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PREFERACE

The concept of information theory originated when an attempt
was made to create a theoretical model for the transmission of
information theory of various kinds. information theory is a branch of
mathematical theory of probability and is applied in wide variety of
fields: communication theory, thermodynamics, econometrics, operation
research and psychology etc.

The development presented here have represented a step towards
generalizing various measures of information, their characterization,
application in coding theory and inference. The thesis consists of five
chapters.

The first chapter gives the basic concepts and preliminary results
which are used in the subsequent chapters and necessary for the thesis
to be self contained one.

in chapter II, certain generalized entropy functions have been
considered and their bounds have been obtained by considering their
suitable codeword mean length. The coding theorems obtained in this
chapter not only produces new results but also generalizes some well
established results in the literature of information theory. Also, codes of
variable length that are capable of error correction are studied. A lower
bound on the mean length of code words for personal probability codes
has been established. This generalizes the result due to Kerridge, which
itself is a generalization of celebrated result due to Shannon for noiseless
channel. The bounds obtained provides a measure of optimality for
variable length error correcting codes.

In the chapter III, various generalized 'useful' inaccuracy measures
have been considered and their bounds have been obtained for suitable
generalized mean codeword lengths. Several coding theorems obtained
in this chapter have been published in "International Journal of Pure and
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Applied Mathematics" [8] and "Sarajevo Journal of Mathematics" [12].
The beauty of these results is that it generalizes some well established
results and are suitable for the more complex distributions other than
exponential.

In chapter IV, several information inequalities have been obtained
by considering Csiszar f-divergence and symmetric j- divergence
measure. Some particular cases are also obtained by comparing it with a
number of other divergence measures arising in information theory.
These results have been accepted for publication in "Indian Journal of
Mathematics"[13]. Also, some generalized information inequalities have
been obtained, which are not only new but also generalizes the results
obtained by Dragomir [47]. This work has been published in " Journal of
Mathematics and system sciences" [10].

In chapter V, some generalized inequalities have been obtained for
logarithmic mapping and convex mappings by using Jensen's inequality.
Dragomir [46] have obtained some information inequalities for
logarithmic mappings and convex mappings, but the results in this
chapter are obtained by considering the functions with independent
variable 's' which gives some new information inequalities and also
generalizes some results obtained by Dragomir [46]. This work has been

published in International Journal of Pure and Applied
Mathematics"[11]. Also, some upper bounds for the relative Arithematic
Geometric divergence measure have been obtained by using some

classical inequalities like Kantorovic inequality, Diaz- Metcalf inequality.

A comprehensive bibliography is given at the end.
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1.1 Introduction.

Information theory is a new branch of probability theory with extensive poten-
tial applications to communication system. The term information theory does not possess
a unique definition. Broadly speaking, information theory deals with the study of prob-
lems concerning any system. This includes information processing, information storage,
information retrieval and decision making. In a narrow sense, information theory studies
all theoretical problems connected with the transmission of information over communica-
tion channels. This includes the study of uncertainty (information) measure and various

practical and economical methods of coding information for transmission.

The first studies in this direction were undertaken by Nyquist [91,92] in 1924
and 1928 and by Hartley [55] in 1928, who recognized the logarithmic nature of the
measure of information. In 1948, Shannon [107] published a remarkable paper on the
properties of information sources and of the communication channels used to transmit
the outputs of these sources. Around the same time, Wiener [133] also considerd the
communication situations and came up, independently, with results similar to those of

Shannon.

In the last 40 years, the information theory has been more precise and has
grown into staggering literature. Some of its terminology even has become part of our
daily language and has been brought to a point where it has found wide applications
in various fields of importance. e.g., The work of Bar-Hillel [16], Balasubrahmanyan
and Siromoney [15] in linguistic, Brillouins [27], Jaynes [64] in Physics, Kullback [82],
Kerridge [73] in Statistical estimation, Theil [126] in Economics, Quastler [98] in Psy-
chology, Quastler [97] in Biology and Chemistry, Wiener [133] in Cybernetics, Renyi
[104], Zaheeruddin [135] in inference, Kapur [71] in Operation Research, Kullback [82]
in Mathematical Statistics, Zadeh [134] in Fuzzy set theory, Rao [99] in anthropology,
Mei [88] in Genetics, Sen [106] in Finance, Theil [127] in Poltical Science, Pielou [96]
in Biology, Gokhale and Kullback [50] in analysis of contingency tables, Chow and Lin
[32] and Kazakos and Cotsidas [72] in approximation in probability distributions, Kadota
and Shepp [66] and Kailath [67] in signal processing and Beth Bassat [21] and Chen [31]

in pattern recognition.



A key feature of Shannon information theory is that the term information can
often be given a Mathematical meaning as a numerically measurable quantity, on the basis
of a probabilistic model, in such a way that the solutions of many important problems of
information storage and transmission can be formulated in terms of this measure of the
amount of information. This important measure has a very concrete operational interpre-
tation: it roughly equals the minimum number of binary digits needed, on the average, to
encode the message in question. The coding theorems of information theory provide such
a overwhelming evidence for the adequacy of the Shannon information measure that to
look for essentially different measures of information might appear to make no sense at
all. Moreover, it has been shown by several authors, starting with Shannon [107] that the
measure of the amount of information is uniquely determined by some rather natural pos-
tulates. Still, all the evidence that the Shannon information measure is the only possible
one is valid only within the restricted scope of coding problems considerd by Shannon.
As pointed out by Renyi [104] in his paper on generalized information measures, in other
sorts of problems other quantities may serve just as well, or even better, as measures of in-
formation. This should be supported either by their operational significance or by a set of
natural postulates characterizing them, or, preferably, by both. Thus the idea of general-
ized entropies arises in the literature. It found its birth in Renyi [104], who characterizing
a scalar parametric entropy as an entropy of order «, which includes Shannon entropy as

a limiting case.

1.2 Shannon’s entropy

Let X be a discrete random variable taking on a finite number of possible values
n
x1, Ty, ..., T, happening with probabilities P = (p1,pa, ..., pn) , 0 > 0,0 = 1,2, ....n, > p; =
i=1
1.We denote

(1.2.1) X - [ Ty Ty e Ty ]

and call the scheme (1.2.1) as the information scheme. Shannon [107] proposed the

following measure of information for the information scheme (1.2.1) and call it entropy.
(1.2.2) H (P) = H (p1,p2; s pn) = —lez' log p;

Generally, the base of logarithm is taken as ‘2’ and it is assumed 0log 0 = 0. When

the logarithm is taken as base ‘2’ the unit of information is called a ‘bit’. When the natural
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logarithim is taken, then the resulting unit is called a ‘nit’. If the logarithim is taken with

base 10, the unit of information is known as ‘Hartley’.

The information measure (1.2.2) satisfies the following properties.

(1) Non-negativity

H(p17p2> >pn> Z 0

The entropy is always non -negative.

(2) Symmetry

H(p17p27 7pn) =H (pk(l)7pk(2)7 7pk(n)) v (php?a 7pn) S
where (k(l), key, ... l{:(n)) is an arbitrary permutation on (1,2,...,n).

H (p1,p2, ..., pn) is a symmetric function on every p; ,i = 1,2, ...,n

(3) Normality

(33 =1

The entropy becomes unity for two equally probable events.
(4) Expansibilty

Hn (p17p2a apn) = Hn+1 (Oap17p2> >pn>

- Hn+1 (p17p27 <y Pis Ovpi-i-l’ 7pn)

— Hn+l (p17p2a ooy Py 0)

(5) Recursivity

Hy, (p1,p2; s pn) = Hoo1 (P14 pa, 03, -, Dn) + (p1 + p2) Ho (m’fﬁm, plpfm)



where p; > 0, > p; = 1 with p; + py > 0.
i=1

(6) Decisivity
H2 (170) - HQ (07 1) =0

If one of the event is sure to occur then the entropy is zero in the scheme.

(7) Maximality
H(plap?; 7pn) < H (%7 %7 S %) - 1Ogn

The entropy is maximum when all the events have equal probabilities.

(8) Additivity

Hy (PQ) = Hyy (p1a1, 142, -5 P11 D241, D2G25 -5 D215 -5 Prdts Pud2; -5 Pudl)
= H, (p1,p2, -, 0n) + Hi (a1, 2, s 1)

forall (pi1,p2,...,pn) € P and forall (¢1, ¢, ...,q) € Q.

If the two experiments are independent then the entropy contained in the experiment
is equal to the entropy in the first experiment plus entropy in the second experiment.

(9) Strong Additivity
Hy (PQ) = Hy (p1q1, P14, -, P11, D241, D242 <oy P2l oy PG P2, s Pndl)

= H, (p1,p2, s 0n) + 2_0iHi (¢, Qi -, Gin)
i=1

forall (pi,p2,...,pn) € P andforall (¢1,qo,...,q)) € Q and g;; are the conditional

probabilities i.e., entropy contained in the two experiments is equal to the entropy in the

first plus the conditional entropy in the second experiment given that the first experiment

has occured.



The Shannon’s entropy (1.2.2) was characterized by Shannon assuming a set

of postualtes. There exists several other characterization of the measure (1.2.2) using
different set of postulates. Notably amongst them are those of Khinchin [79], Tverberg
[130], Chaundy and Mcloed [30], Renyi [104], Lee [84] , Daroczy [37], Rathie [102],
Guiasu [52], Kapur [70] etc.

1.3 Generalizations of Shannon’s entropy

Various generalizations of Shannon’s entropy are available in the literature.

Some of the important generalizations are given here.

(1) Renyi’s entropy

Renyi [104] generalized the Shannon’s entropy for an incomplete probability distri-

bution as
—ﬁ?pi log p;
(1.3.1) Hy(P)=—“—
> P
=1

and the entropy of order o as

ipia n
(13.2) Ho(P)=tlog S- pi2 0, LR <1 a>0(£1)

i=1

For o« — 1, (1.3.2) reduces to (1.3.1).
For a complete probability distribution, (1.3.2) reduces to
(133)  Ho(P) =1 logdpf ,a>0(#1)

i=1

and is called Renyi’s [104] entropy of order o , as « — 1, the measure (1.3.3)

reduces to Shannon’s entropy (1.2.2).

(2) Kapur’s entropy

Kapur [69] generalized the Shannon’s entropy for an incomplete probability distri-

bution as



(1.3.4) HP (P) = —=
v (P) >p!
=1
and
a+B—1
(1.3.5) HP (P) = £ log =4
(P) =1 =

where p; >0, > p;<1l,a>0(#£1),3>0
i=1

For a complete probability distribution and for « — 1,3 = 1, the measure (1.3.5)

reduces to Shannon’s entropy (1.2.2).

(3) Havrada- Charavt’s entropy

Havrada- Charvat [57] introduced non- additive entropy as

(13.6) H? (P) = (i_ilpf - 1) . B>0(£1)

and called it generalized entropy of type 3. When 3 — 1, the measure (1.3.6) be-

comes Shannon’s entropy (1.2.2).

(4) Aczel and Daroczy’s entropy

Aczel and Daroczy [3] introduced the entropy of order a and type /3

n
(et

>
(137 HI(P)= 3 log 5, a#8 a,f>0
p;
=1

For § = 1, (1.3.7) becomes Renyi’s [104] entropy and for o« — 1,3 = 1, (1.3.7)

reduces to Shannon’s entropy (1.2.2).

(5) Varma’s entropy

Varma [132] introduced the entropies as

(13.8) HE(P)= 51 log (Zp?““l) , B—1<a<p, 821
i=1



and
(1.3.9) Hg(P)mlog(gpﬂ , 0<a<p, =1

For f =1and o — 1, (1.3.8) and (1.3.9) becomes Shannon’s entropy (1.2.2).

(6) Rathie’s entropy

Rathie [103] introduced the generalized entropy

n 48,1
pr‘ fi

pll

Forg, =p3 V i=1,2,...,n,(1.3.10) reduces to (1.3.5). Alsowhen 3; =1 V i =
..,n and a — 1 then (1.3.10) reduces to Shannon’s entropy (1.2.2).

(7) Armito’s entropy

Armito [5] introduced the generalized entropy as

(13.11) Ao (P) = szl)a—q, a>0(£1)

For o« — 1, (1.3.11) reduces to Shannon’s entropy (1.2.2).

(8) Sharma and Mittal’s entro
Py

Sharma and Mittal [111] introduced the generalized entropies as

(1.3.12) H,(P)= ﬁ {exp ((a —1) En:pi 10gp,~> — 1] ,a > 0(#1)

=1
For a — 1,(1.3.2) reduces to Shannon’s entropy (1.2.2).

and
a—1

(13.13)  HY (P) = gty [<2p1>m] L a>0(£1),8>0(£1)

Fora — 1,3 — 1. (1.3.13) reduces to Shannon’s entropy (1.2.2).



(9) Sharma and Taneja’s entropy

Sharma and Taneja [112] introduced the generalized entropies as

(1.3.14) Hy (P) = =213 pflogp;, a>0
i=1

(2

For o = 1, (1.3.14) reduces to Shannon’s entropy (1.2.2).

n

(1.3.15) HY(P) = 5=55=> (p?—p?), a# B, a,>0

i=1
For f = 1and o — 1, (1.3.15) reduces to Shannon’s entropy (1.2.2).

(13.16) H™P (P) = =X S"pesin (Blogp;), a>0,8+km, k=01, ...
=1

sin 3

For 6 — 0,a = 1, (1.3.16) reduces to Shannon’s entropy (1.2.2).

(10) Picard’s entropy

Picard [95] introduced the generalized entropies as

iwlogm
(1.3.17)  H,, (P)=—=% , 1; >0, 1=1,2,...n
Forv,=p; Vi=1,2,....,n, (1.3.17) reduces to Shannon’s entropy (1.2.2).
ip?_ll/l
(13.18)  Hg (P) = ﬁlog =
2 vi

where o > 0(#1),1;,>0,i=1,2,....n

Forv, =p, Vi=12,...,n and a — 1, (1.3.18) reduces to Shannon’s entropy
(1.2.2).
(a=1) 3 vi log p;

(13.19)  H, .(P) —

_ 1
RCa=

where a>0(#£1),1;,>0,i=1,2,..,n

Forv, =p; Vi1 =1,2,...nand a — 1, (1.3.19) reduces to Shannon’s entropy
(1.2.2).

a—1
_ipi 711/72 ot
(13200 IS (P) = gri—p :z -1

where a £ 1,84 1,a,6>0,1v;, >0,i=1,2,....n

Forv, =p;, Vi=1,2,...n anda — 1,5 — 1, (1.3.20) reduces to Shannon’s



entropy (1.2.2).

(11) Boekee and Lubbe’s entropy

Boekee and Lubbe [26] introduced the generalized entropy as

(13.21) Hp(P) = £ [1 _ (i?jf)R

For R — 1, (1.3.21) reduces to Shannon’s entropy (1.2.2).

, R>0(#1)

12) Kerridge’s inaccurac
( g y

Suppose that an experiment asserts that the probabilities of n events are Q = (q1, ¢2, ..., ¢n)
while their true probabilities are P = (p1, pa, ..., pn) , then Kerridge [73] has proposed a

measure of inaccuracy as

(1.3.22) H(P;Q) =—> "pilogy

i=1
whenp;, = ¢q; Vi=1,2,...,n, then (1.3.22) reduces to Shannon’s entropy (1.2.2).

(13) Khan and Autar’s inaccuracy

Khan and Autar [75] gave a generalized non- additive measure of inaccuracy as

B—1
Sprae |
1.3.23 H(P".Q:a,fB) = L = 1

where « # 175 7é 1»2]9@ < ]-7
i=1

D being the size of the code alphabet. For  — 1, (1.3.23) tends to inaccuracy of

g <1
=1

(3

order v and type v due to Sharma [114], which further forp, = ¢; V i = 1,2,...,n gives
Kapur’s [69] entropy of order o and type v.

(14) Rathie’s inaccuracy
Rathie [103] generalized the non-additive measure of inaccuracy as
Splige

(1.3.24) H (P7 Q: a’ﬁi) 1 log | =

11—« u ;
Zpil
i=1

where a # 1,5, >0,> p; <1,> ¢ <1
=1

% =1



For3;, =1V 1=1,2,...,n, a — 1 and the distribution is complete then (1.3.24)

reduces to Kerridge [73] measure of inaccuracy.

(15) Nath’s inaccuracy

Nath [90] introduced the generalized inaccuracy measure

(1.3.25) I, (P;Q) = ﬁ log Yopsg?™, a>0(#£1)
i=1

For o — 1, (1.3.25) reduces to Kerridge [73] measure of inaccuracy.

(16) Rathie and Kannapan’s measure of inaccuracy

Rathie and Kannapan [101] introduced the generalized inaccuracy measure as

13260 1P = (S 1), as 06
i=1

For o — 1, (1.3.26) reduces to Kerridge [73] inaccuracy measure.

(17) Sharma and Gupta’a inaccuracy measure
Sharma and Gupta [110] introduced inaccuracy measure as

(a) Log measure

(1327) 15, (PiQ) = ~2'Yre] loga . @ > 0,50

Fora — 1,3 — 0, (1.3.27) reduces to Kerridge [73] inaccuracy measure.
(b) Power measure

(13.28) 10, (PiQ) = gl ok () — 7). 0> 0.8.92 0.6 49

Fora — 1,3,v7 — 0, (1.3.28) reduces to Kerridge [73] inaccuracy measure.

(18) Sharma’s inaccuracy

Sharma [114] introduced the inaccuracy measure of order « and type (3

(1.3.29) HB(P;Q) = 21 épfqgil
9. a 75 =g log | =———
1 ;p?
where a >0(#1),6>0,>p;<1,> ¢ <1
i=1 i=1

For a — 1,3 = 1 and the distributions are complete then (1.3.29) reduces to Ker-

ridge [73] measure of inaccuracy.

10



(19) Parkash’s inaccuracy measure

Parkash [93] introduced the generalized inaccuracy measure

(1.3.30) I5(P;Q) = ﬁ [iﬁlpiqf - 1] , B#0

For 5 — 0, (1.3.30) reduces to Kerridge [73] inaccuracy measure.

1.4 Divergence measures

The concept of entropy was first introduced in Thermodynamics, where it was
used to provide a statement of the second law of thermodynamics, which states that the
entropy of an isolated system is non- decreasing. In statistical thermodynamics, entropy
is often defined as the log of the number of microstates in the system. Boltzman, who
has the logarithmic equation inscibed as the epitaph on his gravestone, carried out this
work. In 1928, Hartley [55] introduced a logarithmic measure of information for com-
munication. Shannon [107] was the first to define entropy and mutual information from
the statistical point of view for communication. Kullback and Leibler [81] introduced the
idea of relative information. Some times it is called cross entropy, directed divergence
and measure of discrimination. The entropy of a random variable is a measure of the
uncertainty of the random variable; it is a measure of the amount of information required
on the average to describe the random variable.The relative information is a measure of
the distance between two distributions. In statistics, it arises as an expected logarithm
of the likelihood ratio. According to the second law of thermodynamics, for a Markov
chain, the relative information decreases with time. The relationship between information
theory and thermodynamics has been discussed extensively by Brillouins [27] and Jaynes
[64].

There exists several divergence measures in the literature of information theory:

some of them are given here

(1) x? (chi square) divergence
Pearson [94] introduced the measure as

n )2 L
(1.4.1) XZ(P//Q):;(}%%%) :Z%—l
i i=1

(2) Kullback-Leibler’s relative information

Kullback -Leibler [81] introduced the divergence measure as

11



(142)  K(P//Q)=Ypilos

(3) Relative Jensen-Shannon divergence measure

Sibson [117] and Lin [85] introduced the divergence measure as

(1.4.3) F(P//Q) = sz log (pffq)

(4) Relative Arithmetic- geometric divergence measure

Taneja [125] introduced the divergence measure as

(1.4.4) G(P//Q) = 21 (”i;“h) log £ p”””

1=

(5) J-Divergence measure

Jeffrey [65] and Kullback and Leibler [81] introduced the divergence measure as
(1.4.5) J(P//Q) =3 (i — qi) log &

i=1

(6) Arithmetic- geometric divergence measure

Taneja [123] introduced the measure as

(1.4.6) T(P//Q) = Y. (P4%) log (%)

i=1

(7) Hellinger discrimination measure

Hellinger [58] introduced the divergence measure as

147 WP =33 (V- va)’

(8) Triangular discrimination measure

Topsoe [128] introduced the divergence measure as

(148 A(P//Q) =y 0muE

(9) Variational distance measure

Ben-tal et al [18] introduced the divergence measure as

(149)  V(P//Q) = ﬁ:llpi gl

12



Some important generalizations of divergence measures in information theory are:
(1) Relative information of order s

Renyi [104] introduced the generalized divergence measure as

(1.4.10) K*(P//Q) = 25 log (jlefqilS) , s>0(#1)

For s — 1, (1.4.10) reduces to Kullback - Leibler divergence measure (1.4.2).

(2) Relative information of type s

Sharma and Autar [109] and Taneja [122] introduced the measure as

(1.4.11) K, (P//Q) = {ipfqﬁ‘s - 1] , s>0(#1)

(3) Relative information of type s

Vajda [131] introduced the generalized measure as

(1.4.12) K (P//Q) = 5(5171) [épfqg_s - 1] , 5701

(4) Relative JS and AG divergence of type s

Pranesh and Taneja [83] introduced the generalized measure as

(1413)  FG,(P//Q) = 5y [ipi (%) - 1} L s£0,1
i=1

(5) J -Divergence of type s

Taneja [124] introduced the generalized measure as

(14.14)  J(P//Q) = gy [Zl (ppai ™ +pi %) — 2} ;s 70,1

(6) AG and JS divergence of type s

Taneja [124] introduced the generalized measure as

1-s

(1.4.15) I,(P//Q) = 5(51_1) {zn:l (pi—S;rqi ) (Pi;’fh')s _ 1] 401

(7) Csiszar’s f- divergence

Given a convex function f : [0,00) — R, the f- divergence measure
introduced by Csiszar [36] is given by
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(1.4.16) ¢ (p.0) = Saf (%)

where p,q € R}

The following two important concepts are due to Csiszar and Korner [34].

Joint convexity: Let f : [0,00) — R be a convex, then C (p, ¢) is jointly convex
in pand g, where p,q € R}

Jensen’s inequality: Let f : [0,00) — R be a convex function. Then for any
p,q € R with P, = Zn:lpi >0, Q, = Zn:lqi >0,

we have the inec;uality l

(1:4.17) Cy(p.a) = Quf (£)

The equality sign holds iff

(1.4.18) Bh—Dr_— =

q1 q2

SE

In particular, for all P, € A,,, we have

Cy(p,q) > f(1)
with equality iff P = Q.

1.5 Generalized ‘useful’ information measures

Shannon’s entropy is indeed a measure of uncertainty in the scheme and is
treated as information supplied by a probabilistic experiment. This formula gives us the
measure of information as a function of the probabilities with which various events occur
without considering the effectiveness or importance of the events. The possible events
of a given experiment is represented by the relevance or the utility of the information
they carry with respect to a goal. These utilities may be either of objective or subjective
character. We shall suppose that these qualitative (usefulness) are non- negative, finite,
real numbers as the utility in decision theory. Also, if one event is more useful than
another one, the utility of the first event will be greater than that of the second one. We
now try to evaluate how the amount of information supplied by a probabilistic experiment,
whose elementary events are characterized both by their probabilities and by utility of the

events. Motivated with this idea Belis and Guiasu [17] introduced a utility distribution
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U = (uy,us,...,u,) where each u; is a non -negative real numbers accounting for the
utility of the occurrence of the i*" event. If X is a discrete random variable taking on a
finite number of possible values x4, x9, ..., z,. We define the utility information scheme
by

Ty T2 .... .. Tn
(1.5.1) X=1| p pa.. Dn
(51 Uug ..... Un

The utility u; of an event may be either independent, or dependent on its objective
probability. The measure of information for the utility information scheme (1.5.1) given
by Belis and Guiasu [17] is

(1.5.2) H (U; P) = =3 u;p;log p;

n
i=1

where P = (p1,pa, .o, Pn) ,0i = 0, >.p; =1land U = (ug, ug, ..., up) ,u; > 0.
i=1
It satisfies many algebraic and analytical properties (Guiasu [52]). It reduces to
Shannon’s entropy (1.2.2) when utility aspect of the scheme is ignored by taking u; =

1Vi=1,2,...,n.
The generalized additive ‘useful” information of order o given by Gurdial and
Pessoa [53] is

(1.5.3) Ho (U; P) = T log |

n
> uip;
=1

n
u;p§
=1

, a>0(#£1)

and used it in studying noiseless coding theorems for source having utilities. The
measure H, (U; P) resembles to Renyi’s [104] entropy of order o when utility is ignored

by takingu; =1 V i=1,2....n.
The non- additive ‘useful’ information of degree (3 was first introduced and

characterized by Sharma, Mittal and Mohan [113] which is given by
1.5.4 5 (P = 0 1
(1.5.4) (P U) = IR B #
i=1
The measure (1.5.4) was further generalized by Hooda and Tuteja [62] as
S (1)
(1.5.5) HY(PU)y==——F— |, a#0,641La#p

(218 =21=2) > p,
i=1

The measure involving utilities given by Hooda and Tuteja [62] as
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(1.5.6) H, (P;U) = =215 (u;p;)* logp; , a#0
i=1

For o = 1, (1.5.6) reduces to measure of ‘useful’ information given by Belis and
Guiasu [17]. Foru; =1 V ¢ = 1,2,...,n in (1.5.6), it reduces to entropy studied by
Sharma and Taneja [112].

Autar and Khan [6] introduced the “useful’ information measure for incomplete

probability distribution as

Q=

iuip? n

(157 LHU;P)=——|1- |5 , a>0(#1),pi<1
Da-T-1 uipi i
( ) Z; iPi 1

For a — 1, (1.5.7) reduces to measure given by Belis and Guiasu [17] for incom-

plete probability distribution.

Hooda and Singh [61] introduced the ‘useful” information measure of order «

and type /3 as
S ubpethnt
(1.5.8) Hg(P;U):ﬁlog%, a,3>0, a#l
U; P;

=1

Singh et al [118] introduced the two ‘useful” information measures as

Zuz'plﬁ
(1.5.9) Ha(Pﬁ;U):ﬁlogi:z;: = a>0(£1), 3>0(#£1)
Uip;
=1
and
"N\
R ;uipi
(1.5.10) HR(P;U):m 1—| = ,
i;umi

where Re R, > p;=1,i=1,2,...n

=1
Khan et al [78] introduced the generalized ‘useful’ information measure for the

incomplete probability distribution as

n
S uipl?
=1

n
S uipl
=1

(1.5.11) sl (U P) = < 1

«
a—1
n

wherea > 0(£1),8>0,p;, >0,> p; <1,i=1,2,...,n

i=1
For 3 = 1, — 1, (1.5.11) reduces to a measure of ‘useful’ information for the
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incomplete probability distribution due to Belis and Guiasu [17].
Hooda and Ram [60] introduced the ‘useful” information measure as
i u;p§

(1.5.12) Hy (P;U) = 52— :Z— —1|, a>0(#1)
UiPi
1=1

1.6 Useful inaccuracy measures and their generalizations

Let P = (p1,p2, -, Pn) ,0i > 0,5 .p; = 1 be the probability distribution as-
i=1
sociated with a finite system of events X = (xy, 29, ..., z,,) representing the realization
of some experiment. The different z; depend upon the experiments’s goal or upon some
qualitative characteristic of the physical system taken into account; ascribe to each event
x; a non- negative number u; (> 0) directly proportional to its importance and call u; the
utility of the event x;. Then the weighted entropy [17] of the experiment X is defined as
n
(1.6.1) I(P;U) = =) up;logp;
i=1
Now let us suppose that the experimenter asserts that the probablhty of the i*" out-

come x; is ¢;, whereas the true probability is p;, with sz Z% = 1. Thus, we have

i=1 i=1
two utility information schemes
ry T2 ...... Tn n
(1.6.2) S=1 p po.. Dn , pi > 0,u; >0, pi=1
=1
Uq Ug ..... Un ’
of a set of n events after an experiment, and
T1 T2 ... .. Tn "
(1.6.3) ST=1 @ g G |5 @G >0u>0,>¢=1
i=1
Uq Uus ..... U,

of the same set of n events before the experiment.

In both the schemes (1.6.2) and (1.6.3) the utility distribution is the same be-
cause we assume that the utility u; of an outcome x; is independent of its probability of
occurrence p; , or predicted probability ¢;; u; is only a ‘utility” or value of the outcome z;

for an observer relative to some specified goal (refer to [87]).

The quantitative- qualitative measure of inaccuracy [119] associated with the

statement of an experimenter as

(1.6.4) [(P;Q:U) = =S up; log g;

i=1
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when u; = 1 V ¢ = 1,2,...,n, the measure (1.6.4) reduces to Kerridge’s [73]

inaccuracy.

Bhatia [23] generalized the ‘useful” inaccuracy measure as

f}umiqf‘_l
(1.6.5) Ia(P;Q;U):ﬁlogi:lni, a>0(£1)
Z_;uim
Further, Bhatia [22] introduced the ‘useful’ inaccuracy of order o for incomplete
probability distribution, which is given by

L

1.6.6 [.(P-O:U Ly 2l
(1.6.6) a(P1Q:U) = —ar— _iT

where a > 0(£1),p; > 0,>.p; < 1,i = 1,2,...,n. D is the size of the code
i=1
alphabet.

Tuteja and Bhaker [129] introduced the ‘useful’ inaccuracy measure of order «

and type 3 as

Sl (a7 -1)
(1.6.7) Ig(P/Q;U):Z:l—na a#1,3>0
(21-e—1) 3 p!
=1

They also studied non- additive ‘useful” inaccuracy of order v and type (3,v) as
Xn:Ufpf(pflq?ﬂ—l)

(1.6.8) 17 (P/QiU) = = . By >0,a#1

n
(21““—1)21105’
=

Parkash [93] introduced the ‘useful” inaccuracy measure as

(1.6.9) 15(P;Q;U) = 54— {iuim (qf - 1)} , B#0

1.7 Coding theorems

The elements of a finite set of n input symbols X = (xy, zo, ..., z,,) be encoded
using alphabet of D symbols. The number of symbols in a codeword is called the length of
the codeword. It becomes clear that some restriction must be placed on the assignment of
codewords. One of the restrictions may be that the sequence may be decoded accurately.
A code is uniquely decipherable if every finite sequence of code character corresponds to
at most one message. In other words, we can say uniquely decipherability is to require
that no code be a prefix of another codeword. We mean by prefix that a sequence ‘A’

of code character is prefix of a sequence ‘B’, if ‘B’ may be written as ‘AC’ for some

18



sequence ‘C’.
A code having the property that no codeword is prefix of another codeword is

said to be instantaneous code. Feinstein [49] proved that instantaneous/uniquely deci-

pherable code with lengths [y, [5, ..., ,, is possible iff

(1.7.1) iD’i <1

where D is the silz;: of the code alphabet. The inequality (1.7.1) is known as Kraft
[80] inequality. Also if

(1.7.2) - f:llip,-

is the average codeword length, where p; is the probability of the i** input symbol to

a noiseless channel then for a code which satisfy (1.7.1), the following inequality holds
(1.7.3) L>H(P)
where D (D > 1) is an arbitrary base. Equality in (1.7.3) holds iff
(1.7.4) li=—logp;, 1=1,2,....,n
by suitable encoding the message, the average code length can be arbitrarly close to
H(P).

Shannon’s [107] and Renyi’s [104] entropies have been studied by several
research workers. The study has been carried out from essentially two different point of
view. The first is an axiomatic approach and the second is a pragmatic approach. However

these approaches have little connection with the coding theorem of information theory.

Campbell [29] defined a codeword length of order t as

(1.7.5) L(t) = 1log (ZpiD”i) , —l<t<oo, t#0
i=1

and developed a noiseless coding theorem for Renyi’s [104] entropy of order «
which is quite similar to the noiseless coding theorem for Shannon’s [107] entropy.

By means of prefix code Longo [87], Gurdial and Pessoa [53], Sharma
et al [113] , Bernard and Sharma [20], Blak [25], Autar and Soni [7], Khan and Autar
[75], Khan and Haseen [74], Khan, Autar and Haseen [77], Jain and Tuteja [63], Autar
and Khan [6], Baig and Zaheeruddin [14], Bhatia [22,23], Hooda and Bhaker [59], Singh,
Kumar and Tuteja [118], Khan et al [78] etc have established coding theorems for various

information measures.
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Theorem (1.7.1): ( Kraft [80]): A necessary and sufficient condition for the exis-
tance of a instantaneous code S (x;) such that the length of each word S (x;), should be
l; i =1,2,..,nis that the Kraft inequality

(1.7.6) SSDh <1

i=1

should hold. Where D is the number of symbols in the code alphabet.
Proof: Necessary part:

First suppose that there exists a code S (x;) with the word length [; ,i = 1,2,..,n.
Definem = max{l; ,i = 1,2,..,n}and letu;, j = 1,2, ..., n be the number of codewords
with length j (some u; may be zero). Thus the number of codewords with only one letter

can not be larger than D
1.7.7) uy < D

The number of codewords of length 2, can use only of the remaining (D — u;)
symbols in their first place, because of prefix property of our codes, while any of the D

symbols can be used in the second place, thus

(1.7.8) s < (D —uy) D = D — u, D
Similarly,
(1.7.9) us < (D?> —uyD —uy) D = D3 —u; D?> — uy D

Finally, If m is the maximum length of the encoded words, one concludes that
(1710) Um < D™ — Ule_l - UQDm_Z — ... um_lD
Dividing (1.7.10) by D™, we get

(1.7.11) 0<1—u D' —uyD2— ... —uy_ DV —u,, D™
or
(1.7.12) D7 <1

i=1

It may not be obvious that this condition is identical with (1.7.6) but note that m >
m

li;vi = 1,2,...,nand Y u;D~* < 1 means the sum of “the numbers of all sequences of
i=1
length ¢ multiplied by D=, where the summation extends from 1 to m. The left hand

side of (1.7.12) can be written as

1713 Su D7 =D '+ D'+ 4+ D'+ D2y D?*+. +D?
i=1 ~ ~

uitimes ug times
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+ok DD ™. D™

Um times

each bracketed expression corresponds to a message x;, and therefore the total num-
ber of terms in n.

1,1,...,1,2,2,....2,..., m,m,....m
—_— —— —

uy u2 Um
U +u+ ... +u, =n
The terms in uy coressponds to the encoded message of length k. These latter terms
can be considerd as > D% when the summation takes place over all those terms with

l; = k. Therefore, by a simple re- assignment of terms, we may equivalently write
(1.7.14) S u; D7 =5 "D
i=1 i—1

Thus
Z UiDii = ZDili <1
i=1 i=1
The desired set of positive integers [l1, l2, ..., [,| must satisfy the inequality (1.7.6).

This proves the necessity requirement of the theorem.
Sufficient part:

Suppose now that inequality (1.7.6) is satisfied for [ly, s, ...,1,] . Then every
summand of the left hand side of (1.7.6) being non negative, the partial sums are also at

most 1.
ulD’1 S 1 or up S D

w D' +uD2<1 or uy < D?—uD

D' us D24 fu, D" <1
or u, < D" —u; D"t —usD" % — . —wu,_1D

but these are exactly the conditions that we have to satisfy in order to guarantee that
no encoded message can be obtained from any other by the addition of a sequence of let-
ters of the encoding alphabet, therefore, which implies the existance of the instantaneous
code.

21



Remark (1.7.1): For binary case the Kraft inequality tells us that the length /; must

satisfy the equation
(1.7.15) So7li <1
=1

where the summation is over all the words of the block code.

Lemma (1.7.1): (Aczel and Daroczy [2]): For a probability distribution P =

(p1, P2y o, Pn) »2i = 0,> p; = 1 and incomplete distribution Q = (q1,q2, .-, Gn) , G >
i=1
0, > g < 1, The following inequality holds

i=1

n
pilogp; < —=> p;logg;
1 i=1

(1.7.16) -

n

(2

Proof: Before proving Lemma (1.7.1), we state the following Lemma.

Lemma (1.7.2): (Aczel and Daroczy [2]): If v is differentiable concave function
in (a,b), then for all z; € (a,b),i = 1,2,...,n and for all (q1,q2,...,qn),¢% > 0,> ¢ =
=1

(2

1,4 =1,2,...,n, the inequality

(0 [qu} > > g0 (z;) holds.
i=1 i=1
Define the function

L () —xlogx forx € (0,00)
€Tr) =
0 for x =0

It is differentiable concave function of = on [0, 0o) and continuous at 0 (from right),

as
62
<5 (vlogx) >0, J:_l)ngwlogx:OIOgO:O
Putting z; = %,z’ =1,2,...,nin Lemma (1.7.2), we get

St (3) <2 (502)
- (ép) _L(1)=0

Thus

0> _ZQi% log %
=1

7

= _Zpi (log p; — log Qi)
=1
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= =Y pilogp; + > p;logy;
i=1 i=1
or

pilogp; < => pilogg;
i=1 i=1

n

Theorem (1.7.2):( Shannon [107]): Let { X } be a discrete message source, without

memory, and x; be any message of this source with probability of transmission p;. If the

{X} ensemble is encoded in a sequence of uniquely decipherable characters taken from
the alphabet {ay, as, ..., a, } , then

as

(1.7.17) L= ;pili > 28
Proof: The condition L > % is equivalent to

log D > pil; > = p;log p;
=1 =1

Since p;l;log D = p;log D' = —p;log D~ The above condition may be written

n n

pilog D71 > —>"p; log p;
i=1 i=1

We define ¢; = -2 7”1 , then ¢;s add to unity and Lemma (1.7.1) yields
YDk
=1

(1.7.18) —>pilogp; < =S pilog [ 22—
i=1 i=1 ;D*lz
with equality iff p; = -2~ Vi=1,2,...n
> Dl

i=1

Hence by (1.7.18)

H(P) < =Y pilog D7 + 3" p;log (ZDli>

i=1 i=1 i=1

H(P) < Llog D + log (fjp—h)
=1

with equality iff p; = -2~ V i=1,2,..,n.
> Dl

i=1

By Theorem (1.7.1), . D% < 1 which gives

i=1

log (ZD‘“) <0
=1
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Therefore
H(P) < LlogD

or

—

H(P
L Z log D

Theorem (1.7.3) : (Shannon [107]): Given a random variable X = (z1, %o, ..., T,,)
having probability distribution P = (py, pa, ..., p,) With entropy (uncertainty) H (P),
there exists a base D, instantaneous code for X, whose average codeword length . =

> l;p; satisfies
i=1

(1.7.19) 10 <L <841

Proof: In general we can not hope to construct an absolutely optimal code for a
given set of probabilities P = (pi, pa, ..., Pn) , since if we choose ; to satisfy p; = D%,
then [; = % may not be an integer. However we can do the next best thing and select
the integer /; such that

(1720) o2 <l < 28R 41, 0= 1,2,..,n

We claim that an instantaneous code can be constructed with word lengths 4, lo, ..., [,,.

n
To prove this we must show that Y D=l < 1.
i=1

For the left hand inequality of (1.7.20) it follows that

log p; > —I;log D

or
pi > D7l
Thus
YD <Y pi =1
i=1 i=1
S Dli<1

i=1
To estimate the average codeword length, we multiply (1.7.20) by p; and sum over
1=1,2,...,n, to obtain

n n n n
log pi logp;
TLPilogp S LPili <~ LPitggp + 2
1= 1= 1= 1=

or
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1.8: Convex funtion

A real valued function f (x) defined on (a, b) is said to be convex function if for

every a such that 0 < o < 1 and for any two points x; and x5 such thata < 1 < x5 < b,

we have
(5D F o+ (1= a)as) < af (@) + (1= a) f (x2)
If we put o = 1, then (1.8.1) reduces to
(1.8.2) f (2g22) < Jati@)

which is also taken as definition of convexity.

A function that is convex according to (1.8.1) is also convex according to
(1.8.2). We will adopt (1.8.1) as the definition for a convex function. (see the figure 1).

Remark (1.8.1): If f//(x) > 0, then f () is convex function.

1.9. Strictly convex funtion

A real valued function f (z) defined on (a,b) is said to be strictly convex
function if for every «, such that 0 < a < 1 and for any two points x; and x> in (a,b), we

have

(1.9.1) flaxi+ (1 —a)xs) < af (1) + (1 —a) f (x2)
Remark (1.9.1): If f// () > 0, then f (=) is strictly convex function.

1.10. Concave function

A function f (x) is said to be concave if —f (x) is convex. (see the figure 2)
Remark (1.10.1): If f// (z) < 0 then f () is concave.

1.11. Strictly concave function

A function f (x) is said to be strictly concave if — f () is strictly convex.

Remark (1.11.1): If f// (z) < 0 then f (=) is strictly concave function.
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1.12. Jensen’s inequality: (Rao [100]): If X is a random variable such that /' (X') =

 exists and f (.) is a convex function, then

(1.12.1) Elf(X)] = f[E(X)]

with equality iff the random variable X has a degenerate distribution at .

1.13. Holder’s inequality: (Shisha [116]): If z;,v; > 0,4 = 1,2, ....,n and iﬁ =
1,p > 1, then the following inequality holds
1 1
(RER v
i=1 i=1 i=1

with equality iff 27 = cy/. The inequality is reversed forp < 1(#£0),¢g < 0 or
g <1(#0),p<0.

1.14. Kantorovic inequality: (Mitrinovic [89]): Kantrovic proved the following

inequality for the sequences of real numbers

n n 2 n 2
CRES D WS ES (V2 +vE) <k§ui>

where O<m <r, <M for k=1,2,...,n

1.15. Diaz- Metcalf inequality: (Mitrinovic [89]): Letp, > 0 (k=1,2,...,n)
with > pr = 1. If a; (# 0) and b, (k = 1,2, ..., n) are real numbers and

k=1

(1.15.1) m < f;—'; <M fork=1,2,..n

Then

(1.15.2) kZpkbﬁ + mﬂ[};pkai < (M +m) kz:pkakbk
=1 =1 =1

equality holds in (1.15.2) iff for each k, 1 < k < n either by, = may, or by = May

1.16. Interior point

If I C R be a set of real numbers then any point x € [ is said to be interior
point if there exists at least one r (r is real number) positive such that (x —r,x +7) C I.

The set of all interior points of I is denoted by I and we call I as interior of /.
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It is true that the Shannon entropy is fundamental from the application point of
view. But during past several years researchers have paid attention to the applications of
generalized entropies in different branches and found them as good as Shannon entropy
and sometimes better because of flexibility of the parameters, specially in comparisons

purposes.

In this chapter, several coding theorems have been obtained by considering
some parametric entropy functions involving utilities. In the literature of information
theory several type of coding theorems involving entropy functions exists. The coding
theorems obtained here are not only new but also generalizes some well known results

available in the literature.

Also, codes of variable length that are capable of error correction are studied
in this chapter. A lower bound on the generalized mean length of such codes under the
criterion of “promptness” is obtained. This generalizes the result due to Bernard and
Sharma [20], Baig and Zaheeruddin [14] for noisy channels. Also, this generalizes the
result due to Kerridge [73] which itself is a generalization of celebrated result due to
Shannon [107] for noisless channel. The bounds obtained here provides a measure of

optimality for variable length error correcting codes.

2.1. Introduction

Let X be a discrete random variable taking on a finite number of possi-
ble values X = (x1, s, ..., x,,) with respective probabilities P = (p1,p2, ..., pn), Di >
0, ilpi = 1. Denote

@.1.1) X[xl Ty . . xn]
b1 P2. . Pn
We call the scheme (2.1.1) as a finite information scheme. Every finite scheme de-
scribes a state of uncertainty. Shannon [107] introduced a quantity which, in a reasonable
way, measures the amount of uncertainty (entropy) associated with a given finite scheme.
This measure is given by

(2.1.2) H(P) = —anpi log pi

=1
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The measure in (2.1.2) serve as a very suitable measure of entropy of the finite

information scheme (2.1.1).

Let a finite set of n source symbols X = (x4, ¥, ..., ¥,,) be encoded using alphabet
of D symbols, then it has been shown by Feinstein [49] that there is a uniquely decipher-
able/instantaneous code with lengths (1, [5, ..., [,, iff the following Kraft [80] inequality is
satisfied

(2.1.3) SDh <1

If L = ) l;p; be the average codeword length, then for a code which satisfies (2.1.3),
i=1
It has been shown [49] that

(2.1.4) L>H(P)

with equality iff [; = —logp; V ¢ =1,2,...,n. This is Shannon’s coding theorem
for noiseless channel. The equation (2.1.4) for Shannon’s entropy with ordinary code

mean length . = Y I;p; has played an important role in ordinary communication theory
i=1
(see Shannon [107]).
Belis and Guiasu [17] observed that a source is not completely specified by
the probability distribution P over the source alphabet X in the absence of qualitative
character. So it can be assumed by Belis and Guiasu [17] that the source alphabet letters

are assigned weights according to their importance or utilities in view of the experimenter.

Let U = (uy,us, ..., u,) be the set of positive real numbers, where u; is the utility
or importance of outcome x;. The utility, in general, is independent of probability of

encoding of source symbol x; i.e. p;. The information source is thus given by

I To. . . Tp n
(2.1.5) X=1|m po . pul, wi>0 p>0Yp=1
i=1
Ul Uy . . . Up

Belis and Guiasu [17] introuduced the following quantitative- qualitative measure of

information
(2.1.6) H(P; U) = _Zuipi log p;
i=1

which is a measure for the average of quantity of ‘valuable’ or ‘useful’ information

provided by the information source (2.1.5).

Guiasu and Picard [51] considerd the problem of encoding the letter output by
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the source (2.1.5) by means of a single letter prefix code whose codewords cy, co, ..., ¢,
are of lengths [y, [s, ..., [, respectively and satisfy the Kraft’s inequality (2.1.3). They

introduced the following ‘useful’ mean length of the code

n
> uipil
i=1

2.1.7) L(U): ==
Eluipi

Further they derived a lower bound for (2.1.7). However, Longo [86] interpreted
(2.1.7) as the average transmission cost of the letters z; and derived the bounds for this

cost function.

Longo [86], Gurdial and Pessoa [53], Khan and Autar [76] , Autar and Khan
[6], Jain and Tuteja [63], Taneja et al [120], Bhatia [22], Singh, Kumar and Tuteja [118],
Khan and Haseen [74], Hooda and Bhaker [59], Khan et al [78] considerd the problem
of ‘useful’ information measures and used it studying the upper and lower bounds for

sources involving utilities.

In the next section, The bounds have been derived in terms of generalized
‘useful’ average codeword length and ‘useful” information measure of order « and type [3.
The main aim of studying these bounds is to generalize some well known results available

in the literature of information theory.

2.2. Bounds for generalized measure of cost

In the derivation of the cost measure (2.1.7) it is assumed that the cost is a linear
function of code length, but this is not always the case. There are occassions when the
cost behaves like an exponential function of codeword lengths. Such types of functions
occur frequently in market equilibrium and growth models in economics. Thus some
times it might be more appropriate to choose a code which minimizes the monotonic

function of the quantity
(2.2.1) C =S ulpP Dt
i=1
where > 0(#£ 1), [ > 0 are the parameters related to cost.

In order to make the result of the chapter more comparable with the usual noiseless

coding theorem, instead of minimizing (2.2.1), we minimize

> (uips) DR

(2.2.2) LE(U) = 5+ = —1| ,a>0(#£1),8>0
;(uim)ﬁ

which is monotonic function of C and is the ‘useful” average code length of order o
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and type (3.

Clearly, ifao — 1,3 = 1,(2.2.2) reduces to (2.1.7) which further reduces to ordinary
mean length given by Shannon [107] when u; =1 V ¢ = 1,2, .., n. It can be also noted
that (2.2.2) is monotonic non- decreasing function of « and if all the [;s are same, say
li=1 V¥ i=1,2,..,nand o — 1, then L? (U) = . This is an important property for

any measure of length to possess.

Now, Consider a function, which is ‘useful” information of order o and type /3

n
—1
lzluiﬁpia+ﬂ
i=

-1

(2.2.3) HP (P;U) = 21,}1_1 =i
i=1

wherea > 0(#£1),6>0,p;, >0 Vi=1,2,...n, > p; <1
i=1

Remark (2.2.1)

(1) When 8 = 1, (2.2.3) reduces to the measure of ‘useful’ information proposed
and characterized by Hooda and Ram [60].

(2) When o — 1,8 =1, (2.2.3) reduces to the measure given by Belis and Guiasu
[17].

B)Whena — 1,6 =1andu; =1 V ¢ =1,2,..,n.(2.2.3) reduces to the well
known measure given by Shannon [107].

Also, the bounds are obtained for the measure (2.2.3) under the condition
(2.2.4) Sulp! T Dl < Sl p!
i=1 i=1

It may be seen thatincase 5 = 1,u; =1 V ¢ =1,2,..,n.(2.2.4) reduces to the
Kraft [80] inequality (2.1.3). Also, D is the size of the code alphabet.

Theorem (2.2.1). For all integers D (D > 2). let [; satisfies (2.2.4), then the gener-
alized average ‘useful’ codeword length satisfies

(2.2.5) Lg (U) > Hg (P;U)
equality holds iff

iuiﬁp?“?*l
(2.2.6) l; = —log p% + log Ep——

> u)p?
=1
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Proof: By Holder’s inequality [116]

(2.2.7) Sxiy; > (Zxﬁ’) ’ (ny) q
i=1 i=1 i=1

for all =;,y; > 0, i = 1,2,..,n and 1% + % = 1,p < 1(#£0),g < 0 orq <
1(#0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that

p_ 4
(2.2.8) T; = cy;
Making the substitution
_ a—l1 _
p=%, q=1—-«
IB a+B 1
€T (ulpl)a lDil — uz 7apz B
7 Ba s J
Z (uzpl) a-T Z (ulpz) I-a
=1
in (2.2.7), we get
1
o8 p-1 nogo5o1-ag ] At ﬁ+ﬁ1m
Soupp; D~k Su;p; D et Zu &
i=1 > i=1
8.8 - 8.8
2 uppj 2y p; ‘Zui i
i=1 i=1 =1
using the condition (2.2.4), we get
_a 1
S ufpPptatl | O Zuﬁ a+p-1 | 17
i=1 i=1

Taking 0 < « < 1, and raising power both sides (1 — «) , we get

IR C T B, at+B-1

2u;pg DT 2o u;p;

i=1 > | iz
B8 = B, B
_Eluipi 2:1U’Lpl
1= 1=

Multiplying both sides by > 0 for 0 < a < 1 and after simplifying, we get

21 a_1

L3 (U) = HI(P;U)

For a > 1, The proof follows along the similar lines.

Theorem (2.2.2). For every code with lengths 11,1, ..., [, satisfies (2.2.4), L2 (U)

can be made to satisfy the inequality

a Dl-a—1
(2.2.9) L (U) < HE (P;U) DY + S—=1
Proof: Let [; be the positive integer satisfying the inequality
Euﬁ at+f—1 Zuﬁ at+B—1
(2.2.10) —log p¢ + log = E i §li<—logp§‘+log7+1
Ui Py Ui Py

i=1 =1
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Consider the interval

Suzpo Byt
(2.2.11) 0; = —1ogp?+logi:1§:7,—logp?+logi:1i7+1
i=1 i=1
of length 1. In every 0;, there lies exactly one positive integer /; such that
Sty Syt
(2.2.12) 0< —logp + logiﬂiTp[j <l; < —logpy +logi:12n:7pﬁ +1
P LGP

We will first show that the sequence [y, o, ..., [, thus defined satisfies (2.2.4). From
(2.2.12), we have

S ufps o
—log p$ + log =—— < I;
N
or
Py > D*li

n 1 =
PR

T
2 BB

Multiply both sides by u’? pf ~! and summing over i = 1,2, ..., n. We get (2.2.4).
The last inequality in (2.2.12) gives

Euﬁp{ﬂrﬁ 1
l; < —log p + log =+ +1
> ulp]
=1
-1
l; < log | —2= D
i g _;1“2'51’?%_1
35 wfpf
i=1 * "
or
1
Db < Py D

For 0 < a < 1, raising power both sides 1%’3‘, we get
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1— « 1
Dlz( aa) < _ Epz — Diaa
v
'Lglui Pi
o8
X uiv]
8.5
Multiplying both sides by — ”; = and summing over i = 1,2, ... n, we get
izluipi
1
28 BpHizay, BB atB-1\ @
i;uipiD a i g:luipi Dl—ia
[e3
3> ubp? S>ubpf
i Pi U; Py
i=1 i=1
or
K881z, 8 a+8-1
_ZuipzD a _Zuzpz 1
i=1 _ P < Z—ln T —Q
Zulpi Zulpl

Since, 217 — 1 > 0 for 0 < o < 1 and after suitable operations, we get

U Y B atf-1
2ou;py DA 2ou; Py 1—a
1 i=1 _ 1 < 1 i=1 _1 Dl—a + D —1
2l-a_1 iuﬁpﬁ 21-a_1 z":u pB 21-a_1
= =1

or we can write

L3 (U) < HE (P;U) D= 4 5]

As D > 2, we have % > 1 from which it follows that upper bound L2 (U) in

(2.2.9) is greater than unity.
Also, for o > 1, the proof follows along the similar lines.

In the next section, coding theorems have been obtained by considering a new
parametric entropy function involving utilities and generalized ‘useful’ codeword mean
length. The results obtained here are not only new but also generalizes some well known

results available in the literature of information theory.

2.3. Coding theorems on entropy function depending upon parameter R and v.

Consider a function

1
n R
R4+v—1
Uip;
=

2.3.1) Hp (PP U) = £ |1 |

n
> uip¥
=1

where R >0(#£1),v>0,>p;=1, p; > 0.
=1

1
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Remark (2.3.1).

(1) When v = 1, (2.3.1) reduces to the ‘useful’ R- norm information measure due to
Singh, Kumar and Tuteja [118].

2)Whenv =1,u; =1V i=1,2,...,n,(2.3.1) reduces to the R- norm information
measure due to Boekee and Lubbee [26].

B)When R — 1, v=1landu; =1V i=1,2,....n, (2.3.1) reduces to the well
known measure given by Shannon [107] .
Further, consider a generalized ‘useful’ codeword mean length
(2.3.2) Lp(PPU)=AL |1 - F

R—1 ul
> uipy
i=1

n

where R > 0(#£1),v > 0,p; > 0,> p; = 1. D is the size of the code alphabet.
=1

1=

Remark (2.3.2).

(1) When v = 1, (2.3.2) reduces to the ‘useful’ codeword mean length given by
Singh, Kumar and Tuteja [118].

2)Whenv = 1L,u; =1V i =1,2,...,n, (2.3.2) reduces to the codeword mean
length due to Boekee et al [26].

B)WhenR — 1, v=1,andu; =1 V i=1,2,..,n,(2.3.2) reduces to the
optimal codeword mean length defined by Shannon [107].

We now establish a result, that in a sense, gives a characterization of Hpg (P”,U)

under the condition

(2.3.3) Sup! T DT < S upt
i=1 i=1

Remark (2.3.3).

Whenv =1, u;=1 V i=1,2,...,n and > p; = 1. (2.3.3) is a generalization
i=1
of (2.1.3) which is Kraft’s [80] inequality.

Theorem (2.3.1). For every code whose lengths [, ls, ..., [,, satisfies (2.3.3). Then

the average codeword length satisfies

(2.3.4) Lp(P",U) > Hg (P",U)
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equality holds iff

iuip?+V71
(2.3.5) l; = —log pf + log =4——
u;py
=1

Proof: By Holder’s inequality [116]

(2.3.6) DTy > (Zaﬁ) ’ (ny) q
i=1 i=1 i=1

for all z;,y; > 0, i = 1,2,..,nand1—1)+% =1, p<1(#0), ¢ <0 orq<
1(#0),p < 0. we see the equality holds iff there exists a positive constant ¢ such that

(2.3.7) zt = cy!
Setting
R vR 1 R+tv—1
T; = uiR—lpZRfl Dfll’ Y = ullpri 1—
p="5, ¢=1-R

in (2.3.6) and using (2.3.3), we get

_R_ 2 Rtv—1| 1R
n _ 1-R Zuipi
(2.3.8) {Zuzpé’D—li(%)} > L - }
i=1 ;um;

R
1-R

Dividing both sides of (2.3.8) by (Zulp;’ ) , we get
i=1

R_ 1
n ,l.(ﬂ) T-R n Rew_1 | I-R
Suprp UE S upRt
i=1 - Z z:ln
> uipy > uipy
i=1 i=1

Taking 0 < R < 1, raising both sides to the power %, R # 1, also % < 0 for
0 < R < 1 and after suitable operations, we obtain the result (2.3.4). For R > 1, the

inequality (2.3.4) can be obtained in a similar fashion.

Theorem (2.3.2). For every code with lengths [y, [5, ..., 1, satisfies (2.3.3). Then
Lg (P¥,U) can be made to satisfy the inequality

039 La(PU) < Ha(P10) D' 4 % (1- D)
Proof: Let [; be the positive integer satisfying the inequality
iuipR+u—l iuipf"-*‘V*l
(2.3.10) _1ngf+logi:1n7 << —logpf+log S E—
> uipf > uipY

i=1 i=1
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Consider the interval

Zn:uip?”_l Xn: uipRtv—1
23.11) 6 = | —logpf® +log =———, —logp{* +log =—— + 1
-Z:luip;'j _Z:luipl'f

of length 1. In every 0;, there lies exactly one positive integer /; such that

i uip?+l/*1 iuip?+u—l
(2.3.12) 0 < —logp]’ +log T <l < —logpf +log = +1
wipy uipy
i=1 i=1

We will first show that the sequences {li,1s,...,[,}, thus defined satisfies (2.3.3).
From (2.3.12) we have

n
R+v—1
Z uip; v

—logpf +log =4—— <,
1:1uipi
or
24 I
B 10% ( i uil’?+v—l) < - logD D
=1

35 ugpt

=1
(2.3.13) S A S

Multiplying both sides by Zuip;’*l and summing over ¢ = 1,2,...,n. We get
i=1
(2.3.3). The last inequality in (2.3.12) gives

n
R —1
Z Uip; v

l; < —logpf + log =H—— + 1
> uipy
i=1
ZUiPB+V71
l; < —logp? + log =t5—— +log, D
;uLpZ
or
P
li < —IOgW +1OgDD
( ) i ik )
i£1
D—li > Z%R D—l

Taking 0 < R < 1 and raising both sides to the power £=1, we get
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R—-1

D ( ) < i u-pR+V71 D R
1

i=

) u;p¥
i=1
Multiplying both sides by _PY and summing over ¢ = 1,2, .., n and after simpli-
> uipy
i=1

fying, gives (2.3.9).

For R > 1, The proof follows along the similar lines.

2.4. Variable length error correcting codes and lower bounds

It is well known that a lower bound on the average length is obtained in
terms of Shannon entropy [107] for instantaneous codes in noiseless channel (see Abram-
son [1]). Bernard and Sharma [19] studied variable length codes for noisy channels and
presented some combinatorial bounds for these variable length, error correcting codes.
Bernard and Sharma [20] obtained a lower bound on average length for variable length

error correcting codes satisfying the criterion of promptness.

In coding theory, it is assumed that Q is a finite set of alphabets and there are D code
characters. A codeword is defined as a finite sequence of code characters and a variable
length code C of size n is a set of n codewords denoted by ¢y, o, ..., ¢, with lengths
l1,1s, ..., 1, respectively. Without loss of generality it may be assumed that [; < [o <
o <y

The channel, which is considerd here, is not noiseless. In otherwords, the codes
considerd here are error correcting codes. The criterion for error correcting is defined in
terms of a mapping « , which depends on the noise characteristic of the channel. This
mapping « is called the error admissibility mapping. Given a codeword ¢ and error ad-
missibilty a, the set of codewords received over the channel when ¢ was sent, denoted by

« (c) , is the error range of c.

Various kinds of error pattern can be described in terms of mapping o . In

particular o may be defined as (Bernard and Sharma [19])
ac(c) ={ufw(c—u) <e}

where e is random substitution error and w (¢ — u) is a Hamming weight i.e., the
number of non zero co- ordinates of (¢ — u). It can be easily verified (Bernard and Sharma

[19]) that the number of sequences in «. (c) denoted as |, (c)| is given by
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|ae<c>|=i(?><0—1>f

i=0 \ ¢
where [ is the length of code c.

We may assume that g corresponds to the noiseless case. In otherwords if ¢ is
sent then c is received with respect to ag. Moreover, it is clear that |, (c)| depends only
on the length [ of ¢ when o and D are given. In noiseless coding, the class of uniquely
decodable instantaneous codes are studied. It is known that these codes satisfy prefix
property (Abramson [1]). In the same way Hartnett [56] studied variable length code
over noisy channel, satisfying the prefix property in the range. These codes are called a—

prompt codes. Such codes have the property that they can decode promptly.

Further, Bernard and Sharma [20] gave a combinatorial inequality that must neces-
sarily be satisfied by codeword lengths of prompt codes. Two useful concepts, namely,
segment decomposition and the effective range r, (¢;) of codeword ¢; of length /; un-
der error mapping « as the cartesian product of ranges of the segment are also given by
Bernard and Sharma [19]. The number of sequences in effective range of ¢; denoted by

|7al;, depends only on v and /;. It is given by

T L = |04’z1 ’O‘|12,11 o a

li=li—1

Moreover, Bernard and Sharma [19] obtained the following inequality.

Theorem (2.4.1). An a— prompt code with n codewords of length [; <[, < ... <
l,, satisfies the following inequality

(2.4.1) S ral, D7H <1
=1

Remark (2.4.1).

If the codes of constant length [ are taken then the average inequality (2.4.1) reduces
to Hamming sphere packing bound given by Hamming [54].

Remark (2.4.2).

If the channel is noiseless then the inequality (2.4.1) reduces to well known Kraft
[80] inequality.

Also, Baig and Zaheeruddin [14] have obtained a lower bound on codeword length

of order t of prompt codes using a quantity similar to Nath’s [90] inaccuracy of order /5.
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Theorem (2.4.2): Let an a— prompt code encode the n messages s1, So, ..., S, in to
a code alphabet of D symbols and let the length of the corresponding to message s; be [; .
Then the code length of order t, L (¢) shall satisfy the inequality

(2.42) L(t) 2 thlog 3 opial " (Iral,)
with equality iff
_ n _ 1-
(2.4.3) li = —log (Jral,) ™" & +log Spia” ™" (Iral,)" ™"
=1

where L (t) = log izn:lpiDtli

In the next section, lower bound have been obtained on generalized codeword length
of order o and type 3 of “prompt” codes using a quantity similar to Tuteja and Bhaker
[129] “useful” inaccuracy measure of order « and type 3. The result obtained here gener-

alizes the result of Bernard and Sharma [20] and Baig and Zaheeruddin [14].

2.5. A Generalized lower bound on codeword length of order o and type 3 of
‘prompt’ codes.

Consider a generalized mean codeword length of order o and type 3 defined by

3 ufprli(l_Ta) :
i=1

(2.5.1) LP(U) = L i

n n
_ 8
(2! a—l),zlpf > u?pt
1= 1=

—1|,a>0(#£1),8>0

It is easy to see that forav« — 1,8 =1landu; =1 V ¢ =1,2,...,n, (2.5.1) reduces

to ordinary mean length L = ) l;p; given by Shannon [107].
i=1

Suppose that a person believe that the probaility of i** event is ¢; and the code
with length /; has been constructed accordingly. But contrary to his belief the true proba-
bility is p;.

We will now obtain a lower bound of generalized mean codeword length L? (U)
under the condition

(25.2) Soupla D7 ( u/'p!
i=1

7"a|zi) S

-

1

(2

Remark (2.5.1).

Ifg=1u =1V i=12..nin (2.5.2). It reduces to the inequality given by
Baig and Zaheeruddin [14]
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(2.5.3) ;piqi_l (|7"a|zi) D7 <1

Remark (2.5.2).

Moreoverifp, = ¢; V ¢ = 1,2,...,n,in (2.5.3). It reduces to the inequality given
by Bernard and Sharma [19]

n

(2.5.4) Solral, D7 <1
=1
Remark (2.5.3).
For noiseless channel |r,|, =1V i=1,2,...,n. Moreover if

B =1 u; =1V i=1,2,...,n. Then (2.5.2) reduces to the inequality given by
Autar and Soni [7]

(2.5.5) Sopig; DT <1
i=1

Remark (2.5.4).
Moreover if p;, = q; ¥V @ =1,2,...,n. Then (2.5.5) reduces to Kraft [80] inequality

n

(2.5.6) SSDl < 1

=1
Theorem (2.5.1). Let an a— prompt code encode the n messages s1, So, ..., S, into a

code alphabet of D symbols and let the length of corresponding to message s; be /; Then
the generalized codeword length of order « and type 3, L7 (U) shall satisfy the inequality

2.5 7) 158 (U) S é:lufpf <q?—1<‘ra‘li)1fa71>

«

,a>0(#£1),8>0

(@2t-o—1) 25T
i=1
T — S ufy?
where U = > u}p;
i=1

equality holds in (2.5.7) iff

N BB a-1 -
Euipiq,? (lrozlli)

(2.5.8) li = —log (|ral,) " g + log =*

7
u/p]
i=1

i

Proof: By Holders inequality [116]

259)  Sww = (zx;f’) ” (zyz)q
i=1 i=1 i=1

for all z;,y; > 0, i = 1,2,..,n andi+% = 1,p < 1(#£0),g < 0 orq <
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1(#0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that

(2.5.10) = cy?
Setting
_a 1
a—1 l1-a
B8 B, B
_ u; P; —l; _ U; P; -1
T, = 55 D Y Yi = "5 5 q; (|Toz li)
2 up; 2. U Py
i=1 =1
p=2% ¢g=1-a in(2.5.9), we get
1 _a 1
n L n 1 ( =< a—1 7 _ h p—v 11—«
Zlufpr‘llqi 1(\mlzi) ‘Zlufpr’( =) Zlufpfq? l(lralli)
= 1= 1=
BB = . B B . B B
U P 2o u; P 2 u; P}
i=1 i=1 i=1

using the inequality (2.5.2), we get

e} 1
n 8 1 l—a 1—a n 1 11—« 1—a
21Ui pr 'b( @ ) leuzﬁpfqla (|7"a|12-)
1= 1=
B B = B B
2o up P > uy P
i=1 i=1

Let 0 < a < 1. Raising both sides to the power (1 — «) and after suitable operations,

we get

n

I° (U) > i:lufpiﬂ(qg_l(|ra|li)17a_1)

n _
(21-e—1) > p]T
=1

a>0(#1),6>0

2.6. Particular cases
(1) For noiseless channel |r,[, = 1, (2.5.7) reduces to inequality

S ulpf (a7 -1)
(2.6.1) Li(U) > B
(@' 2 pT

S 1)

where —~
(2-a—1) > pf
i=1

is a information measure given by Tuteja and Bhaker [129].
(2) Fora — 1, B =1, the inequality (2.5.7) reduces to
zn: uip; log (%)
(2.6.2) LU)>=——~
:Z%Uipi

(3)Foru; =1 V 1 =1,2,...,n, inequality (2.6.2) reduces to the inequality given
by Baig and Zaherruddin [14]
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(2.6.3) L= Yopilog (22
i=1 ‘

(4) Moreover if p; = ¢; V i« = 1,2,...,n., inequality (2.6.3) reduces to inequality
given by Bernard and Sharma [20]

@64) L= Yopilos (k)
i=1 !
(5) For noiseless channel [r,|, =1, (2.6.3) reduces to inequality given by Kerridge
[73]
(2.6.5) L> =5 pilogg
=1

43



Shannon’s measure of information plays a very important role for measuring
uncertainty in probability distributions and also for measuring diversity in plants and an-
imals in Biology. But this measure does not deal with growth models other than expo-
nential. Since there are families of distributions other than exponential and there are laws
of population growth other than exponential, we can not confine ourselves to exponential
families only and consequently, Shannon’s measure may not be much applicable. Thus

we need a parametric models which are suitable for all types of distribution.

Shannon [107] introduced the ordinary mean codeword length and established
bounds in terms of entropy. In this chapter, bounds on generalized mean codeword length
are obtained by considering parametric measures of information with utility distribution
which are suitable for all types of of distributions. The bounds obtained in this chapter are
not only new but also generalizes some well established results available in the literature

of information theory.

3.1 Introduction

Let P = (p1,p2,-,pn),0 < p; < 1, Zn:pi = 1 be the probability distribution
associated with a finite system of events X = z(_xnl, To, ..., T,) representing the realization
of some experiment. The different events x; depend upon the experimenters goal or upon
some qualitative chracteristics of the physical system taken in to account; ascribe to each
event ; a non negative number u; (> 0) directly proportional to its importance and call
u; the utilitiy of the event z; . Then the weighted entropy [17] of the experiment X is

defined as

(3.1.1) H (P;U) = = u;p;logp;

n

i=1

Now let us suppose that the experimenter asserts that the probability of the i** out-
n n

come x; is ¢; , whereas the true probability is p;, with Y "p; = 1 = > ¢; , Thus, we have
i=1 i=1
two utility information schemes

T1 Ty ...Tpy
(3.1.2) S=|pp-pn |,0Zpi <1, u; >0, pi=1
=1
U Ug ... Up '

of a set of n events after an experiment, and
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T1 T2 ...Tp n

(3.1.3) S*=1lqagq...¢ |.0<¢<1u>0>¢q¢=1
i=1
U Ug ... Up

of the same set of n events before the experiment.

In both the schemes (3.1.2) and (3.1.3) the utility distribution is the same
because we assume that the utility u; of an outcome z; is independent of its probability of
occurrence p;, or predicted probability ¢;, u; is only a ‘utility’ or value of the outcome x;

for an observer relative to some specified goal (refer to [87]).

The quantitaive- qualitative measure of inaccuracy [119] associated with the above
schemes

(3.1.4) I(P,Q;U) == up;logg;

=1
Guiasu and Picard [51] considerd the problem of encoding the letter output by the
source (3.1.2) by means of a single letter prefix code with codewords ¢4, ¢s, ..., ¢, having

length [4, ls, ..., [,, satisfying Kraft [80] inequality

n

(3.1.5) SSDl <1

i=1
D being the size of the code alphabet. They defined the useful mean length L (U) of
the code as

3

uipili

(3.1.6) L(U) =

Il
i

3

UiPq
i=1

and obtained bounds for it.

<
Il

Taneja and Tuteja [119] considerd the codeword mean length given in (3.1.6) and

obtained bounds in terms of (3.1.4), under the condition
(3.1.7) Sopig D7 < 1
i=1
D is the size of the code alphabet. It is easy to see that forp; = ¢; Vi = 1,2,...,n
(3.1.7) reduces to Kraft [80] inequality.

Longo [87], Gurdial and Pessoa [53], Autar and Khan [6], Jain and Tuteja [63],
Taneja et al [120], Bhatia [22], Hooda and Bhaker [59], Singh, Kumar and Tuteja [118]
and Khan et al [78] considerd the problem of information measures and used it studying
the bounds.

In the next section, generalized ‘useful’ codeword mean length are considerd
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and bounds have been obtained in terms of generalized ‘useful’ inaccuracy measure of
order v and type (3. The beauty of these results is that it generalizes the results which exists
in the literature of information theory and the measures considerd here are suitable for the
distributions other than exponential. This work is published in “International journal of
pure and applied Mathematics”, Vol 32 (4), PP 467-474 (2006)(Baig and Rayees [8]).
All the logarithms used in this chapter are with base D, where D is the size of the code
alphabet.

3.2. Generalized measures of information and their bounds

Consider a function
1

n -
_1
> Uz’P?qia
=1

G2  IE(PQU) = —h— [1-

a—1 i 8
D a —1 Zulpl
i=1

where a > 0(#£1),8 > 0,p; > 0,Y.p; < 1,i = 1,2,...,n. D is the size of the
i=1

code alphabet.

Remark (3.2.1).

(1) When a« — 1, 8 = 1 and distribution is complete, the measure (3.2.1) reduces to

measure of ‘useful” inaccuracy given by Taneja and Tuteja [119].

(2) When 3 = 1,p; = ¢; V © = 1,2,...,n, the measure (3.2.1) reduces to the

measure given by Autar and Khan [6] as ‘useful” information measure.

(3)Whena — 1,8=1andp; = ¢ VY i =1,2,...,n, the measure (3.2.1) reduces
to the measure of ‘useful’ information for incomplete probability distribution given by
Belis and Guiasu [17]. Further, when utility aspect of the scheme is ignored, the measure

reduces to Shannon’s [107] entropy.

(4) When the probability distribution is complete and the utility aspect of the scheme
is ignored as well as @ — 1,3 = 1. The measure (3.2.1) becomes the Kerridge’s [73]
measure of inaccuracy. We call (3.2.1) as generalized ‘useful’ inaccuracy measure of

order «v and type /3 for incomplete probability distribution.

Further, consider a generalized ‘useful’ codeword mean length credited with utilities

and probabilities as
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(3.22) LU) = =t | 1= 3] | = pu(25)
i=1

o —

n

where o« > 0(#1),5 > 0,p; > 0,> p; < 1,4 = 1,2,...,n. D is the size of the
i=1
code alphabet.
Remark (3.2.2)

(1) When o — 1, 3 = 1 the measure (3.2.2) reduces to ‘useful’ mean length L (U)
of the code, given by Guiasu and Picard [51].

(2) When the utility aspect of the scheme is ignored by taking u; = 1 V i =
1,2,...,nalso Y p; = land & — 1, 5 = 1, the mean length of the code (3.2.2) becomes
i=1
optimal code length identical to Shannon [107].

Now, we find the bounds for LZ (U) in terms of [° (P, Q; U) under the condition
(32.3) Sople D <1
i=1

where D is the size of the code alphabet. It is easy to see that for 3 = 1 and
pi = q; Vi=1,2,.. n. Inequality (3.2.3) reduces to Kraft [80] inequality.

Theorem (3.2.1). For all integers D (D > 1). Let [; satisfies the condition (3.2.3),

then the generalized ‘useful’ codeword mean length satisfies

(324  LIU)= I2(PQU)

equality holds iff
(3.2.5) l; = —log [ 44—
;umf !

Proof: By Holder’s inequality [116]

(3.2.6) S wiys > (zxf) ’ (zyg) ’
=1 =1 =1

for all z;,y; > 0, i = 1,2,..,n and % + % = 1L,p<1(#£0),¢g <0 orq <
1(#0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that

(3.2.7) P = cyf

Making the substitution
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Lﬁl u o 1 1L u . 1
€r;, = o = L D_i, — o = i o
(2 pz Z uipf yl pz Z uipf qZ
=1 =1
_ a—1 _
p=%,0=1-«a
in (3.2.6), we get
1 a1 +
n n n
B —11—I; (€] i (et (€] i -1
Z:piqi D™ > Z:pi nu_ 5 D (=3 Z:pi nu‘ 5 a5
i=1 i=1 ;11%192 i=1 .;“sz
using the inequality (3.2.3), we get
X = s
n n
3 u; —1;(252) 3 u; a—1
(328) D; m D « Z D; n q;
i:zjl ! _;umf z:zjl ! _;umf '

Let 0 < o < 1, raising both sides of (3.2.8) to the power ITT‘”, we get

[e%

5 _w ~1;(252) 6w a-1
o[ | DR > ol | | g
i:zl C\ D! ;1 A\ S |

Q=

After making suitable operations we get (3.2.4) for (DQT_1 — 1) # 0 when a #

1. For a > 1,The proof follows along the similar lines.

Theorem (3.2.2): For every code with lengths [y, s, ..., [, satisfies the condition
(3.2.3), L? (U) can be made to satisfy the inequality

1—a
(3.2.9) LB (U) < I?(P,Q:U)D"" + e

Proof: Let [; be the positive integer satisfying the inequality

(3.2.10) log | | << —log | | 11
.gluipf ! glumf gt

Consider the interval

(B2.11) &= |—log | 4% |, —log| s | 41
z 11”]0?(1?71 > Uz'Piqu‘ail

i= i=1

of length 1. In every 9;, there lies exactly one positive integer /; such that
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(3212)  0<—log |44 | <l <—log | —4% ] +1
;uip?q?_l _;uipqu‘_l

We will first show that the sequence (1, [, ..., [, thus defined satisfies (3.2.3). From
(3.2.12), we have

e
- log n tid; 1 S l’L
Zluz-pf q;
=
or

uiqst 1
L B’L a—1 > D '
Zuipi q;
i=1

Multiply both sides by pf q; !'and summing over i = 1,2, ...,n we get (3.2.3). The
last inequality of (3.2.12) gives

li < — log nu% + 1
Suiplge?
i=1
or
~1
Dhi< |44 | D
Y wiplql
i=1
Let 0 < a < 1, raising both sides to the power (1?70‘) ,we get
a—1
D—lz(agl) < uiq? Dlea

Multiply both sides by pf — 5 and summing over ¢ = 1,2, ..., n and after
> Uip;
i=1

suitable operations, we get

1—a
(3.2.13) LE(U) < I?(P,Q:U)D"" + T

Again, bounds have been obtained by considering a more generalized inaccu-
racy measure of order o and type . The main aim of studying this new function is that
it generalizes some information measures already existing in the literature. This new

function can be used for more complex distributions other than exponential.

Consider a function
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S ulplert
(32.14)  IP(PQU)=LlogE
“ ulpf

=1

, a>0(#£1),6>0

Remark (3.2.3)
(1) When 3 = 1, (3.2.14) reduces to the measure given by Bhatia [23].

2)When g =1, p; =q¢Vi=1,2,...n. (3.2.14) reduces to measure given by
Taneja , Hooda and Bhaker [120].

(3)Whenp; =¢q; Vi=1,2,...,n.(3.2.14) reduces to the measure given by Hooda
and Bhaker [59], further it reduces to Renyi’s [104] entropy when § = 1, u; = 1 Vi =
1,2,...n.

Further, we define a parametric codeword mean length credited with utilities

and probabilities as

(3.2.15) LA(t) = tlog Er——— —1 <t <o0,t#0,3>0

Remark (3.2.4)
(1) When 5 =1,t — 0, (3.2.15) reduces to L (U) given in (3.1.6).

Now, we establish a result that in a way, gives a characterization of 7 (P, Q;U),

under the condition
n n
(3.2.16) Sulplq D7l < S ulp]
i=1 i=1

which is generalization of Kraft [80] inequality. Also D is the size of the code
alphabet.

Theorem (3.2.3): For all integers D (D > 1). Let [; satisfies the condition (3.2.16),

then the generalized ‘useful’ codeword mean length satisfies

(3217 LI = IZ(P.Q:U)

where o = %—&-t , equality holds iff
f:u.ﬁpgq‘?‘71
(3.2.18) lZ _ — log an _|_ log i:1§: =
Ui Py

1=1

Proof: By Holder’s inequality [116]
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(3.2.19) Sw > (anxp) ' (fﬁlﬁ) q
=1 i=1 i=1

for all z;,y; > 0, i = 1,2,..,n and % + é = 1L,p<1(#£0),g <0 orq <
1(#0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that

p_ 4
(3.2.20) xT; = cy;
Making the substitution
=1 1
T 11—«
JEE] B, B8 a—1
€T = U; P; D—li L | %P a5
[ n H 5 ) yl - n 3 B
2. Ui Py 2 u; P
i=1 i=1
p=-t ¢g=1-a
in (3.2.19), we get
=1 1
LB B~ mo 6 s | | &8 Bam1 | 1T
Zlut pyq; D70 Zlui p; D' Zluz P; 4;
1= 1= 1=
> up; > ulp! > ulp]
i=1 =1 =1
using the inequality (3.2.16), we get
1 1
n n
3 up] D't > up)al !
i=1 > i=1
n - n
> ulp] > ulp]
1= 1=

Taking logarithms to both sides with base D, we obtain (3.2.17).

Theorem (3.2.4). For every code with lengths [y, s, ..., [, satisfies the condition
(3.2.16), L? (t) can be made to satisfy the inequality

(3.2.21) L3(t) < I8 (P,Q;U) +1
Proof: Let [; be the positive integer satisfying the inequality
iu.ﬁp.ﬁqq71 iu.ﬁp.ﬁqq71

(3.2.22) —log ¢ + log % <l; < —logqf* + log i:lzn: 5+ 1

i Py Ui Py

i=1 i=

Consider the interval

Xn:u.ﬁp’.gq.a_l Zn:u.ﬁp.ﬁq‘.l_l
(3.2.23) 0; = |—logq* + log %’ —log ¢f* + log izinﬁ +1

Z U; Py Z U; Py

i=1 i=

of length 1. In every 0, , there lies exactly one positive integer /; such that
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S ulplgr? Sulplar
(3.224) 0< —logq! Jrlog’:%ﬁ <l; < —logqf +log’:1nﬁ +1

We will first show that the sequence [y, lo, ..., [, thus defined satisfy (3.2.16). From
(3.2.24) we have

n
Sulplar !
—loggi +log =z——— <1

2 u;p;

i=1
or

n

u/plaf !
f&i:l

a4 < Db

n
> ulp!
P

n
Bt
« 1= —1l;
N — > D™
,Zluipi q;
1=

Multiply both sides by uf pf ¢; ' and summing over i = 1,2, ...,n we get (3.2.16).
The last inequality of (3.2.24) gives

n

B B a—1
>y gy

) o a i=1
l; < —logq + log 7% s +1
i=1
or
S ulplar?
Dli < qi—a i:ln D
5.8
Ui Py
i=1
8.8
Raising both sides to the power t and multiplying both sides by —- I; . 5 and also
> Ui p;

i=1
summing over ¢ = 1, 2, ...n, and simplifying, we get (3.2.21).

In the next section, bounds have been obtained by considering another type
of inaccuracy measure of order o and type 3. This work has been published in “Sara-
jevo Journal of Mathematics”, Vol 3(1), PP 137-143 (2007)(Baig and Rayees [12]). The

function considerd here is also suitable for the distributions other than exponential.

3.3. Noiseless coding theorems of inaccuracy measure of order « and type .

Consider a function

n
> wipfa] Y

(3.3.1) 18(P.Q:U) = i log | S| La > 0(#1),6>0

Z UiP;
i=1
Remark (3.3.1)
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(1) When 3 = 1, (3.3.1) reduces to ‘useful’ information measure of order v due to
Bhatia [23].

2)yWhen 3 =1,u; =1V i=1,2,...,n.(3.3.1) reduces to the inaccuracy measure
given by Nath [90], further it reduces to Renyi’s [104] entropy by taking p; = ¢; V @ =
1,2,...n

B)When 3 =1,u; =1V ¢+=1,2,....,nand a — 1. Then (3.3.1) reduces to the
measure due to Kerridge [73].

4) Whenu; =1V i=1,2,...n andp; = ¢ V i =1,2,...,n. The measure
(3.3.1) becomes the entropy for the 3 power distribution derived from P studied by Roy

[105]. We call I? (P,Q;U) in (3.3.1) the generalized ‘useful’ inaccuracy measure of
order « and type (3.

Further, we define a paramteric codeword mean length credited with utilities

and probabilities as

f:uerl B ptl;
3.3.2) Lt (U = %log |, t>-1,t#0,6>0
Zuﬂ%)
=1
Remark (3.3.2).

(1) When 3 = 1, L} (U) in (3.3.2) reduces to ‘useful’ mean length L (U) of the
code given by Bhatia [23].

(2) When 8 = Lu; = 1 V i = 1,2,...,n, Lj;(U) in (3.3.2) reduces to the code
mean length given by Campbell [29].

(B)When 3 = 1,u; =1V i=1,2,..,nand a — 1. L (U) in (3.3.2) reduces to
the optimal code length identical to Shannon [107] .

(4) Whenu; =1V i=1,2,...,n, L;(U) in (3.3.2) reduces to the codeword mean
length given by Khan and Haseen [74].

Now, we find the bounds for L} (U) in terms of ] 5(P,Q;U) under the condition
(33.3) Yople "D <1
i=1

where D is the size of the code alphabet. Also (3.3.3) is a generalization of Kraft
[80] inequality.

Theorem (3.3.1). For every code whose lengths [y, ls, ..., [,, satisfies the condition
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(3.3.3). Then the code mean length satisfies

(3.3.4) LY (U) > I2(P,Q;U)
where o = 117 , equality holds iff
ap
S wipfq) Y
i=1

Proof: By Holder’s inequality [116]

1 1
(3.6 dww > (zxﬁ’) p (zy?)q
i=1 i=1 i=1
for all =;,y; > 0, i = 1,2,..,n and ]% + % = 1,p < 1(#£0),g < 0 orq <
1(#£0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that
(3.3.7) ! = eyl

Making the substitution

t41 8
= Tt ) e
Z;uzpl
1 1+t %
3
i = uz%pzﬁ(T) 1 : "
iglu”)i

p=-t, ¢=15

in (3.3.6) and using (3.3.3), we get

1+t
t

) t L -1
7?+1prl,Lt Zlulpqu(a )
i=

n
Su
i=
n 1+t 2 n 3
( Uipf) Z UiP;
= i=1

1

U,

Taking logarithms to both sides with base D, we obtain (3.3.4).

Theorem (3.3.2) . For every code with lengths [y, ls, ..., [,, satisfies the condition
(3.3.3), L} (t) can be made to satisfy the inequality

t 8 :
(3.3.9) L (U) < IZ(P,Q;U) +1
Proof: Let [; be the positive integer satisfying
gy’ uig)”
i=1 i=1

Consider the interval
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3.3.10 0; = |—1 ST -1 _we” +

(3.3.10) : o8 P uiplgfe D 08 S wiplg? @D 1
. 1Uipi q; . 1Uipi q;
1= 1=

of length 1. In every 0;, there lies exactly one positive integer /; such that

(3.3.11) 0< —log 5" << log i 4
o iuquf(a*l) - znjuipfqzﬁwfl)
i=1 i=1

We will first show that the sequence [y, [, ..., [,, thus defined satisfies (3.3.3). From
(3.3.11) we have

uig?”
—log & 5 Bl = li
Zuipi q;
i=1

or
afB

uiq; > D—li
B Bla—1) T
Euipi q;
i=1

B

Multiply both sides by p; qi_ﬂ and summing over: = 1,2, ..., n, we get (3.3.3). The

last inequality in (3.3.11) gives

l; < —log ﬂ“qiaﬁ 1
S uiplet@D
= iP; 4;
or
—t
pit < [ e’ | py
S uplefeD
= 1 14
. . . ut+1p’8 . .
Multiplying both sides by ———+r and summing over ¢ = 1,2, ..., n. we get

(Zw?)

t+1
= ) = Bla—1
S utip Dt S wiple] Y .
L n t+1 < = n 5 D
( > Uipiﬁ) Z Wip;
i=1 i=1

Taking logarithms to both sides with base D and then dividing both sides by t, we
obtain (3.3.8).

3.4. Some results on weighted parametric information measures.

In this section, two generalized measures of information are considerd
and their bounds are obtained. The results obtained by considering first measure has been
presented in the 2nd J&K science congress held in University of Kashmir, Srinagar (2006)
(Baig and Rayees [9]).

Consider a ‘useful’ inaccuracy measure of order (3 given by Om Parkash [93]
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(3.4.1) I8 (P,Q;U) = 35— [éup (qf - 1)} ,B#0

Remark (3.4.1).

(1) When 8 — 0, I? (P,Q;U) reduces to ‘useful’ inaccuracy measure given by
Taneja and Tuteja [119].

Q)When 8 —Oandu; =1V i=1,2,..,n, I?(P,Q;U) reduces to measure of
inaccuarcy given by Kerridge [73].

Further, consider a parametric codeword mean length
n 4'( 8 ) B+1
S uip; D \BFT

i=1

(3.4.2) LA (U) = —1

, B#0

1
2701 i UiP;
i=1
Remark (3.4.2):

(1) When 8 — 0, LP (U) reduces to the ‘useful’ codeword mean length L (U) given
by Guiasu and Picard [51].

2)When 3 — 0 andu; =1 V i =1,2,...,n, LP (U) becomes the optimal code
length defined by Shannon [107] .

In the following theorem, we obtain lower bound for L? (U) in terms of
I? (P, Q; U) under the condition

(3.4.3) Suipiq; P D7 < S ups
i=1 i=1

Theorem (3.4.1). If [y, s, ..., [, be the lengths of the code satisfying the inequality
(3.4.3). Then the mean codeword length satisfies

(3.4.4) I8 (U) > L0 5
where U = > u;p;, equality holds iff
i=1

S wipiq?
(345) li=— log qiﬁ+1 -+ log =

> uip;
i=1

Proof: By Holder’s inequality [116]
1

(3.4.6) Z:xy > (éxp ) (éyq) q
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for all =;,y; > 0, i = 1,2,..,n and % + % = 1,p < 1(#£0),g < 0 orq <
1(#0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that

p_ .4
(3.4.7) T; = Cy;
Making the substitution
B+1 _1
5 B
T = | mP D™,y = P q;
Z Uipq Z Uipq
=1 i=1
_ B _
p - ﬂ+1 9 - _/8
in (3.4.6), we get
B+1 1
n _ ) n 1 B8 3 n _E
S upsq; tDh > uip; D 1(5“) Zuimql@
i=1 > i=1 i=1
n iy n n
Do uipi o wip; o wip;
1=1 =1 =1

using the inequality (3.4.3), we get

_ o B+l _1
3 ()] P S wipig® |
2 uipi D + > uipid;
(3.4.8) s - > | =
> uipi 2 uips
i=1 1=1

For 8 > 0, raising both sides of (3.4.8) to the power (—/3) , we get

- 4 B+1
n 1. B8 ﬁ+ n
> uipiD " ( A+l ) > uipid}
(3.4.9) = < |=
> uwipi u;p;
i=1 =1

Since 277 —1 < 0 for 3 > 0, a simple manipulation proves (3.4.4) for 5 > 0. The

proof for 3 < 0 follows on the same lines.

Theorem (3.4.2). For every code with lengths [y, [, ..., [,, satisfies the condition
(3.4.3), LP (U) can be made to satisfy the inequality

8 . -8 -B_
(3.4.10) [P(U) < RBP4 D =L g
Proof: Let /; be the positive integer satisfying the inequality
EW: wipig? Enj uimqf
(3.4.11) —log qf“ + log =% <I; < —log qf“ + log =% +1
;umi ;uim

Consider the interval
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n n
> uz'piqf > uipiqiﬁ

(34.12) 6, = |—logg’™ +log E——, —logq’™ 4 log =L +1
_Z)luipi ';Uz’pi
of length 1. In every 0;, there lies exactly one positive integer /; such that
S uipia! S uipia?
(34.13) 0< —logq’ +log=—— <[, < —log ¢’ +log E—— +1
_;uwi _;umi
We will first show that sequence {l1,ls, ..., [, } , thus defined satisfies (3.4.3), we
have
> uipia)
—logq™" +log =— < I;
> uipi
i=1
or
En:uipiqf
—log qf“ +log =4—— < —log, Db
gluim
B+1
(3.4.14) i > Dk

n
8
> uipiq;
i=1
n
20 uip;
i=1

Multiplying both sides of (3.4.14) by u,;p;q; * and summing overi = 1,2,...,n, we
get (3.4.3). The last inequality of (3.4.13) gives

S uipia!
li < —logg/"! +log S—— +1
> uipi
i=1
iumq?
(3.4.15) Dl < qi_(ﬂ—kl)%l)
> uip
i=1
For (3 > 0, raising both sides of (3.4.1.5) to the power — (%) , we get
S uipid)
(3.4.16) pli(sh) - S| E D7
i;“ipi

Multiplying both sides of (3.4.16) by £~ and summing overi = 1,2,...,n, then
U;iPi
i=1

raising both sides to the power (3 + 1), we get
B8 ) B+1 n

2”2 uiPiDili(m S uipid)
(3.4.17) = > = D=8
gluipi ‘;uz'pi
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Since 277 — 1 < 0 for 8 > 0, a simple manipulation in (3.4.17) gives

B8 . - _
LA (U) < WRQUDTE 4 DL 540

For 3 < 0, The proof follows on the same lines.

Now, we consider weighted paramteric measure involving utilities and

the bounds have been obtained.
Consider a function

a—1

n B

) Z} UiPiqy

(3418 IJ(P,Q;U) = t—pu=am |1 — 7%7 , a>0(#1),8#0
Uipi
i=1

Remark (3.4.3).
(1) When 3 — 0, (3.4.18) reduces to the measure given by Bhatia [23 ].
(2) When 3 = i, (3.4.18) reduces to the measure given by Bhatia [22] .

(3) When 8 = i, pi=q; ¥V i=1,2, ... n,(3.4.18) reduces to the measure given by
Autar and Khan [6], which can be further reduced to the entropy given by Shannon [107]
by takingaw — 1 andu; =1 V i=1,2,...,n.

Further, consider a parametric ‘useful’ codeword mean length

(3.4.19) LE(U) = tpas [1 = opi | = pi(25)

1—-DA—a)B
where a > 0(#£1),3 #0.

Remark (3.4.4).

(1) When 3 — 0, (3.4.19) reduces to the codeword mean length given by Gurdial
and Pessoa [53].

(2) When 3 = 1 (3.4.19) reduces to the codeword mean length given by Autar

and Khan [6], which can be further reduced to ordinary codeword mean length given by

Shannon [107] by takingoe — 1, v, =1 V ¢ =1,2,...,n.
Now we find the bounds of L? (U) in terms of I° (P, Q;U) under the condi-

tion

(3.4.20) Sopig; D7 <1
=1
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where D is the size of the code alphabet.

Theorem (3.4.3). For every code with lengths [y, s, ..., [, satisfies the condition

(3.4.20). Then generalized codeword mean length satisfies

(3.4.21) L3(U) > 12 (P,Q;U)

equality holds iff

(3.4.22) li = —log % —
‘;uimqf‘_l

Proof: By Holder’s inequality [116]

1 1
429 Sz (£2) (50)
i=1 i=1 i=1
for all =;,y; > 0, i = 1,2,..,n and % + é = 1,p < 1(#£0),g <0 orq <
1(#0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that
(3.4.24) ot = cyf

Making the substitution

a—1 l-a
—a 1
v =pi | = D7y =p | 2 g
2o uipi > uipi
i=1 i=1
in (3.4.23) and using (3.4.20), we get
1 gy B L
n ° 1 (a=1 _ wipigf ! -
(3.4.25) S | pu(=) | > | AL
i=1 Zuzpz Zuzpz
i=1 i=1
Case 1: For o > 1, 3 > 0, equation (3.4.25) becomes
" 5 1 op
S uipig) ! n ° o
B [ ) pre)

n pul
> uipi i=1 > uipi
=1 =1

Since 1 — D198 > 0, we have
L3 (U) > 17 (P,Q; V)

Case 2: For a > 1, 3 < 0, equation (3.4.25) becomes
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0 8 1 b
S uipig) n : o
| < | | 2 p(3)
igluipi i=1 l;uzpz
Since 1 — D198 < 0, we have
L (U) > 17 (P,Q;U)
Case 3: Fora < 1,5 > 0, equation (3.4.25) becomes
" 5 L P
a—1 o
Uipiq; n a1
] < | = ph(est)
igluipi i=1 l;uzpz
Since 1 — D198 < 0, we have
LI (U) > 17 (P,Q;U)
Case 4: For a < 1, 3 < 0, equation (3.4.25) becomes
1 ap
2 a—1
Uipiq; n a—1
i:lni Z sz n L D*lz(T)
;uz‘pi i=1 ;uim

Since 1 — D198 > 0, we have

L3 (U) 2 I3 (P,Q; U)

Theorem (3.4.4): For every code with lengths [4, [, ..., [, satisfies the condition
(3.4.20), L2 (U) can be made to satisfy
(3.4.26) IZ(P,Q;U) < LG (U) < DU=P [2(P,Q;U) + 1

Proof: In general we can not hope to construct an absolute optimal code for a given
set of probabilities py, po, ..., p,. Since if we choose [; satisfy (3.4.22) then /; may not be
an integer. However, can do the next thing and select the integer /; such that

(3.4.27) L<li<l+1
(3.4.28) —log 4% <] < —log —44 41
Z:luz'piqf‘fl ,;uipz’q;kl

We claim that prefix code can be constructed with word lengths [, I, ..., ,,. To prove
this we must show that sequences [y, I, ..., [,, satisfies (3.4.20). From left hand inequality
of (3.4.28), it follows that

uiq —1
RO > D™
Zuipiqi
i=1
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Multiplying both sides by p;q; ' and summing over i = 1,2, ...,n, we get (3.4.20).
Considering L (U) as a function of [1, I, ..., [, only and using differentiable technique it
can be easily proved that L2 (U) is an increasing function of Iy, ly, ..., ;.

From (3.4.27) , we have

1 af
n
1 ; (=t
o |1 | Xpi | = pu(=5)
i=1 'gluipi
1 af3
n p—
1 i _T;(a=1
< oo |1 | e | = D)
=1 Eluipi
1 af
1 (1-)B - u; _li(L—l)
< i—puap |1 =D >opi | = Dh%s
i=1 '21Uipi
Clearly,
é aﬁ En: a—1 ﬁ
n a— . Uipiq;
Zpl nui Dill(Tl) p— z:1n
i=1 > uipi > uipi
=1 i=1
We get
n 1 /B
uipiq;
s |[1- | ==
P > uipi
=1
n . B
8 1 (1-a)B Zﬂmmfﬁ
—Q 1=
< LqU) < i=pa=aw |1 =D 0
> uipi
i=1
Implies that

I8 (P,Q;U) < L (U) < DU-818 (P,Q:U) + 1

3.5. Bounds on generalized inaccuracy measures with two and three parame-
ters

In this section, bounds have been obtained on generalized inaccuracy measures
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with two and three parameters given by Tuteja and Bhaker [129] .

Consider a function of inaccuracy measure given by Tuteja and Bhaker [129]

i (uipi)? (g8~ 1)
(3.5.1) 1°(P,Q;U) = = _
@-a-1)yp?
i=1

where o > 0(#1),3>0,p; >0, > p; <1
i=1

Remark (3.5.1)

(1) When 3 = 1, (3.5.1) reduces to the measure given by Sharma, Mittal and Mohan
[113].

(2) When o« — 1,3 = 1, (3.5.1) reduces to the non- additive “useful’ inaccuracy

measure for generalized probability distribution characterized by Taneja and Tuteja [119].

(B)When g =1,p;, =¢q; Vi=1,2,...,n, (3.5.1) reduces to the measure given by
Jain and Tuteja [63].

4) Whena — 1,8 =1,u; =1 Vi =1,2,...,n, and probabiltiy distribution is
complete then (3.5.1) reduces to the measure given by Kerridge [73].

Consider a Parametric ‘useful’ generalized codeword mean length
i(uipi)ﬁDli(kTa) "
(3.5.2) LB (U) 1 =1 -1

« - n n
@3 ) > (uip;)”
1= 1=

i=1

Remark (3.5.2)

(1) When 8 = 1 and distribution is complete, then (3.5.2) reduces to codeword mean

length given by Jain and Tuteja [63].

(2) When a@ — 1,3 = 1 and distribution is complete, then (3.5.2) reduces to the
codeword mean length given by Guiasu and Picard [51] and further reduces to ordinary
mean length given by Shannon [107] by takingu, =1 Vi=1,2,... ) n.

The bounds are obtained here, under the condition
n

(3.5.3) S (upy)’ g D < i(uzpﬁﬁ

i=1
which is a generalization of Kraft [80] inequality.
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Theorem (3.5.1): If [y, [, ..., 1, denote the code lengths satisfying the condition
(3.5.3). Then

(3.5.4) L3 (U) >

LPQU) o 5 0(£1),8> 0
where U = 3 (u;p:)” , equality holds iff
i=1

i (wipi) i
(3.5.5) l; = —log ¢ + log ———
;(umi)ﬁ

Proof: By Holder’s inequality [116]

1 1
(3.5.6) Sy > (Zﬁ) (ny)
i=1 i=1 i=1

for all z;,y; > 0, ¢ = 1,2,..,n and 1—1) + é = 1,p < 1(#£0),g < 0 orq <
1(#£0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that

(3.5.7) b = cy!
Making the substitution
a3 =
)8 _ pi)? -
pom || pot o |
;(umi) ;(uipi)
p=%L ¢=1-qa

in (3.5.6), we get

1

_a
2 . -1 . 1 (= a—1 n ] 1=
zl<uim>f’D lig; zlmmi)%l( =) _zlmipi)@q?
£ = Z

>

éﬁl(uim)ﬂ N gn)l(uipi)ﬁ g:l(uipi)ﬁ
using the inequality (3.5.3), we get
_ - o 1
2"3 (uim)ﬁDli(lea) e i (uipi)Pqd ™! e
(3.5.8) = > | =2
_;(umi)ﬁ ;(Uipi)ﬁ
Let 0 < a < 1, raising both sides of (3.5.8) to the power (1 — «) , we get
> (um)ﬁD”(l%) 3 (uips) gt
(3.5.9) = > | T
> (uipi)? ;mm)f’

Since 217 — 1 > 0, for 0 < o < 1, a simple manipulation proves (3.5.4) for

0 < a < 1. The proof for 1 < a < oo follows on the same lines.
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Theorem (3.5.2): For every code with lengths [y, ls, ..., [,, satisfying the condition

(3.5.3), L2 (U) can be made to satisfy the inequality

(3.5.10) L5 (U) < JBQUD2 | Dleel s (£ 1), 3> 0
v @ -1) 2]
=1

Proof: Let /; be the positive integer satisfying the inequality

i (uips)Pqd ™t i (wipi)Pq? ™t
(3.5.11) —log g +log =——— < [; < —log ¢ + log =5
izl(uipi) l_;l(uz‘pi)ﬁ
Consider the interval
] 3 (uipi) P! 35 (uipi) g2
(3.5.12) 0; = |—loggf +log —=——, —log ¢y + log ——— +1
i;(uipi)ﬁ g:l(uipz‘)ﬂ
of length 1. In every 0;, there lies exactly one positive integer /; such that
3 (uipi)Pqf 35 (uipi)Pqe !
(3.5.13) 0< —logq} + log=——— <[; < —log ¢} + log =5—— +1
_gl(uipi)ﬁ ‘;(uipi)ﬁ

We will first show that the sequence {l1,1ls, ..., 1, } , thus defined satisfies (3.5.3).

From (3.5.13) we have

_Xn:(uipi)ﬁqf“*l
—log ¢ +log =—— < ;
® (wn)?

i (wipi) !
—log ¢ + log “=t——— < —log, D7t
3 (wipe)?

3.5.14 a4 > Dl
319 R
iil(um)ﬁ

Multiplying both sides of (3.5.14) by (up;)” q¢; ' and summing overi = 1,2, ..., n.

we get (3.5.3).

The last inequality of (3.5.13) gives

n
> (wipi)’ g

l; < —log g +log =——+1
> (uipi)®
3 (uips) g2
(3.5.15) Dl < Dg; *=1;
5 (i)’

Let 0 < a < 1, raising both sides of (3.5.15) to the power lea, we get
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11—«

n
> (wips)Pg !
i=1

(3.5.16) ph(®) < phatget |2
;(Uim)/3

Multiply both sides of (3.5.16) by %i): , summing over ¢ = 1,2, ..., n and after
> (uipi)
i=1
then raising both sides to the power o, we get

$ uipn?p (5%) ] > (wipa) g2
(3.5.17) = <Dlo i~
Z:l(uvipi)g El(uipi)g

Since 217 —1 > 0, for 0 < a < 1, a simple manipulation in (3.5.17) proves (3.5.10)
for 0 < a < 1. Also for a > 1, the proof follows along the similar lines.

Now, bounds have been obtained here by considering a function studied by
Tuteja and Bhaker [129] which involves three parameters. The results obtained here are
more generalized than previous results. The function used here is applicable to more

complex distributions.

Consider a function of inaccuracy measure given by Tuteja and Bhaker [129]

i (uip;)? (pflq?*”—g

(3.5.18) 157 (P,Q;U) = =L )
@1-e-1)Y pf

=1

s a,B,7y>0,a#1

Remark (3.5.3)

(1) When v = 1in (3.5.18), it reduces to measure (3.5.1) given by Tuteja and Bhaker
[129].

(2) When 8 = 1,7 = 1 and a — 1, then (3.5.18) reduces to measure given by
Taneja and Tuteja [119].

B)Wheng=1,y=1,a—landu; =1V ¢ =1,2,...,.n. Then (3.5.18) reduces
to the result given by Kerridge [73] . Furtherifp;, = ¢; V @ = 1,2,...,n, it reduces to
Shannon’s [107] entropy.

(4)When g=1,y=1and p;=¢; V i=1,2,...,n.(3.5.18) reduces to measure
given by Jain and Tuteja [63].

Let us consider the three parametric codeword mean length
a+1—y

> (Uipi)ﬁp;/ilD_li(WZ;iI)
(3.5.19) L3 (U) = L =1 - -1
mlfa4¢)§%p§ _g;uupnﬁ

where «, 3,7 > 0,a # 1.
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Remark (3.5.4)

(1) When 8 =1,v=1and a — 1, then (3.5.19) reduces to codeword mean length
given by Guiasu and Picard [51].

2)Wheng=1,vy=1,a— landu; =1V i=1,2,...,.n. Then (3.5.19) reduces

to codeword mean length given by Shannon [107].

(3) When 3= 1,7 =1, Then (3.5.19) reduces to the codeword mean length given
by Jain and Tuteja [63].

Now, we obtain the bounds under the condition

(3.5.20) S (uips)? pY g D <Y (uapy)?
i=1 i=1

which is a generalization of Kraft [80] inequality.

Theorem (3.5.3): If [, [5, ..., [, denote the codeword lengths and satisfying the con-
dition (3.5.20). Then

(3.5.21) Lo (U) > 2R 3y 50,0 £ 1
where U =S (u;p;)” , equality holds iff
i=1

ﬁi(uﬂh)ﬁpzfqufw
_;(Uipi)ﬁ

Proof: By Holder’s inequality [116]

1 1
(6523) Y > (zx) p (zy)
for all z;,y; > 0, i = 1,2,..,n and Il) + % = 1,p < 1(#£0),¢g <0 orqg <
1(#£0),p < 0. We see the equality holds iff there exists a positive constant ¢ such that
(3.5.24) = eyl
For a > 7,

Making the substitution

=D(—1-0)

pi y—o D—li
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y—1
o= || pr gt
_;(uipz)
Y&

in (3.5.23), we get

y—a—1 1
Z -1 17y, & -1p~li(55aT e —1 -«
Zl(umi)ﬁpz gy ‘Dl _ZI(U¢pi)BpZ (7 a- 1> Z(umz)ﬁ g
1= > 1=
n - n
> (wipi)? > (wipi)® Z (wipi)?
=1 = =1

using the inequality (3.5.20), we get

_(aze=t 1
5525 ,§<uim>ﬁpﬁr}*”(ﬁl@3 )17 N S () e | T
- > ()’ T e’

Raising both sides of (3.5.25) to the power (7 — «) , we get
n [ 1+O‘_’Y n
> (wips)’p) 1D n(75) > (wips)’p) gl
(3.5.26) = < |2
v;(uz'pz‘)ﬁ ‘;(“ipi)ﬁ

Since 217* —1 < 0 for a > 1, a simple manipulation in (3.5.26) proves (3.5.21) for

a > 1.For other cases, proof follows on the same lines.

Theorem (3.5.4): For every code with lengths [y, s, ..., [,, satisfying the condition
(3.5.20). L5 (U) can be made to satisfy the inequality

B, R Rhmic —«
G521 L (U) < BURGOIE | o il L

where U = 3 (u;p;)”
i=1
Proof: Let [; be the positive integer satisfying the inequality

ul 8. v—1 a—
> (uipi)’p] ™ g

(3.5.28) —log ¢®™7 + log =
; 'Lpz)
oy ot Z(umz)" Tl
<l < —logqg’ + log = +1
' ; (uips)”
Consider the interval
. > (wips) )l . 3 (wp) ") g
(3.5.29)9; = | —logq;" 7 + log =— —logg 7 + log F— +1
El(uz-pi)ﬁ ; u;p;)°
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of lenght 1. In every 9,, there lies exactly one positive /; such that
z<u1pl>" T

(3.5.30) 0 < —log g™ + log 4=
;(umi)ﬁ

Z(uzpl)ﬂ I
7+ log =L— +1
Z(uml

<l < —logg™™~

We will first show that the sequence {l1,1ls, ..., [, } , thus defined satisfies (3.5.20).
From (3.5.30) we have

Z(umz)ﬁ e

—log ¢®™7 4 log = <1
_E (uipi)’
e Z(umz)ﬁ v—1 @7
—logg ™7 +log < —log, D7
Z;(uim)
or
q?+1 ¥ —1;
( izz:l( Zp’)ﬂpzlqgw) = b
El(um)ﬁ
By =1 —1
Multiplying both sides by % and summing over i = 1,2, ...,n. we get
> (uips)
i=1
(3.5.20).

The last inequality in (3.5.30) gives

S 'Yloz"/
Zuzpz q;

l; <loggq; (a+1-7) =
_gl(uipi)ﬁ
3 B8 ’Y 1 a—v
(3531) Dll < qz (a+1 ,\/) 7,2( 1pz) q;

_Z ( zpz)

Let o > , raising both sides of (3.5.31) to the power — ( < ) , we get

y—a—1

(525%)
ﬂ_)

D(V*afl

zwmﬁ St

‘E (Uipi)
i=1

—a

(3.5.32) pl(55) S @

i (uipi)?p] !
Multiply both sides of (3.5.32) by izlniﬁ and summing over: = 1,2,..,n and
(uips)
i=1
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after raising both sides to the power (o + 1 — ) , we get

n —« +1- n
> (uipi)ﬁple_li(Vz“’I) B > (uips)Pp) tgd
(3.5.33) =1 - > =L Dy—e
> (uipi)? > (uipi)?
=1 =1

Since for & > 1,2!7* — 1 < 0, after simple manipulation in (3.5.33) we get for
a>landa >y

By . Y- Y—a_
LE7(U) < L BT 2 4 Dr ool
<" () v @-e-1) 3 pf
=1
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One of the important issues in many applications of probability theory is find-
ing an appropriate measure of distance between two probability distributions. A number
of divergence measures for this purpose have been proposed and extensively studied by
Jeffreys [65], Kullback and Leibler [81], Renyi [104], Havrada and Charvat [57], Kapur
[68], Sharma and Mittal [108], Burbea and Rao [28], Rao [99], Lin [85], Csiszar [36], Ali
and Silvey [4], Vajda [131], Shioya and Da-te [115] and others .

These measures have been applied in a variety of fields such as: anthropology
[99], Genetics [88], Finance [106], Economics [126], Poltical science [127], Biology
[96], The analysis of contingency tables [50], Approximation of probability distributions
[32,72], Signal processing [66,67] and Pattern recognition [21,31].

In this chapter, generalizations of relative entropy and of other different diver-
gence measures are considerd and several information inequalities related to these diver-

gence measures have been obtained.

4.1 Introduction

n

Let A, = {P = (p1,p2, -, Pn) /Di >0, pi = 1} ,n > 2 be the set of

complete finite discrete probability distributions. =
The relative entropy is a measure of the distance between two distributions. In Statis-
tics, it arises as the expectation of the logarithm of the likelihood ratio. The relative en-
tropy K (P//Q) is a measure of the inefficiency of assuming that the distribution is Q
when the true distribution is P, e.g., if we know the true distribution of the random vari-
able, then we could construct a code with average description length H (P). If, instead,
we used the code for a distribution Q, we would need H (P)+K (P//Q) bits on the

average to describe the random variable.

The relative entropy or Kullback- Leibler [81] distance, between two distributions is
defined by

(4.1.1) K (P//Q) = épi In &

forall P,QQ € A,.In A,, we have taken all p;, > 0. If wetake p; > 0 V i =
1,2,...,n, then in this case we have to suppose that 0ln0 = Oln (§) = 0. From the
information theoretic point of view, we generally take all the logarithms with base 2, but

here we have taken only natural logarithms.
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In information theory, various divergence measures are applied in addition to
the Kullback- Leibler divergence measure. These are given by Pearson [94], Sibson [117]
and Lin [85], Taneja [122,123,124,125], Jeffrey [65], Hellinger [58], Topsoe [128], Ben-
tal et al [18], Renyi [104], Sharma and Autar [109] and Vajda [131].

Given a convex function f : [0, 00) — R, the f-divergence functional
(4.12) Cr(P1/Q) = Yusf ()

was introduced by Csiszar [35]- [36] as a generalized measure of information, a ‘dis-
tance function’ on the set of probability distribution P". The restriction here to discrete
distributions is only for convenience, similar results hold for general distributions. As in
Csiszar [35]- [36], we interpret undefined expression by
T 0y _
F0)=lm (1), 0f(8) =0
a) _ 1; a) _ ,Tim £
0f(§) = limef (2) = alim 52,0 >0
The following results (Theorem (4.1.1), (4.1.2) and Corollary (4.1.1) ) were given

by Csiszar and Korner [34].

Theorem (4.1.1). (Joint convexity). If f : [0,00) — R is convex, then C (P//Q)

is jointly convex in P and Q.

Theorem (4.1.2). (Jensen’s inequality). Let f : [0,00) — R be convex. Then for

1

any P,Q € R with P, = lei >0, Q, = 1% > 0, we have the inequality

(4.13) Cy (P//Q) = Quf (&)

If f is strictly convex, equality holds in (4.1.3) iff
P1 _ p2 __ _ Pn

(4.1.4) ===

It is natural to consider the following corollary.

Corollary (4.1.1). (Non negativity). Let f : [0, 00) — % be convex and normalized,

ie f(1)=0.
Then for any P, Q € R with P, = Q,,, we have the inequality
4.1.5) Cr(P//Q) =0

If f is strictly convex, equality holds in (4.1.5) iff
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(4.1.6) pi=q Yi=1,2..n

In particular, if P,Q are probability vectors, then the corollary (4.1.1) shows that, for

strictly convex and normalized f : [0, 00) — R that

(4.1.7) Cy(P//Q) >0 and C;(P//Q) =0 iff P=Q.

We now give some examples of divergence measures in information theory

which are particular cases of Csiszar f-divergence.

(1) Symmetric J-divergence [65]

The Symmetric J-divergence is defined by
(4.1.8) K(P//Q)+K(Q//P)=J(P//Q)=;(pi—qz—)lﬂ%j
where K (P//Q) = ipi In 2 studied by Kullback- Leibler [81].

i=1 !

If we choose f () = (t —1)Int, t > 0. Then
(4.1.9) Cy(P//Q) = J(P//Q)

(2) x?-distance [94]

The Y?—distance (chi square distance) is defined by
@L10) ¢ (P/fQ) = St

It is clear that if f (t) = (t — 1)*, ¢ € [0,00). Then
(4.1.11) Cr (P//Q) = x*(P//Q)

(3) Hellinger discrimination [58]

The Hellinger discrimination k2 (P//Q) is defined by
(4.1.12) W2 (P//Q) = ;i_il (Vo — V&)

It is obvious that if f () = 1 (v/ — 1) Then
(4.1.13) Cy (P//Q) = h*(P//Q)

(4) Bhattacharya distance [24]
The Bhattacharya distance B (P//Q) is defined by
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n

(4.1.14) B(P//Q) = 3./piti

=1

If we choose f (t) = /t, t € (0,00). Then
(4.1.15) Cr(P//Q) = B(P//Q)

(5) Triangular discrimination [128]

The triangular discrimination between P and Q is defined by

(4.1.16) A(P/]Q) = ;‘M

It is obvious that if f (¢) = (t+1) ,t € (0,00). Then

(4.1.17) Cr(P//Q) = A(P//Q)

(6) Renyi’s a— order entropy [104]
The Renyi’s a— order entropy (a > 1) is defined by

(4.1.18) R, (P/]Q) = S pSq ™™
=1
It is obvious that f (t) = t*,¢ € (0,00). Then

(4.1.19) Cr(P//Q) = Ra(P//Q)

Dragomir [45,48] proved the following inequalities for Csiszar f-divergence.

Theorem (4.1.3). Let ¢ : R, — R be differentiable convex. Then for all P,Q €

R" , we have the inequality
(4.1.20) ¢/ (1) (P, — Q)
< Cy(P//Q) = @uo (1) < Cy (5//P) = Co (P//Q)
where P, = Sp; > 0, Q, — zqz > 0and ¢/ : (0,00) — R is the derivative

i=1
of ¢. If ¢ is strictly convex and p;, ¢; > 0 (i=1,2,...,n), then the equality holds in

(4.1.20) iff P = @ . If we assume that P,, = ), and ¢ is normalized, then we obtain the
simpler inequality

@121) 0 Co(P//Q) < Cy (5//P) = Cu (P/Q)

Applications for particular divergences which are instances of Csiszar f-divergence

were also given.

74



Theorem (4.1.4). Let ¢ : R, — R be differentiable convex. Then for all P, Q) €

R . Then we have the inequality

(4122) 0 Co(P//Q) = Quo (L) <Cy (51/P) = 5:Cor (P//Q)
If ¢ is strictly convex and p;,¢; > 0, (i =1,2,...,n), then the equality holds in
(4.1.22) iff

pi_ P2 _

q1 q2

Obviously, If P, = @,, and ¢ is normalized, then (4.1.22) becomes (4.1.21).

S

n

=)

n

Dragomir [42,43,44] has obtained many results related to Kullback- Leibler
distance, Hellinger discrimination and variational distance for the Csiszar f-divergence.
In the next section, upper and lower bounds for the Csiszar f-divergence in terms of sym-
metric J-divergence measure have been obtained. Also some particular cases are obtained
in terms of symmetric J-divergence measure by comparing it with a number of other
divergence measures arising in information theory. This work has been accepted for pub-

lication in “Indian Journal of Mathematics” ( Baig and Rayees [13]).

4.2 Some inequalities between Csiszar f-divergence and symmetric J-divergence

measure.

Theorem (4.2.1). Assume that the generating mapping f : [0,00) — R is normal-

ized, i.e f (1) = 0 and satisfies the assumption:
(1) f is twice differentiable on (r, R), where 0 < r < 1 < R < o0;
(2) there exists the real constants m,M such that
(4.2.1) m< L/ (#)<M Vte(rR)

If P,Q are discrete probability distributions satisfying the assumption r < r; = % <
R Vi€ {l1,2,...,n}. Then we have the inequality

(42.2) mJ (P//Q) < Cy (P//Q) < MJ(P//Q)

Proof: Define the mapping F},, : (0,00) — R, F,,, (t) = f (t) —m (t — 1) Int

is normalized, twice differentiable and since

Fi () = f1 () = G0 — b [/ () —m| 20 Vi€ (rR)

It follows that ), (¢) is convex on (r, R) . Applying the non negative property of the

Csiszar f-divergence functional F}, (t) and the linearity property, we may state that
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0<CR, (P//Q) =Cs(P//Q) —mCy_1ym (P//Q)
=Cr(P//Q) —mJ (P//Q)
or
mJ (P//Q) < Cy (P//Q)
from where we get the first inequality in (4.2.2).

Define Fy; : (0,00) — R, Iy (t) = M (t — 1)Int — f (t), which is obviously
normalized, twice differentiable and by (4.2.1) convex on (r, R) . Applying the non neg-
ativity property of Csiszar f-divergence for C'f,,, we obtain the second part of inequality
(4.2.2).

Remark (4.2.1). If in (4.2.1), we have the strict inequality “<” for any ¢ € (r, R) ,
then the mapping F},, and F, are strictly convex and the case of equality holds in (4.2.2)
iff P=Q.

Using the inequality (4.1.21) which holds for ¢ differentiable convex and normalized

functions for P,Q probability distributions, we can state the following theorem as well.

Theorem (4.2.2). Let f : [0,00) — R be a normalized mapping, i.e., f (1) = 0 and

satisfies the assumption:
(1) fis twice differentiable on (r, R), where 0 < r < 1 < R < o0;
(2) there exists the real constants m, M such that
(4.2.3) m< i/ (#)<M Y te(rR)

If P,Q are discrete probability distributions satisfying the assumption r < r; = f]’—j <
R Vi€ {1,2,...,n}. Then we have the inequality

424)  Cuo (5//P) = Cpw (P1/Q) +MC (P/Q)
< G (P//Q)
< Cp (551/P) = Cpro (P1/Q) +mC (P//Q)

where C' (P//Q) =1 — ZZ—?
i=1""
Proof: We know that (see the proof of theorem (4.2.1) ) that the mapping

F, (@) = f() —m(t—1)Int is normalized, twice differentiable and

convex on (1, R).
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If we apply the second inequality from (4.1.21) for F},,, we may write
(425 Cn (P//Q) < Cpy (B1/P) = Cpy (PIQ)

However,
Cr, (P//Q) = Cy (P//Q) —mJ (P//Q)
Cry (%//P = O/ (t)=m(1—t-1+Int) (%//P>

c, <%2//P> — m +mCs (%//P) — MCns (%//P)

=0y (5//P) —mEK (P//Q)

Also,
Crr (P/]Q) = Crriy-m—t-14m1) (P//Q)

= Cpry (P/)Q) —m + mCpr (P/)Q) —mCiui (P//Q)
= Cpyo (P//Q) = m+m$% 4 mE (Q//P)

And then by (4.2.5), we may write

Cy (P/)Q) —mJ (P//Q)
<y (%1/P) = mK (P//Q)
=Gy (P//Q) +m —m3- % —mEK (Q//P)

=y (5//P) = Cpr (P1/Q) = mJ (P//Q) +mC (P//Q)

or
Cy (P1/Q) < Cruy (%5 //P) = Cpuo (P1]Q) +mC (P//Q)
which is equivalent to the second inequality in (4.2.4).

Consider Fy, (t) = M (t —1)Int — f (t), which is obviously normalized, twice

differentiable and convex on (r, R).

If we apply the second inequality from (4.1.21) for F'y;, we may write
(426)  Cr, (P//Q) < Cy (5//P) = Cpy (P1Q)

However,

Cry (P//Q) = MJ(P//Q) = C; (P//Q)
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CF@ <%2//P) CM(a—t-14m1) ﬂ(t)( //P>
— M — MC, <%2//P> + MGy, (%2//13) -Cy (%2//13)
= MK (P//Q) ¢y (%G//P)
Also,
Coy, (PIQ) = Crs-c om0 (P/Q)
M= M MK (Q))P) ~ i (P//Q)
=MC(P//Q) = MK (Q//P)—Cpu (P//Q)
and then by (4.2.6) , we may obtain
MJ(P//Q)—C(P//Q)
< MK (P//Q)=Cy (&//P) =M+ Mii—
+MK(Q//P)+ Cyppy (P//Q)
~Cpy (%1/P)+Cpi (P//Q)+ M (P/Q)=MC (P//Q)
or

Cr(P/Q) 2 Cpy (%//P) = i (P/Q) + MC (P//Q)

which is equivalent to the first inequality in (4.2.4).

4.3 Some particular cases

The results in section (4.2) have natural applications when the symmetric J-divergence
measure is compared with a number of other divergence measures arising in information

theory.

Proposition (4.3.1). Let P,Q be two probability distributions with property that
(4.3.1) O<r§%§R<oo Vie{l,2,..,n}

Then we have the inequality

(43.2) 2T (P/Q) < X (P//Q) < 57 (P//Q)

Proof: Consider the mapping f : (0,00) — R, f(t) = (t —1)*. Then f//(t) =2

Define the mapping ¢ : [r, R] — R, ¢ (t) = t+1 f//( )
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Then obviously

inf g(t) =2

te(r,R] r+1

2
sup g (1) = 25
telr,R)

Since

Cr(P//Q) =x*(P//Q)
Now, using the inequality (4.2.2) with m = f%, M = ]%21, we get the inequality
(4.3.2).

Proposition (4.3.2). Let P,Q be two probability distributions satisfying the condition
(4.3.1). Then we have the inequality

(43.3) i (P//Q) < h*(P//Q) < 1557 (P//Q)
Proof: Consider the mapping f (t) = % (Vt— 1)2 .Then f//(t) = 4\}5
Define the mapping g : [r, R] = R, ¢(t) = %f// (t)
_
9(t) = i

Then obviously

- _

téI[E‘R]g (t) = A(r11)

VR
sup g (t) =
te[r,R| () A(R+1)

Since

Cy(P//Q) = h?*(P//Q)

Now, using the inequality (4.2.2) with m = 4(7“—‘/51), M = ZL(R—%, we get the desired

inequality (4.3.3).

Proposition (4.3.3). Let P,Q be two probability distributions satisfying the condition
(4.3.1). Then we have the inequality

(43.4) ST (P//Q) +1 < Ra (P//Q) < %55 (P//Q) +1
Proof: Consider the mapping f: (0,00) = R, f(t)=t*—1, a>1

Then f//(t) =a(a—1)t*2
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Define the mapping ¢ : [r, R] — R, ¢ (1) = 2 f// (¢)

t+1
a(a—1)t™
g(t) = (t+1)t

Then obviously

inf g(t) = “elr?

te[r,R) T+l
ala—1)R~
sup g (t) = 2

te(r,R)
Also,

Cr(P//Q) = Ra (P//Q) =1

a(a—1)r _ ala—1)R~
Tkl M = R+1

Now, using the inequality (4.2.2) with m = , we get the

desired inequality (4.3.4).

Proposition (4.3.4). Let P,Q be two probability distributions. Then we have the

inequality
(4.3.5) A(P//Q) < 5J(P//Q)
Proof: Consider the mapping f(t) = (t;fl)g. Then obviously f// (t) = ﬁ

Define the mapping ¢ : [r,R] = R, ¢(t) = tt+_21f// (t)

_ 82
9() = G
A simple calculation shows that

/ _16t(t+1)3(1—1)
9 (1) = =

Consequently, the mapping g is increasing on the interval (0,1) and decreasing on
(1,00).

Moreover,

sup g(t) =g(1) =3

te(0,00)

and
Cy (P//Q) = A(P//Q)
Applying the inequality (4.2.2) for M = I, we deduce (4.3.5).

If we know more about r; = %, i.e., the condition (4.3.1) holds, then we can improve

the inequality (4.3.5) as follows.
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Proposition (4.3.5). Assume that the probability distributions P,Q satisfies (4.3.1).

Then we have the inequality

. ,,,2 2
(4.3.6) smin { 2, 50} (P1/Q) < AP//Q)
Proof: Taking in to account that the mapping g () = ( titf)4 1s monotonic increasing

on (0,1) and decreasing on (1, 00) , we may assert that

inf g(t) =min{g(r),g9(R)}

te(r,R]
- . 7.2 RQ
= 8min { r+D" (Rt1)? }

using the inequality (4.2.2), we deduce (4.3.6).

Proposition (4.3.6). Let P,Q be two probability distributions. Then we have the

inequality
43.7) —11(P//Q) < B(P//Q)
Proof: Consider the mapping f : (0,00) — R, f(t)=1— 1
Then

1
1
g(t) = i(ttfl)
-1
which shows with simple calculations that g/ (t) = t;fg?

Consequently, the mapping g is increasing on the interval (0,1) and decreasing on
(1,00).

Moreover,

sup g(t) =g (1) =3

te(0,00)

Since
Cr(P//Q)=1-B(P//Q)
Then, applying the inequality (4.2.2) for M = %, we deduce (4.3.7).

If we know more about r; = %, i.e., the condition (4.3.1) holds. Then we can point
out an upper bound for B (P//Q) as follows.
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Proposition (4.3.7). If 0 <r < % <R<oo Vie{l,2, ...,n}. Then we have
the inequality

(433) tmin{ 2 2L 7 (P1/Q) < 1- B (P//Q)

Bl

1.t
4 (t41)

Proof: Taking in to account that the mapping ¢ () = is monotonic increasing

on the interval (0,1) and decreasing on (1,00).

Moreover

inf g(t) =min{g(r),g9(R)}

te(r,R]

=

_ : 1 T% R%
= min {Z 1)’ 4 (R+1) }
1 : 'r% R%
= 1 MY 7590y RD)
using the inequality (4.2.2), we deduce the desired upper bound (4.3.8).

Let us consider the Harmonic distance by

n

M (P//Q) =y ;b

i=1

The following proposition holds.

Proposition (4.3.8). Let P,Q be two probability distributions. Then we have the

inequality
(4.3.9) 1-3J(P//Q) < M(P//Q)
Proof: Consider the mapping f : (0,00) — R, f(t) =1— 24, f1(t) = (t+41)3

2
Define g:[r,R]— R, ¢g(t) = ti_lf// (t)
_ 4
9() = Gy
A simple calculation shows that

3211
g/ (t) = +1)°

Consequently, the mapping g is increasing on the interval (0,1) and decreasing on
(1,00).

Moreover,

sup g(t) =g (1) = §

te(0,00)

Then, applying the inequality (4.2.2) for M = +, we have (4.3.9).

1
4
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If we know more about r; = %, i.e., the condition (4.3.1) holds. Then we can point
out an upper bound for M (P//Q) as follows.

Proposition (4.3.9). If 0 <r < % <R<oo Vie{l,2,..,n}. Then we have
the inequality

(4.3.10) M(P//Q) <1 —4min{ ", (R+1 5} (P//Q)

Proof: Taking in to account that the mapping g (t) =

(t+1)4 1S monotonic 1ncreas1ng

on the interval (0,1) and decreasing on (1, o).

Moreover

inf ¢g(t) =min{g(r),g(R)}

te(r, R]
o 4r2 4R2
= min { 1)L (R+1)4}

:4min{ r 1 },tE[T,R]

(r+1)* (R+1)T

using the inequality (4.2.2), we deduce the desired upper bound (4.3.10).

Numerical illustration (4.3.1). We consider two examples of symmetrical and
asymmetrical probability distributions. We calculate x> (P//Q) and J (P//Q) and com-
pare bounds.

Example (4.3.1). Let P be the binomial probability distribution for the random
variable X with parameters (n = 8,p = 0.5) and Q its approximated normal probability
distribution. Then

Table 1. Binomial probability distribution (n =8,p = 0.5)

0 1 2 3 4 5 6 7 8

p(x) 0.004 0.031 0.109 0.219 0.274 0.219 0.109 0.031 0.004
q(x) 0.005 0.030 0.104 0.220 0.282 0.220 0.104 0.030 0.005
& 0.774 1.042 1.0503 0.997 0.968 0.997 1.0503 1.042 0.774

The measure x? (P//Q) and J (P//Q) are:
X2 (P//Q) =0.00145837, J (P//Q) = 0.00151848

(x

vv

It is noted that
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r (= 0.77417993) < 2 < R (= 1.050330018)
The lower and upper bounds for x? (P//Q) from (4.3.2).

lower bound=2=J (P//Q) = 0.0010258824

upper bound= 2£ 7 (P//Q) = 0.0016339321

Thus,
0.0010258824 < x? (P//Q) = 0.00145837 < 0.0016339321

Example (4.3.2). Let P be the binomial distribution for the random variable X

with parameters (n = 8, p = 0.4) and Q its approximated normal probability distribution.
Then

Table 2. Binomial probability distribution (n =8,p = 0.4)

x 0 1 2 3 4 5 6 7 8

p(x) 0.017 0.090 0.209 0.279 0.232 0.124 0.041 0.008 0.001
q(x) 0.020 0.082 0.198 0.285 0.244 0.124 0.037 0.007 0.0007
% 0.850 1.102 1.056 0.979 0.952 1.001 1.097 1.194 1.401

q(

— =

From the above data, measures 2 (P//Q) and J (P//Q) are calculated:
X2 (P//Q) = 0.00333883, J (P//Q) = 0.00327778
Note that
r (= 0.849782156) < 2 < R (= 1.401219652)
Lower and upper bounds for x? (P//Q) from (4.3.2).
lower bound=fi—21J (P//Q) = 0.0025591122
upper bound= 2= J (P//Q) = 0.0053601511
Thus,
0.0025591122 < x? (P//Q) = 0.00333883 < 0.0053601511

Dragomir [47] has obtained many interesting information inequalities by using
the results in terms of x? distance with the help of Csiszar’s f divergence. In the next
section, some generalized information inequalities have been obtained, which generalizes

not only the result of Dragimir [47] for chi -square distance but also gives the result in
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terms of relative J- divergence measure. The work has been published in * Journal of
Mathematics and System Sciences”, Vol 2(2), PP 57-75 (2006) (Baig and Rayees [10]).

4.4 Generalized divergence measure and information inequalities.

Let A, = {P = (p1,p2, .., pn) /pi > 0},> p; = 1,n > 2 be the set of complete
i=1

finite discrete probability distribution.

The relative J-divergene measure given by Dragomir [41] is

@4 D(P//Q) = (n—a)ln (%) ¥ PQeA,
i=1

In A,,, we have taken all p; > 0 but if we takep; > 0V ¢ = 1,2,..,n, then in

this case we have to suppose that 0In0 = Oln (2) = 0. From the information theoretic
point of view we generally take all the logarithms with base 2, but here we have taken

only natural logarithms.

We observe that the measure (4.4.1) is not symmetric in P,Q. Its symmetric version,

famous as J- divergence measure and is given by Jeffreys [65] as

(4.4.2) J(P//Q) = D(P//Q)+ D(Q//P) = - (pi — ) In (%)

i=1
The one parametric generalization of the measure (4.4.1) given by Taneja [121] and

is called relative J-divergence of type s as

@43)  DUP/Q = (-1 X (a0 () s 1

i=1
In this case we have the following limiting case.

limD, (P//Q) = 3 (b — a)In (255%) = D(P//Q)
s i=1

We have a interesting particular case of the measure (4.4.3).

When s=2, we have

Dy (P//Q) = 5x* (P//Q)

where
(4.4.4) 2 (P//Q) = Z <pz ql Ep, _

is the y?— distance given by Pearson [94].

For simplicity, let us write the measure (4.4.3) in the unified way:
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Dy (P//Q) ;s #1

D(P//Q) ;s=1

Summarizing, we have the following particular cases of the measure (4.4.5).
() &(P//Q)=D(P//Q)
2) &(P//Q)=3x*(P//Q)

In view of theorem (4.1.1) and (4.1.2), we have the following results.

(4.4.5) & (P//Q) = {

Result (4.4.1). For all P,Q € A,,, we have

(D& (P//Q) > 0for 0 < s <4 with equality iff P=Q.

(2) & (P//Q) is convex function of the pair of distribution (P, Q) € A,, x A, for
0<s<4.

Proof: Take

(4.4.6) ¢s (u) :{ (=17 -1 (57 = 1] 5 s 21

(u—1)In (%) ; s=1
for all w > 0 in (4.1.2), we have

Cr(P/]Q) =& (P//Q) :{ é)s(g;//g) 587:11

The above result holds for all 0 < s < 4.

Moreover,

447 ol (u){ Ho-D ) -7 ()T -] e
s (5) s=1

and

(4.4.8) ) = (1) (=)

Thus we have ¢./ (1) >0V u > 0and 0 < s < 4. Hence ¢, (u) is convex for all
u>0and 0 < s <4. Also, we have ¢, (1) = 0. In view of Theorem (4.1.1) and (4.1.2),
we have the proof of the result (4.4.1).

The following theorem summarizes some of the result studied by Dragomir
[45,48]. For simplicity we have taken f (1) =0and P,Q € A,.

Theorem (4.4.1). Let f : &, — R be differentiable convex and normalized i.e.,
f(1)=0.If P,Q € A, are such that 0 < r < % <R<ox Vie{l,2,..,n} forsome
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rand Rwith0 <r <1 < R < o0, then we have the following inequalities

(44.9) 0<Cr(P//Q) <L (R=r) (f/(R) - [ (r))
(4.4.10) 0<Cp(P//Q) < By (r, R)

and

(44.11) 0<B;(r, R) = Cr (P//Q)

< BT (R 1) (1 - 1) — x> (P//Q)]
<L(R=7r)(f/(R) = 1/ (1)

where

(4.4.12) B (r, R) = EDIOHIZD] ()

x> (P//Q) and C;(P//Q) are as given by (4.4.4) and (4.1.2) respectively. In view
of theorem (4.4.1), we have the following inequality

Result (4.4.2). Let P,QQ € A, and 0 < s < 4. If there exists r,R such that
0<r< % <R<oo Vie{l,2,...,n}with0<r <1< R < oo, then we have

(4.4.13) 0<&(P//Q) < s (r, R)
(4.4.14) 0<&(P//Q) < ¢, (1, R)
and

(4.4.15) 0<¢,(r,R) = &(P//Q)
<K (r,R)[(R=1)(1—r)=x*(P//Q)] < ps (1, R)

where

1 _
@a16) u(nr -4 17 r){

2
=T (EY) T - ()T 2]
R =) [t - 54+ In (229 s
(4.4.17) K, (r, R) = 20-e:0)

Also,



ps (r,R) = L (R—r)* K, (r, R)
(4.4.18) &, (7” R) (R— 1)¢s(7’)+(1 T)$s(R)

—r

{%[() - ()] £

Qor) Iy (127 =1

r+1
Proof: The above results follows immediately from theorem (4.4.1), by taking

[ (u) = ¢ (u) where ¢, (u) is given by (4.4.6), then in this case we have Cy(P//Q) =
& (P11Q).

We have the following corollaries as particular cases of result (4.4.2).

Corollary (4.4.1). Under the condition of result (4.4.2), we have

(4.4.19) 0<D(P//Q) < (R—r){f — 55 +In(£5)}
(4.4.20) 0< %XQ (P//Q) < % (R=r)(R—r—2)

Proof: (4.4.19) follows by taking s=1, (4.4.20) follows by taking s=2 in (4.4.13).

Corollary (4.4.2) .Under the conditions of result (4.4.2), we have

(4.4.21) 0<D(P//Q) < U=ty (£41)

(4.4.22) 0 < 1x*(P//Q) < B

Proof: (4.4.21) follows by taking s=1, (4.4.22) follows by taking s=2 in (4.4.14).

4.5 Main results

In this section, we present a theorem which generalizes the one obtained by
Dragomir [47]. The result due to Dragomir [47] are limited only to chi-square divergence,
while the theorem established here is given in terms of relative J- divergence of type s,

that in particular lead us to bounds in terms of chi-square and relative J-divergence.

Theorem (4.5.1). Let f : I C R, — R the generating mapping be normalized i.e.,
f (1) = 0 and satisfies the assumption:

(1) fis twice differentiable on (r, R), where 0 <r < 1 < R < o0;
(2) there exists the real constants m,M with m<M such that

(4.5.1) m< A= (EH) T (x) <M Yae(r,R),0<s<4
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If P, € A, are discrete probability distribution satisfying the assumption 0 < r <
£ < R < oo. Then we have the inequality

where Cy (P//Q) ,& (P//Q) , By (r, R) and ¢ (r, R) are as given by (4.1.2), (4.4.5),
(4.4.12) and (4.4.18) respectively.

Proof: Let us consider the function [, s (u) and Fj 4 (u) given by

(453) Fm,s (u) - f (u) - m¢s (u)
and
4.5.4) Firs (u) = Mo (u) — f (u)

respectively, where m and M are as given by (4.5.1) and function ¢, (u) is as given
by (4.4.6).

Since f (u) and ¢, (u) are normalized, then F,, ; (u) and Fy; s (u) are also normal-
ized ie., Fi,, s (1) = 0and Fj (1) = 0. However the functions f (u) and ¢, (u) are
twice differentiable. Then in view of (4.4.8) and (4.5.1), we have

Fals (u) = f// (u) = ¥/ (u)

= P —m ()" (=

= (457 (=) (it () =m0

and
Fif,(w) = Mo (u) = £/ (u)
=M ()" (25) — Y ()
= (5)77 (=) {M - s () W) 2 0

forall u € (r,R) and 0 < s < 4. Then the functions F,, ; (u) and Fjs 4 (u) are

convex on (r, R) .

We have seen that the real mappings F,, s (u) and Fj; 4 (u) given by (4.5.3) and
(4.5.4) respectively are normalized, twice differentiable and convex on (r, R). Applying
the r.h.s of the inequality (4.4.10), we have

(4.5.5) Cr,.. (P//Q) < Bp,.. (1, R)

and
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(4.5.6) Cry. (P//Q) < Bry, (r; R)

respectively.

Moreover,

(4.5.7) Crn,. (P//Q) = Cy (P/]Q) —mé&s (P//Q)
and

(4.5.8) Cry. (P//Q) = M& (P//Q) = Cr (P//Q)

In view of (4.5.5) and (4.5.7), we have

Cr (P//Q) —m&, (P//Q) < fp,. (r, R)
ie.,

Cr(P//Q) —m& (P//Q) < ff (r, R) — mo (r, R)
or

m s (r, R) = & (P//Q)] < By (r, R) = C; (P//Q)
Thus we have 1.h.s of inequality (4.5.2).
Again in view of (4.5.6) and (4.5.8), we have

ME, (P//Q) = Cp (P//Q) < Pry, (1, R)
1.€.,

ME& (P//Q)— Cy (P//Q) < M@, (r,R) — By (r, R)

or

By (r,R) = Cy (P//Q) < M [ (r, R) — & (P//Q)]
Thus we have r.h.s of inequality (4.5.2).

4.6 Information bounds in terms of y?— divergence
In particular for s=2 in theorem (4.5.1), we have the following proposition.

Proposition (4.6.1). Let f : I C R, — R the generating mapping be normalized

i.e., f (1) = 0 and satisfies the assumption:
(1) fis twice differentiable on (r, R), where 0 <r <1 < R < o0;
(2) there exists the real constants m,M with m<M such that

(4.6.1) m < fl/ () <M V xe(rR),
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If P, € A, are discrete probability distribution satisfying the assumption 0 < r <

P < R < oo, then we have the inequalities
“62)  F(R-1)(1-r)=x*(P//Q)
< Pr(nR)=Cp (P//Q)
<SR- A=r)=x*(P//Q)]

where C; (P//Q), By (r,R) and x*(P//Q) are as given by (4.1.2), (4.4.12) and
(4.4.4) respectively.

Result (4.6.1). Let P,Q € A,, and 0 < s < 4. Ifthereexists,R (0 <r <1< R < 00)
suchthat 0 < r < % <R<o Vie{l,2,..,n}.Theninview of proposition (4.6.1),

we have
(4.6.3) 5 (5H)"° (SB5=2) [(R = 1) (1 =) = 2 (P//Q)]
<0, (r,R) = & (P//Q)
<3 ()7 () [(R- 1) (1-7) =2 (P//Q)];0 < s < 2
(464 3 (51)" (=42) [(R=1) (1= 1) = (P//Q)
<0, (n R) ~ & (P//Q)
(B)"7 (B5=2) [(R= 1) (1= 1) =3 (P//Q)] ;2 < s < 4

We observe that the expression (4.6.4) is valid for 2 < s < 6, but we have taken the
range 0 < s < 4, because of the convexity and non-negativity of the function &, (P//Q)

in the range.

Proof: Let us consider f (u) = ¢ (u), where ¢, (u) is as given by (4.4.6), then

according the expression (4.4.8), we have

u 5=3 (sut4—s
o (u) = ()" (25=)
Let us define the function g : [r, R] — R such that

olo) = ()" (2562
Then
(%l)s -3 (s,«+44—s) 0<s<?2
4.6.5 -
aos e { G ) UL
(ﬂ)s—g (SR+475) 7OSS<2
4.6.6 f = ; s
( ) uél[iR] g (u) { (%)3—3 (%) 2<s<4



In view of (4.6.5) and (4.6.6) and proposition (4.6.1), we have proof of the result.

Corollary (4.6.1). In view of result (4.6.1), we have following corollaries.

@67 SEEL((R-1)(1-r) —* (P//Q)]
< U 1y (851) — D (P//Q)

< B (R—1) (1—1) = 2 (P//Q)]
Proof: (4.6.7) follows by taking s=1 in (4.6.3), while for s=2, we have equality

sign.

4.7. Information bounds in terms of relative J- divergence
In particular for s=1 in theorem (4.5.1), we have the following proposition.

Proposition (4.7.1). Let f : [ C R, — R the generating mapping be normalized

i.e., f (1) = 0 and satisfies the assumption:
(1) fis twice differentiable on (r, R), where 0 < r <1 < R < o0;
(2) there exists the real constants m,M with m<M such that
4.7.1) m< g/ 2y <M Y ae(@nR),

If P,Q € A, are discrete probability distribution satisfying the assumption 0 < r <

% < R < o0, then we have the inequalities

4.7.2) m [“‘R)# In (&) - D (P//Q)}

Sﬁf(rvR)_gs(P//Q)

< M [0 1y (B2 — D (P//Q)]

where Cy (P//Q), Bs(r,R)and D (P//Q)) are as given by (4.1.2), (4.4.12) and
(4.4.1) respectively.

Result (4.7.1). Let P,Q € A, and 0 < s < 4.Ifthereexists,R (0 <7 <1 < R < 00)

such that 0 < r < 7;— <R<oo Vie{l,2,..,n}.Theninview of proposition (4.7.1),

we have

(4.73) (B2)! (sBii) [“’”(R’” In (&) — D(P//Q)}

2 R+3 R—r r+1

< ¢S(T7R)_£S(P//Q>
< (%)3—1 <ST+4_S) [(1—r)(R—1) In (R—H) - D (p//Q)} 0<s <1

r+3 R—r r+1
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@74 ()7 (o) {(1 D=Ly (££1) — (P//Q)}

§¢8(T7R) _gs(P//Q)

< (B2)™ () [0 (8) - D (P//Q)] i1 <5 4
Proof: Let us consider f (u) = ¢, (u), where ¢, (u) is as given by (4.4.6). Then

according to the expression (4.4.8), we have

u 5=3 (sut4—s
Sy = (51)7 (=)
Let us define the function ¢ : [r, R] — R such that

g (u) = 6l (u)

Then

g(u) = (%) B (su;fzs

() (=) 0 <5 <1

4.7.5 r+3
(4.7.5) uzl[i%]g( u) = { (B} (s 1 g < 4

. (i)51(sR+475);0§8<1
4.7.6 f 2 B+3
(4.7.6) Al (W) = { ()" () 1 < s < 4

In above cases we have taken the range 0 < s < 4, because of the convexity and
non negativity of the function &, (P//Q) in the range. In view of (4.7.5) and (4.7.6) and
proposition (4.7.1), we have proof of the result (4.7.1).

Corollary (4.7.1) . In view of result (4.7.1), we have the following corollary.
@77 S [AE L (2) - D (P//Q)]
< (Rfl)(lfr) 1 2 (P//Q)
(R+1)? [ (1—r)(R-1
< <R*;3’> (S0 (25) — D (P//Q)

Proof: (4.7.7) follows by taking s=2 in (4.7.4) and for s=1, we have equality sign.
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Shannon’s inequalities are well known in the field of information theory. Re-
searchers have found many inequalities by using well known Holders’s inequality, Jensen’s
inequality etc and have found many applications for Shannon’s entropy , Renyi’s entropy
etc. Dragomir [46] have found many information inequalities for the logarithmic mapping
and convex mappings by using Jensen’s inequality. In this chapter, several generalized in-
formation inequalities have been obtained by introducing a independent variable ‘s’ and
applied for Shannon’s entropy, Renyi’s entropy and mutual information . The informa-
tion inequalities obtained here are not only new but also generalizes some established

inequalities in information theory given by Dragomir [46].

Also some upper bounds for the relative arithmetic geometric divergence measure
have been obtained by using some classical inequalities like Kantorovic inequality, Diaz-

Metcalf inequality and other inequality for logarithmic function.

5.1. Introduction

The following converse of Jensen’s discrete inequality for convex mappings

of a real variable was proved by Dragomir and Ionescu [40].

Theorem (5.1.1). Let f : [ C R — R be a differentiable convex function on the

interval I, x; € 1 <I is the interior 0fI> , pi > 0(=1,2,...,n)and > p; = 1. Then
i=1

we have the inequality

61 0= s ) -1 (Spn) < Sond () - Lo (0)

They also pointed out some natural applications of (5.1.1) in connection to the arith-
metic geometric mean inequality, the generalized triangular inequality etc. A generaliza-
tion of (5.1.1) for differentiable convex mappings of several variables was obtained by

Dragomir and Goh [39]. They also considerd the following analytical inequality for the

logarithmic mapping.

Theorem (5.1.2) . Let x;,p; > 0,(i = 1,2,...,n) with > p; = L and b > 1. Then
i=1

(5.1.2) 0 < log, (Zpi:ci) — > _pilogy x;
i=1 =1
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equality holds in (5.1.2) iff v; = 29 = ... = x,,.

They applied inequality (5.1.2) in information theory for the entropy mapping, con-
ditional entropy, mutual information etc. An integral version of (5.1.2) was employed by
Dragomir and Goh [39] to obtain different bounds for the entropy, conditional entropy

and mutual information for continuous random variables.

In the next section, some generalized inequalities have been obtained and ap-
plications for Shannon’s entropy, Renyi’s entropy and mutual information are also given.
The results obtained in this section generalizes some results of Dragomir [46]. This work
is published in International Journal of pure and applied Mathematics, Vol 31 (2) PP 253-
263 (2006) ( Baig and Rayees [11]).

5.2 Some generalized inequalities for convex functions

Theorem (5.2.1). Let f : [a,b] — R be twice differentiable on (a, b) , continuous in
[a,b) and m < 2®>=*f// () < M V€ (a,b)and s € R. Ifx; € [a,b] , i =1,2,....,n
and p = p;, 1 = 1,2,...,n is a probability distribution, then

(5.2.1) m {Zn:lpi(bs (z;) — s (Zn:lpz%)]

<

iM:

pJW%)—f<§?ﬁ9

=

Proof: Let us consider the function
s(s=1D] '[z*—1—-s(z—1)]; s#0,1

(5.2.2) o (x) = r—1—Inz ; s=0
l—xz+Inz ; s=1
Then
(s — 1) [zst = 1], s#0,1
(5.2.3) ol (z) = 1—zt s =
nx ; § =
and
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725 540,1
(5.2.4) o/ (x)={ 22 s=0

7 os=1

Here ¢/ (x) >0, V x>0, here ¢ (x) is strictly convex for all z > 0 and s € K.
Let us consider the function g : [a,b] — R

g(x) = f(x) —mos () , v €(ab), seR

g/ (@) = 1 () = mol! (@) = =2 (a2 §// (&) = m) 2 0
which shows that the mapping g (z) is convex on [a, b] .

Applying Jensen’s discrete inequality for the convex mapping g (), i.e.

g (i_Zn)lpirci) < i_anlpig (w:)

g:lpif () = f (épx) > [Z:) i0s (2:) — &5 (Eijlpx)}

The first inequality in (5.2.1) is proved.

Therefore,

pi[f (i) —mos ()]

The proof of the second inequality goes likewise for the mapping h : [a,b] —
R, h(x) = M¢s (x) — f (x) which is convex on [a, b] .
Corollary (5.2.1) . Let z;,w; > 0 (i=1,2,...,n) and put W,, = > w;. Also
i=1
consider Arithmetic mean A, (w,a) = Zw ;. If ¢, € Im, M] C (0,00) , i@ =

1,2,...,nand s € R, then we have the 1nequa11tles

Lt W; Ty W”_L
e
i=1
= Tan (w0

< exp [ {Zw%(bs (2:) = s (Z_zn:lwle) H

Proof: Consider the mapping f (x) = zInx, © > 0.Then

f/(x) =Inz +1, z € (0,00)
/(@) =1, w€(0,00)
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which shows that f is strictly convex on the interval (0, c0) .
1

x€[m,M] z€[m,M]

Applying theorem (5.2.1) for this mapping and p; = -, @ = 1,2, ..., n. We deduce
(5.2.5).

The case of equality follows by the strict convexity of the mapping
g(z)=zlnz— ¢, (), h(z) = ¢, (x) —xlnzon (m,M).

Theorem (5.2.2). Let f : [a,b] — R, be twice differetiable on (a, b) , continuous
in[a,b]andm < 2?~°f// (x) <M VYax€la,blands € R.If x; € [a,b],i=1,2,...,n
and p = p; (i = 1,2,...,n) is a probability distribution. Then we have the inequalities

(5.2.6) so-pipj (@i — ) (f (@) = f/ (x;))

,1/7]

+M i_znjlpiéf)s (%) — s <Z_Zn:1pzﬂ?z> - %%pipj (l"z - %‘) <¢é (%) - ¢>/ (*E]))]
< i;pz‘f (zi) = f <Z=§:1pzl‘z>
< %%pipj (zi — x;5) (f/ () — f/ ()
+m i_zn:lpszs (75) — s (éﬁ%) - %%‘pipj (w5 — x5) <¢é (;) — ¢/ (371))]

Proof: Consider the mapping
g:labl =R, g(x)=f(r)—mos(x), seR, z¢€l(ab)
where ¢, () is given in (5.2.2).
Then g is twice differentiable on (a, b) and
g/ (@) = [/ (&) = ml! (x) = /7 (x) = mas~2
g/ (x) = 2> 22> f// () —m] >0 V x € (a,b) ,5s € R.

which shows that the mapping is convex on = € [a,b],s € R. Also ol (x) is given

by (5.2.4). We apply inequality (5.1.1) for the convex mapping g, i.e
0< leig () — g (lez%> < %Zpipj (x; — ) (9/ (z:) — g/ (z;))
i= i= %,

to obtain
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NE

0<

il ) = mo ()] |7 (S ) = mo. (i)
< 55y (@ =) | 0) = 11 o) = ol (@) + mol (z,)]

<.
Il

= 35 i = ) (f () = () =2 omips (s — ) (04 (i) — ol ()
Thus ’ ’
i_ﬁ:lpif (@) = f (Zj:lp:c>
< %Zpipj (2; — ;) (f/ (z:) = f/ (5))

ij

n

> Dids (1) — ¢ (Zn:lpm) - %%:pipj (zi — ;) (éﬁé () — ol (%’))]

i=1

+m

and the second inequality is proved.

The proof of the first inequality goes likewise for the mapping i : [a,b] — R, h (x) =
M, (x) — f (x).

Corollary (5.2.2). Letx; € [m, M] C (0,00) and p; > 0 (i =1,2,....,n) with

> p; = 1. Then we have the inequality
i=1

)2
527 S
iJ

it [ S () = 0. (S ) = 1T (o= ) (04 1) — o w)]
<In (ipixi) - Zn:pi In;
i=1 i=1
< %ZP%%
i Zn:lpifbs (%) — ¢s (Zn:lpz%> - %Zpipj (2; — ;) (¢£ (%:) — ¢é (%))]
i= = i

Proof: Consider the mapping f : [m, M] C (0,00) givenby f (z) = —Inx
Then

Fa)==t @)=k
Also
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Inf fl(z)=gpm, Sup f//(x) = 2
z€[m,M] z€[m,M]
Applying inequality (5.2.6) for this mapping, we can write

s Py -

i_ilp@s (3%) — Qs (élh%) szng ( - 333) <¢£ ($z) - ¢£ (33]))]

<In (Zpixi) - Zpi Inx;
=1

(zi— I])

S 2 szpg W

Mz [szﬁbs () — s (é@%) - %%:pipj (z; — CUj) (ﬁf)é (i) — 9254 (%))]

which is equivalent to (5.2.7). The case of equality follows by the strict convexity

of the mapping ¢ (z) = —Inz — 70, (z), h(z) = 250, () + Inz on the interval

[m, M] .

Corollary (5.2.3). Let x; € [m, M] C (0,00),alsos € R, p; >0 (i=1,2,....,n)

with Y p; = 1. Then we have the inequlity
i=1
(zi—z;)”

1
§sz‘pj vz,
ij

G2 e L_ilm(xi)—qbs (Ep) ~ 45 (o —$J><¢é(x")_¢é<xj)>]

s P bt

<exp n n
+ﬁ lei% (z;) — ¢ (Z:lpzxz> - %Zpipj (z; — ;) (Qbé (z;) — cf)é (%))]
i= i= i
The equality holds in (5.2.8) iff z; = 29 = ... = x,,.
The proof is obvious by (5.2.7). Also, A, (p,x) = Y pix; (A.M), G, (p,x) =
i=1

[Ta? (G.M).

If in (5.2.8), we put x instead of %, we obtain the following corollary.
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Corollary (5.2.4). Let x;,p;, © = 1,2,...,n be as in corollary (5.2.3). Then we have
the inequality

s P -

(52.9) exp 3pid (1) = 0 (;px)

ik
—15 iy (i — 3) (04 (@) = 04 ()
Gn(pvx)
- H’ﬂ(pv‘r)
B (zi— I]) 7
szpg P
< exp . 2]%(?3 (zi) — &5 (2:12913%) 1
_|_m i= i=
L —30_pip; (T — ) (ﬁf’é (w:) — 64 (%‘)) J
L ) .
The equality holds in (5.2.9) iff x1 = x5 = ... = x,.

Also, H, (p,x) = ,Llpv (Harmonic mean) .

5.3 Application in Shannon’s entropy

The following inequalities for the logarithmic mapping holds.

Lemma (5.3.1). Let §; € [m, M| C (0,00),p; >0, i=1,2,....nwith > p; =1
i=1
and s € . Then we have the inequality

(5.3.1) % [ip@s (@) — 0 (ipl&)] < ipz@‘ In&; — épifi In (épi@)

<1 [zpz-qss (&) - 0, (ng)]
The case of equality holds iff & = & = ... = &,.
The proof is obvious by theorem (5.2.1) for the convex mapping

f:[0,00) =R, f(z)==xlnz
Corollary (5.3.1). Under the assumption for &; (i = 1,2, ...,n) , we have
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(532) 0< 4 {Z(bs (&) — o <ij1£)} < Z:ljlf Ing; — Zn)lé In (é%&)

equality holds iff & =& = ... =&,

The proof is obvious by lemma (5.3.1), choosing p; = = (i = 1,2, ...,n) .

Theorem (5.3.1). Let X be a random variable with probability distributionp; (i = 1,2, ...,n).
Assume that p = min{p;/i =1,2,...,n} > 0and P = max{p;/i=1,2,..,n} <
1.Then

(5.3.3) %Z;Dipj (pj — i)’
ij

2 épzﬁbs (P%
<In(x)— H (X)

< 3> s (p; — p)’

ij

G [zm (£) =00 () =35 (s —po) (04 (%) - o (;j))]

ij

N———
ASE
»
—
SN—
/\
\_/

VS
<
[V
/‘\
B~
\/
|
-
V)
/
|
N——
N——
| I |

Proof: If we choose z; = pii € [l 1—1)} in (5.2.7). We can deduce that (5.3.3) with

P?
(m: %,M:}D).

5.4 Application in Renyi’s entropy

M Ifw; = pt(i=1,2,....,n);a € (0,1), then P*~! < x; < p*!, then by
(5.2.7), we deduce that

pS pa 1
Qszp] ( ;?71#; T )

+ 5D [st( P — o (gp) —éiszz-pj (et —p5h) (ass( o1y _ g/ (p;v—l))]

<In (le?> — Y pilnpt!
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e [ZW (17) = 0 () = § 5y (087" = 5™") (04 (07") — 0 (57

a—1

szzp]( 9—1_2]71 )
P; P;

e [Zpﬂbs( i) =9 (§p> — 15w (0 =) (o4 () — o (p;"l))]

< (1—a)[Ha (X) = H (X))

n

prcay [sz¢s (f7") = & (Zp?> R (=) (0 () — ol (p?_1)>]

Q@ If Ifw; = p¥ ' (i=1,2,....,n);a € (1,00), Then p®~ < z; < P*~!, then by
(5.2.7), we deduce that

Qszpj %

<(a=1[H(X) - Ha (X)]

+ e [ZWS( 77 = ¢ (i_ilpf) - %szpma( P = (¢§ (pp") — ot (p?_1)>]

5.5 Application in mutual information

Theorem (5.5.1). Let X and Y be two random variables with a joint probability mass
function r (z,y) and marginal probability mass function p (x) and ¢ (y) respectively, also

0<m< ng(’;@) <M <o,V (r,y) € X x Y. Then we have the inequalities

(5.5.1) —[ ) p<x>q<y>¢s(p€i§;?;>)]

(z,y)eX XY

<I(X;Y)
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<1 L > p(x)q(y) s (p?fféf@))]

YEX XY
Proof: Choosing p; = p(z)q(y), & = % and ((z,y) € X xY) in lemma
(5.3.1) and taking

r(z,y) r(z,y) .
@ y)%;(xyp (x) q (y) p(z)a(y) In p(x)q(y) — I (X’ Y) ’

Also, ¢ ( > op(x)q(y) pgf;}%) = ¢ (1) = 0. Then we have the desired
(z,y)eX XY

inequality.

Dragomir et al [38] has obtained many interesting bounds for relative entropy
and he has shown applications of these bounds in the field of information theory. In the
next section, some upper bounds have been obtained for the relative arithmetic geometric

divergence measure with the help of some well known inequalities.

5.6 Upper bounds for the relative arithmetic geometric divergence measure.

Let p(z),q(x), x € x,card(x) < oo, be two probability mass functions. Taneja

[125] defined the relative arithmetic geometric divergence measure as

(5.61)  C(p//q) = 3 "I log L)

TEX

Also, the X2— distance measure is given by Pearson [94]

(5.6.2) v (a//p) = p<§>) 1

Theorem (5.6.1). Let p (x),q (x), © € x be two probability mass functions. Then

(5.6.3) G(p//q) =0
with equality iff p(z) =q(z) Vo€ yx.
Proof: Let A = {x : p(z) > 0} be the support of p (x) . Then

_ _ _ \" p@)ta(@) p(x)+q(x)
G (p//q) - Z 2 log 2p(x)

z€A

pla)ta(s) o 200
=2 log S re@

z€A

p(x)+q(z)  2p(x)
Slog(z 2 p(x)-l—Q(;v))

z€A
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= log (ZMJS))

z€A

<log (Zp (w)> =log(1) =0

TEX

Thus,

G(p//q) =20

Where the first inequality follows from Jensen’s inequality. Since log is strictly
concave, we have equality above iff I% = 1 everywhere. Hence we have G (p//q) = 0
iff p(z) =q(x) Vzex.

Theorem (5.6.2). Let p (x),q (x), x € x be two probability mass functions. Then

» 4\ T
(5.64)  G(p//a) <% (Z ) 1)
xEX
with equality iff p () = q¢(x) V€ x.

Proof: We know that for every differentiable real valued strictly convex function f

defined on an interval I of the real line, we have the inequality
(5.6.5) flfyb—a)>f)—f(a) Vabel
The equality holds iff a = b.
Now, apply (5.6.5) to f (z) = —log (z) and I = (0, 00) to get
(5.6.6) i(a—0b) >loga—logh V a,b>0
choose a=p(x)+q(x),b=2p(x), x €x
Then by (5.6.6), we get

o (0 (@) = p () > log BPHAD | 4 ¢

Multiplying by M > 0, we get

(P) @) 0@)-p@) ~, PE)TE) |,y 2@ o)
e 2 ey, Y EX

Summing over x € y, we get

G (p//q) = 3 Pektela) og paltale) < $~ (e)rp()
TEX

et 2p(z) 4p(z)

Gp//a) <5 [%(f(%) — 1}

The case of equality follows by the strict convexity of -log(.).
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Theorem (5.6.3). Let p (z),q(x) > 0, x € x be two probability mass functions.
Then we have the inequality

(5.67) 0= G(p//q) <log[;Dy(q//p) +1] < {Dy2(a//p)

equality holds iff p () = ¢ (z) ,Vax € x.

Proof: We use Jensen’s discrete inequality
668 f(TE ) < DE ()
TEX TEX
provided that f'is convex on a given interval I, ¢ (x) € I ¥V x € xyand p (z),q (z) >
0 are probability mass function on Y.

choose f () = —logx, x > 0, we obtain from (5.6.8)
—log (Z p(Z)gq(w)t (x)) < Z p(Z)gq(w) log (:v)
TEX TEX

log (Z ple) ot (m)) > S pelta) g ()

TEX TEX

Putt(x) =& (zltg)(x)

log (Z ple) sote) p(w)+q<z>> > 3 pla)tale) Jog oot

2p(x 2p(x
z P@) Z p(a)

2
G (p//q) < log (Z %)
TEX

G (p//q) <log (3Dyz(a//p) + 1)
We use elementary inequalty log (u + 1) < w, u > 0 with equality iff u = 0.
log (;Dy2 (¢//p) +1) < ;D2 (a//p)

Thus we can write

G (p//q) <log (;Dy2 (¢//p) +1 ) < §Dy2 (q//p)

Lemma (5.6.1). Let p(z),q(z) > 0, x € x be two probability mass functions.

Define r (z) = %, x € x and assume that

(5.6.9) O<r<r(x)<R<oo ,Yz€y.

Then we have the inequality

R—r)?
(5.6.10) 0<G(p//a) < Y52
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equality holds in (5.6.10) iff p(x) =q(z), Yz € x .
Proof: Using the Kantorovic inequality [89]
n n 2 n 2
(5.6.11) S z} gi( M+ %) (Zuz>
k=1 k=1 k=1
where O<m<r,< M<oxxfork=1,2,...n

Put  wup =+/q(x), rp =7 (x)in(5.6.11), we get

ZT(SU)CI()ZT@)Q §i<\f+f) (xex )2

TEX
which is equivalent to

20 <4 (VE+vE)

or e
2
Dela//m) <4 (E+VE) -1
2
=1 (V- V7)
(5.6.12) e (q//p) < B

Also, proved in theorem (5.6.2)
G (p//a) < 1Dx2 (a/ /)

Thus,

G (p//a) < Dy (q/ Jp) < B

or

Rfr)2
G (p//q) < S

Theorem (5.6.4). Let p(z),q(z) > 0, z € x be two probability mass functions.
Define r (x) = %, x € x and assume that

(5.6.13) O<r<r(x)<R<oo, Vzey.

Then we have the inequality

(5.6.14) G (p//a) < log |G- +1] < Hr

equality holds iff p (v) = ¢ (x) V z € x.

Proof: Using the inequality (5.6.7) and (5.6.12), we have
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G (p//q) <log [1D\2 (q//p) + 1] <log C?J}; + 1)

or

R—r)* (R—1)?
G (p//a) < log <(16TR + 1) < Sorm
The last inequality in (5.6.14) follows by the elementary inequality log (u + 1) <
u, u > 0 with equality iff u=0.

Lemma (5.6.2). Let p(z),q(x) > 0, x € x be two probability mass functions
satisfying the condition

O<r§%§R<oo, vV x ey
Then we have the inequality
(5.6.15) G/ <i1=r)(R=1) < {(R-r)
equality holds in (5.6.15) iff p () = ¢ (z), V = € x.

Proof: Using the Diaz Metcalf inequality for real numbers [89]

n n n

=1 =1 =1
provided that
(5.6.17) m <% <M fork=1,2,..,nand g, > 0with > g, =1

k=1
The equality holds in (5.6.16) if either by = may or by = May fork=1,2,....n

Define

b(@) = /B, a(w)= /"2, sex

Then

b(x T
e h e 009, ¥

From (5.6.16), we get

S o) (VB) + RS (/22)

TEX TEX

< (R+1) Tal) /2843

et p(z)

i.e

SEE 4R Sp(r) < (R+1) La(x)

TEX TEX TEX
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In additionas Y . p(z) = > ¢(x) = 1, we obtain

TEX TEX
SLE L rR< (R+7)
reEX
¢*(z) _
Py o) <R+r—-rR
or
@) _1<(1-r)(R—1)
= p(z)
TEX
or

v la//p) <1 —=r)(R-1)

We use here elementary inequality

ab<l(a+b)?, abeR
Thus

(1-r)(R—1) < L (R—r)
Thus we can write
(5.6.18) e (a//p) < (1 =r)(R=1) < (R—r)*
Using the inequality (5.6.4), we can write

Gp/fa) <A -r)(R-1) < & (R 1)’

Theorem (5.6.5). Let p(z),q(x) > 0,z € x be two probability mass functions.
Define r (x) = zg; ,x € x and assume that

(5.6.19) O<r<r(x)<R<oo ,Yuz€y.

Then we have the inequality

(5.620) G (p//q) < log (% + 1) < log (‘R;g>2 + 1)

equality holds iff p(z) =¢q(z), V x € x.

Proof: Using theorem (5.6.3) and inequality (5.6.8), we have
G (p//q) <log (D2 (q//p) +1) < log (% n 1) < log <(R;6T>2 N 1)

or

C (p//4) < log (LU0 1 1) < log (50" 4 1)
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