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ABSTRACT

This thesis entitled, “SOME CONTRIBUTIONS TO OPTIMALITY CRITERIA
AND DUALITY IN MULTIOBJECTIVE MATHEMATICAL PROGRAMMING”, offers an
extensive study on optimality, duality and mixed duality in a variety of
multiobjective mathematical programming that includes nondifferentiable
nonlinear programming, variational problems containing square roots of a certain
quadratic forms and support functions which are prominent nondifferentiable
convex functions. This thesis also deals with optimality, duality and mixed
duality for differentiable and nondifferentiable variational problems involving
higher order derivatives, and presents a close relationship between the results of
continuous programming problems through the problems with natural boundary
conditions between results of their counter parts in nonlinear programming.
Finally it formulates a pair of mixed symmetric and self dual differentiable
variational problems and gives the validation of various duality results under
appropriate invexity and generalized invexity hypotheses. These results are

further extended to a nondifferentiable case that involves support functions.

This thesis comprises seven chapters. The chapters are divided into
various subsections to give specific descriptions of the results quoted in the

thesis.

Chapter 1: is devoted to surveying the relevant literature which is
required in the development of existing results in multiobjective mathematical

programming.

Chapter 2: The purpose of the chapter 2nd is to study multiobjective
duality in nonlinear programming involving support functions. This chapter
contains two sections, 2.1 and 2.2. In section 2.1, Wolfe type duality and Mond-
Weir type duality are investigated under invexity and generalized invexity, and

special cases are derived. Section 2.2, unifies the nondifferentiable Wolfe type



dual and Mond-Weir type dual problems considered in section 2.1 and also

incorporates particular cases.

Chapter 3 studies multiobjective continuous programming in which the
components of the objective and constraint functions contain support functions.
In this chapter Wolfe and Mond-Weir type duality are studied under invexity /
generalized invexity requirements. The results of this chapter are regarded as
dynamic versions of the duality results of nondifferentiable nonlinear problems

derived in chapter second.

Chapter 4 is focused on the study of optimality criteria and duality in
multiobjective variational problems involving higher order derivatives. The
models of the variational problems presented in this chapter are obviously more
general than those of the preceding chapters. It consists of three sections, 4.1, 4.2
and 4.3. In section 4.1, optimality conditions, both Fritz-John and Karush-Kuhn-
Tucker type optimality conditions are derived for the variational problem and the
extended notion of invexity / generalized invexity. As an application of Karush-
Kuhn-Tucker optimality conditions, Wolfe type dual is formulated and various
duality results are established under invexity / generalized invexity defined in
this section. In this section, it is also shown that our results can be considered as
continuous time extension of nonlinear problem existing in the literature. Section
4.2 formulates Mond-Weir dual for multiobjective variational problem
considered in section 4.1 to relax the invexity requirements for various duality
results to hold and gives relationship between the results of this section and those
of nonlinear programming. Section 4.3 is meant to unify the dual formulations of
the variational problems in section 4.1 and 4.2 and prove various duality results

under invexity and generalized invexity.

Chapter 5 consists of two sections, 5.1 and 5.2. In section 5.1, optimality
conditions are derived and Wolfe type duality and Mond-Weir type duality
problems for a class of nondifferentiable variational problems involving higher

order derivatives with nondifferentiable terms of square root of certain quadratic



form are treated. The second section 5.2 is meant to present mixed type duality
for the class of nondifferentiable multiobjective variational programming
considered in section 5.1. The subsection 5.2.2 considers the variational problem
with natural boundary conditions instead of fixed point conditions. These
formulations are indicated to possess close relationship of the duality results of

section 5.2 with those of nondifferentiable nonlinear programming.

Chapter 6 is devoted to the study of mixed type symmetric and self
duality for multiobjective variational programming. In essence the formulation of
the problem of this chapter combines the Wolfe and Mond-Weir type symmetric
dual multiobjective variational problems already studied in the literature. Further,
it is also shown that our results are closely related to those of their static counter

parts.

Chapter 7 is the last chapter of the thesis. It has two sections, 7.1 and 7.2.
In section 7.1, Wolfe and Mond-Weir type symmetric dual models for
multiobjective variational problems with support functions are treated. For these
pairs of problems, weak, strong and converse duality theorems are validated
under convexity-concavity and pseudoconvexity-pseudoconcavity assumptions
on certain combination of functionals. Self duality theorems for both the pairs are
established. The problems with natural boundary values are formulated. In
section 7.2, we present the mixed formulation that unifies two existing pairs,
Wolfe and Mond-Weir type symmetric dual multiobjective variational problems
containing support functions and various duality theorems are established under
convexity-concavity and  pseudoconvexity-pseudoconcavity —of  certain
combination of functionals appearing in the formulation. A self-duality theorem
under additional assumptions on the kernel functions that occur in the problems
is validated. A pair of mixed type nondifferentiable multiobjective variational
problem with natural boundary values is also formulated to indicate the validity
of various duality theorems and to find linkage between the duality results of this

section and those of the results of nonlinear programming.
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1.1 GENERAL INTRODUCTION

I n this chapter we present a brief survey of related work done in the
fascinating area of multiobjective mathematical programming followed
by a precise summary of our own findings in the subsequent chapters of this

thesis.

Many problems of practical importance can be transformed into
different forms of minimization or maximization problems no matter
whether such problems are from the field of engineering, science, business
or finance. These problems share the characteristics of requirements of
finding the most advantageous solution that offers certain optimal criteria
under several limitations. Many of these problems concentrate primarily on
optimizing the gain or the quality of performance: for instance the problem
of optimal control (discrete or continuous), structural design, mechanical
design, electrical network, water resource management, stochastic resource

allocation, location facilities, etc., can be cast into optimization problems.

Euler has truly said,

“Since the fabric of the universe is most perfect and the work
of the most Wise Creator, nothing at all takes place in the
Universe in which some rule of the maximum or minimum
does not appear”.



Almost all practical optimization problems are concerned with more
than a single objective function. Real life problems require the optimization
of multiple objectives at the same time. For example in planning of
transportation or distribution schedule, the total transit time is usually not the
only criterion to consider. A planner may also consider the cost and the
reliability of the planner schedule before it is actually executed. When the
evaluation process deals with more than one objective, the problems of this
nature are described as multiple objective optimization. These objectives are
often inter-conflicting. When objectives are conflicting, this implies that an
objective cannot be improved without affecting the optimality of the other
objectives. A possible solution to multiple criteria optimization should
provide balance in objectives. These solutions may be suboptimal with
respect to single objective programming problem. In fact, they are called
trade-off solutions that are regarded as the best solution. Multiple criteria
optimization is most often applied to deterministic problem in which the
number of feasible alternatives is large. It is more useful with less
controversial in business and government such as in oil refinery, scheduling,
production planning, capital budgeting, forest management, determining
reservoir release policy, allocation of audit staff in a firm, transportation and

many others.

Optimality criteria play a very significant role in determining the
solution of the problem as the classical calculus suggests. Fritz-John [81]
was the first to derive necessary optimality conditions for constrained single
objective optimization problem using Lagrange multiplier rule. Later Kuhn
and Tucker [88] established necessary optimality conditions for the
existence of optimal solution under certain constraint qualification in 1951.
It was revealed after wards that W.Karush [83] had presented way back in
1939 without imposing any constraint qualification; thus the Kuhn-tucker
conditions are known as Karush-Kuhn-Tucker optimality conditions. Abadie

[1] established a regularity condition that enabled him to derive Karush-
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Kuhn-Tucker conditions from Fritz John optimality conditions. Subsequently,
Mangasarian and Fromovitz [93] generalized Fritz-John optimality
conditions to treat equality and inequality constraints. Sufficiency of these
conditions under convexity and generalized convexity were extensively

treated by many authors notably, Mangasarian [92] and Martos [95].

The first notion of optimality in the setting of multiobjective
programming goes back to Edgeworth in 1881 and Pareto in 1896 as well
known historical references and is still the most extensively used. In
(Edgeworth-) Pareto-optimality every feasible alternative that is not
dominated by any other in terms of the componentwise partial order is
considered to be optimal. Hence each solution is considered optimal that is
not definitely worse than another. Thus, multiobjective optimization does
not yield a single or a set of equally good answers, but rather suggests a

range of potentially very different answers.

Optimality criteria are extensively studied as a vital organic part in
the theory of single or multiple optimization theory because these criteria lay
the foundation of duality which is a natural and significant concept. The
term duality used in our daily life means the sort of harmony of two opposite
or complementary parts by which they integrate into whole. Inner beauty in
natural phenomena is bound up with duality, which has always been a rich
source of inspiration in human knowledge through the centuries. The theory
of duality is a vast subject, significant in art and natural science.
Mathematics lies in it roots. The concept of duality has proved to be
valuable notion in analysis of linear and nonlinear programming. According
to Dantzig [47] the notion of duality was first introduced by Von-Neumann
[120] and was subsequently formulated in the precise form by Gale, Kuhn
and Tucker [57]. The concept of duality is to associate with each
mathematical programming, called primal, (a Latin word, which means

original) another mathematical programming called dual program. This idea



is useful in economics where the dual problem can be stated in terms of
price, in mechanics where primal and dual problems are two well-known

forms of conservation principles.

Duality in nonlinear programming problems originated with duality
results of quadratic programming, initially studied by Dannis [46]. Dual of
convex primal program was given by Dorn [53], Mangasarian [92] and
Wolfe [156]. Schechter [132] extended the duality results of Wolfe to
nondifferentiable case by replacing gradients by subgradients using Slater’s

constraint qualification.

Mond and Weir [116] modified the Wolfe dual moving a part of
objective function of Wolfe dual to the constraints and thus introducing
Mond-Weir dual programming problem. The resulting pair of dual
programming was nonconvex program and was found that there was no
involution between primal and dual that is, the dual of the dual was not
primal in general. In the literature of mathematical programming, a primal-
dual pair of problem is called symmetric if the dual of the dual is primal
problem. In the sense, a linear problem and its dual is symmetric. However,
the majority of the formulation, in nonlinear programming does not possess
this property. The first symmetric dual formulation in nonlinear
programming was proposed by Dantzig, Eisenberg and Cottle [48] which
subsumed the duality formulation of linear programming and certain duality
formations in quadratic programming. Making use of the Fritz John
optimality conditions, they proved weak and strong duality theorems for
their pair of symmetric dual programming problems under differentiability
conditions. These ideas were further extended to single and multiple

objective variational problems.

Kuhn and Tucker [88] were the first to incorporate some interesting
results concerning multiobjective optimization in 1951 .Since then, research

in this area has made remarkable progress both theoretically and practically.
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Some of the earliest attempts to obtain conditions for efficiency were carried
out by Kuhn and Tucker [88], Arrow et al [2]. Their research has been
inherited by Da Cunha and Polak [45], Neustadt [122], Ritter [126-128],
Smale [139], Aubin [3], Husain et al. [62-68] and others.

Duality, which plays an important role in traditional mathematical
programming, has been extended to multiobjective optimization since the
late 1970’s. Isermann [75-78] developed multiobjective duality in linear case
while results for nonlinear cases have been given by Schonfeld [134],
Tanino and Sawaragi [144], Mazzoleni [96], Corley [44], Nakayama [119]

and others.

Concept of mixed type multiobjective duality seems to be quite
interesting and useful from practical as well as from algorithmic point of
view. The computational advantage of mixed type dual formulations
involves the flexibility of the choice of constraints to be put in the Lagrange
function can be exploited to develop certain efficient solution procedures for

solving mathematical programming problems.

The main contribution of this thesis is to derive optimality criteria for
differentiable as well as nondifferentiable multiobjective mathematical
programming problems which contain both nonlinear programming
problems and variational problems and study duality and symmetric duality
for these problems. The variational problems are often described as
continuous programming problems. In these problems nondifferentiability
occurs due to the terms of square root of a certain quadratic forms and
support functions. As the mixed type duality in mathematical programming
Is interesting from theoretical as well as computational point of view, mixed
type multiobjective duality for the problems of this research are elaborately
discussed and linkage between variational problems and the corresponding

nonlinear programming problems is incorporated in most of the cases.



1.2 PRE-REQUISITES
1.2.1 Notations

In this section, we shall incorporate major symbols which are used

throughout the research work reported in this thesis.

R" = n-dimensional Euclidean space,
R!'= The non-negative orthant inR",

A'= Transpose of the matrix A,

Let f be a numerical function defined on an open set I'in R", then

Vf (X)denotes the gradient of f at X, that is

Vi (%)= [af 5 M}T

oxt T ax”

Let ¢ be a real valued twice continuously differentiable function
defined on an open set contained in R"xR™. Then V #(x,y) and V (X, Y)

denote the gradient (column) vector of ¢ with respect to xand vy

respectively i.e.,

(o4 o4 op )
VX¢(X’y)_(ax1’ax2""’ax”lw)

(o4 o4 o9 Y
vy¢(x’y)_(ay1’ayz""’aymlx‘y)

Further V24(X,y)and Vi, #(X,y) denote respectively the (nxn)and

(nxm)matrices of second order partial derivative i.e.,

Vi¢(f,7)=( ik -l |

ox'ox!

V2 (% 7)=[ s )
(x.y)

ox'oy’



The symbols Vig(X,y) and V2 ¢(X,y) are similarly defined.

1.2.2 Definitions

Definition 1.1: Let X < R"be an open and convex set and f:X — Rbe
differentiable. Then we define f to be

1. Convey, if for all x,,x, € X,

f (Xl)_ f (Xz)Z(Xl—xz)Vf (Xz)

2. Strictly convex, if for all x,,x, € X and x,# X,

f(x)—f(X,)>(x,=%)VFf(x,)

3. Quasi convey, if for all x,,x, € X,
f(x,)<f(x,)=(x,—%)Vf(x,)<0

4. Pseudo convex, if for all x,,x, € X,
(x,=%,)VE(x,)=0= f(x,)=f(x,)

5. Strictly pseudoconvex, if for all x;,x, e X andx ;# X,
(x,=%,)VE(x,)=0= f(x,)> f(x,)

6. Invex, if there exists a vector function#:R"xR" — R"such that for all
X;, X, € X,

f(x,)-f (xz)zn(xl,xz)T VE(x,)

7. Pseudoinvex, if there exists a vector functionz:R"xR" — R"such
that for all x,,x, € X,
n" (X, % )VE(X,)20= f (%)= f(x,)

8. Quasi-invex, if there exists a vector functionz;:R"xR" — R"such that
forall x;,x, € X,
f(x,)< f(x,)=n"(x,,%)Vf(x,)<0.
1 Ty72

(xl—xz)T \Yi (x2)+(x1—x2)T ViE(X,)p20=f(x,)>f (xz)—Ep ViE(x,)p



Clearly, a differentiable convex, pseudoconvex, quasiconvex function
is invex, pseudoinvex or quasi invex respectively with »" (x,,x,)=(X,—X,).

Further we define f to be concave, strictly concave pseudoconcave,
quasiconcave, strictly pseudo convex on X according as —f is convex,
strictly convex, quasi convex, pseudoconvex, strictly pseudoconvex.

In the following definitions we shall use Dand D’for customary

d d?
symbols —and —-.
y dt dt?

Definition 1.2:

1. Invexity, If there exists vector function 7(t,x,u)eR" with =0 and

x(t)=u(t), tel=[ab],a real interval, such that for a scalar function

#(t,x %), the functional ®(x)=[¢(t,x,X)dt satisfies
|

(u)-0(x)>[ {ng, (t.x5)+(Dn) i (t.x.%) |,
|
@ is said to be invex in xand x on | with respect to 7.

2. Pseudoinvexity, @ is said to be pseudoinvex in xand x with respect

to n if

J{UT@ (t,x, >'<)+(D77)T & (L., x)}dtzo

implies D(X,0)>D(x,X).

3. Quasi-invexity, The functional @ is said to quasi-invex in xand x

with respect to 7 if

@(x,u)<®(x, %) implies

I{ff@ (t.x,%)+(Dn)" 4, (1.x, )‘()}dtio,

Consider the multiobjective variational problem (VP).



(VP): Minimize [(f!(t,xX),... fP(t,xx))dt

Subject to
g(t,x,x)<0,tel

Definition 1.3 (Efficient Solution): A feasible solution X is efficient for
(VP) if there exist no other feasible xfor (VP) such that for some
ieP :{1,2,..., p},

[ £ (txx)dt<[ £ (t.x,%)dt

and
[ (txx)dt<[ £ (t%,X)dt forall jeP, j=i.
I

Definition 1.4 (Support function): Let K be a compact set in R", then the
support function of K is defined by

s(x(t)|K)= max{x(t)Tv(t) v(t)eK,te I}
A support function, being convex everywhere finite, has a subdifferential in
the sense of convex analysis i.e., there existz(t)e R" , te I, such that
s(y(®|C)-s(x®)[C) = (y®)-x1))" z(t)
From [114], subdifferential of s(x(t)|K)is given by
as(x(t)[K) ={z(t) e K, telsuch that‘x(t)T z(t)=s(x(t)|K)}.
For any set "= R", the normal cone to I" at a point x(t) e I"is defined by
Nr(x(t))={y(t) R y®)" (z(t)-x(t))<0,vz(t) EF}

It can be verified that for a compact convex set K, y(t) € N, (x(t))if and only if
s(ym|K)=x(1) y@) . tel

Definition 1.5 (Skew Symmetry): The function f:IxR"xR"xR"xR" — Ris

said to be skew symmetric if for all xand y in the domain of f if

f(tX(0) X(0),y(0) 9 (1) = (£ (), ¥(0). X(0). X(1)) t <)
9



where xand y are piecewise smooth on | .

Definition 1.6: Let f:R" — R be a convex function, then a subgradient of

fatapoint xeR"is a vector £ eR" satisfying

f(y)=f(x)+& (y-x), forall yeR"

There are number of constraint qualifications [92], which are required
to be satisfied by the constraints in establishing the necessary optimality
criteria to ensure that certain Lagrange multipliers are non zero. Here we

describe only four of them for completeness.

) Slater’s Constraint Qualification: Let X °be a convex set in R".

The m-dimensional convex vector function g on X°which

defines the convex feasible region X ={x:xe X°,g(x)<0}is

said to satisfy Slater’s constraint qualification on X°if there

exists an X e X°such thatg(X)<0.

i) The Kuhn-Tucker Constraint Qualification: Let X°be an

open set in R".Let g be m-dimensional vector function on

X°and let X ={x:xeX°g(x)<0}.Then the constraints are

said to satisfy Kuhn-Tucker constraint qualification at x e X ,

if g is differentiable at x and if

yeR" There exists an n-dimentional vector function e
in the interval [0,1]such that

(a) e(0)=x
=\ (b) e(r)eX for0<7r<1
(c) eisdifferentiableatz =0 and

de(0)

Vg, (X)y<0 d—T:/iy for some 4 > 0.

where | ={i|g, (x)=0}.
10



i)

The reverse convex constraint qualification: Let X°be an

open set in R".let g be m-dimensional vector function defined
on X°and let X I{XZXE X°,g(x)§0}, g is said to satisfy the

reverse constraint qualification at X e X ,if g is differentiable

at xand if for each i< I either g;is concave at x org,is linear

on R",where I ={i|g,(X)=0}.

Linear independence constraint qualification: The

condition that the vectors Vg, (X,),.....V9,(X,) are linearly

independent is often referred to as linearly independence

constraint qualification.

1.3 REVIEW OF THE RELATED WORK

1.3.1 Duality in Mathematical Programming
Nonlinear Programming

Consider the following nonlinear programming problem (P):
(P):  Minimize f(x)
Subject to

h/(x)<0, j=12...,m

]

where f:R" —Rand h;:R"—> R, j=12,...,mare continuously differentiable.

The following problem (WD) is the Wolfe type dual to the problem (P):
(WD): Maximize f(x)+y"h(x)

Subject to
V(f(x)+y"h(x))=0,

y>0, yeR"

11



Mangasarian [92] explained by means of an example that certain
duality theorems may not be valid if the objective or the constraint function
Is a generalized convex function. This motivated Mond and Weir [116] to
introduce a different dual for (P) which is given below:

(MWD): Maximize f (x)
Subject to
Vf (x)+Vy'h(x)=0.
y'h(x)=0

yeRY

and they proved various duality theorems under pseudoconvexity of f and

quasiconvexity of y'h(x) for all feasible solution of (P) and (MWD).

Later Weir and Mond [153] derived sufficiency of Fritz John
optimality criteria under pseudoconvexity of the objective and
quasiconvexity or semi-strict convexity of constraint functions. They
formulated the following dual using Fritz John optimality conditions instead
of Karush-Kuhn-Tucker optimality conditions and proved various duality

theorems-thus the requirement of constraint qualification is eliminated.
(FrD): Maxmize f(x)
Subject to
AVE(x)+VATh(x)=0.
ATh(x)=0

(A,2)20,(4,2)%0

Duality in Nondifferentiable Mathematical Programming

Mond [100] considered the following class of nondifferentiable

mathematical programming problems:

12



[N

(NP): Minimize f(x)+(xTBx)
Subject to
h(x)<0, j=12...,m

Here fandh; , j=12,...,mare twice differentiable function from R" to R

and B is an n x n positive semidefinite (symmetric) matrix. It is assumed that

the functions f and hj , j=12,...,m are convex functions. They established

a duality theorem between (NP) and the following problem

(ND): Maximize f(u)+ yTh(u)—uTV[f (u)+ yTh(u)]
Subject to
vf (u)+Vy'h(u)+Bw=0,
w' Bw<1

y>0.

Further on the lines of Mond and Weir [116], Chandra, Craven and Mond
[33] introduced another dual program:
(NWD): Maximize f(u)-u"V[ f(u)+y"h(u)]
Subject to
Vf (u)+Vy'h(u)+Bw=0,
y'h(u)=0,
w'Bw<1,

y>0.

and established duality theorems by assuming the function f(-)+(-)T Bw to

be pseudoconvex and y'h(-)to be quasiconvex for all feasible solutions of

(NP) and (NWD).

13



Later Mond and Schechter [113] replaced the square root term by the
norm term and considered the nondifferentiable nonlinear programming

problems as:
(NP);: Minimize f(x)+||Sx||p
Subject to

h(x)<0, j=12...,m

Here fandh, , (j=12,...,m)are twice differentiable function from R" toR.

The dual for (NP), is the problem:

(ND),: Maximize f(u)+y'h(u)—u'S"v
Subject to
vf (u)+Vy'h(u)+S'v=0,.
vl <

y>0.
where pand gare conjugate exponents.

Later Schechter [132] replaced the norm term or the square root term by a
more general function as a support function of a compact set. The problem
considered by Schechter [132] is:

(NP);: Minimize f(x)+S(x|C)
Subject to
h,(x)<0, j=12,...,m,
where fandh; , (j=12...,m)are twice differentiable function from R" to
R and S(x|C) IS a support function of a compact convex set C — R". Using

the subdifferential of the support function of S(x|C), the dual of (NP), is

the problem:

14



(ND),: Maximize f(u)+w'u+y"h(u)
Subject to
Vf (u)+Vy'h(u)+w=0,
y>0, weC.
Duality in Multiobjective Mathematical Programming

Whenever we shall study multiobjective programming problem we

shall follow the following conventions for vectors in R"

X<Y, & X <V i=12,...,n.
X<y, = X < Vi i=12,...,n
X<Y, & X% <Y, i=12,...,n, butx=y

x £y, is the negation of x<vy.
Consider the multiobjective programming problem:
(VP): V-Min F(x):(fl(x), f,(X), .. fp(x))

Subject to
h(X)<0, (j=12,...m)

where X < R"is an open and convex set and fand h; are differentiable
functions where, f:X —>R,i=12..,pand h;:X >R, j=12...,m. Here

the symbol “V-Min” stands for vector minimization and minimality is taken
in terms of either “efficient points” or “properly efficient points” given by

Koopman [87] and Geoffrin [58] respectively.

Definition 1.7 [58]: A feasible point X for is said to be efficient solution of

(VP), if there does not exist any feasible x for (\VP) such that

f.(x) < f.(X) for some r,

fi(x) < fi(X)foralli=12,..k,i=r.

15



Definition 1.7 [58]: A feasible point X is said to be properly efficient
solution of (VP), if it is an efficient solution of (VP) and if there exists a

scalar M >0 such that for each i and xe X, satisfying f,(x)< f,(X), we

have

for some j, satisfying f;(x) < f;(X).

Geoffrion [58] considered the following single objective

minimization problems for fixed 1 eR":

(VP),: Minimize Zp:/l,fi(x)

Subject to
h(x)<0, (j=12,...,m)

and proved the following lemma connecting (VP) and (VP);..

Lemma 1.1:

P
(i) Let 4>0, (i=12,..,p), > 4=1be fixed. If Xis optimal for (VP),,

i=1
then X is properly efficient for (VP).
(i) Let fiand h; be convex functions Then Xis properly efficient for

(VP) iff Xis optimal for are differentiable functions (VP), for some

p
A>0, ) A =1,

i
i=1

If fiand h; are differentiable convex functions then (VP),is a convex

programming problem. Therefore in relation to (VP), consider the scalar

maximization problem:
(VD): Maximize A" f (x)+y"h(x)e=A"(f (x)+y"h(x))

16



Subject to
V(AT f(x)+y"h(x))=0
AeA’, y>0,

where e=(11,...,1)eR’and A" ={1eR":1>0,1Te=1

Now as (VD),is a dual program of (VP),, Weir [148] considered the
following vector optimization problem in relation to (VP) as
(DV): Maximize A" f (x)+y h(x)e
Subject to
V(W' f (x)+y"h(x))=0
weA™, y>0,
They termed (DV) as the dual of (VP) and proved various duality theorems

between (VP) and (DV) under the assumption that f and hare convex

functions.

Further, for the purpose of weakening the convexity requirements on
objective and constraint functions, Weir [148] introduced another dual

program (DV1).
(DV1): Maximize f(x)
Subject to
V(ﬂ,T f(x)+ yTh(x)):O
y'h(x)=0
AeN, y>0,

For these problems, various duality theorems are proved by assuming the
function f to be pseudo convex and y"hto be quasiconvex for their feasible

solutions.

17



1.3.2 Symmetric Duality in Mathematical Programming
Symmetric Duality in Differentiable Mathematical Programming
Consider a function f(x,y)which is differentiable in xeR"and

y e R™. Dantzig et al [48] introduced the following pair of problems:
(SP): Minimize f(x,y)-y'V,f(xy)
Subject to
vV, f(xy)<0

(x,y)=0.

(SD): Maximize f(x,y)-x"V,f(xy)
Subject to
V. f(xy)=0
(x,y)=0.

and proved the existence of a common optimal solution to the primal (SP)

and (SD), when (i) an optimal solution of (x_,y, )to the primal (SP) exists (ii)
f is convex in x for each y, concave in yfor each xand (iii) f, twice
differentiable, has the property that at (x.,y,)its matrix of second partials
with respect to y is negative definite.

Mond [99] further gave the following formulation of symmetric dual
programming problems:
(MSP): Maximize f(x,y)-y'V, f(xy)

Subject to

v, f(xy)<0

x=>0.

18



(MSD): Maximize f(x,y)-x"V,f(x,y)
Subject to
V. f(xy)=0
y >0.

It may be remarked here that in [48], the constraints of both (SP) and

(SD) includex>0, y>0, but only x>0 is required in the primal and only

y >0 in the dual.

Later Mond and Weir [118] gave the following pair of symmetric
dual nonlinear programming problems which allows the weakening of the
convexity-concavity assumptions to pseudoconvexity-pseudoconcavity.
(M-WSP): Minimize f(x,y)

Subject to
v, f(xy)<0
y'v, f(xy)=0,
X=>0.

(M-WSD): Maximize f(x,y)

Subject to
v, f(xy)=0
X'V, f(xy)<0,
y>0.

Symmetric Duality in Nondifferentiable Mathematical Programming

Let f (x, y)which is differentiable in xeR"andyeR". Chandra and

Husain [28] introduced pair of symmetric dual nondifferentiable programs
and proved duality results assuming convexity-concavity conditions on the

kernel function f (x,y):
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N

(NP): Minimize f(x,y)—yTVyf(x,y)+(xTBx)

Subject to
-V, f(x,y)+Cw=0,

wCw<1,

(x,y)=0.

(ND): Maximize f(x,y)—xTVXf(x,y)—(yTCy)%

Subject to
-V, f(xy)-Bz<0

7'Cz<1,
(x,y)=0.
where B and C are nxm and mxm positive semidefinite matrices.

Further on the lines of Mond and Weir [116], Chandra, Craven and
Mond [33] presented another pair of symmetric dual nondifferentiable
programs by weakening the convexity conditions on the kernel function

f(x,y)to the pseudoconvexity and pseudoconcavity. The problems

considered in [33] are:

(PS): Minimize f(x,y)+(xTBx)%—yTCz
Subject to
v, f(xy)-Cz<0,
y' [Vyf (x, y)—Cz]zO
7'Cz <1,
X=0.
(DS): Maximize f(Xx, y)+(yTCy)%—xTBw
Subject to
V. f(xy)+Bw<0,

20



X[V, f(xy)+Bw]|<0,
w'Bw<1,
y > 0.

Subsequently Mond and Schechter [111] introduced the following two
pairs of symmetric dual programs with support functions — one of which is
Wolfe [156] type and another is Mond and Weir [116] type.

(P): Minimize f(x,y)-y'V, f(xy)+S(XC,)

Subject to

v, f(xy)-z<0,
zeC,, x=0.
(D): Maximize f(u,v)-u'V,f(u,v)+S(v|C,)

Subject to
vV, f(uv)+w>0,

weC,,v>0.and

(P1): Minimize f(x,y)-y'z+S(XC,)
Subject to
v, f(xy)-z<0,

y' (V, f(xy)-2)=0,
zeC,, x=0.
(D1): Minimize f (u,v)+u'w+S(v|C,)

Subject to
vV, f(uv)+w>0,

u' (v, (u,v)+w)<0,
weC,,v=0.
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Symmetric Duality in Multiobjective Programming

Mond and Weir [118] discussed symmetric duality in multiobjective

programming by considering the following pair of programs:

(PS): Minimize f(x,y)—(y'V,A"f(xy))e
Subject to
vV, A f(xy)<0,

x>0, 1eA”
(DS): Maximize f(xy)—(X'V,A"f(xy))e

Subject to
VA f(%Yy)20,

y>0,AeA”

where f :R"xR™ — RP, and proved the symmetric duality theorem under the
convexity — concavity assumptions on f(x,y). Here the minimization is
taken in the sense of proper efficiency as given by Geoffrion [58].

Further on the lines of scalar case (Mond and Weir [116]) also

considered another pair of symmetric dual programs and proved symmetric

duality results under pseudoconvexity-pseudoconcavity:

(PS1): Minimize f(x,y)
Subject to
V,A f(x,y)<0,

y'V,A" f(x,y)=0
x>0, e’
(DS1): Maximize f(x,y)—(x"V,A"f(x,y))e

Subject to
VA f(%,y)20,

X'V,A"f(x,y)<0,
y>0,AeA".
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Later Chandra and Durga Prasad [34] introduced the following pair of

multiobjective programs by associating a vector valued infinite game:

(PS*): Minimize f(x,y)—(y'V,u" f(xy))e
Subject to
v,u'f(xy)<0,

XiO,yeA+.

(DS*): Maximize f(x,y)—(x'V,2"f(xy))e
Subject to
VA f(xy)20,

y>0,AeA”

Here it may be noted that not the same Ais appearing in (PS*) and (DS*)

and this creates certain difficulties which are also discussed in [34].

1.3.3 Variational Problems
Differentiable Variational Problems

A variational problem can be considered as a particular case of an
optimal control problem in which the control function is the derivative of a

state function.

In [43] Courant and Hilbert, quoting an earlier work of Friedrichs [56],
gave a dual relationship for a simple type of unconstrained variational
problem. Subsequently, Hanson [60] pointed out that some of the duality
results of mathematical programming have analogues in variational calculus.
Exploring this relationship between mathematical programming and the
classical calculus of variations, Mond and Hanson [105] formulated a
constrained variational problem as a mathematical programming problem

and using Valentine’s [145] optimality conditions for the same, presented its
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Wolfe type dual variational problem for validating various duality results

under convexity.
Mathematically, a variational problem is of the form:
(VP): Minimize [ f(t,x %)dt
Subject to |
x(a)=a,x(b)=4
g(t,x,x)<0,  tel,

xeC(1,R").

where | =[a,b]is a real time interval, x denotes derivative of xwith respect

tot, f:IxR"xR" >Rand g:1xR"xR" — R are continuously differentiable
functions with respect to each of their arguments; C(I,R”) is the space of
continuously differentiable functions x:1 —R", and is equipped with the

norm ||x|=||x|_+|Dx|_, where the differentiation operator D is given by

t
u=Dx< x(t)=a+[u(s)dsexcept at discontinuities.

The following necessary conditions for the existence for (VP) are
derived by Valentine [145].

Theorem 1.1: For every minimizing arc x =x’(t) of the problem (VP), there
exists a function of the form
H=24f(tx )‘()—/l(t)T g(t,x,x)

Such that



hold throughout | (except at corners of x° where HF%HX, holds for

unique right and left limits). Here A is constant and A(-)is continuous

except possibly for values of t corresponding to corners of x°.

Following is the Wolfe type dual variational problem [105] for validating
various duality results under convexity:
(WD): Maximize [(f (t,u,u)+y(t)" g(t.u,u))de
Subject to
u(a)=a,u(b)=4
(fu (tu,u)+y(t) g, (t,u,u))—D(fu (t,u,u)+y(t) gu(t,u,u)):O
y(t)>0, tel
Later Bector, Chandra and Husain [15] studied Mond-Weir type duality for
the problem of [105] for weakening its convexity requirement.
(MWD): Maximize | f (t,u,u)dt
Subject to
u(a)=a,u(b)=4
(f, (tuw)+y () g, (tu,u))-D( f, (tu,u)+y (1) g, (tu,u))=0

[y(®) g,(tu.u)dt>0

y(t)>0, tel

Nondifferentiable Variational Problems

Chandra, Craven and Husain [30] obtained necessary optimality
conditions for a constrained continuous programming problem having term
with a square root of a quadratic form in the objective function, and using these

optimality conditions formulated Wolfe type dual which is given below:
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(NVP): Minimize I{f (t,x, X)dt+(x(t)TB(t)x(t))§}dt
Subject to |
x(a)=a,x(b)=2
g(t,x,x)<0, tel,

(WNVP): Maximize [{ f (t,u,u)+u(t) B(t)z(t)+y(t)" g(t.u,u)}
|

Subject to
u(a)=a,u(b)=4
f, (tu,u)dt+B(t)z(t)+y(t) g, (tu,u)

= D(fu. (tu,u)+y(t) g, (t,u,u)) ,tel
Z(t) B(t)z(t)<1,tel
y(t)=0,tel
Subsequently, Bector, Chandra and Husain [16] constructed a Mond-

Weir dual which allows weakening of convexity hypothesis of [30] and

derived various duality results under generalized convexity of functionals.
The Mond-Weir dual model to the problem (NVP) is given as:
(MWNVP): Maximize [( f (t,u,u)+u(t)'B(t)z(t))dt

|

Subject to
u(a)=a,u(b)=4
f, (t,u,u)dt+B(t)z(t)+y(t) g,(tu,u)
=D(f,(tuu)+y(t) g, (tuu)) , tel

[y (t)o’ (tu,u)dt>0 , tel

z(t) B(t)z(t)<1,tel
y(t)ZO ytel
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Husain and Jabeen [70] replaced the square root of quadratic form by
the support function of a compact convex set that is somewhat more general
and for which the subdifferential may be simply expressed. Fritz John and
Karush-Kuhn-Tucker type necessary optimality conditions for this
nondifferentiable continuous programming are derived in which
nondifferentiability enters due to appearance of support functions in the

integrand of the objective functional as well as in each constraint function.

The model for this nondifferentiable variational problem is:-

(CP): Minimize [(f (t,x(t),x(t))+s(x(t)]K))dt
Subject to |
x(a)=a,x(b)=4

gj(t,x(t),x(t))+s(x(t)‘cj)so, j=12,...m

Where f and g are continuously differentiable and each C', j=1,2,...,misa

compact convex set inR".

The following is the Wolfe type dual problem to the problem (CP):

(WCD): Maximize v (u, 2, 2,0',..., ") :I[f (t,u,u)+u(t) z(t)

ueX,1,z,0 I

+§w‘ (1)( o’ (tu.u)+u(t) (t))}dt
Subject to
u(a)=a,u(b)=4

f (t,u,u)—z(t)+gﬂj (0)( 0! (tu,u)+ (1))

=D(f, (tu,u)+A(1) gl (tuu)) , tel
f(t)eKi ,a)j(t)eCj tel, j=12,....m,
A(t)=0,tel

The Mond-Weir type dual to the problem (CP) is given as,
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m\ _ . T
(M-WCD): Maximize v(uiz ..o )_.I[(f (t,u,u)+uf(t) z(t))dt
Subject to

u(a)=a,u(b)=2
f, (tu,u)+z( Z}L‘ (t)( 9! (tu,u)+e’ (1))

:D<fu(t,u,u)+/1( ) gl (tu,u)) , tel

M

[2 (0o (tuu)+u(t) @ (t))dt=0, tel,

—
Il
LN

i(t)eKi,a)j(t)eCj tel, j=12,...,m,
ﬂ,(t)ZO,tel.

Following the scheme of formulation in Bector et.al. [12] and Xu [157], Husain

and Jabeen [71] formulated the following mixed type dual (Mix CD) to (CP).
(Mix CD): MaX|m|ze j[ (tu,u)+u( z(t)

uex,1,2,at,....o"

+ A0 (1) (t)( o’ (tu,u)+u(t) a)j(t))}dt

jed,
Subject to
u(a)=a,u(b)=4

f, (tu,u)+z( ZA‘ (t)( 9! (tu,u)+e’ (1))

:D(fu(t,u,u)+/1() 0l (tu,u)) , tel

—
1
[
]
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If J =Mand J,=¢for ae{l2...r}, then the (Mix CD) becomes the
problem (WCD). In case J =¢and J, =M for some ae{L2,...,r}, then
(Mix CD) becomes (M-WCD).

Multiobjective Variational Problems
Differentiable Multiobjective Variational Problems

Many authors have studied optimality and duality for multiobjective
variational problems. Bector and Husain [19] were probably the first to
introduce multiobjective programming in calculus of variation. They

considered the following multiobjective variational problem (VP):

(VP): Minimize[]’( f1(tx(t),x(t)))dt,..., [(f p(t,x(t),X(t)))dtJ

Subject to
x(a)=a , x(b)=4
g(t,x(t),x(t))<0, tel,

xeC(1,R")

where, f': IxR"xR" >R ,ieP=12,...,p, g:1xR"xR"—>R", are assumed
to be continuously differentiable functions, for each tel ,ieP,B' (t) IS an

nxn positive semidefinite symmetric matrix with B'(-)continuous on I .

Bector and Husain [19] constructed Wolfe type dual and Mond-Weir
type dual and proved various duality theorems under convexity and generalized

convexity of functionals.

(WD): Maximize ['[(fl(t,u,u)+y(t)T g(t,u,u))dt

,...,.if(fp(t,u,u)+y(t)T g(t,u,u))dt]

Subject to
u(a)=a , u(b)=4
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(/IT f,+y(t) gu)—D(/iT f,+y(t) gu):O , tel
y(t)>0, tel
A>0, Ae=1

where e=(11..,1)" and AeR".

The following Mond-Weir type dual to the problem (VP):

Nondifferentiable Multiobjective Variational Problems
In [97], Mishra and Mukerjee discussed duality for multiobjective

variational problems involving generalized (F, p)-convex functions. In [91],

Liu proved only some weak duality theorem for nondifferentiable

multiobjective variational problems involving generalized (F,p)-convex

functions.

Kim et al. [85] considered the following nondifferentiable variational

problem:
(MP):MinimizeMfl(t,x(t),x(t))+(x(t)T51(t)x(t))%jdt

,...,j[f "(t,x(t),X(t))+(x(t)TBp(t)x(t))%jdtJ
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Subject to
x(a)=a , x(b)=2
g(tx(t),x(t))<0, tel,
xeC(1,R")

where, f':IxR"xR"xR" >R,ieP=12...,p, g:IxR"xR"xR"—>R", are
assumed to be continuously differentiable functions, for each tel,ieP ,
B'(t)is an nxn positive semidefinite symmetric matrix with B'(:)

continuous on | .

The following are the Wolfe type and Mond-Weir type dual model
for the problem (MP) considered in Kim et al [85]:

(MDP1): Maximize “(fl(t,y(t),y(t))dt+(y(t)TBl(t)a)1(t))
() g(ty(t), y(t)))dt
). y(1)dt+(y (1) BP ()" (1)

Subject to

yeC(I,R“) , weC(I,R"), ﬂeC(I,R"‘).
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(MDP2): Maximize [
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Subject to

yeC(I,R"), @eC(1,R"), 2eC(I,R").

1.3.4 Symmetric Duality for Variational Problems

Mond and Hanson [108] and Bector, Chandra and Husain [15]
extended symmetric duality to Variational problems. In [108] they
investigated Wolfe type duality symmetric duality for the variational
problems (VP). Later [15] Bector, Chandra and Husain studied Mond-Weir
type symmetric dual variational problems in order to weaken the convexity-
concavity assumptions. Smart and Mond [141] applied invexity for
Variational problems introduced by Mond, Chandra and Husain [103] to
symmetric dual Variational problems without nonnegetivity constraints of

Mond and Hanson [105], but subjecting invexity to an additional condition.

Mond and Hanson [108] studied symmetric duality for the following

variational problem under convexity / concavity assumptions:
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(Primal): Minimize T{f(t,x, &y, ®-y(t) f,(tx &y, B

Subject to

+y(t)% fo(t, X &y, yg)}dt

x(a)=a , x(b)=p
y(a)=r ., y(b)=0o
% fy(bX %y, )=, (X% Y, )
x(t)=0

b

(Dual): Maximize j{f(t,u,l&v,\&—u(t)T f, (tu, &, 8

Subject to

Let | =[a,b] be the real interval, x:1 ->R"and y:1 -R", x and x denote

derivatives of xandy respectively with respect to t and f (t,x,%&y, ¥ is a

continuously differentiable scalar function. They needed f to be convex in

x and x foreach y and y and concave in y and y foreach x and x.

If the constraints x(t)>0 and y(t)>0 are removed from the above

problem primal and dual problems respectively, we get the pair considered

by Smart and Mond [141], wherein weak duality theorem is proved

b b
assuming the functional jfdt to be invex in x and xand —J'fdt to be

invex in y and vy.

a

s f&(t,u,l&v,\&}dt

u(a)=a , u(b)=p
v(a)=y , v(b)=6
%fx t,u,u,v,v) < f (t,u,u,v,v)

v(t)=0
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Subsequently, Bector, Chandra and Husain [15] presented a pair of
Mond-Weir type symmetric dual variational problems in order to relax

convexity-concavity to pseudoconvexity-pseudoconcavity.

The following are the primal and dual problems formulated in [15]:

Problem I (Primal) =P
b
Minimize [ f (t,x, &y, Wt

Subject to

f,(t.x,%y,y)-Df, (t,x,X,y,y)<0

b

_[y(t)T ( f,(t,x X y,y)-Df, (t,x XY, y))dt >0
x(t)=0

Problem Il (Dual) =D
b
Maximize [ f (t,x &y, Bt

Subject to

f (t.x,%y,y)-Df (t,x,%y,y)=0
b
jx(t)T (f (tx.%y,y)-Df, (t,x,%y,y))dt<0

y(t)=0.

The usual duality results are derived for above pair of Mond-Weir
problems under pseudoconvexity and pseudoconcavity. The close
relationship between the duality results for the pair in [15] and those of its

counterpart is pointed out.
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Symmetric Duality for Multiobjective Variational Problems

Gulalti, Husain and Ahmed [59] studied symmetric duality for

multiobjective variational problems under appropriate invexity assumptions.

Following is the pair of the Wolfe type multiobjective symmetric dual

variational problems constructed in [59]:

(VP): Minimizej'[f (t, %, %y, y%—{y(t)T (AT f, (tx, &y, ¥

—DAT fg(t, x, &y, yg)} e} dt

Subject to
x(a)=0=x(b) , y(a)=0=y(b)
x(a)=0=x(b) , y(a)=0=y(b)
ATE (6 X%y, Y)<DATf, (t,x,%,y,y) , tel
A>0
Ale=1

The dual to this problem is:
(VD): Maximize j[f (t,u,ufszv,\@—{u(t)T (A7 F,(tu, &, 8
—DA" f(t, X, %y, W) e} dt

Subject to
u(a)=0=u(b) , v(a)=0=v(b)
u(a)=0=u(b) , v(a)=0=u(b)
ATE (tu,u,v,v)< DA f, (tu,u,v,V)  tel
A>0
Ae=1.

where f:IxR"xR"xR™xR™ — R" is twice continuously differentiable and
e=(11..,.1) eR". If p=1, the problems (VP) and (VD) reduce to single

objective symmetric dual variational problems considered by Smart and
Mond [141].
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In [59], the following pair of Mond-Weir type multiobjective
symmetric dual variational problems are considered:

b

(VP): Minimize (! (L x (), &t), y (), &t))dt
< £ X0 80,0, 0t

Subject to
x(a)=0=x(b) , y(a)=0=y(b)
x(a)=0=x(b) , y(a)=0=y(b)
ff( <t>,x<t, (£X(0), (0, (0, 5(0)  te!
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1.3.5 Variational Problems with Higher Order Derivative
Husain and Jabeen [73] presented the following variational problem

(P) with higher order derivatives as to study optimality and duality.

(P): Mirlir)pize.lf f(t,x,% X)dt

Subject to
x(a)=a , x(b)=p
x(a)=y , x(b)=6
g(t,x,x,%)=0 , tel

h(t,x,%,X)=0 , tel
where
1) f:IxR"xR"xR" >R, i=12,...,p, g:1xR"xR"xR" - R" and
h:1xR"xR"xR" — R*are continuously differentiable function

2) X designates the space of piecewise functions x:lI—>R"
possessing derivatives x and x with the norm

[X|=[x],, +|Dx], +|Dx|_, where the differentiation operator D
IS given by
t

u=Dxc>x(t)=a+_|'u(s)ds,

a

where «is given boundary value; thus DE% except at
discontinuities.

Theorem 1.2 [73] (Fritz John Optimality Conditions): If X is an optimal
solution of (P) and h, (x(-),%(-),%(-)) maps X into the subspace of C(1,R"),

then there exists Lagrange multiplier 7 € R, the piecewise smooth y:1 — R"

andz : 1 — R*satisfying
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Husain et al. [73] formulated Wolfe type dual to variational problem (P).

Dual (WD): Maximize [( f (t,x %)= A(t)" g (t,x% %)~ £(t)" h(t,x %, %) )t

Subject to
x(a)=a , x(b)=p
x(a)=y , x(b)=6

Following Mond-Weir dual model was formulated by Husain et al [73] in
order to further weaken pseudoinvexity requirements.
(M-WD) Maximize | f (t,x, %, X)dt

XeX,A,u

Subject to
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Summary of the Thesis
The research work reported in this thesis is presented in chapters 2-7.

The results in these chapters are briefly summarized as follows.

Chapter 2

Chapter 2 has two sections, 2.1 and 2.2. In the section 2.1, we
consider the following nondifferentiable nonlinear programming problem

with support functions:
(NP):  Minimize ( *(x)+S(x|C")..... f?(x)+8(x[c"))
Subject to
g’ (x)+S(x|D?)<0, j=12...,m
where,

i. f:R">R and g¢g':R">R, j=12...m are differentiable

functions and

ii. s({C'),i=12...,p and S(|D'), j=12..,m are support
functions of a compact convex set C', i=12...,p and

D', j=12,...,min R".
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For this problem, we formulate the following Wolfe and Mond-Weir
type dual problems and establish various duality results under invexity /
generalized invexity assumptions.

The following Wolfe type dual to the problem (NP) is presented:

(WND): Maximize ( )+u'z +Zy ( )+u WJ)

Subject to
ZAV( )+u z) ZyJV( )+u W‘):O
ZeC' | i=12,...,p,
weD! | j=12...m
y>0,
P
A>0 Y A'=

i=1

The Mond-Weir type dual to the problem (NP) is given as:
(M-WND): Maximize (f*(u)+u'z',..., f?(u)+u'z?)

Subject to

, y>0

Several known results are deduced as special cases.
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In section 2.2, mixed type duality is studied under suitable invexity /
generalized invexity requirements to unify Wolfe and Mond-Weir type dual

problem considered in section 2.1.

The following is the mixed type dual (Mix D) to (NP):

(Mix D): MaX|m|ze( J+uTzh )y ( +uij)

jed,

)+u'2? + 3y (g’ (u)+u W’)J

jed,

Subject to
Zp:/’tiv(f‘ +u'z')+ Zy’V( )+u'w!)=0,
i=1

>y (g (u)+u'w >0, a=12,....r,

jedy
Z7eC |, i=12..,p
weD | j=12..m,
y>0,

AeA,

bO,iﬂJ:l}.

i=1

where Az{ie RP

where J,cM={12....m}, «=012....,rwith (JJ,=Mand J,()J,=¢
a=0
if a=p.

For the above pair of problems (VP) and (Mix D), various duality

results have been established and special cases are also deduced.

Chapter 3

The main purpose of this chapter is to present continuous-time
version of the results of section 2.1 of chapter 2. This chapter deals with

Wolfe type duality and Mond-Weir type duality for multiobjective
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variational problems containing support functions in objective as well as in

constraint functions.

In this chapter we present the following nondifferentiable variational

problem:

(CP): Minimize U( (t,x,x +S( ‘Cl)) ..... I(fp(t,x,x)+8(x‘cp))dtj

Subject to
x(a)=a , x(b)=p
gj(t,X,X)+S(X‘Dj)§0, ji=12,...m, tel,
where,
flIxR"xR" >R, ([i=12,...,p), g’ :IxR"xR"—>R,(j=12...,m) are
continuously differentiable function, and for each C',i=1...,p and

D', j=1...,mare compact convex setin R".

For this problem (CP), the Wolfe and Mond-Weir type dual
variational problems are constructed and various duality theorems are

proven under invexity / generalized invexity requirements.
The following is Wolfe type dual (WCD) for the problem (CP).

(WCD): Maximize

U(f (t,u,u)+u( +Zy ( tuu)"'u(t)TWj(t))]dt

j(fp(tuu+u +zy ) (o tuu)+u(t)Twi(t))jdtJ

Subject to
u(a)=a , u(b)=4

iZ:/v(fxi +27/ (t))+zyj (t)(g) +w! (t))=D(A" f{ +y(t)g,), tel
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Zi(t)eCi , 1=12,...,p

w!(t)eD’ |, j=12..,m
P
2>0 ) A'=1
i=1

We further weaken the invexity requirements by formulating Mond-
Weir type dual to the problem (CP).

(M-WCD): Maximize

Subject to

3

S A (142 1)+ 2y (0)(g+w (1)) = D4 +y(t) q.), te!

i=1 j=1

ST 07 0 () w ©)az0

Z'(t)eC' , i=12..,p
w!(t)eD! , j=12...,m,
y(t)>0 , tel

A>0.

The problems related to the above variational problems are also discussed.

Chapter 4

This chapter is devoted to the study a more general class of variational
problems than the existing variational problem, treated by Mond and Hanson
[105]. The basic purpose of this chapter is to study optimality criteria and
duality for multiobjective variational problems having higher order
derivatives. This chapter consists of three sections, 4.1, 4.2 and 4.3. In section

4.1, we present the following variational problem:
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(VPE) Minimize Ufl(t,x,x,x)dt,...,jfp(t,x,x,x)dtj

| |
Subject to

X

(a)=0=x(b)
() =0=x(b)
(

-

g(t,x,%,%)<0 , tel

h(t,x,x,X)=0 , tel
where

1. fIxR"xR"xR">R,i=12,...,p, g:IxR"xR"xR" - R™ and
h:1xR"xR"xR" — R“are continuously differentiable function,

and

2. X designates the space of piecewise functions x:1 — R" possessing

derivatives xandxwith the norm |x| = x|, +|Dx|_+|D*x| , where

the differentiation operator D is given by
t
u=Dx<e x(t):a+.fu(s)ds,
where « is given boundary value; thus D —% except at discontinuities.

In the results to follow, we use C(1,R") to denote the space of

he

continuous functions ¢:1 —R“ with the uniform norm|g|= Supld|_,; t

partial derivatives of gand h are mxn and kxn matrices respectively;

superscript T denotes matrix transpose.

For this variational problem, Fritz John and Karush-Kuhn-Tuker type

optimality conditions are derived.

Theorem 4.1 (Fritz John Optimality Conditions): If X is an optimal
solution of (Pg) and h, (x(-),x(-),X(-)) maps X into the subspace of C(1,R"),

44



then there exists Lagrange multiplier 7 € R, the piecewise smooth y:1 — R"

andz:1 — R¥, such that

If 7=1, then the above optimality conditions will reduce to the
Karush-Kuhn-Tucker type optimality conditions and the solution X is

commonly referred to as a normal solution.

Theorem 4.2 (Karush-Kuhn-Tucker Conditions): Let X be an efficient

solution for (VPE) which is assumed to be normal for (5) for each

r

r=12,...,p. Let the constraints of (P, satisfy Slater’s Constraint
Qualification [5] for eachr=12,...,p. Then there exist A" eRY,

y:1 ->R"and z:1 - R" , such that the following relation hold for all te1,

(77145 (1) 9 +Z(t) 0 )-D(2" £ +y (1) g, +Z(t)' )
+D* (2T, +y (1) g, +Z(1) ) =0, tel
y(t) g(t.x,x,X)=0, tel

A>0 , y(t)>0,tel

As an application of the above Karush-Kuhn-Tucker type optimality

conditions, the following Wolfe dual problem is formulated.
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(WD): Maximize U(fl(t,u,u,u)+y(t)T g(t,u,u,u))dt

,...,j(f"(t,u,u,(j)+y(t)T g(t,u,u,u))dt]

Subject to
u(a)=0=u(b)

i(a)=0=u(b)

(ﬂ,T fx+y(t)T gx)—D(/lT fx+y(t)T gx.)
+D2(1fo+y(t)TgX):O , tel

y(t)zo , tel

A>0, Ale=1

For the pair of dual problems (VP) and (WD), usual duality theorems
are validated under the extended invexity conditions. In this section, it is
also shown that the results of this section can be related to those of the

nonlinear programs studied earlier.

In the section 4.2, using the optimality conditions derived in the
section 4.1, the following Mond-Weir type dual variational problem is
formulated and various duality results are proved under generalized invexity

defined in the section 4.1.

(M-WD): Maximize (Ifl(t,u,u,u)dt, . ,jfp(t,u,u,u)dtJ

Subject to
x(a)=0=x(b) ,
x(a)=0=x(b),
(A7 +y() 9,)-D(A f,+y(1) o)

+D2(/1TfX+y(t)T gx)=0 tel
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[y(®) g(tu,u,a)dt>0,

1

y(t)zo, tel,

A>0.

As in the section 4.1, in this section also, the relationship between our
results and those of static cases is outlined. In the section 4.3, we present the
following mixed type dual problem for unifying the two dual models
incorporated in the section 4.1 and 4.2 and present similar results to those in

these sections.

(Mix VD): Maximize [J’(fl(t,u,u,u)dt + 3 yI() gj(t,u,u,u)}dt

1 jel,

_[[f P (t,u,0,0)dt+ > yi(t) gj(t,u,u,u)jdtJ

I jel,

Subject to
x(a)=0=x(h)
x(a)=0=x(b)
(2, +y(®) 9, )-D(2f, +y(1)" g)

+D*(2f,+y(1) g,)=0, tel

Sy (©) ¢ (tub)dt=0, a=12...r

jelg 1

y(t)zO Jtel,

AeA’
where I, cM={12...m}, a=12...r with [JI,=M and 1,(I,=4¢, if
a=0

a#p.

Related problems are also deduced.
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Chapter 5
In chapter 5, we study optimality and duality for a class of
nondifferentiable variational problem involving higher order derivatives

containing nondifferentiable terms for the following problem (VP):

(VP): Minimize(j(fl(t,x,)’(,)'(')dt+(x(t)TBl(t)x(t))%jdt

Ij(f ’ (1%, % X)dt+ (x(1) BP (t)x(t))%jdtj
Subject to

x(a)=0=x(b)

%(a)=0=x(b)

g(t,x,x,X)<0,tel,

where, f':I1xR"xR"xR" -R,(i=12,...,p), g:1xR"xR"xR" ->R"™, are
assumed to be continuously differentiable functions, for each

ieP={i=12,...,p},B'(t)is an nxn positive semidefinite symmetric matrix

with B'(-)continuous on | .

The purpose of this chapter is to extend the duality results of the
chapter 4 to nondifferentiable case. This chapter contains two sections 5.1
and 5.2. In subsection 5.1.1 optimality conditions for the variational
problems are obtained and these conditions are used to formulate duals to
study Wolfe type vector duality and Mond-Weir type vector duality under
invexity / generalized invexity defined in chapter 4. The related problems

are also incorporated.

The following is the Wolfe type dual to the problem (VP):
(MWD): Maximize(j( fL(t,u,u,0)+u(t) B (t) 2 (1) +y(t) g(t,u,u,u))dt
|

,...,Ij(fp(t,u,u,u)+u(t)TBp(t)zp(t)+y(t)T (t,u,u‘,u))dtj
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Subject to

c

(
i(a)=0=u(b)

;z‘ () (tu,u,0)de+B (6)2 (1) +y (1) g, (tu,u,0))
~D(2"f, (t,u,u,0)+y(t)" g, (t.u,u,0))

+D7(47f, (tu,u,0)+ y (1) g, (tu,0,0)) =0, tel

.

7' (t) B'(t)z'(t)<1,tel ,ieP
y(t)>0,tel
A>0, Ae=1

Following is the Mond-Weir type vector dual to the problem (VP):

(M-WVD):Maximize U( f1(t,u,u,6)+u(t) Bt (t)zl(t))dt

..... J(f° (t,u,u,(j)+u(t)TBp(t)z"(t))dtj

Subject to
u(a)=0=u(b)
i(a)=0=u(h)

iz-( (t,u,0,0)dt+ B (1)2' (1) y (1)’ g, (t,u,0,0))
—D(ﬂTfX.+y(t)TgX)+D2(/1TfX+y(t)Tgx)zo,tel

i.[y‘ H(t,u,u,u)dt>0 , tel
|

j=1
7' (1) B'(t)Z'(t)<1,tel ,ieP
A>0, y(t)>0,tel
In the section 5.2, under invexity and generalized invexity, we study
mixed type duality for (\VVP) that combines Wolfe and Mond-Weir type duals

presented section in 5.1. As in section 5.1, here also the results of variational

problems are shown to be connected with those of nonlinear programming.
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Following is the mixed type dual to the problem (VP):

(Mix D): Maximize[j(fl(t,u,u,u)+u( )+ > yi(t)g (tu,u, u)]dt

1 jed,

,..,j[fp(t,u,u,u)+(u(t 2 (1)) + 2y (1) tuuu))dt}

| jed,

Subject to
u(a)=0=u(b),
i(a)=0=u(b),
Z/l'( (t,u,u,6)dt+B (t)2' (1) +y(t) gu(t,u,u,u))
-D(A"f, +y (1) g, )+ D* (2" f,+y(t) 0,)=0, tel ,
nyj(t)gj(t,u,u,u)dtzo L a=12,...,r,

JEN |

Z'(t) B'(t)Z' (t)<l, tel ,ieP .

y(t)>0,tel,
AeA”.
where
() A ={1eRP]2>0,2Te=1e=(L1...,1) eR’|
(i) J,cM={12...m}, a=0L2....rwith | JJ, =M and
I3, =0.if a=p .
Chapter 6

This chapter is aimed to unify the existing pairs of formulations of
Wolfe and Mond-Weir type symmetric dual multiobjective variational

problems

Now, we state the following pair of mixed type multiobjective

symmetric dual variational problems involving vector functions f and g.
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(Mix SP): Minimize F(x',x*,y", yz):j{f (tx x5y )+ g (67,22, y2, ¥°)
|

—y* (t)T (/U f, (t,xl, Xy yl)—D/1T f (t, x5 XY yl))e} dt
Subject to
x'(a)=0=x'(b) , y'(a)=0=y'(b),
x*(a)=0=x*(b) , y*(a)=0=y?(b),
AT (8%, YY) = DA, (6 5 ¥ ) <0 tell
ATg, (633,50, y%,¥7)=DATg . (1,34, %%, y?, ¥%)<0 , tel,
.[yz(t)r(iTgyz(t’X21X2’y2,y2)
|
_Dngyz (t,XZ,XZ,yZ,yz))zO ,
AeA”.

The dual formulation of the above problem is:
(Mix SD): Maximize G(ul,uz,vl,vz)zj{f (t,ul,ul,vl,vl)Jrg (t,uz,uz,vz,vz)
|
()" (A7 F, (Lt )
-DAT fyl (t,ul,ul,vl,vl))e}dt

Subject to
u'(a)=0=u'(b) , vi(a)=0=Vv'(b),
u*(a)=0=u?*(b) , v*(a)=0=v*(b),
AT, (6 Ut 0t v V) = DAT f (tut it vVt >0  tel
A'g, (t,uz,uz,vz,\'/z)—D)Jgu2 (t,uz,uz,vz,vz)zo tel,
qu(t)T (/ITguz(t,uz,uz,vz,\'/z)—D/ITgljz (t,uz,uz,vz,vz))io,
|
AeA".

where A" ={1eR’[4>0, Ae=le=(L1....1) eR®|

For the above pair of problems, weak and strong and self duality

theorem under invexity / generalized invexity, are proved. Special cases are
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deduced and it is also pointed out that our results can be considered as
dynamic generalizations of corresponding (static) symmetric duality results

in multiobjective nonlinear programming.

Chapter 7

Chapter 7 is divided into two sections, 7.1 and 7.2. In the section 7.1
we consider the pairs of Wolfe type symmetric dual (SWP) and (SWD) and
Mond-Weir type symmetric dual (SM-WP) and (SM-WD) multiobjective
variational problems containing support functions. This chapter is essentially

an extension of the results of chapter 7 of nondifferentiable case.

In the section 7.1, we consider the following is the pair of Wolfe type

symmetric multiobjective dual variational problems, (SWP) and (SWD):
(SWP): Minimize: [(H*,H?,..,H?)dt
|

Subject to:

p

YA (f(tx %Yy, y)-2'(t)-Df (t,x,%y,¥)) <0, tel

i=1

Z'(t)eC', i=1..,p, tel
x(t)>0, tel
Aen ={aeR?|2>0, ATe=Le=(11...1) <R"|
(SWD): Maximize: [(G',G?,...G")dt
i

Subject to:

Zp‘/i‘ ( f, (t,u,u,v,v)+a'(t)-Df, (t,u,u,v,v)) >0, tel

a)i(t)eKi i=L..,p ,tel
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V(t)io, tel

Ae A’
where,

1 H = f'(tx %y, y)+s(x®|C')

sz:/I'( (t,x, % y,y)+2'(t )—nyi(t,x,>‘<,y,y))—y(t)T z(t)

2. fIxR"xR"—>R,(i=12,...,p), is continuously differentiable

function.
3. G'=f'(tuuv \'/)+s(v(t)|K‘)

Z/I'( t,U,U,v,V)+ o' ()= Df, (t,u,u,v.v))-x(t)" a(t)

The following is the pair of Mond-Weir type symmetric
multiobjective dual variational problems (SM-WP) and (SM-WD):

(SM-WP): Maximize: I(CDl,CDZ,...,CDP)dt
|

Subject to:

Z/l'( (X% y,y)-2' (t)-Df; (t,x,%,,¥)) <0, te|

Jy ) (15 (10 %y,9) =2 (0)-DE (0 % y.9) 20

(SM-WD): Minimize: j(wl,wz ..... z//p)dt

Subject to:



izi ( f, (t,u,u,v,v)+a' (t)-Df, (t,u,u,v,v)) >0, tel

[y (22 (£ (t.ut,vv)+f (t)=DF, (t,u,t,v,v))dt <0

a)i(t)e K'.,i=1.., p
v(t)>0, tel
A>0
where
L@ =fi(t,xxyy)+s(x®|C')-y(t) z(t) .i=1..p
2. y'= f‘(t,u,u,v,\'/)—s(v(t)‘K‘)+u(t)T w(t) ,i=1..p
For above pairs of problems, weak, strong and self duality theorems

under convexity-concavity and pseudoconvexity-pseudoconcavity, are

proved. The problems with natural boundary values are also formulated.

In section 7.2, we consider the following pair of mixed type
symmetric dual multiobjective variational problems containing support

functions:
(Mix SP): Minimize: J'(Hl(t,xl,xz,yl,y2,>'<1,>'(2,yl,yz,zl,zz,/l),...,
| H"(t,xl,xz,yl,y2,>'<1,>'<2,y1,yz,zl,zz,/l))dt
Subject to:
x'(a)=0=x'(b) , y'(a)=0=y'(b),

x*(a)=0=x*(b) , y*(a)=0=y*(b).

Zp:i' [ fyi1 (t, XX Y yl)—zil (t)- ny‘l (t, XXV yl)ko tel,

i=1

Zpl’li[giyz (tx, %2y, 92) 2 (1)-Dgl, (18,5, v, §7) <0, te

i=1

jyz(t)T {Zpl:;ti (giy2 (t,xz')-(2’yzlyz)_ZiZ(t)_Dg;2 (t,x2,x2’y2’y2))} >0,
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(x'(t),%*(t))>0, tel
z;(t)eK and zZ(t)eK?,
A>0, ATe=1, e’ =(1,....,1).

where,

H' = f! (t,xl,xl, e y1)+ g' (t,xz,xz, vy, yz)+s(x1 (t)‘Ci1)+s<x2 (t)‘Cf)
P~ _
-y (t)Zﬂ.' [ fy'1 (t, x5 Xy yl)— z; (t)- ny'1 (t, x5y yl)}

2OV O-2O¥ ()

(Mix SD):Maximize: j(Gl(t,ul,uz,vl,vz,ul,uz,\'/l,vz,wl,wz,/1)
|

GP (t,ul,uz,vl,vz,ul,uz,vl,\'/z,\/vl,wz,ﬁ))dt
Subject to:

u'(a)=0=u'(b) , v'(a)=0=V'(h),
u*(a)=0=u?(b) , v*(a)=0=Vv*(b),

)
i;ti[fuil (t’ul,ul,vl,vl)+a)ll (t)_Dfui1 (t’ul’ul,vlivl)}io tel,
Zp:/li[glz (t,u2,u2’\/2’\72).|.m|2(t)_DgLi]2 (t,uz,uz,vz,\ﬁ)}zo tel,

qu(t)T [9:,2 (t,uz,uz,vz,\'/z)+co,2(t)—Dgg2 (t,uz,uz,vz,\‘/z)ko tel,
|

where,
Gi _ fi(t’ Xl,)-(l’ y1’ y1)+ gi (t,XZ,XZ, yz, yz)
+5(v(1)] Kil)+s(v2 () Kﬁ)+u1(t)w}(t)+u5(t)w2 (t)

U (ODA[1(xY) rel (0 -DF (L Ky )]

p
i=1
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For the above pair of mixed type nondifferentiable multiobjective
variational problems, weak, strong and self duality theorems are established
under convexity-concavity and pseudoconvexity-pseudoconcavity of certain
combination of functionals appearing in the formulations. Special cases are
also derived. A pair of mixed type nondifferentiable multiobjective
variational problem with natural boundary values is also formulated to
investigate various duality theorem and to have linkage between the duality

results of this chapter and results for static cases surveyed in this thesis.
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ON MULTIOBJECTIVE NONLINEAR
PROGRAMMING WITH SUPPORT
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2.1.3 Wolfe Type Duality
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2.1.5 Related Problems
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2.1 NONDIFFERENTIABLE MULTIOBJECTIVE
NONLINEAR PROGRAMMING

2.1.1 Introductory Remarks

The usefulness of study of duality in mathematical programming lies in
the fact that the duality helps to develop numerical algorithms as it
provides stopping rules for primal and dual problems. Motivated with these
observations, in this chapter we consider vector version of the problem by
Husain et al [74], considered in section 2.1.3 and study duality
byformulating Wolfe and Mond-Weir type dual problems to multiobjective
problem with support functions under invexity and generalized invexity
requirements. It is remarked in this chapter that the primal problem is a
nondifferentiable multiobjective problem but its Wolfe and Mond-Weir
problems are differentiable multiobjective programming problems.
Obviously it is easier to solve differentiable programming problems than to
solve a nondifferentiable programming problem. In essence, this observation
explains the advantage of these dual problems over the primal problems. The
problems considered in this chapter are hard to solve. So to expect an
immediate application of these problems would be far from reality.
Unfortunately, there has not always been sufficient flow between the
researchers in the multiple criteria decision making and the researchers

applying it to their problems. Of course, we can find many problems of
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facility location and portfolio selection modeled as multiobjective

programming problems which reflect the utility of our problems.

This chapter is divided into two sections, 2.1 and 2.2. In section 2.1,
Wolfe type duality and Mond-Weir type duality are investigated under
invexity and generalized invexity. Special cases are derived. The section 2.2
unifies the nondifferentiable Wolfe type dual and Mond-Weir type dual

problems considered in section 2.1 and also incorporates particular cases.

2.1.2 Statement of the Primal Problem

In [74] Husain et al considered the following problem:
(P): Minimize f(x)+S(x|C)
Subject to

g’ (x)+8(x|D’)<0, j=12,...,m
where

. f:R" >R and g;:R" >R, j=12...,m are continuously

differentiable and

ii.  s({c) and S({D'), j=12,...,m are support functions of a
compact convex sets Cand D', j=12,...,m in R".

The authors in [74], constructed the following Wolfe type dual (WD)

and Mond-Weir type dual (M-WD) to the problem (NP) and established

various duality results under convexity and generalized convexity

assumptions.

(WD): Maximize f (u)+uTz+iyj (9;(u)+wju)
=

Subject to



(M-WD): Maximize f(u)+u'z

Subject to

zeC, w;eD; j=12,....m,
y>0

We present the following nondifferentiable multiobjective

programming problem containing support function as the primal problem.
(NP): Minimize ( f*(x)+S(x[C"),..., 7 (x)+S(x[c"))
Subject to

g’ (x)+S(x|D’)<0, j=12...m
where

i. f:R">R and g':R"—>R, j=12...,m are differentiable

functions and

ii. s(|C'),i=12..,p and S({D’'), j=12...m are support
functions of a compact convex set C', i=12...,p and

D!, j=12,...,min R".
2.1.3 Wolfe Type Duality

We formulate the following Wolfe type dual to the problem (NP) and
establish various duality results under invexity defined in the preceding

section.
(WND): Maximize [fl(u)+uTzl+Zm:y"(gj (u)+uij)
-1
,...,fp(u)+usz+Zm:yj(gj(u)+uij)J
-1
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Subject to

Zp:ﬂﬂv(fi +Uu z) Zy‘v( +uTWj):O (2.1)

77eC' , i=12...p, (2.2)

w'eD' , j=12..,m, (2.3)

y>0, (2.4)
P

A>0 > a'=1 (2.5)

i=1

Theorem 2.1: (Weak Duality): Let xbe feasible for (NP) and
(u,y,z1 ..... z° W .., w”‘,/l) be feasible for (WND). If for all feasible

p i . . m . . .
(xu,y, 2%, 2% W W', ) ,Zﬂ'(f'(.)+(.)T ZI)+ZyJ (gl ()+() W‘) is
i=1 j=1
pseudoinvex with respect to », then the following cannot hold.

f'(x +S( ‘C')<f )+u'z +Zy ( )+u W’)
forall ie{l,...,p}, and

1”(x)+S(x

C’ ) )+u'z +Zy ( )+u W‘)

forsome re{l,2,...,p}, r=i.
Proof: Suppose this the conclusion of the theorem hold. Then from
the feasibility of (NP) together with x'z'<S(x|C'),i=12..,p and

XTWjES(X‘Dj), j=12,...,m.

fi(x)+x'z +iyj (9’ (x)+x"w!)

j=1
)+u'z' +Zy ( )+u W‘)

forall ie{l..., p}

X)+x'z" +iy"(gj(x)+xij)
i=

u)+u'z' +Zm:yj(gj (u)+uij)
j=1
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for some re{12,...,p}.

p H - -, . -
In view of 2>0and ) 2' =1, these inequalities yield

i=1

p m

Z/I‘(f‘(x)+xTz‘)+Zyj(gj(x)+xTWj)

i=1 =1

<gﬂ‘(fi(u)+uTzi)+Zy"(gj(U)+UTWj)

This in view of the pseudoinvexity of ZPJ/I‘ ( fi()+() 2 )+Zm:yj (gj ()+() w")
i-1 =1
gives,

n' [Zp:i‘v(f +u'z')+ Zy’V( u)+u'w’ )j<0 (2.6)
i=1
From the equality constraint of the (WND), we have
P . .
n' [Z}L'V(f' +u'z ) ZyJV( +uTwJ)]:0
i=1

This is a contradiction to (2.6). Hence the proof of the theorem follows.

In order to prove the strong duality theorem, we require the following

lemma due to Chankong and Haimes [35].

Lemma 2.1 [35]: A point Xe X is an efficient for (NP), if and only if

X € X solves.
(R.(x)): Minimize  f*(x)+s(x|C*)
Subject to
f'(x)+S(x|c')< £ (x)+3(x|C')
forall i ={L2,...,p}, i =k
g’ (x)+S(x|D?)<0, j=12,..,m

where X is the set of feasible solutions of (NP).
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Theorem 2.2 (Strong Duality): Let X e X be an efficient solution of (NP)

and for at least onei,ie{1,2,...,p}, xsatisfies the constraint qualification

[30] for the problem(P (X)). Then there existieR"with

and w' eR", j=12...,msuch that (x,u,y,z",...,z°,w',...,w", 1) is feasible

for (WND) and iij(gj (X)+xX"w!)=0.

=L

Further, if the hypotheses of Theorem 2.1 are met, then

(xu,y,2",...,2°,w,...,w", 1) is an efficient solution of (WND).

Proof: Since X e X is an efficient solution of (NP), by Lemma 2.1, Xis an

optimal solution of (P (x)). Consequently, there exists reR®" with
TT:(Tl,...,Ti,...,Tp), o' :(Ul,...,tji,...,ﬁm), ZieR”,i:{l,Z,...,p} and

w! eR", j=1,2,...,m such that the following optimality conditions [30]
hold:

i=1
i=k
+iujv(gj(x)+xij):0, (2.7)
j=L
Zm:ujv(gj(x)+xTWj):O, (2.8)
j=L
7'eC' |, i=12..,p, (2.9)
weD |, j=12,..m, (2.10)
x'z'=S(x|C') , i=12..,p, (2.11)
X'W =S(x|D’) , j=12,...m, (2.12)
>0, v>0 (2.13)
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The relation (2.7) can reduce to

zfv( (R)+X77' )+ i v(g’ (x)+XW)=0 (2.14)
Dividing (2.8), (2.13) and (2.14) by Zp:r‘ #0, and putting A' :pT—I and
i=1 zri
y' = pul , we have,
>
Zm:yiv(gi(x)mTv—vi):o (2.15)
j=1
A>0 ,Zplzi =1 (2.16)
Z/W( X)+ )+Zm:VjV(gj(x)+¥TvT/j):O (2.17)

Consequently  (2.9), (2.10), (2.16) and (2.17) implies that
(xu,y,2%...,2°,w',...,w", A)is feasible for (WD). In view of (2.11) and

= f'(x)+S(x[c"), i=12...p.

In view of Theorem 2.1, this implies the efficiency of (x,u,y, z,..., 2",
w',...,w", 1) for (WND).

Theorem 2.3 (Converse Duality): Let (x,d,y,7",...,2°,W',...,®", 1 )be an

efficient solution: Assume that

(A;) fand g are twice differentiable, and

(A))  V*(ATf'(X)+¥"g(x))is positive or negative definite.
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Further, if the assumptions of Theorem 2.1 are satisfied, then xis an

efficient solution of (NP).

Proof: Since (K,U,y,zl,...,zp,\#,. Z)be an efficient solution of
(WND), then there exist «eR’witha' =(o,...,a',....a"), BeR", neR’
with »" =(n",....7",....n"), and xeRsuch that the following Fritz-John

conditions [37] holds,

_iiai(v( (®+577)+ Sy (o' )J 1o
+p vz(,ff(x)+y g(x))=
—(a"e)(g' +X"W ) =0, j=12...m (2.19)
V(H'(X)+X'2')B-n'+x=0 (2.20)
(B2 -a'X)eN, (Z'), i=L1...,p (2.21)
(ﬂ_(aTe)x)yi eN,, (W), j=1..m (2.22)
N A=0 (2.23)
K[Zpl:z‘ —1} =0 (2.24)
©'y=0 (2.25)
(a, ,1,5)>0 (2.26)
(., 1.77,K) 20 (2.27)
Since 2>0, (2.23) implies 7 =0. Consequently (2.20) implies
V(' (X)+X'7") =« (2.28)
From the equality constraint of (WND), we have
3 9V(g) (X)+ W) B = zw( (X)+XT)B = (2.29)

j=1
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Using (2.28) and (2.29) in (2.18), we have
V(AT F(X)+¥ g (x))B=0
In view of the hypothesis (A,), this yields
=0 (2.30)
Suppose « =0, then from (2.19) we have =0, and from (2.20) we get
xk=0.
Consequently (e, 8, 1,n,x)=0. This contradicts (2.27).
Hence « >0. From (2.21) and (2.22) in view of (2.30) implies,
X'z'=S(x|C') , i=12..,p (2.31)
x'W =s(x|D’) , j=12...m (2.32)
From (2.19) along with (2.32), (2.28) and « >0, we have
g’ (x)+S(x|D')<0 , j=12...m
This implies x is feasible for (NP).
Again from (2.19) in view of (2.25), we have

Zm:VjV(g"(x)+¥Tv‘v"):O (2.33)

= f'(x)+s(x|C') , i=12..p

Since the requirements of the Theorem 2.1 are fulfilled, this implies X is an

efficient solution of (NP).

2.1.4 Mond-Weir Type Duality
In this section, we construct the following problem as the Mond-Weir

type dual to the problem (NP).

65



(M-WND): Maximize (fl(u)+uTzl ..... f‘(u)+usz)
Subject to

Zplliiv(fi(U)+UTZi)+Zy"(g"(u)+uTw")=o, (2.34)

Z7eC' |, i=12...,p, (2.35)
i j(gJ'(u)JruTW")io, (2.36)
=1

A>0 y>0 (2.37)

Theorem 2.4 (Weak Duality): Let xe X be feasible for (NP) and
(7,y.2"....2°,W',...,w", 1) be feasible for (M-WND). If for all feasible

(xu,y,2..,2° W', 4) ,Zp“iiv(f‘(.)Jr(.)T z‘) is pseudoinvex and
i=1

Zm:y"(gj(-)+(-)T wj)is quasi-invex with respect to », then the following

j=1

J

cannot hold.

f‘(x)+S(x‘C‘)s f'(u)+u'z (2.38)
forall ie{1...,p}.and

f'(x)+S(x C’)< fr(u)+u'z' (2.39)

for some re{1,2,...,p}.
Proof: Suppose (2.38) and (2.39) of the theorem hold. Then by feasibility of
(NP) and (M-WND) along with 4 >0andx'z'<S(x|C'},i=12,...,p, we have
p ) _ . P i i .
Z}L'(f'(x)+xTz')<z/1'(f'(u)+uTz')
i=1 i=1

which because of the pseudo-invexity of Zp:/iiv( fi()+() 2 ) implies,

i=1

7 (izi]z‘v(f‘(UH(U)T Zi)}o- (249
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Now from feasibility of (NP) and (M-WND) with xTwigs(x\Di),
j=12,....m

We have

>y (o7 (0 + (0" W)=y (g7 (u)+ () w)

j=1 =1

this, due to quasi-invexity of Zm: y! (gj ()+() w! )With respect to » gives
=1

739 (g’ )+ () w<o, (241)
j=1
Combining (2.40) and (2.41), we have

0 [gliV(fi(u)+uTzi)+iy1 (g (u)+u"w’ ))<o.

j=1
This contradicts the equality constraint. Hence the validation of the theorem

follows.

The following duality theorem can be proved on the line of Theorem
2.2.

Theorem 2.5 (Strong Duality): Let X< X be an efficient solution of

(MNP) and for at least onei,ie{l,2,...,p}, Xsatisfies the constraint
qualification [30] for the problem(R (X)). Then there exist 1eRP
with A" =(2%..,2",...,2%), §eR" with y'=(¥'...¥'....¥"), z'eR",
i={12...pjand W' eR", j=12,..,msuch that (x,u,y,z",..., 2", w',...,w", )

is feasible for (M-WND).

Further, if the hypotheses of Theorem 2.4 are satisfied, then
(x,u, Y, 2., 2P WL wm,/i) iIs an efficient solution of (M-WND).

Theorem 2.6 (Converse Duality): Let (X,d,y,z",...,z° W',...,W", 1)be an

efficient solution for (M-WND).Assume that

(A fand g are twice continuously differentiable,
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(A;) V(f'(x)+x'z') , ie{12..., p}are linearly independent.

(As) V*(A"f'(X)+y"g(x))is positive or negative definite.

Further, if the assumptions of Theorem 2.4 are satisfied, then Xis an
efficient solution.
Proof:  Since (x,7,y,z'....z° W',...,w",2)be an efficient solution of
(M-WND), then there exist aeR” with o =(o',....d',....a"),
pBeR", neR? with 7' :(nl,...,ni,...,np), yeR and xeR™such that the
following Fritz-John conditions [37] are satisfied

p

> a'V(H(X)+X'Z7')+ V(AT (X)+¥ g (X))

i=1

—71_2_;,7"V(g'(x)+fw') 0 (2.42)
(g (X)+X"W)—p =0, j=12,...,m, (2.43)
v(t'(x)+x"z")g-n'=0, (2.44)
(BA —a'x)eN,(Z'), i=1...,p, (2.45)
(B-yX)y' eNg, (W), j=1...,m, (2.46)
yjzmlly"v(gi(x)mTwi):o, (2.47)
n"A=0, (2.48)
u'y=0, (2.49)
(et 41,17, 7)>0 (2.50)
(a.B,u,1,7)#0. (2.51)

Since 1 >0, (2.48) implies =0. Consequently (2.44) implies
V(f (X)+x'z )ﬁ 0 (2.52)

Using the equality constraint of (M-WND) in (2.42), we have
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—Zp:(ai—7//1i)V(fi(i)+YT7i)+,BTV2(}LTf(¥)+7jgj(¥)):0 (2.53)
=

Postmultiplying (2.53) by g and then using (2.52), we have

V(AT E(X)+¥ g (x))B=0
This because of positive or negative definiteness of v (2" f'(X)+¥"g(x)),
yields

B=0 (2.54)
Using (2.54) in (2.53), we have

p

(e - )V(f(X)+x'7')=0

=
This, due to the hypotheses (A,) gives,

o -y =0,i=12,....p (2.55)
Suppose y =0, then from (2.55) we have « =0. From (2.43), we have x=0.
Consequently (e, 8, u,77,7)=0. This contradicts (2.51).

Hence y >0 and from (2.55), « >0.
For p=0, (2.45) and (2.46), we have,

X'z'=S(x|C") , i=12..p (2.56)

X'W =S(x|D’) , j=12..,m (2.57)
The relation (2.43) along with (2.57) and (2.50) gives

g’ (x)+S(x|D')<0 , j=12...m
This implies the feasibility of x for (MNP).

In view of (2.56), we have

fi(x)+x"z'= f'(x)+S(x|C") , i=12..,p.

This in view of the hypotheses of Theorem 2.4, gives the efficiency of x for
(NP).

69



2.1.5 Related Problems

In this section, we specialize our problem (NP) and its dual problems
(WND) and (M-WND). As discussed in [111] we may write

matrices B',i=1...,p and E’, j=1,...,m are positive semidefinite. Putting

these in our problems, we have
(MNP);: Minimize (fl(x)+(xTle)5 ..... fp(x)+(xTB”x)é)
Subject to
gj(x)+(xTij)%§O, ji=12,...,m.
For the dual problem, we get

(WND),: Maximize (fl(u)+uTBlzl+zm:y" (9’ (u)+u"E'W)

j=1

,...,fp(u)+uTB"zp+zm:y"(gj(u)+uTE"w")]

j=1

Subject to
Zp:/‘tiv(f‘(u)+uTBizi)+iyj (gj (u)+uTEjo):0,
i=1 j=1
Z'B'z<1, i=12,...,p,

(W) E'wW' <l j=12...m,

b
y>0, A1>0,>24'=1

i=1
(M-WND);: Maximize (f*(u)+u"B'z",..., f?(u)+u'B"z?)

Subject to

Z::ﬂiv(fi(u)+uTBizi)+er:l:yj (gj (u)+uTDJWJ‘):0
iy"(g"(u)jtuTijj)zo

=L

2'B'z<1, i=12...,p

(W) E'w' <1 j=12...m
A>0, yzO
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2.2 MIXED TYPE DUALITY FOR NONDIFFERENTIABLE
MULTIOBJECTIVE PROGRAMMING

2.2.1 Mixed Type Duality
In this section we present the following mixed type dual formulation
of nondifferentiable nonlinear programming (Mix D) which combines Wolfe

and Mond-Weir dual models studied in the preceding section:

(Mix D): Maximize ( u)+u'zt+ >y ( )+u W‘)

jed,

: u)+usz+§§yj(9Wﬁ)+U“NU}

jed,

Subject to

Zp:/iiv(f‘ +u'z')+ Zy'v( u)+u'w')=0, (2.58)

>y (g (u)+u"w )0, a=12..,r, (2.59)
=

ZeCt . i=12..p, (2.60)
weD |, j=12..m, (2.61)
y>0, (2.62)
AeA’ (2.63)

where J, =M ={12,...,m}, =0,12,...,r with UJa =Mand J,()J, =¢, if
a#p. "~

If J.=M, then (Mix D) becomes Wolfe type dual considered in the
subsection 2.1.3. If J, =¢and J, =M for some a€{1,2,...,r}, then (Mix D)

becomes Mond-Weir type dual considered in the subsection 2.1.4.

Theorem 2.7 (Weak Duality): Let xbe feasible for (NP) and
(uy.z'...2°,w,..,w", A1) be feasible for (Mix D).If for all feasible

(x,u,y,zl ..... 2 Wh..., Wm,i), Z::ﬂiv(f‘(.)Jr(.)T Zi)+2yi(gi(_)+(.)TWj) is

jed,
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pseudoinvex and Zy"(gj(-)+(-)T wj),azl,z,...,r is quasi-invex with
jed,

respect to n, then the following cannot hold.

£ (x +5( ‘c')<f J+utz' + >y ( )+u WJ) (2.64)

jed,

forall ie{1...,p}, and

f(x +s( ‘C")<f J+uTz >y ( +uij) (2.65)

jed,
for some k.

Proof: Suppose that (2.64) and (2.65) hold. Then in view of 1>0 and
P _ _

> 2'=1, (2.64) and (2.65) together with xTz'gs(x‘C'),i=1,2,...,pand
i=1

xTwigs(x\Di), j=12,...,m and the feasibility for (NP) and (Mix D) imply

izpl:/%‘( X)+x'2')+ 3y (9! (x)+x"w!)

jed,

<g/1i(fi(u)+uTzi)+z y! (gj (u)+uij)

jed,

0, | o |

This, in view of the pseudoinvexity of ) (f'(')+(')T z')+ Sy (g’ ()+() w’)
i1 jed.

with respect to 7, implies,

T(x,u)[iﬁ,‘v(f‘ +u z) Zy‘v( +uTWj)j<0 (2.66)

jed,

Since X is feasible for (VP), (u,y,z',...,z°,w',...,w", ) is feasible for (Mix
D), and xijgs(x‘D"), j=12,...,m, we have

DY ()+xw )< Dy (g (u)+uTw! ) a =12,

=P i<,

This in view of quasi-invexity of >’ y"(g"(-)+(-)T wj) ,a=12,...,rwith

iedg

respect to n, gives

T (x,u)(z y'v (g’ (x)+xTWj)j§O L =121

jEJ(X
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Hence,

[ >y (g (x)+x w')Jgo, a=12,..,r (2.67)

jeM=J,

Combining (2.66) and (2.67), we have

T(x,u)(gliv(f‘ +u z) ZyJV( +uij)j<O (2.68)

From the equality constraint of (Mix D), we have
p . i .
T(x,u)(zwv(f' +u'z')+ Zy‘v( +UTWJ)j=0 (2.69)
i=1

The relation (2.69) contradicts (2.68). Hence the conclusion of the theorem

IS true.

Theorem 2.8 (Strong Duality): Let x be an efficient solution of (NP) and

for at least onei,ie{1,2,...,p}, Xsatisfies the regularity condition [74] for

the problem(R, (X)). Then there exist ieRPwithA' =(Z",...,2",...,1"),
yeR"Withy" =(y"....¥',....y"), ' €R", i={12...pjand W' eR", j=12,...,m
such that (x,u,y,z',...,z°,w',...,w", ) is feasible for (Mix D) and the

objectives of (NP) and (Mix D) are equal.

Further, if the hypotheses of Theorem 2.7 are satisfied, then
(xu,y,2",...,2°,w,...,w", 1) is an efficient solution of (Mix D).

Proof: Since xis an efficient solution for(R (X)), this implies that there
exists £eR” veR" with 0" =(5,...,0',...,0") and z'eR",i ={1,2,..., p}
such that
_ P R _
EV(H ()+XZ)+ X EV(F (x)+XZ )+ y'V(g’ (x)+x' W) =0,
j=L
(2.70)

Zm:zj"v(gj(x)+xij):0, (2.71)
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x'w =S(x|D'), j=12..m, (2.73)
z'eC', i=12,...,p, (2.74)
w' eD!, j=12...,m, (2.75)
&>0, 0>0 (2.76)
Dividing (2.70), (2.71) and (2.76) by & =0, and putting 7' =—>— and
i=1 Zgl
- i=1
y' =—"—, we have
Z i
i=1
Zpﬁ‘v(f‘(7)+7T7‘)+Zm;y"v(gi(x)+7Tv—v")=0 (2.77)
i=1 i=1
Zm:ylv(gi(x)mTv—v'):o (2.78)
j=1
A>0 ,Zp:li =1,y>0 (2.79)
i=1
The equation (2.78) implies
> ¥(g)(x)+x"W ) =0 (2.80)
i<d,
and Y ¥ (g'(x)+X"W)=0, a=12...r (2.81)
i<,
The relation (2.77), (2.79) and (2.81) imply that (xu,y,z",...,2°,w',...,w", 2} is
feasible for (Mix D).
F(x)+X'Z'+ >y (o' ()+x"W' )= £ (x)+S(x[C"), i=12..,p.

This implies the objective of the primal and dual problems are equal.

(2.72)

Further, in view of the assumptions Theorem 2.7, the efficiency of X

for (NP) is immediate.
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Theorem 2.9 (Converse Duality): Let (x v,Z%,..., 2% \W,...,W", )be an

efficient solution for (Mix D). Assume that

(A;) fand g aretwice continuously differentiable,

(A) VI (X)+Z'+ DY (Vg (x )+w’) i=12,..,p are linearly
independent, -
(As)  V*(ATf'(X)+¥"g(x))is positive or negative definite.
Further, if the assumptions of Theorem 2.7 are met, then Xis an
efficient solution.
Proof: Since (x,y,7".....z°W',...,Ww", 1) be an efficient solution of
(Mix D), then there exist reR", BeR",yeR for each y constraints,

neR°with " =(n",....7'".....n") and xeR"such that the following Fritz-

John optimality conditions [37] are satisfied,

—ZZ’I( ( "(X)+x z) JEZJ:yJV( X' )j
+4'V? (AT (X)+¥ g (X))~ y;;ij( (x)+X"W') =0
(2.82)

~("e)(o’ (X)+X" W + V(¢! (X)+X'W))-p =0, jeJ, (2.83)

—y(g (X)+xX"W + 'V (g’ ( )+xTv‘vJ))—,uJ =0, jel =1...r
(2.84)
,BTV(f(X)+xTz')+ZVj(Vg’(i)+w’)—n' =0 (2.85)
(AB-7'%)eN,(z'), i=L...p (2.86)
(,B—(TTe)Y)Vj eN,, (W), jed. (2.87)
(B-yX)y’ eN_; (V_vj), jed,, a=i,...,r (2.88)
£17=0 (2.89)
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Since 2>0, (2.90) implies =0. Consequently (2.85) implies

(v(f‘(i)+xTz‘)+Zyi(Vgi(x)+v—v")j,3=o

jed,
Using the equality constraint of (Mix D) in (2.82), we have
—Zp:(r‘ — A )[Vf '(X)+Z7'+ X ¥ (Vo' (X)+ W )}
i=1 jed,
+,3TVZJ(AT f(X)+¥g(X))=0
Postmultiplying (2.95) by g and then using (2.94), we have
BV (AT (X)+Y g(x))B=0
This because of (A3), yields
p=0
Using (2.96) along with (A,), we have

=y =0, i=12...,p

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

Suppose y =0, then from (2.97) we have r=0. Consequently we have from

(2.83) and (2.84), u=0.

Thus (7,8, u.n,7)=0, contradicting (2.93).

Hence >0 and 7 >0.

In view of (2.96), (2.86), (2.87) and (2.88)we have,
X'z'=S(x|C") , i=12..p

X'W =S(x|D’) , j=12..,m
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From (2.83) and (2.84) along with (2.99) and (2.92), we have
g’ (x)+s(X|D)<0 , j=12...m

This implies the feasibility of x for (VP).

From (2.83) and (2.89), we have

Zy’v( H(X)+X W‘) 0

jed,

In view of this together with (2.98), we have

(X)+X"7'+ >y (9) (X)+x"W)

jed,
= f1(x)+S(x|C") , i=12..,p
This establishes the equality of objective values of (NP)

This in view of the hypothesis of Theorem 2.7 gives the efficiency of x for
(NP).

2.2.2 Special Cases

In this section, we specialize our problem (NP) and its mixed

dual problem (Mix D). As discussed in [111] we may write
S(x‘C‘):(xTBix)%,i:1,...,pand s(x\Di)z(xTEix)%,j=1,...,m and the
matrices B',i=1,...,pand E’, j=1...,mare positive semidefinite. Putting

these in our problems, we have

(NP);: Minimize (fl( )+ (x Blx )%

fp(x)+(xTBpx)%)
Subject to
g’ (x)+(xTE"x)%§O ,j=12,....,m

For the dual (Mix D) problem, we get

(Mix D);: Maximize [fl +u'B'z'+ Yy (g’ (u)+u"E'wW)

jed,

fp(u)+uTszp+Zyj(g"(u)+uTEjo)j

jed,
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Subject to

2ﬂﬂv(1“(u)+uTB‘z‘)+iyj (g’ (u)+u'D'w')=0,

j=1

>y (9’ (u)+u'DW)>0, a=12, .,

=
Z2'B'z<1, i=12,...,p,
(W) E'w' <1 j=12,..,m,

A>0 y>0 .
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3.1 MULTIOBJECTIVE CONTINUOUS PROGRAMMING

3.1.1 Introductory Remarks

Recently, Husain and Jabeen [70] derived optimality conditions for a
nondifferentiable continuous programming problem in which
nondifferentiability enters due to appearance of support functions in the
integrand of the objective functional as well as in each constraint function.
As an application of these optimality conditions, the authors in [70]
formulated both Wolfe and Mond-weir type duals to the nondifferentiable
continuous programming problem and established various duality results

under invexity and generalized invexity.

There exist an extensive literature relating to optimality and duality in
multiobjective nonlinear programming. But the status of continuous
programming for optimality and duality is not very accomplished. Duality
and optimality for multiobjective variational problems which can be referred
to as continuous programming problems have been studied by a number of
authors notably Bector and Husain [19], Chen [36] and many others cited in

these references.

Any real world problem can be identified as multiple objective
problem. Motivated with this cursory observation, in this chapter we

formulate multiobjective nondifferentiable variational programming
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problem where nondifferentiability occurs due to support functions and
study its duality under suitable invexity hypotheses. The close relationship

of our duality results with those of nonlinear programming is also outlined.

3.1.2 Multiobjective Variational Problems and Related Results

We present the following nondifferentiable continuous programming

problem containing support function.

(CP): Minimize U(fl(t,x,X)+S(x‘Cl))dt,...,!(fp(t,x,X)+S(x‘C”))dt]

Subject to
x(a)=a , x(b)=p
g"(t,x,x)+s(x\Di)§o, j=12...m, tel
where f': I xR"xR" >R,(i=12,...,p), g:IxR"xR"—>R", j=12,...,m are

continuously differentiable function, and for each C', i=1,..., pand

D', j=1,...,mare compact convex set in R".

In order to validate the strong duality theorem, we will require the

following lemma of Chankong and Haimes [35].

Lemma 3.1: A point X is an efficient for (CP) if and only if Xis an

optimal solution for all

(P.(X)): Minimize U( £ (t,x, X)+S(X‘Ck))dt]

Subject to
x(a)=a , x(b)=p

II(fi(t,x,X)+S(x‘ci))dtslf(fi(t,x’X;)JrS(Y‘Ci))dt |
forall i =k
gi(t,x,)'()+S(x‘Dj)§0’ i—12..m . tel
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3.1.3 Wolfe Type Duality

The following problem is formulated as Wolfe type dual for the
problem (CP).

(WCD): Maximize

(I (fl“’“’”“(tf 2(0)+ 2y (1) (¢ (Lu0)+u() w <t>)jdt

I j=1

..... j[f (L) +u(t) 27 (1) Yy () (o' (tuw)+u(t) w! (t))]dtj

Subject to
u(a)=a , u(b)=p (3.1)
S (142 (0)+ 2y (09! +w (1) =D(4 1 +y(1)g,)., te!
(3.2)
Zi(t)eCi ., i=12,..., p (3.3)
w (t)eD! , j=12...,m (3.4)
250 .32 =1 (3.5)

Theorem 3.1 (Weak Duality): Let x be feasible for (CP) and
(uy.z,....z°w,...,w"1) be feasible for (WCD). If for all

feasible (x,u,y,z'....,z°,w',...,w", 1) and with respect to n=n(txu),
J.(Z::/Ii(fi(t,-,-)Jr(')T z (t))dtJri:y"(t)(g"(t,.,.)+(-)T w (t))]dt is  pseudoinvex

then the following cannot hold.

I(fi(tvx,x)+3(x(t)\ci))dt sj( £ (t,u,u)+u(t) 2 (t)dt

S0 (o )] w0
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forall ie{l,...,p}, and

!(fr(t,x,x)+8( ‘C ))dt<j( tuu)+u(t)Tzr(t)dt
+iyj(t)T(g"(t,u,u)+u(t)ij (t))}dt

=

for some re{12,...,p}.

Proof: Suppose that the conclusion of the theorem hold. With
the feasibility of the problems (CP) and (WCD), together with

X" (t)z' (t)<S (x(t)E') i =12.....p , we have

I[f (t,%,X) + x(t z ) (o' (txx)+x(t) wi(t))jdt

IA
_'—.
7\

—-

—~~

f—"

C

C

+

C

HMB

(t) (o’ (tu,u)+ u(t)TWj(t))jdt

I[f'(t,x,x)er(t)Tz’ (t)Jri:yj (t) (gj (t,x,%)+x(t) w! (t))jdt

<I[f (t,u,u)+u( 2 ( (tu,u)+ U(t)TWj(t))jdt
for some re{12,...,p}.

Now in view of 1>0 andzp:/li =1, these inequalities yield
Zpl:ﬂ![ t, X, X)+x(t Zy ( (t, %, X)+x(t) Wj(t))Jdt
<z/1f{ t,u,u)+u( +Zy ( (t,u,u)+ u(t)ij(t))Jdt

This in view of the pseudoinvexity of

j[iz (f‘(t,.,.)+(-)T z (t))dt+gyj (t)(gj (t)+() W (t))jdtgives,
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wj{yfiﬂ‘[fx‘ +7 (0¥ (1) o) +w (t))]

it

+(0n) (271, +y (1) g, )|t

:ijf {jm[f; +7' (t)+i y' (t)(g) +w! (t))]

j=1

t=b

ot s 10 )

(by integration by parts)

Using the boundary conditions which at t=a , t=bgive =0, we have

:!,f {im ( a2 (t)+)y (t)(g) +w’ (t))]

i1

_D(}LT fo+y(t) gx)}dt<0 (3.6)

From the equality constraint of the (WCD), we have
I;f {Zp:ﬂi ( fl+z' (t)+i y! (t)(gxJ +w! (t))j
| i=1 j=1

-D(27f,+y (1) g, )}dt=0

This relation (3.6) contradicts the equality constraint. Hence the

conclusion of the theorem is true.

Theorem 3.2 (Strong Duality): Let x be a feasible solution of (CP) and

for at least one i ,ie{12,...,p}, X satisfies the regularity condition [30] for
(P(x)). Then there exist ZeR” with1" =(1',...,2",...,2°), Z'(t)eC',

i=12,...,p, W (t)eD’, j=12...,m piecewise smooth o:1—R" with



Further, if the hypothesis of Theorem 3.1 is met, then
(xu,y,z'....2°,w',...,w", 1) is an efficient solution of (WCD).

Proof: Since xis an efficient solution of (CP), by Lemma 3.1, Xis an

optimal solution of (PK(Y)). Consequently, by Theorem 1 [70] there exists
reR? with T :(rl ..... T z'p), ' (t)eCi . i=12,..., pand w (t)e D/,
j=12...m and piecewise smooth o:1 —»R" with 5" =(o",....0",....0")

such that the following optimality conditions [30] hold:

+Zz—i(fxi+7‘(t)—Dfxi):O (3.7)
iyj(t)(gj(t,Y,?)+7(t)TWj(t))dt:0 (3.8)
() Z'(t)=S(x(t)C') , i=12..,p, tel (3.9)
(1) @ (t)=S(X(t)D') , j=12..m  tel (3.10)
Z(t)eC' |, i=12..,p (3.11)
w!(t)eD! , j=12..m (3.12)
>0, o(t)>0,tel (3.13)

Dividing (3.7), (3.8) and (3.13) by Y7 %0, and setting 4'=—"— and
i=1 Zri
i=1
y'(t)= Up—(t) we have

2.7

$2 (147 ) S (0(a! RO (0)=D(4 v 0.

j=1

(3.14)
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Zmlyj(t)(gj(t,x,x)+i(t)T W (t))=0, tel (3.15)

j=L

A>0, y(t)>0,tel Zﬂ' (3.16)

Consequently from (3.11), (3.12), (3.14), (3.15) and (3.16), the feasibility of
(x.0,y,7",....7",W",...,w", 2 )for (WCD) follows.

In view of (3.9), (3.10) and (3.15), we have for each i=1,...,p.

I[fi(t,i,i) X +iyl t)(o'(t 7)?)+7(t)TWj(t)>jdt:O

For the converse duality, we make the assumption that X denote the
space of the piecewise differentiable function x:1 —R"for which

x(a)=0=x(b)equipped with the norm | x|_+| Dx|, +|D*x] .

The problem (WCD) may be rewritten in the following form:

Minimize(j_(f(tuu)w 2 ( +Zm:y‘ (o’ tuu)+u(t)TWj(t))Jdt

1 =

..... I—(f () +u(t) 28 (0)+ Yy (1) (o' (tuu)+u(t) w’ (t))jdt}

j=1

Subject to
u(a)=a , u(b)=p
O(t,x,%xy,A)=0
Z'(t)eC! i=12,...,p
w! (t)e D’ ji=12...m
A>0 ,Zplziz

85



where

0=06(t,x(t),%(t),y(t),2)
:iz:/v(fxi +7' (t))+JZ::yJ' (t)(ng +w! (t))—D(,1T f +y(t)gx) tel

with %=D?x(t) and y=Dy(t)

Consider  (t,x(-),%(-),%(-),y(),y(:),4)=0 as defining a mapping
w1 xXxYxRP— B where Y is a space of piecewise differentiable function

and Bis the Banach Space. In order to apply results of Craven [37] to the
problem (WCD), the infinite dimensional inequality must be restricted. In

the following theorem, we use y'to represent the Frechét derivative

(v (%Y. 2). 0, (X V. 4).w, (%, ¥, 4) |-

Theorem 3.3 (Converse Duality): Let (x,d,y,7",...,2° &,..., ", Z)be an

efficient solution for (WCD) Assume that
(H1) The Frechet derivative y'has a (weak*) closed range,

(H,) fand g are twice continuously differentiable, and
(Hs) (B(t) 6,-DB() 6,+D*B(1) 6,)(1)=0,= B(t)=0, te]

Further, if the assumptions of Theorem 3.1 are satisfied, then X is an
efficient solution of (CP).

Proof: Since (X,U,y,fl ..... Z°W ..., v‘v”‘,Z)with w'having a (weak™*) closed

range, is an efficient solution of (WD), then there exist aeR" with

a" =(a,....a',....,a"), piecewise smooth g:1—>R"and u:1—R" with

(1) =(#(t).....u" (t)) . neRPand xeRsuch that the following Fritz-

John conditions [37] holds,

86



S| (12 0)+ Sy 0ot w0 0)-0(a 10y 0.
+p(t) 6,-DB(t) 6,+D*B(t) 6,=0,tel (3.17)
~(a"e)(g’ +X(t) W (1)) +B(1) 6, ~DA(1) 6, 4 (t)=0 , tel

ji=12,...,m (3.18)

(fi+2'(t)-Df))B(t)-n'+x=0i=1...,p (3.19)
(B(t)A' -a'%(t))eN, (Z'(1)), i=1...,p , tel (3.20)
(B(t)—(a"e)x(t))Y' (t) Ny, (W' (1)), j=1...m tel  (3.21)
n'2=0 (3.22)
K[iz::/v —1) =0 (3.23)
u(t) y()=0, tel (3.24)
(a1, 1(t),)>0 (3.25)
(a, B(t), 7.5, u(t)) =0 (3.26)

Since 1>0, (3.22) implies n=0. Consequently (3.19) implies
(fi+2'(t)-Df})B(t)=—x« (3.27)

From the equality constraint of (WCD), we have

(iy‘ 9!+ (1)- Dy(t)Tgx.)jﬂ(t)=—zp1:/1‘(fxi+Z‘(t)+Dfx.‘),6’(t)

=1 i=

From (3.17) have
_Za (f,+2'(t)+Df})B(t)—(a’ e)[zm; ' (g'+WJ(t)_Dy(t)r gx)jﬂ(t)
+(B(0) 6,-DA() 6,+D(1) 6,)5(1) =0 te!

Using (3.27) and (3.28) in this relation, we have
(B(t) 6.-DA(t) 6,+D*B(1) 6,=0)A(t) , tel
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This because of the hypothesis (Hs), gives
B(t)=0, tel (3.29)
Suppose « =0, then from (3.18) we have x'(t)=0, j=12,...,m, and from

(3.19) we get «=0.

Consequently (a, 8(t),7.x, u(t))=0. This contradicts (3.26).

Hence a >0.

From (3.20) and (3.21) in view of (3.29) implies,
x(t) ' (t)=s(7(t)\ci) L i=12,...,p,tel (3.30)
(1) W' (t)=S(x(t)D') , j=12...m,tel (3.31)

From (3.18) along with (3.25), (3.29) and (3.31), we have
g’ (t,x%)+S(X(t)D')<0 , j=12...m, tel

This implies x is feasible for (CP).

The relation (3.18) along with (3.29) and (3.24) gives
Zml:yi(t)(g"(t,x,>’<)+7(t)T W (t))=0 ,tel
=

(3.32)
Now for each i e{1,..., p}, in view of (3.30) and (3.32), we have

—
VR
—h
—_~
—
bel
bel
SN—
+
bel
~—~
—
N—"
—
N_.
—~
—
~"
+
<
~—~
—
N—"
—
—_
(o]
—_
-
x|
b

<)+x(t) W (t))Jdt=O

:If(fi(t,i,x*)+s(7|ci))dt, i=12...,p

This along with the requirements of Theorem yields the efficiency of x for
(CP).

3.1.4 Mond-Weir Type Duality

We further weaken the invexity requirements in the preceeding

section by formulating Mond-Weir type dual to the problem (CP).
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(M-WCD):Maximize(j(fl(t,u,u)+u(t)Tzl(t))dt ..... I(fp(t,u,u)+u(t)Tz”(t))dtj

Subject to
u(a)=a , u(b)=p (3.33)
iz ()42 (t))+i_lyj(t)(gl +wi (1))
:D(J}LT fy(t) o), tel  (334)
Z'(t)eC' , i=12...p, (3.35)
w!(t)eD! , j=12..,m, (3.36)
y(t)>0 , tel (3.37)

2>0. (3.39)
Theorem 3.4 (Weak Duality): Let xbe feasible for (CP) and
(u,y,zl,...,z",w1 ..... w”’,z) be feasible for (M-WCD). If for all feasible

(xu,y,z'...,2°,w',...,w", 1) with respect to 7 =7(t,x,u),

i Zp:/li ( fi(t,.)+() 2 (t))dt is pseudoinvex and

i ij'y"(t)(gj(t,.,.)+(-)T w (t))dt is quasi-invex with respect to
samer =n(t,x,u) following cannot hold.
[(F (xx)+s(x()[c))de< (' (tuu)+u(t) 2 (t)dt (3.40)
forall ie{1...,p}, and

[(FrtxR)+s(x(t)

C))dt<[(f"(tuu)+u(t)z (t)dt (3.41)

for some re{1,2,...,p}.

89



Proof: Suppose that (3.40) and (3.41) hold, then in view of 1>0 and
x(1)'2' (t)<S(x(V)|[C') ,i=12...., p we have

p .

Zﬂ,'.[( (t,%, %)+ x( )dt<z/1"[( (tu,u +u(t) '(t))dt

i= I

This in view of the pseudoinvexity of Z}J ( fi(t,.,)+() 2 (t))dt yields,

i=1

j{ [Z”( )J (D) ( Tfx-)}dt<o

This on integration by parts gives

(SR (2 )0 b Jarer (4

Using the boundary conditions which at t=a , t =b gives =0, we have

IUT {iz::ii(fxi +7' (t))_D(lT fx)jdt<0

From the feasibility requirements of (CP) and (M-WCD) together with

t=b

t=a

x(t)" 2 (1)<S(x(1)[c'), we have

ij ( (% X)+x(t) ) éi:‘lj ( tuu)+u(t)TWj(t))dt

_1|

By quasi-invexity onIy ( () + () W (t))dt, implies

_ll

I[?fiy‘ )(g)+w!(t ))+(D77)TyT(t)gX.’1dt§0 (3.42)

]

This, by integration by parts, as earlier gives
In {Zy (g) +w'(1))-Dy'(t)g) }dtéo (3.43)

Combining (3.42) and (3.43), we have

p . . . m . . .
jnT {Z/l' [ fo+2' (1)+>y (t)(gxJ +w! (t))]
| i=1 j=1
_D(ﬂbT fo+y(t) gx)} dt<0
which contradicts (3.34), and the conclusion of the theorem is established.
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The following strong duality can be proved on the lines of Theorem
3.2 with slight modifications.

Theorem 3.5 (Strong Duality): Let x be a efficient solution of (CP) and
for at least one i ,ie{1,2,..., p}, X satisfies the regularity condition [30] for
(R(x)). Then there exist 1eRP with1" =(1",...,2",...,2")and piecewise
smooth y:1 —-R"™ with y" =(y",....¥'.....y"), Z'(t)eC’",i=12,...,p and
w!(t)eD’ , j=12,...,m such that (x,0,y,7",...,2°,W',...,w", 1)is feasible

for (M-WCD) and the objective values of (CP) and (M-WCD) are equal.

Further, if the hypotheses of Theorem 3.4 are met, then
(x.u,y.7%....,z° W,...,w", 1) isan efficient solution of (M-WCD).

(M-WCD) can be rewritten in the following form:

Minimize —“(fl(t,u,u)+u(t)T zl(t))dt,...,Jl.(fp(t,u,u)+u(t)T z"(t))dtj

Subject to

where

0=06(t,x(t),%(t),y(t),2)

:iz::/v(fxi +7' (t))+JZ::yJ' (t)(ng +w! (t))—D(,1T f +y(t)gx) Ctel
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Theorem 3.6 (Converse Duality): Let (i,u, V.74, 7" W, v—vm,Z)be an
efficient solution for (M-WCD). Assume that

(Ay) The Frechét derivative ' has a (weak*) closed range,

(Az) fand g are twice continuously differentiable,

(As) f,+7'(t)-Df; , ie{L2..., p}are linearly independent and
(Ag) (ﬂ(t)TGX—Dﬂ(t)T0X+D2ﬂ(t)T0X)/3(t)=0,:>ﬁ(t):0,tel

Further, if the hypotheses of Theorem 3.4 are met then Xis an

efficient solution of (CP)
Proof: Since (x,0,y,z%....,z° W,...,w", Z)with y'having a (weak*) closed
range, is an efficient solution of (MWD), then there exist a« eR" with

a' =(d',....a',...,a"), piecewise smooth g:1 ->R"and u:1 ->R", neR’

with ' =(77l ..... np)satisfying the following Fritz-John conditions [37],

- ai(u+zi<t>—Df;>—7@yj<t><gi+wj ()-Dy () 9*]

+4(t) 6,-DB(t) 6, +D*B(t) 6,=0,tel (3.44)

(g +X ()W (t)+5(t) 6, ~DB(t) 6, — ! (t)=0 , tel

j=12,....m (3.45)
(f,+2' ()-DF) B(t)—r =0 , i=1...,p (3.46)
(B(t)A' —a'x(t))e N, (Z'(t)), i=1...p , tel (3.47)
(B(1)-yx(1))¥' () e Ny, (W' (1)), j=1...m, tel (3.48)
y_Zi:jyj (t)(g" +X(t)" W (1))dt =0 (3.49)
n'A=0 (3.50)
a(t)y(t)=0, tel (3.51)
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(a,u(t),7,7)>0 (3.52)

(a0, B(t), u(t),7.7)=0 (3.53)
Since 1 >0, (3.50) implies =0. Consequently (3.46) implies

(fi+2'(t)-Df;)B(t)=0 , i=1...,p (3.54)
Using the equality constraint of (M-WCD) in (3.44), we have

3 (o —2")(£: +2 ()= DE )+ A(t) 6,-DA(t) 6,+D*B(t) 6,0, te
(3.55)

Using (3.54) and (3.55) in (3.44), we have
(B(t) 6,-DA(t) 6,+D*B(1) 6,)B(1)=0, tel
which because of the hypothesis (A4) implies,
B(t)=0, tel (3.56)

The relation (3.55) along with (3.56), gives,

p

>(a'—yA")(f,+2'(t)-Df;)=0

This, due to the hypothesis (As3) gives,
o =y =0,i=12...,p (3.57)
Suppose y =0; Then from (3.57) we have « =0.From (3.45), we have,
u(t)=0 , tel.
Consequently, (a, B(t), x(t).7,7)=0 contradicting the Fritz-John condition
(3.53).

Hence y >0 and from (3.57), « >0.

In view of (3.56) together with y >0and « >0, (3.47) and (3.48),
respectively imply

(1) Z'(t)=S(X(t)C') . i=12...p,tel (3.58)
(1) W' (t)=S(x(t)D') , j=12...m,tel (3.59)
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The relation (3.45) along with » >0and y(t)>0, teland (3.59) imply
g’ (tX,X)+S(X(t)D')<0 , j=12...,m
This implies the feasibility of x for (CP).
In view of (3.58), we have
f'(X)+x'Z'
= f'(x)+s(x|c') , i=12..,p
This, in view of the hypothesis of Theorem 3.4 gives the efficiency of x for

(CP).

3.1.5 Related Problems

It is possible to extend duality theorems established in the previous
sections to the corresponding multiobjective variational problem containing

support functions with natural boundary values rather than fixed end point.

PRIMAL (CP)y: Minimize

(xS (x0fE et ](2000) 5 x0)C" t

| |
Subject to
g’ (t%%)+S(x(t)|D')<0, j=12,..,m , tel

DUAL (WDP),: Maximize

(I[ £ (L) +u(t) 20+ 2y (1) (¢ (Lua)+u(t) w (t))]dt

I =

..... j(f () +u(t) 22 (1) + Yy (1) (o' (tu,u)+u(t) w’ (t))]dtj

=

Subject to

m

iZ::’li(fxi +2' (1)) + Xy (t)(9) +w (1)) =D(A" ] +y(t)g,) , tel

j=1

ATf +y(t) g,=0, att=aand t=b
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DUAL (M-WD),: Maximize
Lj(fl(t,u,u)w(tfzl(t))dt ..... Ij(fp(t,u,u)+u(t)Tzp(t))dt]

Subject to

A1+t )+iy‘ 0)(g! +w (1))
=

=D(4TfX+;(t) 6,). tel
AT, =0=2Ty(t)g, ,at t=aand t=b
Z'(t)eC' , i=12...p,
w! (t)eD’ , j=12...m,

y(t)>0 , tel
Sy (0 (' (Cu0)+u(e) w ()20, e
A>0.

If the functions in the problem mentioned in Section 3.5 are

independent of t, they will reduce to the following.

Subject to
g’ (X)+S(X‘Dj)50 ,i=12,...,m

DUAL (WNP): Maximixe [ )+u'z +Zy( +uTwJ’)



Subject to

p . . . m . . -
SA(F+72)+Yy (gl +w!)=0
i1 =
z' eC! i=12,..., p
w! e D! j=12,...,m
A>0 ,Zp:/li =1
i=1
DUAL (M-WNP): Maximize (f*(u)+u'z',..., f°(u)+u'z")
Subject to
i/l‘(fxi+z‘)+iyj(ng+wj)=0
-1 =1
z'eC' i=12,...,p
w! e D! j=12,...,m
y>0, tel
i g (u)+u'w!)>0
i1
A>0

96



Chapter-4

OPTIMALITY CONDITIONS AND
MULTIOBJECTIVE DUALITY FOR
VARIATIONAL PROBLEMS
INVOLVING HIGHER ORDER
DERIVATIVES

4.1

4.2

4.3

Optimality Criteria and Duality for Multiobjective Variational
Problems Involving Higher Order Derivatives

4.1.1 Introductory Remarks

4.1.2 Invexity and Generalized Invexity

4.1.3 Variational Problem and Optimality Conditions
4.1.4 Wolfe Type Duality

4.1.5 Natural Boundary Values

4.1.6  Nonlinear Programming

Multiobjective Duality in Variational Problems with Higher Order
Derivatives

4.2.1 Mond-Weir Type Duality
4.2.2 Natural Boundary Values
4.2.3 Nonlinear Programming

Mixed Type Multiobjective Variational Problems with Higher
Order Derivatives

4.3.1 Mixed Type Multiobjective Duality
4.3.2 Related Nonlinear Problems




41 OPTIMALITY CRITERIA AND DUALITY FOR
MULTIOBJECTIVE VARIATIONAL PROBLEMS
INVOLVING HIGHER ORDER DERIVATIVES

4.1.1 Introductory Remarks

I n [73], Husain and Jabeen studied a wider class of variational problem in
which the arc function is twice differentiable by extending the notion of

invexity given in [103]. They obtained Fritz John as well as Karush- Kuhn-

Tucker necessary optimality conditions as an application of Karush-Kuhn-

Tucker optimality conditions studied various duality results for Wolfe and

Mond-Weir type models.

Since mathematical programming and classical calculus of variations
have undergone independent development, it is felt that mutual adaptation of
ideas and techniques may prove useful. Motivated with this idea in this
exposition, we propose to study optimality criteria and duality for a wider
class of multiobjective variational problems involving higher order
derivative. These results not only generalize the results of Husain and Jabeen
[73] and Bector and Husain [19] but also present a dynamic generalization
of some of the results in multiobjective nonlinear programming already

existing.
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This chapter is divided into three sections, 4.1, 4.2 and 4.3. In the
section 4.1, optimality conditions, both Fritz-John and Karush-Kuhn-Tucker
type optimality conditions are derived for the variational problem and the
notion of invexity / generalized invexity are extended. As an application of
Karush-Kuhn-Tucker optimality conditions, Wolfe type dual is formulated
and various duality results are established under invexity defined in this
section. In this section, it is also shown that our results can be considered as
continuous time extension of nonlinear problem existing in the literature.
The section 4.2 formulates Mond-Weir dual for multiobjective variational
problem considered in the subsection 4.2.1 to relax the invexity
requirements of section 4.1 for various duality results to hold and gives
relationship between the results of this section to those of nonlinear
programming. The section 4.3 is meant to unify the dual formulations of the
variational problems in the section 4.1 and 4.2 and prove various duality

results under invexity and generalized invexity results.

4.1.2 Invexity and Generalized Invexity

For ready reference, we reproduce the following definition extended
by Husain and Jabeen [73].

Definition 4.1 (Invexity): If there exists vector function 7(t,u,d,x, % X)eR"
with n=0and x(t)=u(t),tel andDzn =0 for x(t)=u(t),tel such that for a

scalar function ¢(t, x, %, X), the functional ®@(x, >'<,X‘)=j¢(t,x,>‘<,5<‘)dt satisfies,
|

®(u)-0 (%) {MX (t.x,% %)+ (Dn)" ¢, (6% %,%)+(D%) ¢, (t.% xx)} dt, D is
|
said to be invex in x,x and X on | with respectto 7.

Definition 4.2 (Pseudoinvexity): ®is said to be pseudoinvex in x,x and X
with respect to 7if | {M (tx,%,%)+(Dn) ¢, (6. % %) (D) 4, (t,x,x,x)}dtzo
|

implies @(u)>®(x).
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Definition 4.3 (Quasi-Invex): The functional @ is said to quasi-invex inx,

xand X with respect to nif
®(u)<®(x) implies

{76, (63 5,%) + (D) (655, %)+ (D) g (6%, %)} e <0.

4.1.3 Variational Problem and Optimality Conditions

We present the following multiobjective variational problem with
higher order derivatives:

(VPE): Minimize ([ Pt xxx)dt, o [ £t )'(,X‘)dt}

Subject to

x(a)=0=x(b) (4.1)

x(a)=0=x(h) 4.2)

9(t,x,%%)<0 , tel (4.3)

h(t,x,x,X)=0 , tel (4.4)
where

1) fIxR"xR"xR"—>R,i=12,...,p, g:IxR"xR"xR" > R"

and h:IxR"xR"xR" —R"are continuously differentiable
function, and

2) X designates the space of piecewise functions x: 1 — R" possessing
derivatives xand % with the norm |x| =[ x|, +|Dx|, +|D*x| .
We require the following definition of efficient solution for our
further analysis.
Definition 4.4 (Efficient Solution): A feasible solution X is efficient for
(VPE) if there exist no other feasible xfor (VPE) such that for some
ieP:{l,Z,..., p},
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and

[ £ (txx%)dt< [ £1(t,%,X,X)dt

[ (txxx)dt<[ fI(t,x%X)dt forall jeP, j=i.
|

In relation to (VPE), we introduce the following set of problems P

foreach r=12, ...

(P.): Minimize

Subject to

[ £ (txx%)dt

, p in the spirit of [35], with a single objective,

[t x)dt<[ £ (tx%X)dt,i=12,...,p, i=r.
1 l

The following lemma can be proved on the lines of Chankong and

Haimes [35].

Lemma 4.1: x* is an efficient solution of (VPE) if and only if X is an

optimal solution of (P, )foreachr=12,...,p.

Consider

the following single

considered in [73].

(Po): Minimize [g(t,x,x,X)dt

Subject to

objective variational problem



where ¢: 1 xR"xR"xR" > R.

The following proposition gives the Fritz-John type necessary
optimality conditions obtained by Husain and Jabeen [73]. In this
proposition, we have written the functions without arguments for brevity.
Proposition 4.1 [73]: (Fritz John Optimality Conditions) If X is an
optimal solution of (Pg) and h, (x(-),%(-),%(-)) maps X into the subspace of
C(I : Rk), then there exists Lagrange multiplier7 e R, the piecewise smooth

y:1 >R™andz:l1 —R*, such that

If 7=1, then the above optimality conditions will reduce to the
Karush-Kuhn-Tucker type optimality conditions and the solution x is

referred to as a normal solution.

We now establish the following theorem that gives the necessary

optimality conditions for (VPE).

Theorem 4.1 (Fritz-John Conditions): Let x be an efficient solution of

(VPE) and h, (x(-),%(-),%(-)) maps X into the subspace ofC(1,R"), then there

exist 1 e R*and the piecewise smooth y:1 —R™ andz:1 — R*, such that
(ZT f+y(t) g, +7(t) hx)—D(ZT f+y(t) g, +2(t) hx)

+D* (AT, + ¥ (1) g, +Z(1) by} =0, tel, (4.5)

X
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y(t) g(t.x,%,X)=0, tel, (4.6)
2,5(1)) >0, tel, (4.7)

(
(4,¥(t).Z2(t))=0, tel. (4.8)

Proof: Since x is an efficient solution of (VPE) by Lemma 4.1, X is an

optimal solution of (F_>r) for each r=12,...,p. From Propositionl, it

follows that, there exist scalars A",1°,...,A™ and piecewise smooth

function y:1 - R™and z:1 — R , such that

p m k
SD[ATE AT Y Y (H) gl + Dz (t)h,
i=1 i=1 =1

i#r

p m K
+D?| AT E D AT 4Dy (t) gl + D 7 (t)h |=0,tel,
j:]_ 1=1

i=1
i£r

y (H)g(t.x,x,X)=0,tel,
(A2, 2%, LA Y (1), 77 (1), Y™ (1))20 , tel,
(2, 2% AP Y (1), 77 (1), Y™ (1), 2 (1), 27 (), 2" (1)) =0, tel.

Summing over r, we have

i(p z"J £ +§[Jzyl (t)jgx‘ +é[gz” (t)]h;
) D[i(ilzJ f +il[;yl (t)JgX‘ +rzi@z" (t)]h;j
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R P
SettingA'=) A",y (t)=> y"(t).tel and Z'(t)=>7"(t),tel, we
r=1 r=1 r=1

have,

(zT f+y(t) g, +2(t) hx)—D(ZT fo+y(t) g, +2(t) hX)

+D* 2T+ ¥ (1) g, +Z(1) by )=0, tel,

(2,
(Zy 7(t))=0, tel.

Theorem 4.2 (Karush-Kuhn-Tucker Conditions): Let x be an efficient

r

solution for (VPE) which is assumed to be normal for (5) for each

r=12,...,p. Let the constraints of (P,) satisfy Slater’s Constraint
Qualification [30] for eachr=12,...,p. Then there exist A" eR¥,

y:1 >R™and z:1 — R*, such that the following relation hold forall tel,

(ZT f+y(t) g,+2(t) hx)— D(ZT f+y(t) g, +2(t) hx)

+D*(Z7 45 (1) g, +Z(t) 1) =0, tel (4.9)
y(1) g(t.x,%,X)=0, tel (4.10)
A>0 , y(t)>0,tel (4.11)

Proof: Since x is an efficient solution of (VPE) by lemma 4.1, x is an
optimal solution of ( ) for each r=12,...,p then there exist scalars
A 1A e A With 2, =1, y:1 ->R™andz: 1 — R, such that the following
conditions are satisfied for all
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k m k
=D| £/ + X ATE D>y (t)g) + D 7" (t)h,
i-1 -1 =

k m kK
+D?| fy+ D A"+ ¥y (t)g) + D 7" (t)h, |=0,tel,
i1 -1

i=r

— . . —_ p —_— .
A, >0,i=12,...,p, i#r. Summing over r and setting /1,,:2/1" with

r=1

Remark: If >0, then Theorem 4.1 reduces to Theorem 4.2 and then an
efficient solution is called a normal solution as an analogy to the normality

condition given in [30].

4.1.4 Wolfe Type Duality
In this section, we consider the following variational problem (VP)

involving higher order derivatives, by suppressing the equality constraint in
(VPE).
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(VP):Minimize (Ifl(t,x,x,x)dt ..... pr(t,x,x,x)dtj

. i
Subject to
x(a)=0=x(b)
x(a)=0=x(bh)
g(t,x,%x,X)<0 , tel
We formulate the following Wolfe type dual to the problem (VP) and

establish various duality results under invexity defined in the preceding

section.

(WD):Maximize [I( £ (t,u,0,0)+y(t) g(t,u,u,u))dt

..... j( fP(t,u,0,0)+y(t) g(t,u,u,u))dtJ

Subject to
u(a)=0=u(b)
i(a)=0=u(b)

(/1T fo+y(t) gx)—D(/IT f+y(t) g)‘()

+D* (AT f+y(1) g)=0 , tel (4.12)
y(t)>0, tel (4.13)
>0, Ae=1 (4.14)

where e=(11...,1)" and 1eR"

Theorem 4.3 (Weak Duality): Let xe X be feasible for (VP) and

(u,2,y) be feasible for (WD), if [ A" f dt is invex and [y(t)'gdt is invex
| I

with respect to the same . Then

[ f(txxx)de [{F(tu,u,a)+y() g(tuu,u)efdt

1
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Proof:ﬂuf (tx %, 0)dt = [{ F (, u,u,u)+y(t)Tg(t,u,u,u)e}dt)

J(A7F (txx%)=2TF (tu,u,0)—(27e)y(t)" g (tu,u,0))dt

AT (tx, %, %)dt— [ A7 f (t,u,d,0)dt- [y (t)" g(tu,u,u)dt,

(By using A'e=1)

> [l (A7 1,)+(0n) (78,)+(D%) (471,

~[y(t)" g(t.u,u,u)dt (4.15)

This is possible by invexity of [ A" f dt
|

Also from the feasibility of (VP) and (WD), we have

Iy (t,x, %, X)dt - Jy g(t,u,u,u)dt

>I{ 7) (v'0), +(0n) (v'g),
(By definition of Invexity)

This implies
[y a(tus.a)az[{a (v'e), +(On) (v's), +(0%n) (v'g), |

~[y(®) g(txxx)dt

Using this in (4.15), we have,

2 7+ (0n) (47 8)+ (0%)' (478
+”77T ()’Tg)x+(D77)T (yTg)X +(D2;7)T (YTQ)X}dt

~[y(t)" g(t.x % x)dt

ar (I f(txxR)dt- [ (tu,0,0)+y(t) g(t,u,u,u)e}dtJ
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= [ {(/U f,+y'9,)+(Dn) (A" f,+y'g,)
+(D772)T (A1, + yTgx)} dt—J‘y(t)T g(t,x, % X)dt

t=b

=[n" (A" f+yTg, )dt+n" (AT, +y'g,)
| t=a

‘InTD (A" f+y7g, Jdt+(D)' (27 fx+yTg*):_

—j D(A" f,+y'g, )dt— J.y g(t,x,%,X)dt
(By integration by parts)

Using the boundary conditions which give Dp=0=75 at t=a,t=b

=[n" (271, +y"g,) dt—J-nTD (AT f,+yTg, )dt+n"D(AT fx+yTgx)t=b
| +I77 D? ( /ITf+yg)dt jy g (t,x,%,X)dt
(By integration by parts)
Using the boundary conditions which give Dy =0=n at t=a,t=b
:I;f {(/U f + yTgX)— D(/lT f + yTgX)+ DZ(/IT f + yTgx)}dt
|

—jy(t)T g(t, x, x,X)dt

v

~[y(t) g(t.x %, %)dt, (By equation (4.12))

>0 (by (4.3) and (4.13))
That is,
[A7F (6% %) dtz [{A7 (tu,0,0)+ y (1) g (tu,u,0)}dt

or

a (Jf(t,x,x,x)]dtzﬂ (I{f(t,u,u,U)er(t)T g(t,u,u,u)e}]dt
This yields,

[ f(toxxx)de [{f (tu,u,o)+y (1) g(tu,u)e)d.
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Theorem 4.4 (Strong Duality): If xis efficient and normal solution of

(VP), then there exist piecewise smooth y:1 —R" such that (X,y) is

feasible for (WD) and the corresponding objective values of the problems
(VP) and (WD) are equal. If the hypotheses of Theorem 4.2 are satisfied,
then (X,y) is an efficient solution of (WD).

Proof: Since x is efficient and normal for (VP), by Theorem 4.2, it implies

that there exist x e R? and piecewise smooth u: 1 — R™ such that,
T T T T 2( T T _
(,u f+u(t) gx)—D(,u fo+u(t) gx)+D (,u fo+u(t) gX.)—O, tel,
a(t) g(tx,x,%)=0, tel,
u>0 U(t);O ,tel.

Since x>0, u'e=0.

(ool o

T T
t
+D2u “ j f,+ 20 ng=0,tel
u'e u'e

u'e
40, Y0 e
u'e u'e

? A, and y(Tt) =y(t) in the above relations, we have,

=
@
RS
@

(77 £+7(1) 9,)-D(2 f,+¥ (1) g, )+ D* (2T, +¥ () g)=0, tel

(4.16)
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y(t) g(t.x.%,X)=0,tel (4.17)

70 V(t)io} el (4.18)

From (4.5) and (4.7), it follows that (x,4,y) is feasible for (WD).

The equality of the objective of (VP) and (WD) is obvious in view of (4.17).
The efficiency of (x,4,y) for (WD) follows from Theorem 4.3.

As in [105], by employing chain rule in calculus, it can be easily seen

that the expression (f foy(t) gx)— D(/lT fory(t) gx)+ DZ(}J fory(t) gx)

may be regarded as a function @ of variables t,x,x, % X,y,y,yand 1, where

X =Dxand y=D?y. That is, we can write

O(t, X, % %X, y,Y,V,2) :(AT f + y(t)T gx)— D(/lT f + y(t)T gx.)+ D? (}LT f, + y(t)T gx)
In order to prove converse duality between (VP) and (WD), the space X

is now replaced by a smaller space X, of piecewise smooth thrice differentiable

function x:1 — R"with the norm |x| +|Dx], +|D*x|_+|D%|. .The problem

(WD) may now be briefly written as,

Minimize —U( At % X, %)+ y(t)T g(t,x, X, X‘))dt

J'( fP(t, % X, X)+ y(t)T g(t,x,x,x))dt]

Subject to
x(a)=0=x(b)
X(a)=0=x(b)
O(t,x,%%X,y,¥,¥,4)=0 , tel
y(t) tel
A>0, /1Te—1

where e=(11..,1)'eR"and 1eR".
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Consider  &(t,x(-),x(-),%(-),X(-),y(-).¥(:),¥(-),4)=0 as defining a
mapping w:X,xYxRP —>Bwhere Yis a space of piecewise twice

differentiable function and Bis the Banach Space. In order to apply
Theorem 4.1 to the problem (WD), the infinite dimensional inequality must

bne restricted. In the following theorem, we use 'to represent the Fréchet

derivative [‘//x (%Y, 4)w, (%Y, 4),w, (XY, /1)]

Theorem 4.5 (Converse Duality): Let (x,4,¥) be an efficient solution of
(WD) and y' has a (weak*) closed range. Assume that
(Hy) fand gare twice differentiable,
(H,) the hypotheses of Theorem 4.3 hold, and
(H) o(t) (o(t) 6,-Do(t) 6,+D%o(t) 6, -D'o(t) 6 )=0, tel
= o(t)=0,tel
Then x is an efficient solution of (\VP).

Proof: Since (x,1,) is an efficient solution of (WD) and ' has a closed

range, then by Theorem 4.1, there exist «eR*and piecewise smooth

B:1>R" . &1 >R and x' eRP such that

[—(a f +(aTe) y(t)T gx)+,[5'(t)T HX}— D[—(afx +(aTe) y(t)T gx.)+ﬂ(t)T HX}

+ [ty (a7e)y(t) o)+ B(1) 6 |-DB() 6, =0 (4.19)
~(a"e)g+ (1) 6,-D(B(1) 6, )+ D*(B(t) 6,)-£(1)=0 (4.20)
B(1)(f,—Df, +Df, )+ ' +7=0 (4.21)
' A=0 (4.22)
E(t) ¥(t)=0 (4.23)

110



y(zp:z‘ —1} =0 (4.24)

(a,,u,j/,f(t))iO (4.25)

(a.B(t), 1r.7.£(t)) =0 (4.26)
Since 1 >0, (4.22) implies . =0. Consequently (4.21) implies

B(t) () -Df +D’f))=—y (4.27)

From the equality constraint of the dual problem (WD) together with
(4.27), it follows

T T 2 T ST [ 2¢i
y(t) g,-Dy(t) g,+D*y(t) g,=—>4 (fX—DfX.+D fx)

i=1

( y(t) 9, -Dy(t) g, +D?y(t) gx)ﬂ(t):—zp:zi (f-Df, +D*f;) A(t)

i=1

P
=—Zﬂ' (=y)=r (4.28)
i=1
Postmultiplying (4.19) by A(t)and then using (4.27) and (4.28), we have

(B(Y) 6,-DB(t) 6,+D*B(1) 6,~D*A(t)" & ) B(t)=0
This because of the hypothesis of (Hs) yields

B(t)=0,tel (4.29)
Therefore from (4.27), we have y =0.
Suppose « =0, then from (4.20), &(t)=0,tel.Consequently we have

(a,B(t),,7,£(t))=0, tel Thisis in contradiction to (4.26).

Hence « >0. The relation (4.20) in conjunction with (4.29) yields,

g(t,x X,X)z—éj(Tt)<0 (4.30)

a'e=
This implies the feasibility of x for (VP). The relation (4.30) with (4.23)
yields

y(t)T g(t,x,%X)=0,tel (4.31)
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This implies,

[ (tuu,a)+y(0) g(tu,ua))de=] £ (txx %)t

This along with an application of Theorem 4.3 accomplishes the efficiency
of x for (VP).

4.1.5 Natural Boundary Values

The duality results obtained in the preceding sections can easily be
extended to the multiobjective variational problems with natural boundary

values rather than fixed end points.

Primal (P;): Minimize [J'fl(t,x,x,x)dt, o ,.[fp(t,x,x,x)dt]

Subject to

g(t,x,x,X)<0 , tel
Dual (Dy): Maximize [ f (t.u,u,a)+y(t) g(t.u.u,u)e)dt

Subject to

(/IT f + y(t)T gx)— D(/1T f, +y(t)T gx)

+D*(ATf,+y(1) g,]=0 tel
(ﬂffﬁy(t)T gx):O,at t=a and t=Db

(}LfoﬁLy(t)T gx):o,at t=a and t=b

y>0 , e’
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4.1.6 Nonlinear Programming

If the problems (P,) and (D;) are independent of t, then they will
reduce the following multiobjective nonlinear programming problems:
studied in [55]

(NP): Minimize f(x)

Subject to

(ND):Maximize f(x)+y'g(x)e
Subject to
ATf +y'g, =0

y>0.

4.2 MULTIOBJECTIVE DUALITY IN VARIATIONAL
PROBLEMS WITH HIGHER ORDER DERIVATIVES

4.2.1 Mond-Weir type Duality
We formulate the following Mond-Weir type dual to the problem

(VP) and establish various duality results under invexity defined in the

preceding section.

(M-WD): Maximize [J' fH(tu,u,a)dt, ... [ f p(t,u,u,u‘)dtJ

Subject to
x(a)=0=x(h), (4.32)

x(a)=0=x(b), (4.33)

(2 f,+y() 0,)-D(4 f,+y(t) g,)
+D2(ﬂ,T f, +y(t)T g..):O ,tel (4.34)

X

[y(®) g(tu,u,u)dt>0, (4.35)

1
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y(t)>0, tel, (4.36)

A1>0. (4.37)
Theorem 4.6 (Weak Duality): Let x e X be feasible for (VP) and (u,4,y)
be feasible for (M-WD) if for all feasible (x,u,/i,y)J'/le(t,u,u,u)dt is
.
pseudoinvex andjy(t)Tg(t,u,u,u)dt Is quasi-invex with respect to the same 7.
.
Then,

[ £(tx%%)dt £ [ £ (t,u,u0,0)dt.

Proof: The relations g(t,x,x,X)<0 , y(t)>0,tel imply
[y® g(t.xxx)dt< [y(t) g (tu,uu)d
| |

This because of the quasi-invexity oij(t)Tg(t,u,u,u)dt, implies that
|

Ozf{ff y' (t)g, +(Dn)' y'g, +(D%)' yTgU}dt
|

t=b

= [7"y(t) g, dt+n"y (1) g,
|

t=a

~[n"Dy(t)" g.dt+(Dn)" y(t) g,

t=b T T
" _I(DU) Dy(t) g,dt
—a |

(By integration by parts)

Using the boundary conditions which gives Dp=0=nat t=a,t=b

= [n"y(t)" g,dt—[#"Dy(t) g,dt—n"Dy(t) g,
| |

t=b
3 +[n Dy (1) gyt
|

(By integration by parts)

Using the boundary conditions which give Dnp=0=nat t=a,t=b

J‘ffy(t)T gudt—jnT Dy(t)T gu.dt+I77T Dzy(t)T g,dt<0
| | |
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[7" (y(®) 9, -Dy(t) g, + Dy (t)" g, )cit<0

From equation (4.34) this yields,
[n" {471, -DATf,+ D27 1, }dt>0
|

This by integration by parts and then using boundary conditions gives,

[ (27 )+ (Dn) (27 8,)+(O%) (271, a0,

This, in view of pseudoinvexity of jﬂf f (t,x, %, X)dt implies that
|

AT (tx %, X)dt=> AT [ £ (t,u,u,0)dt .

For this , it follows

[ £ (tx % %)dtZ [ (t,u,u,0)dt.

Theorem 4.7 (Strong Duality): If xbe a feasible solution for (VP) and

assume that

I X 1s an efficient solution.

ii. foratleastone i,ieP, xsatisfies a regularity condition in [30]
for P (X).

Then there exists one 1eRP,yeR™ such that (x,y,1)is efficient

for (VD). Further if the assumptions of Theorem 4.6 are satisfied, then

(x,y.,4)is an efficient solution of (VD).
Proof: Since xis efficient solution by Lemma 4.2, it is an optimal solution

of P(X). By Proposition 4.2, this implies that there exists A =(;tl,...,ip)

and piecewise smooth y:1 — R™ such that,

A (f-DR+ D £ )+ > 4 (f/-Df, + D)

+(y(t)" 9, ~Dy(t)" 9, + D?y(1) g, ) =0, (4.38)

115



(27 f,+ (1) 0, )= D(ATf,+ y(t) 0, )+ D* (A", +y(t) g,) =0 , tet,

(4.39)
y(t) g(tx,x,X)dt=0 , tel, (4.40)
(2.¥(1))20 , tel, (4.41)
(2,7(t))=0 , tel (4.42)

From (4.40), we have
jy g(t, %% X)dt=0 (4.43)

Equations (4.39), (4.40) and (4.41) imply that(x,1,y)is feasible for

(M-WD). The equality of objective functional of the primal and dual

problems is obvious from their formulations. Efficiency of (K,Z,y) IS

immediate from the application of Theorem 4.6.

As in [105], by employing chain rule in calculus, it can be easily seen
that the expression (/IT foy(t) gx)— D(/IT fory(t) gx.)+ D? (/IT fory(t) gx)
may be regarded as a function @ of variables t,x,x, %X, X,y,y,yand 1, where

X = D% and § = D?y. That is, we can write

O(t X% %Xy, Y9, 4) = (4T f, +y (1) 9,)-D(A" f,+y(t) g, )+ D* (2 f,+y (1) o)

In order to prove converse duality between (VP) and (M-WD), the space

Xis now replaced by a smaller space X,of piecewise smooth thrice
differentiable function x:1— R"with the norm |x|_+|Dx|, +|D*x|_ +|D%. .

The problem (M-WD) may now be briefly written as,

Minimize[J‘f (t,x x,%)d —jfptxxx)dt]

Subject to
x(a)=0=x(b),
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x(a)=0=x(b),
O(t, X, %%,X,y,Y,¥,4)=0

[y(®) g(t,xxx)dt0

1

y(t)>0, tel

Consider 6(t,x(-),%(-),%(-),%(-),¥(-),¥(-). ¥(-),2) =0 as defining a mapping
w:X,xYxRP—Bwhere Yis a space of piecewise twice differentiable

function and B is the Banach Space. In order to apply Theorem 4.1 to the
problem (M-WD), the infinite dimensional inequality must be restricted. In

the following theorem, we use y'to represent the Frechét derivative

(v, (XY, 4)w, (%Y. 2)., (%, Y, 4) ]

Theorem 4.8 (Converse Duality): Let (x,4,y)be an efficient solution

withxe X,, vyeY,and A" eRP and y'have a (weak*)closed range

hypothesis. Let f and g be twice continuously differentiable. Assume that

(Hy) [27fdtbe pseudoinvex and [y(t)' gdtbe quasi-invex with
rlespect to same 7. |
(H) o(t) (o(t)6,-Do(t)6,+D’c ()6, — D’ (t)6, ) =0
:>O'(t)=0, tel.
(Hs) f'—Df +D?*f, ,i=12,...,p are linearly independent.
Then x is an efficient solution of (\VP).

Proof: Since (K,Z,y)where X e X and 'having a closed range, is an

efficient solution of (M-WD), by Theorem 4.6, it implies that there exist
aeR, yeR,neR? and piecewise smooth pB:R—R" and ux:R—>R"

satisfying the following conditions.
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—a(f,~Df + szx)—y(y(t)T 9, - D(y(t)T gx)+ Dz(y(t)T gx))

+B(1) ,-D(A(t) 6,)+D*(B(1) 6,)-D*(B(t) 6 ) =0

(4.44)
() 6,-D(A(t) 6,)+D*(B(1) 6)-rg—u(t)=0 (4.45)
B(t)" (f,-Df,+D*f,)-n=0 (4.46)
7[y(®) g(txxx)dt=0 (4.47)
n"A=0, wu(t) y(t)=0, tel (4.48)
(a.7.m.u(t))=0, teland (a,y,n7,u(t), B(t))=0, tel (4.49)
Since A>0, n'A=0, which implies =0
This yields from (4.46)
B(t) (f,—Df, +D*f,)=0 (4.50)
Using the equality constraint (4.34) in (4.44), we have
~(a-y4) (f,-Df, +D*f, )+ B(1) 6,
-D(B(1) 6,)+D?*(B(t) 6)-D°(B(1) 6)=0 (4.51)

Postmultiplying equation (4.44) by S(t)and using (4.50) in (4.51) we get,
AU (1) 6,)+D*(B() &)-D°(B() &) =0, tel

This by hypothesis (H) implies g(t)=0, tel

Also from (4.51) we have
(a—yA) (f,-Df,+Df,)=0

This, because of linear independence of f! —Df, + D°f, ,i=12,...,p, gives
a—yl=0 (4.52)

Now suppose y =0, then, from (4.45) and (4.52) we have

u#(t)=0,tel and o =0respectively.
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This implies(a,ﬂ(t),y,n,y(t)) =0, which is the contradiction to

(a.B8(t).7.m.u(t)) =0, tel.

Hence y >0and by (4.52) we have, a >0.

The relation (4.45) in conjunction with (t)=0, and x(t)>0,te gives
g(t,x,%,%)<0 ,tel

This implies the feasibility of x for (VP) and its efficiency is evident from

and application of Theorem 4.6.

4.2.2 Natural Boundary Values

The duality results obtained in the preceding sections can easily be
extended to the following multiobjective variational problems with natural

boundary values rather than fixed end points:

Primal (P1): Minimize U fi(t,x %, x)dt, ... J' fP(t,x, x,x)dt]

Subject to

g(t,x,%,%)<0 , tel

Dual (D;): Maximize U it x, % X)dt, ..., j fo(t,x, x,x)dt}

|
Subject to
(ﬂ f + y(t)T gx)— D(ﬂT f + y(t)T gx.)
+D*(ATf +y(1) g,)=0 tel,
y(t) g,=0,at t=a and t=b,
y(t)T g,=0,at t=aand t=b,

y(t)>0,tel.
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4.2.3 Nonlinear Programming

If the problems (P,) and (D,) are independent of t, then they will reduce
to the following multiobjective nonlinear programming problems studied in
[55]

(NP): Minimize f(x)

Subject to

(ND): Maximize f(x)
Subject to
ATf +y'g, =0
A>0 , y>0.

4.3 MIXED TYPE MULTIOBJECTIVE VARIATIONAL
PROBLEMS WITH HIGHER ORDER DERIVATIVES

4.3.1 Mixed Type Multiobjective Duality

In the spirit of Xu [157], we formulate a mixed type dual for a wider
class of variational problems involving higher order derivatives to unify the
duality results of section 4.1 and 4.2, under invexity and generalized

invexity conditions.

The following is the mixed type dual for multiobjective variational
problem (VP):

(Mix VD): Maximize U(fl(t,u,u,u)du Syit) g"(t,u,u,u)jdt

1 jel,

..... j[f P (t,u,u,0)dt+ > yI (1) gj(t,u,u',u)jdt}

jel.
Subject to
x(a)=0=x(b) (4.53)
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%(a)=0=x(b) (4.54)

(Mu + y(t)T gu)— D(}qu +y(t)T gu)

+D2(ﬂﬂ‘u+y(t)T gu)=0,te| (4.55)
ij"(t)ng(t,u,u,u)dtiO, a=12,...r (4.56)
y(t)>0, tel, (4.57)
AeA (4.58)

where I, =M ={12...m}, a=12,..,rwith U l,=Mand 1,1, =g,if
a#+p. ~

If 1,=M, then (Mix VD) becomes ( WD) considered in the section 4.1. If
| =gfor 1, =M (for some ae{1,2,...,r}, then the (Mix VD) becomes the

problem (M-WD) considered in the section 4.2.

Theorem 4.9(Weak Duality): Let xeX for feasible (VP) and
(uy,A)be feasible for (Mix VD). If, for all feasible (xu,y,2)

1 iel,

I(/ITf(t,u,u,u)dtJrZyj(t)Tgj(t,u,u,u)Jdt is pseudoinvex and

ijj(t)gj(t,u,u,u)dt, a=12,..,ris quasi-invex with respect to samen,

jelo

then,

jf(t,x,x,x)dtgj[f (t,u,u,U)dt+ZI:yi(t)T gi(t,u,u,u)e)dt

Proof: The relations g(t,x,% x)<0 and y(t)>0, tel imply

>y’ (t,x,>‘<,>’<)dtizjyj (t)g’ (t,u,u,u)dt

jel, jelo
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This because of the quasi-invexity of ij" (t)g’(tuu,b)dt, @ =12,...,r, implies,

jel,

O>Zj 7'y (t)g’ (tu,u, u)dt+(D77) y' (t)g) (t,u,u,u)

il

+(D277)T yi(t)g/ (t,u,u,u)}dt, a=12,...r

This by integrating by parts gives,

t=b

t=a

O>2Dny T(tu,u,t)dt—n"y’ (t)g) (t,u,u,u)

jel
t=b

~[n"D(y! (1) g (t,u.0,0))dt+(Dn)' y' ()} (t.0,0.0)

—JnTD(yj(t)gg(t,u,u,fj))dq , a=12,...r

t=a

Integrating by parts and using the boundary conditions which at t=a,t=b
give D =0=7n and from this we have,

O>Z[J‘n y' (t)g’ (t,u,u,u)dt— jnTD(yj(t)gJ(t,u,u,U))dt

jel 1

)):b +j|'77TD2 (yj (t)g! (t,u,u,u))dt]

-n"D(y’ (t)gd (t.u,u,

again using the boundary conditions whichat t=a ,t=bgive Dn=0=n

JEM“ [_[ (t,u,u,i)dt—D(y’ (t)g{ (t,u,u,0))

+D2(y () (t,u,u,u))}dt} (4.59)

Using equations (4.55) and (4.59) we have

Ogjzf{(f (tu,u, i)+ >y () g (t.u,u,u)

jel,

—D(ﬂf (tu,u,u)+ >y (t gutuuu)Jdt

jel,

+D2[/1T tu,u,u)+ >y (t gutuuu)}dt

jel,
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This, on integrating by parts, implies

Ao o

jel,

+(D77)T£ZT t,u,u,u)+ > yi(t tuuu)]

jel,

jel,

+(D277)T (AT t,u,u,0)+ >y (t)gd (tu,u, u)ﬂdtzo

This, because of pseudoinvexity of I{AT f () + D yi(t }dt with
|

jel,

respect to » implies

j{/ﬂ (tx %, %)+ >y (t txxx)}dt

| jel,

zlj{/ff(t,u,uu )+ yi(t tuuu)}dt

jel,

Because y(t)>0,teland g(t,x,%x)<0 ,tel,itfollows

J.AT (t, %, %, X) dt>I{ﬂT (t,u,u,u)+> yl(t (t,u,u,(j)}dt

jel,

Since A>0and A"e =1, this yields,

ATJ.f(t,x,X,X)dtz;LTJ'{ t,u,u,0)+ >y (t tuuu)e}dt

I 1 iel,

This implies,

jf(t,x,X,X)dtﬁj{f(t,u,Uu )+ >y (t)g’ (tu,u,u)e }dt

| jel,

Theorem 4.10 (Strong Duality): Let x be a feasible solution for (VP) and

assume that
i.  Xisan efficient solution of (VP), and

ii. for at least one i,ie P, xsatisfies a regularity condition for [30]

for P,(X),
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Then there exist 1 eRP, yeR" such that (Y, 7,2) is efficient for

(Mix VD). Further if the assumptions of Theorem 4.10 are satisfied, then
(x.,y,4)is efficient for (Mix VD).

Proof: Since x is an optimal solution for (VP) and is normal, then by

Proposition 4.1, there exists piecewise smooth y:1 — R™such that

-D(Zf, (tx%.X)+y(1) g,(t.X.X.X)
+D* (21, (LR %K)+ 7 (1) 04 (t.X,%,X)) =0, tel (4.60)
y(t) g(t.x,%,X)=0,tel (4.61)
y(t)>0,tel (4.62)
A>0 (4.63)
The relation y(t)' g(t,%,%,X)=0, te I implies
>y () o) (tx,%,X)=0,tel (4.64)
iel,
and
>yt o' (LxxX)=0,tel ,a=12...r, (4.65)
jel,
giving

ijj(t)T gj(t’y’x;,i)zo tel ,a=12,...,r

i€l
From (4.60), (4.62) and (4.63), it follows that (x,y,Z)is feasible for
(Mix VD). Also

J’{f‘(t,i,x‘,k")+Zyi(t)gi(t,i,i,i)}dt:jf‘(t,i,x‘,k")dt i=1...,p

That is, the objective values of (VP) and (Mix VD) are equal. The

efficiency of (x,y, 1) follows from Theorem 4.9.
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As in [105], by employing the chain rule in calculus, it can be easily seen
that the expression (/U foy(t) gx)—D(/lT fory(t) gx.)+ D? (/f fo+y(t) gx)
may be regarded as a function @ of variables t,x,x,%X,y,Y,y

and A1, where ¥%=D%%and {y=D?. That is, we can write

O(t X %KX, Y, 9,9, 4)=(4Tf, +y (1) 9,)-D (A" f,+y(t) 9, )+D* (4T, +y () 0y

In order to prove converse duality between (VP) and (Mix VD),

the space Xis now replaced by a smaller space X,of piecewise
smooth thrice differentiable function x:1—>R"with the norm
I, +[Dx], +D*x|_ +|D°|, . The problem (Mix VD) may now be briefly

written as,

1 iel,

Minimize —{I[fl(t,x,x,x)dt + >y gj(t,x,X,X)jdt
, J.(f P (1%, %, %)dt+ >yl (1) gi(t,x,x,x)jdtj

1 iel,

Subject to
x(a)=0=x(b)
x(a)=0=%(b)
O(t,x, %%y, y,¥)=0,tel

ij(t) g’ (t,u,u,u)dt>0, @=12,...,r
|

where 0(-)= 21, +y(t)" g, ~D(4f,+y(t) g,)+D*(2f, +y(t)" g, ).t

Consider 6(t,x(-),x(-),%(-).X(-),y(-).¥(-). ¥(-), 4) =0 as defining a mapping
w:X,xYxRP—Bwhere Yis a space of piecewise twice differentiable
functions and B is the Banach space. In order to apply Theorem 4.1 to the
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problem (Mix D), the infinite dimensional inequality must be restricted. In

the following theorem, we use y'to represent the Fréchét derivative

(v, (XY, 4)w, (%Y, 2)., (%, Y, 4) |

Theorem 4.11 (Converse Duality): Let (x,y,7)be an efficient solution
of (Mix VD).
Assume that

H,: The Frechet derivative ' has a (weak *) closed range,

H,: f and g are twice continuously differentiable,

e 1Ty 0 0t-0[ 1 Sy 0 ot jo o 1 Ty, a2 .

jel, iel, iel,

tel, i=1..., pare linearly independent, and

He (A1) 6,-DB(1) 6,+D°A(1) 6,-D°B(t)' 6 ) A(t)=0
= f(t)=0,tel.
Further, if the hypotheses of Theorem 4.10 are satisfied, then X is an
efficient solution of (Mix VD).
Proof: Since (Y, V,Z)with w'has closed (weak*) range is an efficient

solution, by (Mix VD), there exist Lagrange multipliersz e R, piecewise

smooth B:1 >R",yeR for each of rconstraints, n<R"and piecewise

smooth x(t):1 — R™, satisfying the Fritz-John conditions

(TT i+ (o) Sy (1) ngJ—D(rT f,+(ae) Xy (1) g;j

jel, jel,

+D{TT fo+(a’e) X yi(t) gX@J+ﬂ(t)T 6,~Dp(t) 6, +D*B(t) 6, ~D*B(t) 6,

iel,

—er: > [y" (t)' g/ -Dyi(t) g} +D?y(t) g;'} -0, tel (4.66)

a=1jel,
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n'A=0

ZI g’(t,u,u,t)dt=0, a=12,...,r
el,

( )>O tel,

( 77)7&0 tel.

Since 2>0, (4.71) implies n=0. Consequently (4.69) yields,

(copiaf o s-gror

DZETT fo+ > yj(t)T g.x‘iﬂﬂ(t):o, tel

iel,

Using the equality constraint of (Mix VD) in (4.66) we have,
—Zf:(ri—y/’ti){[f +Zy ] (f +Zy X’]
+D? ( f + Z y! (t)T gx‘ﬂﬁ(t)

+4(t) 6, —-Dp(t) 6,+D*B(t) 6,~D*B(t) 6, =0,tel
Postmultiplying (4.76) by B(t), we have
(B() 6,-DB(1) 6,+D*A(t) 6,-D°A(t) 6,)4(1)=0, te
This, because of the hypothesis (H,4) gives
B(t)=0,tel
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Using (4.77) in (4.76), we have

—Zp:(ri—yli)ﬂf +> Yyt ] [f +>yi(t ]

i=1 jel, jel,

Dz(fx+2yj(t)T g;ﬂ—o, tel
Jel,

This because of the linear independence stated in (Hs) gives
(c'=7")=0,i=12..,p (4.78)

If possible, let »=0.Then (4.78) impliesz=0. The equations (4.67) and

(4.68) imply that 4(t)=0, tel. Then(z,B(t),» u(t),7)=0, contradicting

7>0.

From (4.67) and (4.68) it follows,

YT

i
’u—(t),jela ,a=12,....r, tel
4

Jel, tel

9'=-
This impliesg<0, also in view of (4.70)y'g=0. Fromy'g=0, it implies

> yl(t)g' =0, tel

jed,

| jed,

I[ (X%, %)+ > yI(t txxx]dt Iftxxx)dt
This along with the application of Theorem 4.9 establishes the efficiency of

x for (VP).

4.3.2 Related Nonlinear Problems
If fand gdo not explicitly depend ont, the variational problem

considered in the preceeding section reduces to the following static problems
similar to those by Xu [157] and Zhang and Mond [160].
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(NP): Minimize f(x)
Subject to

g(x)<0

(Mix ND): Maximize j(fl(u)+z ylg!(u),...,

Subject to
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5.1 OPTIMALITY CONDITIONS AND DUALITY FOR
NONDIFFERENTIABLE MULTIOBJECTIVE
VARIATIONAL PROBLEMS INVOLVING HIGHER
ORDER DERIVATIVES

5.1.1 Introductory Remarks

handra, Craven and Husain [30] obtained necessary optimality
Cconditions for a constrained continuous programming having term
with a square root of a quadratic form in the objective function, and using
these optimality conditions formulated Wolfe type dual and established
weak, Strong and Huard [92] type converse duality theorems under
convexity of functions. Subsequently, for the problems of [30], Bector,
Chandra and Husain [16] constructed a Mond-Weir type dual which allows
weakening of convexity hypotheses of [30] and derived various duality

results under generalized convexity of functionals.

This chapter is divided into two sections, 5.1 and 5.2. In the section
5.1, we study optimality and duality for a class of nondifferentiable
variational problem containing higher order derivatives. The popularity of
this type of problems seem to originate from the fact that, even though the
objective function and or/ constraint functions are non-smooth, a simple
representation of the dual problem may be found. The theory of non-smooth
mathematical programming deals with much more general types of functions
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by means of generalized subdifferentials [41] and quasi differentials [49].
However, the square root of a positive semi-definite quadratic form is one of
the few cases of a nondifferentiable function for which one can write down
the sub or quasi differentials explicitly. We formulate Wolfe and Mond-
Weir type dual problems for this class of variational problems and prove
various duality results under invexity and generalized invexity. The result of
section 5.1 also serves as correction to some of the results obtained by Kim
and Kim [85].In the section 5.2 we study mixed type duality for the class of
nondifferentiable multiobjective variational programming considered in the
section 5.1. The subsection 5.2.2 considers the variational problem with
natural boundary conditions instead of fixed point conditions. These
formulations provide close relationship of the duality results of the section

5.2 to those of nondifferentiable programming.

5.1.2 Problem Formulation
We present the following nondifferentiable multiobjective variational

problem with higher order derivatives as:

(VP): Minimize(j(fl(t,x,>'<,x‘)dt+(x(t)TBl(t)x(t))5Jdt

j( £ (t,%, )'(,X‘)dt+(x(t)TBp(t)x(t))%jdt]

Subject to
x(a)=0=x(b) (5.1)
x(a)=0=x(b) (5.2)
g(t,x,%,%X)<0, tel, (5.3)

where, f':IxR"xR"xR"—>R,(i=12,...,p), g:I1xR"xR"xR" —>R", are
assumed to be continuously differentiable functions, for each ieP,

{i=12...,p}, B'(t)is an nxn positive semidefinite symmetric matrix with
B'(-)continuous on 1 .
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The following generalized Schwartz inequality [125] is required in
the sequel.

1 1
2 2

(x()'B (t)2(1)) < (x(1) B' ()x(1)) (2(t) B (1)2(1))
Vx(t)e R”,Z(t)e R" tel
In order to prove the strong duality theorem, we will invoke the
following lemma due to Changkong and Haimes [35].

Lemma 5.1 [39]: A function X e X be an efficient solution of (\VP) if and

only if X e X is an optimal solution of the following problem(Pk (Y)) for allk .

(P (X)): Minimize[J‘(fk(t,x,X,S(')dtJr(x(t)TBk(t)x(t))%jdt

Subject to
x(a)=0=x(bh)
x(a)=0=x(bh)

g(t,x,%%)<0, tel,

5.1.3 Optimality
In this section, we give necessary optimality conditions for the
problem (Pk (i)) which are required to establish strong duality theorem for

Wolfe and Mond-weir type vector dual.

In order to derive optimality conditions for (P, (X)), we require the

following Lemma 5.2.

132



Lemma 5.2 [85]: Define a function h:R" —»R byh(x(t)):(i(t )B (t)x( ))%,

where B is a symmetric positive semidefinite nxnmatrix and continuous on

| , then his convex, and

where oh(x(t))is subgradient of hat x(t).

Using the analysis in [91] and [49], the Fritz-John optimality

conditions for (P, (X)) can be given by the following theorem.

Theorem 5.1: (Fritz-John Optimality Conditions): If xis optimal

solution of (R (X)) there exist scalars 7',7°,...,z", piecewise smooth

Z 1 >R,ieP,such that

Proof: The proof of the theorem easily follows on the line of analysis in
[73] and [30]. Hence it is omitted for brevity.

5.1.4 Wolfe Type Vector Duality
In this section, we present Wolfe type vector dual to (VP) and

establish various duality results.
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(MWD): Maximize (JI'( f(t,u,u,0)+u(t) B ()2 (t)+y(t) g (t,u,u‘,u))dt

..... [(£7(tuua)+u(t)B® (t)z° (1) +y(t) (t,u,u‘,U‘))dtj
Subject to
u(a)=0=u(b) (5.4)
u(a)=0=u(b) (5.5)
ig( (t,u,0,6)dt+ B ()2 (1) + y (1) g, (tu.0,0)

- D(/IT f, (t,u,u,6)+y(t) g, (t,u,u,U))

+D?(27f, (t,u,0,6)+ y(t)' g (t,u,u,0))=0, tel

(5.6)
7' (1) B'(t)Z'(t)<1,tel ,ieP (5.7)
y(t)>0,tel (5.8)
A>0, Ae=1 (5.9)

Theorem 5.2: (Weak Duality): Let xbe feasible for (VP) and
(u2,2,...2"y) be feasible for (MWD). If for all feasible

(xu.A4,7,...2% ), gmlj(fi(t,.,.,.)+(.)TBi(t)zi(t)+y(t)Tg(t,.,.,.))dt is
pseudoinvex with respect to n,

Then the following cannot hold:

J(F e x(v' ()2 ()
ij(fi(t,u,u,(j)dt—ku(t)TBi (t)zi (t)+Y(t)Tg(t,u,l],U))dt’ (5.10)

Forall ieP, and
II(f"(t,x,>‘<,5<')dt+x(t)TB"(t)zi(t))dt
<J(F (Luua)de(u()B ()2 () +y(©) g’ (tLuua))d (5.12)
for some j eIP.
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Proof: Suppose that (5.10) and (5.11) hold. Then, from (5.3) and (5.8), we

have,
j(f'(t X% X)+ (1) B' ()2 (1) + y(t) g (t.x,% X)) dt

<[ (F (Cuo0)dtru(@)B (2 (0 +y(t) o’ (Lu.0.0))at
Forall ieP, and
J(F (xRt x(t) B (02! () +y (1) 9t 450 ot
<J(1 Cuade (u@)B (2 (1)) y(0)'g’ (tu0.0) o
for some jeP.

p H - - . -
Now using 4 >0 and > ' =1, these inequalities yield,
i=1

izpl:/l ]"(f t X, X, X dt+( (t)TBi(t)zi(t))+Y(t)Tg(t,X,)'(,)'('))dt

p

<A [ (Guub)dt+(u ()8 (1)2 1)+ (1) g (tu,u,0) Jdt

i=1 |

This, because of the pseudoinvexity of

Zpl:/lij(f‘(t,.,.,.)+(-)TB‘(t)z‘(t)+y(t)Tg(t ,,,,, ))dt implies
iﬂn[( (t,u,0,0)+ B (£)2' (1) + y (1) g, (t0,0,0))
(Dn) (fu (t,u,u,u)+ y(t) d, (t,u,u‘,u))

+(D%) (1 (tu,.0)+ y (1) g, (tu,0,0)) |dt <0

Integrating by parts, we get

0>Z/1jn (£ (tuu6)+ B (6)2 (1) +y(t) g, (tu,u,0))

_D( £ (tu,u,0)+y(t) g, (t,u,u,u))}dt
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_ pl ;UJ.(DU) (f'(t u,u,U)+ y(t)Tgu_ (t,u,u,u))dt
Zpl: ( (t,u,u,0)+y(t) g, (t,u,u,u))t:a
+zpl:/1 ( (tu,u,i)+y(t) g, (t,u,u,u))

t=b

t=b

t=a

Using the boundary conditions which at t=a,t=bgivesDyp=0=7, we

have
=2 (1 (w008 (O Oy (1) 0, (t0.0.0)
~D( £} (60,0,0)+ (1) g, (t,u,0,0)) ot
ilz! D) (£, (t,uu,0)+ y () g, (tu.0.0))ct

Again, integrating by parts we obtain
:jl j T[(£ L)+ B (©)7 1)+ y(0) g, (tLu00)
=D £ (60,0,0)+ y() g, (6,0,0,8))+ D (£ (Lu,0,0)+ y (1) g, (,0,0)) |t

+z/1' T( (t,u,u,u)+y(t) g, (t,u,u,u))t_b

t=a

Again using boundary conditions whichat t=a,t=b givesDrp=0=17,

ijfilz (1 (tu0.0)+ B (07 () + (1) 5, (tu,0,0))

=D (tu,u,0)+y(t)' g, (tu,u,0))
+D7 (] (tu,0,0)+ y(1) g, (Lu,00)) [de<o  (5.12)

From the equality constraint (5.6), we have

ijfilz (1 (tu0.0)+ B (07 () + (1) 5, (tu,0,0))
—D(fu (t,u,u,u)+y(t)Tgu(t,u,u,U))
+D7 (] (60,0,6)+ y() g, (t,u,0,0)) |dt =0 (5.13)
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The inequality (5.12) contradicts (5.13). Hence our assumption is invalid

and the theorem follows.

Theorem 5.3 (Strong Duality): Let X e X be an efficient solution of (VP)

and for at least onek e P, x satisfies the regularity condition [30] for the

problem(P, (X)). Then there exist multipliersZ<R”, piecewise smooth
yeR",Z'(t)eR", i={12,..., p} such that (X,U, 7,71,...,7",1) is feasible for
(MWD) and the objectives of (VP) and (MWD) are equal.

Further, if the hypothesis of Theorem 5.2 is met, then
(x.u,y,7",...,2°, 1) is an efficient solution of (MWD).

Proof: By Lemma 5.1 X is an optimal solution of (P, (X)).This implies that
there exist &eRP with&,...,&P,7'(t)eR", i={L2...,p}and piecewise

smooth v e R™such that, the following optimality conditions [73] hold:

EX( 11 (tx, %, %)+ B* (1) Z* (1) = D, (£, %, %, X) + D’ £ (t, %, X, X))

+Zp:5‘ (f, (t.x%%)+B'(t)Z'(t)- Df; (t.x,%,X) + D*f; (t,%,%, X))

()"0, (%%, X) =D (7 (1) g5 (%, %,%))+ D* (7 (1) g, (£, %, %, X)) =0

(5.14)
(x(0) B ()% (1)) =(x(1) B ()2 (1)) i=L....p (5.15)
v(t) g(t.X.x,X)dt =0 (5.16)
(z(t)'B' ()7 (1)<l tel ,i=12,...p (5.17)
E>0, V(t)>0,tel (5.18)

From (5.14) we obtain
p

Z i( (t,x, % X)+B'(t)z ()—DfX‘(t,x,X,X)+D2f.X.‘(t,x,>‘<,>’<’))

_ ()"0, (%%, X) =D (7 (1) 0, (%, %,%))+ D* (7 (1) g, (£, %, %, X)) =0
(5.19)
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Dividing (5.16), (5.18) and (5.19) by &'e(=0), and setting
A {i} i=1...,p and y(t):[%],we have,

iz_pl:i‘ (£ (tx % %)+ B (t)Z' ()= DE/(t,x, %, %)+ D* £ (t, X, X, %))

+Y(1) 9, (%%, %) =D (¥ (1) 0, (%%, %))+ D ¥ (1) 0, (1., %,%)) =0

(5.20)
y(t) g(t.x.x,X)dt =0 (5.21)
A>0, Ale=1 (5.22)
y(t)>0, tel (5.23)

Consequently  (5.17), (5.20), (5.22) and (5.23) implies that
(x,0,y,7",...,z°,1)is feasible for (WD). Because of (5.21), the two
objectives of the problem (VP)and (MWD) are equal. Hence by Theorem
5.2 (x,0,y,7",...,2",1)is efficient solution for (MWD). This completes the
proof.

For validating converse duality theorem, we regard (MWD) in term

of function x for convenience instead of the functionu.

As in [105], by employing chain rule in calculus, it can be easily seen
that the expression

gzi (£ (toxx %)+ B ()2 (1) +y (1)’ g, (x5 %))

=D, (x5 %)+ y (1) 0, (L% %, %))

+D? (AT F (L%, %)+ y (1) g, (6%, %,%)) =0, tel

may be regarded as a function & of variables t, x, x,%,X,y,y,yand 4, where

3
X :%x =D’ and y =D?%y. That is, we can write
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(X %KX, Y, Y, y,a)zgm (1] (txx %)+ B (02 (1) +y (1) g, (txx%))

_ D(}LT f, ('[, X, X, 5(')+ y(t)T g, (t, X, X, X))

+D2(/1T fo (6% %)+ y(t) gx(t,x,X,X‘)):O tel

The problem (MWD) may now be briefly written as,

Minimize U—(fl(t,x, X, %) +(u () B (1) 2 (1)) + " (t)gT(t,x,X,X’))dt

Subject to
x(a)=0=x(b)
x(a)=0=x(b)
O(t, %% %X,Y,Y,¥,4)=0
Z'(t) B'(t)z'(t)<1,tel ,ieP
y(t)>0,tel
A>0, Ale=1
Consider 0(t,x(-),X(-),%(-),%(-),¥(),¥(-). ¥(:),2) =0 as defining a mapping
w: XxYxRP —>Qwhere Yis a space of piecewise twice differentiable

function and Qis the Banach Space. In order to apply Theorem 4.1 to the

problem (MWD), the infinite dimensional inequality must be restricted. In

the following theorem, we use w'to represent the Fréchét derivative

[ (92, (6. 2) 1, (%9, 4)

Theorem 5.4 (Converse Duality): Let (X,d,y,Z%,...,Z°,4)be an efficient
solution for (MWD) Assume that

(H1) The Frechét derivative y'has a (weak*) closed range,

(H,) fand g be twice continuously differentiable, and
(Hs) (A1) 6,-DA() 6,+D*B(t) 6)B(1)=0,= B(1)=0, tel
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Further, if the assumptions of Theorem 5.2 are satisfied, then Xis an
efficient solution of (VP).

Proof: Since (X,U, v, 7%, ZP,Z)With w'having a (weak*) closed range, is
an efficient solution of (MWD), then there exist a<RP, neR’,
y€R,6eR,£eR™ and piecewise smooth £(t):1 —»>R" and x(t):1 —>R"
such that the following Fritz-John optimality conditions hold

_i o (1 (txx )+ B (1)2 (1) +y (1) g, (tx%%)
+D(a” f (6%, %) +("e) y (1) gy (t. %% X))
D (@, (t,%,%,%)+(ae) y (1) g, (%, % %))
+4(t) 6,-Dp(t) 6, +D*B(t) 6,-D*B(t) 6,=0,tel
(5.24)

—(a"e)g’ (tx,%,%)+B(t) 6, -DA(t) 6, +D°B(t) 6, -’ (t)=0 , tel

(5.25)
j=12,...,m
[fxi (t,x, %, %X)+B'(t)z' (t)—Df; (t,x, X,X)
+D* 1, (t,x,%,X) | B(t)+7' +7 =0, i=1...,p (5.26)
—a'x(t) B'(t)+B(t)A'B' (t)+5'2B' (t)Z' (t)=0 (5.27)
n'A=0 (5.28)
u(t) y(t)=0, tel (5.29)
7[Zp‘,ﬁ‘ —1j =0 (5.30)
§'(2 (1) B ()7 (1)-1)=0 , tel (5.31)
(a,ﬂ,,u(t),n,y,&,)zo ,tel (5.32)
(e, B(t). A, 1a(t),7,7,8,) 20 | tel (5.33)

Since 1 >0, (5.28) implies =0. Consequently (5.26) implies
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(f;(t.x,%%)+B' (t)2' (t)-Df; (t,x,%, %)+ D (t,%,% X)) A(t)
——y=0 (5.34)
From the equality constraint of (MWD), we have
(F(6)" 9, (6% %)= DY (t)" 0, (t, %, %)+ DY (1)’ g, (t,%,%,%))
—2/1'( (t.x,%, %)+ B'(t)Z' (t)- Df; (t, X, X, X)+ D* £ (t, X, X, X))
This, in view of (5.34), implies
A (V1) 9, (X% %) =Dy ()" 9, (t.x,% %)+ DY (t)" gy (1, %,%))
=—Z/1' t) (£, (t.x,% %)+ B (t)Z' (t)-Df, (t,x, %, X)+ D* ;) (t,x,%,X)

p

—- 32 (7)=7 (5.35)

i=1

Postmultiplying (5.24) by g(t)and then using (5.34) and (5.35), we obtain

(B(t) 6,-DB(1) 6,+D*A(t) 6,=0)4(1)=0, tel
This, because of the hypothesis (Hs), gives

B(t)=0, tel
Suppose @ =0, then from (5.25) we have ! (t)=0, j=12,...,m, and from
(5.26) it follows that » =0.
Also from (5.27) we have &'B'(t)z' (t)=0which together with (5.31) implies
§=0. Thus, (a,B(t). 4, (t),7,7,6,)=0, which is a contradiction to (5.33).

Hence o« >0.

From the equation (5.25), we have

,uj(t) 0,tel

g’ (t,x, % X)=—

which implies g’ (t,x, % %)<0 , tel.
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Therefore, xis feasible for (VP). Multiplying (5.26) by yj(t), and using
(5.29), we have
y'(t)g! (t,xx,%)=0 , tel
By generalized Schwarz inequality [125]
(x'8' ()7 (1)<(x ()8 % (1))

Now let 2 =& . Then &'> >0 and from (5.27), we have

(z' (1B (1)Z' (1))’ (5.36)

B'(t)x(t)=¢&"2B(t)Z'(t), i=12...,p

This is the condition for the equality in (5.36). Therefore, we have

(X(©)'8' (1) (1) =(x()"B (X)) (2 (VB (1)2'(t))

1
2

From (5.31), either 6'=0 or z'(t)" B(t)z' (t)=1and hence B'(t)X(t)=0..

(
Therefore, in either case ( (t)'B'(t)z (t)):(x(t)TB‘(t)z‘(t))% L i=12,...,p.
Hence,

Ij(fi(t,i,x‘,5(")dt+(x(t)TBi(t)Zi(t))
I( t,%,%,%) dt+(x(t)TBi(t)zi(t))jdt 1=12...p

The efficiency of x for (VP) is an immediate consequence of the application
of Theorem 5.2.

Remarks: Theorem 5.4 serves as a correction to Theorem 5 of Kim and

Kim [85] as its hypothesis (iii) is not required to establish it.
5.1.5 Mond-Weir Type Vector Duality

In this section, we establish various duality theorems for the Mond-

Weir type nondifferentiable vector dual variational problems.
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(M-WVD): Maximize [JI'( (t,u,d,0)+u(t) Bl(t)zl(t))dt

..... _f(fp(t,u,u,U)+u(t)TBp(t)zp(t))dtj
Subject to

u(a)=0=u(b) (5.37)

i(a)=0=u(b) (5.38)

ilz( (t,u,0,0)dt+ B (£)2 )+ y(t)' g, (t.u,u,0))

_D(/IT fo+y(t ) 9,()+ DZ(/1T f5<+y(t)T gx)zo tel

(5.39)
i.[y‘ (t,u,u,u)dt>0 , tel (5.40)
Z'(t) B'(1)z' (t)<1,tel ,ieP (5.41)
A>0, y(t)>0,tel (5.42)

Theorem 5.5 (Weak Duality): Let xbe feasible for (VP) and
(u2,2'...,2°,y) be feasible for (M-WVD). If for feasible

o o

(0 A2 2 y) A (F(e)+() B (t)2 (1))t is pseudoinvex and
i=1 |

[y(t)'g(t.....)dt is quasi-invex with respect to same 7, the following

|

cannot hold:

J’( f7(t, %, % X)dt +(x(t)TB‘ (t)x(t))jdt

<J.( t,u,u,u) dt+( (t)T B'(t) zi(t))%jdt, forallieP, (5.43)

and

I(f F(txx, 5(')dt+(x(t)TB" (t)x(t))jdt

<j(fi(t,u,u,u)dt+(u(t)TBi(t)zi(t))i]dt, for some je P (5.44)
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Proof: Suppose that (5.43) and (5.44) hold. Using 1>0 and Zp:ﬂi =1, then
i=1

in view of Schwartz inequality [125], this gives
Zz'j( tx, %)t (1) B ()2 ))éjdt
<Z/1'j( tu,0,0)de+(u (t)TBi(t)zi(t))%jdt

1 1
2 2

In view of (x(t)'B'(t)z(t)) <(x(t) B' (t)x(1)) (2()'B'(t)z(1)) and
(z(t)TBi (t)z(t)) <1, from this inequality we obtain,
ZA'JI‘(f' (t.x % X)dt+x (1) B (1) 2 (1)) dt
<izpl“ii_!'(fi(t,u,u,U)dt+u(t)TBi(t)z‘(t))dt

LI o
By pseudo invexity of Z/I'J‘(f'(t,.,.,.)+(-)T B'(t)z' (t))dt with respect to 7,
i=1 |
this implies,

0>Zﬂ'J[ (1) (tuu,b)+B' (1) (1))
#(0n)" (1) (tLu0,0) )+ (%) (1 (tLu.0.0)) Jat

This, by integration by parts and using boundary conditions as earlier, yields

ZA']UT[ (t.u,u,u)+B'(t)z' (1))

~Df; (t,u,d,6)+ D £, (t,u,u,0) |dt<0 (5.45)
Now, from the feasibility of (VP) and (M-WVD), we have

Iy(t)Tg(t,x, >'<,X)dtg]y(t)Tg(t,u,u,u)dt
| |
which, because of the quasi-invexity of [y(t)'g(t......)dtwith respect to »
|
implies
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InTy(t)Tgu (t,u,u,u)+(D77)T y(t)TglJ (t,u,u,u)

|
+(D%)' y(t)'g, (t,u,u,u)dt<0
This, as earlier, implies
jn [ y(©)'g, (t.u,u,0)-Dy(t) g, (t.u,u,0)+ D2y (t)"g, (t.u,u,) |dt <0

(5.46)
Combining (5.45) and (5.46), we have the inequality as,

jn {zm( (t,u,0,0)+ B (1) 2 (1) +y(t)'g, (tu,u,0))
~D(f, (t,u,0,8)+y(t) g, (t,u,u,0))
+D* (1 (t,u,0,0)+ y(0) g, (t,u,0,1)) [d <0
which contradicts the dual equality constraint. Hence the theorem is

validated.

Theorem 5.6 (Strong Duality): Let x be an efficient solution of (\VP) and
for at least onek e P, X satisfies the regularity condition [30] for the

problem(P, (X)). Then there exist multipliers1<R”, piecewise smooth
yeR" andz'(t)eR", i ={12,..., p}such that (X,d,y,z",...,Z° 1) is feasible
for (M-WVD) and the objectives of (VP) and (M-WVD) are equal.

Further, if the generalized invexity of hypothesis of Theorem 5.5 is

met, then (X,d,y,7",...,Z°, 1) is an efficient solution of (M-WVD).

Proof: Since xis an solution of the problem(P, (X)), by analysis of

Theorem 5.1, it implies that there exists 1 € R? , piecewise smooth y eR"
andz'(t)eR", i={12,...,p} such that, (5.20), (5.21), (5.22), (5.23) and
(5.17) holds:

From (5.21), itimplies
J'y t.X,%,X)dt =0 (5.47)
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Now from (5.20), (5.47), (5.17) and (5.23) together with A >0, it follows
that (x,a,y,7",...,Z% 1) is feasible. From the equality of the objectives of

(VP) and (M-WVD), along with the hypotheses of Theorem 5.5, the

efficiency of (x,,y,7",...,2", 1 )follows. This completes the proof.

(M-WVD) may be rewritten in the following form:

Minimize [_j(fl(t,x,x,x)+u(t)T31(t)zl(t))dt

..... [=(ftxx 5(')+u(t)TB”(t)zp(t))dtj

Subject to
x(a)=0=x(b)

x(a)=0=x(b)

0(t,%%%%,Y,Y,¥,4)=0

ijyj(t)gj(t,x,X,X‘)dtzo  tel

7' (1) B'(t)Z'(t)<1,tel ,ieP

A>0, y(t)>0,tel

Theorem 5.7 (Converse Duality): Let (X,d,y,z%,...,z°, 4 )be an efficient
solution for (M-WDP). Assume that
(A1) The Frecheét derivative y'has a (weak*) closed range,
(A;) fand g are twice continuously differentiable,
(As)  f,(t,x, %, X)+B'(t)z' (t)—Df; (t,x,%,%X)+ D*f; (t,x,%,X),
ie{1,2,...,p}are linearly independent and
(A) (A1) 6,-DA() 6,+D*B(t) 6,)B(1)=0,= B(1)=0, tel

Further, if the hypotheses of Theorem 5.5 are met, then X is an
efficient solution of (VP)
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Proof: Since (Y,U, y,7%..., ip,Z)with w'having a (weak*) closed range, is
an efficient solution of (M-WDP), then there existaeR”,n7eR",
y€R,6eR,£eR™ and piecewise smooth £(t):1 —»>R" and u(t):1 —>R"

such that the following Fritz-John optimality conditions holds

-3 o (£ (6%, %,%)+ B (£)2' ()= DF, (t,%, % %)+ Df, (t, % %, X))

i=1

~7(V(1) 0, (t: %% %)= Dy (1) g, (£,%,%,%)+ Dy (1) g, (£, X, %, X))
+4(t) 6,-Dp(t) 6, +D*B(t) 6,-D*B(t) 6,=0,tel
(5.48)

_j/gj (t,X,X,X)+ﬂ(t)T gyj —DIB(t)T Hy,j +D2,B(t)T gyj _;uj (t):o ’ tel

(5.49)
i=12,...,m
—a'x(t) B (t)+ 2'(t) B (t)+25'B' (t)Z' (t)=0 (5.50)
(f, (t.x%%)+B'(t)z' (t)—Df, (t, %, X)
+D*f (t,x,%,X) A(t)]-7' =0, i=1...,p (5.51)
yjy(t)Tg (t,%,%,X)dt =0 (5.52)
n'A=0 (5.53)
1 (1)y(t)=0, tel (5.54)
§'(2 (1) B (1) (1)-1)=0 , tel (5.55)
(a, u(t),8,1,7)>0 (5.56)
(a.B(t) u(t).8,1,7)>0 (5.57)
Since 4> 0, (5.53) implies 7 =0. Consequently (5.51) implies
(f,(t.x,%%)+B'(t)2' (t)-Df; (t,x,%,X)
+D* £ (t,x,%,X)) B(1)=0 i=1...,p (5.58)



Using the duality constraint of (M-WVD) in (5.48), we have

-g(ai ) (£ (X%, %)+ B (D)2 (1)

= Df; (t,x, %, %)+ D’ f (t,x,%, X))

+8(t) 6,-Dp(t) 6,+D*B(t) 6,-D°B(t) 6,=0,tel
(5.59)

=3 ) (1 (000 +B ()2 (1)
—DFf (t,x,%,X)+ D*f; (t,x, %, X)) B(t)
+(B(1) 6,-DB(1) 6,+D*B() 6,-DB(1) 6| B(t)=0, tel
This in conjunction with (5.58) yields
B(t) 6,-DB(t) 6, +D*B(t) 6,=0,tel
which because of the hypothesis (A4) implies
B(t)=0, tel (5.60)
Using (5.60) in (5.59), we have

_i(a =220 (£) (6%, %,%)+ B! ()2 (£)=DF; (t,x,% ) + DF, (t, ,X,%)) =0

This, due to the hypothesis (As) gives,

a —yA'=0,i=12....p (5.61)
Suppose y =0, then from (5.61) we havea =0. The relation (5.49) gives,
u(t)=0,tel.

As earlier, (5.4) implies 5 =0.Hence we get(a, (t), 1(t),7,7,6) =0, which
contradicts (5.56). Hence  >0. Consequently, (5.61) implies « >0.

From (5.50) we have,
g(tX,%,X)<0

This implies the feasibility of x for (VP).
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In view of the explanations given in the proof of Theorem 5.3, (5.50)

together with (5.55) readily yields,

:j(fi(t,x,x*,x—')du(x(t)TBi (t)z(t))%jdt i=12,...,p

This, in view of the hypothesis of Theorem 5.5, implies that X is
efficient solution of (VP).

5.1.6 Related Problems
It is possible to extend the duality theorems established in the
previous two sections to the corresponding variational problems with natural

boundary values rather than fixed end points.

1

(VP)o: Minimize U[fl(t,x,>'<,x‘)dt+(x(t)TBl(t)x(t))2)dt

..... j(f P(t,x, %, X)dt +(x(t)TB” (t)x(t))%jdtJ
Subject to
g’ (t,x%X)<0,tel, j=1..,m

(MWD),:Maximize U( f2(t,u,u,0)+u(t) B (t) 2 () +y' (t)g’ (t,u,u’,u))dt

..... [(f7(tuu)+u(t)B (t)2° (t)+y’ (t)g’ (t,u,U,U’))dtj

Subject to

gzi (£ (t0,0,0)+ B ()2 (1) + y(1) g, (t,u,0.0))
—D(/1T f, (tu,u,0)+y(t) g, (t,u,u,u))

+D? (A7, (t,u,0,0)+ y (1) g, (tu,u,0))=0, tel
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AT (tuu,d)+y(t) g, (tuub)=0,att=a , t=b,
ATH, (tu,u,6)+y(t) g (tu,u,t)=0,at t=a , t=b,
Z'(t) B'(1)z' (t)<1,tel ,ieP

y(t)>0,tel

A>0, Ale=1

(M-WVD),: Maximize(_[(fl(t,u,u,u)+u(t)TBl(t)zl(t))dt

..... [( 7 (tuua)+u(t)'B° (1) ())dtJ

Subject to

Zﬂ'( u,0,0)+B'(t)2' (1)+y(t)" g, (t.u,u,0))
~D(A"f, (t.u,u,0)+y(t)" g, (t.u,u,0))
+D? (271, (t,0,0,6)+ y (1) g, (tu,u,0))=0, te
ATf, (tu,u,0)=0=y(t) g,(t,u,u,u),at t=a , t=b,

AT f, (tu,u,0)=0=y(t) g, (t,u,u,t),att=a , t=b,

Z.[y H(t,u,u,t)dt>0 , tel

Z'(t) B'(t)z' (t)<1,tel ,ieP

A>0, y(t)>0,tel

If the function in the problem (WD) and (M-WD) are independent of t,

then these problems reduce to those treated by Mond, Husain and Prasad [109].
(VP)1: Minimize (fl(x)Jr(xT le)% ..... fP (x)+(xTB"x)é)
Subject to

g(x)<0
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(MWD),: Maximize (f*(u)+u'B'z' +y'g(u),..., f* (u)+u'B"z° + y'g(u))

Subject to

p

Zl‘(fx(u)+ B'z')+y'g,(u) =0

(M-WVD);: Maximize ( f'(u)+u'B'z,..., f° (u)+uTsz”)

Subject to

A>0, y(t)>0,tel .
5.2 MIXED TYPE DUALITY FOR NONDIFFERENTIABLE
MULTIOBJECTIVE VARIATIONAL PROBLEMS
5.2.1 Mixed Type Multiobjective Duality

In this section, we present the following mixed type dual formulation
of nondifferentiable multiobjective nonlinear programming (Mix D) which
combines Wolfe and Mond-Weir dual models studied in the preceding

section in the spirit of Husain and Jabeen [71] and Xu [157]

(Mix D): Maximize U[fl(t,u,u,ﬂ)+u(t)T B (t)Z'(t)+ Y.y’ (t)g’ (t,u,u,u)]dt

1 jed,

jed,

..... j{f p(t,u,u,l'j)+(u(t)TBp(t)z"(t))+z yl(t)g’ (t,u,u,u)jdtJ
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Subject to
u(a)=0=u(b), (5.62)
u(b), (5.63)

(1) (Luu,0)dt+ B (42 (6)+y(1)' g, (tu,u,0))

_D()J f,+y(t) gu)+ Dz(ﬂuT f+y(t) gu)=o tel

(5.64)
> [y (g (tuuu)dt=0 , a=12..r, (5.65)
Z'(t) B'(1)Z' (t)<l, tel ,ieP, (5.66)
y(t)>0,tel, (5.67)
Ael’. (5.68)

where
(i) A"={1eR°]2>0 2Te=Le=(11...1) eR®}
(i) J,cM={L2..m}, @=012...r with |JJ,=M and

3,3, =0.if a=p.

If J, =M, then (Mix D) becomes Wolfe type dual considered in the
subsection 5.1.4, if J,=gand J, =M for some e e{1,2,...,r}, then (Mix D)
becomes Mond-Weir type dual considered in subsection 5.1.5.

Theorem 5.8 (Weak Duality): Let xbe feasible for (VP) and
(u,y,7',...,2°,1) be feasible for (Mix D). If for feasible (xu,z",...,z°,4) ,

Zp:/iif(f‘(t,.,.,.)JrZy"(t)g"(t,.,.,.)+(-)TBi(t)z‘(t)jdt is pseudoinvex and

jed

ij Jdt , @=12,...,r is quasi-invex with respect to same 7,
jed,

then the following cannot hold:

![fi(t,x,x,x)dt+(x(t)TBi(t)x(t))jdt
gj[fi(t,u,u,u)dn( (t)'B )+Zy '(t,u,u, u)jdt

| jed,
(5.69)
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Forall ieP, and
JI’( f(t, %, %, X)dt +(x(t)TB" (t)x(t))%]dt
EJ.[ f (t,u,u,l'j)dt+<u(t)T B* (t)z" (t))+

y!(t)g’ (t,u,u,l'j)]dt
(5.70)

jed,
for somek .

Proof: Suppose contrary to the result, that (5.69) and (5.70) hold. In view of
y(t)>0,tel, Z'(t) B'(t)z'(t)<1,tel,ieP and g(tx%X)<0,tel,,
these inequalities yield,

I[f‘(t,x,>‘<,>’<’)dt+(x(t)TB‘(t)z‘(t))+ yi(t)gj(t,u,u,u)jdt

1 jed,

gj(fi(t,u,u,u)dt+(u(t)TB‘ ()7 (1)+ 2 y'(t)g’ (t,u,u,u)]dt

1 jed,

forall ieP,and

J.( fk (t, X, X, )‘(‘)dt +(x(t)T BX (t)zk (t))+ yj(t)gj (t,u,u',l'j)]dt

I jed,

jed,

glj( (t.u,0,0)dt+(u(t) B* ()2 (t))+ yi(t)gj(t,u,u,u)]dt
for somek.

Now using A >0 and A"e =1, these inequalities yield
Zplzij'[f‘(t,x,x,x)du(x(t) B' ) Zy (t,x, % X)Jdt
i=1 |
P, . i T
<D f'(t,u,u,U)dt+(u(t) ) Zy (t,x,%,X) |dt
|

i=1

By pseudo invexity of iZi):/iij[fi(t ,,,,,, )+ 2y ()9 (L. )+(-)'B' (t)z‘(t)}dt

1
with respect toz, we have,
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0>Z’1J’7 Kf +B( (t)+%yj(t)g*j]
Dn)T[f;+§yj(t)gx-’}Jr(Dz’?)T[f*”rzyj(t)ngﬂdt

This, by integration by parts, gives,

:izi;,’tiljnTH(f +B'( +Zy‘ j [thth)gi]}dt

] (Dn)TD(f;%yi(t)g;Jdt}

Using the boundary conditions which at t =a,t=bgives Dy =0=7

2’1]{” {f o020 T e |- D[f;%yi(t)g;}dt

: lj(onfo(fh;yi(t)g;ﬂdt
=gz‘ﬂ T{[f +B( +Zy’ J D(fx.w;yj(t)ggJ

Now, from the feasibility of (VP) and (Mix-D), we have

>y (el (txxx)dt< > [y!(t)g’ (tu,u,u)dt

j€dg 1 i€dg 1

This, because of quasi-invexity of > [y!(t)g’(t......)dt with implies,

i€da 1
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ZI { )+(Dn)" y! (t)g! +(D%) ! (t)g-x’f}dtgo

jed,

As earlier, integrating by parts and using the boundary conditions, we have,
Zf’? {(y'(t)g!)+D"y! (t)g! + Dy’ (t)g/}dt<0 (5.72)

jed,

Combining (5.71) and 5.72), we have,
T~ i g i i T
[7' | X2 (f+B' 7 ()+y(1)g,)
| i=1
_D(ﬂbT fo+y(t) gx)+ D? (/IT fo+y(t) gx))dt <0
From the equality constraint of the dual, we have,
T~ i i [ i T
(77| 24 (£ +B ()7 () +y(1)g,)
| i=1
_D(/lT fo+y(t) gx)+ D? (;LT fo+y(t) gx))dt =0
which is a contradiction. Hence the conclusion of the theorem is true.

Theorem 5.9 (Strong Duality): Let X e X be an efficient solution of (VP)

and for at least oneie P, xsatisfies the regularity condition [30] for the

problem(P, (X)). Then there exist multipliersZ<R”, piecewise smooth
yeR™ andz'(t)eR", i ={12...,p} such that (X,y,z",...,z% 4) is feasible
for (Mix D) and the objectives of (VP) and (Mix D) are equal.

Further, if the hypotheses of Theorem 5.8 are met, then
(Xx,.7%,...,2°, 1) is an efficient solution of (Mix D).
Proof: Since X e X is an optimal solution of (P, (X)).This implies that there
exist &eRP withé',.. &P, 7'(t)eR", i={12,..., p}and piecewise smooth

o e R"such that, the following optimality conditions [30] hold:
B (15 +B" (1) 2 (t) =D+ D*£4)+ 3 & (£ + B (t) 2 (t) - Df, + D*1;)

+5(1) g, -D( (5.73)
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o(t) o(t.x,X,X)dt=0 (5.74)

(x(t)'B' (t)i(t))% =(X(t)'B'(1)7' (1)) ,i=1....p (5.75)
(z(V)B ()7 (t)<1.tel i=12,...p (5.76)
E>0, o(t)>0,tel (5.77)

Dividing (5.73), (5.74) and (5.77) by 3" &', and setting
i=1

Al= pE ,i=1...,pand y(t)= f(t) , we have,

S 7 (1/+B (t)2'(t)-Df; + D°F})

+3(1)' 9,-D(7(1) 9,)+ D*(¥(t) 9 ) =0 (5.78)
y(t) g(t.x,X,X)dt=0 (5.79)
A>0,5(t)>0, tel (5.80)

The equation (5.79) implies

(5.81)
This implies,
>y (el (txxx)=0, a=1..,r (5.82)

j€da 1

Consequently (5.76), (5.78), (5.80) and (5.82) implies that (X,y,z*,...,z°, 1)

is feasible for (Mix D).

This in view of Theorem 5.8, the efficiency of (X,y,7*....,z°, 1) follows.
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As in [105], by employing chain rule in calculus, it can be easily seen
that the expression

Zﬂ'( (t.u,0,0)dt+B' (1)2' (t)+ (1)’ g, (t,u,0,0))
—D(A"f,+y(t) 0, )+ D* (A" f+y (1) ;) =0, tel

may be regarded as a function & of variables t,x, x,%,X,y,y,yand A, where

X =D* and y =D?y. That is, we can write
O(t,x,%%%,Y,9,¥,4) 2,1'( (t.u,0,0)dt+B' ()2 (t) +y (1) g, (t.u,u,0))
=D(27f+y (1) 0, )+ D* (AT + y (1) ;) =0

In order to prove converse duality between (VP) and (Mix D), the space

X'is now replaced by a smaller space X,of piecewise smooth thrice

differentiable function x:1 — R"with the norm x|, +|Dx|, +|D*x| +|D°¥] .

The problem (Mix D) may now be briefly written as,

Minimize(—j(fl(t,u,u,u)+u(t Zy I(tu,u, u)Jdt
,...,_[—[f”(t,u,u,t'j)+(u(t)T ) J;y I(t,u,u, u)]dt]
Subject to
u(a)=0=u(b),
u(a)=0=u(b),

O(t,x,%%X,y,y,y,4)=0,tel,

_[y g’ (t,u,u,u)dt>0 , =12,
|

jed

—

a

7' (1) B'(t)Z' (t)<l, tel ,ieP,
y(t)>0,tel,

A>0, Ale=1.
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where
O(t,% %% %, .9, y,z):izi:/v (1! (tu,0,)ot+ B (1)2' (1) y(1)' g, (t,u0.0))
- D(/IT fo+y(t) gx)+ Dz(/IT fo+y(t) gx):o

Consider e(tx()x()x()x() y(-). y(-), y(-),,l):o as defining a mapping
w: XxYxRP —>Bwhere Yis a space of piecewise twice differentiable
function and Bis the Banach Space. In order to apply Theorem 4.1 to the

problem (Mix D), the infinite dimensional inequality must be restricted. In

the following theorem, we use w'to represent the Fréchét derivative

(v, (XY, 4)0, (%Y, 2)., (%, ¥, 4) ]

Theorem 5.10 (Converse Duality): Let (x,y,7",...,z°,2)be an efficient

solution for (Mix D). Assume that

(A,) The Frecheét derivative y'has a (weak*) closed range,
(A;) fand g are twice continuously differentiable,

(A3) (fxi +B'(t)Z' (t)+ D]y’ (t)g;J—D(fxi +>y! (t)gix.]

jed, jed,

+D? ( )y (t)g;j, ie{12,...,p}are linearly independent, and

(A) (A1) 6,-DA(Y) 6,+D°B(1) 6,-DB(1) 6)B(1)=0,
= f(t)=0,tel

Further, if the hypotheses of Theorem 5.8 are met then Xis an
efficient solution of (VP).

Proof: Since (X,y,zl,...,zp,ﬂf)with w'having a (weak*) closed range, is an

efficient solution of (Mix D), then by Theorem 4.1, there exist multipliers

reRP, piecewise smooth g:1 »>R", Z'(t)eR",i=1...,p, yeR foreach

of rconstraints, e R", 5 R and piecewise smooth x:1 —R"™ satisfying

the following Fritz-John optimality conditions.
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_irKnB ()2 (t)g j (fx.i+2yj(t)gx.j]

i=1 jed,

a=1]j

+D2(f +Zy } Z t)o; Dy’ (t)g) + Dy’ (t)g})
+B(t) 6,-Dp(t) 9+Dﬂ() 0,-D°B(t) 6,=0,tel,

(5.83)

—(r"e)g' + (1) 6, -DB(1) 6, +D*B(t) 6, — ' (1)=0 , jed,,

(5.84)

—y9'+B(1) 0, -DB(t) 0, +D*B(t) 6, -4 (1)=0, jel,.a=1...r

(5.85)

—o'x(t)" B'(t)+A'B(t) B (t)+25'B (t)z' (1)=0,i=1...,p, (5.86)
l:fxi-i-Bi(t)Zi(t)-F. yj(t)ng—D(fX‘+Zyj(t)gj]

(f +Zy ﬂ n' =0, (5.87)

u (1)y(t)=0, tel, (5.88)

n'A=0, (5.89)

rY. y(t) g(t.x,x.X)dt=0, @=12...,p, (5.90)

§'(2 (1) B'(1)7(t)-1)=0 , tel, (5.91)

(T,y,y(t),&n)zo, (5.92)

(r,ﬂ(t),y,u(t),5,77)¢0. (5.93)

Since 1>0, (5.89) implies  =0. Consequently (5.87) implies

{f +B'( Zy [f +Zy j+D2(fX‘+Zyj(t)gX@ﬂ:0
=
(5.94)
Using the duality constraint of (Mix D) equation (5.83) reduces to
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i=1 jed, jed,

—Zp:(ri—y/li){(f'+8 )+ > yi(t) j D[f;+2yi(t)gx.l}
+D2£f;+Zyi(t)ggj}+ﬁ(tfex—Dﬁ(t)T9X.+D2ﬁ() 6,-D°B(t) 6,=0,tel

jed,

(5.95)
Post multiplying (5.95) by A(t)and then using (5.94), we obtain,
(B() 6,-DB(1) 6,+D°B(t) 6,-D*A(t) 6,)A(1)=0 tel
This because of the hypothesis (A;) yields,
B(t)=0, tel (5.96)
Using (5.96) in (5.95) in (5.83), we have,

—Zp:(ri—y/ii){f'JrB )+ yi(t) } D[f;+2yj(t)ngJ

jed, jed,

ooz}

This, due to the hypothesis (As) gives,

=y =0,i=12,...,p (5.97)

Suppose y =0, then from (5.97) we have z=0. Consequently from (5.84)
and (5.85) implies x(t)=0 ,tel.

Also from (5.86) we have §'B'(t)z'(t)=0, which together with (5.91)
implies &'=0, ie, &§=0. Thus,(z,B(t),u(t).77.5,)=0, which is a

contradiction to (5.93). Hence y > 0. From (5.95) it implies that > 0.

By the generalized Schwartz inequality [125],

(z' (B ()Z' (1)), i=12...,p
(5.98)

Now let—=¢'. Then &'>0 and from (5.86), we have,
. Z

B'(t)X(t)=2a'B'(t)Z'(t), i=12...,p
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which, is the condition for the equality in (5.98). Therefore, we have,

1
2

(x(®)'8' ()7 (1)) =(x(t)'B (t)i(t))é(zi(t)Bi (1)Z'(t))
From (5.91), either 5'=0or z'(t)' B'(t)z'(t)=1 or &'=0,i=1,...,pand

hence B'(t)X(t)=0. Therefore, in either case,

(x(V)"B'(®)7 (1)) =(x(1) B'(t)x(1)) .+ i=12....p (5.99)
From (5.84) and (5.85) we readily obtain,

g(tx,%,X)<0, tel
which gives the feasibility of x for (P). Using (5.88) in (5.84) and (5.85)
we have

v(t) g=0, ie, ¥y (t)g'=0, j=12,...,m, tel
This obviously gives

> yi(t)g'=0, j=12....m (5.100)

(by using (5.99) and (5.100)
The efficiency of x for (VP) follows by an application of Theorem 5.8.

5.2.2 Variational Problems with Natural Boundary Values

Here we shall consider the following variational problems with

natural boundary values rather that fixed points.

(VP)o: Minimize U(fl(t,x,x,x)dt+(x(t)TBl(t)x(t))jdt

..... I(f P (t,x, %, X)dt +(x(t)TBp (t)x(t))jdtj

161



Subject to

g’ (t,x,xX)<0,tel, j=1...m

(MIX D)O:Maximize[j[fl(t,u,u,u)+u(t)T B'(t)2!(t)+ Y.y (t)g’ (t,u,u,U)Jdt

jed,

..... ijp(t,u,u,u)+(u(t)TBp(t)zp(t))+zyi (t)g’ (t,u,u‘,u)}dt]

jed.

DA (tu,u,0)+ B ()2 (1) +y(1) g, (tu,u,0))

~D(2"f, (tu,u,0)+y(t)" g, (t.u,u,0))
+D2()LT f, (t,u,0,0)+y(t) gu(t,u,u,u))=0 tel,
(fhzy"(t)giJ =0,
J<d. t=a
fi+> y'(t)e! || =0,
JeJ, t=b
f+> y'(te) | =0,
jed, t=a
fo+> y'(te) | =0,
jed, t=b
Vi 6{1,2 ..... p}

A>0, y(t)>0,tel .

5.2.3 Nondifferentiable Nonlinear Programming

If all the functions are independent of t then the problems (VP) ¢ and
(MIX D), become the following problems.
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(VP):: Minimize( fl(x)+(xT le)% v, £P (x)+(xTB"x)%)
Subject to

g(x)<0

jed, jed,

(Mix D)l:Maximize(fl(u)+uTBlzl+Z y'g’(u),..., f7(u)+u'B 2"+ > y'g’ (U)]
Subject to

Zp‘/“i (f,(u)dt+B'z' +y"g,(u))=0

y(t)>0,tel

AeA’

The duality results for this pair of problems are not explicitly reported

in the literature but can be derived easily on the lines of the analysis of this
research.
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6.1 MIXED TYPE SYMMETRIC AND SELF DUALITY
FOR MULTIOBJECTIVEVARIATIONAL PROBLEMS

6.1.1 Introductory Remarks

I\/I otivated with the results of Dorn [51], symmetric duality results in
mathematical programming have been derived by a number of
authors, notably, Dantzig et al [48], Mond [99], Bazaraa and Goode [6]. In
these researches, the authors have studied symmetric duality under the
hypothesis of convexity-concavity of the kernel function involved. Mond
and Cottle [104] presented self duality for the problems of [48] by assuming
skew symmetric of the kernel function. Later Mond-Weir [14] formulated a
different pair of symmetric dual nonlinear program with a view to generalize
convexity-concavity of the kernel function to pseudoconvexity-

pseudoconcavity.

Symmetric duality for variational problems was first introduced by
Mond and Hanson [108] under the convexity-concavity conditions of a
scalar functions like v (t,x(t),%(t),y(t),y(t)) with x(t)eR" andy(t)eR".
Bector, Chandra and Husain [15] presented a different pair of symmetric
dual variational problems in order to relax the requirement of convexity-
concavity to that of pseudoconvexity-pseudoconcavity while in [27]

Chandra and Husain gave a fractional analogue.

Bector and Husain [19] probably were the first to study duality for
multiobjective variational problems under appropriate convexity assumptions.
Subsequently, Gulati, Husain and Ahmed [59] presented two distinct pairs of
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symmetric dual multiobjective variational problems and established various
duality results under appropriate invexity requirements. In this reference, self
duality theorem is also given under skew symmetric of the integrand of the
objective functional. Husain and Jabeen [72] formulated a pair of mixed type
symmetric dual variational problem in order to unify the Wolfe and Mond-

Weir symmetric dual pairs of variational problems studied in [59].

The purpose of this chapter is to unify formulations of Wolfe and
Mond-Weir type symmetric dual pairs of multiobjective variational
problems incorporated by Gulati, Husain and Ahmed [59] and also present
multiobjective version of the formulation of a pair of mixed type symmetric
dual of Husain and Jabeen [72] and hence study symmetric and self duality
for a pair of mixed multiobjective variational problem. This research is
motivated by the work of Xu [157]. Problems with natural boundary values
are formulated in the subsection 6.1.6, as in the previous chapters. In
subsection 6.1.7, it is pointed out that our results can be considered as
dynamic generalizations of corresponding (static) symmetric duality results

of multiobjective nonlinear nonlinear treated by Bector. et.al.[15].

6.1.2 Notations and Preliminaries

Let I =[a,b] be the real interval, and ¢'(t,x(t),%(t),y(t),y(t)) be a
scalar function and twice differentiable function for i=21,2,...,p where
x:I ->R"and y:l1 —>R" with derivatives xandy. In order to consider

¢ (t.x(t),%(t),y(t),y(t)) denote the first partial derivatives of ¢ with

respect to t,x(t),x(t),y(t),y(t) respectively, by &, 4, 4.4, .4, that is,

 Of

4= ot

¢i__a¢i a¢l a¢i_ ¢i__a¢i a¢l a¢l
lax ax, x| lex ox, %,
j—| 20 00 o4 4 | 241 20 aqﬂ
y _ayllayzl"'layn_l y _ayl 18y21""ayn .
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The twice partial derivatives of ¢'with respect to t,x(t),x(t), y(t)

and y(t), respectively are the matrices

[ O o _[ O [0
¢XX _(anXS Jnxn’ ¢XX _Laxk).(s nxn' ¢Xy B axkys nxn
) 82¢i ) 82¢i ) 82¢i
28] 2] a2
? aXkys nxn Y aXkys nxn ' axkys nxn
: 82 i , 62 i i 82 i
¢W=( 7| ¢W=( A N ..
aykys nxn aykys nxn aykys nxn
fori=12,...,p
Noting that

d i i P i i i o
a¢y:¢yt+¢yyy+¢yyy+¢yxx+ yxx

and hence
o d d o d d dd
Ea%—aﬂy’ @a¢y_a¢w+¢yy’ d_ya¢y_¢yy
o d d o d d o d
—_— 0, =—3a,,, —— @, =@, + P, , ——@, =@,
ox dt % dt Py ox dt % dt P+ 9 oX dt b =9

In order to establish our main results, the following are needed.

Definition 6.1 (Partially Invex): If there exists a vector function
n(t.x(t),y(t),u(t).v(t))eR] with n=0at x(t)=u(t)or y(t)=v(t), such

that for the scalar function h(t,x(t),x(t),y(t),y(t))the functional

H(xY) =Ijh(t,x(t),>'<(t), y(t), y(t))dt
satisfies

H(x,y)-H (U,V)ZI[ﬂThX (tx(t), x(t),y(t).y(t))

+(Dn)"hy (6(1),X(1), y (1), (1)) |t

then H(x,%,y,y)is said to be partially invex in x and % on I with respect to

n, for fixed y. If H satisfies
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H(x,y)-H (X,V)Zj[ﬂThy (tx(t), x(t),v(t).v(t))

.
+(Dn)"hy (6X(t),X(1),v(2), ¥ (1)) |t

then H(x,%,y,y)is said to be partially invex in yand yon I with respect to

n, for fixed x. If —H is partially invex in x and x (orin yand y) on I with

respect to », for fixed y(or for fixedx ), then His said to be partially

incave in x and x(or inyand y) on I with respect to », for fixed y (or for

fixed x).

Definition 6.2 (Partially Pseudoinvex): The functional H is said to be
partially pseudoinvex 2in x and x with respect to 7, for fixed y if H

satisfies

[ (6 x5y, 9)+(Dn) hy (6%, ¥, ¥) |t 20

i
implies
H(x,u)>H(xy).
and
H is said to be partially pseudoinvex in yand y with respect to r, for fixed

x If H satisfies
([, (x5 y, 9)+ (D) hy (6%, % y,¥) |dt 20
|
implies
H(x,v)>H(x,y).
Definition 6.3 (Partially Quasi-Invex): The functional H is said to be
partially quasi-invex in x and x with respect to 7, for fixed y if H satisfies
H(xu)<H (x.y)
implies

[ (6 x %y 9)+(Dn)" hy (6% y,¥) |dt <O

and
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H is said to be partially quasi-invex in yand y with respect to 7, for fixed x
if H satisfies

H(x,v)<H(x,y)
implies

_[[nThy (t, X %Y, y)+(D77)T h, (t, %, %, Y, y)}dtgo.

|

If his independent of t, then the above definitions become the usual
definitions of invexity and generalized invexity, discussed by several

authors, notably Ben-Israel and Mond [20], Martin [94], and Rueda and
Hanson [130].

Now consider the following multiobjective variational problem

considered in [19]:

(VP): Mlnlmlze“;fﬁ txxdtJ'¢ (t,x,x)d J'¢ txxdtJ

Subject to
x(a)=a, x(b)=p
h(t,x,x)<0,tel,
where ¢': I xR"xR"xR" >R, (i=12,...,p)and h: I xR"xR"xR" —R™.Let

the set of feasible solution of (VVP,) be represented by K.

Definition 6.4 (Efficiency): A point X € K is an efficient (Pareto optimal)
solution of (VPy) if forall xe K,

j¢ (t,x,X) dtgjgzs XX)dt , (i=12...,p)
6.1.3 Statement of the Problems

For N={1,2,...,n} and M ={1,2,...,m}, let J, =N ,K, =M,J,=N\J,
and K,=M\K,. Let |J,| denote the number of elements in the subsetJ, .
The other symbol |J,|,|K,| and |K,| are similarly defined. Let x':1 —R"

andx*:1 - R then any x:1—R"can be written as x=(x",x). Similarly
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for y':1 >R and y*:1 >R can be written as y=(y'y*). Let

fiIxRYMxRM 5 RP and g:1xR% xR 5 R" be twice continuously

differentiable functions.

We state the following pair of mixed type multiobjective symmetric

dual variational problems involving vector functions f and g.
(Mix SP): Minimize F(xl,xz,yl,yz)zj{f (t,xl,xl,yl,y1)+g(t,x2,)'<2,y2,y2)
|

—y* (t)T (AT fyl (t, Yo Y yl)

-DA"f, (t.x 5y yl))e}dt

Subject to
x'(a)=0=x'(b) , y'(a)=0=y'(b), (6.1)
x*(a)=0=x*(b) , y*(a)=0=y?(b), (6.2)
AT f: (t,xl,xl, v yl)—D/IT fl (t,xl,xl,yl, yl)éo tel,
(6.3)
A9, (t,x2,>'<2,yz,)'/z)—D/fgy,2 (t,xz,xz,yz,yz)éo tel,
(6.4)
‘!‘yz (t)T (ngyz (t’xz’)-(z’ yz’ yz)
_D,ITgyz (t’XZ,XZ,yZ,yZ))§0 ’ (6.5)
AeA". (6.6)

(Mix SD): Maximize G(ul,uz,vl,vz):_[{f(t,ul,ul,vl,\'/l)+g(t,uz,uz,vz,vz)
|
SUl 9l AR S (RTRVRVRT
-DA'f, (t,ul,ul,vl,\‘/l))e}dt
Subject to
u'(a)=0=u'(b) , v(a)=0=Vvi(b), (6.7)
u*(a)=0=u?*(b) , v*(a)=0=Vv*(b), (6.8)
AT, (t,ul,ul,vl,\'/l)—D;tT f, (t,ul,ul,vl,vl)zo Jtel,
6.9)
A'g, (tu?,u?,v? V2 )-DATg,, (t,u?,0% V2, V?)>0, tel,
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(6.10)
u?(t) (A7g., (t,u?, u? v V2
| (t) (4'g,
-DA'g,, (t,uz,uz,vz,vz))go,, (6.11)

AeA". (6.12)

where A" ={1eR"|2>0, ATe=Le=(LL....1) eR?}

6.1.4 Mixed Type Multiobjective Symmetric Duality

In this section, we present various duality results and the appropriate

invexity and generalized invexity assumptions.

Theorem 6.1. (Weak Duality): Let (xl,xz, v yz,ﬂ)be feasible for (Mix SP)
and (u',u®,v',v*, 1) be feasible for (Mix SD).

Let

Hi o [{f(t..y"(t),¥"(t))dt be partially invex in x',x"on I for fixed
;/1, y'with respect to 7, (t,x',u')eR".
[{F(t.x(t),%!(¢),.,.)dt be partially incave in y",y'on 1 for fixed
>I<1,>'<1With respect to 7, (t,y"v') e R*/.

H, jﬂf Y1),y (t))dt be partially pseudoinvex in x*,%x* on |
for fixed y?,y* with respect ,(t,x*,u*)<eR™and
jfg(t,xz,xz,.,.)dt be partially pseudoincave in y? y?on I for

fixed x*,%* with respect to 7, (t,y*,v*) e R".

Hs 7 (txut)+ul(t)>0,tel, (6.13)
7LV Y )+ Y (120, tel (6.14)
773(t,x2 u2)+u2(t)20,tel , (6.15)
7 (LV2 2 )+ Y2 (1)>0, tel, (6.16)

then
F(x', %% ¥4 y?) £ G(u',u? v V).
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Proof: Because of the partial invexity-incavity of the function f , we have
foreach i={1,2,..., p}.

If‘(t,xl,xl,vl,vl)dt—_[ f‘(t,ul,ul,vl,vl)dt

> [l £ (L0 0V )+ (D) £ (LU a Vv hde (6.17)
|
If‘(t,xl,xl,vl,vl)dt—j f‘(t,xl,xl,yl,yl)dt
| |
é J.{ﬂ;— fyll (t, Xl’ Xl' yl, yl)+(D772)T fy|1 (t, Xl, )-(1, yl’ yl)} dt (618)
|

Multiplying (6.17) by A' >0and summing over i, we get,
JATH (td, X dt - [ A7 (tutut v v ot
| > j{nf (271, (t,ul,lul,vl,\'/l)+(D771)T ATE, (t,ul,ul,vl,vl))}dt
Integrating by pl)arts, the above inequality becomes,
JATH (6 50t = [ATF (LUt ot v v ot
| .

1,14 o1\[FP

> J.nff f, (t,ul,ul,vl,\?l)dt+77MT f, (t,u RIRRVERY )
|

t=a

1 ,:1,,1,41

- UTDﬁTfJ tau U, v,V dt
.[ 1 x( )
|

Using the boundary conditions which at t =a, t =bgivess,, =0, we have,
.f/lT f (t,xl,xl,vl,vl)—IﬁT f(tu',ut, v vt )t
| |

[ [ A7 (Ut o v ) dt =D (A7 £ (1 ut o v 7)) ot
|

(6.19)
Multiplying (6.18) by A', ie{1,2,..., p} and summing over i, we get,

v

1 91 1 1

I/le(t,xl,xl,vl,\'/l)—jff(t,x Xy Y )dt
| |

1 91,1 1

< j{ng (f f. (t,x1,>'<l,yl,yl))+(D772)T ATE (L XYY )}dt
|

On integrating by parts the R.H.S of the above inequality and using the
boundary conditions which at t =a, t =bgivesr, =0, we have,
191,11 1

.[/f f (t,xl,xl,vl,vl)—IiT f (L, %,y ¥ )t
| |
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< !77! (A1, (6 R y8 1)) =D (271, (15504 7)) |dt (6.20)
Multiplying (6.20) by (-1) and adding to (6.19), we have
JATE(tod, Xy gt ) dt— [ AT (tut,ut v v )t
L (71, (o)) D (A, (bt 0t 7))t
.

Sl araran ) of et

(6.21)

v

Now from the inequality (6.9) along with (6.13), it follows
[l (A7 £, (tuh, 0t Vi v = DAT £, (tut,ut, v, v ) ot
I

_—_[ul(t)T [AT f(tut,ut,viv')-DAT £, (t,ul,ul,vl,vl)]dt (6.22)
|

v

Also from the inequality (6.3) together with (6.14) implies
—jng (/1T f, (t.x', %,y y*)-DAT f, (ST yl))dt
| > jyl(t)T [f f (t.x', %, y'y")-DAT fa (x5, v, yl)}dt (6.23)
.

Using (6.22) and (6.23), in (6.21), we have

JATE(tod, Xy gt ) dt—yH (£) JATF, (6 Xyt ¥t )t

| >-[u () [(f f, (t,ull,ul,vl,vl))— D(4"f, (t,ul,ul,vl,vl)ﬂdt

.

Y ) [(/f o (605 9)) =D (AT £ (6051, Yl)ﬂdt'
' (6.24)

which implies,

I{AT f (t, xE X yl’ yl)_ y1 (t)T (lT fy1 (t, x % yl, yl)_ DAT fyl(t, xt X yl, yl))} dt

v

I{f f, (t,ul,ul,vl,vl)—ul(t)T (/IT f, (t,ul,ul,vl,\‘/l)— DA le(t,ul,ul,vl,vl))} dt
| (6.25)
Now from the inequality (6.10) along with (6.15), we have,
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j(q; (t,x2,)'(2,u2,112)+u2(t))(/1Tguz (tu®,u?,v*,v*)-DA"g,, (t,uz,uz,vz,vz))zo.

|

This implies,

[n} (479, (£.02,67,v2,02) ~D(47g,, (1,02 07,02, v2 )

|

z—J.uz(t)T [/fguz (t,uz,uz,vz,\'/z)—D(/ngu,2 (t,uz,uz,vz,vz))}dt
|

Integrating by parts and using the boundary conditions which at t=a, t=b
givesn, =0, we have,

_[{77; (/Ugu2 (t,uz,uz,vz,\'/z)jt(DnS)T (}Jguz (t,uz,uz,vz,vz)))}dtzo

|
Because of the partial pseudo-invexity offﬂJguz dt, this gives,

|

Ifg(t,xz,xz,yz,yz)dtzj’fg(t,uz,uz,vz,vz)dt (6.26)

| |
Also from (6.4) together with (6.16), we have,

[(7 (6292, y2,9)+ y2 (0)(A79 1 (82,5, y2,97) =DATg . (82,5, ¥, 7)) dt 0

This implies,
(7 (479, (67,2, 57)) =D (479 (3¢, %%, y%, ¥ ) ot
| g_!yz (t) [,fgyz (t.x*, %%, y%, 9 )~ D()ngz (t.x%, %2, y2, yz)ﬂdt
This in view of (6.5) yields,
Ijn} {/Ugyz (1.3, %, y%,y% )~ D(fgyz (t.x%, %%,y yz))}dtgo

On integrating by parts and using the boundary conditions which at

t=a,t=b givesn, =0, we have,
IUI {/”LTgy2 (t,xz,xz, vy, )‘/2)+(D774)T (}LTgy2 (t,xz,xz, vy, yz))}dtéo
|

Because of partial pseudoincavity of j /ITgyz dt, we have,
|

I(fg(t,x2,Xz,vz,vz))dtgj(fg(t,xz,xz, y2, yz))dt (6.27)
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From (6.26) and (6.27), we get,

j(fg (t, X2, X2, Y7, yz))dti'[(/fg (t,uz,uz,vz,vz))dt (6.28)

Combining (6.25) and (6.28), we get,

I{AT f(t XXy YY) -y () (le f (tx %y yl))

|

DA fy1(t,xl,>'<1,yl,y1)+/1Tg(t,x2,>'<2,yz,yz)}dt

> I{AT f (t,ul,ul,vl,vl)—ul(t)T (AT f, (t,ul,ul,vl,vl))

|

_DA fx,l(t,ul,ul,vl,vl)+/1Tg(t,xz,xz,yz,yz)}dt
This implies,

;LTJ'{f (t,Xl,Xl, yl’ y1)+g (t,XZ,)'(Z, yz’ yz)

|
-y (t) (/1T f (t, x4 Xy yl)—D/iT f, (t, x4 Xy yl))e}dt
z/ﬂ”f(t,ul,ul,vl,v1)+g(t,uz,uz,vz,vz)
|

—ul(t)T (AT f. (t,ul,ul,vl,vl)—D/IT f, (t,ul,u'l,vl,vl))e}dt
This implies,

J‘{ f (t,xl,)-(l’ yl, yl)+g(t,x2,>'<2, yz, yz)

I

—yl(t)T (ZT f (t, x5 Xy yl)—D/IT f, (t, xH )y yl))e} dt
gj{f (t,ut,ut, v vt + g (t u?,u? v, )

|

—u'(t)’ (/1T f, (t,ul,ul,vl,\‘/l)—D/IT f, (t,ul,ul,vl,vl))e}dt

This was to be proved.

Theorem 6.2 (Strong Duality): Let (x',x*,y"y’,Z)be an efficient

solution of (Mix SP). Let 1= 1 be fixed in (Mix SD) and

(Cy) | [{(qﬁl (1)) (271, -DA"f,.)-Dg' (1) (-DA" 1., )

D (1) (<41, )} (t)} dt >0,
and
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I[{wz (t))T (ﬁjgyzy2 B DﬂTgyzyz )_ Dy* (t)T (_DﬂTgyzyz )
D (1) (-ATg )4 (t)} dt >0,

© ) (2, e ) -ee ) (-,

D (1) (271, )} (t)} dt=0tel =g (t)=0 tel
and

T T
ﬂ{(‘ﬁz (t)) (}ngzyz B D}“Tgyzy2 )_ Dg*(t) (_DATgyzyz)
+D% (1) (279, )}¢2 (t)}dt =0tel =4'(t)=0tel.
(Ca) g, -Dgl, =0,i=12,..., pare linearly independent.
Let j f dtand j AT g dtsatisfy the invexity and generalized invexity as stated
| |

in Theorem 6.1, then (x',x*,y,y’>,Z)and ("0’ v,v* 1)are efficient
D)

solution of (Mix SP) and (Mix SD) respectively.

Proof: Since (x*,x* ¥*,% 2 )is efficient, it is weak minimum. Hence there
exists zeR”, neRP,ycRand piecewise smooth functions &*(t): 1 — R,

6*(t):1 »>R*and x:1—R"such that the following Fritz-John optimality

conditions, in view of the analysison  [59, 104, 116 ], are satisfied

H=z(f+g)+(6"(1)-(<"e)y'(t) )(2'f,-DA" 1)

+(92() yy()T)( gz—Dngz)Hf/l

Satisfying
H,-DH,+D’H,=0,tel, (6.29)
H,-DH_,+D’H,=0,tel, (6.30)
H,-DH,+D°H, =0, tel, (6.31)
H,-DH,+D’H,=0,tel, (6.32)

(¢ ()~(c"e)y'(v)) (£, -Df,.)
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+(6*(t)-7y*(1)) (9,,-Dg,: )-n=0.tel (6.33)

6"(1)(27f,-DA"f,)=0, tel, (6.34)
0°(t)(4'9,, ~DATg, ) =0 tel, (6.35)
ylj y2 (1) (/“tTgyz ~DA'g,, ) -0, (6.36)
n'Z=0, (6.37)
(z.6'(1),6°(t).7.7)=0, tel , (6.38)
(z.64(1),0°(t).m.7) %0, tel , (6.39)

hold throughout I (except at the corners of (X*(t),X*(t),y"(t),y*(t)) where
(6.29)-(6.32) are valid for unique right and left hand limits). Here #'and 6?

are continuous except possibly at corner of (x*(t),%*(t),¥*(t),¥*(t)).

The relations (6.29)-(6.32) are all deducible from the classical Euler-
Lagrange and Clebsch necessary optimality conditions. Particularly, the
equations (6.29)-(6.32) are the famous Euler-Lagrange differential equation
when second order derivatives appear in H .Using the analogies of the

observation of D¢, from the notational section, the equations (6.29)-(6.32)

become,

T
y1)~(1 - ﬁv fylxl )

+D2((¢91(t)—(rTe)71 (1) (-4 f_“))=0, (6.40)

yX

)
~D(6"(t)~(<"e)y'(t)) (A"f,, ~DATf

) (279, )] =0, (6.41)

176



D[ 0)-(e)5 ) (07 1y, )+ O*((P0)-(e) )] (-1 )] -0,
(6.42)
(r=12)' (9, ~ D )+(¢" (1) -7¥*(1)) (29, -D2"g,...)
~D(6*(t)-7¥* (1)) (-DA"g,:: )+ D* (62 (t) - #¥* (1)) (~279,5y: ) =0
(6.43)
Since 1>0, (6.27) implies 7 =0. Consequently, (6.33) reduces to

(1)~ (Te)y" (1)) (£, ~Df, ) +(6° (t)-»y* (1)) (9, ~Dy,.) =0t ]

(6.44)

Postmultiplying (6.42) by (6" (1)-(c"e) y*(t)), (6.43) by (6% (t) - »y*(t))and

then adding, we have,
{(r—(rTe)/I)T (£, -Dt,)+(6"(t)~(Te)y"(t)) (4"f,, -DA"1,,)
of(¢()-(e)y () (071,

+DF| (0 ()7 (V) (-1, ) (' (0~ (7e) 7 (1)

#{(r=72) (9, =g, )+(6*(1)=#¥* (1)) (#'9,,. DA, )

0[(¢*()-r7* () (-D7"0,., )|

o[ (° ()7 () ("0, )}}(92 (t)-77*(t))=0  (6.45)
Now multiplying (6.44) by 7 and then using (6.35) and (6.36) we have,

[(6:()-("e)7* (1)) (47F,-DATF, )dt=0

—_—\—

that is,

[(e(®)~("e) 7" (1)) (27f, -DATf, )(<"e)dt=0 (6.46)

Multiplying (6.44) by z, we have,

[ [(91 (1)~ (Te)y* (1)) (1, ~Dr 1, )+ (" (t)-y* (1)) (rg,, - Dr,, )]dt -0
(6.47)
Subtracting (6.45) and (6.47) and using (6.35) and (6.36), we have
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L O~(e)y ) (£, -0, )(=~(e)7)
+(6°(t)-7y* (1)) (<o, ~Drg,. )(r~7) [at =0 (6.48)
From (6.45) and (6.48), we obtain,
! [{(91( )-("e)y (1)) (47f,, DA,

(6 ()-("e)y* (1)) (0271, |
(¢ (0)-(e) () (471, ) [} (0 (0)-() 7 (1) J

(

(

+D? [(92 (t)-7v2(1)) (—ﬁigyzyz )}}(02 (t)-7y? (t))}dt =0

In view of the hypothesis (C,), we have

! [{(91 (t)~("e)y (1)) (4"f,, ~DA"f,,)
_D[(el (t)-("e)¥' (1)) (-DA" 1, )}
+D? [(01 (t)-(Te) 7" (v) (=471, )};(01 (t)-("e)7*(1)) ]t =0

and

[ (-Da"g,,, )}
0| (e

This in view of the hypothesis (C,) yields,
#'(t)=0"(t)—(c"e)y*(1)=0, tel (6.49)
¢ (t)=6"(t)-ry°(t)=0,tel (6.50)
From (6.43) and (6.50), we have,
T
(z—92) (gyz - Dgyz):O
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that is,

(@52 (5,08, )0

p

i=1
This in view of the (C,) yields,

' =yA",i=12,...,p (6.51)
Let if possible, y=0. Then from (6.51), we have r=0and therefore, from
(6.49) and (6.50), we have,

¢'(t)=0,6°(t)=0,tel
Hence(z,6*(t),6 (t),7,7)=0, contradicting Fritz-John conditions (6.39).

Hence y >0and consequentlyz > 0.

From (6.40) and (6.41) along with (6.51), we obtain

(27f,-DA"f,)=0,tel (6.52)

(279, -D2"g,.)=0,tel (6.53)
which implies

Ixz (t)T (/TTgX2 —DITgXZ)dtzo (6.54)

|

From (6.52)-(6.54) together with (6.49), we have

y'(t) (27f,-DA"f,)=0,tel (6.55)
From the primal objective with (6.55)

Ij{ f (t,xl,xl, v yl)+ g (t,xz,xz, v, yz)—yl(t)T (}LT f -DAT f )}dt

= I{ f (t, XX Y y1)+ g (t, X2, %2, y°, yz)} dt (6.56)
|

From the dual objective in view of (6.52), we have

I{ f(t Xy YY)+ g (6, %0, %, 97 ) =X (t) (A" f,-DAT fxl)}dt

:Hf (t,xl,xl, v y1)+g(t,x2,>'<2, vy, yz)}dt (6.57)
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From (6.65) and (6.57), the equality of objective values is evident.

Consequently, in view of the hypothesis of Theorem 6.1, the efficiency of
(x*,%%,y",y*, 1) follows.
We now state converse duality whose proof follows by symmetry.

Theorem 6.3 (Converse Duality): Let (x*,%°,y",y*,1)be an efficient
solution of (Mix SP). Let A =4 be fixed in (Mix SD) and

A) | [{Wl (t) (A7 f,, —DATf,, )~ Dyt (t) (-DA"t,,)

+D% (1) (=47 f )} v (t)} dt >0,
and
[ [{y/ (t) (470, ~DA"g,.. )-Dy? (1) (-DATg,.,.)

+D%y? (t)T (—f 9.0 )} W’ (t)} dt >0,

(A [[{r () (A1 ~DAT 1)~ Dyt (1) (-DATF,)

|
+D% (1) (—AT f )} y' (t)} dt=0tel=y'(t)=0,tel,
and

Jl{v* ) (79, -DA )~ Dy (1) (-DA7g)
|
+D%? (1) (~A7 9,0y )}y;z (t)} dt=0tel =y’ (t)=0tel
and

(As) g\, —Dg}, =0,i=12,..., pare linearly independent.

Let [ fdtand [ATgadtsatisfy the invexity and generalized invexity as stated
| |

in Theorem 6.1, then (x'.x°,y,y*4)and (u',u*v,v’,1)are efficient
solution of (Mix SP) and (Mix SD) respectively.

6.1.5 Self Duality
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A problem is said to be self-dual if it is formally identical with its
dual, in general, the problems (Mix SP) and (Mix SD) are not formally in the

absence of an additional restrictions of the function f and g. Hence skew
symmetry of fand g is assumed in order to validate the following self-

duality theorem.

Theorem 6.4. (Self Duality): Let f'and g', i=12...,p, be skew
symmetric. Then the problem (Mix SP) is self dual. If the problems (Mix
SP) and (Mix SD) are dual problems and (X*(t),X*(t),¥(t),y(t).2)is a
joint optimal solution of (Mix SP) and (Mix SD), then so is

(¥(t).y%(t),x"*(t),x*(t), 1), and the common functional value is zero, i.e.

Minimum (Mix SP) = j{f (% Y8 9+ g (X3 %, Y2, yz)} dt=0

|
Proof: By skew symmetric of f'andg', we have
£ (8 (1), 5 (1), Y (£), V(1)) == (6 Y (1), ' (1), (1), X (1))

g (662 (0),5 (1), ¥(0). 7 (1) =% (6.7 (). (0).

<
~—
—_ ~—
~+
N—"
>
N
~
—+
N~—"
SN~—"

Recasting the dual problem (Mix SD) as a minimization problem and using

the above relations, we have

(Mix SD1): Minimize —I{f (tLy' ¥ x5 )+ g (L y?, y2 X, X7
|
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—xl(t)T (/1T f, (t, yhyh X )'(1)
-DATf, (L YN Y X Xl))e}dt
Subject to
x'(a)=0=x'(b) , y'(a)=0=y'(b)
x*(a)=0=x*(b) , y*(a)=0=y?(b)
ATEL(Lyh Y XX ) =DATE (LY ¥ X X <0 tel
fgxz(t,yz,yz,xz,xz)—DZTgxz(t,yz,yz,xz,xz)go,tel

J‘XZ(t)T (iTng (t,yz,yz,XZ,Xz)

-DA'g, (t, y2,y2, %2, Xz))dtzo

AeAN”
This shows that the problem (Mix SD,) is just the primal problem
(Mix SP). Therefore, (x*(t),%*(t),y"(t),¥*(t),2) is an optimal solution of
(Mix SD) implies that (¥*(t),y*(t),x"(t),x*(t),Z)is an optimal solution for

(Mix SP), and by symmetric duality also for (Mix SD).

Now from (6.55),

Minimum (Mix SP) = J‘{f (t, 5y y1)+ g(t, X532, Y2, yz)} dt

Correspondingly with the solution(y (t), y*(t),X"(t),X*(t), ), we have,

Minimum (Mix SP) = I{ Ft YLy %)+ gt Y2, yz,xz’y@)}dt

By the skew symmetric of f'andg', we have,

Minimum (Mix SP) = J'{f (t, N y1)+ g(t, X532, Y2, yz)} dt

H f (t, vy X )‘(1)+ g(t, y2,y2, X%, xz)} dt

[ (xR Y )+ g (65, y2, 9 ) dt

this yields,
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Minimum (Mix SP) = J'{f (x5 v )+ g (6 X0, %, Y2, yz)} dt=0

This accomplishes the proof of the theorem.

6.1.6 Natural Boundary Values
The pair of mixed symmetric multiobjective variational problem with
natural boundary values rather than fixed points may be formulated as,
Primal (Mix SPy):
Minimize I{f(t,xl,xl,yl,y1)+g(t,x2,>'<2,y2,y2)
|
T . .
_yt (t) (ﬁT fy1 (Xl, R yl)
-DATf, (x5, yl))e}dt
Subject to
ATt (t,xl,xl, y',y')-DA" f, (tx %y yl)go :
AT (67, 5,y%,°)-DATg,. (X, %, ¥, ¥°) <0,

J'yz(t)T (ngyz (LXz’)-(z’yz,yz)

_D/ngy2 (t,XZ,)’(z, v2, yz))z(),

AT fyl(t,ul,ul,vl,vl) =0, A f (t,ul,ul,vl,\'ll)

A
t=a y

-0,

t=h

/ITgyz (t,XZ,XZ,yz,yz)L: =O,/1Tg (t,xz,)-(z,yz’yz)

V2

:O,
t=b
AeA”.

Dual (Mix SDy):
Maximize j{f(ul,ul,vl,v1)+g(uz,uz,vz,vz)
(1, ()
~DAT f, (0,04 V4 V) Jef ot
Subject to
AT, (tuh, 0t v ) = DAT f (tut ut vVt >0

ul
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/‘LTgu2 (t,uz,uz,vz,\'lz)—D/ngu2 (t,uz,uz,vz,vz)io,

_[uz (t) (}Jguz (t,uz,uz,vz,vz)

—DA'g (t,uz,uz,vz,vz))dtgo,

L]Z

AT f (t,ul,ul,vl,vl)

)-(1

=0, A'f (t,ul,ul,vl,vl)

t=a S

t=b

ﬂTng (t’xz’xziy21y2)‘ =0, }“Tgxz (t’xz’xz’yz’yz)tzb =0,

t=a

AeA”

For these problems, Theorem 6.1- 6.3 will remain true except that some

slight modifications in the arguments for these theorems are to be indicated.

6.1.7 Nonlinear Programming

If the time dependency of (Mix SP) and (Mix SD) is removed and
b—a=1, we obtain following pair of static mixed type multiobjective dual
problems studied by Bector, Chandra and Abha [12].

Primal (Mix SP,):
Minimize f(xl,yl)+g(x2,y2)—(y1)T (f fyl(xl,yl)
Subject to

}LT fyl (Xl’ yl)

A
o

Dual (Mix SD1):
Maximize f(u',v')+g(u®,v*)-u'(t)’ (/1T f, (ul,vl))
Subject to

AT f (ul,vl)

ul

v
o
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(u*) (279, (u7¥")<0,

AeA”.
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7.1 SYMMETRIC DUALITY FOR MULTIOBJECTIVE
VARIATIONAL PROBLEMS

7.1.1 Introductory Remarks

This chapter is comprises of two main sections, 7.1 and 7.2. The
purpose of the section 7.1 is to present pairs of Wolfe and Mond-Weir
type symmetric dual multiobjective variational problems containing support
functions in order to extend the results of the chapter 6 to nondifferentiable
cases and hence study symmetric and self duality for these pairs of
nondifferentiable multiobjective variational problems. The problems with
natural boundary values are formulated in the subsection 7.1.5 and it is also
pointed out that our results can be considered as dynamic generalizations of
corresponding (static) symmetric duality results of multiobjective nonlinear
programming problems involving support functions. The section 7.2 of this
chapter deals with the unification of the formulations of the pairs of Wolfe
and Mond-Weir type symmetric dual multiobjective variational problems
involving support functions treated in section 7.1 and study symmetric and
self duality for these pairs of nondifferentiable dual variational problems
under appropriate convexity assumptions. Our duality results reported in this
research extends the results of chapter 6 to nondifferentiable setting by

introducing support functions.
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7.1.2 Wolfe Type Symmetric Duality
In this section, we present the following pair of Wolfe type
symmetric dual multiobjective variational problems containing support

functions:
(SWP): Minimize: I(Hl,H2 ..... HP) dt
|

Subject to:
x(a)=0=x(b), (7.1)

y(a)=0=y(b), (7.2)

Zl‘( (tx.%y,y)-1 ()—ny‘(t,x,x,y,y))go,tel

(7.3)
()GC' i=1..,p, tel (7.4)
X(tp0, tel (7.5)

ren ={1eR|2>0, FTe=Le=(11...1) eR*| (7.6)
where,
1. H'=f'(t,x XY, y)+s(x(t)|C‘)
Z/I'( (t,x.%y,y)+2' (t)-Df, (t.x, X, Y, y))—y(t)T z(t)

2. f':IxR"xR" >R, (i=12,..., p), is continuously differentiable
function.

(SWD): Maximize: I(Gl,G2 ..... G” )t
|

Subject to:
u(a)=0=u(b), (7.7)

v(a)=0=v(b), (7.8)
Z/i'( (t,u,0,v,v)+ o' (t)-Df, (t,u,u,v,v)) >0, tel,
(7.9)
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o (t)eK',i=1..p ,tel, (7.10)
v(t)>0, tel, (7.11)

AeA . (7-12)

where,

G = f‘(t,u,u,v,v)+s(v(t)‘Ki)
“u(ty gzi (£ (t,u,0,v,9)+ & ()= D (t,u,0,v,))-x(t) o(t)

We shall prove various duality results under convexity-concavity

assumptions.

Theorem 7.1 (Weak Duality): Let (x(t), y(t), z(t),....,(t), 2)be feasible for
the (SWP) and (u(t),v(t), @ (t)....,,(t), A) be feasible for the dual (SWD).

Assume that for each i, [ f'(t,.,.,y,y)dtis convex in (xX)for fixed (y,y)and
|

jf‘(t,x, %,.,.)dt is concave in (y,y)for fixed (x,X). Then,

detngdt

where,

Proof: Using the convexity of [ f'(t,....y,y)dt in (xx)for fixed (y.y), we
|
have

If‘(t,x, X,v,\‘/)dt—jf‘(t,u,u,v,v)dt
| |

> [ (x(0)-u(0) 1 (L) =(x(0) -0 (1) £ (Lu,0,v.9) |

- [(x(t)—u(t))T{fu‘(t,u,u,v,\'/)—fu‘(t,u,u,v,v)ﬂdt

+(x(t)-u(t)) £ (tu,u,v,v)

t=a

t=b
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This on using (7.1) and (7.7) gives,

I fl(t,x, )‘(,v,v)dt—j f'(t,u,u,v,v)dt

2 II[(X(t)—U(t))T () (tu,u,v,v)—f (t,u,u,v,v)}Jdt . (7.13)

Also by concavity of [ f'(t,x, x,.,.)dt , we have
|

—J.fi(t,x,x,v,\'/)dt—ff‘(t,x,>‘<, y,y)dt

> J.[ (tx. %y, y)—(v(t )—y(t))T fy (t,x, %, y,y)}dt

:_J'[ £y (X, %y, y)— ) (t,x,X, y,y)}}dt

H(v(t)-y(1)) fJ(t’X’X"y’y)t;b

which by using (7.2) and (7.8) we have,

—[ £ (tx v v)de— [ £7(tx %, y, y)dt
| z—[[(v(t)—y'(t)f{f;(t,x,xny.w—f;<t,x.x.y,y'>ﬂdt (7.14)
Adding (7.13) and (7.14) we have,
[ (txxy y)dt—] £ (tu,uvv)dt
Z'I[[(x(t)—u(t))T{fui (t,U,0,,v) — DF; (t,u,u,v,v)}
~(v() =y () {/(tx %y, 9) - D (Ex.% . 9)} et

_[[ X(t T{f (t,u,u,v,v)-Df; (t,u,u,v,v)}

(1))

~(u(t) )T{ (t,u,u,v,v)—Df; (t,u,u,v,\'/)}
(V( )T{ , (6%, %,y,y)—Df; (t,x,X, y,y)}
+(y(t )T{ , (LX Xy, y)- nyi (t,x, X, y,y)}}dt,

t
t
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Multiplying this by ' and summing over i , i=1.2,... p , we get,
RIS LA
> [ (00) 2210008 000
(o) T8 () -DF (0.
O] 4 (1 x5k 9)-OF (k)
(30 EA {1 0x03.9)-DF kv )

sty iuf () a0 D8 i)

Using (7.3), (7.5), (7.9) and (7.11), we have,

iz_ll/”ti'l[[f‘(t,x XY, Y)- ( t))TZpl:ﬂ,{ (t.x.X,y,¥)-z(t)-Df, (t, X, %, Y, y)}
24 (K0 (0)- 24 () ()

> izpl:ﬂ,,][[f‘(t,u,u,v,\'/)—(u(t))TZﬂ,,{fu‘ (LU, UV,V)+ @ ()

~Df, (t,u,u,v,v)}+u(t) e (1) - y(t)z (t)]dt.

In view of s(x(t)|C')>x(t)" &' (1), i=1..,p and s(v(t) K')=(v(t)) Z' (1),
=1,..., p, this yields,
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_Zp:)«._!.[fi(t,x,x, Y, y)+s(x(t)‘Ci)
(0) SA L xR 99) -5 (008 (x k.9 - (10 2,

i=1

)
> Zp:/l,_l[[fi(t,u,u,v,v)—s(v(t)‘Ki (v))

+
—~
<
—~~
—
~
~—
4
M
&
——
—
< .
—~~
o~
x
x
=
<.
~
|
O
—
.
—~~
o~
x
x
=
<.
~
—

That is,

This yields,
j Hdt £ j Gdt .
| I

Theorem 7.2 (Strong Duality): Let (x(t),y(t).z(t)....z,(t),4)be an

efficient solution of (SWP) and i=aibe fixed in (SWD). Furthermore,

assume that

(Cy): {(¢(t))T (A7, (%% ¥, )~ DA £, (t.x, %, Y, ¥))
—D[(gb(t))T (-DATf, (L%, Y, y))}
+D2[ (¢(1) (=1, (1%, y))}}(gb(t)) —0,tel =g¢(t)=0,tel

(Cp): fl(tx.xy,y)-2 (t)-Df (t,x%y,y), i=1...p,tel are linearly
independent.

Then (x(t), y(t), (1), o,(t),)is feasible for (SWD) and the objective
functional values are equal. If, in addition, the hypotheses of Theorem 7.1

hold, then there exists @ (t), @,(t),.... @, (t) such that (u(t),v(t), 2, &y (t)..... o, (1))
=(x(1), y(t), 2, &, (t)..... , (t)) is an efficient solution of the dual (SWD).
Proof: Since (x(t), y(t), z(t)..... 2, (t), 1) is efficient for the problem (SWP), it

is weak minimum [35]. Hence there existsteR"?,n7eR™,y€eR,
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6(t):1 >R" and a(t)eR"such that the following Fritz-John optimality

conditions, are satisfied
P . .
> (f(txxy,y)+e (t)-Df; (t,x,%y,Y))
i=1
p . .
(AT (L X%y, ¥) - DA £ (tx, %, Y, )
1

p

— (X, %,Y, y)):|+ D{(@(t)—(ﬂe)y(t))T > A(f(Lxxy, y))}:o, tel,

i=1

(7.15)

3 (=762 (£ 1% % 3. 9)- 2 (€) - DE (k. 9)

+(00)~(e)y (D) 2 () (b, ¥)- D, (1% .9))

0| (0)-(e)y(0) T4 (-01; (.xx.9))
+D2{(9(t)—(rTe)y(t))T gm (=1, (Lx %y, y))} =0, tel, (7.16)
(0(0)~(e)y(O)(£ (tx % y,¥) -2 (1)~ D (t x % ¥,¥)) -7 =0, tel,
(7.17)
< (02 () =s(x(D]C') . tel (7.18)
9(t)§( £ (tx %y, Y)-2 (1)-Df! (tx % y,¥))=0, tel,  (7.19)
y(O)—(0()-("e) ') eNg (7 (1)) » tel, (7.20)
X' (t) a(t)=0 ,tel (7.21)
n'A=0 (7.22)
(z.0(t).a(t),n7)>0,tel, (7.23)
(7.24)

(T,H(t),a(t),n);to , tel.
Since 2>0, (7.22) implies; =0. Consequently, (7.17) reduces to
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(0(t)=("e)y(1))(f, (t.x. %y, y)—2z ()~ Df; (t,x,%,y,y))=0,t 1,
(7.25)
Post multiplying (7.16) by(e(t)—(rTe) y(t)), we get,
{g(r‘ —(rTe)ﬂi)(f‘(t,x,)‘(, y,y)—z'(t)-Df; (t,x,X, y,y))
+(9(t)—(rTe)y(t ) Zﬂ (f, (X% y,y)-Dfy (t.X,%,Y,Y))
_D((H(t)—(r e)y(t) )TZP:A (-Dfj (t,x,%, y,y))j

i=1

10200~y S (-1 (txny )00~ (7e)y(0) =0
(7.26)
Premultiplying (7.25) by (' —(z"e) 2') and summing over i, we have

Z::(ri ~("e) ') (0(t)(<"e) y(1))(, (t.x, % ¥, ¥) -2 (1) = Df] (t,x,%,y,¥)) =O,t e}
_ (7.27)
Using (7.27) in (7.26) we have,

{(H(t ( ) )szl:( (t,x.X,y,y)-DA" fyy(t,x,x,y,y))
+D((¢9( ~("e)y( )szl“( DA™ f, (L, X%, Y, y))j
+D2(¢9(t ~(z"e)y(t )T Zpl:( 5 (LX XY, y))}( (t)- (rTe)y(t))zo,tel

This in view of hypothesis (C;) we have,
#(1)=(0(t)—("e)y(1))=0,tel. (7.28)

Hence from (7.15) we have,
Zr ( (tX% Y, y)+ao (t )—DfX‘(t,x,X,y,y))—a(t)zo , tel. (7.29)

Let z=0. From (7.29) we have a(t)=0,6(t)=0,tel.

Therefore, (7,6(t),a(t).7)=0 , te1, but this contradicts (7.24). Hence

7>0,.
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From (7.16) we have,

p

> (' =("e) 4 )(F] (tx %y, ¥) -2 (1) -Df (L X%, ¥,¥)) =0 , ter.

i=1
From hypothesis (C,), (f,(t.x,%y,y)-2'(t)-Df;(t,x,%,y,y))is linearly

independent, hence,

7' :(rTe)li i=12.,p . (7.30)

From (7.29), we have,

p

Y (Te) A (Lx. %y, ¥)+ ' (t)-Df (t, X, %, y,¥))-a(t) =0, t ]
=
yielding,
Z/l'( (t,x,%Y,y)+ae (t)-Df (t, XXy, y))—a(t)zo,tel (7.31)
This, in view of (7.23) implies,
2/1'( (txXy,y)+a (t )—Df;(t,x,x,y,y))zo,tel (7.32)
Again (7.31) together with (7.21) gives
Z/I'( (X% y,y)+a (t)-Df; (t,x, %y, ¥))=0,tel  (7.33)
The relation (7.28) along with (7.19) yields,

2’1'( (tx%y.y)-7'(t)-Df(txky.y))=0 tel  (7.34)

Now from (7.20), with ' >0, we have,

y(t)eNCi(z‘(t)) ,i=1..p, tel (7.35)
This implies,
y'(t)z' (t ( (t)|K) , tel (7.36)
Also from (7.28) we have,
o)
y(t)—(TTe)_O,t | (7.37)
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The relations (7.33), (7.37) and ' < K'yield that (X(t), (1), @(t),...., (1), 1)is
feasible for (SWD).

Consider,

or

H' =G, i=12..p, tel,
implying,

[Hidt=[Gidt , i=12..p
or | |

[ Halt = [ Gt

This by Theorem 7.1 establishes the efficiency of (X(t), y(t).,(t)..... @, (t). Z)
for the dual problem (SWD).

Now we state the converse duality theorem whose proof follows by

symmetry of the formulations of the pair of problems.

Theorem 7.3 (Converse Duality): Let (x(t), y(t), @ (t)..... o,(t).4) be an

efficient solution for (SWP) and 1=2 be fixed in (SWD). Furthermore,
assume that

(Ag) :
(v O) (27 faltxky,y) - DA (6%, %y, 9))
o[ ( (1)) (-DA f, (tx.%.1.))

+D2 (p () (4" (b xR0, y))}}(w(t)):o,t cl=y(t)=0tel
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(A): f,(t.x%Yy,V)+a (t)-Df, (t,x%Yy,y), i=1..,pare linearly independent.

an efficient solution of dual (SWD).

7.1.3 Mond-Weir Type Duality

In this section, we present the following pair of Mond-Weir dual
problems, (SM-WP) and (SM-WD):

(SM-WP): Maximize: j(cpl,q)2 ..... ®°)dt
|

Subject to:

S (1 (00%.9)-2 (1) -DH (11 %) <0, te

p

[y (t);zi (£ (tx%y,y)-2 (t)-DF (t,x, % Y,¥))dt>0
Z'(t)eC', i=1..,p, tel

x(t)>0, tel

A>0

> A (£ (t0,0,v,9)+ @ ()~ Df, (t0,0,v,9)) 30, te
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jy Zi‘ '(t,u,0,v,V)+a' (t)—Df; (t,u,u,v,v))dt <0
(t)eK',':l ..... p,tel
v(t)>0, tel

A>0
where
1. CI)i:f‘(t,x,x,y,y)+s(x(t)|Ci)—y(t)Tz(t) ji=1..,p
2. wizf‘(t,u,u,v,\'/)—s(v(t)|K‘)+u(t)Ta)(t) i=1..p

The duality theorems for these problems will be merely stated below

for completeness as their proofs follow on the lines of [98]:

Theorem 7.4 (Weak Duality): Let (x(t), y(t), z(t),...,z,(t), 4)be feasible for
the (SM-WP) and (u(t),v(t), &(t)..... o, (), 1) be feasible for the dual (SM-

WD). Assume that, for each i, Z/I"[( y,y)dt+()z)dt s

pseudoconvex in (x,X)for fixed (y,¥)and Zl‘j( (t.x%,.,.)—()Z')dt is

=1 1

pseudoconcave in (y,y)for fixed (x,X). Then,

I¢(t, X, X, Y, y,;t)dtgjy/(t, X, %Y, ¥, A)dt

Theorem 7.5 (Strong Duality): Let (x(t),y(t).z(t)....z,(t),4)be an

efficient solution for (SM-WP) and Ai=1be fixed in (SM-WD).

Furthermore, assume that
(H): =D (#(t)) (-D"f,, (tx % y,¥))|
[{(#@®) (271, (x5 v, 9)=DAT £, (t.x,% v, Y))
+D?| (#(1))' (~ 1 (Lx %Y, y))}}(¢(t))dt —0,tel = ¢(t)=0,tel

(Hy): f,(tx%y,y)-2'®)-Df; (tx. X y,y), i=1.., pare linearly
independent.
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Then (x(t),y(), & ()....o,(),1)is feasible for (SM-WD) and the
objective functional values are equal. If, in addition, the hypotheses

of Theorem 7.4 hold, then there exist @(t),®,(t),...®,(t)such that
(u®). (1), 2, &, (1), ... 0, (1)) = (X(t), Y(t), A, @ (1)...., 0, (1) ) is an efficient solution

of dual (SM-WD).

Theorem 7.6 (Converse Duality): Let (x(t), y(t), @ (t)..... o, (t). A) be an

efficient solution for (SM-WP) and i=1ibe fixed in (SM-WD).

Furthermore, assume that

(Al): {I(l//(t))T (ﬂ“T fxx (t’ X, X, Y, y)_ D;LT fXX (t’ X, X, Y, y))
_D[(V,(t))T (-DAT f (X%, Y, y))}
D () (-1.) (v (0)dt=0tet =y (t)=0,te!

(Ap: £ (tx%y,y)+2' (t)-Df, (t,x%Y,y), i=1..,p, telare linearly

independent.

Then  (x(¥), y(t).z(t).... z,(t),A)is feasible for (SM-WD) and the
objective functional values are equal. If, in addition, the hypotheses
of Theorem 7.4 hold, then there exist z(t),z,(t),...,z,(t)such that
(u(®),v(t), 2, 7,(t),.... 2, (©) ) = (X(V), Y(t), A, Z,(t)..... z, (1) )is an efficient solution
of dual (SM-WD).
7.1.4 Self Duality

A problem is said to be self-dual if it is formally identical with its

dual, in general, the problems (SP) and (SWD) are not formally identical if

the kernel function does not possess any special characteristics. Hence, skew

symmetry of each f' is assumed in order to validate the following self-
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duality theorems for the two pairs of problems treated in the preceding

sections.

Theorem 7.7 (Self Duality): Letf',i=12,...p, be skew symmetric and
C'=K' and @ (t)=z'(t). Then the problem (SP) is self dual. If the
problems (SWP) and (SWD) are dual problems and
(X(1), ¥ (1), 2°(t), ... z"(t),I) is a joint optimal solution of (SWP) and

(SWD), then so is(

<l
~~
~t
\_/
/—\
—+
N—"
N
[
~~
~t
N—
N
©
~~
—~+
N—"
~—
D

Minimum (SWP) = j (tX %Y, Y), F2(E XX Y, ), P (XX, y,y))dt:O.

Proof: By skew symmetric of f', we have
£ (L0 100, (0, ()=~ (L (0). Y0 (1) (1)
fy (tx(1), () () y(1) ==t () ¥(1):x(t)x(1))
£ (tx(t),x(t), y(t), y(t))=—F; (L y(t), y(t). x(t).x
g (. x(t),x(t), y(t), y(t) =—f; (L y(t), y(t). x(t).x

Recasting the dual problem (SWD) as a minimization problem and

using the above relations, we have
(SWD): Minimize —[(G",G?,...,G" )dt
|

Subject to
x(a)=0=x(b) , y(a)=0=y(b)

St g) £ (0-DF 1y, 9]0 e,

_Zp:/l'[ (t,%X,Y,¥)- ()—nyi(t,x,x,y,y)]go,tel

v(t)>0,tel

>
a)i()eK' i=1..p tel
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AeAN”
—G' == (t,x, %y, ¥)=s(y (1)K )=x(t) o (1)

_x(t)iZ::/li [ £ (tx %y, ¥)—a, (t)-Df (t,x, %y, y)]
= £ (t,y, ¥, %, %) -s(y (1) K )= x(t) & (1)

_ x(t)im (£ (6% Y,¥)—@ (1)=DF,! (t %y, )]

Subject to
x(a)=0=x(b) , y(a)=0=y(b)

p

Z/Ii[fyi (t, %, %%, ¥)—2z (t)-Df (t,x, X, y, y)]go tel,

i=1

y(t)zO,tel
Zi(t)eCi , tel
A>0, A'e=1 where €' =(1...,1),

which is just the primal problem (SWP). Therefore

(X(1),¥(t),7(t),...Z"(t),2)is an efficient solution of dual problem implies
). X(t),2}(t),...Z°(t),A)is an efficient solution of the primal.
Similarly(x(t),y(t),z"(t),...z"(t), ) is an efficient solution of (SP) implies
(Y(t),x(t), 7" (t),...2"(t),2)is an efficient solution of the dual problem
(SWD). In view of (7.18), (7.33), (7.34) and (7.36), we get,
Minimum (SWP) =
J{F (e (). X(0). (1), (). 2 (6X(6). X(1), Y (1) 9 (1))} ot

|
Corresponding, to the solution (¥ (t),X(t),z*(t),...Z"(t), ), we have,
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Minimum (SWP) =

[ ()9 (0). X () X(1).n £ (67(8). Y (2), X (1), X (1)}t

By the skew-symmetry of each f'

:_jfl{(t,i,x*,y,*),...,fp(t,i,i,y,?)}dtzo
|
The following self duality theorem for the pair of Mond-Weir type self
duality theorem will be merely stated for completeness and its proof runs

parallel to that of Theorem 7.7.

Theorem 7.8 (Self Duality): Letf',i=12,....p, be skew symmetric and
C'=K' and &' =z. Then the problem (SM-WP) is self dual. If the
problems (SM-WP) and (SM-WD) are dual problems and
(X(t),y(t),2'(t),...z°(t),2)is a joint optimal solution of (SM-WP) and

(SM-WD), then so is(y (t),X(t),2*(t),.... 2" (1), 2), i.e.

Minimum (SM-WP) :j f(t,%%y,y)dt=0.
|

7.1.5 Natural Boundary Values

The pairs of Wolfe type and Mond-Weir type symmetric
multiobjective variational problem can be formulated with natural boundary
values rather than fixed end points. The problems with natural boundary
conditions are needed to establish well defined relationship between the
pairs of continuous programming problems and nonlinear programming

problems.

Following is the pair of Wolfe type symmetric dual problems with

natural boundary values.
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Subject to

Y A1 (tx% Y, §)-2 (6)-DF (t, %, y,¥)]<0,

i=1

(x(t))>0, tel

Zi(t)eCi, tel

A>0, Ale=1, e’ =(1...1)

fi(tx, %y, y)La =0, fi(t,x,x%y, y)Lb =0

Subject to:
p

YA (tu,u,v V) + e (1) - D (tu,u,v,v) |0, tel,

i=1

v(t)>0,tel

o (t)eK' | tel

A>0, A'e=1,¢e" =(1,...,1)
f(tx%y,y) =0, fi(txxyy)_ =0

The duality results for each of the above pairs of dual problems can
be proved easily on the lines of the proofs of the Theorems 7.1-7.8, with

slight modifications in the arguments, as in Mond and Hanson [108].

Following is the pair of Mond-Weir type symmetric dual problems

with natural boundary values.

Subject to

Zi;m (£ (%%, ¥)~ 7 (t) =D (t,x,%,y,¥)) <O

,tel

202



I Z/I'( (X% Y,y)-2 ()—nyi(t,x,x,y,y))dtzo

()EC' i=1..,p, tel
x(t)>0, tel

A>0

AT E, (L XY, y)\t=a =0, A" f, (t.x,%Y, y)L=b -0

Dual (SM-WD,): Minimize: [(y*,p2,....y " Jit
|

Subject to:

Z/I'( (t.u,u,v,V)+o' (t)-Df; (t,u,0,v,v))>0, tel
Z}L'( (t,,U,v,V)+' (t)-Df; (t,u,u,v,v))<0, tel

a)'(t)e K',i=1..,p,tel
v(t)>0, tel

Ae At

ATE, (tuuvy) =0, AT, (tLuuvy)| | =

7.1.6 Nondifferentiable Multiobjective Nonlinear Programming

If the time dependency of Wolfe type symmetric pair of dual
problems, (SWPo) and (SWDo) is removed andb—a=1, we obtain
following pair of Wolfe type static nondifferentiable multiobjective dual
problems with support functions which are not explicitly reported in

literature.

(Primal SWP-2): Minimize H =(|:|1,|:|2,..-,|:|p)

Subject to
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p

izﬂ:/%i[fyi(x, y)—z‘]go,
yZO,teI

7 eK'i=1..,p

Ae A"
where,

H'=f'(x,y)+s(xC')- yZﬂ'( ~7')-y'z, i=1..,p

(Dual SWD-2): Maximize: & = (Gl G?,...G")

Subject to:
p .
Zﬂ'[fu' (u,v)+a)']20,
i=1
XiO,teI
®weC, i=1.., p
AeA”
where
G = f! '(u,v) +s(v|K) 2/1'( )—xTa)

As in the case of pair of Wolfe type dual problems, the pair of Mond-
Weir type dual problems (SM-WPo) and (SM-WDo) reduce to the following

static counterparts in nonlinear programming.
Primal (SM-WP-2): Maximize &' =(&*,d?,.., &)

Subject to



where
@' =f'(x,y)+s(XC')-y'z
Dual (SM-WD-2): Maximize ' =(y',y/,...7")

Subject to

where,
v' =1 (xy)+s(yK')-x"w
7.2 MIXED TYPE SYMMETRIC AND SELF DUALITY

FOR MULTIOBJECTIVE VARIATIONAL PROBLEMS
WITH SUPPORT FUNCTIONS

7.2.1 Statement of the Problem

In the subsection 7.2.1, we shall give notations and the formulations

of the problems for studying duality subsequently.

For N={1,2,...,n} and M={12...,m}, let J,cN,L<M,J,=N\J, and
L, =M\L. Let |J,| denote the number of elements in the subset J,. The
other symbol |3,|,|L,| and |L,| are similarly defined. Let x':1 —R™ and
x?:1 >R then any x:1 —R"can be written as x=(x",x*). Similarly for
y:1 >R and y?:1—>R% can be written as y=(y.y?). Let

f:I1xRYxR4 5 RP and g:1xR%xR“ > RP be twice continuously

differentiable functions.
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We state the following pair of mixed type multiobjective symmetric

dual variational problems with support functions involving vector functions
fand g.
(Mix SP): Minimize:I(Hl(t,xl,xz,yl,y2,>‘<1,>'<2,yl,yz,zl,zz,ﬂ),...,
|
H"(t,xl,xz,yl,y2,>'<1,>'<2,y1,yz,zl,zz,ﬁ))dt
Subject to:
x'(a)=0=x'(b) , y'(a)=0=y'(b), (7.38)

x*(a)=0=x*(b) , y*’(a)=0=y?*(b). (7.39)

Zp:i‘[fyil (t.x, %,y ¥') -2 (t) - Df ), (t,xl,xl,yl,yl)ko tel, (7.40)

i=1

Zp:l‘[g‘yz (t,x2,>'<2,yz,yz)—zf(t)—Dgiyz (t,xz,xz,yz,yz)ko tel, (7.41)
J'yz(t)T {Zp:/li(giyz (t,x2’>'<2’yz’yz)_ziz(t)—Dg‘yz (t,xz,XZ,yZ,YZ))} >0, (7.42)
(x'(t),x*(t))=0, tel , (7.43)

z;(t)eK and z(t)eK?, (7.44)

AeA’ (7.45)

where

Hi= £ (t,x, %y ¥ )+ ¢! (t,xz,xz,yz,y2)+s(x1(t)‘cf)+s(x2(t)‘Cf)
P

SV OX A (6§ =2 (1) - DEL (66,5, v )

i=1

—z (1) y (1) -2 (1) y* (1)
(Mix SD): Maximize: I(Gl(t,ul,u2,v1,v2,ul,u2,v1,\'/2,vvl,wz,/1),...,
|
G® (t,ul,uz,vl,vz,ul,uz,vl,vz,\A/l,wz,/I))dt
Subject to:

u'(a)=0=u'(b) , vi(a)=0=v'(b), (7.46)
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u*(a)=0=u?*(b) , v*(a)=0=v*(b). (7.47)

> | £ (LUh 0V V) +af (6) - DFG (Lt Vv |20, tel, (7.48)

i=1

S A gl (402,67, v 02+ 0f (1)~ Dgl, (17,0202 92) 50, te T, (7.49)

i=1

Juz(t)T[glz (t,u?,u%,v? v*)+ & (1)~ Dgl, (t,uz,uz,vz,vz)ko tel, (7.50)
I(vl(t),v2 (1))>0,tel, (7.51)
o (t)eCl and & (t)eC? , (7.52)
AeA’ (7.53)

where,
Gi= f‘(t,xl,xl,yl,y1)+g‘(t,xz,xz,yz,yz)
+s(v1(t)‘ Kil)+S(V2 (t)‘ Kf)+u1(t)aoi1(t)+ui2(t)a)2 (t)
_ul(t)zpl/li[fui1 (t,x1,>'<1,yl,)'/l)+a)il(t)—Dfu‘1 (t,xl,xl,yl,yl)]

i=1

7.2.2 Mixed Type Multiobjective Symmetric Duality

In this section, we present various duality results for a pair of mixed
type multiobjective symmetric problems, (Mix SP) and (Mix SD) under

pseudo-concavity-pseudo-concavity assumptions.

Theorem 7.9 (Weak Duality): Let (x'(t),x*(t),y*(t),y*(t),2'(t),2° (), 1)
be feasible for (Mix SP) and (u'(t),u*(t).v'(t),v* (), @(t)',@* (1), 4) be
feasible for (Mix SD).

Assume that

(Hy): foreach i [{f'(t.....y*(t),y"(t))dt be convex in x',x" for fixed y',y*

and [{f'(t,x'(t),x'(t),...)dtbe concave in y*,y*on I for fixed x',x" .
|
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(Hy): Ep:i,'[(gsz(t,.,.,yz(t),yz(t))+( ) a)f(t))dt pseudo-convex in x*,%°

i=1 |

for fixed y7,y* and DA [(g) (L3 (1).% (1))~ ) 22(1))ot s

|
pseudo-concave in y?, y*for fixed x*,x.
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Then,
detgjedt.
| |
where H = (H H2,.., H'.., Hp)andGz(Gl,(32 ..... G',..., Gp).

Proof: Using the convexity of eachjf‘(t ,,,,, y,y)dt in (x,x)for fixed
!

(y,y), we have

I[(X ) fi(tut,ut, Vvt +(x (t)_ul(t))T £ (tutut v vl)}dt
[(xl(t)—ul(t))T{f (t ut ut vt vl) Df (t Ut ut v vl)}}dt

t=a

j txlxlvlvl dt — '[f'tululvlvl t
|
>

+(x1(t)—u1(t))T fu(tut,ut,viv)

t=b

Using (7.38) and (7.46), this yields,
jf (t X3V vl)dt—_[f (t ut, ut, Ve, vl)dt

zlj[(xl(t)—ul(t))T {f (t ut,ut, v vl) Df ! (t ut,ut, v vl)}}dt
(7.54)
Also by concavity of j{ £1(t, X (1), %! (t), ., .)dt, we have,

J.f' (t.x, %, v vt dt - '[f (t.x %yt vt )t
|

z—J‘[ (v (1) - y*( fy'1 (tx Xy 9 ) + (vt )—yl(t)) fu(td Xy yl)]d

:—J'[(vl(t)—yl(t) T{f (t.x', %'y, y*)-Df] (t Xty yl)”dt

+(v1(t)—y1(t)) fi (t Xt Xy yl)tib

which by using (7.39) and (7.47), gives,

j (t.x, %,V V) dtj 't %yt )t

z—![(vl(t)—yl(t)) {f (t x5 Xy yl) Df ! (t x5 Xy yl)}}dt
(7.55)
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The addition of (7.54) and (7.55) implies,
[ £t 2y yt)de—[ £
=[] (¢ (0)-v()
—(v'(t)- yl(t))T { fl (t.x Xy ) - Df, (x5, v yl)ﬂdt
:j[(xl)T (E4(tut,ut v v = DF (Ut Ut v v )
—(ut (1)) {2 (tut, 0t V) = DF (tut U v )
—(vl(t))T { fyil (t,xl,Xl, v yl)— Df);1 (t,xl, Xy yl)}

+(y1(t))T { fl (t,xl,xl, v yl)— Df ), (t.x, Xy, yl)}}dt

(t,ul,ul,vl,vl)dt
! { fi (t,ul,ul,vl,vl)— Df | (t,ul,ul,vl,vl)}

u

Multiplying this by 2' and summing over i , i=12,..,p , We get,
p ) p .
Zilf f'(t,xl,xl,yl,yl)dt—Zﬂ,,J.f'(t,ul,ul,vl,vl)dt
i=1 | i=1 |

2 [0 0)

—

Zp:ﬁ,, { fi(tut,ut, v v') - Df}, (t,ul,ul,vl,vl)}
i=1

A{F8 (tut at v ) = DF (6t ut v v )

A { fy‘1 (t, XXy yl)— nyi1 (t, xH XY yl)}

AT (000 )01 (k)

y

|
—
<
N
—
~—+
~
N —
3
H'M-c ,&Mﬁ E‘MU

- Ji(xl (t))T ,Zpl“/l' { fu'1 (t,Ul,Ul,vl,vl)+a)i1 (t)_ Dfui1 (t,ul’ulivllvl)}

—(ul(t))T Z/%, { fl (t,ul,ul,vl,vl)m)ﬁ (t)-Df (t,ul,ul,vl,vl)}

A { f il (L Xl’ )'(l, yl’ yl)_ Zil ('[)— nyil (t, Xl, )-(17 yl, yl)}

+(y1 (t))T y) { fy‘1 (t, x4 Xy yl)— z (t)- ny‘1 (t, x4 5y yl)}



Using (7.40), (7.43), (7.48) and (7.51) we get,

DAJLr (k)] Al K
~2 (1)~ DF, (8, v, yl)}+gz, (¢ ()t (t))-gi, (v (t)2:(1)
> zz [ (bt ) = (o (1)) iﬂ,,{fuﬂ (tur, o v )

+o} (1) = Dfj (t,u', ', v V) Ut (t) @ (1) - y* (1) 21 (1) ]l

In view of s(xl(t)‘cil)z(xl(t))T @, i=1..,p and s(vl(t)‘Kil)z(vl(t)) z,

i=1,..., pyields,
AL (0085 ) 5[0 00 -0HO) T AL 4y )
(1) D (L Xy ) (v (1) 20)

2 iZ::/l.JI.[fi(t,u11u1,vl1\'/1)_s(vl(t)‘ Kil)_(ul)T Z::l.{fuil (t,u11u1,vl1\~/1)

+o} (£)=Df j (t,u',u', v 0 )+ () o (1) ]l (7.56)
From (7.49) together with (7.43) and (7.50), we have

J{(x2 (t)-u? (t))T Z::/l, (glz (t,uz,uz,vz,\iz)—a),2 (t)-Dg, (t,uz,uz,vz,vz))dtio

which, on by integration by parts implies,

00w S0l () 0)
(% (1)-u2 (1)) gﬂf.g; (LUZ,UZ,VZ,VZ)}dt

>0

()= 0 DAg (L)

t=a

which by using (7.39) and (7.47), we have,

J.[(XZ (t)—uz(t))T Z_pl:ﬂv. (glz (t,uz,UZ,VZ,VZ)—a)iz ('[))

+(32 (1) - (t)) izil:ﬂ,,gj]l (t,uz,uz,vz,vz)}dt >0
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By pseudo-convexity of iﬂ,lj.(glz (tn¥2, 92)+() @ (t))dt, this yields,
i=1 |

p

DA (g0 (672,02 0 )+ 2 (1) @ (1))

i=1 |

P _
> DA (9l (tu? 0%+ u? (1) @ (1) ot (7.57)
i=1 |
From (7.41) together with (7.51) and (7.42), we have

j{(vz (t)-y? (t))T Zpl:ﬂ,, (g;z (1., 5%, y2,y% ) =27 (t) - Dl (1., 52, ¥, yz))dtg()

—
1
—_—
<

N
—_
—
~
|
<
N
—_

t) zpl:ﬂ,, (0 (6%, y%,9°) -2 (1))

Which by using (7.39) and (7.47), we have,

_!.[(v2 (t)-y? (t))T iZi:i, (g;2 (t, X2, %2, Y2, yz)_ 22 (t))

+(V2 (1) -2 (1)) DIV P (SRR yz)}dtio

By pseudo concavity oszp:;t, (g‘yz (t.x2,%%,.,) () 7 (t))dt, we have,
) <

> DA f (g () -y (1) 2 1)) (7.58)
i=1
The relations (7.57) and (7.58) gives,
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iz_pl:/l,][(g‘yz (t,x2,>‘<2,y2,)'/2)+s(x2 (t)‘Cf)—y2 (t) 22 (t))dt
> izpl:ﬂ,llf(glz (t,uz,uz,vz,vz)—s(v(t)‘ Kf)+u2(t)T w? (t))dt. (7.59)
Combining (7.56) and (7.59), we get,
iZpl:/ll_!.[f‘(t,x1,>'(1,y1,yl)+ g’ (t,xz,xz,y2,y2)+s(x1(t)‘Ci1)+s(x2 (t)‘Cf)
Jr(yl(t))T izpl“iljl'(fyﬂ (., %,y ) -2 (t) - Df ), (t,xl,xl,yl,yl))

y'(t)z ()= y* ()2 (t) Jot

DAL 1 (1 0 0 (Lt ) s (U ) 5[ O]
_(ul(t))T IZ:AM!.( 1‘ui1 (t,ulyul’vl,\'/l)+a)il(t)— Dfui1 (t,Ul,u'l,vl,\]l))
(0 O) @ (O +(u () 0} (1) |t

That is,
ijz,jHidt;ii,jGidt.

This yields,
[Hdt £ [ Gdt.

Theorem 7.10: (Strong Duality):

Let(X*(t),X* (1), ¥ (t),¥* (1), Z (1), Z (1), 2 (1), Z2 (1), Z7 (1), 23 (1), 2 ) e
an efficient solution of (Mix SP). Let A=4ibe fixed in (Mix SD).

Furthermore assume that,
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(Cy):

and

(Co):
J‘{(¢1 (t))T (_T fy1y1 (t,yl’ 5t )—/1’ )71)_ DAT fylyl (t’yl’il’ )—/1, yl))
—D[(g/}l ) (—DZT fo (65X T 71)”
+D? [(¢1 (0) (271, (67027, ?1))}}(# (t))dt=0,t e

and

—Dg? (t)T (—D/TTgyzyz (t,Yz,X;2,72, 72))
+D2 () (—ITgW (t,%%, %%, 77, ?2))}¢2 (t)}dt ~0tel
:>¢2(t):0,te|
(Cy): g‘yz(t,iz,x*z,yz,vz)Jraf(t)—Dgiyz(t,>—<2,>*<2,372,72), tel,i=1.. pare
linearly independent.
Then  (X'(t),X° (1), ¥'(1),V* (1), @ (), @} (t),.... @} (t); @ (t), @ (t),.... @ (), )
is feasible for (Mix SD) and the objective functional values
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are equal. If, in addition, the hypotheses of Theorem 7.9

hold, then there exist @), @(t),..a,t); @), @ {),... o ()

solution of dual (Mix SD).

Proof: Since (X'(t),x*(t),¥*(t).¥*(t).Z (t).Z; (1), 2y (1), Z° (1), Z; (1), 25 (1) 2)
is efficient, it is weak minimum, there exist reR", neR?, yeR,
¢'(t):1 >R, @*(1):1 >R and «a(t)eR™, B(t)eR"such that the

following Fritz-John optimality conditions, are satisfied
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vl ol vl 1

S eTe) 1} (0F .5 5) 70 DF (LR 2.5 7)
+(91(t)—TTeyl(t))T i/T'.(f),ilyl (t,71,X;l,71,)71)—nyi1y1 (tlxlyxél’yl’vl))
i=1
T ol o1 o1 =1

_D{(el(t)—feyl(t)) Z::Z,(—nyzy,l (t.x"%, 7",y

)|
+D? {(01 (t)-7"ey* (1)) Zplﬁ, (=i (67057 3'71))} =0,tel (7.62)

o) > 4 (f5(6x% %55 y') -2 (1)-Df (L%, 74, 7)) =0, tel  (7.65)
i=1
P

02 (t)> 4 (g‘yz (t.%%.X%,¥%,y2)- 22 (t)- Dg’, (1, X%, %2,¥7, ?2))=0 tel (7.66)
1

2 § i v2 v2 g2 g2\ _52 _ i T2 T2 T2 T2 _
7y (t)Zﬂ,,(gyz(t,x X2 V2y ) z7 (t) Dgyz(t,x X2, V2§ ))—O,tel (7.67)
i-1

7T A =0 (7.68)
a(t) x(t)=0,tel (7.69)
B(t) %2(t)=0,tel (7.70)

(7.71)
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—5y2 (1) (6% (t) -7V (1)) e N (Z°(1)) . t e (7.72)

@ (t)<C, . (@ (1) X ()=s(x'(t)c,) el (7.73)
@ (t)eC, , (@*(1)) %*(t)=s(X*(1)C,), tel (7.74)
(7.6'(1).6°(t). (1), B(t). )2 0, tel (7.75)
(7.6'(1).0°(t), 7. (1), B(1).) %0, tel (7.76)

Since 1 >0, (7.68) implies; =0. Consequently, (7.64) reduces to

(6?1( ) - (r e)y (t))(fy (t XL x5y yl) Zil(t)—Df (t Xt Xy yl))
+(6*(t)-ry )(gy (%2, %%,7%,§2)-Z2(t)- D (t.x*, X2, y?, yz)) 0 tel
(7.77)
Postmultiplying (7.62) by (& (t)—z"ey (t)), (7.63) by (6*(t)—»y*(t)) and

then adding, we have,

{Zp:(ri —TTe/?_,,)(f (t X x4V yl) 7' (t )—Df;l (tjl,);(l,)_/l,);/l))

i=1

(91( )—7Tey (t ))T Zpll/{l(fyilyi (t,Yl.X;l,Vl,?l)—nyﬂyl (t’Yl’)é(llyl’vl))
T



Multiplying (7.77) by A" and then using (7.66) and (7.67), we obtain,

NgE

(6*(t)—rey* (1))

-2 (t)-Df; (t.X, X", 7,7")) =0, tel

- A ( fyi1 (t,il,xél’ 71, y1)

I
=

T

Me -

(6" (t)—rey' (1))

-z (t)— nyi1 (t, x5 Xy yl))z'Te =0, tel

> (L (LX)

Il
JUN

j{(el (t)-zev*(t)) Zp:Z(fyl (.33, 74, 7)
| i=1

~2}(t)-Df} (t,il,x*l,yl,vl))fe}dt —0 (7.79)
Multiplying (7.77) by ¢'and summing over i, we have

Ij(el (t)-zey* (t))_zp:ri ( fi (6% %y, ') -2 (t) - Df . (6, X, %, 7, 71))

i=1
+(92(t)—y72(t))ifi(g‘z(t,iz,iz,yz,72)—zz(t)—Dgiy2 (t,iz,iz,yz,yz))dtzo,
(7.80)
By subtraction of (7.79) and (7.80) and then using (7.66) and (7.67), we

have,

[0 )37 (1) (R 7547

—zZ—Dg‘yz (t,iz,x*z,yz,?z )}dtzo (7.81)

j{(ﬁl(t)—feyl(t))T Zp:Z( £l (68X % 74,7 ) - Df L, (63 53 371))
_D{(el (t)-"ey'(t)) Zpl:ﬂ_,, (-DfL (67,27, 371))}

+D? {(91 (t)-"ey (t)) il‘j,, (=i (63027 371))}}(91 (t)-7"ey*(t))dt



j{(el(t)—feyl ) zpl‘j, (i, (67029, 7)-Df L (670,55 7))

From this, in view of the hypothesis (C,), we have,
¢ (t)=6'(t)-c"ey'(t)=0, tel (7.82)
¢ (t)=0°(t)-r¥°(t)=0,tel (7.83)
From (7.83) and (7.63),

Zp:(z_i _VZ.)T (giyz (t,YZ,X;Z,VZ,);/Z)—ZZ (t)—Dgiyz (t,Yz,iz,Yz,vz)):O

This in view of hypothesis (C3), we have
r'=yA , i=1..,p (7.84)
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If possible, let, y=0. From (7.84), we have z=0, and therefore, from

(7.82)and (7.83), we have,

¢'(t)=0, ¢*(t)=0, tel
Also from (7.60) and (7.61), we have «(t)=0=4(t),tel.
Hence(r,el(t),ez(t),y,a(t),ﬁ(t))zo, contradicting Fritz John condition

(7.76).Hence y >0 and consequentlyz>0. From (7.60) and (7.61) along
with (7.84), we obtain

2 ( £ (Lx, XLy )+ @) (t)-Df ) (t,il,x*l,yl,vl))—a(t)zo tel
1
(7.85)

7l (L%, 95,52+ (1) - Dl (1% 45,5, §7)) - (1) =0, te

(7.86)
This, in view of (7.75), yields,

P .
YA (XX YY)+ @ (1) - DFL (L) XY Y))20  tel (7.87)
b e
lel(glxz(t,YZ,XZ,VZ,72)+a—)i2(t)—Dg'Xz(t,72,)—(2,72,72))201te| (7.88)
i=1
and, in view of (7.69) and (7.70) together with (7.43) gives,

(1) Zp‘j‘ (fi(tLx x4 ¥4 9")+@ (1) -DfL (X4, X, 7%, ")) =0, te

i=1
(7.89)

From (7.82) and (7.83) we have
(V'(t).¥%(t))>0 tel

RO [ (6755, 71) -2 (1) - DF L (1,724,545, 7) [0 (7.92)
i=1
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Also from (7.71) and (7.72), we have
Y (t) 7 (1)=s(Y(t)K) , teli=12..,p (7.93)
y (1) 7 (1) =s(Y*(t)K’) . tel,i=12,.,p (7.94)
Consequently, from (7.88), (7.91), (7.92) and (7.93), the feasibility of

(%0, (0,50, 9°(0), 2 (0. 2 () 0O 5 (0, 22 (0) - T3 (1), 7) for

(Mix SD) follows.
Consider,
HY = (64X 7, 7)+ 0 (6X2, 50, 52,77 +s (X (D] CF) +s(%° (1))
—y (1) Zp‘/t‘ [ 5 (6X5 % 9,9 ) -2 (1) - DF ) (65,5, 1) |
V(1) ;(t)— y*(t) z°(t)

Using (7.73), (7.74), (7.91), (7.92), (7.93) and (7.94) in proper sequence, we

obtain,
Hi _ fi(t,xl’X#11yl,?l)+gi (t,)TZ,);(g,yg,?z)
—s()‘/l(t)\ K})-s(y2 (1) Kf)+71(t)T @ (1) +%2 (1) @2 (t)
P~ _
X (0D 2] 1 (LX4 %L YY) @l (1) - Df (6305 7,9 |
i=1
=G' fori=12,..,p

Therefore,

This proves the efficiency of
(X*(1), %% (1), V' (1), V2 (1), @ (t), @5 1), ... @} (1); & (1), @5 (1), .., @ (1), A ) of the

dual problem (Mix SD) by an application of Theorem 7.9.

The proof of the following converse duality theorem follows

automatically by symmetry of the formulation:
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Theorem 7.11(Converse Duality): Let (il,iz VLY @ (t), @5 (L), ... @ (1)

@} (t), @2 (), ..., 5)5(t),2_,)be an efficient solution of (Mix SP). Let A=A1be

fixed in (Mix SD). Furthermore assume that
(Ay): j{(a//l (1)) (A7, (L X% ¥, YY) -DAT £, (L3575 7))

D[ (! () (-0 f (055,579

and

(A): j{(wl(t))T (27 o (XX 9 91) DT 1 (65X 74,7

—D[(l//l (1) (-DAT f (67157, y;l))}

=y'(t)=0tel
and
J{2O) (T (1723077, §7)-DTTg,., (157,22, 72, 52))
_D[(V/Z(t))T (—D/TT » (t 2,52, 77, 72))}
+D2[("'2(t)) (270 (15 *2’72,?2))}}(V/2(t))T dt=0,tel
=y?(t)=0,tel
and

(Ag): gl (%%, X% 7%, ¥%)+af (t)-Dgl. (t,X*, X%, ¥%,§°) , i=1..,p are
linearly independent.
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Then (X'(®),X*(), V'), V(). Z (). Z; (t),... 23 (1), 2 (1), 2 (1), 22 (), A) S
feasible for (Mix SD) and the objective functional values are equal. If, in

addition, the hypotheses of Theorem 7.9 hold, then there exist
7 (1), 7, (t),... Z; (1); Z° (), Z7 (t),.... Z; (t) such that

(U OOV OV 0,2 (1), 25 (1), 2, (1):27 (1), (1), 25 (1), 2)
=(X"(),%*(t), V' (1), V(). 2 (1), Z (1) ... 23 (0): 2 (1), 25 (1) o 25

is an efficient solution of dual (Mix SD).

7.2.3 Self Duality

A mathematical problem is said to be self-dual if it is formally
identical with its dual. In general, the problems (Mix SP) and (Mix SD)
cannot be formally identical if the kernel function does not owe any special

characteristics. Hence skew symmetric of f'and g' is assumed in order to

validate the following self-duality theorem for the pair of problems treated
in the preceding section.

Theorem 7.12 (Self Duality): Let f' and ¢',i=12,...,p, be skew
symmetric and C! =K} and C? =K? with & (t)=z(t), & (t)=27(t), tel.
Then the problem (Mix SP) is self dual. If the problems
(Mix SP) and (Mix SD) are dual problems and

(X*(1),%* (1), ¥ (1), V(). 2 (1), Z; (1),... 25 (1); 2 (1), 2 (1), 27 (1), 2) iS @
joint optimal solution of (MixSP) and (MixSD), then so is
(7' (1), 7% (1), %" (1), X* (1), @ (t), @5 1), ... @} (1); & (), @5 (1), .., @ (1), 1), and the

common functional value is zero, i.e.

Minimum (Mix SP) = j{fi(t,il,x*l,yl,vl)+gi (t,iz,iz,yz,vz)}dt =0

Proof: By skew symmetric of f'andg', we have
2 (63 (0), 2 (1) 740, 9(1) = £ (1.9 (1) 9*(0), (0. X (1)
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Recasting the dual problem (Mix SD) as a minimization problem and using
the above relations, we have,
Mix (SD1): Minimize —[(G",G?,..,G")dt
|
Subject to
x'(a)=0=x"(b) , y'(a)=0=y'(b)
x*(a)=0=x*(b) , y*(a)=0=y?*(b)
P ) . . . . .
DA (LYY X X) @ (1) - Df y (64 VX X) [<0, tel
i=1
/Ti[g‘yz (t.y%,y2.x*,%2)-& (t)-Dg', (t,yz,vz,xz,x*z)ko tel
Ja(t) [g‘yz (t.y?,¥2.X*,%)-& (t)-Dg', (t,yz,?z,iz,iz)}dtzo,tel
|
(v'(t).v*(1))>0, tel

@ (t)eCl and & (t)eC?

also,
G =—f! (t,¥11xél, 71’ )—'/1)_gi (t,iz,);(z’ 721 72)
s (O]KY)-s(V2 (1)]K?) =% () @ (1) - %2 (1) @ (t)

+X1(t)TZi:Z‘[fX2 (X%, ¥Y) - (1) -Df | (1,5, %%, 7%, 7" |
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— Hi (t’yl, y2’ yl’ yz,Xl, XZ,)'(l’ )'(z’a)ll’a)lz’z)
Hence, by using various hypotheses of this theorem, we have
(MIX SP-1): Maximum [(H*,H?,...,H? )dt
|

Subject to

7' (t)eCl and Z*(t)eC? ,i=12..,p

A>0, ATe=1, e =(1...,1)
which is just the primal problem (Mix SP). Therefore
(% (1), % (1), (0, V2 (0), 21 (8), 22 (1), 25 (0322 (0, 22 (1), 72 (1), 2 )i an
efficient solution of dual problem implies that
(V0. 77 (0. %4 (0), %2 (0), 21 (£), 22 (1), 25 (0327 (0. 22 (1), 72 (1), 2 )i an
efficient solution of the primal.
Similarly (x*(t), x* (t), ¥*(t), V* (t), Z' (t), Z (1) Z3 () Z° (1), Z5 (1), Z2 (1), £)

is an efficient solution of (MixSP) implies
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(V' (1), ¥° (1), x* (1), X* (1), Z' (1), Z3 (1) - 23 (£): Z2 (1), Z (1) on 25 (1), 2)
is an efficient solution of the dual problem (MixSD).
In view of (7.73), (7.74), (7.91), (7.93) and (7.94), we have,
Minimum (MixSP) =j{ (6359 y )+ 6t (6X X%, Y, 77

| o £P (LXK, + 07 (6375, 72,77 dt
Corresponding, to the solution

(Y(1),%(1).Z (1), 2 (t),.... 75 (1); 2 (). Z} (t),... Z£ (1), 2 ), we have,

Minimum (Mix SP) = [{f*(t,y", ', X", X")+ ¢"(t. ¥, ¥*,X*,X°)
| o £ (LYY XX+ 07 (672,97, %, X°) | dt
By the skew-symmetry of each f', we have,
[l (a3 9, 97) + ¢! (6 X2 %%, 72, 97)
| o £2 (632,592, 97) + 07 (6 X2, 52,97 dt
= [{ Tty v )+ o (LY V. X0 %)
i

7.2.4 Special Cases
If J,=0, L,=0, the pair of mixed type nondifferentiable symmetric

dual problems (Mix SP) and (Mix SD) reduce to the Wolfe type
nondifferentiable symmetric dual variational problem (WP) and (WD)

studied by in Section 7.1.

If J,=0, L =0, the pair of mixed type symmetric dual problem

(Mix SP) and (Mix SD) reduce to the following Mond-Weir type symmetric
dual variational problem (M-WP) and (M-WD) recently studied Section 7.1
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If C'=C’={0}andK =K?={0},i=12..,p, i.e., support functions

are suppressed from the formulation of the dual models (Mix SP) and (Mix

SD), we have the following pair of reduced dual models, studied in Chapter 6.
(Mix SP*): Minimize j{ F(tx &y v )+ (x5 %, ¥, ¥?)
|

—yH(t)' (;tT f (t.x %,y )
-DAT f (t,xl,xl,yl,yl))e}dt
Subject to
x'(a)=0=x'(b) , y'(a)=0=y'(b),
x*(a)=0=x*(b) , y*(a)=0=y?*(b),

ATEL (65 YY) =DATE (8X 5, v 9) <0, te

yl
ngyz (t,xz’)-(z’yz’yz)_D}LTgy2 (t,XZ,XZ,yZ,yz)éo tel,

J'yz(t)T (ﬂTgyz (t,XZ,)'(Z,yZ,yz),

i
-DA'g,, (t,xz,xz,yz,yz))zo ,
AeA”.
(Mix SD*): Maximize J'{f (t,ut,ut, vVt + g (tu?,u? v v
i
Ut (t)" (A7 (LUt o)
-DA'f, (t,ul,ul,vl,vl))e}dt
Subject to
u'(a)=0=u'(b) , Vv'(a)=0=Vv'(b),
u’(a)=0=u*(b) , v*(a)=0=Vv*(b),
ATE, (tutut vt =D f, (tutat v V) >0, tel
A'g, (tu?,u?,v? v?)-DATg,
J.uz(t)T (/1Tgu2 (t,u?,u?,v?v?)
|
-DA'g,, (t,uz,uz,vz,vz))zo,,
AeA”.
where  A"={21eRP|2>0, ATe=le=(11...,1) R®|

(tu?,u?, v’ v*)>0,tel,
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7.2.5 Natural Boundary Values

The pairs of mixed type symmetric nondifferentiable multiobjective
variational problem can be formulated with natural boundary values rather
than fixed end points. The problems with natural boundary conditions are
needed to establish well-defined relationship between the pairs of dual

continuous programming problems and nonlinear programming problems.

Following is the pair of mixed type symmetric dual problems with
natural boundary values:

Primal (Mix SPy):
Maximize I(Hl,Hz,...,H ”)dt
|

Subject to
Zp:ﬂi[fyil (65,94, ¥1) =20 (1) = Df (6,5, ¥4, 9) [<0 , tel
i=1

p

> A gl (6625, y%,7) - 27 (1) Dl (6.7, %2, y%, ¥7) | <0, tel

i=1

J‘yz(t)T zii (giy2 (t,xz’xz,yz,yz)

| i=1
_Ziz(t)—Dgiy1(t,X2,X2,yz,yz))JdtzO,

(¥ (1) (1))20, tel

z;(t)eK' and z}(t)eK? , i=12..p

A>0, ATe=1, e =(1,...,1)

fyil (t, Xl’ )-(1’ yl’ yl)

=0, f (t,xl,xl,yl,yl)

i
L
t=a y

=0,i=12,..,p,

t=b

ﬂTgyl (t,xz,Xz,yz,yz)

-0, /1Tg (t,Xz,Xz,yz,yz)

A
t=a y

=0

t=b

Dual (Mix SDy):

Maximize j(Gl,GZ,...,Gp)dt
|
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Subject to

iﬂi[fuil (t’Ul1U1’Vl1\‘ll)+a)il(t)_ Dfull (t7ullulvvl)v1):|zo ' t S |1

i=1

" 4] gl (607,070, + o (1) - Dg, (Lu” 0% 2 ) |20, te,
u (t)-Dg, >

i=1
RO
i=1
-Dg, (t,uz,uz,vz,\‘/z)]dtgo, tel
(V'(t).v*(1))=0, tel

w (t)eCl and &’(t)eC’, i=12..,p

—_—

Al [gll (t,uz,uz,vz,\'/z)+coi2 (t)

ﬂTng (LXz,)-(z’yz,yz)‘ ) —0, ngxz (t’xz,)-(z,yz,yz)

=0
t=b

The duality results for each of the above pairs of dual variational
problems can be proved easily on the lines of the proofs of the Theorems
7.9-7.12, with slight modifications in the arguments, as in Mond and Hanson

[108].

7.2.6 Multiobjective Nonlinear Programming

If the time dependency is removed from the variational problems
(Mix SPo) and (Mix SDo) with natural boundary values and b-a=1, we
obtain the following pair of static mixed type multiobjective dual problems
involving support functions, which are not explicitly reported in the

literature with their correct formulations..
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Primal (Mix SP,):

Dual (

where,

Minimize H =(H"H?,...H")

Subject to

Mix SD1):

Subject to:

gﬂ“i _fyil (xl, yl)_zil]éo,

iﬂ,i _g;z (x2,y2)_zi2]§0,
i=1

[0 0005 oo
=
zeK' and z’eK?,i=1..p,
AeA”,
HU = £ (x v )+ 9" (3, y7) +s(x]Cl) +s(x|c?)

_ylizpl:gi [ fy‘l (xl, yl)_ z' - nyil (Xl’ yl)}_ 2yt 22y

() 24 o (v )+ <0,
i=1
o eCl and &’ eC’? i=12,..,p,

AeA”.

6= 1ol (<) 5 ()

+U'e!

+Uule’ —ulzp:ﬂ,i [ fi(x'y')+aol - Df} (X, yl)]
i=1
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