Theorem 2.2.3. If G is a graph of order n, then

E(G) =
1

π

∞∫
−∞

1

x2
log |xnφ(G,

i

x
)|dx.

Theorem 2.2.4. If G1 and G2 are two graphs of the same order, then

E(G1)− E(G2) =
1

π

∞∫
−∞

log |φ(G1, ix)

φ(G2, ix)
|dx.
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Coulson’s integral formula and its various consequences have important chem-

ical applications. Note that the Sach’s theorem establishes the explicit dependence

of the coefficients of the characteristic polynomial of a graph on the structure of

the graph. The Coulson’s integral formula establishes the explicit dependence of

the energy of a graph on the characteristic polynomial of this graph. By combin-

ing Coulson’s integral formula with Sach’s theorem, we see the dependence of the

energy of a graph on the structure of this graph and hence a complete information

on the dependence of the total π−electron energy of molecule (as computed within

the HMO model) on the structure of this molecule.

2.3 Bounds for the energy of a graph

Several upper and lower bounds for the energy are known. The following

bounds of energy of a graph in terms of order n, size m and the determinant of

adjacency matrix is due to McClelland [109].

Theorem 2.3.1. If G is a graph with n vertices and m edges, then√
2m+ n(n− 1)| det(A(G))| 2n ≤ E(G) ≤

√
2mn. (2.1)

An immediate consequence of Theorem 2.3.1 is the following observation.

Corollary 2.3.2. If det(A(G)) 6= 0, then E(G) ≥
√

2m+ n(n− 1) ≥ n.

The graph energy as a function of the number of edges satisfies the following

inequalities [23].

Theorem 2.3.3. If G is a graph with m edges, then

2
√
m ≤ E(G) ≤ 2m

with equality on the left if and only if G is a complete bipartite graph plus some

isolated vertices and equality on the right if and only if G is a matching of m edges

plus some isolated vertices.
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The following is a lower bound for the energy of a graph [73] in terms of its

number of vertices n.

Theorem 2.3.4. If G is a graph with n vertices, then

E(G) ≥ 2
√
n− 1

with equality if and only if G = K1,n−1.

Definition 2.3.5 Strongly regular graph. A k-regular graph G on n vertices is

said to be strongly regular with parameters (n, k, λ, µ) if each pair of adjacent

vertices has the same number λ ≥ 0 of common neighbours, and each pair of non

adjacent vertices has the same number µ ≥ 0 of common neighbours. If µ = 0,

then G is a disjoint union of complete graphs, whereas if µ ≥ 1 and G is non

complete, then A-eigenvalues of G are k, r and s, where r and s are the roots of

the quadratic equation

x2 + (µ− λ)x+ (µ− k) = 0.

The A-eigenvalue k has the multiplicity one, whereas multiplicities mr of r

and ms of s can be calculated by solving the simultaneous equations

mr +ms = n− 1, k + rmr + sms = 0.

A strongly regular graph G is said to be primitive if both G and Ḡ (complement of

G) are connected. A strongly regular graph with parameters (n, k, λ, µ) is denoted

by SRG(n, k, λ, µ).

The following result due to Koolen and Moulton [93] improves the McClelland

upper bound for the graphs with 2m
n
≥ 1, where n is the number of vertices and

m is the number of edges of the graph.

Theorem 2.3.6. If 2m ≥ n and G is a graph on n vertices and m edges, then

E(G) ≤ 2m

n
+

√
(n− 1)[2m− (

2m

n
)2] (2.2)

holds. Moreover, equality holds in (2.2) if and only if G is either n
2
K2 or Kn or a

non-complete connected strongly regular graph with two non trivial A-eigenvalues
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both with absolute value
√

(2m−( 2m
n

)2)

(n−1)
.

Since a graph G with n vertices has at most n(n−1)
2

edges, it follows from

McClelland’s bound (2.1) that

E(G) ≤ n
√
n− 1 (2.3)

must hold.

The following result shows that inequality (2.2) allows to improve the bound

given by (2.3).

Theorem 2.3.7. Let G be a graph on n vertices. Then

E(G) ≤ n

2
(1 +

√
n) (2.4)

holds, with equality if and only if G is a strongly regular graph with parameters

(n, (n+
√
n)

2
, (n+2

√
n)

4
, (n+2

√
n)

4
).

Koolen and Moulton [93] conjectured that for a given ε > 0, there exists a

graph G of order n such that for almost all n ≥ 1,

E(G) ≥ (1− ε)n
2

(
√
n+ 1),

which was later proved by Nikiforov [111]. For energy bounds about bipartite

graphs see [94, 122].

Let KKj
n, 1 ≤ j ≤ n, be the graph obtained by taking two copies of the graph

Kn and joining a vertex in one copy with the j, 1 ≤ j ≤ n, vertices in another

copy. The A-spectrum of the graph KKj
n was discussed in [46] and is given by the

following result.

Lemma 2.3.7. If 1 ≤ j ≤ n and n ≥ 3, the A-characteristic polynomial of KKj
n

is (x + 1)2n−4h(x), where h(x) = x4 + (4− 2n)x3 + (n2 − 6n + 6− j)x2 + (2n2 −
6n+ 2nj − j2 − 3j + 4)x+ (1 + nj2 − 2j2 + n2 − 2n− 2j + 3jn− jn2).
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We now find the estimates for the energy of KKj
n. This family of graphs was

introduced in [46], where the spectral properties with respect to different matrices

(A(G), L(G), Q(G)) were discussed.

Theorem 2.3.8. For k ∈ N− {1}, (k − 1)2 < j ≤ k2 and n ≥ ((k − 1)2 + 2)2 −
(k − 1)2, we have

4n− 8 + 2k < E(KKj
n) < 4n− 8 + 2(k + 1).

Proof. By Lemma 2.3.7, the A-characteristic polynomial φ(KKj
n, x) of the graph

KKj
n is

φ(KKj
n, x) = (x+ 1)2n−4h(x),

where h(x) = x4 + (4− 2n)x3 + (n2− 6n+ 6− j)x2 + (2n2− 6n+ 2nj − j2− 3j +

4)x+ (1 + nj2 − 2j2 + n2 − 2n− 2j + 3jn− jn2).

Let x1, x2, x3, x4 be the zeros of the polynomial h(x). Then the A-spectrum

of the graph KKj
n is {−1[2n−4], x1, x2, x3, x4}.

For (k−1)2 < j ≤ k2 and n ≥ ((k−1)2 +2)2−(k−1)2, we have the following.

h(n) = n2 + 2n+ 1− 2j2 − 2j > 0, h(n− 1) = −j2 < 0,

h(n− 2) = (n− 1)2 > 0, h(0) = 1− 2j − 2j2− 2n+ 3nj + nj2 + n2− jn2 < 0,

h(−k) = k4 + (2n− 4)k3 + (n2− 6n+ 6− j)k2− (2n2− 6n+ 2nj− j2− 3j + 4)k+

(1 + nj2 − 2j2 + n2 − 2n− 2j + 3jn− jn2) < 0, and

h(−(k+1)) = k4 +2nk3 +(n2− j)k2 +(j2 + j−2nj)k+(jn+nj2− jn2− j2) > 0.

Therefore, by Intermediate Value Theorem, it follows that h(x) has three

positive roots, one in each of the intervals (0, n−2), (n−2, n−1) and (n−1, n), and

a single negative root in the interval (−(k + 1),−k). Assume that x1, x2, x3 > 0

and x4 < 0. Since x1 + x2 + x3 + x4 = 2(n− 2). We have

E(KKj
n) = (2n− 4)| − 1|+ |x1|+ |x2|+ |x3|+ |x4|

= 2n− 4 + x1 + x2 + x3 − x4

= 2n− 4 + 2n− 4− 2x4

= 4n− 8− 2x4.

The result follows from the fact that x4 ∈ (−(k + 1),−k) implies −(k + 1) <

x4 < −k, which implies k < −x4 < k + 1.
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Since (k− 1)2 < j ≤ k2 implies k− 1 <
√
j < k, the following consequence of

Theorem 2.3.8, gives the estimates for the energy of KKj
n in terms of j.

Corollary 2.3.9. For k ∈ N− {1}, (k − 1)2 < j ≤ k2 and n ≥ ((k − 1)2 + 2)2 −
(k − 1)2, we have

4n− 8 + 2
√
j < E(KKj

n) < 4n− 8 + 2(
√
j + 2).

Bapat and Pati [14] proved that the energy of a graph if rational number

should be an even integer. Therefore keeping this in mind we have the following

consequence of Theorem 2.3.8.

Corollary 2.3.10. For k ∈ N−{1}, (k− 1)2 < j ≤ k2 and n ≥ ((k− 1)2 + 2)2−
(k − 1)2, the energy of the graph KKj

n is an irrational number.

2.4 Equienergetic graphs

Two graphs G1 and G2 of the same order are said to be A-cospectral if they

have the same A-spectrum and non A-cospectral, otherwise. Since adjacency ma-

trices of isomorphic graphs are permutation similar and similar matrices have

same spectrum, it follows that isomorphic graphs are always A-cospectral. How-

ever there are non isomorphic graphs, which are A-cospectral [28].

Two graphs G1 and G2 of same order are said to be equienergetic if they

have the same energy. A-cospectral graphs are obviously equienergetic, therefore

the problem of equienergetic graphs is considered only for non A-cospectral graphs.

Definition 2.4.1. Line graph and iterated line graph. The line graph L(G) of

a graph G is the graph whose vertex set is the edge set of G and any two ver-

tices in L(G) are adjacent if and only if the corresponding edges in G share a vertex.

Given a graphG, let L1(G) = L(G), L2(G) = L(L(G)), · · · , Lk(G) = L(Lk−1(G)).

The graph Lk(G) is called k-th iterated line graph of G.

Equienergetic graphs were first constructed by Ramane et al. [124]. The

following result shows that for a regular graph, the energy of second iterated line
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graph depends only on degree and the number of vertices.

Theorem 2.4.2. If G is an r-regular graph (r ≥ 3) of order n, then

E(L2(G)) = 2nr(r − 2).

Using Theorem 2.4.2 and noting that iterated line graphs of non A-cospectral

regular graphs are non A-cospectral, the following result [124] yields the existence

of non A-cospectral equienergetic graphs.

Theorem 2.4.3. Let G1 and G2 be two non A-cospectral regular connected graphs

both on n vertices and both of degree r ≥ 3. Then L2(G1) and L2(G2) are con-

nected, non A-cospectral and equienergetic.

An inductive argument shows that k-th iterated line graphs of any two con-

nected, non A-cospectral regular graphs both with same degree and same number

of vertices are connected, non A-cospectral and equienergetic.

The following result due to Ramanne et al. [127] gives a method of construc-

tion of equienergetic complement graphs.

Theorem 2.4.4. If G is a regular graph of order n and of degree r ≥ 3, then

E(L2(G)) = (nr − 4)(2r − 3)− 2.

From Theorem 2.4.4 and noting that complemented iterated line graphs of

non A-cospectral regular graphs are non A-cospectral, the following observation

[127] shows the existence of equienergetic complement graphs.

Corollary 2.4.5. Let G1 and G2 be two non A-cospectral regular graphs on

n vertices and of degree r ≥ 3. Then L2(G1) and L2(G2) are non A-cospectral

equienergetic.

An inductive argument gives the following result [127].
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Corollary 2.4.6. Let G1 and G2 be two non A-cospectral regular graphs on n

vertices and of degree r ≥ 3. Then for k ≥ 2, Lk(G1) and Lk(G2) are non A-

cospectral equienergetic.

Balakrishnan [12] proved that for a non trivial graph Q, if G = C4 and

H = K2 ⊗ K2, then Q ⊗ G and Q ⊗ H are non A-cospectral and equienergetic.

Bonifacio et al. [19] have given conditions on an arbitrary pairG andH of equiener-

getic non A-cospectral graphs to make assertion true for any non trivial connected

graph Q. Bonifacio et al. [19] also characterize a graph G for which G ⊗K2 and

G×K2 are non A-cospectral and equienergetic. Indulal and Vijaykumar [86] con-

structed self complementary equienergetic graphs on p vertices for every p = 4k,

where k ≥ 2 and p = 24t+ 1, where t ≥ 3.

Let Dk[G] be the k-fold graph of the graph G, the A-spectrum of Dk[G] was

considered in [103] and is given by the following result.

Lemma 2.4.9. If λ1, λ2, . . . , λn is the A-spectrum of a graph G, then the A-

spectrum of the graph Dk[G] is kλ1, kλ2, . . . , kλn, 0
[(k−1)n].

Let G∗ be the extended double cover of the graph G. The following result

[25] gives the A-spectrum of G∗.

Lemma 2.4.10. If λ1, λ2, . . . , λn is the A-spectrum of a graph G, then the A-

spectrum of the graph G∗ is ±(λ1 + 1),±(λ2 + 1), . . . ,±(λn + 1).

The following result gives the A-spectrum (L-spectrum) of the cartesian prod-

uct of graphs [28].

Lemma 2.4.11. If G1(n1,m1) and G2(n2,m2) are two graphs having A-spectrum

(L-spectrum) respectively as θ1, θ2, . . . , θn1 and σ1, σ2, . . . , σn2 , then theA-spectrum

(L-spectrum) of G = G1×G2 is θi+σj, where i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

If λ1, λ2, . . . , λn be the A-spectrum of the graph G, then by Lemma 2.4.11, the
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A-spectrum of the graph G×K2 is λi+1, λi−1, for i = 1, 2, . . . , n. It is clear from

Lemma 2.4.10, that the graphs G×K2 and G∗ are non isomorphic A-cospectral if

and only if G is bipartite [25]. Further, we have

E(G∗) =
n∑
i=1

|λi + 1|+
n∑
i=1

| − λi − 1| = 2
n∑
i=1

|λi + 1|.

Also, by Lemma 2.4.9, the A-spectrum of Dk[G] is kλ1, kλ2, . . . , kλn, 0
[(k−1)n], so

that

E(Dk[G]) =
n∑
i=1

|kλi| = k

n∑
i=1

|λi| = kE(G).

The following result gives the A-spectrum (L-spectrum) of the Kronecker

product of graphs [28].

Lemma 2.4.12. If G1(n1,m1) and G2(n2,m2) are two graphs having A-spectrum

(L-spectrum) respectively as θ1, θ2, . . . , θn1 and σ1, σ2, · · · , σn2 , then theA-spectrum

(L-spectrum) of G = G1 ⊗G2 is θiσj where i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2.

From Lemmas 2.4.11 and 2.4.12, it is clear that the A-spectrum of the graph

(G⊗K2)×K2 is λi + 1, λi − 1,−λi + 1,−λi − 1, i = 1, 2, . . . , n. Therefore,

E((G⊗K2)×K2) = 2
n∑
i=1

|λi + 1|+ 2
n∑
i=1

|λi − 1| = 2

(
n∑
i=1

|λi + 1|+
n∑
i=1

|λi − 1|

)
= 2E(G×K2) = E(2(G×K2)) = E((G×K2) ∪ (G×K2)).

From this, it follows that the graphs (G⊗K2)×K2 and (G×K2)∪ (G×K2)

are equienergetic graphs. Clearly, these graphs are non A-cospectral. In fact, if

G is a bipartite graph, then the graphs (G ⊗ K2) × K2 and G∗ ∪ G∗ are non A-

cospectral equienergetic graphs.

As seen above E(Dk[G]) = k
∑n

i=1 |λi| = kE(G) = E(kG) = E(G∪G∪ · · · ∪
G). This shows that the graphs Dk[G] and (G∪G∪ · · · ∪G) are non A-cospectral

equienergetic. However, we show for any graph G the graphs D[G] and G ⊗ K2

are always equienergetic non A-cospectral graphs.
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Theorem 2.4.13. If D[G] is the double graph of the graph G, then the graphs

G⊗K2 and D[G] are non A-cospectral equienergetic graphs.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graphG, then by Lemma 2.4.12,

the eigenvalues of the graph G ⊗ K2 are λi,−λi, i = 1, 2, . . . , n and by Lemma

2.4.9 (for k = 2), the eigenvalues of the graph D[G] are 2λi, 0[n], i = 1, 2, . . . , n.

Therefore,

E(G⊗K2) =
n∑
i=1

|λi|+
n∑
i=1

| − λi| = 2
n∑
i=1

|λi|.

Also,

E(D[G]) =
n∑
i=1

|2λi| = 2
n∑
i=1

|λi|.

Clearly these graphs are non A-cospectral.

In general, if Dk[G] is the k-fold graph of the graph G, we have the follow-

ing observation, the proof of which follows by proceeding similarly as in Theorem

2.4.13.

Theorem 2.4.14. If Dk[G] is the k-fold graph of the graph G, then the graphs

Dk[G] and G⊗sK2 are non A-cospectral equienergetic graphs if and only if k = 2s.

Let G be a bipartite graph. It is well known that the spectrum of G is sym-

metric about the origin (Pairing Theorem), so half of the non-zero eigenvalues of

G lies to the left and half lies to the right of origin. Therefore, if γ+, γ− and γ0 are

respectively, the number of positive eigenvalues, the number of negative eigenval-

ues and number of zero eigenvalues of G, then for the bipartite graph G, we have

γ+ = γ−. Keeping this in mind, we have the following result.

Theorem 2.4.15. Let G∗ be the extended double cover of the bipartite graph G.

The graphs G∗ and D[G] are non A-cospectral equienergetic if and only if |λi| ≥ 1

for all 1 ≤ i ≤ n.

Proof. Let λ1, λ2, . . . , λn be the eigenvalues of the graph G. By Lemma 2.4.10,

the eigenvalues of the graph G∗ are λi + 1,−λi − 1, for i = 1, 2, . . . , n and by
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Lemma 2.4.9, the eigenvalues of the graph D[G] are 2λi, 0[n], for i = 1, 2, . . . , n.

Suppose that |λi| ≥ 1 for i = 1, 2, . . . , n, then

|λi + 1| =

{
|λi|+ 1, if λi > 0

|λi| − 1, if λi < 0.

Therefore,

E(G∗) =
n∑
i=1

|λi + 1|+
n∑
i=1

| − λi − 1| = 2
n∑
i=1

|λi + 1|

= 2

(∑
λi>0

|λi + 1|+
∑
λi<0

|λi + 1|

)
= 2

(∑
λi>0

(|λi|+ 1) +
∑
λi<0

(|λi| − 1)

)

= 2

(
(
∑
λi>0

|λi|+
∑
λ<0

|λi|) + (
∑
λi>0

1−
∑
λ<0

1)

)
= 2

n∑
i=1

|λi| = E(D[G]).

Clearly these graphs are non A-cospectral with same number of vertices.

Conversely, suppose that for the bipartite graph G, the graphs G∗ and D[G]

are non A-cospectral equienergetic. We will show that |λi| ≥ 1 for all 1 ≤ i ≤ n.

Assume to the contrary that |λi| < 1 for some i. Then for this i, |λi + 1| =

λi+1. Without loss of generality, suppose that the eigenvalues of G satisfy |λi| ≥ 1,

for i = 1, 2, . . . , k and |λi| < 1, for i = k + 1, k + 2, . . . , n, as the eigenvalues are

real and reordering does not effect the argument. We have the following cases to

consider.

Case (i). If λi > 0 for i = 1, 2, . . . , k and λi ≥ 0 for i = k + 1, k + 2, . . . , n, then

E(G∗) = 2

(
k∑
i=1

|λi + 1|+
n∑

i=k+1

|λi + 1|

)
= 2

(
n∑
i=1

|λi|+ n

)
.

Case (ii). If λi > 0 for i = 1, 2, . . . , k and λi ≤ 0 for i = k + 1, k + 2, . . . , n, then

if γ0 is the number of zero eigenvalues of G, we have

E(G∗) = 2

(
k∑
i=1

|λi + 1|+
n∑

i=k+1

|λi + 1|

)
= 2

(
k∑
i=1

(|λi|+ 1) +
n∑

i=k+1

(λi + 1)

)
.

> 2

(
k∑
i=1

(|λi|+ 1) +
n∑

i=k+1

(|λi| − 1)

)
= 2

(
n∑
i=1

|λi| − γ0

)
.
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Case (iii). If λi < 0 for i = 1, 2, . . . , k and λi ≥ 0 for i = k + 1, k + 2, . . . , n, then

E(G∗) = 2

(
k∑
i=1

|λi + 1|+
n∑

i=k+1

|λi + 1|

)
= 2

(
k∑
i=1

(|λi| − 1) +
n∑

i=k+1

(|λi|+ 1)

)
.

= 2

(
n∑
i=1

|λi|+ γ0

)
.

Case (iv). If λi < 0 for i = 1, 2, . . . , k and λi ≤ 0 for i = k + 1, k + 2, . . . , n, then

E(G∗) = 2

(
k∑
i=1

|λi + 1|+
n∑

i=k+1

|λi + 1|

)
= 2

(
k∑
i=1

(|λi| − 1) +
n∑

i=k+1

(λi + 1)

)
.

> 2

(
k∑
i=1

(|λi| − 1) +
n∑

i=k+1

(|λi| − 1)

)
= 2

(
n∑
i=1

|λi| − n

)
.

Clearly in all these cases, we obtain E(G∗) 6= E(D[G]), a contradiction. Therefore

the result follows.

As double graph D[G] of a bipartite graph G is bipartite and extended double

cover G∗ of the graph G is always bipartite, Theorem 2.4.15 gives a method to

construct a pair of non A-cospectral equienergetic connected bipartite graphs from

any given connected bipartite graph G for any n.

For any complex square matrices A and B of same order, we have the follow-

ing observation.

Lemma 2.4.16. If A and B are complex square matrices of same order, then∣∣∣∣∣A B

B A

∣∣∣∣∣ = |A+B||A−B|

where the symbol || denotes the determinant of a matrix.

Let SD(G) be the strong double graph of the graph G and let SDk(G), k ≥ 1

be the k-th iterated strong double graph of the graph G. Using strong dou-

ble graphs we will construct some new families of non A-cospectral equienergetic

graphs from any given graph G. For this, we first obtain the A-spectrum of SD(G)
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and SDk(G).

Theorem 2.4.17. If λi, i = 1, 2, . . . , n is the A-spectrum of the graph G, then

the A-spectrum of the graph SD(G) is 2λi + 1, −1[n], i = 1, 2, . . . , n.

Proof. Let A be the adjacency matrix of the graph G and In be the Identity

matrix of order n. By a suitable relabelling of vertices it can be seen that the

adjacency matrix A(SD(G)) of the graph SD(G) is

A(SD(G) =

(
A A(G) + In

A(G) + In A

)
.

Therefore by Lemma 2.4.16, the adjacency characteristic polynomial of SD(G)

is

φ(G, λ) = |λI2n − A(SD(G))| =

∣∣∣∣∣ λIn − A −(A+ In)

−(A+ In) λIn − A

∣∣∣∣∣
= |λIn − A− (A+ In)| |λIn − A+ (A+ In)|
= |λ− 1)In − 2A| |(λ+ 1)In|

= (λ+ 1)nφ

(
G,

λ− 1

2

)
,

and so the result follows.

Using induction and Theorem 2.4.17, we have the following observation.

Corollary 2.4.18. If λi, i = 1, 2, . . . , n, is the A-spectrum of the graph G, then

the A-spectrum of the graph SDk(G), k ≥ 1 is 2kλi + (2k − 1), −1[(2k−1)n], i =

1, 2, . . . , n.

A graph G is said to be A-integral if all its adjacency eigenvalues are integers

[28]. The following observation is an easy consequence of Corollary 2.4.18, and

gives a method to construct new families of A-integral graphs from any given A-

integral graph G. Also, it gives a method to construct new families of A-cospectral

graphs from any given pair of A-cospectral graphs G1 and G2.
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Corollary 2.4.19. A graph G is A-integral if and only if the graph SDk(G) is

A-integral. Two graphs SDk(G1) and SDk(G2) of same order are A-cospectral if

and only if the graphs G1 and G2 are A-cospectral.

Indeed, if all the A-eigenvalues of the graph G are integers, then the graph

SDk(G) gives an infinite sequence of graphs having all the A-eigenvalues odd in-

tegers in absolute value.

If λi, i = 1, 2, . . . , n, is the A-spectrum of the graph, by Lemmas 2.4.9, 2.4.11

and Theorem 2.4.17, it follows that the A-spectrum of the graphs SD(G × K2)

and D[G×K2] are respectively, as 2λi + 3, 2λi− 1,−1[2n] and 2λi + 2, 2λi− 2, 0[2n].

So, by Lemma 2.4.12, the A-spectrum of the graph SD(G × K2) ⊗ K2 is 2λi +

3, 2λi− 1,−2λi− 3,−2λi + 1, 1[2n],−1[2n], i = 1, 2, . . . , n, which by Lemma 2.4.10,

is same as the A-spectrum of the graph (D(G×K2))∗. So it follows that the graphs

SD(G×K2)⊗K2 and (D(G×K2))∗ are A-cospectral for any graph G.

The next result gives the construction of non A-cospectral equienergetic bi-

partite graphs from any given graph G.

Theorem 2.4.20. For a bipartite graph G, the graphs SD(G⊗K2) and SD(G)⊗
K2 are non A-cospectral equienergetic if |λi| ≥ 1

2
, for all non-zero eigenvalues of

G.

Proof. Let SD(G) be the strong double graph of the graph G. Using Theorem

2.4.17 and Lemma 2.4.12, it is easy to see that the A-spectrum of the graphs

SD(G) ⊗K2 and SD(G) ⊗K2 are respectively, 2λi + 1,−2λi − 1,−1[n], 1[n], i =

1, 2, . . . , n and 2λi + 1,−2λi + 1,−1[2n], i = 1, 2, . . . , n. Suppose |λi| ≥ 1
2
. Then we

have

|2λi + 1| =

{
2|λi|+ 1, if λi ≥ 0

2|λi| − 1, if λi < 0
, |2λi − 1| =

{
2|λi| − 1, if λi > 0

2|λi|+ 1, if λi ≤ 0.
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Therefore,

E(SD(G)⊗K2) = 2n+
n∑
i=1

|2λi + 1|+
n∑
i=1

| − 2λi − 1|

= 2n+ 2
n∑
i=1

|2λi + 1| = 2n+ 2

(∑
λi≥0

|2λi + 1|+
∑
λi<0

|2λi + 1|

)

= 2n+ 2

(∑
λi≥0

(|2λi|+ 1) +
∑
λi<0

(|2λi| − 1)

)

= 2n+ 2
n∑
i=1

2|λi|+ 2(γ+ + γ0 − γ−)

= 2n+ 4E(G) + 2γ0.

Also,

E(SD(G⊗K2)) = 2n+
n∑
i=1

|2λi + 1|+
n∑
i=1

|2λi − 1|

= 2n+
∑
λi≥0

|2λi + 1|+
∑
λi<0

|2λi + 1|+
∑
λi>0

|2λi − 1|+
∑
λi≤0

|2λi − 1|

= 2n+
∑
λi≥0

(|2λi|+ 1) +
∑
λi<0

(|2λi| − 1) +
∑
λi>0

(|2λi| − 1) +
∑
λi≤0

(|2λi|+ 1)

= 2n+ 4E(G) + (γ+ + γ0 − γ−) + (γ− + γ0 − γ+)

= 2n+ 4E(G) + 2γ0.

Clearly, these graphs are non A-cospectral.

Theorem 2.4.20 gives sufficient conditions for the existence of nonA-cospectral

equienergetic bipartite graphs on n ∼= 0( mod 4) vertices.

2.5 Hyperenergetic graphs

From Theorem 2.3.1, a graph G with n vertices and m edges satisfies the

upper bound E(G) ≤
√

2mn. This bound depends only on m and n. As among

all n-vertex graphs, the complete graph Kn has maximum number of edges which

is n(n−1)
2

. This motivated Gutman to conjecture that among all n-vertex graphs,
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the complete graph Kn has maximum energy which is equal to 2(n − 1). Later

Godsil [58] in 1980’s proved that there exist graphs of order n with energy greater

than 2(n− 1). This motivated the following definition.

Definition 2.5.1. Hyperenergetic graph. A graph G of order n is said to be

hyperenergetic if E(G) > 2(n− 1).

Gutman et al. [76] proved that no Hückel graph (molecular graph) is hyper-

energetic. Pirzada [116] proved that Frutch graph is not hyperenergetic. Pani-

grahi and Mohapatra [114] proved that all primitive strongly regular graphs ex-

cept SRG(5, 2, 0, 1), SRG(9, 4, 1, 2), SRG(10, 3, 0, 1) and SRG(16, 5, 0, 2) are hy-

perenergetic. Balakrishnan posed an open problem in [12] that Kn − H is non-

hyperenergetic for n ≥ 4, where H is a Hamiltonian cycle of Kn. Stevanović

and Stanković [133] proved that Kn −H is indeed hyperenergetic, where H is the

Hamiltonian cycle of Kn. In fact, they proved the following stronger result.

Theorem 2.5.2. If Ci(n, k1, k2, . . . , km), n ∈ N, k1 < k2 < · · · < km < n
2
, ki ∈ N

for i = 1, 2, . . . ,m, denotes a circulant graph with vertex set V = {0, 1, · · · , n− 1}
such that a vertex u is adjacent to all vertices of V − {u} except u± ki (mod n),

i = 1, 2, . . . ,m, then for any given k1 < k2 < · · · < km almost all circulant graphs

Ci(n, k1, k2, . . . , km) are hyperenergetic.

Remark 2.5.3. If H is a Hamiltonian cycle of Kn, then Kn −H = Ci(n, 1).

If λi, i = 1, 2, . . . , n, is the A-spectrum of the graph G, then as seen in The-

orem 2.4.17, the A-spectrum of the graph SD(G) is 2λi + 1,−1[n], i = 1, 2, . . . , n.

Therefore, the energy of the graph SD(G) is E(SD(G)) = n +
n∑
i=1

|2λi + 1| >

2(2n− 1) = E(K2n) if
n∑
i=1

|2λi + 1| > 3n− 2 = n + 2(n− 1) = n + E(Kn). Thus,

we have the following observation.

Theorem 2.5.4. Let G be a graph with |λi| ≥ 1
2
, for all non-zero eigenvalues.

Then the graph SD(G) is hyperenergetic if E(G) > n + γ− − 1, where γ− is the

number of negative eigenvalues of G.
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Proof. Let γ+, γ− and γ0 be the number of positive, number of negative and

number of zero eigenvalues of the graph G. Assume that |λi| ≥ 1
2
, for all non-zero

eigenvalues of G. Then we have

|2λi + 1| =

{
2|λi|+ 1, if λi ≥ 0

2|λi| − 1, if λi < 0.

Therefore, by Theorem 2.4.17, we have

E(SD(G)) = n+
n∑
i=1

|2λi + 1|

= n+

(∑
λi≥0

|2λi + 1|+
∑
λi<0

|2λi + 1|

)

= n+

(∑
λi≥0

(|2λi|+ 1) +
∑
λi<0

(|2λi| − 1)

)
= n+ 2E(G) + γ+ + γ0 − γ−
= 2n+ 2E(G)− γ−, as γ+ + γ0 + γ− = n.

For if, SD(G) is hyperenergetic, then E(SD(G)) > E(K2n) = 2(2n − 1) implies

2n+2E(G)−γ− > 4n−2, which gives E(G) > n+γ−−1. This proves the result.

Theorem 2.5.4 gives a sufficient condition for the construction of a hyperen-

ergetic graph from any given graph G of order n.

Theorem 2.5.5. Let G be a graph with |λi| ≥ 1, for all non-zero eigenvalues.

Then the graph G∗ is hyperenergetic if E(G) > n+2γ−−1, where γ− is the number

of negative eigenvalues of G.

Proof. Let γ+, γ− and γ0 be the number of positive, number of negative and

number of zero eigenvalues of the graph G. Assume that |λi| ≥ 1, for all non-zero

eigenvalues of G. Then we have

|λi + 1| =

{
|λi|+ 1, if λi ≥ 0

|λi| − 1, if λi < 0.

Now using Lemma 2.4.10 and proceeding similarly as in Theorem 2.4.15, the result

follows.
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Since extended double cover G∗ of the graph G is always bipartite, Theorem

2.5.5 gives a sufficient condition for the construction of a hyperenergetic bipartite

graph from any given graph G of order n.

As an immediate consequence of Theorem 2.3.8, we have the following obser-

vation gives a sufficient condition for the graph KKj
n to be hypergenectic.

Corollary 2.5.6. For k ∈ N−{1, 2}, (k−1)2 < j ≤ k2 and n ≥ ((k−1)2 + 2)2−
(k − 1)2, the graph KKj

n is hyperenergetic.

Proof. Since k ≥ 3, we have by Theorem 2.3.8, E(KKj
n) > 4n− 8 + 2k ≥ 4n−

2 = E(K2n).
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CHAPTER 3

On the Laplacian energy of graphs

In this chapter, we study the Laplacian energy of graphs and present some

well known results on Laplacian energy of graphs. We obtain lower and upper

bounds for the Laplacian energy of graphs in terms of the number of vertices n,

the number of edges m, maximum degree ∆ and clique number ω. We consider

double graphs, extended double graphs and strong double graphs of a graph and

with the help of these graphs, we construct some new families of non L-cospectral

L-equienergetic graphs and bipartite graphs on n ≡ 0 (mod 2).

3.1 Introduction

Let G be a graph with n vertices v1, v2, . . . , vn and m edges and let di =

d(vi), i = 1, 2, . . . , n, be the degree of the vertices of G. The (combinatorial)

Laplacian matrix of G is the n× n matrix L = L(G) = (lij), where

lij =


−1, if there is an edge from vi to vj,

di, if i = j

0, otherwise.

Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex degrees and

A(G) be the adjacency matrix of G. It is clear from the definition of Laplacian

matrix that L(G) = D(G)−A(G). The matrix L(G) is sometimes called the Kirch-

hoff matrix of G due to its role in the well known Matrix Tree Theorem (Theorem

3.1.1), which is usually attributed to Kirchhoff. Another name, the matrix of ad-

mittance, comes from the theory of electrical networks (admittance=conductivity).

For our purpose, we call it the Laplacian matrix of G.

Another way of defining Laplacian matrix is as follows. Orient arbitrarily

the edges of a given graph G. That is, for each e ∈ E (G), choose one of its ends

as the initial vertex, and name the other end the terminal vertex. The oriented

incidence matrix of G with respect to the given orientation is the n ×m matrix
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C = C(G) = (cij), where

cij =


+1, if jth edge is incident to ith vertex,

−1, if jth edge is incident from ith vertex,

0, otherwise.

It is well known [28] that C(G)Ct(G) = L(G). Therefore, if we let µ be any

eigenvalue of L(G) and x a corresponding eigenvector, we have:

µ||x||2 =< µx, x >=< L(G)x, x >=< C(G)Ct(G)x, x >

=< Ct(G)x,Ct(G)x >= ||Ct(G)x||2 ≥ 0,

where <,> is the standard inner product. This shows that L(G) is positive semi-

definite. Furthermore, as the row sums and column sums of L(G) are all zero,

therefore 0 is an eigenvalue of L(G) with all ones vector as corresponding eigen-

vector. Thus, it follows that L(G) is a real symmetric positive semi-definite with

smallest eigenvalue 0 and thus the eigenvalues of L(G) are real and non-negative.

The characteristic polynomial det(xI−L(G)) = |xI−L(G)| of the Laplacian

matrix L(G) of G is called the Laplacian characteristic polynomial of G and is

denoted by ψ(G, x). The eigenvalues of L(G) are called the Laplacian eigenvalues

(L-eigenvalues) of G. The set of distinct L-eigenvalues of G together with their

multiplicities is called the L-spectrum of G. If G has k distinct L-eigenvalues

µ1, µ2, . . . , µk with respective multiplicities m1,m2, . . . ,mk, then we write the L-

spectrum of G as SpecL(G) = {µ[m1]
1 , µ

[m2]
2 , . . . , µ

[mk]
k }.

In 1847, Kirchhoff [80] proved a result that related the Laplacian matrix of

a connected graph G with the number of spanning trees of G, which is popularly

known as Kirchhoff’s matrix tree theorem.

Theorem 3.1.1. Let G be a connected graph on n vertices. Then all cofactors of

L(G) are equal and the common value is the number of spanning trees in G.

Since then several authors from different disciplines have enriched the sub-

ject. Among the studies of different properties and uses of Laplacian matrices,

the study of Laplacian spectrum and its relation with the structural properties of

graphs has been one of the most attracting features of the subject.
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To know some interesting facts about Laplacian matrix and its eigenvalues,

we refer the reader to the survey articles [105, 106, 108]. Let 0 = µn ≤ µn−1 ≤
· · · ≤ µ2 ≤ µ1 be the eigenvalues of L(G), which are enumerated in non-decreasing

order and repeated according to multiplicity. Fiedler [44] was the first to notice

that µn−1 = 0 if and only if G is disconnected. More generally, he observed that

the multiplicity of the eigenvalue 0 is the same as the number of connected compo-

nents of G. Viewing µn−1 as an algebraic measure of the connectivity of a graph,

Fiedler termed this eigenvalue as the algebraic connectivity of G. Fiedler also

proved some remarkable results (see [44]) and showed that further information

about the graph structures can be extracted from an eigenvector corresponding to

the algebraic connectivity of a connected graph. After these observations, many

researchers have studied the relationship of this eigenvector with the graph struc-

ture and obtained several interesting results. The eigenvectors corresponding to

algebraic connectivity are now popularly known as Fiedler vectors.

The fundamental result, relating the coefficients of ψ(G, x) with the structure

of the graph G, is the Kel′mans Theorem (this theorem was first communicated by

Kel′mans in 1967 in a booklet entitled Cybernetics in the Service of Communism

published in Moscow and Leningrad, in Russian language.)

Theorem 3.1.2. Let G be a graph of order n with Laplacian characteristic poly-

nomial

ψ(G, x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn.

Then

cn = 0, cj = (−1)j
∑

F∈Fn−j

γ(F ),

for all j = 1, 2, . . . , n− 1, where Fk is the set of all spanning forests of G with k

components and γ(F ) is the product of cardinalities of the components of F .

If τ(G) is the number of spanning trees of the graph G, we have the following

observation from Theorem 3.1.2.
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Corollary 3.1.3. Let G be a graph of order n having τ(G) spanning trees and

Laplacian characteristic polynomial

ψ(G, x) = xn + c1x
n−1 + c2x

n−2 + · · ·+ cn−1x+ cn.

Then

τ(G) =
1

n
|cn−1|.

This gives the relation between the coefficients of the Laplacian characteristic

polynomial with the structure of the graph G.

Using the fact that the coefficients of the characteristic polynomial are sym-

metric functions of the roots and smallest eigenvalue of L(G) is zero, we have the

following observation.

Corollary 3.1.4. Let G be a graph of order n having τ(G) spanning trees and

Laplacian eigenvalues 0 = µn ≤ µn−1 ≤ · · · ≤ µ2 ≤ µ1. Then

τ(G) =
µ1µ2µ3 · · ·µn−1

n
=

1

n

n−1∏
i=1

µi.

From this, it is clear that τ(G) = 0 if µn−1 = 0. Since τ(G) = 0 means

that the graph is disconnected, therefore this observation also makes it clear that

µn−1 > 0 if and only if G is connected.

3.2 Laplacian energy of graphs

Definition 3.2.1. Laplacian energy of a graph. Let G be a graph of order n with

m edges and having Laplacian eigenvalues µ1, µ2, . . . , µn. The Laplacian energy of

G is denoted by LE(G) and is defined as

LE(G) =
n∑
j=1

|µj −
2m

n
|. (3.1)
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This concept was introduced in 2006 by Gutman and Zhou [65]. The idea of

Gutman and Zhou was to conceive a graph energy like quantity that instead of ad-

jacency eigenvalues is defined in terms of Laplacian eigenvalues and that hopefully

would preserve the main features of the original graph energy. The definition of

LE(G) was therefore so chosen that all the properties possessed by graph energy

should be preserved. In fact they were successful, as most of the properties pos-

sessed by E(G) are also possessed by LE(G), but there are some dissimilarities.

In analogy to integral representation for E(G), we have the following integral

representation for LE(G).

Theorem 3.2.2. Let G be a graph with n vertices and let φ(N, x) be the charac-

teristic polynomial of N = L(G)− 2m
n
In. Then

LE(G) =
n∑
j=1

|µj −
2m

n
| = 1

π

∞∫
−∞

(n− ixφ′(N, ix)

φ(N, ix)
)dx,

where µ1, µ2, . . . , µn are the L-eigenvalues of graph G, i =
√
−1 and

∞∫
−∞

F (x)dx

denotes the principle value of the respective integral.

The next result [73] follows from Theorem 3.2.2.

Theorem 3.2.3. If G is a graph of order n, then

LE(G) =
1

π

∞∫
−∞

1

x2
log |xnφ(N,

i

x
)|dx.

The importance of the integral representation for E(G) is that it helps in

determination of extremal graphs with respect to energy from any given class of

graphs without having the information about the A-spectrum. This property is

not possessed by the integral representation for LE(G), as it involves the charac-

teristic polynomial of the matrix L(G)− 2m
n
In and not the matrix L(G).

For an r-regular graph, we have D(G) = rIn and so L(G) = D(G)−A(G) =
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rIn − A(G), that is, L(G) − rIn = −A(G). Therefore, we have the following ob-

servation.

Theorem 3.2.4. If G is an r-regular graph, then

LE(G) = E(G).

This shows that the concept of energy and Laplacian energy of a graph are same

for regular graphs, so Laplacian energy will be of interest mainly for non-regular

graphs.

3.3 Bounds for Laplacian energy

Various lower and upper bounds for the Laplacian energy LE(G) are known,

which give its connection with the different parameters of a graph. Here, we list

some of the well known bounds.

For a graph with n vertices and m edges having vertex degrees di, i =

1, 2, . . . , n, let

M = m+
1

2

n∑
i=1

(
di −

2m

n

)2

.

It is clear that M ≥ m for all graphs G, and that M = m holds if and only if G

is a regular graph.

The following bounds are obtained in the basic paper [65] on Laplacian energy

LE(G), which are analogues to the corresponding bounds on energy E(G).

Theorem 3.3.1. Let G be a graph with n vertices and m edges and let M be

defined above. Then

LE(G) ≤
√

2Mn,

with equality if and only if G is either regular of degree 0 or consists of α copies

of complete graphs of order k and (k − 2)α isolated vertices, α ≥ 1, k ≥ 2.

Theorem 3.3.2. If G is a graph with n vertices and m edges having no isolated

vertex, then

2
√
M ≤ LE(G) ≤ 2M,
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with equality on the left if and only if G is a complete bipartite graph Kn
2
,n
2

and

equality on the right if and only if G is a matching of m = n
2

edges.

Since M ≥ m, from Theorem 3.3.2, it follows that LE(G) ≥ 2
√
M ≥ 2

√
m.

Theorem 3.3.3. If G is a graph on n vertices and m edges having p ≥ 1 compo-

nents, then

LE(G) ≤ 2m

n
p+

√
(n− p)

[
2M − p(2m

n
)2

]
. (3.2)

For p = 1, equality in (3.2) is attained if and only if G is either n
2
K2 or Kn or a

non-complete connected strongly regular graph with two non trivial L-eigenvalues

both with absolute value
√

(2m−( 2m
n

)2)

(n−1)
. For p = n, G ∼= Kn and equality holds triv-

ially. For any p, 2 ≤ p ≤ n − 1, equality in (3.2) holds for the graphs consisting

of α ≥ 1 copies of complete graphs on k vertices and (k − 2)α, k ≥ 2 isolated

vertices, provided (k − 1)α = p.

Using the fact that arithmetic mean is greater than or equal to the geometric

mean, it can be seen that the upper bound given by Theorem 3.3.3 improves the

upper bound given by Theorem 3.3.1.

The following [156] is the bound for Laplacian energy LE(G) as a function of

the determinant of the matrix N = L(G)− 2m
n
In.

Theorem 3.3.4. Let G be a graph with n vertices and m edges and let N be the

matrix defined above, then√
2M + n(n− 1)|det(N)| 2n ≤ LE(G) ≤

√
2M(n− 1) + n|det(N)| 2n .

The following [128] is an upper bound for Laplacian energy LE(G) in terms

of the number of vertices n and the number of edges m.
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Theorem 3.3.5. Let G be a graph of order n with m > 0 edges. Then

LE(G) ≤ 4m

(
1− 1

n

)
,

with equality if and only if G ∼= K2 ∪Kn−2.

The following [154] is a lower bound for Laplacian energy LE(G) in terms of

the number of vertices n and the number of edges m.

Theorem 3.3.6. Let G be a graph with n ≥ 3 vertices. Then

LE(G) ≥ 4m

n
,

with equality if and only if G is a regular complete k-partite graph, for 1 ≤ k ≤ n.

Let σ, 1 ≤ σ ≤ n − 1, be the number of Laplacian eigenvalues greater than

or equal to average vertex degree d = 2m
n

and let

Sσ(G) =
σ∑
j=1

µj.

Using equation (3.1) and the fact that
∑n

j=1 µj = 2m, we have

LE(G) =
n∑
j=1

|µj −
2m

n
| =

σ∑
j=1

(
µj −

2m

n

)
+

n∑
j=σ+1

(
2m

n
− µj

)

=
σ∑
j=1

µj −
2m

n
σ +

2m

n
(n− σ)−

n∑
j=σ+1

µj

= 2Sσ(G)− 4mσ

n
.

This shows that,

LE(G) = 2Sσ(G)− 4mσ

n
. (3.3)

In fact in [35], it can be seen that

LE(G) = 2 max
1≤j≤n−1

{Sj(G)− 2mj

n
}. (3.4)
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Das et al. [35] obtained the following lower bound for Laplacian energy LE(G)

in terms of the number of vertices n, the number of edges m and maximum degree

∆.

Theorem 3.3.7. Let G be a graph with n vertices and m edges having maximum

degree ∆, then

LE(G) ≥ 2

(
∆ + 1− 2m

n

)
, (3.5)

with equality if and only if G ∼= K1,n−1.

In [35], it is shown that the lower bound (3.5) is better than the lower bound

given by Theorem 3.3.2, for a tree T , (T 6= Pn) of order n. Also the lower bound

(3.5) is better than the lower bound given by Theorem 3.3.6, for a tree T of order

n with maximum degree ∆ ≥ n√
2

+ 1.

Remark 3.3.8. For a connected graph having vertex degrees dn ≤ dn−1 ≤ · · · ≤
d1, Grone [61] proved that

Sk(G) =
k∑
j=1

µj ≥
k∑
j=1

dj + 1,

for all k, 1 ≤ k ≤ n− 1. Therefore, one can always improve the lower bound (3.5)

as follows,

LE(G) = 2Sσ(G)− 4mσ

n
≥ 2

(
σ∑
j=1

dj + 1− 2mσ

n

)
.

The following upper bound for Laplacian energy LE(G) is in terms of the

number of vertices, the number of edges m and maximum degree ∆, and can be

found in [35].

Theorem 3.3.9. Let G be a graph with n vertices and m ≥ n
2

edges having

maximum degree ∆. Then

LE(G) ≤ 2

(
2m−∆− 2m

n
+ 1

)
, (3.6)
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with equality if and only if G ∼= K1,n−1 or G ∼= K1,∆ ∪Kn−∆−1 (n
2
≤ ∆ ≤ n− 2).

In [35] it is shown that the upper bound (3.6) is better than the upper bound

(3.2) for trees with maximum degree ∆ ≥ n
2
, n ≥ 37.

The following result gives a lower bound for the largest Laplacian eigenvalue

µ1 in terms of maximum degree ∆ and an upper bound in terms of number of

vertices n of the graph G [28, 44, 62].

Lemma 3.3.10. Let G be a connected graph of order n and let ∆ be its maximum

degree. Then ∆ + 1 ≤ µ1 ≤ n. Equality holds on the left if ∆ = n− 1 and on the

right if and only if G is the join of two graphs.

If G+e is the graph obtained from G by adding the edge e, then the Laplacian

eigenvalues of G+ e and G interlace as can be seen in [21].

Lemma 3.3.11. Let G′ = G + e be the graph obtained from G by adding a new

edge e. Then the Laplacian eigenvalues of G interlace the Laplacian eigenvalues

of G′, that is,

µ1(G′) ≥ µ1(G) ≤ µ2(G′) ≥ µ2(G) ≥ · · · ≥ µn(G′) ≥ µn(G) = 0.

Let Kω be a complete graph with ω vertices. From Kω, we construct a new

graph, denoted by KSn,ω, by adding n−ω pendant edges to any one vertex of Kω.

The graph KSn,ω is of order n and with clique number ω. Also from Kω, we con-

struct another graph, denoted by Kin,ω, by attaching a path of length n−ω−1 to

any one vertex of Kω. We note that KSn,n−1 = Kin,n−1 and KSn,n = Kin,n = Kn.

We now obtain a lower bound for the Laplacian energy LE(G) in terms of

the number of vertices n, the number of edges m, maximum degree ∆ and clique

number ω of the graph G.

Theorem 3.3.12. Let G be a connected graph of order n ≥ 2 with m edges,
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maximum degree ∆ and clique number ω. Then

LE(G) ≥ 2

(
∆ + 1 + ω2 − (

2m

n
+ 2)ω +

2m

n

)
, (3.7)

with equality if and only if G ∼= KSn,ω or G ∼= Kn.

Proof. Let 0 = µn ≤ µn−1 ≤ · · · ≤ µ2 ≤ µ1 be the Laplacian eigenvalues of G

and let σ, (1 ≤ σ ≤ n − 1) be the number of Laplacian eigenvalues greater than

or equal to average degree d = 2m
n

. Using equation (3.4), we have

LE(G) = 2Sσ(G)− 4mσ

n
= max

1≤i≤n−1

{
2Si(G)− 4mi

n

}
≥ 2

(
Sω−1(G)− 2m

n
(ω − 1)

)
,

as 2 ≤ ω ≤ n, with equality if and only if σ = ω − 1.

In order to obtain inequality (3.7), we need to show that Sω−1(G) ≥ ∆ + 1 +

ω(ω − 2). Since clique number of G is ω, therefore Kω is a subgraph of G.

If ω = n, then G = Kn and σ = n− 1 = ω − 1 with Sω−1(G) = Sn−1(Kn) =

n(n− 1) = n + n(n− 2) = ∆ + 1 + ω(ω − 2). Therefore, equality occurs in (3.7)

for this case.

So assume that ω ≤ n − 1. Let v1 be the vertex of maximum degree in G,

that is deg(v1) = ∆ and NG(v1) be the set of neighbours of v1 in G. Since G is

connected, so ∆ ≥ ω. Therefore, we have two possibilities (1) ∆ = n − 1 or (2)

∆ ≤ n− 2.

Case (1). Let ∆ = n− 1. Then KSn,ω is the subgraph of G, that is, KSn,ω ⊆ G.

The Laplacian spectrum of KSn,ω is {n, ω[ω−2], 1[n−ω], 0}. If G ∼= KSn,ω, then

since n = µ1(KSn,ω) = ∆ + 1 and σ = ω − 1 in KSn,ω, equality occurs in (3.7).

If G 6= KSn,ω, then by Lemmas 3.3.10 and 3.3.11, we have µ1(G) ≥ ∆ + 1 and

µi(G) ≥ µi(KSn,ω) = ω, for all i = 2, 3, . . . , ω − 1, where at least one inequality is

strict.

Therefore,

Sω−1(G) =
ω−1∑
i=1

µi(G) = µ1(G) +
ω−1∑
i=2

µi(G)

> ∆ + 1 +
ω−1∑
i=2

µi(KSn,ω) = ∆ + 1 + ω(ω − 2).
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Thus the result is true in this case.

Case (2). Let ∆ ≤ n−2. Since ω ≤ ∆ ≤ n−2, we have two subcases to consider.

Either (2.1) ∆ = ω or (2.2) ∆ ≥ ω + 1.

Subcase (2.1). If ∆ = ω, then we can assume that the maximum degree vertex

v1 is in V (Kω) in G. In this case Kiω+1,ω is a subgraph of G. The Laplacian

spectrum of Kiω+1,ω is {ω + 1, ω[ω−2], 1, 0}. So, by Lemmas 3.3.10 and 3.3.11, we

have µ1(G) ≥ ∆ + 1, and µi(G) ≥ µi(Kiω+1,ω) = ω, for all i = 2, 3, . . . , ω − 1,

where at least one inequality is strict.

Therefore,

Sω−1(G) =
ω−1∑
i=1

µi(G) = µ1(G) +
ω−1∑
i=2

µi(G)

> ∆ + 1 +
ω−1∑
i=2

µi(Kiω+1,ω) = ∆ + 1 + ω(ω − 2).

Thus, the result in true in this case as well.

Subcase (2.2). Let ω + 1 ≤ ∆ ≤ n − 2. Assume S = V (Kω) = {u1, u2, . . . , uω}
is the vertex set of Kω in G. We have either v1 ∈ S or v1 /∈ S.

If v1 ∈ S, then KS∆+1,ω is a subgraph of G. The Laplacian spectrum of

KS∆+1,ω is {∆ + 1, ω[ω−2], 1[∆−ω+1]}. Again by Lemmas 3.3.10 and 3.3.11, we have

µ1(G) ≥ ∆ + 1, and µi(G) ≥ µi(KS∆+1,ω) = ω, for all i = 2, 3, . . . , ω − 1, where

at least one inequality is strict.

Therefore,

Sω−1(G) =
ω−1∑
i=1

µi(G) = µ1(G) +
ω−1∑
i=2

µi(G)

> ∆ + 1 +
ω−1∑
i=2

µi(KS∆+1,ω) = ∆ + 1 + ω(ω − 2).

Thus, the result is true in this case as well.

Now, let v1 /∈ S. In this case, suppose that S ∩ NG(v1) = {u1, u2, . . . , up}.
Since ω is the clique number of the connected graph G, we have 0 ≤ p ≤ ω − 1

(if p = ω, then the clique number of G is ω + 1, a contradiction). Since ω + 1 ≤
∆ ≤ n − 2, we have ∆ − p − 1 ≥ ∆ − ω ≥ 1 and G is connected. In this case

Kiω+1,ω ∪K1,∆−p is a subgraph of G. The Laplacian spectrum of Kiω+1,ω ∪K1,∆−p
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is {ω + 1, ω[ω−2],∆ − p + 1, 1[∆−p], 0, 0}. Proceeding similarly as above, the result

follows in this case as well. It is clear from the above discussion that the equality

holds if G ∼= Kn or G ∼= KSn,ω.

Conversely, if G is isomorphic to one of the graphs Kn or KSn,ω, then it is

easy to see that equality holds in (3.7).

Remark 3.3.13. If ω = 2, (that is, for bipartite graphs G), the lower bound

(3.7) is same as the lower bound (3.5). For ω ≥ 3, we note that the lower bound

(3.7) is better than the lower bound (3.5), if ω ≥ 2m
n

. This is true, since

2

(
∆ + 1 + ω2 − (

2m

n
+ 2)ω +

2m

n

)
≥ 2

(
∆ + 1− 2m

n

)
,

implies that ω ≥ 2m

n
. In particular, if ω = 3 and G is unicyclic graph or bicyclic

graph or tricyclic graph, then 3 = ω ≥ 2m

n
, for n ≥ 4.

Remark 3.3.14. For ω = 2, the lower bounds (3.7) and (3.5) are same. For

ω ≥ 3, we observe that the lower bound (3.7) is better than the lower bound given

in Theorem 3.3.6, if ω ≥ ∆− 1, ∆ ≥ 8. This can be seen as follows. We have

2

(
∆ + 1 + ω2 − (

2m

n
+ 2)ω +

2m

n

)
≥ 2

(
2m

n

)
which implies that

2m

n
≤ ω +

∆ + 1

ω − 2
. Since

2m

n
≤ ∆, therefore ∆ ≤ ω +

∆ + 1

ω − 2
,

which implies that ω2 − ω(∆ + 2) + 3∆ + 1 ≥ 0, further implies that ω ≥
∆ + 2 +

√
∆2 − 8∆

2
.

Clearly,

∆− 1 =
∆ + 2 +

√
(∆− 4)2

2
≥ ∆ + 2 +

√
∆2 − 8∆

2
,

and hence the observation.

In the graph G, let di be the degree of the vertex vi, for all i = 1, 2, . . . , n.

The first Zagreb index M1(G) is defined as

M1(G) =
n∑
i=1

d2
i .
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and was introduced in [68] and elaborated in [67]. The main properties of M1(G)

were summarized in [112]. Some recent results on the first Zagreb index are re-

ported in [30].

Remark 3.3.15. For ω = 2, we note that the lower bound (3.7) and (3.5) are

same. For ω ≥ 3, we observe that the lower bound (3.7) is better than the lower

bound given by Theorem 3.3.2, for almost all connected graphs. This can be seen

as follows. We have

2

(
∆ + 1 + ω2 − (

2m

n
+ 2)ω +

2m

n

)
≥ 2

√√√√m+
1

2

n∑
i=1

(
di −

2m

n

)2

=⇒
(

∆ + 1 + ω2 − (
2m

n
+ 2)ω +

2m

n

)2

≥ m+
1

2

(
n∑
i=1

d2
i +

4m2

n
− 8m2

)

=⇒ M1(G) ≤ 2

(
∆ + 1 + ω(ω − 2)− (ω − 1)

2m

n

)2

+ 2m(8m− 4m

n
− 1).

Since the clique number of G is ω, it follows that G is Kω+1-free. Therefore

from [153],

M1(G) ≤ 2ω − 2

ω
mn,

and we have

(1− 1

ω
)2mn ≤ 2

(
∆ + 1 + ω(ω − 2)− (ω − 1)

2m

n

)2

+ 2m(8m− 4m

n
− 1),

which gives, n ≤ 8m− 4m
n
− 1, that is, m ≥ n+1

8− 4
n

.

Since G is connected, m ≥ n − 1, and so n ≥ n+1
8− 4

n

+ 1, which is true for all

n ≥ 2. This shows that the lower bound (3.7) is better than the lower bound given

by Theorem 3.3.2, for almost all connected graphs.

For k, 1 ≤ k ≤ n, let Sk(G) =
∑k

i=1 µi, be the sum of k largest Laplacian

eigenvalues of the graph G. Brouwer [21] conjectured that

Sk(G) ≤ m+
k(k + 1)

2
,

for all 1 ≤ k ≤ n. Haemers et al. [79] showed that the Conjecture is true for all

graphs when k = 2 and is true for trees. Du et al. [39] obtained various upper
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bounds for Sk(G) and proved that the conjecture is also true for unicyclic and

bicyclic graphs. For the progress on this conjecture see [21, 79].

Du et al. [39] obtained the following upper bound for Sk(G) in terms of clique

number ω.

Theorem 3.3.16. Let G be a graph with n vertices and m edges having clique

number ω ≥ 3. Then

Sk(G) ≤ σω + 2m− ω(ω − 1), (3.8)

for 1 ≤ k ≤ ω − 2.

The following observation due to Fulton [50] gives the relation between the

sum of k largest eigenvalues of the sum of two real symmetric matrices and the

sum of the k largest eigenvalues of the individual matrices.

Lemma 3.3.17. Let A and B be two real symmetric matrices of order n. Then

for any 1 ≤ k ≤ n,

k∑
i=1

λi(A+B) ≤
k∑
i=1

λi(A) +
k∑
i=1

λi(B),

where λi(X) is the ith eigenvalue of X.

First we obtain an upper bound for Sσ(G) in terms of the number of edges

m, maximum degree ∆ and the clique number ω.

Theorem 3.3.18. Let G be a connected graph of order n ≥ 2 with m edges,

maximum degree ∆ and the clique number ω. Let σ, (1 ≤ σ ≤ n − 1) be the

number of Laplacian eigenvalues greater than or equal to 2m
n

. Then

Sσ(G) ≤ (σ − 1)ω + 2m− (∆ + 1)− ω2 + 3ω, (3.9)

with equality if and only if G ∼= KSn,ω or G ∼= Kn.

Proof. As the clique number of G is ω, with 2 ≤ ω ≤ n, we have two possibilities,

case (1) ω = n, or case (2) ω ≤ n− 1.
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Case (1). If ω = n, then G ∼= Kn and so, for 1 ≤ σ ≤ n− 1, we have

Sσ(G) = Sσ(Kn) = σn = (σ − 1)n+ n

= (σ − 1)n+ n(n− 1)− n− n2 + 3n

= (σ − 1)ω + 2m− (∆ + 1)− ω2 + 3ω.

As 2m = n(n− 1), ∆ = n− 1 and ω = n, therefore equality occurs in (3.9) in this

case.

Case (2). Now assume that ω ≤ n− 1. Let H be a subgraph of G, having clique

number ω. Let |E(G)| = m(G) and |E(H)| = m(H) respectively, be the number

of edges in G and H. Since ω ≤ n− 1, we consider two possibilities, subcase (2.1)

∆ = n− 1, or subcase (2.2) ∆ ≤ n− 2.

Subcase (2.1). Let ∆ = n − 1. Then H = KSn,ω. The Laplacian spectrum of

KSn,ω is {n, ω[ω−2], 1[n−ω], 0}. Therefore, for 1 ≤ σ ≤ n− 1, by Lemma 3.3.17, we

have

Sσ(G) =
σ∑
i=1

µi(G) ≤
σ∑
i=1

µi(H) +
σ∑
i=1

µi(G \H)

= Sσ(KSn,ω) + Sσ(G \KSn,ω)

≤ n+ (σ − 1)ω + 2(m(G)−m(KSn,ω))

= (σ − 1)ω + 2m− (∆ + 1)− ω2 + 3ω,

as Sσ(G\KSn,ω) ≤ Sn−1(G\KSn,ω) = 2m(G)− (ω2− 3ω+ 2n) and 2m(KSn,ω) =

ω2 − 3ω + 2n. Clearly, the equality occurs if and only if σ − 1 = ω − 2 and

2m = ω2 − 3ω + 2n, that is, if and only if G ∼= KSn,ω.

Subcase (2.2). Assume that ∆ ≤ n − 2. Since G is connected, we have two

possibilities (2.2.1) ω = ∆, or (2.2.2) ω + 1 ≤ ∆ ≤ n− 2.

Subcase (2.2.1). Let ω = ∆. Then H = Kiω+1,ω. The Laplacian spectrum of

Kiω+1,ω is {ω+ 1, ω[ω−2], 1, 0}. Therefore, for 1 ≤ σ ≤ n− 1, by Lemma 3.3.17, we
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have

Sσ(G) =
σ∑
i=1

µi(G) ≤
σ∑
i=1

µi(H) +
σ∑
i=1

µi(G \H)

= Sσ(Kiω+1,ω) + Sσ(G \Kiω,ω)

≤ ω + 1 + (σ − 1)ω + 2(m(G)−m(Kiω+1,ω))

= (σ − 1)ω + 2m(G) + ω + 1− (ω2 − ω + 2)

= (σ − 1)ω + 2m− (ω + 1)− ω2 + 3ω

= (σ − 1)ω + 2m− (∆ + 1)− ω2 + 3ω,

as m(Kiω+1,ω) = ω2−ω+2
2

. Since G is connected, equality does not occur in this

case. For, if equality occurs, then G ∼= Kiω+1,ω and so n = |G| = |Kiω+1,ω| =

ω + 1 ≤ n− 1 < n, a contradiction.

Subcase (2.2.2). Now, assume that ω + 1 ≤ ∆ ≤ n − 2. Let v1 be the vertex

of maximum degree in G and let NG(v1) be the neighbour set of v1 in G. Let

S = V (Kω) = {u1, u2, . . . , uω} be the vertex set of Kω in G. We have v1 ∈ S or

v1 /∈ S.

If v1 ∈ S, then H = KS∆+1,ω is a subgraph of G. The Laplacian spectrum

of KS∆+1,ω is {∆ + 1, ω[ω−2], 1[∆−ω+1]}. Therefore, for 1 ≤ σ ≤ n − 1, by Lemma

3.3.17, we have

Sσ(G) =
σ∑
i=1

µi(G) ≤
σ∑
i=1

µi(H) +
σ∑
i=1

µi(G \H)

= Sσ(KS∆+1,ω) + Sσ(G \KS∆+1,ω)

≤ ∆ + 1 + (σ − 1)ω + 2(m(G)−m(KS∆+1,ω))

= (σ − 1)ω + 2m− (∆ + 1)− ω2 + 3ω,

as m(KS∆+1,ω) = ω2−3ω+2(∆+1)
2

. It is easy to see that equality does not occur in

this case.

Now, let v1 /∈ S. In this case, suppose that S ∩ NG(v1) = {u1, u2, . . . , up}.
Since ω is the clique number of G, we have 0 ≤ p ≤ ω − 1 (if p = ω, then clique

number of G is ω+1, a contradiction). Since ω+1 ≤ ∆ ≤ n−2, we have ∆−p−1 ≥
∆−ω ≥ 1 andG is connected. In this caseH = Kiω+1,ω∪K1,∆−p is a subgraph ofG.

The Laplacian spectrum of Kiω+1,ω∪K1,∆−p is {ω+1, ω[ω−2],∆−p+1, 1[∆−p], 0, 0}.
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Therefore, for 1 ≤ σ ≤ n− 1, by Lemma 3.3.17, we have

Sσ(G) =
σ∑
i=1

µi(G) ≤
σ∑
i=1

µi(H) +
σ∑
i=1

µi(G \H)

= Sσ(Kiω+1,ω ∪K1,∆−p) + Sσ(G \Kiω+1,ω ∪K1,∆−p)

≤ ω + 1 + (σ − 1)ω + 2(m(G)−m(Kiω+1,ω ∪K1,∆−p))

= ω + 1 + (σ − 1)ω + 2m− (ω2 − ω + 2(∆ + 1− p)
≤ ∆ + 1 + (σ − 1)ω + 2m− (ω2 − 3ω + 2(∆ + 1))

= (σ − 1)ω + 2m− (∆ + 1)− ω2 + 3ω,

as 2m(Kiω+1,ω ∪K1,∆−p) = ω2 − ω + 2(∆ + 1− p). It is easy to see that equality

does not occur in this case as well.

It is clear from the above discussion that the equality holds if G ∼= Kn or

G ∼= KSn,ω.

Conversely, if G is isomorphic to one of the graphs Kn or KSn,ω, then it is

easy to see that equality holds in (3.9).

Remark 3.3.19. We note that the upper bound (3.9) is better than the upper

bound (3.8) for ∆ ≥ ω − 1.

Now, we obtain a stronger upper bound for LE(G) in terms of the number

of vertices n, the number of edges m, maximum degree ∆ and the clique number ω.

Theorem 3.3.20. Let G 6= Kn be a connected graph of order n ≥ 2 with m edges,

maximum degree ∆ and clique number ω. If ω ≥ d = 2m
n

, then

LE(G) ≤ 2
(
ω(n− ω) + 2m− (∆ + 1)− (n− 2)d

)
, (3.10)

with equality if only if G ∼= KSn,n−1.

Proof. Let 0 = µn ≤ µn−1 ≤ · · · ≤ µ2 ≤ µ1 be the Laplacian eigenvalues of

G 6= Kn and let σ, (1 ≤ σ ≤ n−2) be the number of Laplacian eigenvalues greater

than or equal to the average degree d = 2m
n

. Since ω ≥ d, by Theorem 3.3.19, we
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have

LE(G) = 2
(
Sσ(G)− 2σd

)
≤ 2

(
ω(σ − 1) + 2m− (∆ + 1)− ω2 + 3ω − 2σd

)
= 2

(
σ(ω − d) + 2m− (∆ + 1)− ω2 + 2ω

)
≤ 2

(
(n− 2)(ω − d) + 2m− (∆ + 1)− ω2 + 2ω

)
, as σ ≤ n− 2

= 2
(
ω(n− ω) + 2m− (∆ + 1)− d(n− 2)

)
.

Equality occurs in (3.10) if and only if equality occurs in (3.9) and σ = n−2, that

is, if and only if G ∼= KSn,n−1.

Conversely if G ∼= KSn,n−1, then it is easy to see that equality occurs in

(3.10).

Remark 3.3.21. For a connected graph G 6= Kn of order n ≥ 2 having m edges,

maximum degree ∆ and clique number ω ≥ d, the upper bound (3.10) is better

than the upper bound (3.6) for all d(ω − 3) ≥ 2, ω ≥ 4. This can be seen as

follows. We have

2
(
ω(n− ω) + 2m− (∆ + 1)− d(n− 2)

)
≤ 2

(
2m−∆ + 1− d

)
,

that is, ω(n − ω) − 1 ≤ (n − 3)d + 1, that is, d(n − ω) − 1 ≤ (n − 3)d + 1, that

is, d(ω− 3) ≥ 2. This shows that the upper bound (3.10) is better than the upper

bound (3.5) for d(ω − 3) ≥ 2, ω ≥ 4. In fact, it can be seen that, if d = ω, then

the upper bound (3.10) is better than the upper bound (3.5), for all ω ≥ 2.

Remark 3.3.22. If G is a tree with maximum degree ∆ ≥ n
2

and n ≥ 38. Then,

using ω = 2, m = n− 1, d = 2− 2
n
, it is easy to see that the upper bound (3.10)

is better than the upper bound (3.2). If G is a unicyclic graph having maximum

degree ∆ ≥ n
2
, n ≥ 29 and clique number ω = 2, then the upper bound (3.10) is

better than the upper bound (3.2). This can be verified as follows. We have

d+

√
(n− 1)(2m+M1(G)− 2md− d2

) ≥ 2ω(n−ω) + 4m− 2(∆ + 1)− 2d(n− 2)

2 +
√

(n− 1)(M1(G)− 2n− 4) ≥ 4n− 2∆− 2, as m = n, d = 2, ω = 2

(n− 1)(M1(G)− 2n− 4) ≥ (4n− 2∆− 4)2

(n− 1)(
n2

4
+ n+ 8) ≥ (3n− 4)2, as M1(G) ≥ n2

4
+ n+ 8, ∆ ≥ n

2
,
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which is clearly true for n ≥ 29.

Let Γn,ω be the family of graphs of order n having clique number ω and

σ = ω − 1, (where σ is the number of Laplacian eigenvalues greater than or equal

to d = 2m
n

). The construction of a family of such graphs is given in [140].

The following upper bound can be obtained by proceeding similarly as in

Theorem 3.3.20.

Theorem 3.3.23. Let G ∈ Γn,ω be a connected graph of order n ≥ 2 with m

edges and maximum degree ∆. If ω ≥ d = 2m
n

, then

LE(G) ≤ 2
(
2m+ ω − (∆ + 1)− (ω − 1)d

)
, (3.11)

with equality if only if G ∼= KSn,ω or G ∼= Kn.

Remark 3.3.24. If G ∈ Γn,ω, it is easy to see that the upper bound (3.11) is

better than the upper bound (3.6) for all ω ≥ 2. In fact, for ω = 2 (that is, for

bipartite graphs) the two bounds are same. Also it is easy to see that the upper

bound (3.11) is better than the upper bound (3.10).

By using inequalities (3.5), (3.6), (3.7) and (3.10), we can find the estimates

for the Laplacian energy of trees and unicyclic graphs.

Corollary 3.3.25. If G is a tree on n ≥ 2 vertices having m edges and maximum

degree ∆, then

2∆− 2 +
4

n
≤ LE(G) ≤ 4n− 2∆− 6 +

4

n
,

equality occurs on each side if and only if G ∼= K1,n−1.

Proof. Since G is tree, we have m = n− 1, d = 2− 2
n
, ω = 2. Using inequalities

(3.7) and (3.10), the result follows.

Corollary 3.3.26. If G is a unicyclic graph on n ≥ 2 vertices having m edges

and maximum degree ∆, then

2∆− 2 ≤ LE(G) ≤ 4n− 2∆− 2, if ω = 2

2∆ ≤ LE(G) ≤ 4n− 2∆, if ω = 3.
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For ω = 3, equality occurs on the left hand side if and only if G ∼= KSn,3.

Proof. Since G is unicyclic, we have m = n, d = 2, ω = 2 or 3. Using inequalities

(3.6), (3.7) and (3.10), the result follows.

From this we conclude that, among all the unicyclic connected graphs G with

clique number ω = 3, the graph KSn,3 is the graph with minimal Laplacian energy.

Let G be a connected graph with n ≥ 2 vertices and m edges having clique

number ω. Let σ be the number of Laplacian eigenvalues greater than or equal to

d = 2m
n

. It seems that σ ≥ ω − 1. This is true for ω = 2, follows from the well

known fact that µ1 ≥ ∆ + 1 ≥ d. Also, it is true for ω = n, as in this case G ∼= Kn

and so σ = ω − 1. We note that it is also true for ω = n − 1. If ω = n − 1, then

G contains Kin,n−1 as a spanning subgraph. The Laplacian spectrum of Kin,n−1

is {n, n − 1[n−3], 1, 0}, with average degree d(Kin,n−1) = n − 3 + 4
n
. Now we add

edges to Kin,n−1, with out changing the clique number. Let α be the number of

edges added, then 0 ≤ α ≤ n − 3 and let G∗ be the resulting graph. We have

d(G∗) = n−3+ 2(α+2)
n

. Since n > d(G∗), therefore for n−1 > d(G∗) = n−3+ 2(α+2)
n

implies α < n− 2, which is true. This shows that the assertion is true in this case.

For other values of ω, the problem seems to be difficult. Therefore based on this

observation, we leave problem 3.5.1 for the future work.

3.4 Laplacian equienergetic graphs

Two graphs G1 and G2 of same order are said to be L-cospectral if they have

same L-spectrum and non L-cospectral, otherwise. Just like adjacency matrices,

Laplacian matrices of isomorphic graphs are permutation similar and similar matri-

ces have same spectrum. It follows that isomorphic graphs are always L-cospectral.

However, there are non isomorphic graphs, which are L-cospectral [28].

Analogous to the definition of equienergetic graphs, two graphs G1 and G2 of

same order are said to be Laplacian equienergetic (L-equienergetic) if they have

the same Laplacian energy. L-cospectral graphs are obviously Laplacian equiener-

getic, therefore the problem of Laplacian equienergetic graphs is considered only

for non L-cospectral graphs. Also, since for regular graphs Laplacian energy is
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same as energy, therefore for the study of Laplacian equienergetic graphs, we will

only consider non regular non L-cospectral graphs.

Let dn ≤ dn−1 ≤ · · · ≤ d1 be the degree sequence of the graph G and let

d∗i = |{i : µi ≥ i}|. Then the sequence d∗n ≤ d∗n−1 ≤ · · · ≤ d∗1 is called the conjugate

degree sequence of the graph G. It was conjectured by Grone and Merris [62] that

k∑
j=1

µj ≤
k∑
j=1

d∗j ,

for all k, 1 ≤ k ≤ n, with equality for k = n. This conjecture was recently proved

by Bai [11]. Merris [107] investigated the graphs for which Laplacian spectrum

is same as the conjugate degree sequence. It turns out that the class of graphs

for which the Laplacian spectrum and the conjugate degree sequence coincide is

exactly the class of threshold graphs.

Definition 3.4.1. Threshold graph. A graph G which has no induced subgaph

isomorphic to P4 or C4 or 2K2.

Threshold graphs are a simple class of graphs, which due to their wide appli-

cability, keeps reappearing under various names. A good survey on the properties

of threshold graphs can be seen in [106]. We may represent a threshold graph

on n vertices using a binary sequence (0 = b1, b2 . . . , bn). Here bi, 2 ≤ i ≤ n, is

0, if vertex vi was added as an isolated vertex, and bi is 1, if vi was added as a

dominating vertex. This representation has been called a creation sequence [106].

For convenience, 0 is used as the first character of the string; it represents the first

vertex of the graph. This way, the number of characters 1 in the string, called the

trace of the graph, indicates the number of dominating vertices in its construction

[106]. It is immediate to see from this encoding that two threshold graphs are

isomorphic if and only if they have the same binary sequence.

D. Stevanoić [139] was the first who considered Laplacian equienergetic graphs.

He [139] showed that for each n, there exists a set of n mutually non L-cospectral

connected threshold graphs with equal Laplacian energy and having O(
√
n) ver-

tices. In fact, he proved the following result.
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Theorem 3.4.2. For k ≥ 3, there exists a set of k2 − 4k + 5 L-equienergetic

graphs on 2k vertices.

This large set of graphs with equal Laplacian energy seems to contrast with

the case of trees. Stevanović reports that, up to 20 vertices, there exists no pair

of non L-cospectral trees with equal Laplacian energy. In fact, to the best of our

knowledge, no pair of n vertex non L-cospectral trees with the same Laplacian

energy has been identified so far.

Definition 3.4.3. E-L equienergetic graph. Two graphs G1 and G2 of same or-

der are said to be E-L equienergetic if they are both equienergetic and Laplacian

equienergetic. That is, if E(G1) = E(G2) and LE(G1) = LE(G2).

In 2010, Liu and Liu [101] considered k-iterated double graph of a graph and

proved the following result.

Theorem 3.4.4. There exists a pair of E-L equienergetic graphs of order n, for

all n ≡ 0 (mod 7).

Recently Fritscher et al. [49] introduced a graph operation that affects the

Laplacian spectrum of a particular class of graphs in a way that can be controlled.

Using this operation, they were able to prove the existence of unicyclic Laplacian

equienergetic graphs.

The following result [49] gives the existence of non L-cospectral Laplacian

equienergetic unicyclic graphs.

Theorem 3.4.5. For every k ≥ 2, there is a family of k non L-cospectral unicyclic

graphs with the same Laplacian energy, each with n = 2k2 + 2k + 2 vertices. In

particular, for values of n of this type, there is a family of O(
√
n) non L-cospectral

unicyclic graphs on n vertices with the same Laplacian energy.

Let Gk∗, k ≥ 1, be the k-th iterated extended double graph of the graph G. It

is well known from the definition that Gk∗ is a bipartite graph with n(Gk∗) = 2kn

vertices. The A-spectrum of Gk∗ was considered in [25]. Here we first study the
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L-spectrum of the graph Gk∗. Let Q(G) = D(G) +A(G) be the signless Laplacian

matrix of G and let η(G, x) = |xIn −Q(G)| be the signless Laplacian characteris-

tic polynomial of the graph G. Since the graph Gk∗ is always bipartite for k ≥ 1,

therefore its Laplacian spectrum and signless Laplacian spectrum are same [16, 28].

The following result gives the L-spectrum of the graph G∗ in terms of the

L-spectrum and Q-spectrum of the graph G.

Lemma 3.4.6. Let G be an n vertex graph having Laplacian and signless Lapla-

cian spectrum, respectively as 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and 0 ≤ qn ≤ qn−1 ≤
· · · ≤ q1. Then the Laplacian spectrum of G∗ is µi, qi + 2, i = 1, 2, . . . , n.

Proof. Let A(G) be the adjacency matrix of the graph G. By a suitable rela-

belling of vertices it can be seen that the adjacency matrix A(G∗) of the graph G∗

is

A(G∗) =

(
0 A(G) + In

A(G) + In 0

)
.

Let D(G) and D(G∗) respectively be the degree matrices of the graphs G and

G∗. It is easy to see that

D(G∗) =

(
D(G) + In 0

0 D(G) + In

)
.

Therefore, Laplacian matrix L(G∗) of G∗ is

L(G∗) = D(G∗)− A(G∗) =

(
D(G) + In −(A(G) + In)

−(A(G) + In) D(G) + In

)
.

So, the Laplacian characteristic polynomial of G∗ is

ψ(G∗, λ) = |λI2n − L(G∗)| =

∣∣∣∣∣(λ− 1)In −D(G) A(G) + In

A(G) + In (λ− 1)In −D(G)

∣∣∣∣∣
= |((λ− 1)In −D(G))− (A(G) + In)| |((λ− 1)In −D(G)) + (A(G) + In)|
= |(λ− 2)In − (D(G) + A(G))| |λIn − (D(G)− A(G))|
= η(G, λ− 2)ψ(G, λ).
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From this the result follows.

Using Theorem 3.4.6, induction and the fact that
(
k
r

)
+
(
k
r−1

)
=
(
k+1
r

)
, for all

0 ≤ r ≤ k and
(
s−1

0

)
=
(
s
0

)
=
(
s−1
s−1

)
=
(
s−2
s−2

)
= 1, we obtain the L-spectrum of Gk∗

as function of L-spectrum and Q-spectrum of the graph G.

Theorem 3.4.7. Let G be a graph having L-spectrum µi, 1 ≤ i ≤ n, and Q-

spectrum qi, 1 ≤ i ≤ n. The L-spectrum of the graph Gk∗ is µ
[(k

0)]

i , µi+2[(k−1
1 )], qi+

2[(k−1
0 )], µi+4[(k−1

2 )], qi+4[(k−1
1 )], . . . , µi+2(k−2)[(k−1

k−2)], qi+2(k−2)[(k−1
k−3)], µi+2(k−

1)[(k−1
k−1)], qi + 2(k − 1)[(k−1

k−2)], qi + 2k[(k
k)], where i = 1, 2, . . . , n.

For a bipartite graph G, we have the following consequence of Theorem 3.4.7.

Corollary 3.4.8. If G is a bipartite graph having L-spectrum µi, 1 ≤ i ≤ n,

then the L-spectrum of Gk∗ is µ
[(k

0)]

i , µi + 2[(k
1)], . . . , µi + 2(k − 2)[( k

k−2)], µi + 2(k −
1)[( k

k−1)], µi + 2k[(k
k)], where i = 1, 2, . . . , n.

Proof. Since for a bipartite graph G the Laplacian and the signless Laplacian

spectrum are same, we have µi = qi for all i = 1, 2, . . . , n. Using this and the fact

that
(
t
r

)
+
(

t
r−1

)
=
(
t+1
r

)
, 0 ≤ r ≤ t in Theorem 3.4.7, the result follows.

Since spectrum of a graph G with respect to a given matrix (L(G), Q(G))

gives the valuable information about the structural properties of the graph, the

importance of considering spectrum with respect to different matrices is that the

different matrices give information about different structural properties. It is clear

from Lemma 3.4.6, that the structural information one gains from both the L-

spectrum and Q-spectrum of the graph G can be obtained from the L-spectrum

of the graph G∗. So, instead of considering both the L-spectrum and Q-spectrum

of the graph G, one can study the L-spectrum of the graph G∗. Since G∗ can be

obtained for any graph G, Lemma 3.4.6, gives a connection between the structural

properties described by the L-spectrum and Q-spectrum of the graph G and the

structural properties described by the L-spectrum of a particular graph, namely

G∗.

In [25], three formulae are given for the number of spanning trees of G∗ in
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terms of A-spectrum of the corresponding graph G. We now obtain a formula for

the number of spanning trees in terms of the L and Q-spectrum of G∗.

Theorem 3.4.9. The number of spanning trees τ(G∗) of the graph G∗ is

τ(G∗) =
1

2
τ(G)

n∏
i=1

(qi + 2).

Proof. Let µi and qi, (i = 1, 2, . . . , n), be respectively the L-spectrum and the

Q-spectrum of the graph G. By Lemma 3.4.6, the L-spectrum of the graph G∗ is

µi, qi + 2, (i = 1, 2, . . . , n). By using the fact that the number of spanning trees of

a graph of order n is 1
n

times the product of (n− 1) largest Laplacian eigenvalues

of the graph, we have

τ(G∗) =
1

2n

n−1∏
i=1

µi

n∏
i=1

(qi + 2) =
1

2
τ(G)

n∏
i=1

(qi + 2) =
1

2
τ(G)det(Q(G) + 2In).

In case G is bipartite, µi = qi, so we have

τ(G∗) =
1

2n

n−1∏
i=1

µi

n∏
i=1

(µi + 2) = τ(G)
n−1∏
i=1

(µi + 2).

The following observations are the easy consequences of Theorem 3.4.7. The

first of these observations gives a method to construct families of non isomorphic

L-cospectral graphs from any given pair of non isomorphic L-cospectral graphs

and second gives a way to construct families of Laplacian integral graphs from any

given Laplacian and signless Laplacian integral graph.

Corollary 3.4.10. Two graphs G1 and G2 of same order are L-cospectral if and

only if the graphs Gk∗
1 and Gk∗

2 are L-cospectral.

Corollary 3.4.11. A graph G is Laplacian and signless Laplacian integral if and

only if Gk∗ is Laplacian integral graph.

In [25] it is shown that the graphs G∗ and G × K2 are A-cospectral if and

only if G = K1 or G is bipartite. An analogous result holds for the L-spectrum.
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Theorem 3.4.12. The graphs G∗ and G × K2 are L-cospectral if and only if

G = K1 or G is bipartite.

Proof. If G = K1, the graphs G∗ and G×K2 are both isomorphic to K1, so are

L-cospectral. Now if G 6= K1, assume that G is bipartite. Then µi = qi and so

the L-spectrum of G∗ is µi, µi + 2 for i = 1, 2, . . . , n which by Lemma 2.4.11, is

same as the L-spectrum of G ×K2. Conversely, suppose that the graphs G∗ and

G ×K2 are L-cospectral. Then µi = qi, which is only possible if and only if G is

bipartite. Hence the result.

Since the extended double cover G∗ of the graph G is always bipartite, it

follows by Theorem 3.4.12, the graphs G∗∗ and G∗ × K2 are non isomorphic L-

cospectral and in general the graphs Gs∗ and G(s−1)∗ × K2 are non isomorphic

L-cospectral. Also, it is easy to see that the graphs (G ×K2)∗ and G∗ ×K2 are

non isomorphic L-cospectral and in general the graphs (G ×K2)s∗ and Gs∗ ×K2

are both non isomorphic L-cospectral as well as Q-cospectral. Moreover, if G is

bipartite, then as seen in Theorem 3.4.12, the graphs G∗ and G × K2 are non

isomorphic L-cospectral. Using the same argument, it can be seen that the graphs

G∗∗ and G×K2×K2 are non isomorphic L-cospectral if and only if G is bipartite.

A repeated use of the argument, as used in Theorem 3.4.12, shows the graphs

Gs∗ and (G × K2 ×K2 × · · ·K2︸ ︷︷ ︸
s

) = (G × sK2) = (G × Qs) are non isomorphic

L-cospectral if and only if G is bipartite. From this discussion, it follows that

the graphs Gs∗, G(s−1)∗ ×K2, (G ×K2)(s−1)∗ and G × Qs−1 are mutually non iso-

morphic L-cospectral graphs if and only G is bipartite, where Qn is the hypercube.

Let Dk[G], k ≥ 2, be the k-fold double graph of the graph G. The Laplacian

spectrum of Dk[G] was discussed in [103] and is given by the following result.

Lemma 3.4.13. Let G be a graph with n vertices having vertex degrees di, i =

1, 2, . . . , n and Laplacian spectrum µi, i = 1, 2, . . . , n. Then the Laplacian spectrum

of Dk[G] is kµi, kd
[(k−1)]
i , i = 1, 2, . . . , n.

Let µi, i = 1, 2, . . . , n, be the L-spectrum of the graph G. Then, by Lemma

3.4.6, the L-spectrum of the extended double cover G∗ of the graph G is µi, qi +
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2, (1 ≤ i ≤ n). Also the average vertex degree of G∗ is 2m
n

+ 1. Therefore,

LE(G∗) =
n∑
i=1

|µi −
2m

n
− 1|+

n∑
i=1

|qi −
2m

n
+ 1|.

Using Lemma 3.4.13 and the fact that the average vertex degree of Dk[G] is k 2m
n

,

we have

LE(Dk[G]) =
n∑
i=1

|kµi − k
2m

n
|+ (k − 1)

n∑
i=1

|kdi − k
2m

n
|

= k
n∑
i=1

|µi −
2m

n
|+ k(k − 1)

n∑
i=1

|di −
2m

n
|

= kLE(G) + k(k − 1)
n∑
i=1

|di −
2m

n
|.

From this it is clear that LE(Dk[G]) = kLE(G), if G is regular. Also, since

the k-fold graph of a regular graph is regular, it follows that, if G1 and G2 are

r-regular non L-cospectral L-equienergetic graphs then their k-fold graphs Dk[G1]

and Dk[G2] are always non L-cospectral L-equienergetic.

It can be seen from above that the Laplacian energy of the graph D[G] is

twice the Laplacian energy of G, when G is regular. But this need not be true for

the graph G∗ as is clear from the Laplacian energy of G∗ given above. However

we have the following observation.

Theorem 3.4.14. Let G∗ be the extended double cover of the bipartite graph G.

Then LE(G∗) = 2LE(G) if and only if |µi − d| ≥ 1 for all 1 ≤ i ≤ n, where

d = 2m
n

.

Proof For the necessary part, using Corollary 3.4.8, for k = 1 and the fact

|µi − d+ 1| =

{
|µi − d|+ 1, if µi ≥ d

|µi − d| − 1, if µi < d,

and

|µi − d− 1| =

{
|µi − d| − 1, if µi ≥ d

|µi − d|+ 1, if µi < d.

The result follows by direct calculation.

For the converse, suppose that LE(G∗) = 2LE(G). We will show that |µi−d| ≥ 1
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for all 1 ≤ i ≤ n. We prove this by contradiction. Assume that |µi − d| < 1, for

some i. Putting βi = µi− d, and using the same argument as used in the converse

of Theorem 8 in [19] we arrive at a contradiction.

The join (complete product) of graphs G1 and G2 is a graph G = G1 ∨ G2

with vertex set V (G1) ∪ V (G2) and an edge set consisting of all the edges of G1

and G2 together with the edges joining each vertex of G1 with every vertex of G2.

The L-spectrum of the join of graphs is given by the following result [28].

Lemma 3.4.15. If G1 and G2 are two graphs with order ni, i = 1, 2, having

L-spectrum respectively as µ1, µ2, . . . , µn1−1, µn1 = 0 and σ1, σ2, . . . , σn2−1, σn2 = 0,

then the L-spectrum of G = G1∨G2 is n1 +n2, n1 +σ1, n1 +σ2, . . . , n1 +σn2−1, n2 +

µ1, n2 + µ2, · · · , n2 + µn1−1, 0.

Let Gk∗ be the k-th iterated extended double cover of the graph G. The next

result gives the Laplacian energy of the graph Gk∗ ∨Kn.

Theorem 3.4.16. Let G be a graph of order n with m edges having L and

Q-spectrum respectively as µi and qi for i = 1, 2, . . . , n. For p ≥ 2kn + t and

m ≤ (t−k)n
2

+ t2

2k+1 , t ≥ k + 2, k ≥ 1, we have LE(Gk∗ ∨Kp) = 2kn(k + 2) + (p−
2kn)2m′

n′
+ 2k(2m).

Proof. Let Gk∗ be the k-th iterated extended double cover of the graph G.

By Theorem 3.4.7, the L-spectrum of Gk∗ is µ
[(k

0)]

i , µi + 2[(k−1
1 )], qi + 2[(k−1

0 )], µi +

4[(k−1
2 )], qi+4[(k−1

1 )], . . . , µi+2(k−2)[(k−1
k−2)], qi+2(k−2)[(k−1

k−3)], µi+2(k−1)[(k−1
k−1)], qi+

2(k − 1)[(k−1
k−2)], qi + 2k[(k

k)], where i = 1, 2, . . . , n. So, by Lemma 3.4.15, the L-

spectrum of Gk∗ ∨Kp is 0, p+ 2kn, 2kn[p−1], p+ µ
[(k

0)]

i (i = 1, 2, . . . , n− 1), p+ µi +

2[(k−1
1 )], p+qi+2[(k−1

0 )], p+µi+4[(k−1
2 )], p+qi+4[(k−1

1 )], · · · , p+µi+2(k−2)[(k−1
k−2)], p+

qi + 2(k−2)[(k−1
k−3)], p+µi + 2(k−1)[(k−1

k−1)], p+ qi + 2(k−1)[(k−1
k−2)], p+ qi + 2k[(k

k)], i =

1, 2, . . . , n, with average vertex degree

d′ =
2m′

n′
=

2k+1m+ 2kkn+ 2k+1pn

p+ 2kn
.

59



Therefore,

LE(Gk∗ ∨Kp) =
n−1∑
i=1

|p+ µi − d′ |+
k−1∑
r=1

n∑
i=1

(
k − 1

r

)
|p+ µi + 2r − d′ |

+
k−1∑
r=1

n∑
i=1

(
k − 1

r − 1

)
|p+ qi + 2r − d′|+

n∑
i=1

|p+ µi + 2k − d′ |

+ |p+ 2kn− d′|+ (p− 1)|2kn− d′|+ |0− d′ |.

Now, if p ≥ 2kn + t and m ≤ (t−k)n
2

+ t2

2k+1 , t ≥ k + 2, k ≥ 1, we have for

i = 1, 2, . . . , n and r = 0, 1, . . . , t

p+ µi + 2r − d′ = p+ µi + 2r − 2k+1m+ 2kkn+ 2k+1pn

p+ 2kn

=
p(p− 2kn) + 2r(p+ 2kn) + (p+ 2kn)µi − 2k+1m− 2kkn

p+ 2kn

≥ t(2kn+ t)− t(2kn+ t) + 2kkn− 2kkn

p+ 2kn
= 0.

Similarly, it can be seen that p+ qi + 2r − d′ ≥ 0. So, we have

LE(Gk∗ ∨Kp)

= (n− 1)(p− d′) +
k−1∑
r=1

(
n(p+ 2r − d′) + 2m

)[(k − 1

r

)
+

(
k − 1

r − 1

)]
+ (p+ 2kn− d′) + (p− 1)(d′ − 2kn) +

(
n(p+ 2k − d′) + 2m

)
+ d′ + 2m

= 2k+1n− pn(2k − 1) + (p− n)d′ +
k∑
r=1

(
k

r

)(
n(p+ 2r − d′) + 2m

)
+ 2m

= 2k+1n− pn(2k − 1) + (p− n)d′ + n(2k − 1)(p− d′) + (2k − 1)2m+ 2kkn+ 2m

= 2kn(k + 2) + (p− 2kn)
2m′

n′
+ 2k(2m),

where we have made use of the fact,
[(
k−1
r

)
+
(
k−1
r−1

)]
=
(
k
r

)
and

k∑
r=1

r
(
k
r

)
= k2k−1.

This proves the result.

Clearly the Laplacian energy of the graph Gk∗ ∨Kp depends only on the pa-

rameters p,m, k and n. Therefore all the graphs of the family {Gk∗
i ∨Kp : k, i ∈ N},
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with the same parameters p,m, k and n satisfying the conditions in the hypothesis

of the Theorem 3.4.16 are mutually non L- cospectral L-equienergetic. Also, since

the k-th iterated extended double graph Gk∗ of the graph G is always bipartite

Theorem 3.4.16 gives a two way infinite family of L-equienergetic tripartite graphs

of independence number p.

Let Dk[G] be the k-fold double graph of the graph G, the next result gives the

Laplacian energy of the graph Dk[G] ∨Kp and can be proved similar to Theorem

3.4.16.

Theorem 3.4.17. Let Dk[G] be the k-fold double graph of the graph G. Then

for p ≥ kn + t and m ≤ t(kn+t)
2k2

, t ≥ 2k, k ≥ 2, we have LE(Dk[G] ∨ Kp) =

2kn+ (p− nk)2m′

n′
+ 2mk2.

It is clear from Theorem 3.4.17, that the Laplacian energy of the graph

Dk[G] ∨ Kp depends on the parameters p, k,m and n. Therefore, all the graphs

of the family {Dk[Gi] ∨ Kp : i, k ∈ N} having the same parameters p,m, k

and n, satisfying the conditions of the Theorem 3.4.17, are mutually non L-

cospectral L-equienergetic. In fact, Theorem 3.4.17 generates a two way family of

L-equienergetic graphs of independence number p.

Both Theorems 3.4.16 and 3.4.17, give a method of constructing families of

non L-cospectral L-equienergetic graphs with same number of edges.

Let SD(G) be the strong double graph of the graph G. The next result gives

the Laplacian spectrum of the graph SD(G) in terms of the Laplacian spectrum

and vertex degrees of the graph G.

Lemma 3.4.18. If µi, di, i = 1, 2, . . . , n, are respectively the L-spectrum and

vertex degrees of the graph G, then the L-spectrum of the graph SD(G) is 2µi, 2di+

2, i = 1, 2, . . . , n.

Proof. If di is the degree of a vertex vi in G, then the degree of the corresponding

vertex in the graph SD(G)) is 2di + 1. Therefore, if D is the degree matrix of

the graph G it can be seen by relabelling of vertices (if necessary) that the degree
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matrix D(SD(G)) of the graph SD(G) is

D(SD(G)) =

(
2D + In 0

0 2D + In

)
.

Thus Laplacian matrix L(SD(G)) of SD(G) is

L(SD(G)) = D(SD(G))− A(SD(G)) =

(
2D + In − A −(A+ In)

−(A+ In) 2D + In − A

)
.

So, the Laplacian characteristic polynomial of SD(G) is

ψ(SD(G), x) = |xI2n − L(SD(G))|

=

∣∣∣∣∣(x− 1)In − 2D(G) + A A+ In

A+ In (x− 1)In − 2D(G) + A

∣∣∣∣∣
= |((x− 1)In − 2D + A)− (A+ In)| |((x− 1)In − 2D + A) + (A+ In)|
= |(x− 2)In − 2D| |xIn − 2(D(G)− A(G))|

= φ

(
D,

x− 2

2

)
ψ
(
G,

x

2

)
,

therefore, the result follows.

The next result gives the L-spectrum of the graph SDk(G) and can be proved

by using Lemma 3.4.18 and induction principle.

Corollary 3.4.19. If µi, di, i = 1, 2, . . . , n, are respectively the L-spectrum

and vertex degrees of the graph G, then the L-spectrum of the graph SDk(G) is

2kµi, 2
k(di + 1)[(2k−1)], i = 1, 2, . . . , n.

We now obtain the Laplacian energy of the graph SD(G) ∨Kp.

Theorem 3.4.20. If G is a graph of order n having m edges, then for p ≥ 2n+k

and m ≤ n(k−1)
4

+ k2

8
, k ≥ 5 we have LE(SD(G) ∨Kp) = 6n+ (p− 2n)2m′

n′
+ 8m.

Proof. For i = 1, 2, . . . , n let µi and di be respectively the L-spectrum and vertex

degrees of the graph G. By Lemmas 3.4.15 and 3.4.19, the L-spectrum of the

graph SD(G) ∨ Kp is p + 2n, p + 2µi (1 ≤ i ≤ n− 1), p + 2di + 2, (1 ≤ i ≤
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n), 2n[(p−1)], 0, with average degree 2m′

n′
= 8m+2n+4pn

p+2n
. Therefore, if p ≥ 2n + k and

m ≤ (k−1)n
4

+ k2

8
, k ≥ 5, we have for i = 1, 2, . . . , n,

p+ 2µi −
2m′

n′
= p+ 2µi −

8m+ 4pn+ 2n

p+ 2n

=
p(p− 2n) + 2(2n+ p)µi − 8m− 2n

p+ 2n

≥ k(2n+ k)− 2(k − 1)n− k2 − 2n

p+ 2n
= 0.

Similarly, we have p + 2di + 2 − 2m′

n′
≥ 0. So using these observations, we obtain

by direct calculation, LE(SD(G) ∨Kp) = 6n+ (p− 2n)2m′

n′
+ 8m.

From Theorem 3.4.19, it is clear that the Laplacian energy of the graph

SD(G) ∨ Kp is a function of the parameters n,m and p. Therefore, it follows

that all the graphs of the family {SD(Gi) ∨Kp : i, p ∈ N} with the parameters

n,m and p satisfying the conditions of the Theorem 3.4.20 are non L-cospectral

L-equienergetic.

3.5 Conclusion

We conclude this chapter with the following problems which will be of interest

in future.

Problem 3.5.1. Let G be a connected graph with n ≥ 2 vertices and m edges

having clique number ω. If σ is the number of Laplacian eigenvalues greater than

or equal to d = 2m
n

, then σ ≥ ω − 1.

Problem 3.5.2. Characterize the graphs for which σ = ω − 1.

Problem 3.5.3. Prove or disprove that there exists a pair of non L-cospectral

L-equienergeric trees. If such a pair exists, give the construction of a family of

such trees.
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CHAPTER 4

Relation between energy and Laplacian energy

of graphs

In this chapter, we discuss the relation between energy and Laplacian energy

of a graph G. We present some well known results on the relation between energy

and Laplacian energy of graphs. We give various constructions of the families of

graphs G for which energy is greater than the corresponding Laplacian energy. We

also give a construction of non bipartite graphs for which energy is less than the

corresponding Laplacian energy.

4.1 Introduction

Let E(G) be the energy and L(G) be the Laplacian energy of the graph G.

Gutman et al. [75] computed the energy and Laplacian energy of various known

families of graphs like complete bipartite graph Ka,b, union of two complete graphs

Ka ∪ Kb, coalescence of complete graphs Kn ∗ Kn, Kbn(k) the graph obtained

from Kn by deleting k independent edges, Kcn(k) the graph obtained from Kn by

deleting edges of the clique Kk etc and found that energy is always less than or

equal to the Laplacian energy for these families of graphs. This observation made

Gutman et al. to believe that energy of a graph G is always less than or equal to

the corresponding Laplacian energy and so, they made the following conjecture.

Conjecture 4.1.1. For any graph G,

E(G) ≤ LE(G). (4.1)

Proving the inequality (4.1) (in case it happens to be correct) may be a much more

difficult task than disproving it, a single counterexample would suffice.

It was Stevanović et al. [135] who disproved the conjecture by furnishing an

infinite family of graphs G, namely G = KK2
n, for which the reverse inequality

holds for all n ≥ 8. By direct calculation, it can be seen that the inequality (4.1)

is true for all graphs of order n ≤ 6. For n = 7, there is only one graph (see
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graph H in Figure 1) for which the reverse inequality holds. Using this graph, Liu

and Liu [102] constructed an infinite family of disconnected graphs for which the

reverse inequality holds. Although from [135, 102], it was clear that conjecture is

not true in general, it is of interest to characterize the graphs for which the conjec-

ture holds. Clearly characterizing all the graphs for which (4.1) holds or does not

hold is not an easy task and is still an open problem. However some families of

graphs have been characterized for which (4.1) holds and some families have been

characterized for which (4.1) does not hold.

4.2 Inequality (4.1) is true for bipartite graphs

In this section, we will show the inequality (4.1) is true for bipartite graphs.

Nikiforov [110] recognized that the energy of the graph G is equal to the sum of

the singular values ( Recall that the singular values of a real matrix M are equal

to the positive square roots of the eigenvalues of MM t) of its adjacency matrix

A(G). This observation seems to be of great importance for the theory of graph

energy, because of the following Theorem, first proven by Fan [43].

Theorem 4.2.1. Let A and B be two square matrices of order n, such that

A+B = C. Then
n∑
i=1

si(C) ≤
n∑
i=1

si(A) +
n∑
i=1

si(B),

where si(X) is the ith singular value of X. Equality holds if and only if there exists

an orthogonal matrix P , such that PA and PB are both positive semi-definite.

Using Theorem 4.2.1, various lower and upper bounds have been obtained for

both energy and Laplacian energy see [128].

We now show that the inequality (4.1) is true for bipartite graphs.

Theorem 4.2.2. For a bipartite graph G the inequality (4.1) holds.

Proof. Let L(G) be the Laplacian matrix and Q(G) be the signless Laplacian

matrix of the graph G. We have

L(G) = D(G)− A(G) (4.2)
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and

Q(G) = D(G) + A(G). (4.3)

Subtracting equation (4.2) from equation (4.3), we get

Q(G)− L(G) = 2A(G)

or (
Q(G)− 2m

n
In

)
−
(
L(G)− 2m

n
In

)
= 2A(G).

Now using Theorem 4.1.1 and the fact that si(X) = si(−X), it follows that

QE(G) + LE(G) ≥ 2E(G).

Since for a bipartite graph Laplacian and signless Laplacian spectrum are

same, therefore, for a bipartite graph G, we have QE(G) = LE(G). This proves

the result.

It is clear from the proof of the Theorem 4.2.2, that the inequality (4.1)

also holds for the graphs G, for which QE(G) < LE(G). For instance, consider

the graph G1 as shown in Figure 1. By direct calculation, it can be seen that

QE(G1) = 5.1233 < 6 = LE(G1). We now show how an infinite family of non

bipartite graphs can be constructed for which inequality (4.1) holds from any given

non bipartite graph G satisfying QE(G) < LE(G).

Let Dk[G], k ≥ 2, be the k-fold double graph of the graph G having vertex

degrees di and Q-spectrum qi, i = 1, 2, . . . , n. Proceeding similarly as in [103],

it can be seen that Q-spectrum of the graph Dk[G] is kqi, kd
[(k−1)]
i , di, for i =

1, 2, . . . , n. Also the average vertex degree of Dk[G] is k 2m
n

, so we have

QE(Dk[G]) =
n∑
i=1

|kqi − k
2m

n
|+ (k − 1)

n∑
i=1

|kdi − k
2m

n
|

= k

n∑
i=1

|qi −
2m

n
|+ k(k − 1)

n∑
i=1

|di −
2m

n
|

= kQE(G) + k(k − 1)
n∑
i=1

|di −
2m

n
|.

(4.4)
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Similarly,

LE(Dk[G]) = kQE(G) + k(k − 1)
n∑
i=1

|di −
2m

n
|. (4.5)

It is clear from equations (4.4) and (4.5) that LE(Dk[G]) ≥ QE(Dk[G]) if

and only if LE(G) ≥ QE(G). Since, the k-fold graph of a non bipartite graph G is

non bipartite, it follows that if G is a non bipartite graph with LE(G) > QE(G),

then LE(Dk[G]) > QE(Dk[G]), for all k ≥ 2. Thereby, constructing an infinite

family of such graphs.

H G1

Figure 1: The graph H, for which energy is greater than Laplacian energy

and the graph G1 for which Laplacian energy is greater than signless Laplacian

energy

4.3 Graphs for which inequality (4.1) does not hold

In this section, we obtain various families of graphs for which the inequality

(4.1) does not hold.

Let KKj
n, 1 ≤ j ≤ n, be the graph defined in section 2.3. The L-spectrum of

the graph KKj
n, 1 ≤ j ≤ n, was considered in [46] and is given by the following

result.

Lemma 4.3.1. If 1 ≤ j ≤ n , n ≥ 3, the L-characteristic polynomial of KKj
n is

x(x− n)2n−j−2(x− n− 1)j−1g(x), where g(x) = x2 − (n+ 1 + j)x+ 2j.

Stevanović et al. [135] considered the graph KK2
n and proved the following

result.
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Theorem 4.3.2. If G = KK2
n, then

E(KK2
n) > LE(KK2

n),

for all n ≥ 9.

By Lemma 4.3.1, the L-spectrum of the graph KKj
n is {n[2n−j−2], n+ 1[j−1],

(n+j+1)+
√

(n+j+1)2−8j

2
,

(n+j+1)−
√

(n+j+1)2−8j

2
, 0}, with average vertex degree n−1+ j

n
.

Therefore for any j, 1 ≤ j ≤ n, the Laplacian energy of the graph KKj
n is

LE(KKj
n) = 3n− j +

4j

n
− 5 +

√
(n+ j + 1)2 − 8j. (4.6)

It is easy to see that LE(KKj
n) is an increasing function of j, 1 ≤ j ≤ n.

Therefore, it follows that {KKj
n, 1 ≤ j ≤ n} gives a family of graphs where

adding an edge one by one, increases the Laplacian energy monotonically. So we

have the following observation.

Theorem 4.3.3. Among the family {KKj
n : n ∈ N, 1 ≤ j ≤ n}, the graph KK1

n

has the minimal Laplacian energy and the graph KKn
n has the maximal Laplacian

energy.

For j = n, we have LE(KKn
n) = 3n − n + 4n

n
− 5 +

√
(n+ n+ 1)2 − 8n =

4n − 2 = LE(K2n). Since the L-spectrum of the graph K2n is {2n[2n−1], 0}, it

follows by Lemma 4.3.2, these graphs are non L-cospectral. Therefore we have the

following observation.

Theorem 4.3.4. For j ∈ N, 1 ≤ j ≤ n, the graphs KKn
n and K2n are non

L-cospectral, L-equienergetic graphs.

Theorem 4.3.2 shows that inequality (4.1) does not hold for the graph KK2
n.

Here we first show that this inequality does not hold for the graphs KK3
n and

KK4
n also. Using this we prove a general result in Theorem 4.3.6, which general-

izes Proposition 1 (of [135]) and Theorem 4.3.5.
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Theorem 4.3.5. For any graph G = KKj
n of order 2n and j = 3, 4, we have

E(KKj
n) > LE(KKj

n),

for all n ≥ 8.

Proof. For j = 3, it follows from Lemma 2.3.7, that the A-characteristic poly-

nomial P (KK3
n, x) of the graph KK3

n is P (KK3
n, x) = (x + 1)2n−4h(x), where

h(x) = x4 − 2(n− 2)x3 + (n2 − 6n+ 3)x2 + (2n2 − 14)x+ (16n− 23− 2n2).

For n ≥ 8, we have h(n) = n2 + 2n − 23 > 0, h(n − 1) = −9 < 0,

h(n− 2) = (n− 1)2 > 0, h(1) = n2 + 8n− 29 > 0, h(0) = −2n2 + 16n− 23 < 0,

h(−2.3) = −1.31n2 + 8.594n+ 4.3861 < 0, h(−3) = n2 + 16n+ 19 > 0.

Therefore, h(x) has three positive roots, one in each of the intervals (0, 1), (n−
2, n− 1) and (n− 1, n), and a single negative root in the interval (−3,−2.3). As-

sume that x1, x2, x3, x4 are the roots of h(x) with x1, x2, x3 > 0 and x4 < 0.

Therefore the A-spectrum of the graph KK3
n is {−1[2n−4], x1, x2, x3, x4}, with

x1 + x2 + x3 + x4 = 2(n− 2). We have

E(KK3
n) = (2n− 4)| − 1|+ |x1|+ |x2|+ |x3|+ |x4|

= 2n− 4 + x1 + x2 + x3 − x4

= 2n− 4 + 2n− 4− 2x4

> 4n− 3.4.

By equation (4.6), the Laplacian energy of KK3
n is

LE(KK3
n) = 3n− 8 +

12

n
+
√
n2 + 8n− 8.

So E(KK3
n)−LE(KK3

n) = n+ 4.6− 12
n
−
√
n2 + 8n− 8 = g(n). It is easy to

see that g(n) > 0, for all n ≥ 8. That is, E(KK3
n) > LE(KK3

n), for all n ≥ 8.

Using the same argument as above, it can be seen, for j = 4, that the polyno-

mial h(x) has three positive roots, one in each of the intervals (0, 1), (n− 2, n− 1)

and (n−1, n), and a single negative root in the interval (−3,−2.4). So proceeding

similarly the result follows.

In general, the following result gives a sufficient condition for energy of the

graph KKj
n to be greater than the corresponding Laplacian energy.
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Theorem 4.3.6. For k ∈ N− {1} and (k − 1)2 < j ≤ k2, we have

E(KKj
n) > LE(KKj

n),

for all n ≥ ((k − 1)2 + 2)2 − (k − 1)2.

Proof. For k = 2, we have j = 2, 3, 4 and n ≥ 8, the result follows by Proposition

1 (of [135]) and Theorem 4.3.5. So assume that k ≥ 3. By equation (4.6) and

Corollary 2.3.9, we have

E(KKj
n)− LE(KKj

n) = 4n− 8 + 2
√
j − 3n+ j − 4j

n
+ 5−

√
(n+ j + 1)2 − 8j

= n+ 2
√
j + j − 3− 4j

n
−
√

(n+ j + 1)2 − 8j = g(n).

It is easy to see that g(n) > 0, for n ≥ ((k − 1)2 + 2)2 − (k − 1)2, k ≥ 3.

Therefore, the result follows.

By a suitable labelling of vertices, the adjacency matrix A = A(KKj
n) of the

graph KKj
n, 1 ≤ j ≤ n, can be put in the form

A =

(
0 x2n−1

xt2n−1 B

)
,

where x2n−1 is a (2n− 1)-vector having first (n− 1 + j)-entries equal to 1 and rest

0 and B is the adjacency matrix of the graph Kn−1 ∪Kn.

Suppose that the eigenvalues of A are λ1 ≥ λ2 ≥ · · · ≥ λ2n−1 ≥ λ2n. Since the

spectrum of B is {n − 1, n − 2,−1[2n−3]}, by interlacing inequalities for principal

submatrix, we have

λ1 ≥ n− 1 ≥ λ2 ≥ n− 2 ≥ λ3 ≥ −1 ≥ λ4 ≥ −1 ≥ · · · ≥ −1 ≥ λ2n−1 ≥ −1 ≥ λ2n.

From this it follows that λ1 ∈ (n − 1, 2n − 1), λ2 ∈ (n − 2, n − 1), λ3 ∈
(−1, n − 2), λ2n ∈ (−1,−2n + 1) and λ4 = λ5 = · · · = λ2n−1 = −1. This shows

that the eigenvalue λ1, λ2 are always positive and λ2n always negative. While as

λ3 may be positive or negative. Also it is clear from this and Lemma 2.3.7, that

λ1, λ2, λ3, λ2n are the zeros of the polynomial h(x) = x4+(4−2n)x3+(n2−6n+6−
j)x2 +(2n2−6n+2nj−j2−3j+4)x+(1+nj2−2j2 +n2−2n−2j+3jn−jn2). So

λ1 +λ2 +λ3 +λ2n = 2n−4 and λ1λ2λ3λ2n = 1+nj2−2j2 +n2−2n−2j+3jn−jn2.
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Since λ1, λ2 > 0 and λ2n < 0, it follows that λ3 > 0 if and only if 1 + nj2 − 2j2 +

n2 − 2n− 2j + 3jn− jn2 < 0, which is so if and only if 2 ≤ j ≤ n− 3. Therefore,

we have the following result.

Theorem 4.3.7. For 5 ≤ j ≤ n− 3, n ≥ 9, we have E(KKj
n) > LE(KKj

n), if

and only if n >
j2−3j+16+

√
(j2−3j+16)2+4(j−4)(j2−2j+16)

2(j−4)
.

Proof. Since, for 5 ≤ j ≤ n− 3, the eigenvalue λ3 > 0, therefore we have

E(KKj
n) = (2n− 4)| − 1|+ |λ1|+ |λ2|+ |λ3|+ |λ2n|

= 2n− 4 + λ1 + λ2 + λ3 − λ2n

= 2n− 4 + 2n− 4− 2λ2n

= 4n− 8− 2λ2n.

Also, by Theorem 4.3.3, we have 4n − 4 = LE(KK0
n) < LE(KK1

n) <

LE(KKj
n) < LE(KKn

n) = 4n − 2, for all 5 ≤ j ≤ n − 3. So instead of show-

ing E(KKj
n) > LE(KKj

n), we will show E(KKj
n) > LE(KKn

n). We have,

E(KKj
n)− LE(KKn

n) = 4n− 8− 2λ2n − 4n+ 2

= −6− 2λ2n > 0

if and only if λ2n < −3 which, by the Intermediate Value Theorem, is equivalent

to h(−3) < 0, that is (j − 4)n2 − (j2 − 3j + 16)n − (j2 − 2j + 16) > 0, that is,

n >
j2−3j+16+

√
(j2−3j+16)2+4(j−4)(j2−2j+16)

2(j−4)
.

Theorem 4.3.7 gives another sufficient condition for the energy of the graph

KKj
n to be greater than the corresponding Laplacian energy.

P4 SD(P4) S3F (P4)

Figure 2: The graph P4 its strong double graph SD(P4) and 3-fold graph S3F (P4).
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Let SD(G) be the strong double graph of the graph G. We have the following

observation.

Theorem 3.4.8. If SD(KK2
n) is the strong double graph of the graph KK2

n, then

we have LE(SD(KK2
n)) < E(SD(KK2

n)), for all n ≥ 9.

Proof. The adjacency spectrum of the graph KK2
n is {−1[2n−4], λ1, λ2, λ3, λ4},

where λ1, λ2, λ3 and λ4 are the zeros of the polynomial P (x) = x4 − 2(n− 2)x3 +

(n2 − 6n+ 4)x2 + 2(n2 − n− 3)x− (n2 − 8n+ 11). We have λ1 + λ2 + λ3 + λ4 =

2(n − 2), being the sum of zeros of the polynomial P (x). As shown in [135] one

among the four zeros of the polynomial P (x), say λ4, lies in the interval (−3,−2.2)

and so is negative and the rest λ1, λ2, λ3 are positive, for all n ≥ 9. Therefore,

it follows by Theorem 2.4.15, that the A-spectrum of the graph SD(KK2
n) is

2λ1 +1, 2λ2 +1, 2λ3 +1, 2λ4 +1,−1[4n−4], where 2λ4 +1 ∈ (−5,−3.2) and therefore

is negative. So the energy of the graph SD(KK2
n) is

E(SD(KK2
n)) = (4n− 4)| − 1|+ |2λ1 + 1|+ |2λ2 + 1|+ |2λ3 + 1|+ |2λ4 + 1|

= 4n− 4 + 2λ1 + 1 + 2λ2 + 1 + 2λ3 + 1− 2λ4 − 1

= 8n− 10− 4λ4

> 8n− 1.2.

Also, the L-spectrum of the graph KK2
n is n[2n−4], n + 1, n+3±

√
n2+6n−7
2

, 0, with

average vertex degree 2m1

n1
= n− 1 + 2

n
, where m1 = n(n− 1) + 2 and n1 = 2n are

respectively the number of edges and vertices in the graph KK2
n. Also the degree

sequence of the graph KK2
n is [di], i = 1, 2, . . . , 2n, where

di =


n+ 1, if i = 1

n, if i = 2, 3

n− 1 if 4 ≤ i ≤ 2n.

Therefore, by Lemma 3.4.19, the L-spectrum of the graph SD(KK2
n) is

2n[4n−7], 2n + 2[3], 2n + 4, (n + 3) ±
√
n2 + 6n− 7, 0, with average vertex degree

2m2

n2
= 2(2m1

n1
) + 1 = 2n− 1 + 4

n
. So, by direct calculation, it can be seen that the

Laplacian energy of the graph SD(KK2
n) is

LE(SD(KK2
n)) = 6n− 10 +

16

n
+ 2
√
n2 + 6n− 7.
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Therefore,

E(SD(KK2
n)− LE(SD(KK2

n)) = 2n+ 8.8− 16

n
− 2
√
n2 + 6n− 7 = g(n).

It is easy to see that the derivative of the function g(n) is positive for n > 1.

Therefore, it follows that the function g(n) is increasing in the interval (1,∞),

moreover g(3) = 0.5227281 > 0 implies that g(n) > 0 for all n ≥ 3. Thus we

conclude that E(SD(KK2
n)) > LE(SD(KK2

n)), for all n ≥ 9.

We observe that the strong double graph SD(KK2
n) of the graph KK2

n does

not belong to the family of graphs {KK2
n : n ∈ N}, for any n.

For a graph G with vertex set {v1, v2, . . . , vn}, let SPF (G) be the graph

obtained by taking p-copies of the graph G and joining each vertex vi in one copy

with the closed neighbourhood N [vi] = N(vi) ∪ {vi} of the corresponding vertex

in every other copy (see Figure 2). By a suitable labelling of vertices, it can be

seen that the adjacency matrix Â of the graph SPF (G) is

Â =


A A+ I · · · A+ I

A+ I A · · · A+ I
...

... · · · ...

A+ I A+ I · · · A

 ,

where A is the adjacency matrix of G and I is the identity matrix of order equal

to the order of A.

Therefore the characteristic polynomial of SPF (G) is

|λIpn − Â| =

∣∣∣∣∣∣∣∣∣∣
λIn − A −(A+ I) · · · −(A+ I)

−(A+ I) λIn − A · · · −(A+ I)
...

... · · · ...

−(A+ I) −(A+ I) · · · λIn − A

∣∣∣∣∣∣∣∣∣∣
.

Using elementary transformations C1 → C1 + C2 + · · · + Cp and then Ri →
Ri − R1, for i = 2, 3, . . . , p, it can be seen that the spectrum of the matrix Â and

so the A-spectrum of the graph SPF (G) is

{−1[n(p−1)], px1 + p− 1, px2 + p− 1, . . . , pxn + p− 1}, (4.7)
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where x1, x2, . . . , xn are the adjacency eigenvalues of the graph G.

Also, the degree matrix D̂ of the graph SPF (G) is

D̂ =


pD + (p− 1)I 0 · · · 0

0 pD + (p− 1)I · · · 0
...

... · · · ...

0 0 · · · pD + (p− 1)I

 .

So, the Laplacian matrix L̂ of the graph SPF (G) is

L̂ =


pD + (p− 1)I − A −(A+ I) · · · −(A+ I)

−(A+ I) pD + (p− 1)I − A · · · −(A+ I)
...

... · · · ...

−(A+ I) −(A+ I) · · · pD + (p− 1)I − A

 .

Proceeding similarly as above, it can be seen that the L-spectrum of the graph

SPF (G) is

{pµ1, pµ2, . . . , pµn, pd1 + p[p−1], pd2 + p[p−1], . . . , pdn + p[p−1]}, (4.8)

where µ1, µ2, . . . , µn are the Laplacian eigenvalues of G and d1, d2, . . . , dn are the

degrees of the vertices in G.

The next result gives a two way infinite families of graphs G for which the

inequality (4.1) does not hold.

Theorem 4.3.9. For j = 2, 3, 4, p = 2, 3 and n ≥ 9 and for j = 2, 3, 4, p ≥ 4

and n > pj, we have

E(SPF (KKj
n)) > LE(SPF (KKj

n)),

where SPF (G) is the p-fold graph of the graph G.

Proof. For p = 2 and j = 2, 3, 4, it is clear from the definition of strong p-fold

graph that SPF (KKj
n) ∼= SD(KK2

n), SD(KK3
n), SD(KK4

n). If SPF (KKj
n) ∼=

SD(KK2
n), then the result follows by Theorem 4.3.8. If SPF (KKj

n) ∼= SD(KK3
n)

or SD(KK4
n), then proceeding similarly as in Theorem 4.3.8, it can be seen that

the result is true in this case as well. Also for p = 3 and j = 2, 3, 4, we have
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SPF (KKj
n) ∼= KK2

n ◦K3, KK
3
n ◦K3, KK

4
n ◦K3, where ◦ denotes the composition

of graphs. We will show that the result holds if SPF (KKj
n) ∼= KK2

n ◦ K3, and

then proceed similarly for the other two cases.

The A-spectrum of the graph KK2
n ◦K3 is {−1[6n−4], 3x1 + 2, 3x2 + 2, 3x3 +

2, 3x4 + 2}, where x1, x2, x2, x4 are the zeros of h(x) = x4−2(n−2)x3 + (n2−6n+

4)x2 + 2(n2 − n− 3)x− (n2 − 8n+ 11). Proceeding similarly as in Theorem 4.3.5,

it can be seen that x1, x2, x3 > 0 and x4 ∈ (−3,−2.2) for all n ≥ 9. So, we have

E(KK2
n ◦K3) = 12n− 6x4 − 12 > 12n+ 1.2.

Also, the L-spectrum of the graph KK2
n ◦ K3 is {3n[6n−10], 3n + 3[5], 3n +

6[2], 3(n+3)±
√
n2+6n−7

2
, 0}, with average vertex degree 3n− 1 + 6

n
. We have

LE(KK2
n ◦K3) = 9n− 13 +

24

n
+ 3
√
n2 + 6n− 7.

Therefore, E(KK2
n◦K3)−LE(KK2

n◦K3) = 3n+14.2− 24
n
−3
√
n2 + 6n− 7 =

g(n). It is easy to see that g(n) > 0, for all n ≥ 9.

So, assume that p ≥ 4 and j = 2, 3, 4. Using equation (4.7) and Lemma 2.3.7,

it follows that the A-spectrum of the graph SPF (KKj
n) is

{−1[2pn−4], px1 + (p− 1), px2 + (p− 1), px3 + (p− 1), px4 + (p− 1)},

where x1, x2, x3, x4 are the zeros of the polynomial h(x) = x4− 2(n− 2)x3 + (n2−
6n+6−j)x2+(2n2−6n+2nj−j2−3j+4)x+(1+nj2−2j2+n2−2n−2j+3nj−jn2).

For n > pj, p ≥ 4 and j = 2, 3, 4, we have h(n) = n2 + 2n− 2j2− 2j + 1 > 0,

h(n − 1) = −j2 < 0, h(n − 2) = (n − 1)2 > 0, h(1) = 16 − 6j − 3j2 − 16n +

5jn+ nj2 + 4n2− jn2 > 0, h(0) = 1 + nj2− 2j2 + n2− 2n− 2j + 3nj − jn2 < 0,

h(−3) = 16− 2j + j2 + 16n− 3jn+ nj2 + 4n2 − jn2 > 0,

h(−2.j) = h(−(2 + 0.j)) =


−0.56n2 + 4.656n+ 2.3936 < 0, if j = 2

−1.31n2 + 8.594n+ 4.3861 < 0, if j = 3

−2.04n2 + 14.288n+ 8.0016 < 0 if j = 4.

Therefore, h(x) has three positive roots, one in each of the intervals (0, 1), (n−
2, n−1) and (n−1, n), and a single negative root in the interval (−3,−2.j). Assume
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that x1, x2, x3 > 0 and x4 < 0. We have

E(SPF (KKj
n)) = (2pn− 4)| − 1|+ |px1 + p− 1|+ |px2 + p− 1|

+ |px3 + p− 1|+ |px4 + p− 1|
= 2pn− 4 + p(x1 + x2 + x3)− px4 + 2p− 2

= 4pn− 2p− 2px4 − 6

> 4pn+ 2p(1.j)− 6.

Also, by Lemma 4.3.1, equation (4.8) and the fact that the degree sequence

of the graph KKj
n is [n+ j− 1, n[j], (n− 1)[2n−j−1]], it follows that the L-spectrum

of the graph SPF (KKj
n) is

{pn[2pn−p(j+1)−1], p(n+ 1)[pj−1], p(n+ j)[p−1],
p((n+j+1)±

√
(n+j+1)2−8j)

2
, 0}

with average vertex degree pn− 1 + pj
n

. Therefore, by direct calculation, we have

LE(SPF (KKj
n) == 3pn− p(j + 1)− 4 +

4pj

n
+ p
√

(n+ j + 1)2 − 8j.

For n > pj, p ≥ 4 and j = 2, 3, 4, it is easy to see that E(SPF (KKj
n)) −

LE(SPF (KKj
n)) = pn+p(2(1.j)+j+1)−2− 4pj

n
−p
√

(n+ j + 1)2 − 8j > 0. That

is, E(SPF (KKj
n)) > LE(SPF (KKj

n)), for all n > pj, p ≥ 4 and j = 2, 3, 4.

Although all graphs for which the inequality (4.1) does not hold are not so

common, Theorem 4.3.9 shows the existence of families of such graphs.

4.4 Conclusion

Although the conjecture that ”the inequality LE(G) ≥ E(G) holds for all G”

has been disproved. This inequality holds for most of the graphs as shown in [75]

and [135]. Therefore the following problem will be of great interest.

Problem 4.4.1. Characterize all non-bipartite graphs G for which the inequality

LE(G) ≥ E(G) holds.
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CHAPTER 5

Laplacian-energy-like invariant and Kirchhoff

index

In this chapter, we consider Laplacian-energy-like invariant LEL(G) and

Krichhoff index Kf(G) of a graph G. We mention some well known results on

these Laplacian spectrum based graph invariants. We obtain a lower bound for

LEL(G) and an upper bound for Kf(G) in terms of the number of vertices n, the

number of edges m, maximum degree ∆ and a positive real number k. We consider

the relation between LEL(G) and Kf(G) and obtain some sufficient conditions

for a graph G or its complement G to satisfy the inequality LEL(G) > Kf(G).

As a consequence, we arrive at a complete comparison of LEL(G) and Kf(G) for

the complement of a tree, unicyclic graphs, bicyclic graphs, tricyclic graphs and

tetracyclic graphs.

5.1 Introduction

Let L(G) be the Laplacian matrix of the graph G and let 0 = µn ≤ µn−1 ≤
· · · ≤ µ2 ≤ µ1 be the Laplacin spectrum of G. As discussed in Chapter 3, the idea

of Gutman and Zhou [65] was to conceive a graph energy like quantity that in-

stead of adjacency eigenvalues is defined in terms of Laplacian eigenvalues and that

hopefully would preserve the main features of the original graph energy. The def-

inition of Laplacian energy LE(G) was therefore so chosen that all the properties

possessed by graph energy E(G) should be preserved. In fact, they were success-

ful, as most of the properties possessed by E(G) are also possessed by LE(G), but

there are some dissimilarities also. Liu and Liu [98] put forward a new Laplacian

spectrum based graph invariant, which they called Laplacian-energy-like invariant

LEL(G) of a graph. It was shown in [70, 98] that this graph invariant possesses

all the properties of graph energy. Gutman et al. [70] pointed out that LEL(G) is

more similar to E(G) than to LE(G). In fact, Stevanoić et al. [134] showed that

LEL(G) of a graph describes well the properties which are accounted by the major-

ity of molecular descriptors: motor octane number, entropy, molar volume, molar

refraction, particularly the acentric factor AF parameter, but also more difficult
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properties like boiling point, melting point and partition coefficient Log P . In a

set of polycyclic aromatic hydrocarbons, LEL(G) of a graph was proved [134] to

be as good as the Randić index (a connectivity index) and better than the Wiener

index (a distance based index). Moreover, it is well defined mathematically and

shows interesting relations in particular classes of graphs, these recommending

LEL(G) of a graph as a new and powerful topological index (Numbers reflecting

certain structural features of a molecule that are derived from its molecular graph

are known as topological indices, these are used in theoretical chemistry for design

of chemical compounds with given physicochemical properties or given pharmaco-

logical and biological activities).

For a connected graph G with vertex set V (G) = {v1, v2 . . . , vn}, the (ordi-

nary) distance between vertices vi and vj, denoted by dij, is the length of a shortest

path connecting them. The original index based on distance in a graph G is the

Wiener index W (G) [143], which counts the sum of distances between the pairs of

vertices in G, that is,

W (G) =
∑

{vi,vj}⊆V (G)

dij.

In 1993, Klein and Randić [91] defined a new distance function named resis-

tance distance, framed in terms of electrical network theory. However, this concept

has been discussed much earlier (1949) for another purpose by Foster [45] as re-

cently pointed out by Palacios [113]. The resistance distance between vertices vi

and vj of G, denoted by rij, is defined to be the effective resistance between the

nodes vi and vj as computed with Ohm’s and Kirchhoff’s laws when all the edges

of G are considered to be unit resistors. As an analogue to the Wiener index, the

sum

Kf(G) =
∑

{vi,vj}⊆V (G)

rij

was proposed in [91], later was called the Kirchhoff index of G in [18]. Klein and

Randić [91] proved that rij ≤ dij with equality if and only if there is exactly one

path between vi and vj, and so Kf(G) ≤ W (G) with equality if and only if G is a

tree. As the Wiener index W (G) of a tree has been extensively studied [37], there-

fore the Krichhoff index is primarily of interest in the case of of cycle-containing
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graphs. This index is also named as total effective resistance [90] or the effective

graph resistance [40], and like the Wiener index have found applications in chem-

istry, electrical network, Markov chains, averaging networks, experiment design,

and Euclidean distance embeddings, see [18, 90, 91]. It is well known that the

resistance distance between two arbitrary vertices in an electrical network can be

obtained in terms of the eigenvalues and eigenvectors of the combinatorial Lapla-

cian matrix L(G) and normalized Laplacian matrix associated with the network

(when considered as a graph). By studying Laplacian matrix, researchers have

obtained many properties of resistance distances [144, 145]. At almost exactly

the same time, Gutman and Mohar [64] and Zhu et al. [161] showed that, for a

connected graph G the Krichhoff index Kf(G) can be expressed as function of

Laplacian eigenvalues of G.

5.2 Laplacian-energy-like invariant of a graph

Definition 5.2.1. Laplacian-energy-like invariant of a graph. Let G be a graph

of order n with m edges having Laplacian eigenvalues 0 = µn ≤ µn−1 ≤ · · · ≤
µ2 ≤ µ1. The Laplacian-energy-like invariant of G is denoted by LEL(G) and is

defined as

LEL(G) =
n∑
j=1

√
µj =

n−1∑
j=1

√
µj. (5.1)

The concept of Laplacian-energy-like invariant LEL(G) was first introduced

in 2008 by Liu and Liu [98], where it is shown that it has similar features as earlier

studied graph energy.

Let C = C(G) be the oriented vertex-edge incidence matrix of the graph G,

defined in Section 3.1, then as seen in [28], we have C(G)C(G)t = D(G)−A(G) =

L(G). As the singular values of the matrix X are the positive square roots of the

eigenvalues of the matrix XX t, it follows that the singular values of the matrix

C(G) are the positive square roots of the eigenvalues of the matrix L(G). That is,

the singular values of the matrix C(G) are 0 =
√
µn ≤

√
µn−1 ≤ · · · ≤

√
µ2 ≤

√
µ1.

So, following the definition of matrix energy by Nikifrov [110], the energy of the
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matrix C(G) is given by

E(C(G)) =
n∑
j=1

si(C(G)) =
n∑
j=1

√
µj = LEL(G).

Using this coincidence, Stevanoić et al. [138] called Laplacian-energy-like

invariant LEL(G), the oriented incidence energy of the graph G. This provides a

new interpretation of LEL(G) and therefore, offers a new insight into its possible

physical or chemical meaning.

Let B = B(G) be the matrix obtained from the matrix C(G) by replacing

each −1 by +1 and leaving the rest of entries unchanged. This matrix B(G) is

called vertex-edge incidence matrix of the graph G. It is well known [28] that

B(G)B(G)t = D(G) +A(G) = Q(G). So, following the definition of matrix energy

by Nikifrov [110], the energy of the matrix B(G) was called incidence energy

IE(G) [88] of the graph G and is given by

E(B(G)) =
n∑
j=1

si(B(G)) =
n∑
j=1

√
µj = IE(G),

where 0 ≤ qn ≤ qn−1 ≤ · · · ≤ q2 ≤ q1 are the eigenvalues of Q(G). Using a well

known fact, that the Laplacian and the signless Laplacian spectrum of a graph are

same for a bipartite graph, we have the following observation.

Theorem 5.2.1 For a bipartite graph G, the incidence and oriented incidence

energy are same, that is,

LEL(G) = IE(G).

In general, the following relation exists between the Laplacian-energy-like in-

variant LEL(G) and the Incidence energy IE(G) of a graph G [5].

Theorem 5.2.2 For a graph G, we have

LEL(G) ≤ IE(G),

with equality if and only if G is bipartite.

From this it follows that any lower bound to LEL(G) is a lower bound for

IE(G).
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5.3 Bounds for Laplacian-energy-like invariant

Various lower and upper bounds for the Laplacian-energy-like invariant LEL(G)

are known, which give its connection with the different parameters of a graph.

Here, we list some of the well known bounds.

The following [98] is an upper bound for Laplacian-energy-like invariant LEL(G)

as a function of the number of vertices n and the number of edges m.

Theorem 5.3.1. Let G be a graph with n vertices and m edges. Then

LEL(G) ≤
√

2m(n− 1),

with equality if and only if G ∼= Kn or G ∼= Kn.

Since, for a graph G we always have m ≤ n(n−1)
2

. Therefore, we have the

following consequence of Theorem 5.3.1.

Corollary 5.3.2. Let G be a graph with n vertices. Then

LEL(G) ≤ (n− 1)
√
n,

with equality if and only if G ∼= Kn.

Let G− e be the graph obtained from the graph G by deleting the edge e of

G. Since, the Laplacian eigenvalues of G and G−e satisfying Interlacing property,

we have by Lemma 3.3.11,

n∑
j=1

µj(G)−
n∑
j=1

µj(G− e) = 2.

As an immediate consequence to this, we have the following observation [159].

Theorem 5.3.3. Let G be a graph and e be any edge in G. Then

LEL(G− e) < LEL(G).
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A repeated application of Theorem 5.3.3, shows that the empty graph Kn has

the minimal and the complete graph Kn has the maximal Laplacian-energy-like

invariant over all the graphs G of order n, that is,

LEL(Kn) ≤ LEL(G) ≤ LEL(Kn).

If G is a bipartite graph having cardinalities of partite sets equal to r and

s, then G is a spanning subgraph of the complete bipartite graph Kr,s and so by

Theorem 5.3.3, we have the following observation.

Corollary 5.3.4. Let G be a bipartite graph having cardinalities of partite sets

equal to r and s. Then

LEL(G) ≤
√
r + s+ (r − 1)

√
s+ (s− 1)

√
r,

with equality if and only if G ∼= Kr,s.

From this, it follows that among bipartite graphs G having cardinalities of

partite sets equal to r and s, complete bipartite graph Kr,s has the maximal

Laplacian-energy-like invariant.

The following is an upper bound [98] for the Laplacian-energy-like invariant

LEL(G) in terms of the number of vertices n, the number of edges m and maxi-

mum vertex degree ∆.

Theorem 5.3.5. Let G be a graph with n vertices and m ≥ 1 edges having

maximum degree ∆. Then

LEL(G) ≤
√

∆ + 1 +
√

(n− 2)(2m−∆− 1),

with equality if and only if G ∼= Kn or G ∼= K1,n−1.

The Laplacian-energy-like invariant LEL(G) as a function of the number of

edges satisfies the following inequalities [98].

Theorem 5.3.6. If G is a graph with n vertices and m edges, then

√
2m ≤ LEL(G) ≤

√
2m,
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with equality on the left if and only if G ∼= Kn or K2 ∪ (n− 2)K1, and equality on

the right if and only if G ∼= rK2 ∪ (n− 2r)K1, where r = 0, 1, . . . , bn
2
c.

The following is a lower bound for Laplacian-energy-like invariant LEL(G)

[78] as a function of number of vertices n.

Theorem 5.3.7. If G is a graph with n vertices, then

LEL(G) ≥
√
n− 1 + n− 2,

with equality if and only if G ∼= K1,n−1.

From Theorems 5.3.3 and 5.3.7, it is clear that among connected graphs on n

vertices, the complete graph Kn is the graph with maximal LEL(G) and the star

graph K1,n−1 is the graph with minimal LEL(G).

The following is the lower bound [78] for LEL(G), in terms of the number of

vertices n and the number of edges m.

Theorem 5.3.8. If G is a graph with n vertices and m edges, then

LEL(G) ≥ 2m√
n
, (5.2)

with equality if and only if G ∼= Kn or Kn.

The next result gives the lower bound [78, 141] for LEL(G), in terms of the

number of vertices n and the number of edges m and first Zagreb index M1(G).

Theorem 5.3.9. If G is a graph with n vertices and m edges, then

LEL(G) ≥

√
(2m)3

M1(G) + 2m
, (5.3)

with equality if and only if G ∼= Kn.

It is shown in [141] that the lower bounds (5.2) and (5.3) are incomparable.

If G is a graph free from Kr+1, 2 ≤ r ≤ n (that is, G has no subgraph
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isomorphic to Kr+1), then it is well known that [153]

M1(G) ≤ 2r − 2

r
mn.

Using this we have the following consequence of Theorem 5.3.9.

Corollary 5.3.10. If G is a Kr+1-free graph (2 ≤ r ≤ n) with n vertices and m

edges, then

LEL(G) ≥ 2m√
n(r−1)

r
+ 1

,

with equality if and only if G ∼= Kn or r = n and G ∼= Kn.

The next result is a Cauchy-Bunyakovsky-Schwarz type discrete inequality

and can be found in [38].

Lemma 5.3.11.(Pólya-Szegö inequality) Let (a1, a2, . . . , an) and (b1, b2, . . . , bn)

be two sequences of positive real numbers such that there exist positive numbers

A, a,B, b satisfying

0 < a ≤ ai ≤ A <∞, 0 < b ≤ bi ≤ B <∞,

for all i = 1, 2, . . . , n. Then∑n
i=1 a

2
i

∑n
i=1 b

2
i

(
∑n

i=1 aibi)
2
≤ (ab+ AB)2

4abAB
. (5.4)

The equality holds in (5.4) if and only if p =
n.A

a

(A
a

+B
b

)
, q =

n.B
b

(A
a

+B
b

)
are integers and if

p of the numbers a1, a2, . . . an are equal to a, and q of these numbers are equal to

A, and if the corresponding numbers bi are equal to b and B, respectively.

We now obtain a lower bound for LEL(G) in terms of the number of vertices

n, the number of edges m and a positive real number k.

Theorem 5.3.12. Let G be a connected graph with n vertices and m edges having

algebraic connectivity µn−1 ≥ k. Then,

LEL(G) ≥

√
8m(n− 1)

√
kn

(
√
n+
√
k)2

, (5.5)

84



with equality if and only if G ∼= Kn.

Proof. Setting in (5.4) n = n − 1, ai =
√
µi, bi = 1, for i = 1, 2, . . . , n − 1 and

a =
√
µn−1, A =

√
µ1, b = 1, B = 1, we get∑n−1

i=1 µi
∑n−1

i=1 1

(
∑n−1

i=1

√
µi)2

≤
(
√
µn−1 +

√
µ1)2

4
√
µ1µn−1

.

This gives,

LEL(G) ≥

√
8m(n− 1)

√
µ1µn−1

(
√
µ1 +

√
µn−1)2

.

Since, √
8m(n− 1)

√
µ1µn−1

(
√
µ1 +

√
µn−1)2

≥

√
8m(n− 1)

√
kµ1

(
√
µ1 +

√
k)2

,

it follows that,

LEL(G) ≥

√
8m(n− 1)

√
kµ1

(
√
µ1 +

√
k)2

.

For x ≤ n, consider the function f(x) =
8m(n− 1)

√
kx

(
√
x+
√
k)2

. For this function, we

have f ′(x) =
4m(n− 1)

√
k(
√
k −
√
x)

√
x(
√
x+
√
k)3

≤ 0. That is, f(x) is a decreasing function

for x ≤ n. So f(x) ≥ f(n) =
8m(n− 1)

√
kn

(
√
n+
√
k)2

. This gives,

LEL(G) ≥

√
8m(n− 1)

√
kn

(
√
n+
√
k)2

.

Equality occurs in (5.5) if and only if equality occurs in (5.4) and µ1 = n.

That is, by Lemma 3.3.10 and Lemma 5.3.11, if and only if G is a join of two graphs

and p, q are integers, where p+ q = n−1 with p of the numbers in µ1, µ2, . . . , µn−1

equal to µ1 and q of them equal to µn−1. For p, q integers there are n− 1 solutions

of the equation p+q = n−1 and for any of these integral solutions it follows, from

Lemma 5.3.11, that equality occurs if and only if G has two distinct Laplacian
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eigenvalues. That is, if and only if G ∼= Kn [28].

Conversely, if G ∼= Kn, then it is easy to see that equality holds in (5.5).

Remark 5.3.13.

(i). Let T be a tree of order n, n ≥ 6 with algebraic connectivity µn−1 ≥ 0.07. We

will show that the lower bound (5.5) is better than the lower bound in (5.2)

for a tree T . We have,
8m(n−1)

√
(0.07)n

(
√
n+
√

0.07)2
≥ ( 2m√

n
)2, that is, 80(n−1)2

√
7n

(10
√
n+
√

7)2
≥ 4(n−1)2

n
,

as m = n − 1, that is, 20n
√

7n ≥ (10
√
n +
√

7)2, which is true for n ≥ 6.

Since, for almost all trees, algebraic connectivity µn−1 ≥ 0.07, it follows that

lower bound (5.5) is better than bound (5.2) for almost all trees.

(ii). Let G be graph of order n having m ≤ 2n(n−1)
√
n

(
√
n+1)2

edges and algebraic connec-

tivity µn−1 ≥ 1, then the lower bound (5.5) is better than the lower bound

(5.2) for G, we have

√
8m(n−1)

√
kn

(
√
n+
√
k)2
≥ 2m√

n
, that is, 8m(n−1)

√
n

(
√
n+1)2

≥ 4m2

n
, that is,

2n(n− 1)
√
n ≥ m(

√
n+ 1)2, (5.6)

which is true. In particular if G is a unicyclic, a bicyclic, a tricyclic, a

tetracyclic graph, then m = n, n+ 1, n+ 2, n+ 3 (respectively). It is easy to

see that (5.6) holds for n ≥ 5.

Remark 5.3.14.

(i). Let T be a tree of order n, n ≥ 3 with maximum degree ∆ ≥ n
2

and algebraic

connectivity µn−1 ≥ 0.07, then the lower bound (5.5) is better than the lower

bound (5.3) for T . We have,

√
8m(n−1)

√
kn

(
√
n+
√
k)2
≥
√

(2m)3

2m+n∆2 , that is, 80(n−1)2
√

7n

(10
√
n+
√

7)2
≥

8(n− 1)3

2(n− 1) + n∆2
, as m = n−1, that is, n∆2 ≥ (n− 1)(10

√
n+
√

7)2

10
√

7n
−2(n−

1), which is true for ∆ ≥ n
2
, n ≥ 3.

(ii). Let G be graph of order n with maximum degree ∆ ≥
√

m2(
√
n+1)2

n(n−1)
√
n
− 2m

n

and algebraic connectivity µn−1 ≥ 1. It can be seen by proceeding similarly

as in part (i) that the lower bound (5.5) is better than the bound (5.3)

for G. In particular, if G is a unicyclic, a bicyclic, a tricyclic graph, then

m = n, n+ 1, n+ 2. It can be seen by direct calculation, that (5.5) is better

than (5.3) for ∆ ≥ n
2
, n ≥ 6.
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The following result characterizes the graphs with three distinct Laplacian

eigenvalues and is due to Das [31].

Lemma 5.3.15. Let G be a graph on n > 3 vertices whose distinct Laplacian

eigenvalues are 0 < α < β. Then the following hold.

(i) The multiplicity of α is n − 2 if and only if G is one of the graphs Kn
2
,n
2

or

Kn−1,1.

(ii) The multiplicity of β is n− 2 if and only if G is the graph Kn − e.

We now obtain another lower bound for LEL(G) in terms of the number of

vertices n, the number of edges m and a positive real number k, which improves

the lower bound (5.5).

Theorem 5.3.16. Let G be a connected graph of order n having m edges with

maximum degree ∆ and algebraic connectivity µn−1 ≥ k. Then

LEL(G) ≥ (n− 1)
√
kn+ 2m

√
n+
√
k

, (5.7)

with equality if and only if k = n and G ∼= Kn or k = n− 2 and G ∼= Kn − e.
Proof. Let 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ2 ≤ µ1 be the Laplacian spectrum of

G with algebraic connectivity µn−1 ≥ k.

Since ∆ + 1 ≤ µ1 ≤ n, we have

LEL(G) =
n−1∑
i=1

√
µi =

√
µ1 + (n− 2)

√
µn−1 +

n−2∑
i=2

(
µi − µn−1√
µi +

√
µn−1

)
≥

(n− 1)
√
µ1µn−1 + 2m

√
µ1 +

√
µn−1

≥ (n− 1)
√
µ1k + 2m

√
µ1 +

√
k

.

Consider the function

f(x) =
(n− 1)

√
xk + 2m

√
x+
√
k

, ∆ + 1 ≤ x ≤ n

for which

f ′(x) =
k(n− 1)− 2m

2
√
x(
√
µ1 +

√
k)2

.
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As 2m =
n∑
i=1

µi = µ1 +µ2 + · · ·+µn−1 > (n−1)µn−1 ≥ (n−1)k, we have f ′(x) < 0.

This shows that the function f(x) is decreasing for ∆ + 1 ≤ x ≤ n. Therefore,

f(x) ≥ f(n) =
(n− 1)

√
nk + 2m

√
n+
√
k

,

implying

LEL(G) ≥ (n− 1)
√
nk + 2m

√
n+
√
k

.

Equality in (5.7) will occur if and only if n = µ1 = µ2 = µ3 = · · · = µn−2

and µn−1 = k. That is, if G is a join of two graphs having two or three distinct

Laplacian eigenvalues. If former is the case, then, as before, G ∼= Kn. If G is a join

of two graphs having three distinct Laplacian eigenvalues, then by Lemma 5.3.15,

we have G ∼= Kn − e.
Conversely, if G is isomorphic to Kn or Kn − e, then it is easy to see that

equality holds in (5.7).

Remark 5.3.17. Using the fact that the arithmetic mean is greater than or equal

to the geometric mean, it follows that

(n− 1)
√
nk + 2m

√
n+
√
k

≥

√
8m(n− 1)

√
kn

(
√
n+
√
k)2

.

This shows that the lower bound (5.7) always improves the lower bound (5.5).

From the definition, one can immediately get the Laplacian-energy-like-invariant

LEL(G) of a graph by computing the Laplacian eigenvalues of the graph. How-

ever, it is rather hard to deal directly with Laplacian matrix L(G) even for special

graphs. So, researchers established several lower and upper bounds to estimate

this invariant for some classes of graphs. Wang et al. [141] obtained the bounds

for line graph, subdivision graph and total graph of a graph. Stevanović [136]

obtained the upper and lower bounds for LEL(G) of trees. Similarly, Stevanović

and Ilić [137] gave the upper and lower bounds for LEL(G) of unicyclic graphs.

He and Shan [81] presented the lower bound for LEL(G) of bicyclic graphs. For

further details, see the comprehensive survey [100].
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We now obtain lower and upper bounds for Laplacian-energy-like-invariant

of some graphs derived from regular graphs.

A bipartite graph G with a bipartition V (G) = U ∪ W is called an (r, s)-

semiregular graph if all vertices in U have degree r and all vertices in W have

degree s. The following result gives the relationship between Laplacian character-

istic polynomial ψ(L (G), x) of the line graph of G and the Laplacian characteristic

polynomial ψ(G, x) of G.

Lemma 5.3.18. If G is an (r, s)-semiregular graph with n vertices and m = nrs
r+s

edges, then

ψ(L (G), x) = (x− (r + s))m−nψ(G, r + s− x),

where L (G) is the line graph of G.

Proof. Let B(G) be the vertex-edge incidence matrix of the graph G. Then [28]

B(G)B(G)t = Q(G) and B(G)tB(G) = 2Im + A(L (G)), (5.8)

where Im is the identity matrix of order m and Q(G) is the signless Laplacian

matrix of G.

It is well known that the line graph L (G) of an (r, s)-semiregular graph G is

(r + s− 2)-regular. Therefore, we have

L(L (G)) = (r + s− 2)Im − A(L (G)).

Using (5.8), we have

(r + s)Im − L(L (G)) = B(G)tB(G). (5.9)

Using the fact that the matrices XX t and X tX have the same non-zero eigen-

values, it follows from (5.8) and (5.9) that Q(G) and (r + s)Im − L(L (G)) have

the same non-zero eigenvalues. Note that the difference between the dimension of

L(L (G)) and Q(G) is m − n. The proof now follows by using the fact that the

leading coefficient of the characteristic polynomial is equal to one and Laplacian

and signless Laplacian spectrum coincides if and only if G is bipartite.

By Lemma 5.3.18, the Laplacian spectrum of line graph L (G) of an (r, s)-

semiregular graph G is {(r + s)m−n, r + s− µ1, r + s− µ2, . . . , r + s− µn}, where
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µ1, µ2, . . . , µn are the Laplacian eigenvalues of the graph G.

Now we obtain an upper bound for LEL(L (G)) of an (r, s)-semiregular graph

G.

Theorem 5.3.19. Let G be an (r, s)-semiregular graph with n vertices. Then

LEL(L (G)) ≤ (
nrs

r + s
− n+ 1)

√
r + s+

√
(n− 2)((n− 1)(r + s)− 2nrs

r + s
),

with equality if and only if G ∼= K1,n−1 or G ∼= Kn
2
,n
2
, n is even(≥ 4).

Proof. Let m be the number of edges in G, then m = nrs
r+s

and
∑n−1

i=1 µi = 2m.

Also µ1(G) = r + s and µn(G) = 0. Using Cauchy-Schwarz inequality, we have

LEL(L (G)) = (m− n)
√
r + s+

n∑
i=1

√
r + s− µi

= (m− n+ 1)
√
r + s+

n−1∑
i=2

√
r + s− µi

≤ (m− n+ 1)
√
r + s+

√√√√(n− 2)
n−1∑
i=2

(r + s− µi)

= (m− n+ 1)
√
r + s+

√
(n− 2)((n− 2)(r + s)− (2m− µ1))

= (
nrs

r + s
− n+ 1)

√
r + s+

√
(n− 2)((n− 1)(r + s)− 2nrs

r + s
).

Equality occurs if and only if r + s = µ1, µ2 = µ3 = · · · = µn−1. Since G is

(r, s)-semiregular, it follows by Lemma 5.3.15, G is either K1,n−1 or Kn
2
,n
2
.

Conversely, it is easy to see that if G is one of the graphs K1,n−1 or Kn
2
,n
2
,

then equality holds.

For a graph G, the paraline graph, denoted by C (G), is defined as a line

graph of the subdivision graph S(G) (the subdivision graph S(G) of a graph G is

the graph obtained from G by inserting a vertex to every edge of G) of G. The

concept of the paraline graph (or clique-inserted graph [151]) of a graph was first

introduced by Shirai [131], who obtained the spectrum of the paraline graph of a

regular graph G with infinite number of vertices in terms of the spectrum of G.
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Since the subdivision graph of an r-regular graph is (r, 2)-semiregular, the paraline

graph of an r-regular graph is the line graph of an (r, 2)-semiregular graph. It is

clear that paraline graph of a regular r-graph is an r-regular graph.

The following result gives the L-spectrum of the graph C (G) in terms of the

L-spectrum of the graph G.

Lemma 5.3.20. If G is an r-regular graph with n vertices, then

ψ(C (G), x) = (−1)m(x− (r + 2))m−n(x− r)m−nψ(G, x(r + 2− x)).

If µ1, µ2, . . . , µn are the Laplacian eigenvalues of G, then from Lemma 5.3.20,

it follows that the Laplacian spectrum of C (G) is {(r+2)m−n, rm−n,
(r+2)±

√
(r+2)2−4µi

2
},

where i = 1, 2, . . . , n.

Now, we obtain the bounds for LEL(C (G)) in terms of the number of vertices

n, the number of edges m and the degree of regularity r of G.

Theorem 5.3.21. Let G be a connected r-regular graph with n vertices. Then

(m−n)
√
r+m

√
r + 2 < LEL(C (G)) ≤ (m−1)

√
r+(m−n+1)

√
r + 2+(n−1)

√
2,

with equality on the right if and only if G ∼= K2.

Proof. Let µ1, µ2, . . . , µn be the Laplacian eigenvalues of the graph G. Using

the fact µi = r − λn+i−1, i = 1, 2, . . . , n and λ1 = r, where λi are the adjacency

eigenvalues of G, we have

LEL(C (G)) = (m− n)
√
r + (m− n+ 1)

√
r + 2+

n∑
i=2

√(r + 2) +
√
r2 + 4λi + 4

2
+

√
(r + 2)−

√
r2 + 4λi + 4

2

 .

By Perron-Frobenius Theorem [21], −r ≤ x < r, for i = 2, 3, . . . , n. For −r ≤ x <

r, consider the function

f(x) =

√
(r + 2) +

√
r2 + 4x+ 4

2
+

√
(r + 2)−

√
r2 + 4x+ 4

2
.

91



It can be seen that for this function f ′(x) < 0 for all −r ≤ x < r. That is,

f(x) is decreasing for −r ≤ x < r. Therefore, we have f(r) < f(x) ≤ f(−r). That

is,
√
r + 2 < f(x) ≤

√
r +
√

2. This gives,

LEL(C (G)) > (m− n)
√
r + (m− n+ 1)

√
r + 2 +

n∑
i=2

√
r + 2

= (m− n)
√
r +m

√
r + 2,

and

LEL(C (G)) ≤ (m− n)
√
r + (m− n+ 1)

√
r + 2 +

n∑
i=2

(
√
r +
√

2)

= (m− 1)
√
r + (m− n+ 1)

√
r + 2 + (n− 1)

√
2.

Equality occurs on the right if and only if G is a regular graph and λ1 =

r, λ2 = λ3 = · · · = λn = −r. That is, if and only if G is a regular graph with

two distinct adjacency eigenvalues r and −r with multiplicities 1 and n − 1, re-

spectively. So G must be a complete graph. Note that the sum of the adjacency

eigenvalues of G is equal to zero; that is, r+ (n− 1)(−r) = 0. It follows that G is

a complete graph with two vertices; that is, G ∼= K2.

5.4 Kirchhoff index of a graph

As already pointed out, the Laplacian matrix L(G) is singular and therefore

has no inverse. In case of the singular matrices, instead of inverses (which do not

exist) one can sometimes use the so-called generalized inverses. Several types of

generalized inverses are known in the mathematical literature [13]. In the theory

of electrical networks, the Moore-Penrose generalized inverse is encountered [13].

We outline it in some detail.

Let X be a real, symmetric square matrix of order n. Then the eigenvalues of

X are real numbers. Let S0 be the vector space, spanned by those eigenvectors of

X whose eigenvalues are equal to zero. Let S+ be the vector space, spanned by the

eigenvectors of X whose eigenvalues are non zero. The Moore-Penrose generalized

inverse of a matrix X is denoted by X+. In case of the symmetric square matrices,

X+ is defined [13] so that XX+ = X+X is an orthogonal projector on the vector
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space S+. That is,

(XX+)u = (X+X)u = 0, for all vectors u ∈ S0, and

(XX+)v = (X+X)v = v, for all vectors v ∈ S+.

These two conditions uniquely determine Moore-Penrose generalized inverse

X+ of the matrix X. Using the theory of electric networks, Klein and Randić [91]

showed that Kf(G) = ntr(L+), where tr(L+), denotes the trace of Moore-Penrose

generalized inverse L+ of the matrix L(G). Using this, Gutman and Mohar [64]

and Zhu et al. [161] in 1996 put forward the following definition.

Definition 5.3.1.Kirchhoff index of a graph. Let G be a connected graph of order

n with m edges having Laplacian eigenvalues 0 = µn ≤ µn−1 ≤ · · · ≤ µ2 ≤ µ1.

The Kirchhoff index of G is denoted by Kf(G) and is defined as

Kf(G) = n
n−1∑
j=1

1

µj
. (5.10)

Various variations of Kirchhoff index Kf(G) have been put forward of which the

additive and multiplicative Kirchhoff index [26] have been mostly studied [66].

5.5 Bounds for Kirchhoff index

Various bounds for the Kirchhoff index Kf(G) are known, which give its con-

nection with the different parameters of a graph. Here, we list some of the well

known bounds.

The following is a lower bound [158] for Kirchhoff index Kf(G) as a function

of the number of vertices n and vertex degrees di i = 1, 2 . . . , n.

Theorem 5.5.1. Let G be a graph with n vertices having vertex degrees di, i =

1, 2, . . . , n. Then

Kf(G) ≥ −1 + (n− 1)
n∑
j=1

1

di
,

with equality if and only if G ∼= Kn or G ∼= Kt,n−t, 1 ≤ t ≤ bn
2
c.
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As for r-regular graph G, we have di = r for all i, i = 1, 2, . . . , n. Therefore,

we have the following consequence of Theorem 5.5.1.

Corollary 5.5.2. Let G be an r-regular graph with n vertices. Then

Kf(G) ≥ −1 +
n(n− 1)

r
,

with equality if and only if G ∼= Kn or G ∼= Kn
2
,n
2
.

The following is a lower bound [158] for Kirchhoff index Kf(G) in terms of

the number of vertices n, the number of edges m and maximum vertex degree ∆.

Theorem 5.5.3. Let G be a connected graph with n ≥ 3 vertices, m edges and

maximum vertex degree ∆. Then

Kf(G) ≥ n

∆ + 1
+

n(n− 2)2

2m−∆− 1
, (5.11)

with equality if and only if G ∼= K1,n−1 or G ∼= Kn.

Das et al. [33] obtained the following lower bound for Kirchhoff index Kf(G)

in terms of the number of vertices n, the number of edges m, maximum degree

∆, second maximum degree ∆2 and minimum degree δ, which is better than the

lower bound (5.11).

Theorem 5.5.4. Let G be a connected graph with n ≥ 3 vertices, m edges,

maximum degree ∆, second maximum degree ∆2 and minimum degree δ. Then

Kf(G) ≥ n

∆ + 1
+

n

2m−∆− 1

(
(n− 2)2 +

(∆2 − δ)2

∆2δ

)
,

with equality if and only if G ∼= K1,n−1 or G ∼= Kn.

Indeed, the two bounds are same for regular graphs.

Let G− e be the graph obtained from the graph G by deleting the edge e of

G. Since the Laplacian eigenvalues of G and G− e satisfy Interlacing property, so
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using Lemma 3.3.11, we have the following observation.

Theorem 5.5.5. Let G be a connected graph and e be any edge in G. Then

Kf(G− e) > Kf(G).

A repeated application of Theorem 5.5.5, shows that the path Pn has the

maximal and complete graph Kn has the minimal Kirchhoff index over all the

connected graphs G of order n, that is,

Kf(Kn) ≤ Kf(G) ≤ Kf(Pn).

As an application of Theorem 5.5.5, to bipartite graphs G [147, 148], we have

the following observation.

Corollary 5.5.6. Let G be a connected bipartite graph on n vertices having partite

sets of cardinalities r and s with r + s = n. Then

(r + s− 1)(r2 + s2)− rs
rs

≤ Kf(G) ≤ n(n2 − 1)

6
,

with equality on the left if and only if G ∼= Kr,s and on the right if and only if

G ∼= Pn.

From this, it follows that, among connected bipartite graphs of order n, com-

plete bipartite graph Kr,s r+ s = n has the minimal and path Pn has the maximal

Kirchhoff index.

We now obtain an upper bound for Kirchhoff index Kf(G) in terms of the

number of vertices n, the number of edges m, maximum degree ∆ and a positive

real number k.

Theorem 5.5.7. Let G be a connected graph of order n with m edges having

maximum degree ∆ and algebraic connectivity µn−1 ≥ k. Then

Kf(G) ≤ n(∆ + 1) + nk(n− 1) + n2(n− 2)− 2mn

k(∆ + 1)
, (5.12)
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with equality if and only if k = 1 and G ∼= Kn−1,1 or k = n and G ∼= Kn.

Proof. Let 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ2 ≤ µ1 be the Laplacian spectrum of

G with µn−1 ≥ k.

Since ∆ + 1 ≤ µ1 ≤ n, we have

Kf(G) = n
n−1∑
i=1

1

µi
=

n

µn−1

+
n

µ1

+ n

n−2∑
i=2

1

µi

=
n

µn−1

+
n(n− 2)

µ1

+ n
n−2∑
i=1

(
1

µi
− 1

µ1

)

≤ n

µn−1

+
n(n− 2)

µ1

+ n

n−2∑
i=2

(
µ1 − µi
µ1µn−1

)
=

n

µn−1

+
n(n− 1)

µ1

+
n(n− 2)µ1 − 2mn

µ1µn−1

≤ n

µn−1

+
n(n− 1)

∆ + 1
+
n2(n− 2)− 2mn

(∆ + 1)µn−1

.

Consider the function

f(x) =
n(n− 1)

∆ + 1
+
n2(n− 2)− 2mn+ n(∆ + 1)

(∆ + 1)x
, k ≤ x

for which

f ′(x) =
2mn− n2(n− 2)− n(∆ + 1)

x2(∆ + 1)
< 0, for all k ≤ x

that is, the function f(x) is decreasing for k ≤ x. Therefore,

f(x) ≤ f(k) =
kn(n− 1) + n2(n− 2)− 2mn+ n(∆ + 1)

(∆ + 1)k
,

implying

Kf(G) ≤ n(∆ + 1) + kn(n− 1) + n2(n− 2)− 2mn

(∆ + 1)k
.

Equality occurs in (5.12) if and only if µ2 = µ3 = · · · = µn−2, n = µ1 = ∆ + 1

and µn−1 = k. That is, if G is the join of two graphs with µ1 = ∆ + 1, having two

or three distinct Laplacian eigenvalues. If the former is the case, then by a well

known fact, G ∼= Kn. If G is the join of two graphs having three distinct Laplacian
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eigenvalues with µ1 = ∆ + 1, then by Lemma 5.3.15, G ∼= K1,n−1.

Conversely, if G is one of the graphs K1,n−1 or Kn, then it is easy to see that

equality occurs in (5.12).

The exact formulae for Kirchhoff index of various families of graphs (like cy-

cles, complete graphs, geodetic graphs, distance transitive graphs etc) are known.

The Kirchhoff index of certain composite operations between two graphs was stud-

ied, such as product, lexicographic product [146] and join, corona, cluster [150].

Kirchhoff index of graphs derived from a single graph, such as the line graph, the

subdivision graph, the total graph were considered in [53].

We now obtain bounds for Kirchhoff index of some graphs derived from reg-

ular graphs.

Let L (G) be the line graph of the (r, s)-semiregular graph defined in Sec-

tion 5.3. The following is the lower bound for Kf(L (G)) in terms of the number

of vertices n, the number of edges m and degrees of regularities r, s of the graph G.

Theorem 5.5.8. Let G be an (r, s)-semiregular graph with n vertices. Then

Kf(L (G)) ≥ m(m+ n− 1)

r + s
+

m(n− 2)2

(n− 1)(r + s)− 2m
,

with equality if and only if G ∼= K1,n−1 or G ∼= Kn
2
,n
2
.

Proof. Let m = nrs
r+s

be the number of edges in G. Since µ1(G) = r + s and

µn(G) = 0, it follows by equation (5.10) and A.M-H.M inequality that

Kf(L (G)) =
m(m− n+ 1)

r + s
+m

n−1∑
i=2

1

r + s− µi

≥ m(m− n+ 1)

r + s
+

m(n− 2)2

n−1∑
i=2

(r + s− µi)

=
m(m− n+ 1)

r + s
+

m(n− 2)2

(n− 1)(r + s)− 2m
.

Equality occurs if and only if r + s = µ1, µ2 = µ3 = · · · = µn−1. Since G is (r, s)-

semiregular graph, it follows by Lemma 5.3.17, G is either K1,n−1 or G ∼= Kn
2
,n
2
.

Conversely, if G is one of the graphs K1,n−1 or G ∼= Kn
2
,n
2
, then it is easy to
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see that equality occurs.

Since µn−1(L (G)) > 1, we have the following observation, which follows from

Theorem 5.5.7.

Corollary 5.5.9. Let G be an (r, s)-semiregular graph with n vertices. Then

Kf(L (G)) ≤ n+
n3 − n2 − n− 2mn

r + 1
,

with equality if and only if G ∼= K1,n−1.

Let C (G) be the paraline graph of the graph G defined in Section 5.3. The

following result gives the Kirchhoff index Kf(C (G)) of the graph C (G) in terms

of the Kirchhoff index Kf(G) of the graph G.

Theorem 5.5.10. If G is a connected r-regular graph with n vertices, then

Kf(C (G)) = n(
nr

2
− n) +

nr(nr
2
− n)

r + 2
+ r(r + 2)Kf(G).

Proof. Let C (G) be the paraline graph of the r-regular graph G having n vertices

and m = nr
2

edges. Then the number of vertices in C (G) is nr. Therefore, by

(5.10), we have

Kf(C (G)) = nr
m− n
r

+ nr
m− n
r + 2

+ nr
n−1∑
i=1

2

(r + 2) +
√

(r + 2)2 − 4µi

+ nr

n−1∑
i=1

2

(r + 2)−
√

(r + 2)2 − 4µi

= n(m− n) +
nr(m− n+ 1)

r + 2
+ nr

n−1∑
i=1

r + 2

µi

= n(
nr

2
− n) +

nr(nr
2
− n+ 1)

r + 2
+ r(r + 2)Kf(G).
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The following is an immediate consequence of Theorems 5.5.1 and 5.5.10.

Corollary 5.5.11. Let G be a connected r-regular graph with n vertices. Then

Kf(C(G)) ≥ n(m− n) +
nr(m− n)

r + 2
+ (n2 − n− r)(r + 2),

with equality if and only if G ∼= Kn or G ∼= Kn
2
,n
2
, n even.

5.6 Relation between Laplacian-energy-like invariant and Kirchhoff in-

dex

In this Section, we consider the relation between two Laplacian spectrum

based graph invariants, namely the Laplacian-energy-like invariant LEL(G) and

Kirchhoff index Kf(G) of a graph G. As both these graph invariants are based

on Laplacian spectrum, it is of interest to establish a relation between them. This

problem was first considered by Das et al. [36]. Since for the complete graph Kn,

the Laplacian spectrum is {n[n−1], 0}, we have

LEL(Kn) = (n− 1)
√
n > n− 1 = n

(n− 1)

n
= Kf(Kn).

It is natural to raise the question, “characterize the graphs G for which the

relation LEL(G) < Kf(G) or LEL(G) > Kf(G) holds”. Das et al. [36] con-

sidered this question and established some sufficient condition for the relation

LEL(G) < Kf(G), to hold for a graph G. As a consequence to these sufficient

conditions, the relations between Kf(G) and LEL(G) was completely solved for

trees, unicyclic graphs, bicyclic graphs, tricyclic graphs, and tetracyclic graphs.

The following [36] is a sufficient condition for the inequality LEL(G) <

KF (G), in terms of number of vertices n, number of edges m and minimum degree

δ of G.

Theorem 5.6.1. Let G be a connected graph of order n with m edges and mini-

mum degree δ. If 2m ≤ (n− 2)n
2
3 + δ, then

LEL(G) < Kf(G). (5.13)
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As, for a tree T , m = n−1, δ = 1 and 2(n−1) ≤ (n−2)n
2
3 + 1, for all n ≥ 4,

see [36], we have the following consequence of Theorem 5.6.1.

Corollary 5.6.2. Let T be a tree of order n. Then LEL(T ) > Kf(T ), for n = 2

and LEL(T ) < Kf(T ), for all n ≥ 3.

As, for a unicyclic graph U , m = n, δ = 1 or 2 and 2n ≤ (n− 2)n
2
3 + 1, for

all n ≥ 6, see [36], we have the following consequence of Theorem 5.6.1.

Corollary 5.6.3. Let U be a unicyclic graph of order n. Then LEL(U) >

Kf(U), for n = 3 and LEL(U) < Kf(U), for all n ≥ 4.

Similarly, using the facts, for a bicyclic graph B, m = n + 1, δ ≥ 1 and

2(n + 1) ≤ (n − 2)n
2
3 + 1, for n ≥ 6, see [36]. For a tricyclic graph TC,

m = n + 2, δ ≥ 1 and 2(n + 2) ≤ (n − 2)n
2
3 + 1, for n ≥ 7, see [9], and for

a tetracyclic graph QC, m = n+ 3, δ ≥ 1 and 2(n+ 3) ≤ (n− 2)n
2
3 + 1, for n ≥ 7,

see [9]. We have the following observations, which follow from Theorem 5.6.1.

Corollary 5.6.4. Let B be a bicyclic graph of order n. Then LEL(B) < Kf(B),

except for B ∼= K4 − e.

Corollary 5.6.5. Let TC be a tricyclic graph of order n. Then LEL(TC) <

Kf(TC), except for TC ∼= H14, H16, H17, H18.

Corollary 5.6.6. Let QC be a tetracyclic graph of order n. Then LEL(QC) <

Kf(QC), except for QC ∼= H41, H42, H43, H44.

H14 H16 H18 H17

Figure 3: The tricyclic graphs of Corollary 5.6.5.
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H41 H42 H43 H44

Figure 4: The tetracyclic graphs of Corollary 5.6.6.

The following [36] is a sufficient condition for the inequality LEL(G) <

KF (G), in terms of the number of vertices n and the number of edges m of

G.

Theorem 5.6.7. Let G be a connected graph of order n with m edges. If 2m ≤
(n− 1)n

2
3 , then

LEL(G) < Kf(G).

Let Kin,ω be the graph obtained by attaching a pendent path on n−ω vertices

to a vertex of the complete graph on ω vertices and let Γn,k be the class of graphs

of order n obtained by attaching a pendent path on n − k vertices to a vertex of

a connected graph of order k. In particular, Kin,k ∈ Γn,k.

The following is a sufficient condition [36] for the inequality LEL(G) <

KF (G) in the class of graphs Γn,k.

Theorem 5.6.8. Let G ∈ Γn,k with k ≥ 4 and n−k ≥ 1. If k3 < (3n
8
−2)2(n−k)2,

then

LEL(G) < Kf(G).

Since, for n ≥ 12, (3n
8
− 2)2 > n

2
, gives (3n

8
− 2)2(n − k)2 > k3, if k < n

2
, we

have the following observation [36], which is immediate from Theorem 5.6.8.

Corollary 5.6.9. Let G ∈ Γn,k with k ≥ 4 and n − k ≥ 2. If k < n
2
, n ≥ 12,

then

LEL(G) < Kf(G).
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Let G1(n) = Kn−2 ∨ (2K1), G2(n) = Kn−4 ∨ C4, G3(n) = Kn−3 ∨ (K1 ∪
K2), G4(n) = Kn−6 ∨ (C4 ∨ 2K1), G5(n) = Kn−5 ∨ ((K2 ∪K1) ∨ 2K1), G6(n) =

Kn−4 ∨ P4, G7(n) = Kn−3 ∨ (3K1), G8(n) = Kn−4 ∨ (K1 ∪K3).

Liu et al. [99] determined the nine graphs with the largest Laplacian-energy-

like invariant among all connected graphs. In fact, they proved the following.

Theorem 5.6.10. Let G be a connected graph of order n ≥ 6 different from

Kn, G1(n), G2(n), G3(n), G4(n), G5(n), G6(n), G7(n), G8(n), then

LEL(Kn) > LEL(G1(n)) > LEL(G2(n)) > LEL(G3(n)) > LEL(G4(n)) >

LEL(G5(n)) > LEL(G6(n)) > LEL(G7(n)) > LEL(G8(n)) > LEL(G).

Using a similar procedure, Das et al. [36] determined the nine graphs with

smallest Kirchhoff index among all the connected graphs. In fact, they proved the

following result.

Theorem 5.6.11. Let G be a connected graph of order n ≥ 11 different from

Kn, G1(n), G2(n), G3(n), G4(n), G5(n), G6(n), G7(n), G8(n), then

Kf(Kn) < Kf(G1(n)) < Kf(G2(n)) < Kf(G3(n)) < Kf(G4(n)) <

Kf(G5(n)) < Kf(G6(n)) < Kf(G7(n)) < Kf(G8(n)) < Kf(G).

The following observation is immediate from Theorem 5.6.11 and Theorem

5.6.12 [9].

Corollary 5.6.12. For any graph G ∈ {Kn, G1(n), G2(n), G3(n), G4(n), G5(n),

G6(n), G7(n), G8(n)}, we have

LEL(G) > Kf(G).

Let G−e be the graph obtained by deleting the edge e of the graph G. If G−e
is connected, the next observation [9], follows from Theorem 5.3.3 and Theorem
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5.5.5.

Theorem 5.6.13. Let G be a connected graph and e be an edge in G, such that

G− e is connected. If Kf(G) > LEL(G), then Kf(G− e) > LEL(G− e).

Let G+ e be the graph obtained from G by adding an edge e. Using the fact,

Laplacian eigenvalues of G+ e and G interlace, we have the following observation

[9].

Theorem 5.6.14. Let G be a connected graph and e be an edge in G. If

Kf(G) < LEL(G), then Kf(G+ e) < LEL(G+ e).

The following is a lower bound for algebraic connectivity µn−1 of G in terms

of minimum degree δ [64].

Lemma 5.6.15. Let G 6∼= Kn be a connected graph of order n and let δ be its

smallest vertex degree. Then µn−1 ≤ δ.

Let G be the complement of the graph G. The following result gives the

relation between the Laplacian spectrum of G and the Laplacian spectrum of G

[44].

Lemma 5.6.16. If 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ1, are the Laplacian eigen-

values of the graph G, then the Laplacian eigenvalues of its complement G are

0 = µn < n− µ1 ≤ n− µ2 ≤ · · · ≤ n− µn−1.

Das et al. [36] raised the reverse question, whether it is ”possible to find a con-

stant c (which may depend on the number of vertices n and maximum vertex degree

∆), such that for any connected graph G with m ≥ c edges, LEL(G) > Kf(G)

holds”. We studied this problem and obtained various sufficient conditions for the

relation LEL(G) > Kf(G), to hold. As a consequence, to these sufficient condi-

tions, the relations between Kf(G) and LEL(G) is completely solved for comple-

ments of trees, unicyclic graphs, bicyclic graphs, tricyclic graphs, and tetracyclic
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graphs.

The following is a sufficient condition for the inequality LEL(G) > Kf(G),

in terms of the number of vertices n, the number of edges m, maximum degree ∆

of a graph G and a positive real number k.

Theorem 5.6.17. Let G be a connected graph with algebraic connectivity µn−1 ≥
k. Let m be the number of edges and ∆ the maximum degree of G. If

2m >
k(
√
n+
√
k)

k +
√
n+
√
k

(
(n+ k)(n− 1)

k
−

(n− 1)
√
k(∆ + 1)

√
n+
√
k

)
(5.14)

then Kf(G) < LEL(G).

Proof. Let 0 = µn < µn−1 ≤ · · · ≤ µ1, be the Laplacian eigenvalues of the

connected graph G, and let µn−1 ≥ k. Then

LEL(G) =
n−1∑
i=1

√
µi =

n−1∑
i=1

(
√
µi −

√
µn−1) + (n− 1)

√
µn−1

=
n−1∑
i=1

(
µi − µn−1√
µi +

√
µn−1

)
+ (n− 1)

√
µn−1

≥
n−1∑
i=1

(
µi − µn−1√
µ1 +

√
µn−1

)
+ (n− 1)

√
µn−1

=
2m+ (n− 1)

√
µ1µn−1√

µ1 +
√
µn−1

≥
2m+ (n− 1)

√
(∆ + 1)µn−1√

n+
√
µn−1

.

Recall Lemma 5.6.15, for k ≤ x ≤ δ, consider the function

f(x) =
2m+ (n− 1)

√
(∆ + 1)x√

n+
√
x

for which

f ′(x) =
(n− 1)

√
n(∆ + 1)− 2m

2
√
x(
√
n+
√
x)2

.
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Since ∆ + 1 ≥ 2m

n
+ 1 ≥ 2m

n− 1
and n− 1 ≥ 2m

n
, it follows that

(∆ + 1)(n− 1) ≥ 2m

n− 1

2m

n
=

1

n

(
4m2

n− 1

)
that is, (n − 1)

√
n(∆ + 1) − 2m ≥ 0, implying f ′(x) ≥ 0. Thus, f(x) is an

increasing function for k ≤ x ≤ δ. Therefore, f(x) ≥ f(k), giving

2m+ (n− 1)
√

(∆ + 1)x√
n+
√
x

≥
2m+ (n− 1)

√
(∆ + 1)k

√
n+
√
k

that is,

LEL(G) ≥
2m+ (n− 1)

√
k(∆ + 1)

√
n+
√
k

. (5.15)

We also have

Kf(G) = n
n−1∑
i=1

1

µi
= n

n−1∑
i=1

(
1

µi
− 1

µ1

)
+
n(n− 1)

µ1

≤ n
n−1∑
i=1

(
µ1 − µi
µ1 µn−1

)
+
n(n− 1)

µ1

=
n(n− 1)µ1 − 2mn

µ1µn−1

+
n(n− 1)

µ1

≤ kn(n− 1)− 2mn

kµ1

+
n(n− 1)

k
.

For ∆ + 1 ≤ x ≤ n, consider the function g(x) =
kn(n− 1)− 2mn

kx
, for

which g′(x) =
2mn− kn(n− 1)

kx2
> 0, because G is connected, so 2m > k(n − 1).

Therefore g(x) is an increasing function of x, implying g(x) ≤ g(n), that is,

kn(n− 1)− 2mn

kx
≤ k(n− 1)− 2m

k

resulting in

Kf(G) ≤ (n+ k)(n− 1)− 2m

k
. (5.16)
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Suppose that inequality (5.14) holds. By direct calculation, it can be trans-

formed into

2m+ (n− 1)
√
k(∆ + 1)

√
n+
√
k

>
(n+ k)(n− 1)− 2m

k
.

Bearing in mind the inequalities (5.15) and (5.16), it follows that LEL(G) >

Kf(G).

In particular, if µn−1 ≥ 1, then we have the following consequence of Theorem

5.6.17.

Corollary 5.6.18. Let G be a connected graph G with algebraic connectivity

µn−1 ≥ 1. Let m be the number of edges and ∆ the maximum degree of G. If

2m >

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
∆ + 1√

n+ 1

)
then Kf(G) < LEL(G).

Corollary 5.6.18 provides a partial answer to the question whether it is ”pos-

sible to find a constant c (which may depend on the number of vertices n and

maximum vertex degree ∆), such that for any connected graph G with m ≥ c

edges, LEL(G) > Kf(G) holds”, raised by Das et al. in [36] .

Since a tree T of order n has minimum degree δ = 1 and m = n − 1 edges,

we have the following observation.

Corollary 5.6.19. Let T be a tree and T be its complement. If the order of T is

n ≥ 12 and ∆(T ) ≤ n− 2, then LEL(T ) > Kf(T ).

Proof. Since any tree T of order n has minimum degree one and n − 1 edges, it

follows that ∆(T ) = n− 2 and 2m(T ) = (n− 1)(n− 2). Because of µ1(T ) ≤ n− 1,

by Lemma 5.6.16, µn−1(T ) = n− µ1(T ) ≥ 1. Therefore,

√
n+ 1√
n+ 2

(
n2 − 1− (n− 1)

√
∆ + 1√

n+ 1

)
= (n− 1)

(
(n+ 1)(

√
n+ 1)−

√
n− 1√

n+ 2

)
< (n− 1)(n− 2) = 2m(T ),
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if

n− 2 >

(
(n+ 1)(

√
n+ 1)−

√
n− 1√

n+ 2

)
,

that is, n+
√
n− 1 > 3

√
n+ 5, which is true for n ≥ 13.

Therefore, by Corollary 5.6.18, LEL(T ) > Kf(T ), for n ≥ 13. Also for

n = 12, it can be checked directly that LEL(T ) > Kf(T ).

As a unicyclic graph U of order n has minimum degree δ = 1 or 2 and m = n

edges, we have the following observation.

Corollary 5.6.20. Let U be a unicyclic graph and U its complement. If the

order of U is n ≥ 14 and ∆(U) ≤ n− 2, then LEL(U) > Kf(U).

As a bicyclic graph B of order n has minimum degree δ = 1 or 2 and m = n+1

edges, we have the following observation.

Corollary 5.6.21. Let B be a bicyclic graph and B its complement. If the order

of B is n ≥ 15 and ∆(B) ≤ n− 2, then LEL(B) > Kf(B).

Since a tricyclic graph of order n has minimum degree δ = 1 or 2 or 3 and

m = n+ 2 edges, we have the following observation.

Corollary 5.6.22. Let TC be a tricyclic graph and TC its complement. If the

order of TC is n ≥ 16 and ∆(TC) ≤ n− 2, then LEL(TC) > Kf(TC).

Since a tetracyclic graph QC of order n has minimum degree δ ≥ 1 and

m = n+ 2 edges, we have following observation.

Corollary 5.6.23. Let QC be a tetracyclic graph and QC its complement. If the

order of QC is n ≥ 17 and ∆(QC) ≤ n− 2, then LEL(QC) > Kf(QC).

Let L (G) be the line graph of the graph G. The following is the lower bound

[7] for largest Laplacian eigenvalue µ1 of a graph G in terms of the largest vertex

degree of its line graph L (G).
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Lemma 5.6.24. Let 0 = µn < µn−1 ≤ µn−2 ≤ · · · ≤ µ1 be the Laplacian eigen-

values of the graph G and let t1 ≥ t2 ≥ · · · ≥ tn be the degree sequence of its

line graph L (G). Then µ1 ≤ t1 + 2, with equality if and only if G is regular or

semiregular bipartite.

The next result gives a sufficient condition for the complement of a graph to

satisfy the inequality LEL(G) > Kf(G).

Theorem 5.6.25. If G is a graph for which µ1 < n − n2/3, then LEL(G) >

Kf(G).

Proof. Apply Lemma 5.6.16, we have

LEL(G)−Kf(G) =
n−1∑
i=1

√
n− µi −

n−1∑
i=1

n

n− µi

=
n−1∑
i=1

(n− µi)3/2 − n
n− µi

For µn−1 ≤ x ≤ µ1, consider the function f(x) = [(n−x)3/2−n]/(n−x), for which

f ′(x) = −
[1
2
(n− x)3/2 + n]

(n− x)2
< 0

for all µn−1 ≤ x ≤ µ1 . Thus f(x) is decreasing for µn−1 ≤ x ≤ µ1 , implying

f(x) ≥ f(µ1) =
(n− µ1)3/2 − n

n− µ1

that is,

LEL(G)−Kf(G) ≥ (n− 1)((n− µ1)3/2 − n)

n− µ1

> 0

if (n− µ1)3/2 − n > 0, that is, µ1 < n− n2/3.

Remark 5.6.26. By Lemma 5.6.24, µ1 ≤ t1 + 2, where t1 is the maximum ver-

tex degree of the line graph L (G) of G. Then from Theorem 5.6.25, it follows

f(x) ≥ f(t1+2) = (n−t1−2)3/2−n
n−t1−2

, which gives LEL(G) > Kf(G), if t1 < n−n2/3−2.
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Let Γn,k be the family of graphs obtained by attaching a path on n−k vertices

to a graph of order k, we have the following consequence of Theorem 5.6.25.

Corollary 5.6.27. Let G ∈ Γn,k with k ≥ 4 and n − k ≥ n2/3 + 2. Then

LEL(G) > Kf(G).

The complement G and line graph L (G) of an r-regular graph G are re-

spectively, (n − 1 − r)-regular and (2r − 2)-regular. The following result gives a

sufficient condition for a regular graph and its complement to satisfy the inequality

LEL(G) > Kf(G).

Corollary 5.6.28. Let G 6∼= Kn be an r-regular graph with n vertices. If

r < (n − n2/3)/2, then LEL(G) > Kf(G). If r > (n + n2/3 − 2)/2, then

LEL(G) > Kf(G).

The following is another sufficient condition for a graph G to satisfy the in-

equality LEL(G) > Kf(G).

Theorem 5.6.29. For p ≥ 4 and 1 ≤ r ≤ p, let Kp ∨Kr be a spanning subgraph

of a graph G of order n = p+ r. Then LEL(G) > Kf(G).

Proof. The Laplacian spectrum of Kp and Kr are
{
pp−1, 0

}
and

{
0r
}

, respec-

tively. Therefore, by Lemma 3.4.15, the Laplacian spectrum of Kp ∨Kr is
{

(p +

r)p, pr−1, 0
}

. This implies

Kf(Kp ∨Kr) =
np

p+ r
+
n(r − 1)

p

≤ (p+ r − 1) + (p− 1) ≤ 2(p+ r − 2)

and

LEL(Kp ∨Kr) = p
√
p+ r + (r − 1)

√
p

≥ (p+ r − 1)
√
p ≥ 2(p+ r − 2)

resulting in LEL(Kp∨Kr) ≥ Kf(Kp∨Kr). The result follows now from Theorem

5.6.14.
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The Laplacian spectrum of the complete bipartite graphKn
2
,n
2

is
{
n, (n

2
)n−2, 0

}
.

For n ≥ 5, this yields

Kf(Kn
2
,n
2
) = 2n− 3 <

√
n+ (n− 2)

√
n

2
= LEL(Kn

2
,n
2
).

Using Theorem 5.6.14, we have the following observation.

Theorem 5.6.30. If Kn
2
,n
2

is a spanning subgraph of a graph G of order n, then

Kf(G) < LEL(G), for all n ≥ 5.

5.7 Conclusion

Although we have solved the problem “is it possible to find a constant c

(which may depend on the number of vertices n and maximum vertex degree ∆),

such that for any connected graph G with m ≥ c edges, LEL(G) > Kf(G)” asked

in [36] partially. It will be of interest in future to find more sufficient conditions

for the inequality LEL(G) > Kf(G).
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CHAPTER 6

On the Laplacian energy of digraphs

In this chapter, we consider the Laplacian energy of digraphs. We mention

different approaches of Laplacian energy of a digraph, put forward by different

researchers. We will consider the skew Laplacian energy of a digraph as given in

[22] and we obtain some bounds in this regard.

6.1 Introduction

Let D be a digraph with n vertices v1, v2, . . . , vn and m arcs. Let d+
i =

d+(vi), d
−
i = d−(vi) and di = d+

i + d−i , i = 1, 2, . . . , n be the outdegree, indegree

and degree of the vertices of D , respectively. The out-adjacency matrix A+(D) =

(aij) of a digraph D is the n × n matrix, where aij = 1, if (vi, vj) is an arc and

aij = 0, otherwise. The in-adjacency matrix A−(D) = (aij) of a digraph D is the

n× n matrix, where aij = 1, if (vj, vi) is an arc and aij = 0, otherwise. It is clear

that A−(D) = (A+(D))t.

The skew adjacency matrix S(D) = (sij) of a digraph D is the n× n matrix,

where

sij =


1, if there is an arc from vi to vj,

−1, if there is an arc from vj to vi,

0, otherwise.

It is clear that S(D) is a skew symmetric matrix, so all its eigenvalues are

zero or purely imaginary. The energy of the matrix S(D) was considered in [2],

and is defined as

Es(D) =
n∑
i=1

|ξ|,

where ξ1, ξ2, . . . , ξn are the eigenvalues of S(D). This energy of a digraph D is

called the skew energy by Adiga et al. [2]. For recent developments in the theory

of skew energy, see the survey [97].

LetD+(G) = diag(d+
1 , d

+
2 , . . . , d

+
n ), D−(G) = diag(d−1 , d

−
2 , . . . , d

−
n ) andD(G) =

diag(d1, d2, . . . , dn) be the diagonal matrix of vertex outdegrees, vertex indegrees

and vertex degrees of D , respectively.
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In an effort to extend the concept of Laplacian energy to digraphs, Adiga and

Smitha [4] in 2009, while following the definition of Laplacian energy by Lazic [95]

put forward the skew Laplacian energy of a simple digraph D , which is defined as

SLEl(D) =
n∑
i=1

ν2
i , (6.1)

where ν1, ν2, . . . , νn are the eigenvalues of the skew Laplacian matrix SL(D) =

D(D) − S(D) of D . In analogy to Theorem 2 and 4 in [95], they obtained the

following result.

Theorem 6.1.1.

(i) For any simple digraph D on n vertices whose vertex degrees are d1, d2 . . . , dn,

SLEl(D) =
n∑
i=1

di(di + 1).

(ii) For any connected simple digraph D on n ≥ 2 vertices, 2n−4 ≤ SLEl(D) ≤
n(n− 1)(n− 2), where the left equality holds if and only if D is the directed

path on n vertices and the right equality holds if and only if D is the complete

digraph on n vertices.

Theorem 6.1.1 shows that the skew Laplacian energy of a simple digraph

defined in this way is independent of its orientation, which does not reflect the

adjacency of the digraph. Being aware of this and the definition of Laplacian

energy of a graph as put forward by Gutman and Zhou [65], Adiga and Khoshbakht

[3] gave another definition of the skew Laplacian energy of a digraph as

SLEg(D) =
n∑
i=1

|νi −
2m

n
|, (6.2)

where ν1, ν2, . . . , νn are the eigenvalues of the skew Laplacian matrix SL(D) =

D(D) − S(D) of D . In analogy to the bounds for Laplacian energy of a graph

established by Gutman et al. [65], they obtained the following result.

Theorem 6.1.2. Let D be simple digraph with n vertices and m arcs. Assume

that d1, d2, . . . , dn are the vertex degrees and ν1, ν2, . . . , νn are the eigenvalues of

the skew Laplacian matrix SL(D) = D(D) − S(D). Let γi = νi − 2m
n

and |γ1| ≤
|γ2| ≤ · · · ≤ |γn| = k. Then
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(i) 2
√
M ≤ SLEg(D) ≤

√
2M1n.

(ii) SLEg(D) ≤ k +
√

(n− 1)(2M1 − k2).

(iii) If D has no isolated vertices, then SLEg(D) ≤ 2M1, where M = −m +
1
2

∑n
i=1(di − 2m

n
)2 and M1 = M + 2m = m+ 1

2

∑n
i=1(di − 2m

n
)2.

In 2010, Kissani and Mizoguchi [89] introduced a different approach for the

Laplacian energy for digraphs, in which only the outdegrees of the vertices are

considered rather than both the outdegrees and indegrees. Let D be a digraph

on n vertices and let ν1, ν2, . . . , νn be the eigenvalues of the matrix L+(D) =

D+(D)− A+(D). They [89] defined the Laplacian energy of a digraph D as

LEk(D) =
n∑
i=1

ν2
i , (6.3)

and obtained the following result.

Theorem 6.1.3. Let D be a digraph with n vertices and vertex out degrees

d+
1 , d

+
2 , . . . , d

+
n . Then

(i) If D is a simple digraph, then LEk(D) =
n∑
i=1

(d+
i )2.

(ii) If D is a symmetric digraph,. then LEk(D) =
n∑
i=1

d+
i (d+

i + 1).

Moreover, Kissani and Mizoguchi [89] established some relation between the

Laplacian energy of a graph (as put forward by Lazic [95]) and the Laplacian en-

ergy LEk(D) of the corresponding digraph D and used the so-called minimization

maximum out-degree (MMO) algorithm [10] to determine the digraphs with min-

imum Laplacian energy. The shortage of this definition is that it does not make

use of the in-adjacency information of a digraph.

Recently (in 2013) Cai et al. [22] defined a new type of skew Laplacian matrix

S̃L(D) of a digraph D as follows.

Let D+(D) and D−(D) respectively be the diagonal matrices of vertex out-

degree and vertex indegree and let A+(D) and A−(D) respectively be the out-

adjacency and in-adjacency matrix of a digraph D . If A(G) is the adjacency

matrix of the underlying graph G of the digraph D , then it is clear that A(G) =
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A+(D) +A−(D) and S(D) = A+(D)−A−(D), where S(D) is the skew adjacency

matrix of D . Therefore, following the definition of Laplacian matrix of a graph,

Cai et al. called the matrix

S̃L(D) = (D+(D)−D−(D))− (A+(D)− A−(D))

= D̃(D)− S(D),

where D̃(D) = D+(D)−D−(D), as the skew Laplacian matrix of the digraph D .

It is clear that the matrix S̃L(D) is not symmetric, so its eigenvalues need not be

real. However, we have the following observation.

Theorem 6.1.4.

(i) ν1, ν2, . . . , νn are the eigenvalues of S̃L(D), then
n∑
i=1

νi = 0.

(ii) 0 is an eigenvalue of S̃L(D) with multiplicity p, where p is the number of

components of D with all ones vector (1, 1, . . . , 1) as the corresponding eigen-

vector.

Following the definition of matrix energy given by Nikifrov [110], Cai et al.

[22] defined the skew Laplacian energy of a digraph D , as the sum of the absolute

values of the eigenvalues of the matrix S̃L(D) and obtained various bounds.

In this chapter, we will confine ourselves to the definition of Laplacian energy

of a digraph given by Cai et al. [22].

6.2 Laplacian energy of digraphs

Definition 6.2.1. Skew Laplacian energy of a digraph. Let D be a digraph of

order n with m arcs and having skew Laplacian eigenvalues ν1, ν2, . . . , νn. The

skew Laplacian energy of D is denoted by SLE(D) and is defined as

SLE(D) =
n∑
j=1

|νj|. (6.4)

This concept was introduced in 2013 by Cai et al. [22]. The idea of Cai et

al. was to conceive a graph energy like quantity for a digraph, that instead of

skew adjacency eigenvalues is defined in terms of skew Laplacian eigenvalues and
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that hopefully would preserve the main features of the original graph energy. The

definition of SLE(D) was therefore so chosen that all the properties possessed by

graph energy should be preserved.

A digraph D is said to be Eulerian if d+
i = d−i , for all i = 1, 2, . . . , n.

Therefore, for an Eulerian digraph D , we always have D̃(D) = 0, which gives

S̃L(D) = −S(D). Using this, we have the following observation.

Theorem 6.2.1. For an Eulerian digraph D , SLE(D) = Es(D), where Es(D)

is the skew energy of D .

As an immediate consequence to Theorem 6.2.1, we have the following result.

Corollary 6.2.2. For a directed cycle Cn, SLE(Cn) = Es(Cn), where Es(D) is

the skew energy of D .

We show that every even positive integer is indeed the skew Laplacian energy

of some digraph.

Theorem 6.2.3. Every even positive integer 2(n−1) is the skew Laplacian energy

of a directed star.

Proof. Let V (K1,n) = {v1, v2, . . . , vn+1} be the vertex set of K1,n. If vn+1 is the

center of K1,n, orient all the edges toward vn+1. Then

S(K1,n) =


0 0 · · · 0 1

0 0 · · · 0 1
...

... · · · ...
...

0 0 · · · 0 1

−1 −1 · · · −1 0

 and D̃(K1,n) =


1 0 · · · 0 0

0 1 · · · 0 0
...

... · · · ...
...

0 0 · · · 1 0

0 0 · · · 0 −n

 .

Therefore,

S̃L(K1,n) =


1 0 · · · 0 −1

0 1 · · · 0 −1
...

... · · · ...
...

0 0 · · · 1 −1

1 1 · · · 1 −n

 .
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It is easy to see that the eigenvalues of this matrix are {−(n − 1), 0, 1[n−1]},
and so SLE(K1,n) = 2(n − 1). On the other hand, if we orient the edges away

from vn+1, then it can be seen that S̃L(K1,n) =


−1 0 · · · 0 1

0 −1 · · · 0 1
...

... · · · ...
...

0 0 · · · −1 1

−1 −1 · · · −1 n

 , having

eigenvalues {(n − 1), 0,−1[n−1]}, so SLE(K1,n) = 2(n − 1). Thus, for a directed

star K1,n, we have SLE(K1,n) = 2(n− 1).

If all the edges of the star K1,n are oriented away from the center vn+1 except

k, 1 ≤ k ≤ n − 1, edges which are oriented towards the center vn+1, then it can

be seen that the skew Laplacian matrix of K1,n is

S̃L(K1,n) =



1 0 · · · 0 0 · · · 0 −1

0 1 · · · 0 0 · · · 0 −1
...

... · · · ...
... · · · ...

...

0 0 · · · 1 0 · · · 0 −1

0 0 · · · 0 −1 · · · 0 1
...

... · · · 0 0 · · · ...
...

0 0 · · · 0 0 · · · −1 1

1 1 · · · 1 −1 · · · −1 n− 2k


.

By direct calculation, it can be seen that the skew Laplacian characteristic

polynomial of this matrix is x(x−1)k−1(x+1)n−k−1 (x2 − (n− 2k)x+ n− 1) and so

its eigenvalues are {0, 1[k−1],−1[n−k−1],
n−2k+

√
(n−2k)2−4(n−1)

2
,
n−2k−

√
(n−2k)2−4(n−1)

2
}.

Therefore, SLE(K1,n) = n − 2 +
√

(n− 2k)2 − 4(n− 1). Thus, using Theorem

6.2.3, we have

SLE(K1,n) = 2(n−1), if all the edges are oriented towards or away from the center,

and SLE(K1,n) = n−2+
√

(n− 2k)2 − 4(n− 1), otherwise, where k, 1 ≤ k ≤ n−1

is the number of edges oriented towards the center,

giving the complete description of the skew Laplacian energy of orientations of

K1,n. It is clear that unlike the skew energy of any orientation of K1,n, which is

same as the corresponding energy, the skew Laplacian energy of orientations of

K1,n is not same as the corresponding Laplacian energy.
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Moreover, it is also clear that any two orientations which contain edges di-

rected from and directed to, the center of K1,n are mutually non cospectral di-

graphs.

6.3 Bounds for skew Laplacian energy

In this section, we mention some well known bounds for skew Laplacian en-

ergy SLE(D), which gives its connection to various graph parameters.

For a digraph with n vertices, m arcs having vertex outdegrees d+
i and vertex

indegrees d−i , i = 1, 2, . . . , n, let M = −m+
1

2

n∑
i=1

(
d+
i − d−i

)2
and M1 = M+2m =

m+
1

2

n∑
i=1

(
d+
i − d−i

)2
. Clearly, M1 ≥ m, with equality if and only if D is Eulerian.

The following bounds are obtained in the basic paper [22] for skew Laplacian

energy SLE(D) of a digraph D , which are analogues to the corresponding bounds

on Laplacian energy LE(G).

Theorem 6.3.1. Let D be a simple digraph possessing n vertices, m arcs and p

components. Assume that d+
i and d−i respectively are the outdegree and indegree of

the vertex vi, i = 1, 2, . . . , n and ν1, ν2, . . . , νn are the skew Laplacian eigenvalues

of D . Then

2
√
|M | ≤ SLE(D) ≤

√
2M1(n− p). (6.5)

Equality occurs on the left if and only if for each pair of νi1νj1 and νi2νj2 (i1 6=
j1, i2 6= j2), there exists a non-negative real number k such that νi1νj1 = kνi2νj2 ;

and for each pair of ν2
i1

and ν2
i2

, there exists a non-negative real number l such that

ν2
i1

= lν2
i2

. Equality occurs on the right if and only if D is 0-regular or for each

vi ∈ V (D), d+
i = d−i , and the eigenvalues of S̃L(D) are 0[p], ai[

n−p
2

],−ai[n−p
2

](a > 0).

As an immediate consequence to Theorem 6.3.1, we have the following result.

Corollary 6.3.2. Let D be a simple digraph possessing p components C1, C2, . . . , Cp.

If SLE(D) =
√

2M1(n− p) , then each component Ci is Eulerian with odd num-

ber of vertices.
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Since n− p ≤ n, we have the following consequence of Theorem 6.3.1.

Corollary 6.3.3. For any simple digraph D , SLE(D) ≤
√

2M1n.

If D has no isolated vertices, then n ≤ 2m, and so
√

2M1n ≤ 2
√
M1m ≤ 2M1.

Thus we have the following observation.

Corollary 6.3.4. For any simple digraph D , SLE(D) ≤ 2M1.

We now obtain a Koolen type upper bound (see Theorem 2.3.6) for SLE(D).

Theorem 6.3.5. Let D be a simple connected digraph with n vertices, m arcs

and p components. Assume that t = |ν1| ≥ |ν2| ≥ · · · ≥ |νn−p| ≥ 0, where

ν1, ν2, . . . , νn−p, 0
[p] are the eigenvalues of S̃L(D). Then

SLE(D) ≤ t+
√

(n− p− 1)(2M1 − t2).

Equality occurs if and only if D is 0-regular or for each vi ∈ V (D), d+
i = d−i , and

the eigenvalues of S̃L(D) are 0[p], ai[
n−p
2

],−ai[n−p
2

](a > 0).

Proof. Let S̃L(D) = (lij). By Schur’s triangularization theorem [82], there exists

a unitary matrix U such that U∗S̃L(D)U = T , where T = (tij) is an upper

triangular matrix with diagonal entries tii = νi, i = 1, 2, . . . , n. Therefore,

n∑
i,j=1

|lij|2 =
n∑

i,j=1

|tij|2 ≥
n∑
i=1

|tii|2 =
n∑
i=1

|νi|2,

that is,

n∑
i=1

|νi|2 ≤
n∑

i,j=1

|lij|2 =
n∑

i,j=1

(d+
i − d−i )2 + 2m = 2M1. (6.6)

Now, applying Cauchy-Schwarz’s inequality to vectors (|ν2|, |ν3|, . . . , |νn−p|)
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and (1, 1, . . . , 1) and using (6.6), we have

SLE(D)− |ν1| =
n∑
i=2

|νi| =
n−p∑
i=2

|νi| ≤

√√√√(n− p− 1)

n−p∑
i=2

|νi|2

=

√√√√(n− p− 1)
n∑
i=2

|νi|2 ≤
√

(n− p− 1)(2M1 − |ν1|2).

This gives,

SLE(D) ≤ t+
√

(n− p− 1)(2M1 − t2).

Equality case can be discussed similarly as in Theorem 6.3.1.

The following arithmetic-geometric mean inequality can be found in [92].

Lemma 6.3.6. If a1, a2, . . . , an are non-negative numbers, then

n

 1

n

n∑
j=1

aj −

(
n∏
j=1

aj

) 1
n

 ≤ n
n∑
j=1

aj −

(
n∑
j=1

√
aj

)2

≤ n(n− 1)

 1

n

n∑
j=1

aj −

(
n∏
j=1

aj

) 1
n

 .
Moreover equality occurs if and only if a1 = a2 = · · · = an.

The following inequality was obtained by Furuichi [51].

Lemma 6.3.7. For a1, a2, . . . , an ≥ 0 and p1, p2, . . . , pn ≥ 0 such that
n∑
j=1

pi = 1,

n∑
j=1

ajpj −
n∏
j=1

a
pj
j ≥ nλ

(
1

n

n∑
j=1

aj −
n∏
j=1

a
1
n
j

)
,

where λ = min{p1, p2, . . . , pn}. Moreover equality occurs if and only if a1 = a2 =

· · · = an.
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For a connected digraph D , let K =
n−1∏
j=1

|νj|, where |ν1| ≥ |ν2| ≥ · · · ≥

|νn−1| ≥ 0 are the absolute values of the eigenvalues of S̃L(D).

We first obtain a lower bound for SLE(D) in terms of the number of vertices

n and the number K.

Theorem 6.3.8. Let D be a simple connected digraph with n vertices and m arcs

having skew Laplacian eigenvalues ν1, ν2, . . . , νn−1, 0 with t = |ν1| ≥ |ν2| ≥ · · · ≥
|νn−1| ≥ 0.. Then

SLE(D) ≥ t+ (n− 2)K
1

n−1

(
K

1
2(n−1)(n−2)

t
1

2n−4

− 1

)
, (6.7)

with equality if and only if t = |ν1| = |ν2| = · · · = |νn−1|.
Proof. Setting n = n − 1, aj = |νj|, for j = 1, 2, . . . , n − 1, p1 = 1

2(n−1)
, pj =

2n−3
2(n−1)(n−2)

, for j = 2, 3, . . . , n− 1 in Lemma 6.3.7, we have

|ν1|
2(n− 1)

+
2n− 3

2(n− 1)(n− 2)

n−1∑
j=2

|νj| − |ν1|
1

2(n−1)

n−1∏
j=2

|νj|
2n−3

2(n−1)(n−2)

≥ 1

2(n− 1)

n−1∑
j=1

|νj| −
1

2

n−1∏
j=1

|νj|
1

n−1 ,

that is,

|ν1|
2(n− 1)

+
2n− 3

2(n− 1)(n− 2)
(SLE(D)− |ν1|)− |ν1|

−1
2(n−2)K

2n−3
2(n−1)(n−2)

≥ 1

2(n− 1)
SLE(D)− 1

2
K

1
n−1 ,

this gives,

SLE(D) ≥ 2(n− 2)

(
|ν1|

2(n− 1)
+
K

2n−3
2(n−1)(n−2)

|ν1|
1

2(n−2)

− 1

2
K

1
n−1

)
,

from this the result follows.
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Equality occurs in (6.7) if and only if equality occurs in Lemma 6.3.7, that is

if and only if t = |ν1| = |ν2| = · · · = |νn−1|.

We now obtain the bounds for SLE(D) in terms of the number of vertices n,

the numbers K, M and M1.

Theorem 6.3.9. Let D be a simple connected digraph with n vertices and m

arcs having skew Laplacian eigenvalues ν1, ν2, . . . , νn−1, 0 with |ν1| ≥ |ν2| ≥ · · · ≥
|νn−1| ≥ 0. Then√

2|M |+ (n− 1)(n− 2)K
2

n−1 ≤ SLE(D) ≤
√

2M1(n− 2) + (n− 1)K
2

n−1 ,

(6.8)

with equality on the left if and only if for each pair ν2
i1

and ν2
i2

, there exists a

non-negative real number l such that ν2
i1

= lν2
i2

and the equality on right occurs if

and only if D is 0-regular or for each vi ∈ V (D), d+
i = d−i , and the eigenvalues of

S̃L(D) are 0[p], ai[
n−p
2

],−ai[n−p
2

](a > 0).

Proof. Setting n = n − 1 and aj = |νj|2, for j = 1, 2, . . . , n − 1 in Lemma 6.3.6,

we have

α ≤ (n− 1)
n−1∑
j=1

|νj|2 −

(
n−1∑
j=1

|νj|

)2

≤ (n− 2)α,

that is,

α ≤ (n− 1)
n−1∑
j=1

|νj|2 − (SLE(D))2 ≤ (n− 2)α, (6.9)

where

α = (n− 1)

 1

n− 1

n−1∑
j=1

|νj|2 −

(
n−1∏
j=1

|νj|2
) 1

n−1


=

n−1∑
j=1

|νj|2 − (n− 1)

(
n−1∏
j=1

|νj|

) 2
n−1

=
n−1∑
j=1

|νj|2 − (n− 1)K
2

n−1 .
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Using (6.6) and the value of α, we have from the left inequality of (6.9)

(SLE(D))2 ≤ (n− 2)
n−1∑
j=1

|νj|2 + (n− 1)K
2

n−1 ,

that is,

SLE(D) ≤
√

2M1(n− 2) + (n− 1)K
2

n−1 ,

this proves the right inequality.

Now, using (7) from [22] (Theorem 3.1) and the value of α, we have from the

right inequality of (6.9)

(SLE(D))2 ≥
n−1∑
j=1

|νj|2 + (n− 1)(n− 2)K
2

n−1 ,

that is,

SLE(D) ≥
√

2|M |+ (n− 1)(n− 2)K
2

n−1 ,

this proves the left inequality.

Equality case can be discussed similarly as in Theorem 6.3.1.

Remark 6.3.10. The upper bound given by Theorem 6.3.9, is better than the up-

per bound given by Theorem 6.3.1 for all connected digraphs D . As by arithmetic-

geometric mean inequality, we have

2M1 ≥
n−1∑
j=1

|νj|2 ≥ (n− 1)

(
n−1∏
j=1

|νj|

) 2
n−1

= (n− 1)K
2

n−1 ,

adding 2M1(n− 2) on both sides, we obtain

2M1(n− 1) ≥ 2M1(n− 2) + (n− 1)K
2

n−1 ,

from which the result follows.

Remark 6.3.11. The lower bound given by Theorem 6.3.9, is better than the

lower bound given by Theorem 6.3.1 for all connected digraphs D , with 2|M | ≤
(n− 1)(n− 2)K

2
n−1 .
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6.4 Conclusion

We conclude this chapter with the following problems, which will of interest

for the future research.

Problem 6.4.1. Interpret all the coefficients of the characteristic polynomial of

S̃L(D) in terms of D .

Problem 6.4.2. Establish the possible relations between the largest and smallest

skew Laplacian eigenvalue of a digraph D with the parameters associated with the

digraph.

Problem 6.4.3. Establish the possible relations between the skew Laplacian spec-

trum of a digraph D and the Laplacian spectrum of the corresponding underlying

graph GD .

Problem 6.4.4. For any orientation, give the complete description for the skew

Laplacian energy of the cycle Cn.

Problem 6.4.45. Characterise all the non-Eulerian digraphs D for which SLE(D) =

Es(D).

Problem 6.4.6. If possible, interpret skew Laplacian energy in chemistry and

other disciplines.
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