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ABSTRACT

In this thesis entitled, “Duality in Mathematical Programming”, the
emphasis is given on formulation and conceptualization of the concepts of
second-order duality, second-order mixed duality, second-order symmetric
duality in a variety of nondifferentiable nonlinear programming under
suitable second-order convexity/second-order invexity and generalized
second-order convexity / generalized second-order invexity. Throughout the
thesis nondifferentiablity occurs due to square root function and support
functions. A support function which is more general than square root of a
positive definite quadratic form. This thesis also addresses second-order
duality in variational problems under suitable second-order invexity/second-
order generalized invexity. The duality results obtained for the variational
problems are shown to be a dynamic generalization for thesis of nonlinear

programming problem.

The thesis spreads over seven chapters.

SR A= EE! iS an introductory one. It offers a brief survey of related
work and the summary of the research work reported in the thesis. The

chapter is followed by the summary of the thesis.

consists of two sections, 2.1 and 2.2. The Section 2.1 deals
with the second-order duality in nonlinear programming containing support
functions. In this section formulations of Wolfe and Mond-Weir type duals
to a nondifferentiable mathematical programming are presented and various
appropriate duality theorems are validated. In the subsection 2.1.5 various
special cases are also derived. In the section 2.2 mixed type second-order

duality in order to combine the dual models of previous section is studied, as
a



it is noticed that the concept of mixed duality seems to be interesting and

useful both from theoretical and algorithmic point of view.

is focused on the nondifferentiable multiobjective second-
order duality. This section presents pair of Wolfe and Mond-Weir type
multiobjective symmetric dual programs. For each pair, various duality
theorems namely weak, strong and converse type duality are established
under suitable second-order convexity. The subsection 3.1.2 and 3.2.2

incorporate self duality for both the pairs.

studies second-order symmetric duality in mathematical
rogramming over cones. The subsection 4.1.3 deals with second-order
symmetric and self duality for the programming problems containing
support functions. The subsection 4.1.4 provides maxmin symmetric and self

duality. The subsection 4.1.5 deduces some special cases.

The purpose of chapter 5 is to present multiobjective
version of second-order mixed and self duality in traditional mathematical
programming with a single objective. In addition to validation of various
duality theorems under suitable second-order convexity/ generalized second-
order convexity, in the subsection 5.1.4 self-duality theorem is also validated
for the pair of dual programs under additional restrictions on the kernel

function that appears in the formulations of the problems.

presents a study of second-order duality in variational
problems and gives a formulation of Mond-Weir type second-order dual
problem which allows weakening of second-order invexity/second-order
pseudoinvexity of Wolfe type second-order dual in variational problems.
Second-order invexity and generalized invexity functions are introduced.
Using these second-order invexity and generalized invexity, various duality
theorems are established in the subsection 6.1.3. The subsection 6.1.4 gives

the second-order dual problem with natural boundary conditions when the

b



fixed point boundary conditions are ignored. The subsection 6.1.5 points out
a close relationship between the results established in this chapter with those

of second-order duality nonlinear programming.

is devoted to the study of second-order duality for a class of
nondifferentiable variational problems in which nondifferentiablity occurs
due to the presence of square root of a quadratic form and support functions.
In the section 7.1 variational problem containing square root of quadratic
form is considered .The nondifferentiable term occurs in the integrant of the
objective functional. A Wolfe type second-order dual variational problem is
formulated. In subsection 7.1.1 various duality theorems are proved under
second-order pseudoinvexity assumptions. The subsection 7.1.2 gives a pair
of second-order Wolfe type variational problems with natural boundary
conditions and in subsection 7.1.3 points out a close relationship between
the results established in this chapter with those of second-order duality
nonlinear programming. In the section 7.2 a second-order dual problem is
formulated for a wider class of continuous programming problem in which
both objective and constrained functions contain support functions. In the
section 7.2.2 under second-order invexity and second-order pseudoinvexity,
weak, strong and converse duality theorems are established for the pair of
dual problems. In section 7.2.3, special cases are deduced and a pair of dual
continuous problems with natural boundary values is constructed in the
section 7.2.4. A close relationship between duality results of our problems
and those of the corresponding (static) nonlinear programming problem with

support functions is briefly outlined in the section 7.2.5.
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1.1 GENERAL INTRODUCTION

I\/I athematical programming earned a status of scientific field in
its own right during late 1940’s and since then it has
undergone significant development. It is now regarded as one of the
most vital and exciting part of modern mathematics having
applications in various scientific disciplines such as, engineering
economics and natural sciences. A very common example of
mathematical programming model appears in determining minimum
weight design of structure subject to constraints on stress and

deflection.

A general mathematical programming problem (MPP) can

be stated as:

(MP) Optimize (minimize/maximize) f(x)

Subject to

g,(x)<0 (i=12,..,m),
h;(x)=0 (j=12,..,k),
Xe X



where

) X = (X, %, %,)" IS the vector of unknown decision variables and

i) f,g,(i=1..,m), h(j=1..k)are the real-valued functions of n

real variables x,..,x,and X cR".In this formulation, the

n

function f is called the objective function, the constraints.
0;(x)<0, i=123,...,m are referred to as an inequality constraints,
the constraints h,(x)=0, j=123..k are called equality

constraints. The inclusion xe X is known as abstract constraints.

If the objective and constraint functions are differentiable then
we describe above problem as differentiable programming problem. If
the objective and inequality constraints are affine functions and X is
convex set, then the above problem is known as convex programming

problem.

If all the functions in the problem (MP) are linear then it is
called linear programming problem (LPP). Dantzig developed his
famous Simplex technique for solving linear programming models
during the mid 1940’s, though initially applied for warfare planning.
Its elegance drove many scientists to solve linear programming models
arising in a variety of contexts such as economics, business and
engineering sciences. If the objective function and atleast one of the
constraint or both are nonlinear functions in the mathematical
programming problem, then the problem is termed as nonlinear
programming problem, which was first introduced by R. Courant in
1943. It is the most general programming problem and other problems
can be treated as special cases of the nonlinear programming problem
(NLPP). Nonlinear programming plays a significant role in
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management science, engineering, economics, system analysis physical
sciences and other areas. Some methods for solving nonlinear

programming problem were discussed by Avriel [4] and Zangwill [99].

The pioneer work by Kuhn Tucker in 1951 on necessary and
sufficient conditions for the optimal solution laid the foundation for the
researchers to work on the nonlinear system. In 1957, the emergence of
dynamic programming by Bellman brought a revolution in the subject
and consequently, linear and non-linear systems have been studied
simultaneously. It is disappointing to note that possibly no universal

technique has been established for nonlinear system as yet.

Optimality conditions and duality have played a vital role in the
progress of mathematical programming. Fritz John [59] was the first to
derive necessary optimality conditions for constrained optimization
problem using a Lagrange multiplier rule. Later, Kuhn and Tucker [62]
established necessary optimality conditions for the existence of an
optimal solution under certain constraint qualification in 1951.1t was
revealed afterwards that W.Karush [60] had presented way back in
1939 without imposing any constraint qualification; thus the Kuhn-
Tucker conditions are now known as Karush-Kuhn-Tucker optimality
conditions. Abadie [1] established a regularity condition that enabled
him to derive Karush-Kuhn-Tucker conditions and Fritz John
optimality conditions. Subsequently, Mangasarian and see Formovitz
[68] generalized Fritz John optimality conditions which have not only
laid down the foundation for many computational techniques in
mathematical programming, but also are responsible for development
of duality theory to a great deal. The inception of the duality theory in

linear programming may be traced to the classical minimax theorem of



Von Neumann [87] and was explicitly incorporated by Gale, Kuhn and
Tucker [43].Since then, it has become one of the most widely used and
investigated area of mathematical programming. An extensive use of
duality in mathematical programming has been made for many
theoretical and computational developments in mathematical
programming itself and in other fields which include engineering,

operations research, economics and mathematical science.

The principle of duality connects two programs, one of which is
called the primal problem and the other is called the dual problem, in
such a way that the existence of an optimal solution to one of them
guarantees an optimal solution to other. If the primal problem is
constraint minimization (or maximization), the dual is the constrained
maximization (minimization) problem. The duality results have proved
to be very useful in the development of numerical algorithms for
solving certain classes of optimization problem. The existence of
duality theory in nonlinear programming problem helps to develop
numerical algorithm as it provides suitable stopping rules for primal
and dual problems. A nonlinear programming problem and its dual are

said to be symmetric if dual of the dual is the original problems.

Multiobjective optimization is the art of detecting and making
good compromises. It is based upon the fact that most real-world
decisions are compromises between partially conflicting objectives that
cannot easily be offset against each other. Thus, one is forced to look
for possible compromises and finally decide which one to implement.
So, the final decision in multiobjective optimization is always with a

person-the decision maker.



The first notion of optimality in this setting is popularly known
as Pareto-optimality and is still the most widely used. In Pareto
optimality every feasible alternative that is not dominated by any other
in terms of the component wise partial order is considered to be
optimal. Hence each solution is considered optimal that is not
definitely worse than another. Thus, multiobjective optimization does
not yield a single or a set of equally good answers, but rather suggests

a range of potentially very different answers.

A general multiobjective programming problem (MOPP) can be

expressed as:

(MP): Optimize (minimize/maximize) (fl(x), f2(x),..., f”(x))
Subject to

g,(x)20 (i=12,..,m),
h;(x)=0 (i=12,..k),
X e X.

where xeR", f,g;(i=1..,m), h(j=1..k)and X are described earlier.

Duality for continuous programming problems has been studied
by many researchers. Mond and Hanson [77] were the first to consider
a class of constrained variational problems and dealt with duality
aspect of such problem, where the dual problem was the first-order
dual. Later, a number of researchers have derived duality theorems for
different forms of continuous programming or control problems,
notably, Chandra, Craven and Husain [19], Bector, Chandra and
Husain [13], Mond and Husain [78] and Chen [26,27] .

Mond and Hanson [78] formulated the following pair of dual

variational problems:



Primal Problem:

Minimize [ f (t,x x)dt
|

Subject to
x(a)=a, x(b)=p,

g(t,x,x)<0, tel.

Dual problem:
Maximize [{f (t.u(t),u(t))+y(t) g(tu(t).u(t))t

Subject to
u(a)=ea, u(b)=2,

where

i) | =[a,b], areal interval and

i) f:1xR"xR" >R, g:1xR"xR"—>R™ are continuously
differentiable and y:1—->R™ is piecewise smooth

functions.

Second-order duality in mathematical programming has been
extensively investigated in the literature. A second-order dual
formulation for a non-linear programming problem was introduced by
Mangasarian [67]. Later Mond [70] established various duality
theorems under a condition which is called “Second order convexity”.
This condition is much simpler than that used by Mangasarian [66]. In

[84], Mond and Weir reconstructed the second-order duals and higher

6



order dual models to drive usual duality results. It is remarked here that
second-order dual to a mathematical programming problem presents a
tighter bound and because of which it enjoys computational advantage
over a first order dual. Chen [27] was the first to identify second-order
dual for a constrained variational problem and established various

duality results under an involved invexity- like assumptions.

This thesis is a reflection of above narrated brief survey of
literature. The main contribution of this thesis is to study duality and
multiobjective duality including self and symmetric duality for a variety of
mathematical programming problems confined to nondifferentiable
nonlinear programming with square root of certain quadratic form and
support functions which generally arise in various contexts such as in
models representing oscillation of mechanical system and portfolio
selection. This thesis is also devoted to study second-order duality in

nonlinear programming and variational problems.

1.2 PRE-REQUISITES
1.2.1 Notations

"= n-dimensional Euclidean space,

R"= The non-negative orthand inR",

A= Transpose of the matrix A,

xTe:ixi, xeR™,e=(11..,1)eR"
1=1

Let & be a numerical function defined on an open set T'in R",

then vf (x)denotes the gradient of ¢ at x, that is

vi (x):[af () M}

oxt '




Let ¢ be a real valued twice continuously differentiable function
defined on an open set contained INnR"xR™. Then V #(x,y) and
v, #(x,y)denote the gradient (column) vector of ¢ with respect to x

and y respectively i.e.,

c55)-( 6.2 28)
(x.9)

oxt' ox?’ T Tox"

T

(o4 o9 o
V,8(X.Y)= ayl’ayz""’ay"lx,y)

Further, VZg(x,y)and V:gé(x,y)denote respectively the (nxn)

and(nxm) matrices of second- order partial derivative i.e.,

cuus (28]
(x.9)

ox'x!

Vo (X, y):( 0 ¢ j
(X.9)

ox'x!

The symbols Vi g¢(x,y)and V2g(x,y)are similarly defined.

However, at certain places, to make the meaning of the context more
clear, the subscript of vand v?are taken as the variable with respect to

which the function is being differentiated.

1.2.2 Definitions
Definition 1.1: Let X € R" be an open and convex set and f: X—R be

differentiable. Then we define f to be

1. Convex, if for all x,, x, € X,

f(x,)=f(%,)>(x%) Vf(x,)



2. Strict convex, if for all x,,x, e X and x ,# x,
f(x,)-f (x2)>(xl—x2)T Vi (x,)
3. Quasi convey, if for all x,,x, € X,
f(x,)<f (xz):>(xl—x2)T Vf (x,)<0
4. Psedoconvex, if for all x,,x, € X,

(xl—xz)T V(x,)=0= f(x,)> f(x,)

5. Strictly pseudoconvex, if for all x,,x, e X andx ,#x,
(xl—xz)T VE(x,)=0= f(x,)> f(x,)

6. Invex, if there exists a vector functionr,:R"xR" — R"such
that for all x,,x, € X,

f(x,)—f(x,)=n" (X, %)VF(X,)
7. Pseudoinvex, if there exists a vector function
n:R"xR" — R"such that for all x,,x, € X,
7" (X, %)V (X,)20= f(x,)= f(x,)
8. Quasi-invex, if there exists a vector function

n:R"xR" — R"such that for all x,,x, € X,
f(x,)<f(x,)=n"(X,,%)Vf(x,)<0
Definition 1.2: Let f be a real valued twice differentiable function

defined on an open set X < R", then f is said to be
1. Second-order convex, if for all x, p,ueR"

F ()= (u)=(x=u) [VF (u)+V*f (u)p]- 1/ p'v?f
2. Second-order concave, if for all x,p,ueR"

f(x)—f (u)g(x—u)T [Vf (W)+V2f (u) p]—% p'VZf (u)p.

9



Second-order pseudoconvex, if for all x, p,ueR"
(x—u)" [VF (u)+ V2 £ (u)p]2 0= f(x)= £(u)- L5 p"VZ(u)p
Second-order pseudoconcave, if for all x, p,ueR"
(x—u)" [VF (u)+ V2 £ (u)p]< 0= f(x)< f(u)- Y5 p"VZ £ (L)p
Second-order quasiconvex, if for all x, p,ueR"
f(x)— f(u)+% p"V2f(u)p <0= (x—u)" [Vf (u)+V2f(u)p|<o.
Second-order quasiconcave, if for all x, p,ueR"
f(x)- f(u)+% "V f(u)p = 0= (x—u) [V (u)+V2f(u)p|=0.

Second-order invex, if there exists a vector function

n:R"xR" — R" such that for all x,ue X
f(x)—f(u)znT(x,u)[Vf( +V2 £ ( %p VA (

Second-order incave, if there exists a vector function

n:R"xR" — R" such that for all x,ue X

F ()= (u)<n" (xu)[VF (u)+V*F (u)p]- 3 p'V? 1 (
Second-order pseudoinvex, if there exists a vector function
n:R"xR" — R" such that for all x,ue X

7" (xWVE(u)+ V2 £ ()p]2 0= £(x) f(u)- ¥ p V21 (u

Second-order pseudoincave, if there exists a vector function

n:R"xR" — R" such that for all x,ue X

7" (WVE(u)+ V2 £ (u)p]< 0= F(x)< f(u)- 15 p VA £ (U

10



11. Second-order quasi-invex, if there exists a vector function

n:R"xR" — R" such that for all x,ue X

f(x)— f(u)+% p"V2f(u)p <0= 7" (x,u)|Vf (u)+ V£ (u)p]<o.

12. Second-order quasi-incave, if there exists a vector function

n:R"xR" — R" such that for all x,ue X

f(x)- f(u)+% pTV2f(u)p = 0= 7" (x,u)VF (u)+ V£ (u)p|=0.

Clearly, a differentiable convex, pseudoconvex, quasiconvex

function is invex, pseudoinvex or quasi-invex respectively with

n(x.,%) =(x,—x,).Further we define f to be concave, strictly concave

pseudoconcave, quasiconcave, strictly pseudo convex on X according
as —f is convex, strictly convex, quasi convex, pseudoconvex, strictly

pseudoconvex.

Definition 1.3: Let C be compact convex set in R". The support

function of C is defined by
s(x|C)=max{x"y:yeC}.

Definition 1.4: Let f:R" — R be a convex function, then a subgradient

of f at a point xeR"is a vector &eR" satisfying
f(y)>f(x)+&(y—x), VyeR"

The set of all subgradients of at xeR"is called subdifferential of f at x
is denoted by of (x).

Definition 1.5: Let I be a nonempty of R"

) The set T is called cone if

11



xel[bLA>20=A,xel

i)  Acone IeR"be aconvex if

x+yel forall x,yer

Iii)  Acone I'eR"be a convex cone. Then 1" defined as

F*={ZeR"

:2'x <0, for all XEF}

is called the polar cone of T

Consider the following multiobjective programming problem:

(VP): Minimize  ¢(2)=(4(x).4 (%), 4,(%))
Subject to
h,(x)<0,j=12,..n

Definition 1.6: A feasible point x is said to be a weak minimum of

(VP), if there does not exist any x e X, such that #(x) < ¢(xX) .

A feasible point x is said to be efficient solution of (VP), if

there does not exist any feasible x such that ¢(x) <#(X) .

An efficient solution of (\VP) is obviously a weak minimum to
(VP).

A feasible point x is said to be properly efficient solution of
(VP), if it is an efficient solution of (VP) and if there exists a scalar

M >0 such that for each i and x e X, satisfying ¢ (x) <4 (X), we have

640 _
(¢j (X) _¢j (Y) -
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for some j, satisfying ¢,(x) > ¢,(%).

An efficient point x e X that is not properly efficient is said to be
improperly efficient. Then x is improperly efficient means that every

scale M > 0 (no matter how large), then point xeX and i such that

v'(x) <y'(X) and

' (X) -y (X)

_ - >M,
w' (X) -y (X)

for all j satisfying w'(x)>w'(X)

Definition 1.7: A function f :R"xR" — R is said to be skew-symmetric if

f(xy)==1(y.x)

There are a number of constraint qualifications [67], which are
required to be satisfied by the constraints, while establishing the
necessary optimality criteria to ensure that certain Lagrange multipliers
exist and are non-zero. Here we describe only four of them for

completeness of notations.

) Slater’s constraint Qualification: LetX°be a convex
set inR". The m-dimensional convex vector function
g on X° which defines the convex feasible region

X ={x:xeX° g(x)<0}is said to satisfy Slater’s constraint
qualification onXx° if there exist an xe X°such that

g(X)<0.

i)  The Kuhn Tucker Constraint Qualification:Let X°be
an open set in R".Let g be m-dimensional vector function

on X°and let X ={x:xe X°,g(x)<0}.Then the constraints

13



i)

are said to satisfy Kuhn Tucker constraint qualification at

X e X ,if g is differentiable at x and if

yeR" Thereexistsa n-dimentional vector function e
in the interval [0,1]such that

(a) e(0)=x
=\ (b) e(r)eX for 0<7r<1
(c) -eisdifferentiableatz =0 and

de(0)

Vg, (X)y<0 7=ﬂ,y for some 4> 0.
where I ={i|g, (x)=0}.

The reverse convex constraint qualification: Let X°be
an open set in R".Let g be m-dimensional vector function

defined on x°and let X ={x:xeX°,g(x)<0}, g is said to

satisfy the reverse constraint qualification at xe X ,if g is

differentiable at xand if for each i< either g,is concave

at x org,is linear on R",where I ={i|g, (x)=0}.

Linear independence constraint qualification:The

condition that the vectors vg,(x,),..... Vg, (x,) are linearly

independent and is often referred to as linearly

independence constraint qualification.

1.3 REVIEW OF THE RELATED WORK

1.3.1 Duality in Mathematical Programming
Nonlinear Programming

Consider the nonlinear programming problem:

Minimize  f(x)

14



Subject to
h,(x)<0, (j=L12,...,m)

J

where f:R"—>R and h:R">R,(j=12...,m) are continuously

differentiable. The following problem:

(WD): Maximize f (x)+y"h(x)
Subject to
V(f(x)+y'h(x))=0,

y>0, yeR"

is known as the Wolfe [98] type dual for the problem (P). Mangasarian
[67] explained by means of an example that certain duality theorems
may not be valid if the objective or the constraint function is a
generalized convex function. This motivated Mond and Weir [82] to

introduce a different dual for (P) as
(MWD):  Maximize f(x)
Subject to
Vf (x)+Vy'h(x)=0.
y'h(x)=0

y>0, yeR"

and they proved various duality theorems under pseudoconvexity of f
and quasiconvexity of y'h(-) for all feasible solution of (P) and
(MWD).

Later Weir and Mond [95] derived sufficiency of Fritz John
optimality criteria under pseudoconvexity of the objective and

15



quasiconvexity or semi-strict convexity of constraint functions. They
formulated the following dual using Fritz John optimality conditions
instead of Karush-Kuhn-Tucker optimality conditions and proved
various duality theorems—thus the requirement of constraint
qualification is eliminated.
(FrD): Maximize f(x)
Subject to

y.VE (x)+Vy'h(x)=0.

y'h(x)=0

(¥..y)=0,(v.,y)=0

Duality in Nondifferentiable Mathematical Programming

Mond [72] considered the following class of nondifferentiable

mathematical programming problems:

[N

(NP): Minimize  f(x)+(x"Bx)
Subject to

h,(x)<0, j=12,...,m,

where fand h, , j=12,...,mare twice differentiable function from R"

to R and B is an n x n positive semidefinite (symmetric) matrix. It is

assumed that the functions f andh, , j=1,2,....,m are convex functions.

They established a duality theorem between (NP) and the following

problem
(ND): Maximize f(u)+ yTh(u)—uTV[f (u)+ yTh(u)]

Subject to
Vf (u)+Vy'h(u)+Bw=0,

16



w'Bw<1

y>0.

Further on the lines of Mond and Weir [82], Chandra, Craven and

Mond [23] introduced another dual program:
(NWD): Maximize f (u)—uTV[f (u)+ yTh(u)]

Subject to
Vf (u)+Vy'h(u)+Bw=0,

y'h(u)=0,
w'Bw<1,

y=>0.
and established duality theorems by assuming the function f (-)+(-)" Bw

to be pseudoconvex and y'h(-)to be quasiconvex for all feasible

solutions of (NP) and (NWD).

Later, Mond and Schechter [79] replaced the square root term by
the norm term and considered the nondifferentiable nonlinear
programming problems as:

(NP):: Minimize £ (x)+[S,]

Subject to
h,(x)<0, j=12...,m

Here fandh.

;» (i=12,...,m)are twice differentiable function from R’

to R. The dual for (NP), is the problem:

(ND);: Maximize f(u)+y'h(u)-u'S'v

17



Subject to
Vi (u)+Vy'h(u)+S'v=0,
vl <2

y>0.
where pand qare conjugate exponents.

Later Schechter [89] replaced the norm term or the square root
term by a more general function as the support function of a compact
set. The problem considered by Schechter [89] is:

(NP)2: Minimize  f(x)+S(x|C)

Subject to

h(x)<0, j=12,..,m,

where fandh, , (j=12,...,m)are twice differentiable function from R"
tor and s(x|C)is a support function of a compact convex set C < R".
Using the subdifferential of the support function of s(x|C), the dual of
(NP), is the problem:
(ND),: Maximize f(u)+w'u+y'h(u)
Subject to
Vf (u)+Vy'h(u)+w=0,

y>0, weC.
Duality in Multiobjective Mathematical Programming

For multiobjective programming problem, we shall follow the

following conventions for vectors in R"

X<Y, S X <Y, i=12,...,n

18



X<y, < %< Y i=12,....n
X<y, & X <Y, i1=12,...,n, butx=y
x £y, 1s the negation of x<y.
Consider the multiobjective programming problem:
(VP): V- Minimize F(x)=(f,(x), f,(X),... f,(x))
Subject to

h; (%)

IIA
o
—_~
N

Il

il
N

3
~

Here X cR"is an open and convex set and fand h, are
differentiable functions where f:X -»R,i=12...,p and h:X >R,

j=12,...,m. Here the symbol “V-Min” stands for vector minimization

and minimality is taken in terms of either “efficient points” or
“properly efficient points” given by Koopman [61] and Geoffrion [44]

respectively.

Geoffrion [44] considered the following single objective

minimization problems for fixed 1eR”:

(VP),:  Minimize > 41,(x)

Subject to
h(X)<0, (j=12..m),

and prove the following lemma connecting (VP) and (VP), .
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Lemma 1.1
() Let 450, (i=12...p), >4 =1 be fixed. If xis optimal for

(VP),, then x is properly efficient for (\VP).

(i)  Let fiand h, be convex functions Then x is properly efficient for
(VP) iff xis optimal for are differentiable functions (VP), for

p
some 4 >0, > 4 =1 (i=12,..,p).
i=1

If f.and h, are differentiable convex functions then (VP),is a convex
programming problem. Therefore in relation to (VP),consider the

scalar maximization problem:
(VD).: Maximize A" f(x)+y'h(x)=A"(f(x)+y"h(x))
Subject to
V(A" f(x)+y'h(x))=0

AeA",y>0,
where e=(11....1)eRPand A" ={1eR”:2>0,4"e=1}.

Now as (VD),is a dual program of (VP), ,Weir [94] considered the

following vector optimization problem in relation to (VP) as
(DV): Maximize (f (x)+ yTh(x))e
Subject to

V(WT f(x)+ yTh(x)) =0

where e=(11,...,1)e R’
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They termed (DV) as the dual of (VP) and proved various duality
theorems between (VP) and (DV) under the assumption that fand g

are convex functions.

Further for the purpose of weakening the convexity requirements
on objective and constraint functions, Weir [94] introduced another

dual program (DV1)
(DV1): Maximize  f(x)

Subject to

weA”, y>0,

And various duality theorems are proved by assuming the function f

to be pseudo convex and y'h to be quasiconvex for all feasible

solutions of (VP) and (DV1).
1.3.2 Symmetric Duality in Mathematical Programming
Symmetric Duality in Differentiable Mathematical Programming

Consider a function f(x,y)which is differentiable in x<R™and
y e R™. Dantzig et al [38] introduced the following pair of problems:
(SP):  Minimize f(x,y)-y'V,f(xy)

Subject to

v, f(xy)<0
(x,y)=0.
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(SD): Maximize f(x,y)-x"V,f(xy)
Subject to
vV, f(xy)=0
(x,y)=0.

and proved the existence of a common optimal solution to the primal

(SP) and (SD), when (i) an optimal solution of (x_,y,)to the primal (SP)
exists (i) fis convex in x for each y, concave in yfor each x and

(iii) f, twice differentiable, has the property that at (x,,y,)its matrix of

second partials with respect to y is negative definite.

Mond [71] further gave the following formulation of symmetric

dual programming problems:
(MSP): Maximize f(x,y)-y'V, f(xy)

Subject to

(MSD): Maximize f(x,y)-x"V, f(x,y)

Subject to

It may be remarked here that in [38], the constraints of both (SP)
and (SD) includex>0, y>0, but in [71] only x>0 is required in the

primal and only y >0 in the dual.
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Later Mond and Weir [82] gave the following pair of symmetric
dual nonlinear programming problems which allows the weakening
of the convexity-concavity assumptions to pseudoconvexity-

pseudoconcavity.

(M-WSP): Minimize f(x,y)
Subject to

v, f(xy)<0

y'V, f(xy)=0,

x> 0.

(M-WSD): Maximize f(x,y)
Subject to
vV, f(xy)<0

X'V, f(xy)<0,

y>0.

Symmetric Duality in Nondifferentiable Mathematical Programming
Let f (x,y)be a real valued continuously differentiable in xeR"

and yeR™. Chandra and Husain [21] introduced pair of symmetric
dual nondifferentiable programs and proved duality results assuming

convexity-concavity conditions on the kernel function f (x,y):

NI

(NP): Minimize f(x,y)-y'V,f(xy)+(x"Bx)
Subject to
-V, f(x,y)+Cw>0,

wCw<1,
(x,y)=0.
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NI

(ND): Maximize f(x,y)-x"V,f(xy)-(y'Cy)
Subject to
-V, f(x,y)-Bz<0
7'Cz <1,

(x,y)=0.
where B and C are n x m and m x m positive semidefinite matrices.

Further on the lines of Mond and Weir [82], Chandra, Craven
and Mond [23] presented another pair of symmetric dual
nondifferentiable programs by weakening the convexity conditions

on the kernel function f(x,y) to the pseudoconvexity and

pseudoconcavity. The problems considered in [23] are:

N

(PS): Minimum f(x,y)+<xTBx) —-y'Cz

Subject to
v, f(xy)-Cz<0,
y' [Vyf (x, y)—Cz] >0
7'Cz <1,

x>0.

N

(DS): Maximum f(x,y)+(yTCy) —x"Bw

Subject to

V. f(xy)+Bw>0,
X' [V, f(xy)+Bw]|<0,

w'Bw<1,

y > 0.

24



Following Balas [5] and Kumar, Husain and Chandra [63],
Gulati, Husain and Izhar [45] formulated two distinct pairs of

nondifferentiable symmetric dual minimax mixed integer programs:

-

2

(MPS): MaxMin F (xy)=f (x D-() V.1 (x y)+((X2)T sz)
Subject to

V. f (x,y)-Cw<0,
wCw<1,
x* >0,

XleU,yleV.

-

2

(MDS): Mygx I\X/IJZn G(x,y)=f(x y)—(xz)T V. f(x y)+((y2)T Cyz)

Subject to

V. f(xy)+Bz>0,

x'eU,y' eV.
and

1
2

(SP): Max I\X/zllyn L(x,y)=f(x, y)—(yz)T CW+((X2)T sz)

Subject to
V. f (x,y)—-Cw<0,

(yz)T (Vyz f (X, y)—CW) >0,
wCw<1,
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x% >0,

XleU,yleV.

.

2

(SD): l\/llm I\X/I?ZX H(xy)=f (x,y)+(x2)T Bz_((yz)T Cy2)

Subject to
V. f(xy)+Bz=0,

(xz)T (sz f(xy)+ Bz) <0,

NG eU,yl eV.

Subsequently Mond and Schechter [81] introduced the following
pair of symmetric dual programs one of which is Wolfe [98] type and

another is Mond and Weir [82] type.
(P): Minimum £ (x,y)-y"V,f(x,y)+S(XC,)
Subject to
V,f(x,y)-z<0,
zeC,, x20.
(D): Maximum £ (u,v)-u'V,f (u,v)+S(v|C,)
Subject to
v, f(uv)+w=>0,
weC,,Vv>0. and
(P1): Minimum f(x,y)-y'z+S(XC,)
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Subject to

V,f(x,y)-z<0,

y' (V. (xy)-2)=0,

zeC,, x>0.

(D1): Maximum £ (u,v)+u"w+S(v|C,)

Subject to
v, f(uv)+w=>0,
u" (V,f (u,v)+w)<0,
weC,,v=0.
Symmetric Duality in Multiobjective Programming
Mond and Weir [83] discussed symmetric duality in
multiobjective programming by considering the following pair of
programs:
(PS): Minimum f(x,y)—(yTVZ/le(x,y))e

Subject to

V,ATf(x y)<0,

x>0, AeA”

(DS): Maximum f(x,y)-(x'V,A"f (x,y))e
Subject to
VA" f (% y)=0,

y>0,1eA”
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Where f :R"xR™ -R", e=(11....1)eR? and A" ={2eR":1>0,4"e=1}

and proved the symmetric duality theorem under the convexity —

concavity assumptions on f(xy). Here the minimization/

maximization is taken in the sense of proper efficiency as given by
Geoffrion [44].

Further on the lines of scalar case (Mond and Weir [82]) also
considered another pair of symmetric dual programs and proved
symmetric duality results under weaker conditions of pseudoconvexity-

pseudoconcavity:
(PS1): Minimum f(x,y)

Subject to
V,A"f(x,y)<0
y'V,ATf (x,y)=0
x>0, AeA”
(DS1): Maximum f(xy)-(x'V,A"f(xy))e
Subject to
VAT (%,y)20,
x'V,ATf (xy)<0,
y>0,AeA".

Later Chandra and D.Prasad [24] introduced following pair of

multiobjective programs by associating a vector valued infinite game.
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(PS™): Minimum  f(x, y)—(yTVZ,qu(x, y))e
Subject to
V,u' f(xy)<0,

x>0, ueA”.
(DS*): Maximum  f (x, y)—(xTvlﬂuT f(x, y))e
Subject to
VAT (x,y)20,
y>0,leA”

Here it may be noted that not the same Ais appearing in (PS*)
and (DS*) and this creates certain difficulties which are also discussed
in [24].

1.3.3 Second-Order Duality in Mathematical Programming

We consider the following nonlinear programming problem:
(NP): Minimum  f(x)

Subject to

g(x)<0

where xeR", fand gare twice differentiable functions from R"and R

and R™, respectively.

Mangasarian [66] formulated the Wolfe [98] type second-order
dual of (NP).
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(ND-1): Maximum [f(u)+ yTg(u)]—% pTV2[ £ (u)+y g ()]

Subject to
V[f (u)+ yTg(u)]+V2[f (u)+ yTg(u)] p=0,
y>0

where peR" and for any function ¢:R" —»R, the symbol V?g(x)

designates nxn symmetric matrix of second-order partial derivatives.
Mangasarian [66] established usual duality theorems between (NP) and

(ND-1) under the assumptions that are involved and rather difficult to

verify.

1.3.4 Second-Order Symmetric Duality in Mathematical
Programming

Mangasarian [66] was the first introduced the concept of second-
order duality. Later Mond [70] constructed the following pair of

second-order symmetric dual problems:

A T 2 1
(PP): Minimum  f(x,y)-vy (Vyf(x,y)+Vyf(x,y)p)—§p vif(x,y)p

Subject to
v, f(xy)+V,f(xy)p<0,

x> 0.

(DD): Maximum £ (x,y)=x"(V,f (x, y)+Vif (x, y)q)—%quif (x,y)q

Subject to
V. f(xy)+Vif(xy)q=0,

y>0.
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He studied appropriate duality theorem between (PP) and (DD)
under the second-order concavity assumptions on the kernel function

f (x,y). Further Bector and Chandra [10] introduced another pair of

second-order symmetric dual nonlinear programs on the lines of Mond
and Weir [82] and studied duality under weaker generalized convexity

assumptions.

1.3.5 Variational Problems
A variational problem can be considered as a particular of an optimal
control problem in which the control function is a derivative of a state

function.
A variational problem is of the form:

(VP): Minimize [ f(t,xx)dt

Subject to
x(a)=a, x(b)=p
g(t,x,x)<0,  tel,

xeC(I,R").

where 1=[a,b]is a real time interval, x denotes derivative of x with

respect to t, f:IxR"xR"—>Rand g¢:1xR"xR"—-R are continuously
differentiable functions with respect to each of their arguments;

C(1,R") is the space of continuously differentiable functions x:1 —R",

and is equipped with the norm |x|=|x| +|Dx| where the

differentiation operator D is given by u=Dx < x(t)= a+ju(s)ds except

a

at discontinuities.

31



The following necessary conditions for the existence for (\VVP)

are derived by Valentine [93].

Theorem 1.1.2: For every minimizing arc x=x(t)of the problem (VP),

there exists a function of the form
H=2f(t,x%)-A(t) g(txx)

Such that

()" g(t,x,x)=0

(24,4(t))=0, (2, A(t))=0, tel
hold throughout I (except at corners of x* where H, =%HX, holds for

unique right and left limits). Here 4, is constant and A(-)is continuous

except possibly for values of t corresponding to corners of x".

In [77] Mond and Hanson studied Wolfe type duality for
variational problems (VP) while in [93] they investigated Wolfe type
duality symmetric duality for the variational problems (VP). Later
Bector, Chandra and Husain [13] studied Mond-Weir type non-
symmetric as symmetric continuous programs which are variational

problems.

1.3.6 Second-Order Duality for Variational Problems
A second-order dual to a mathematical programming problem
presents a tighter bound and hence it enjoys computational advantage
over a first order dual. Motivated with this remark Chen has identified
second-order dual. The following is the Wolfe type dual to the above
problem:
32



Maximize: T{f(t,u(t),u(t))Jra(t)Tg(t,u(t),u(t))

Subject to

Let

The above problem can now be written as
b
(VD): Maximize [{f (tu(t).u(t))+e(t) g(tu(t).u(t))

LB H (t,u(t),u(t),a(t),ﬂ(t))}dt
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Subject to

Oc(t)eRlﬂ , ,B(t)eR" tel

For the above dual pair of problem, Chen [27] established the
following weak duality under somewhat strange conditions , strong

and converse duality theorems.

Theorem 1.1.3 (Weak Duality): Let x(t)e X be a primal feasible
solution of (VP) and (u(t)y(t)A(t)) be a dual feasible solution of

(VD).If j .)dt and ja "xg(t,.,.)dtare invex in xand x on I with

respect to the same 5 :1xR"xR" —R" satisfying »=0 att =1and t=0b,
then there exist k(t,y(t),y(t).a(t))>0and K(t,y(t),y(t),«(t))>0such

that the following conditions hold:

,B(t)TH(t,y(t),y(t),a(t)) k(t,y(t),y Hﬁ

HH(t’y(t)’y(t)’“(t))HSK(t,Y(t),Y(t),a(t)),tel
(t). (1))

—Hﬂ =Ly (), H a(t)),tel.

Then the following mequallty holds between the primal (VP)
and dual (VD) objective functions:

[ {ex(e) k(e [] £ (tu(©.0(0) ra ) o (ty(0).y(0)
-8 H(ty(t)»(t)a(t))ﬂ(tﬂ
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Theorem 1.1.4 (Strong Duality): If x(t)eXxis a local (or global)

optimal solution of (VP) and some piecewise smooth function
v:1 ->R" and Slater condition holds, then there exists a piecewise
smooth @:1 —R" such that (x(t),z(t), 5(t)=0)is a feasible solution of
(VD),and the two objective values are equal. Furthermore, if the
invexity-like requirements among with additional conditions in

Theorem 1.1.3 hold then (x(t),z(t),3(t)=0)is an optimal solution of
(VD).

Theorem 1.1.5 (Converse Duality): Suppose that f and g are thrice
continuously differentiable. Let (x(t),y(t),B(t)) be alocal (or global)

optimal solution of (D), if the following conditions hold:
():  Hisnonsingularat (x(t),y(t),B(t)):

(i) [r(©) HEY0).50).@Or )]
-D[r(t) H(ty().5(1).@(t)r(t)] =0

=r(t)=0, for all r(t)eX,tel

x

Then y(t) is a feasible solution of (VP), a(t)" g(t.¥(t),y(t))=0,
and the two objective functions are equal. In addition, if the conditions

in Theorem 1.1.3, then y(t) is an optimal solution of (VP).
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1.4 SUMMARY OF THE THESIS
The results obtained in this thesis are presented in chapters 2-6.

The results of this thesis are briefly summarized chapter wise.

CHAPTER 2

Chapter 2 is divided in two sections, section 2.1 and section 2.2.
In section 2.1, we consider the following nondifferentiable nonlinear

problem with support functions.
(NP):  Min f(x)+S(x/C)
Subject to,
g,(x)+S(x/D,)<0,(j =12..m)

For this problem, we construct the following Wolfe and Mond-Weir

type second-order dual.

(WD): Max f(u)+ zTu+ZE‘yj(gj(u)+ W] (u))—% p"V2(f(u)+y g(u))p
Subject to,
V(f(u)+ zTu)+2y1V(gj(u)+wj)+V2(f(u)+ y g(u))p=0,

y >0,

zeC,w; eD;, (j=12.,,,m).
Mond-Weir type second-order dual for the problem (NP).

(SM-WD): Max f(u)+z'u- %) p'v*(f(u))p
Subject to,

Vi (u)+z +Zri;yj (ng(u)+ W, )+V2(f (u)+ yTg(u))p =0,
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3,0+ w7u)- 15 V(s o) >0,

j=1
y >0,

zeC,w; €D, Vj=12,..m

For the pair of Wolfe type second-order dual problem (NP) and (WD)
usual duality theorems are validated under second-order convexity, and
for the pair of second-order Mond-Weir problem (NP) and (M-
WD),various duality theorems are validated under second-order
generalized convexity. Special cases are also deduced. In section 2.2,
mixed type second-order dual to the non-differentiable problem
containing support functions is formulated and duality theorems are
proved under generalized second-order convexity conditions. Special

cases are also studied.

Mixed type second-order dual to the problem (NP) is formulated as:

(Mix SD):

Maximize f(u)+u'z+>y, (gi(u)+uTwi) —%Vzp{f(u)jLZyigi(u)} p

iely iely

Subject to,

VW) + 2+ y(Ve, @+ w) VA (fW) +y oW =0 ()

i=1

D (gi(U)+UTWi)—% DTVZ[Zyigi(u)Jp >0,0=1,2,....r. (3)

iel, iel,

y >0 (4)

zeC,webh, i=1,2,...m. (5)
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where
()le =M = {12...m} , & =0, 12,...r with |JI, =M and
i=0
L(1,=¢ifa=}.

(iJueR", peR"and yeR".

CHAPTER 3

This chapter deals with second-order symmetric duality for non-
differentiable multiobjective programming problems. It consists of two
sections,3.1 and 3.2.In section 3.1 following Wolfe type non-
differentiable multiobjective second-order symmetric dual problems
are formulated and for this pair of problem weak, strong and self

duality theorems are established under suitable convexity conditions.

Primal (SWP): Minimize F(x,y,z,p)=F (x Y.z, p),...F. (X ¥, 2, p)

Subject to,

K
Zﬂfl(vzfu X y Z; +v§fi(x’ y)p)é 0

i=1

z,eD,,i=12,...,k

Wolfe type dual to the problem (SWP) is:

Dual (SWD): Minimize G (u,v,w,q) =G, (u,v,w,q),...G, (u,v,w,,q)

Subject to,

3 4,V v)-w, + V2 £ uv)a) 0

i=1
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w, eC,,i=12,...,k
v>0

Aen

where

i F(xy.z,p)=fi(xy)+s(x|C)-y'z —% p'ViE(x,y)p

-y’ Zk:ﬂi (Vz fi (X! Y)_ z,+ V51, (X’ y)p)

i=1

i, G(uv,wq)=f(uv)-sv|D)+u"w, —%qTVf f.(u,v)g

—u’ Zk:/li (v, f,(u,v)-w, +V2f,(u,v)g) and

i=1

iii. Foreachi, s(x|C,) and s(v|D,) represent support functions of
compact convex sets C;and D; in R" and R™, respectively.

iv.  w=(w,..w) with w, eC, and z=(z,,...z, ) for each {i=12,...,k}

Kk
V. A ={/1eRk | A=A 2 ) A>0,D 4, =1}

i=1

In section 3.2 following Mond-Weir type nondifferentiable
multiobjective second-order symmetric dual problem are formulated
to the problem (SWP)

(SVD): Maximize G(u,v,w,q)=(G,(u,v,w,q),...,G,(u,v,w,,q))

Subject to,

¥ 2 (Vo (V) + w4 V2 (0,v)a) 2 0,

i=1
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k
Uy A (Vo fi U v)+w + Vi £ (u,v)g) £ 0,
i=1

A>0,

v>0,w. eC,i=12,..,k.
where
] 1
(I) F(XY,z,p)= (X y)+S(X|Ci)_yTZi _E IOTV§ f,(x,y)p

Gy (U, W, Q) = f,(U,v) — S(v| D) +U"w, —%qTVf f(u,v)g

(i) w=(W,..,w,) with w, eC, for ie{l,2,...,k},
z=(z,..,2,) With z €D, for ie{L,2,....k}, and
A=(4,...A4)" with 2 eR forie{y2,..,k}; and

(i)  for each iefl,2,..k}, s(x|C) and s(y|D) represent
support functions of compact convex set C. in R" and

compact convex set D, in R™, respectively.

For this pair of problems weak, strong and self dually theorems
are established under suitable second-order generalized convexity
conditions. Some additional restriction is assumed to validate self

duality theorem.

CHAPTER 4

In this chapter following pair of second-order symmetric dual

programs with cone constraint is formulated.
(SP): Minimize G(x,y, p)=f(x,y)—y" (V,f(x,y)+V:f(x,y)p)
_l V2§
> Py (x,y)p
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Subject to,
-V, f(x,y)-V,f(x,y)peC;
(x,y)eC, xC,
(SD): Maximize H(x,y,q)=f(x,y)-x"(V, f(xy)+Vf(x,y))
1 ¢
—5 AV f Y
Subject to,
V, f(xy)+Vif(x,y)aeC
(x,y)eC, xC,
where

(1) f :C,xC, — R is a twice differentiable function,

(i) C, and C, are closed convex cones with nonempty interior

in R" and R™, respectively;

(i) ¢ and c, are positive polar cones of C, and C,

respectively.

For this pair of problems various duality theorems including self
duality theorems are proved under second-order convexity [ second-
order concavity. In section 4.4 following pair of second-order mixed
integer symmetric and self duality is investigated.

Primal Problem
(MSP):  MaxMin ¢(x,y,s) = f(x,y)—(y?)' (vyz F(xy)+ V2 (x, y)s)
X X2,Y,8
1
_EST Viz f(x,y)s
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Subject to,
_vyz f (X! y) _vf,z f (X, y)S € K;

xteU, (X%, y) e K xT.

and

Dual Problem

(MSD):  MinMaxy(x.y,r)=f(x,y)—(x2) (V. f(x,y)+ V2 f(x,y)r) f(xy)
y X, y©,r

1
—E(rT)TVizf(x, y)r

Subject to,
VB Y)+VEL (X y)reK,
y eV, (x,y?) eSxK,
where seR™™ and reR"™™.
Finally in this chapter, special cases are generated.

CHAPTER §

In this chapter following pair of mixed type multiobjective
second-order symmetric dual problems is formulated.

Primal Problem:

(SMP): Minimize F(x*, X2, y*, V%, p, 1)

=(ROK YL Y2 P, F (04X, Y Y2, ) )
Subiject to,

VAT DY)+ VAT YY) p£0,
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V. (AT9) (X% y) + V2 (AT g) (X%, y*) r< 0,

)|V, (2790 )+ V2 (2T )0 ) | 2 0,

Dual Problem:

(SMD): Max  G(u',u*v',v*,q,8) =(G,(u",u*,v,V*,q,5s),..., G, (u',u*,v',v*,q,5))

Subject to,
V(AT H)u V) +VE@A U V) g2 0,

V. (ATg)(u? V) + V2 (AT g) U v?) s = 0,

(u?) [V, (AT (U, V*) + V2 (A g)(u? v?) s ] £ 0,

where
() R Y P = B, -2 PTVAT (6P
)V, (AT Y+ VAT Y p)
+gi(x2,yz)—%rTijgi(xz,yz)r
(i) Gi(ul,uz,vl,vz,q,s)zfi(ul,vl)—%qTVilfi(ul,vl)q

—(ud)T {vxl (AT YU V) + VA (AT f)(ul,vl)q}
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+9; (U?,v?) —%sTvizgl(uz,vz)s

(iii) peR® reR¥ geR¥seR™and A = (A...,A)" with

hMeR,1=12,.. k.

(iv) A" ={keRk |x>o,zk:x1}

i=1

For this pair of problem, weak, strong and converse duality
theorems are validated under second-order convexity - second-order
concavity of the kernel function appearing in the primal and dual
programs. Under additional conditions on the kernel constituting the
objective and constraint functions, these programs are shown to be self
dual. This formulation of the programs not only generalizes mixed type
first order symmetric multiobjective duality results but also unifies the
pair of Wolfe and Mond-Weir type second-order symmetric

multiobjective programs.

CHAPTER 6

In this chapter, we have constructed Mond -Weir type second-
order dual to the variational problem and derive usual duality results
under second-order pseudo-invexity and second-order quasi-invexity
assumptions.These models allows the weakening of the invexity
assumption required for Wolfe type dual models of Chen [27].The

following is the pair of Mond-Weir dual models:
(P):  Minimize [ f(t,x%)dt
|
Subject to

x(a)=0=x(b),
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g(t,x,x)<0,  tel,

(D): Maximize _[{f (L)~ (t) F(t)ﬁ(t)}dt
Subject to

u(a)=0=u(b)

f,+y(t) 9, -D(f,+y(t) g, )+(F+H)A(t)=0, tel

[ {y(t)T ot,uu)~ 2 A0 H,B(t)}dt >0, y(t)20,tel

where

F=f,—Df, +Df, and H :(y(t)T gu) —D(y(t)T gu) +D2(y(t)T gu) and

u u u

define D =%as defined earlier.

If fand g are independent of t then F=f, and H=(y'g,) and

consequently (D) will reduce to the second-order dual problem
introduced in [11].

CHAPTER 7

This chapter consist of two main sections 7.1 and 7.2. In 7.1 we
consider the following class of nondifferentiable continuous

programming problem (CP™):
(CP*): Minimize _[{f (6 (1), %(t)+(x(1)' B(t)x(t))%}dt
Subject to

x(a)=0=x(b),
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g(t.x(t),x(t))<0,  tel

Analogously to the second-order dual problem introduced by
Mangasarian [66] for a nonlinear programming problem, we consider
the following second-order dual continuous programming problem
(CD") for (CP™).

(CD"): Maximize j{f(t,u(t),u(t))Jru(t)T B(t)z(t)+y(t) g(tu(t).u(t))

Subject to
u(a)=0=u(b)

f(tu(t),u(t))+u(t) B(t)z(t)+y(t) g(tu(t),u(t))
_D(fu. (tu(t),u(t))+y(t) g, (t,u(t),u‘(t)))+H(t)p(t):O tel

z(t) B(t)z(t)<1, tel,  y(t)=0, tel,

where

H (1) = 1, (Lu0)+(y(0) g, (tu0)) ~2D] £, (tua)+(y (1) g, (tu.0)) |

u

07 1, (L.0)+(y(1) g, (b)) |

For this pair of problem we have established usual duality results
under second-order pseudoinvexity as an continuous — time version of
second-order pseudo invexity for static case. Problems with natural

boundary are formulated and special cases are obtained.

In section 7.2 we have studied Wolfe type second-order duality
for a wider class of nondifferentiable continuous programming

problems in which support functions occur. The dual models are given
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below. For this pair of dual models various duality results are derived

under second-order invexity and second-order pseudoinvexity.

Consider the following nondifferentiable continuous programming

problem with support functions of Husain and Jabeen [52]:

(CP.): Minimize [{f (t,x,%)+S(x(t)|K)}dt

Subject to
x(a)=0=x(b),
o’ (tx,X)+S(x(t)|C’)<0, j=12.m, tel,

where, fand g are continuously differentiable and each C’, j=1,2..m is

a compact convex set in R". The following problem is formulated as
Wolfe type dual for the Problem (CP.):

(CD+):MaXimize.[{ t,u,u)+0( +iyJ ( (t,u,u)+u(t) w (t))
_% p(t) H (1) p(t)}dt
Subject to
u(a)=0=u(b)

f, (t,u,u)+z( +iyJ ( (tu,d)+w! (1))

=D(f, (t.u,u)+ y (1) gy (tu,u))+H (1) p(t) =0, tel
Z(t)e K,w! (t)eCj,t el,j=12..m.

y(t)=0, tel.
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2.0 INTRODUCTORY REMARKS

any authors have studied duality for a class of nonlinear
I\/I programming problems in which the objective function
contains a differentiable convex function along with either a positive
homogenous function or the sum of positive homogenous functions,
e.g., Sinha [91], Zhang and Mond [101], Mond [72,73], Chandra and
Gulati [20] and Mond and Schechter [80,81]. These authors have

introduced the square root of positive semidefinite quadratic form
(x"Bx)"*or a norm term of the type |Px| as a positive homogenous

function. The popularity of this kind of problem stems from the fact
that even though the objective function and /or constraint functions are
nondifferentiable, the dual problem comes out to be a differentiable
problem and hence is more amenable to handle from the computational
point of view. As demonstrated by Sinha [91], these problems have
applications in the modeling of certain stochastic programming
problem. While most of these studies have considered only the Wolfe
type of dual, Chandra et al [23] studied duality for such problems in
the spirit of Mond and Weir [82] in order to relax convexity conditions

assumed in aforecited references.
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Mangasarian [66] was the first to identify a second-order dual
formulation for non-linear programs under the assumptions that are
complicated and somewhat difficult to verify. Mond [70] introduced
the concept of second-order convex functions (named as bonvex
functions by Bector and Chandra [11]) and studied second-order

duality for nonlinear programs.

This chapter has two sections 2.1 and 2.2. The purpose of the
section 2.1 is to formulate Wolfe and Mond-Weir type second-order
duals for a nonlinear programming problem in which the objective and
the constraint functions contains a term of a support function and
establish various duality results for each pair of dual problems. It is
pointed out that duality results obtained in [50] become special cases of
our results. In section 2.2 we present a mixed type second-order dual to
the non differentiable program which combines Wolfe and Mond-Weir
second-order duals considered in section 2.1.1t is also pointed out that
first-order mixed type duality results proved in section 2.1 are special
cases of our results. It is also indicated that the duality results studied
by Zhang and Mond [101] becomes special cases of our results if the
support function is the objective is replaced by square root of positive
semi definite quadratic form and the support functions that appear in

the constraints are suppressed.

2.1 SECOND-ORDER DUALITY IN MATHEMATICAL
PROGRAMMING WITH SUPPORT FUNCTIONS

2.1.1 Pre-requisites

Let f:R" >R and g;:R"—>R,(j=12,,,m)be subdifferentiable

functions. Let C be a compact convex set in R". Then consider the

following nonlinear programming problem:
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(P): Minimum f(x)
Subject to
9;(x)<0, (j=12..m)

xeC
The following lemmas relating to (P) will be used here:

Lemma 2.1.1 [91]: If x is an optimal solution for (P), then there exist

AeR,and ueR",such that
0 e A0f (X)+ D 11,69 (X)+ N (%),
j=1

/I+i,uj >0,

j=1

#,9,(x)=0, j=12,..m.

Lemma 2.1.2 [91]: If x is an optimal solution for (P), and a Slater’s
constraint qualification holds for (P), then there exist non negative

constants y;(j=12,...,m), such that

0eof (X)+Z,ujagj(>_<)+ N (%),
=1
#;9;(X)=0, j=12..m.

It is to be noted that under the conditions of convexity on the

functions f and g,,(j=12,...,m), these necessary conditions are also

sufficient for the optimality of x for (P).

2.1.2 Nondifferentiable Programming Problem Containing
Support Functions and Duality

Let f:R" >R and g,:R" >R, (j=12,..,n) be twice differentiable

functions. Let C and D,, (j=12...,m)be compact convex sets in R".
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We consider the following nondifferentiable nonlinear programming
problem:
(NP): Minimum f(x)+S(x/C)

Subject to

g;(x)+S(x/D;)<0, (j=12..m) (2.1)

In studying duality for (NP) certain optimality conditions in the
non-smooth setting will be required. These conditions which can be
derived from [91] along with the application of Lemma 2.1.1 and

Lemma 2.1.2 are given below:

Theorem 2.1.1: If x is an optimal solution for (NP), then there exists

aeR,7eC,yeR" and W, eDj,(j =1,2,...,m) such that

a(Vi(x)+ Z)+Zm:7j(ng(>‘<)+v_vj): 0,

When a suitable constraint qualification holds for (NP) the
above Fritz John optimality conditions reduces to the Karush-Kuhn-
Tucker optimality conditions, as this asserts positiveness of the

multiplier & associated with the objective function.

2.1.3 Wolfe Type Duality
Consider the following nonlinear program, which will be proved
to be a dual program to (NP)
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(WD): Max f(u)+z'u +2yj(gj(u)+ w] (u))—% p"V2(f(u)+y g(u))p
Subject to,

V(f(u)+ zTu)+iij(gj(u)+Wj)+V2(f(u)+ yTg(u))p =0,

(2.2)
y >0, (2.3)
zeC,w,; eD;, (j=12,,,m). (2.4)

Theorem 2.1.2 (Weak Duality): Let x be feasible for (NP) and
(u,z,y, p,w,w,,..w ) be feasible for (WD) and let for all feasible

(x2,y,p,wW,W,,...w) , f() and g,(), (j=L2..m) be second-order

convex, then

f(x)+S(x/C)> f(u)+z u+2y ( ))—% p"V2(f(u)+y g(u))p.
i.e., Inf.(NP)>sup. (WD)

Proof: Let x be feasible for (NP) and (u,z,y, p,w,,w,,..w, ) be feasible

for (WD), therefore, from second-order convexity of f(-) and g ()

(j=12.,,,m)we have

=

[f +yTg(x Zy ] [ u)+y glu)+ Zm:ij}ujz
5y, 0c-0)- 07V (1) g(u)p)s
(X—U)[(Vf (u)+Vy"g(u)+V?(f (u)+y"g(u))p) J(2-5)
Now from the dual feasibility, we have

(x —u)(Vf (u)+vy'g(u)+ Vz(f (u)+y" g(u))p)=
—u)z—z‘ij}(x—u) (2.6)

52



Therefore from (2.5) and (2.6) we get,
(f +y"g(x Zy W, X}{ )+yT9(U)+ZijTU]Z

~(x-u)'z-1 p'v*(f(u)+y g(W)p

l.e.,

(f(x)+ sz)—(f(u)+z u+y'gu Zy wlu—1/2p"v2(f(u)+ yTg(u))p]Z

(— yTg(X)—iij,TX]

=
but S(x/C)> z"x, whenever zeC and S(x/D, )>w! x, whenever w, eD,.
which implies that

0> gj(x)+S(>‘</Dj)2 g, (x)+w]x.

0>y,(g; +S(x/D;)

m

022 y;9,0)+ 2 y,wix =y g(x)+ 2 y;wi X

=
x)+iij}x§ 0
=
As y>0,we get (— yTg(x)—Zm:ijJTxJ > 0.
Hence
(f(x)+ ZTX)Z[f(U)-i- z'u+y g(u)+>] ijJTu—]/ZpTVZ(f(u)Jr yTg(u))pJ
=1
Inf. (NP) > sup. (WD).
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Corollary 2.1.1: Let x be feasible for (NP) and (T,z,y, p,W,,W,,..W,, ) iS
feasible for (WD) with corresponding objective functions being equal.
Let the hypotheses of Theorem 2.1.2 hold. Then x is optimal for (NP)
and (U,z,v,p,w,,w,,..w, ) is optimal for (WD).

Theorem 2.1.3 (Strong Duality): Let x be optimal for (NP) and the
suitable constraint qualification [68] hold. Then there exists
ZeC,yeR" W, eD,,(j=12..m)such that (X,z,y,p=0W,W,,..W,) IS
feasible for (WD) and the objective function values of (NP) and (WD)
are equal. Further if the hypothesis of Theorem 2.1.2 hold then

(X,Z,y,p=0,W,W,,..w, ) is an optimal solution for (WD).

Proof: Since x be an optimal solution for (NP) and a suitable
constraint qualification [68] holds for (NP), then there exists

ZeC,ye RT,V_V] €D, ,(j =1,2,...m)SUCh that

That is, the objective function values of (NP) and (WD) are equal.

Remainder of the proof now immediately follows from Corollary 2.1.1.
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Theorem 2.1.4 (Converse Duality): Let (u,z,y, p,w,,W,,..w,, ) is optimal

for (WD) and the Hessian matrix v{f(a)+ingj(u)j be non-singular

i-1

and Vz(vzf(u)Jrvzingj(U)] be either positive or negative definite.
j=t

Then 3y,g,(@)+s(a/p,)=0, and o is feasible for (NP) and the
i1

objective function values of (NP) and (WD) are equal. Further if the

hypotheses of Theorem 2.1.2 hold then @ is an optimal for (NP).

Proof: First we rewrite problem (WD) in the form of (P), for this let

q=(U,2 Y, p,W,W,,..w ) e RE™*mand

F @) =(f@)+ 2" @)+ 7,0, @)+w]a)-12p"v*( @)+ y 9@))p,

H(q) =-y.
Let the set S be defined by S= {g:9=(u,zy,p,w,w,,.w,),zeC,
w; € D;, Vvj=12..m}, then problem (WD) may be rewritten as follows:
Maximum F (q)
Subject to

G (a) =0,

H () <0,

As g= (0,2,,p.W,,W,,.w,) is optimal for (WD), from Lemma 2.1.1,

m

there exist constants & >0, 4, >0, j=12,..m and 4,,i =1,2,...n, not all
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zero, and the normal cone to S at gas N (q) such that

_{ (Vi (T) +z)+JZrl: J () +W }/V u)+y'g(a ))ﬁ}+
(V2 £ @)+ V?y g@)+Av(V? £ ([@)+V?y g@)p=0 (2.7)
—a(-(v? £ ([@)+ vy g@)p)+ AV E @)+ VY g@)=0  (28)

~alg,@+WT- 15"V, @p)+ AVe,@)+w, +v7g,@)p)

—u; =0, Vj=12,..m (2.9)
— o + A e N.(2), (2.10)
—aty; +Ay; € Np (W, ), (2.11)
u#;¥;=0,Vj=12,..m (2.12)

From (2.8),we have,
(ap+A)(V> T (T)+V?y'g(T))=0

But from non-singularity of the matrix (V2f(a)+Vv2y g(x)) we have
(ap + ) = 0. If possible, let «=0, theni=0. From these values,
(2.9) implies x; =0, vj=12..m, which makes all the multipliers equal
to zero. Since this cannot happen as it contradicts (e, 1,4)#0. So we
must have a =0, SO «>0. Using the equality constraint of the dual

problem in equation (2.7) we have,
a[(vz (f(@)+y g(m)) p)—% PV (f(0)+y g(T)) E}

+ (V2 (@)+ VYT g(@) + Av(V2 £ (@)+ VYT g(@))p =0
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This can be written as
(ap+2)(V (1 @)+ 9 (7)) p)+( _%pjv(vz(f (@)+y"9(7))p) =0
This along with ap+1 =0 Yields,
%pv(vz(f(ﬁ)+7Tg(U))ﬁ)=0
Because of positiveness of «.This equation is simplified as

p'V(v*(f(@)+" 9(@)p)=0

which by the condition of v(v2(f(@)+y"g(@))to be either positive or
negative definite implies p=0. Now (ap + A) =0, hence 1=0.Then

equation (2.9) implies that

Now from (2.10) and (2.11) we have @ e N¢(z) and @ e N,, (W, ) so that

Z'u=5(u/c) and w,"a =s(u/D,), vj=12..m.Hence
g,(@)+wa=g,(@)+s(@/D,)<0, vj=12,..m

which implies that T is feasible for problem (NP).Also from (2.9) and
(2.12) we get
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Therefore,

This by Corollary 2.1.1 implies that @ is optimal for (NP).

2.1.4 Mond - Weir Type Duality

We state the following problem as a Mond-Weir type second-
order dual for the problem (NP).

(SMWD): Maximum  f(u)+z'u— 7, p"V*(f(u))p

Subject to
Vi(u)+z+3 (Vg, (u)+w, )+v2(f(u)+y g(u)p =0,

(2.13)

m

> y,(9, )+ wiu)- Y p vy gu)pz0, (2.14)

=L

y >0, (2.15)
zeC,w;eD, Vj=12..m (2.16)

Theorem 2.1.5 (Weak Duality): Let x be feasible for (NP) and
(u,z,y, p,w,w,,..w_) be feasible for (SMWD) and let for all feasible

(X,u,2,Y, p,w,,w,,..w,) to (NP) and (SMWD), f()+()"z is second-order

pseudoconvex and i y,(9,()+ () w, )is second-order quasiconvex, then

j=1
f(x)+S(x/Dj)2 f(u)+ zTu—% p'VZi(u)p.
Proof: By the primal feasibility of x and dual feasibility of

(U,z,y, p,W,,W,,..w,_), we have
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m m

$23,(0,0+ 509D, )< 52y, 0,60 wu)- L 57wy o

=L i

This in view of wx<S(x/D,) vj=12,..m, gives,

iyj( )+ W] X) < iyj( )+ W, u)——p V2 (y'g(u))p (2.17)

j=1
Because of second-order quasiconvexity ofi y,(0,0+ O w,), (2.17)
j=1

yields,
07 (£, (55, 00w+ v* (7t <o

This is conjunction with (2.13), we get,

(x—u) (Vf (u)+z+v?( f(u))p)z0,

which by second-order pseudoconvexity of f(-)+(-)" zgives,
f(x)+2"x> f(u)+z'u —% p'VZf(u)p.

Since z"x < S(x/C), as earlier, we have,
f(x)+S(x/C)> f(u)+2z"u —% p'VZf(u)p.

Corollary 2.1.2: Let x be feasible for (NP) and (T,z,y, p,W,,W,,..W,, ) iS
feasible for (SMWD) with corresponding objective function being
equal. Let the hypotheses of Theorem 2.1.5 hold. Then x is optimal for
(NP) and (u,z,y,p,W,,W,,..Ww, ) is optimal for (SMWD).

Theorem 2.1.6 (Strong Duality): Let x be optimal for (NP) and the

suitable constraint qualification holds for (NP). Then there exists

ZeC,yeR"™ W, eD,,(j=12..m)such that (X,z,y,p=0W,W,,..W,) IS
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feasible for (SMWD) and the objective function values of (NP) and
(MWD) are equal. Further if the hypotheses of Theorem 2.1.5 hold
then (X,z,y,p=0,W,,W,,..w, ) is optimal for (SMWD).

Proof: Since x be optimal for (NP) and the suitable constraint

qualification holds for (NP), then there exists zeC,yeR,

W, € D;,(j=12,..m)such that

Therefore the objective function values of (NP) and (SMWD)

are equal. Rest of the proof now follows from Corollary 2.1.2.

solution to (SMWD) at which
(Hy): (a) the nxn Hessian matrix vz(i ngj(x)J IS positive definite and
j=1
p">y,(g,(x)+w,)>0 or
j=1

(b) the Hessian matrixv2(y,"g,(x)) is negative definite and

ﬁTVi y,(Vg,(x)+w, )<0, and
i1
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(Hy):  the set {v?f(®}, [v?(ya(x)] | i=12...n |, of vectors is
linearly independent, where [v?f(x)| is the i" row of
[v2i®)] and [v*(y7g(®)} is i" row of the matrix

V(7" o)

(Ha):  the vectors 3"y, (g, (%)+w,)=0
=1

If, for all feasible (X, z, y, U, Wy, W, ...,wn, p), f(-)+()"z is second-order

pseudo convex and iyj (g,()+()"w,) is second-order quasi convex,
j=1

thenx is an optimal solution of the problem (NP).

Proof: Since (%,z,y,w), where w=(w,,w,,.w, ) is an optimal solution
of (SM-WD), by generalized Fritz John necessary optimality

conditions [68], there exists,a R, fR",0 R, and x e R™,such that
a{—( f (¥)+Z)+%5TV[V2(f(K))§]}
+ BV (10 +59()+V(V?(f(x)+Y 9()) p)|
_9{27,- (ng(¥)+v‘vj)—%ﬁTv[(vz(yTg(x)))ﬁ}}:o (2.18)

B{V(9,()+w,)+V’g,(X)p}

T R S\ = :
—6 {gj(x)+xj W, —Ep Vzgj(x)p}—yj =0, j=1O)m (2.19)

(ap+B) VE(X) +(0p+B) V*(V9(X))=0 (2.20)
e{i 7,—(9,-(7)+¥J.Tv‘v,-)—%ﬁTVZ(Vj(gj(i))ﬁ}:o , (2.21)
#y=0 (2.22)
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—aX+p € N.(2)
(:8_6))37,'X < NDj(V_vj)! J=10m
(,6,14)=0

(a,ﬁ,@,,u);to
The relation (2.20), in view of assumption (A,) yields,
ap+pA=0, and 6p+p3=0

Multiplying (2.19) by y,, and summing over j, we get,
g {Z 3,(V(9,00+w,)+v*(¥'g (Y))ﬁ)}
—e{g 7,-(gj(i)mfv‘vj)—%ﬁvz(ng(i))ﬁ}=o
Using (2.21) in the above relation, we get,

ﬂ{i y,(Vlo,(x) + W)+ V¥yTg (f)ﬁ)} =0

(2.23)

(2.24)
(2.25)

(2.26)

(2.27)

, J=10m

(2.28)

(2.29)

The relation (2.18) together with the equality constraint of the dual,

yields,

(w013 5,510,007 v £ (0 (57 1 (0)p]

+- (@) V(v £ (0)p)-(ap) V(v* £ (x)p)
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Using (2.27) in this equation, we have,
(0‘_9){2 Y; (V(91(7)+V—"1))}_
(g (v(v2 (¥ f(X)p))+V(V2(V"9 (X)) ﬁ)) -0 (2.30)

If («,6) =0, then (2.27) implies p=0 and x=0 from (2.19)
consequently we get (a,p,0,1)=0 contradicting (2.26).Thus,
(a,0) = 0,this implies that at least one of these multipliers « and @

must be positive. We claim p =0.Suppose that p = 0, then (2.27) yields,
(@-6)p=0

This implies « =0>0.So from (2.29) along with (2.27), we have,

P’ {Z (W0, () +w, )+ V(3" g (>‘<))E)}=O (2.31)

Since V? i ngj(x)jis positive definite, i.e. ﬁTv{i ngj(i)jmoand
: <
P> ,(0,(%)+w,)=0, we have
raT{Z y, (V9,0 +w,)+Vv3(y'g ()‘())ﬁ)}>0.
j=1

This is contradicted by (2.31). Hence p=0.By this, (2.27)

implies 3=0.

From (2.19), we have,

= gj(7)+v‘vﬁ¥=—%so, j=12,..m (2.32)
From (2.24), we have,
x"w, =S(XD,) , j=12,.,m



Using this in (2.32), we obtain,
=N g;(X)+S(X|D;)<0 j=12,...,m
This impliesx is feasible for (NP).
Multiplying (2.32) by y, and adding over i, we have,
2.9, (9()+Wx)=0 (2.33)

]

Now consider
(f0+x72)- P VA (F()p] = F(0)+x"2
Using p=0,from (2.23), we have,
X"z = S(x[C)
Thus,
(f(x)+ xz)—%rf [v2(1(%)p]= f(%)+ s(x[c) (2.34)
If for all feasible (X, z, y, U, Wy, W, ...wm, P), ()+() z is second-

order pseudo convex and iyj(gj(-)+(~)ij), is second-order quasi
j-1

convex, by Theorem 2.1.5 jthen x is an optimal solution of the
problem (NP).

2.1.5 Special Cases
Now for p = 0, the dual program (WD) and (MD), becomes the
Wolfe and Mond-Weir type programs for (NP) studied by Husain et al [50]

(WD): Maximum  (f(u)+ zTu)+Zyj(g.(u)+w}u)

Subject to

(Vi (u)+z)+2yj(ng(u)+wj)=0
=

yzol

zeC,w; eD; j=12,..m.
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(MD): Maximum ~ (f(u)+z"u)
Subject to

\%i (U)+Z)+iy,-(vgj(u)+wj)=0

y >0,

z eC,Wj IS Djyj =12,..m.

2.2 MIXED TYPE SECOND-ORDER DUALITY WITH
SUPPORT FUNCTIONS

2.2.1 Mixed Second-Order Type Duality
We propose the following mixed type second-order dual type to
the problem (NP) which combines both Wolfe and Mond -Weir type

dual models, considered in the previous section.

(Mix SD): Maximize f(u)+uTz+Zyi(gi(u)+uTwi)

iel,

v {f(u)+2yigi(u)} p

iely

Subject to

VEW)+z+ >y, (Vg )+ w,) + V2(f )+ yT g())p =0

i=1

(2.35)
izll yi (g () +uTvvi)—% pV? (.Z yigi(u)} p>0, a=12,....1.
B h (2.36)
y>0 (2.37)
zeC,webh;, i=1,2,...m. (2.38)

where
1. l,cM={L2...m},a=0, 12 .rwith | Ji,=M and
i=0
L(1,=¢ifa=p.

2. ueR", peR"and yeR".

65



Theorem 2.2.1 (Weak Duality): Let x be feasible for (NP) and (u, vy, z,
P, Wy...wp) feasible for (MixSD). If for all feasible (x, u, y, z, Wj...,wp),

fO+O 2+ yi(g;(0)0+()"w) is second-order pseudoinvex and

iel,

Syi(g:(O)+(0)'w), a =1, 2, ..., r is second-order quasi-invex with

iel,

respect to the same n, then
inf (NP) > sup (Mix SD).

Proof: Since x is feasible for (NP) and (x, y, z, w, ..., wy) feasible for
(Mix SD), we have, in view of x'w; < S(x| D) where w;eD; |
i=12,..mandfora=1 2, ..., r.

> y,(g, () +S(x 1 D)) < Yy, (g, () + x"w,)

I€|a Iela

<0< Zyi(gi(u)mwi)—% pTvz[Zvigiw)J p

IEIa Ie'a

By second-order quasi-invexity of > y.(g;()+()'w), a=1,2, ..., r it

iel,

follows that

n' (x,u)(V[Zyi (gi(u)+uTwi )J+V2(Zyigi(u)] p] <0,0=1,2,...r

|€|a Iela

Hence

7' (x,u)[V( > yi(g W +uw, )JW{ Zyigi(“)J pjﬁo'

ieM -1, ieM-I,

Thus from (2.35), this yields

n' (x,u)[v(f W) +u"z)+ 3y, V(g, () +u"w, )+ Vz[f W+ vi9; (U)J pJ >0

iely ielg

Since f(O)+(O"z+Y v,(g,()+ (O™ w, ) is second-order pseudoinvex, this

implies,
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f(x)+xTz+Zyi(gi(x)+xTWi)2 f(u)+uTz+Zyi(gi(u)+uTwi)

iel, iely

_% pTVZ[f (u)+Zy19,(U)j p

i=l

Since x'z < S(X|C) , x'w; < S(X|Dy), i € lp and gi(x) + S(x|D;) < 0,

together with y <0, for i € |y, the above inequality gives,

F(X)+S(x/C)= f(u)+u"z+ > y,(g,(u)+u"w,)

i=l

—% pTVZ[f(uHZyigi(u)j p

i=lg

That is,
Inf. (NP) > sup.(MixSD).

Theorem 2.2.2 (Strong Duality): If x is an optimal solution (NP) and
Slater’s constraint qualification [67] is satisfied at X, then there exists
yeR™ with y=(¥,¥,,...V,), ZeC and weD,i =1, 2, ..., m such
that (x,y,z,w,W,,...w ,p=0) is feasible for (MixSD) and the

corresponding values of (NP) and (MixSD) are equal.
If also, f(-)+(-)TZ+Zyi(gi(-)+(-)TWi) is second-order pseudo-

invex forz e Candw; € D, i € lpand 3 y,(g,()+()"w,) forw; € D,

iel,
lel, a=1, 2 .., rissecond-order quasi-invex with respect to the
same 7, then (X,v,Z,Ww,W,,.,Ww_,p=0) IS an optimal solution of

m

(Mix SD).

Proof: Since x is an optimal solution to the problem (NP) and the
Slater’s constraint qualification is satisfied at x, then from Theorem

2.2.1, thereexist yeR™, ZzeC and W, eD,, i =1, 2,... m such that
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V(F®) +x"2)+ Yy, Vg, () + %W, )= 0

iel

Zyi (gi()_() + )_(iTWi): 0

i€l

X7z =S(x/C)

X'W =S(x/D;), i=12..,m
zeC,w,eb, i=12,..., m
y>0

The relation Zyi(gi(x)+iiTv—vi)=o implies Zyi(gi(x)+>‘<iTv—vi):o

iel iely

and Zyi(gi(i)ﬂ‘(fv—vi):o, a=12,.,r Consequently, it implies that

iel,
(X,¥,Z,W,....,W,_,p=0) is feasible for (Mix SD) and the corresponding

values of (NP) and (MixSD) are equal. If f()+(O)"z+> v,(g,0+()"w;)

iel,
is pseudoinvex, for all z € C and w; € D; , i = 1,2,...m and

> y,(9,)+ (" w, ) is second-order quasi-convex fori € l,, a=1.2,....r,

iel,
then from Theorem 2.2.1 (x,y,z,w,,...,.w_,p=0) must be an optimal

solution of (MixSD).

We shall prove a Mangasarian type [68] strict converse duality
theorem for (MixSD) to (NP).

Theorem 2.2.3 (Strict Converse Duality): Let x be an optimal solution
of (NP) at which Slater’s constraint qualification is satisfied. If

(%,9.p,2,W) is an optimal solution of (MixSD), where Ww=(W,...W,)

m

and f()+() 2+ 9,(9,0+(O"W,) is second-order strictly pseudoinvex

iely
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at x and i e lo, 39(0,0+O™W), @ =1, 2, ..., r is second-order

iel,
quasi-invex at x with respect to the same 7, then x=%, i.e. & is an

optimal solution of (NP).

Proof: We shall assume that x=x and exhibit a contradiction. Since
x1is an optimal solution of (NP) at which Slater’s qualification is

satisfied, it follows from Theorem 2.2.1 that there existsyeR™, 2eC
and w eD,, 1 =1, 2,...,m such that (%,9,2,W,..,W_, p=0) is optimal for

(MixSD). Hence

f(X)+S(X/C) = f(X)+X 2+ ¥, (g;(¥X)+X" i)

iely

% (f(x)+2y g(x)j

iely

- ﬁvz(f(mzyigi(k)j : (2.39)

Since x is feasible for (NP) and (%,9,2,W,,...,W_, p) i<l is feasible for

(MixSD), we have,

2.9 (G(R)+ &) < 9 (9, (R) + Rl ——IOVZ(ZY. (X)J

iel, iel, iel

By second-order quasi-invexity of 3" §,(g,() + ("W, ), this yields,

iel,

7R3 zwi(gi<x>+m)+vzzmi(m}so (2.40)

iel, iel,

Because (%, 9, p,2,W) is feasible, we have ,



From this equation, it implies,

Zyiv(gi(ﬁnm)W{Zyi (gi(ﬁ))Jﬁ

iel, iel,

:{V(f(>?)+*Tf)+z9iv(gi(>?)+M)+V2(Z§'igi(ﬁ)J I@}O

iely iely

Using this in (2.40), we obtain,

rf(m{v(f(k)+2T2)+29N(gi(ﬁ)+m)+v2(29igi(ﬁ)j o}zo

iely iel,
This, because of second-order strict pseudo-invexity of

2% (9,0 + () implies,

iel,

PR+ 242 9, (9,0 +XW ) 2 F(R) + K72+ 9, (g, (%) + Kk )

iely iely

E ﬁTv{f(mZﬁgi(k)] :

iely
Since x"2=S(x/C) and X"W, =S(X/D,), 1= 1,2,...,m, this implies,

f(i)+S(Y/C)+Z)7i(gi(Y)"‘S(i/Di)) 2

iely

f(k)+ﬁ+29i(gi(ﬁ)+ﬂvi)—%ﬁTv{f(mZmi(k)J p

iely iclg

(2.41)
Since §,>0 and g,(x)+S(x/D,)<0 for all i € {1,2,....,m}, hence
¥, (9,(X)+S(x/D,))<0, V i € lo. Thus from the inequality (2.41), we

have,
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f(x)+S(X/C)= F(R)+% 2+ 9,9, (%) + X"W; )

iely

E ﬁTv{f(mZmi(k)j p.

icly

This ensues a contradiction to (2.39). Hence %=X, i.e., x Is an

optimal solution of (NP).

Theorem 2.2.4 (Converse Duality): Let (x,y,w,p) be an optimal
solution to (MixSD) at which

(Ay): forall a=12,.r, either

a)  The nxn Hessian matrix vz[z yigi(x)J is positive definite
iel,

and p'VY ¥, (g,(x)+x'w,)>0 or

iel,

iel,

b) V{Z yigi(x)J is negative definite and
PV (g, (x)+x'W, )< 0
iel,

(A,): the set of vectors

{vz[ f (Y)—g(;?igi ()_()ﬂ, ,{vz(; yigi(i)ﬂj}, j=12,.n, a=12..r,

are linearly independent.

iely

where {vz[f(x)—Zyigi(x)ﬂ is j™ row of the matrix
i

{Vz(f(x)—z‘yigi(x)ﬂ and {Vz(Zyigi(x)ﬂ_ is i row of the

iel, iel,

matrix {VZ[Z yigi(x)ﬂ.

iel,

(Az): the vectors { Vi(Vgi(X)HTvi)},a:lZ,...r, are linearly independent.
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If for all feasible (X,Z,Y,U,W1,Wy, ... wm,P),

)+ () + > yi0;()+()\'w,) is second-order pseudoinvex and

iely

Zyi(gi(')Jr(‘)TWi),a:1,2,...r, is second-order quasi-invex with

iel,
respect to same 7, then x is an optimal solution of the problem

(NP).

of (MixSD), by generalized Fritz John necessary optimality conditions

[68], there exists,z, eR, #cR",7, eR, a=12,..r, BeR,and xR, such

that

fo{—(vf(7)+f)—§7i(Vgi(7)+v‘vi)+%EV{Vz(f(m;Egi(Y)]ﬁ}
+¢9{V2(f(7)+VTg(X))JrV(VZ(f(K)+7Tg(Y))ﬁ)}
+;ra{§7.wg.(i)+v‘v)—%ﬁTVKW;V.g.(i)jﬁﬂ0
o a (2.42)
{800+ X' -3 5V, (07
+6" {Vg;(X)+ W + Vg ()P} +4 =0 , el (2.43)
7, {gmwv—w - ﬁTVZQi(Y)ﬁ}

+¢9T{(Vgi(i)+v_vi+Vzgi(7)ﬁ)}+,ui:O Ciel, a=12...r

(2.44)
(rop+0)' {Vz [ f (7)—2%9(%)]}
+il(raﬁ +9)T {VZ vigi(i)}=o (2.45)



TQ{ZVi(gi(x)mTv‘vi)—%ﬁVZZzgi(Y)ﬁ}=0 el a=12,r

iel,

(2.46)
,p+0 € N.(2) (2.47)
(X +0)y, € Np (W) , iel, (2.48)
(7,X+0)y, € Np (W) , iel,,a=12..r (2.49)
p'y=0 (2.50)
(74,70, 1) 20 (2.51)
(7017107, 0, 11) %0 (2.52)

The relation (2.45), in view of assumption (A,) yields,

r,p+60=0, a=012..r (2.53)

Multiplying (2.44) byy,,iel, ,a=12,..r, and summing with respect to
iel,,a=12,.r,we get,

Ta {Z ¥i(9;(X) +X"W,) _% ﬁvzz Yi9i ()_()E} +

iel,

GT{ZVi(Vgi(Y)+Wi +V227igi(>?)ﬁ]}=0 a=12,..r

iel, iel,

Using (2.46) ,we get,

o {Z Y, [Vgi(i)w—vi +V227igi(i)ﬁj} =0 ,a=12,...,r (2.54)

iel,

By using the equality constraint of the dual in (2.42), we get,

(rame)T{V{f(i)Zvigi(x>j+v{v2(f(i)+29igi®ﬂﬁ}

iely icly

(50 {Vz (Z Vigi(i)}W[vzi;a Vigi(Y)J ﬁ}

a=1 iel,
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+ro{v D> V(g (X) +XTW,) + V? Zvigi(i)ﬁ}

ieM-1, ieM-1,

_%TOW{V{VZ(I‘@FEV.Q.(i)jH

+y { > 910, (%) + X W) + v [Zygm] }

a=

£ %rabT {V{V{Z 7.9.(>‘<)Hb} =

From (2.53), it implies,

Zr: (z, -7 ){Z Vgi(i)+Wi)+V2(Z)7igi(>‘<)Jﬁ}

a=1 | iel,

+%9T {v{vz [ f(%X)+ g;yigi (Y)H p+ V{VZ LMZIO V.0, (y)ﬂ p} -
This implies,

r T -7 ){Z VQi()_()+V_\Ii)+vz{zyigi()—()Jﬁ}

<

+%0T WV (f %)+ g(®))p)}=0 (2.55)

Assume thatz, =0, for alla €{012,..r}. Then 6=0from (2.53),
and from (2.44) 4 =0,Then (z,,7,,..z,,6,)=0 which contradicts the Fritz

John condition (2.52).Thus there exists an « € {0,,2,...r} such thatz, > 0.

The relation (2.53) can be rewritten as

,p+0=0, 7, p+6=0, a=12,..r
Which implies,
(r,-7,)p=0 (2.56)

We claim p=0Suppose that p =0, then (2.56) yields,
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T,=7,,a=12,.r
Consequently we have,
0=-1,p
Using this in (2.54), we obtain,

—roﬁ{ZVi(Vg(i)w—w)+V2[Zvigi(i)jﬁ}=0

iel, icl,

= ﬁ{ZVi (Vg(¥)+v‘vi)+vz(_27igi(i)]ﬁ}=o (2.57)
From the assumption (A,) i.e. for a =12,...r,

P Vi(9(x) +w)=0

Wz(z vigi(i)jﬁzo :
= P> Vi(g(x) +W)+ ﬁTvz[Zvigi(i)Jﬁio

This is contradicted by (2.56). Hence p=0.

Using p=0in (2.55),we have,

S G, —ro){Z 7 (Vgi(i)w—vi)}:o

By (As), this implies,
7,=17, >0, a=12,..r
Since 6=0, (2.43) and (2.44) implies,

To(gi()_()"')_(iTWi)"'ﬂi:O , el

0(X)+xW=-£1<0, iel,,
%o

L(GO0+ W40, el Lz

a

Comparing these, we have,
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g, (X)+XW=-—£1<0, iel,iel,, a=12..r (2.58)

a
a

From (2.48) and (2.49), we have,
X'W =S(X|D) , ielyiel,, a=012,..r
The relation (2.58) along with this implies,
g;(X)+S(X|D,) <0, i=12,...,m
This shows that x is feasible for (NP)
Multiplying (2.58) by y,,iel,,and y,,iel, a=12,..r,and adding

and using #'y =0,

2V (9(x)+wx)=0 (2.59)

iely

D ¥ (9(X)+Wx)=0 (2.60)

iel,

(f(>‘<)+>‘<TZ) > ¥.(9,(X)+ W, X) - Lo { z(f(¥)+27igi(>‘<)]ﬁ}

iely iel,

I\J

=f(X)+x'z (using p=0 and (2.59))
= f(%)+ S(xCc) , by (2.47)

If, for all feasible(x,z,0,w..w,,p), f()+() + > v,(0;()+()'w,) is

iely

second-order pseudoinvex andZyi(gi(-)+(-)Twi),a=L2,...r, is second-
iel,

order quasi-invex for z e C and w, e D,with respect to same 7, by

Theorem 2.2.1, then x is an optimal solution of the problem (NP).

2.2.2 Special Cases

If p = 0, the mixed type dual (MixSD) to the following to the
following first order mixed type dual formulated in [51].
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(Mix SD): Maximize f(u)+u’z+>y,(g, W) +uw,)

iely
Subject to

(Vf (u)+uTz)+Zyi(Vgi(u)+uTWi) =0

i=1

Zyi(gi(u)+uTWi)z 0, a=1,2,...r.

iel,

y>0
zeCwebh, i=1,2,....m.
where l,cM={12,..m}, a=0,12, .. r with [ Ji, =M and
i=0
L1, =¢ifazp.

As discussed in [31], we may write for positive semi definite
matrix B, S(xC)=(x'Bx}: by taking C=1By|y'By <1{. If the support

function appearing in the constraints suppressed but the support
function in the objective function of (NP) is retained and replaced
by(xTBx)%, then we have the following pair of problems treated by

Zhang and Mond [101] and re-examined Zhang and Yang for

correcting the converse duality theorem proved in [102].

1

(P): Minimize f(x)+(x"Bx)2
Subject to
9(x)<0,

(SD): Maximize f(u)-> y;g;(u)+u'z

iely

—%VZpT[f(uHZyigi(u)}p

Subject to

Vi) -y g(u)+z +V2(f (u) + yTg(u))p =0
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R (gi(u)+uTwi)—% pTV{Z yigi(u)j p>0, a=1,2,...,r,
icly i=l,

w'z<1
y>0
where I, c M= {12,...m} , a =0, 1,2,..., r with Ula =M and
i=0
L1, =¢ifazp.
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3.0 INTRODUCTORY REMARKS
Following Dorn [41], first order symmetric and self duality results
in mathematical programming have been derived by a number of
authors, notably, Dantzig et al [38] Mond [71], Bazaraa and Goode [8],
Mond and Weir [82]. Later Weir and Mond [97] discussed symmetric
duality in multiobjective programming by using the concept proper
efficiency. Chandra and Prasad [24] presented a pair of multiobjective
programming problem by associating a vector valued infinite game to
this pair. Gulati, Husain and Ahmed [46] also established duality
results for multiobjective symmetric dual problem without non-

negativity constraints.

Mond [70] was the first to study Wolfe type second-order
symmetric duality bonvexity — boncavity. Subsequently, Bector and
Chandra [10] established second-order symmetric and self duality
results for a pair of non-linear programs under pseudobonvexity —
pseudoboncavity condition. Devi [40] formulated a pair of second-
order symmetric dual programs and established corresponding duality

results involving 7-bonvex functions and Mishra [69] extended the
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results of [40] to multiobjective nonlinear programming. Recently,
Suneja et al [92] presented a pair of Mond-Weir type multiobjective
second-order symmetric and self dual program without nonnegativity
constraint and proved various duality results under bonvexity and

pseudobonvexity.

This chapter consists of two sections 3.1 and 3.2.1n section 3.1 a
pair of Wolfe type second-order multiobjective nonlinear programming
problems containing support functions is formulated and usual duality
results are proved under convexity-concavity assumption on functions
involved in its formulation. Self duality for this pair is also investigated
under the additional condition on the kernel function. In section 3.2 a
pair of Mond-Weir type symmetric dual is formulated in order to relax
convexity-concavity to pseudoconvexity-pseudoconcavity. Self duality
for this pair is studied under additional condition.Special cases is also

generated.
3.1 NONDIFFERENTIABLE MULTIOBJECTIVE

SECOND-ORDER WOLFE TYPE SYMMETRIC
DUAL PROGRAMS

3.1.1 Second-Order Multiobjective Symmetric Duality
In this section, we consider a pair of second-order Wolfe type
non-differentiable multiobjective symmetric dual programs

and validate weak, strong and converse duality theorems.

We have taken the auxiliary vectors p and g same throughout the
formulations of two problems because it seems more natural than

different p’s and q’s in [92].

Consider the following two programs:
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Primal Program:

(SWP): Minimize F(x,y,z,p)=F (xY,z,p),...F (XY, p)

Subject to
YAV, 6(xy)- 2 + V31, y)p) £ 0 (3.0)
z,eD,,i=12,...,k (3.2)
x>0 (3.3)
A=en’ (3.4)

and

Dual Program:

(SWD): Minimize G(u,v,w,q) =G, (u,v,w,q),...G, (u,v,w,,q)

Subject to
Zk: (Vlfl (uv)-w +V3 fi(U’V)Q)i 0 (3.5)
w, eC,,i=12,...,k (3.6)
vz0 (3.7)
A=en’ (3.8)

where

. F.(x,y,2,p)= f.(x y)+s(x|C,)-y'z —% p'V2f(x,y)p

-y Z’i( V, |(X y) Zi+v§fi(x’y)p)

i, G/(uv,wq)=f(uv)-sv|D)+u"w —%qTVf f.(u,v)

—uTZk:/ll (V. (uv)+w + Vi f (u,v)q), and

i=1
iii.  foreach i, s(x|C;) and s(v|D,) represent support functions of
compact convex sets Cjand D;in R" and R™, respectively.
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iv.  w=(w,...w,) with w, eC,and z=(z,...z,) for each

{(i=12,...k}

k
V. AT ={/”te R | A=(4,...4 ) A>0,>" 4 =1}

i=1

Theorem 3.1.1 (Weak Duality): Let (x,y,4,z, p)satisfies the constraints
of (SWD) of (u,v,4,w,q) satisfies the constraints of (SWD). If for

each ie{L,2,....k}, f,(,y) is bonvex at x for fixed y and f,(x,.) be

boncave aty for fixed x for feasible (x,y,u,v,4,p,q,z,w) then

F(xY,2,p)£G(uv,wq).
Proof: By bonvexity of f,(.,y) for fixed y at u, we have.

f,(%v)=f,(uv) 2 (x-u) [Vlfi (u,v)+Vif, (u,v)q}—%qTVf f.(u,v)q
(3.9)

and by boncavity of f,(x,.) for fixed x at v, we have,

fi (X’V)_ fi (X’ Y)§(V_ Y)T [Vz fi (X7 y)+V§ fi (X’ Y)p]_% pTVS fi (X’ y)p
(3.10)

Multiplying (3.10) by (- 1) and adding the resulting the inequality to
(3.9), we obtain,

{fi (x, y)—% pTVIf(xy)p-y {Vz f(x y)+V3fi(x, y)p}}
{fi(u,v)—%qui fi(u,v)g—u’ {Vlfi(u,V)Wf fi(u,V)Q}}
> X"V, £, (U, V) + V2 £, (U V)a =V {V, £, (%, y)+ V2, (x, y)p}.
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or

l:fi (X, Y)_ y'z; —% pTVif, (X, Y)p -y’ {Vz fi (X, Y)_ z +V3 1, (X’ y)p}}

_[fi (u,v)+u'w —%qTVf fi(uv)g-u" {V,f (uv)+w +V;f, (u,v)q}}

> X"V, £, (u,v)+ V£, (u,v)a VTV, F,(x, y)+ V2 £,(x, y)p}.

Multiplying this by 4 >0,ie{,2....k} and summing and usingzk:/li =1

we have.

Zk‘/t{fi(x, y)-y'z, —% p'Vifi(xy)p- yTiﬁi W, £, ( y) -2, + V2, (x y)p}}

i=1 i=1

=

_2’1[f (u,v)+u’ W——q "Vifi(uv)a- “TZ AV () rw VI (v )q}}

ZXTZk:/l,{Vlf,(u v)+ViE( } vTZk: { (xy +V2f(x,y)p}.

i=1l i=1

Using (3.1) with (3.7) and (3.5) with (3.3), this inequality becomes

iﬂ.{fi(x,y) y'z ——p Vi) yT AW 1 (x0y) -2 V2T ()}

i=1

K -

—iﬂ{f(uvww——qw VAU AV (V) Vi (1))

i=1

Since —s(x|C;)<—x"w, for w eC, and —s(v|D))<-v'z, i=12,...k,

therefore, this inequality reduces to

i/l.[fi (% y)+s(xIC)-y'z —% pViTi(xY) p—yTiﬂf. Vo (6y)-2+Vifi(xy) p}}

i=1

> iﬂ{fi(u,v)—s(ﬂ D,)+u"w, —%qTVf f(uv)g—u’ iﬂi V. 1,(0v)+w, + V2 fi(u,v)q}}

i=1
K

le., Zk:/%,Fi(X, Y, Z;, p)zzﬂiGi(u’V’Wi'q)

i=1 i=1
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or A F(x,y,2,p)2AG(u,v,w,q).
Thus,
F(xY,2,p)£G(uv,wq)

Theorem 3.1.2 (Strong Duality): Let for each i<{,2,...k}, f, be thrice

differentiable on R"xR". Let (x,y,1,z,p) be properly efficient
solution of (SWP); for 1< 4 in (SWP) and assume that

(Ay): the set {V2£,(%,¥), V2f,(X,¥)...V2f, (X, ¥)] is linearly independent.
(Ay): theset v,(VZ(71 f )%, y)p) is positive or negative definite.

(As): the set {Vz f,(%,9)+ W, + V2 £,(X,9)P..... V, £ (X, ¥)+ W, + V3 f (X, y)ﬁ}

is linearly independent.

Then (x,y,2,w,q=0) is feasible solution of (SWD) and

F(x.v,2,p)=G(x,y.w.q)

N

Moreover, if the hypotheses of Theorem 3.1.1 are satisfied for

all feasible solution of (SWP) and (SWD), then(x,y,Z,w,q) is properly
efficient solution for (SWD).

Proof: Since (>‘<, y,Z,z,ﬁ) is a properly efficient solution of (SWP),
then it is also weak minimum. Hence there exist aeR" with
a=(a,...,), feR™, neR" and pweR*With u=(g,...1,) and 0eC,,
i=12,...,k such that the following Fritz John optimality conditions [68]

are satisfied at(x,y,7,7, p):



{B-(a"e)yJx —a,pf Vi1i(x,¥)=0 (3.13)
(B-(a"e)y) (V, (%, ¥)-2 + V2£(X,¥)P)- 24 =0, i=12,...k (3.14)
—a 7+(,B—(aTe)y)T}L,eND(Z) i=12,....k (3.15)
B3 AT (5,9)- 2+ Vi (x, 9B} -0 (3.16)
77T)_(=0 (3-17)
ATu=0 (3.18)
(@, 8.1, 11)20 (3.19)
(. B.17. 1) % 0 (3.20)

Since 2>0 and x>0, (3.18) implies, x=0.
In view of the assumption (A,), (3.13) yields,

(B-(a"ely)t =a;p, i=12,....k (3.21)
Using (3.21) in (3.12), we have,

Kk

> (e —(a'e) A(V. i (%.9)-2)+ VEf ((X.7) )}

+2(p-(eTely) Y29, (v 1 (% y)p)-0 (3.22)

=

N

Post multiplying (3.22) by (8—(c"e)y) and the using (3.14) with 4 =0,

we obtain,

(p-(aely] Sav,(viA 1 (x 9)plp-(aely)=0
Which because of the condition (A,) implies,

(B-(a"e)y)=0 (3.23)
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Using (3.23) in (3.22), we have,

Zk:( —(a"e)7 )V, 1, (%,¥)-7 +V2£,(X,¥)p)=0

This, in view of (Agz), gives,
o —(a"e), =0i=12,...k. (3.24)
If ¢, =0, i=12,...k,then from (3.23) and (3.11) imply g=0and

n =0, respectively. Consequently, we get (s, x,7) = 0, contradicting

(3.20).
Hence o, >0. Then from (3.21) together with (3.23), we have,
p=0 (3.25)

Using (3.23) and (3.25) in (3.11), we have,
Za Vlfl )_( y +0i):77

Which by (3.24) implies,

( )Zk:ﬂ_’u Vlfu )_()7 ) n

i=1

This with (3.17) and (3.19) respectively gives,

> A (Vifi(x.y)+6)=0

M=

I
LN

Which, because of (3.19) and (3.17) along respectively yields,

Zklz, (V,f(X,y)+6)=0 (3.26)

i=1

and

Ti‘.(V fi(x,y)+6,)=0 (3.27)



From (3.23), we have,

0 (3.28)

v

y

From (3.16), (3.27) and (3.28), we obtain (X,y,1,w,q =0)=

(x,y.2,6,=0)
Where 60=(6,...,6,) is feasible for (SWD). From (3.16) together
with (3.23)

Zk‘j(vzf, (X,y)-7 +V2f,(x,y)p)=0 (3.29)

From (3.15) along with (3.23) and ¢« >0, it implies for each

(= {1,2 ..... k}
yeN, (7) giving y'z<s(y|D,) (3.30)

From (3.16), (3.27), (3.29) and (3.30) along withp=w=gq, itimplies,

for each ie{1,2,.. k},

87



That is, the objective values of (SWP) and (SWD) are equal.

Now, we shall show the proper efficiency of (x,y,w,1,q) for
(SWD) by exhibiting a contradiction. If (x,y,z,q) is not efficient for
(SWD) such that.

G(x,9,2,9)<G,(0,v,w,q)

ge]

Which because of (3.31) yields,

G (T,v,w,q)

v

F(X.Y.Z,9)
This contradicts Theorem 3.1.1

If (x,v,z, p) were improperly efficient solution of (SWD) ;, then

for some feasible (7,v,%,w,q)ez and some i

and

This means G,(a,v,w,q)-G,(X,V.z,q) is finite for all j=i. Since Z >o,

forall ief{l2,... k|

AG/(@.v,w,
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This along with (3.31) implies,

K Kk

> 4G/([@.v,w,q)>Y A4F(X,7.,D)

i=1 i=1

A'G(U,v,w,q)>1"F(X,Y,,p)
This again leads to a contradiction to Theorem 3.1.1.Hence the

theorem is fully validated.

Theorem 3.1.3 (Converse Duality): Let for each i<{,2,....k}, f, be

solution of (SWD); fix A1=4 in (SWP) and assume that
(Cy): theset {Vif (X,¥).....Vif (X,y)} is linearly independent.
(C,): the matrix v,(V2(Z" f )%, y)q) is positive or negative definite, and

(Ca): the set {V,f,(X,9)+W, +V2 £, (X, Y)q,....V, f, (X, V)+ W, + V2 £, (X, y)q} is

linearly independent.
Then (x,v,7,z,p=0) is feasible solution of (SWP) and
F(x,y.2,2,p)=G(a,v,2,w,q).
Moreover, if the hypotheses of theorem are satisfied for all

feasible of (SWP) and (SWD).Then (x,y,7,z,p) is a properly efficient
solution of (SWP).

Proof: It follows exactly on the lines of Theorem 3.1.2.

3.1.2 Second-Order Multiobjective Self Duality
A mathematical program is said to be self dual, if it is

formally identical with its dual, thatis, if the dual is recast in the
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form of the primal. The new program so retained is the same as the
primal. In general the programs (SWP) and (SWD) are not self dual

without an added restriction on f,(x,y) with xeR" and yeR" for

ie{l2,... kb

We describe (SWP) and (SWD) as the dual programs if the

conclusions of Theorem 3.1.2 holds.

Theorem 3.1.4 (Self Duality): If the kernel f,(x,y) with

f :R"xR"—>R for i=12,....k is skew symmetric and C, =D, for all

icf2...kl, then (SWP)isself dual and (x,y,1,z,p) is a joint
and

properly efficient solution then sois (x,y,7,z,p)
F(x,y,7,2,p)=G(x,y,W.q)
Proof: Rewriting the dual program in primal form, we have

(SWP-1): Minimize —G(x,y,w,q)=(-G,(x,y,w,q),...— G, (x,y,W,,q))
Subject to

Zk: ( )_( )7 +W, +V; fi()_(’y)q)éo
i=1

y>0

Aen”
w eC,, i=12,.k

Where

Since each f, is a skew symmetric, V,f,(x,y)=-V,f(y,x) V£ (xy)
=—V2f,(y,x) for all iefL,2,....k}, and keR" and y eR". Hence the dual

program (SWD — 1) can be written as

(SWD-1): Minimize G(y,x,w,q)=(G,(y,x,w,q)....G,(y,x,w,q))
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Subject to

Where
1
G, (y,x,w,q)= f,(y,x)+s(y|C))+Vy'z, —EqTVE f.(y,x)q

-~y Zk“gi (v, f,(y, %)+ 2, + V£, (y, x)a)

i=1
This show that the program (SWP — 1) is just the primal program
(SWP).
Thus (x,v,Z,w,q) optimal for (SWP) implies (v,x,2,w,q)
optimal for (SWD).By an analogous argument, (7, v,1,Z, r))optimal for

(SWP) implies (y,%,4,z,p) optimal for (SWD).

If (SWP) and (SWD) are dual program and (x,y,Z,z,p) is jointly

optimal,
Then
k
0=%"Y 4 (V,f,(X,y)+ W + V(% y)a)
i=1
k
=y Z’?’n(vz f(X,9)+ 1z + Vi (X, V)ﬁ)
i=1
and p=g=0.

The objective values of the programs (SWP) and (SWD)
at(x,y,7,7,p),

F.(X,9.2,p)=G,(X,y,w,q)= f,(X,y)i=12,...k (3.32)
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Since (y AL Z, ﬁ) is also a joint optimal solution, one can
similarly show that

ozyTiﬂI(vlfl(y X)+7, +V2f,(y,%)p)

i=1

:XTZk:ZI(VZfi(V,Y)JrW +V31,(7.%)a)

and p=g=0.
The objective value of (SWP) and (SWD) at (y,%,7,z,p)
becomes
F(7,%.2,p)=G,(V,x,W,q)= f,(7,X),i=12,....k. (3.33)

From (3.32) and (3.33), it implies for each i<{1,2,...,.k},

F(x.y.2.9)=G,(7.%.7.,p)= f,(x.y)= f,(7.%)=-f,(x.y)
Therefore,

F.(x,y,z,p)=f,(X,y)=0,i=12,...,k.
This implies,

F.(x.y.2.p)=0
3.2 NONDIFFERENTIABLE MULTIOBJECTIVE

SECOND-ORDER MOND-WEIR TYPE SYMMETRIC
DUAL PROGRAMS

3.2.1 Second-Order Multiobjective Symmetric Duality
Consider the following pair of nondifferentiable second-order

symmetric dual programs:

(SVP): Minimize F(x,y,z,p)=(F(X,Y,Z,p),-.. F.(X, ¥, 2, P))

Subject to

i A (Vo fi(y) =2+ V3fi(x,y)p) <0, (3.34)

i=1
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v A4 (VL6 Y) =2+ Vifi(x,y)p) 2 0, (3.35)

A>0, (3.36)
x>0,z eD,i=12,..,k (3.37)
and
(SVD): Maximize G(u,v,w,q) = (G,(u,v,w,,q),...,G, (u,v,w,,q))
Subject to
k A (Vo fi(uv) +w, + Vi (uv)q) 2 0, (3.38)
u’ k /”L,(Vlfi(u,v)+wi +foi(u,v)q)§0, (3.39)
>0, (3.40)
v>0,w, eC,i=12,..k (3.41)
where
i T 1 ;.2
(I) Fi(xl Y, Z;, p) = fi(x’ y)+s(x|Ci)—y Z; _E p vz fi(x’ Y)p

G, (u,v,w,q) = f,(u,v)—s(v| D)) +u"w, —%qTVf fi(u,v)q

(i) w=(W,..,w,) Wwith weC for ie{l,2,...k}, z=(z,...2,)
with z eD, for ie{y,2,..,k}, and 1=(4,..,4)" with 4 eR
foriefl,2,..,k}; and

(i)  for each ie{,2,..k}, s(x|C) and s(y|D,)represent
support functions of compact convex set C. in R" and

compact convex set D, in R"™, respectively.

It is to be remarked here that unlike the formulation of the
Mond-Weir type second-order symmetric dual programs in [92], here
we have chosen for each ie{1,2,...k}, p=peR" and g =qeR" as this

93



choice seems to be in conformity with the analysis for identification of

second-order dual in nonlinear programming by Mangasarian [66].
Theorem 3.2.1 (Weak Duality): For feasible solutions (x,y,4,z, p) and
(u,v,4,w,q) for the programs (SVP) and (SVD), let zk:/l,(fi (y)+()Tw),

for each w eC,, ie{l,2,..k} be pseudobonvex at u for fixed y and
Zk‘/,,(fi(x,-)Jr()T z), foreach z eD,, ie{L2,...,k} be pseudoboncave at y.

Then
F(x,y,4,2,p) £G(u,v,4,w,Q) .

Proof: By multiplying (3.38) by x" and subtracting (3.39), we have

(x—u)’ k A (Vo fi(uv) +w, + Vi (u,v)q) 2 0.

i
i=1

This, because of pseudobonvexity of zkli (f.(.y)+()'w), implies

i
i=1

;L(fi(x,v)+xTWi —fiuv)-u'w, +%qTV12 fi(u,v)q) 20.

(3.42)

k
i=1

From (3.34), (3.35) and v >0, we have,

k

V=) D24 (VT (X y) -7+ V3T (xy)p) £0.

i=1

i
i=1

By pseudoboncavity szk:ﬂ, (f.(x)+()"z), from this we get,
k 4[—fi<x,v)+szi+fi(x, D-y'2 -2V y)pjzo.

(3.43)
On adding (3.42) and (3.43), we have

k
4 ( i y)+x'w -y _% PV y)pj
=1

k
>4 [ fi(u,v)+u'w, —Vv'z, —%qTVf f, (u,v)q] >0.
i=1
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Since for each weC, x'w<s(x|C) and each zeD,

v'z <s(v|D,), the above inequality gives,

k
Z’l[fi(x’ Y)"'S(XICi)_yTZi _% pTvgfi(X1 y) p)
=)

k
> z.[ﬁ(u,v)—s(wDi)+uTvvi—§quffi<u,v>qj
=1

or
k k
AR (% Y,7,p) 2 D2 AG (U, v, W, )
i=1 i=1
That is,
F(X’ y’ Z! p) z G(U,V,W, q)
This implies

F(x,y,z, p)£G(u,v,w,q) .

Theorem 3.2.2 (Strong Duality): Let f,(=12..k) be thrice
differentiable on R"xR™. Let (x,y,4,Z,p) be a properly efficient
solution of (SVP); fix A=4 in (SVD) and assume that

(Hy):  Theset {Vif,..,Vif } is linearly independent,
(Hy):  v,(Vi(A' f)p) is positive or negative definite, and,
(Hs): The set {v,f -z+V:fp,...V,f -z +Vif p} is linearly
independent.
Then (x,y,4,w,q=0) is feasible for (SVD) and F(X,v4 ;z;p}
G(X,Y,4,W,q) .

Moreover, if the hypotheses of Theorem 3.2.1 are satisfied for
all feasible solutions of (SVP) and (SVD), then (x,y,4,w,q) is a
properly efficient solution of (SVD).
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Proof: Since (x,y,z,4,p) is a properly efficient solution of (SVP), it is
weak minimum of (SVP). Hence there exists a<R", feR", ueR,
neR, yeR* and 4 eR", (i=12,..,k) such that the following Fritz
John optimality condition [68] are satisfied at (x,v,z,4,p),

(suppressing the arguments):
Zai (V. f; +6%)+Z/71(ﬁ—77)TV1V§ fi
S -mA-4P vt tm=y (3.44)

Z(ai—yZ.)(szi—z)+Z(ﬂ—y7—m)IV§ f,

+i{(ﬂ—y7)2 —%ﬁ} V,(V; fp)=0 (3.45)
Z{(ﬂ_77)jﬁ ~ap}V; f;=0 (3.46)
(ﬂ‘?’y)T{vz fi—-7 +V§ fip}y—44 =0 (347)
ay+(B-rYAheNy (7)., i=12..k (3.48)
6 eC, 0 x=s(X|C), i=12,..k, (3.49)
ﬁ’TZk:/Z(Vz fi—Z+V; £p)=0, (3.50)
7Y YA, -7V 9)=0, (3.50)
u'A=0, (3.52)
n'X=0, (3.53)
(a. By, 1117) 2 0, (3.54)
(o, B,y 11) # 0 (3.55)
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Since 1 >0, from (3.52), it follows that »=0. Consequently,

from (3.47), we obtain,
(13_77)T (V, -7 +V§ fip)=0 (356)
In view of (H,), (3.46) yields,
(B—yVA =a,P, 1=12,..k (3.57)
Using (3.57) in (3.45), we have,
k _ b e — 1 ko . _
Z(ai _721){(V2 fi—z+V, f p)}—'_EZﬂ’IVZ(VZ fP)B-ry)=0
(3.58)
Pre-multiplying (3.58) by (8-»¥)" and then using (3.56), we get,
(B=7¥)'V,(V,(A" 1)P(B-ry) =0.
In view of (Hy), this yields,
LS—-7y=0. (3.59)
Using (3.59) in (3.58), we obtain,
Zk:(al_M:)(vz fi-7 +V§ fp)=0
This, because of (Hs), implies,
a—-y4=0,i=12..k. (3.60)

If =0, from (3.44), (3.59) and (3.60), we have =0, =0 and
a=0 respectively. Hence («,B,y7,1,1)=0, contradicting (3.55). Thus
7 >0 and from (3.60), it implies « >0, (i=12,...,k). From (3.57) along
with (3.59), we have p=0. Consequently from (3.44) together with
(3.59) and (3.54), we obtain,

Zai(vl fi(¥17)+0i) =7
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By (3.60), it implies,

Kk

¥ AWMV, £ (X.¥)+6) =7

i=1

Which from (3.53) and (3.54) along implies,

ZA(V f(X,y),+6) =0 (3.61)

and

KT AV, §(X,7)+0) =0 (3.62)

From (3.49) and (3.59) respectively we have,
w eC,i=12,..k y>0 (3.63)

From (3.62) and (3.63), it from that (x,y,A,w,q=0)=

—~
|
<
R
|
o]
N

where 6=(4,...,6,) is feasible for (SVD).

From (3.48) along with (3.59) and ¢ >0, it implies yeN,(z),

ie{l2,..k};
and this gives,
V'zZ <s(y|D), ie{L2,...,k} (3.64)

Now, using (3.50), (3.62) and (3.64) along with p=w=gq, we have

o 1 o
fi(x,y)+S(X|Ci)—yTzi—§ pIVi(X. V)P
= £,(X,7)+5(y| D) X"W ;GTVZf %97
for iefl2,...,k}
or

F(X,¥,.Z,p)=G/(X,y,w,q) foreach ie{12,...,k}

<|

This implies
F(X,y,Z,p) =G(x,y,w,q) foreach ie{L2,..,k} (3.65)
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We claim that (x,y,w,q) is efficient for (SVD). If this would not
be the case, then there would exist a feasible solution (@,v,1,w,q) of

(SVD) such that

G(X,y,W,q) <G(,V,W,q),
Which by (3.65) gives

F(X,V,Z,P) <G(0,V,W,q)
This is a contradiction to Theorem 3.2.1.

If (x,y,w,q) were improperly efficient for (SVD), then for some
feasible (u,v,1,w,q) of (SVD) and some i
(fi(u,v)—s(vl D) +u'w, —%qTfoi(K V)Gj

—[ fi(X,9)-s(Y| D) +X"W, —%qTVf fi(X, V)qj >M,
for any M >0. Using (3.65), we have,

I:fi (qu)_S(V| Di)+uTWi _%qulz fi (qu)q:|

{fi(y'y)”(ﬂci)—fﬁ PVELX, )7)5} M.

G(uv,w,q)-F(X,y.7,p)>M

and for any 1 >0, this yields,

k
26 v, ) > Y AR (R.7.7

k
i i
i=1 i=1

ol
~

A'G(u,v,w,q) > A"F(X,V,Z,Pp).

This again contradicts Theorem 3.2.1.
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Theorem 3.2.3 (Converse Duality): Let f for ie{L2,..,k} be thrice
differentiable on R"xR". Let (x,y,4,w,q) be properly efficient of
(SVD); fix 2=4 in (SVP) and assume that

(C1): theset {vif,..,Vif}is linearly independent

(C2): the set {Vif +w +V:fq,..,V:f +w +V:fq} is linearly

independent, and
(C3): Vv, (Vi(AT f)g) is positive or negative definite.

Then (X,V.A,Z,p =0) is feasible of (SVP), and

Moreover, if the hypotheses of Theorem 3.2.1 are satisfied for
all feasible solution of (SVP) and (SVD), then (x,v,4,Z,p) is a
properly efficient of (SVP).

Proof: It follows on the lines of Theorem 3.2.2.

3.2.2 Second-Order Multiobjective Self Duality

In this section, we now prove the following self duality theorem
for the primal (SVP) and the dual (SVD). We describe (SVP) and
(SVD) as the dual programs if the conclusions of Theorem 3.2.2 hold.

Theorem 3.2.4 (Self Duality): Let for ie{1,2,..,k}, f be skew
symmetric and C,=D,. Then (SVP) is self dual. If also (SVP) and
(SVD) are dual programs, and (x,y,4,z,p) is a joint optimal solution,
thensois (y,x,4,z,p) and

( ,p)=0.

T
x|
<
N

Proof: Recasting the dual (SVD) as a minimization program, we have
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Minimize [— f.(xy)+s(y|D)—x"w, +%qTVf f.(X,Y),...

1
—f (X, y)+s(y| D) —x"w, +§qTVf f (X, y)qj
Subject to

k
_zﬂi (vl fi (X’ Y) +W, _vlz fi (X, y)q) <0
i=1
k
X" Y AV, () +w, = Vi (X, y)a) 20
i=1

A>0w eC, i=12..k,

yz20.

Since f. is skew symmetric, therefore, for each ie{L2,..,k},

f(xy)=—1f(y, %, V.fi(x,y)=-V,fi(y,%) and V12 f.(x,y)= —Vg f.(y,%).
Therefore, the above program become,
Minimize ( f.(y,x)—s(y|D,)—x"w, —%qTVf f.(y,X),...

1
L0 =S(Y1D) xS q' VI, (.00
Subject to

Zkli.(Vz f.(y, ) +w, + V3 fi(y,x)0q) <0

i=1

Kk
T

X' D AV, f(y, ) +w + V3 (Y, X)) 20

i=1
A>0w eD, i=12..k,

y20.

This is just (SVP).Thus (x,v,4,z,q) optimal for (SVP) implies
(y,X,4,Z,G) optimal for (SVD).By a similar argument, (x,y,1,z,p)
optimal for (SVP) implies (v,%,4,z, p) optimal for (SVD).

If (SVP) and (SVD) are dual programs and (x,y,4,z,p) is jointly

optimal, then by Theorem 3.2.2, we have for each ie{L,2,...,k},
101



s(X|C)-y'z =-s(y|D)+x'w, and p=g=0. (3.66)

For joint optimal solution(x,y,1,z,p), we have for each
ie{l,2,..k}

- o 1 o
F(X,V,4, i,p)=fi(x,y)+5(xICi)—yTzi—EpTVEfi(x,y)p

fi(Y,V)—s(VIDi)WTv‘vi—— Vi (X, V)T

F(X.¥,4.7Z,P)=G/(X,¥,4,w,0) = fi(X,y) for ie{L,2,...k}.
(3.67)

Since (V,%,4,z,p) is also a joint optimal solution, one can show,

in a similar manner, that

A,w,q) foriefl2,...k}.
(3.68)

|

F(X.y,4.2,P) = fi(7.X) =G(Y,
From (3.67) and (3.68), we have,

F(X,V,4,Z,D) = f.(X,¥) = f,(y,x)=—f.(x,y) for ie{l,2,...k}.
Therefore, for each i e{12,...,k}.

F(X,¥,1,Z,p)=0 foreach ie{1,2,... k}.
That is,
F(X,y,4,Z,p)=0.
3.2.3 Special Cases
If we choose C ={0} and D, ={0} for each ie{L,2,..k} and p,
corresponding to each f, instead of having p=p,, for each ie{1,2,...k}
in the primal (SVP) and q, corresponding to each f, in the dual (SVD)

instead of having q=gq for each ie{L2,..,k}, then these programs
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reduce to the following programs without non-negativity constraints,
studied by Suneja et al [92]:

Primal (SVP): Minimize F(x,y, p) =(F.(X, Y, P),.., F.(X, ¥, P,))

Subject to

k

AV, (% y)+ Vo f(xy)p) <0

i
i=1

k

Y AV, (X, y)+ Vi fi(x,y)p) 2 0

i=1

A>0

and

Dual (SVD): Maximize G(u,v,q) = (G,(u,v,q,),....G, (u,v,q,))

Subject to

k

A (V, H(UV) + V2 (Uv)g) 2 0

i
i=1

0TS AV, () + V20, )g) £ 0

i=1
A>0

where for each i e{1,2,...k}
1 ;
Fi(X! Y, pi) = fi(X! Y)_E Pi szi(xr Y) Pi
Gi(uv,q) = fi(u,v)—%qfvl fi(u,v)q;,

where p=(p,,...p,), p,eR™ and q=(q,,...,.q,) With g eR", 1=(4,...4)"

with 4 eR.

If only p=q=0, then our programs reduce to the following pair

of first order Mond-Weir type symmetric dual programs.
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Primal (VP): Minimize F(x,y,z) =(F(X,Y,2),... F. (X, ¥,Z,))

Subject to

S A(VE (% y)-2) <O

i=1

yTZk:/%(Vifi(X,y)—zi) >0

i=1
x>0, A>0
zeD, i=12,..k,
and
Dual (VD): Maximize G(u,v,w)=(G,(u,v,w,),...,G,(u,v,w,))

Subject to

k
AV (UV) +w,) 20
i=1

Kk
u' Y A(Vif(uv)+w) <0

=
y >0, A1>0
w eC, i=12,..k
where
F(Xy,z)=f(xy)+s(X|C)-yz
and
G (u,v,w) = f (u,v)—s(v|C)+u"w,.

For these programs, the duality and self duality results easily follow.
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4.1 INTRODUCTORY REMARKS
I\/I ond [70] initiated second-order symmetric duality of Wolfe

type in nonlinear programming and also indicated possible
computational advantages of second-order dual over the first order
dual. Later, Bector and Chandra [10] presented a pair of Mond-Weir
type second-order dual programs and proved weak, strong and self
duality theorems under pseudobonvexity — pseudoboncarity. Devi [40]
constructed a pair of second-order symmetric dual programs over
cones and studied duality for the same; but this formulation of second-
order symmetric dual programs seems quite strange and apparently
different from the traditional Wolfe type second-order symmetric dual
programs of Mond [70] as well as Mond-Weir type second-order

symmetric dual programs formulated by Bector and Chandra [10].

In [5] Balas presented a pair of Wolfe type first order minimax
mixed integer symmetric dual programs as a generalization of the
results of Dantzig et al. [38], while Kumar [63] and Husian and
Chandra [21] dealt with Mond-Weir type first order maximin mixed
integer symmetric dual programs. Later, Gulati and Ahmed [47]

formulated second-order maximin mixed integer symmetric dual
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programs and proved various duality theorems including self duality

theorem.

In this chapter, we formulate Wolfe type second-order dual
programs with cone constraints and prove weak, strong, converse and
self duality theorems under bonvexity — boncavity condition. Further,
we generalize these Wolfe type dual programs to maximin second-
order dual programs by constraining some of the components of the
two variables of the programs belong to arbitrary sets of integers of
these programs also, symmetric as well as self duality is incorporated.

Particular cases are generated from our results.

4.2  Pre-requisites
For the results in this chapter, we shall require the Fritz John
type necessary optimality conditions derived by Bazaraa and Goode [8]

and which are embodied in the following proposition.

Proposition 4.1: Let X be a convex set with nonempty interior in R"
and C be a closed convex cone in R™. Let F be real valued function and

G be a vector valued function, both defined on X.
Consider the problem:
(Po): Minimize F(z)

Subject to

G(z)eC and ze X

If z solves the problem (Pg), then there exist o,eR and 5eC’
such that

[, VF(2,) + V3 G(z,)]" (z—2,) >0 forall ze X,

5'G(z,) =0,
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(a,0) 20,

(a,0) #0.

The following concept of separability (Balas [5]) is also needed

in the subsequent analysis of this research.

Definition 4.3: Let s',s%,..,s” be elements of an elementary vector

space. A real valued function H,(s',s%...,s") will be called separable
with respect to s* if there exist real-valued function H,(s") (independent

of ¢%,...,sP)and H,(s%,..,s") (independent of s'), such that

H,(s',s%...,s") = H,(s") + H,(s%,...,s").

4.3  Formulation of the Problems
In this section, we formulate a pair of second-order symmetric
dual nonlinear programs with cone constraints and establish appropriate

duality theorems.
Consider the following two programs:
Primal Problem
(SP): Minimize G(x,y,p)=f(x,y)-y (V,f(x,y)+V;f(x,y)p)
Loryz
—5 PV Ey)p

Subject to
-V, f(xy)-Vif(x,y)peC, (4.1)

(x,y) eC, xC, (4.2)

and
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Dual Problem
(SD): Maximize H(xy,q)=f(xy)-x"(V, f(x,y)+V2f(x,y))
—%qTVi f(x.y)q
Subject to
V. f(xy)+Vif(x,y)qeC, 4.3)
(x,y) €C xC, (4.4)

where

(i) f :C,xC, —» R Is a twice differentiable function,

(i) C, and C, are closed convex cones with nonempty interior in

R" and R™, respectively;
(ili) C; and C, are positive polar cones of C, and C, respectively.

Theorem 4.1 (Weak Duality): Let (x,y,p) and (u,v,q) be feasible
solutions of (SP) and (SD) respectively. Assume that f(.y) is bonvex
with respect to x for fixed y and f(x,-) is boncave with respect to y for

fixed x for all feasible (x,y, p,u,v,q).

Then
inf.(SP) > sup.(SD).

Proof: By bonvexity of f(.y), we have,

f(x,v)— f(u,v)>(x-u)'[V, f(uv)+V:f (u,v)q]—%qui f(u,v)q
(4.5)

and by boncavity of f(x,-), we have,

FOov) = F G y) Sv=y)'IV, F(xy)+ViT(xy) p]—% p'VyF(xy)p

(4.6)
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Multiplying (4.6) by (-1) and adding the resulting inequality to (4.5),

we obtain,
T 2 1 Ty72
{f(xw)—y (v, £09) + V3£ (6 )p) 2 vyf(x,y)p}

—{ f(u,v)—u" (V, f(uv)+Vif (u,v)q)—%qui f (u,v)q}

> X' [V AUV +ViEuV)g]-v [V, f(xy)+ Vi y)p].

(4.7)

Now since xeC, and V,_f(u,v)+V3f(u,v)qeC,, we have,
X' [fo(u,v)+V§f(u,v)q]20. (4.8)

and since veC, and —[V,f(x,y)+V; f(x,y)]€C;, we have,
V[V, f(x,y)+V:f(x y)p]=0. (4.9)

The inequality (4.7) together with (4.8) and (4.9), yields,
T 2 1 .
fx,y)-y [Vyf(X,Y)+Vyf(X,Y)D]—§IO Vyf(x.y)p
> f(u,v)—uT[fo(u,v)+V§f(u,v)q]—%quif(u,v)q

This implies,

inf.(SP) > sup.(SD).
Theorem 4.2 (Strong Duality): Let (x,y,p) be an optimal solution of
(SP).Also let

(Aq): the matrix V?f(X,y) is non singular, and
(A;): Vv, (Vi f(X,7)p) be negative definite.

Then (x,y,q=0) is feasible for (SD) and the objective values of

the programs (SP) and (SD) are equal. Moreover, if the requirements of

Theorem 4.1 are fulfilled, then (x,y,q) is an optimal solution of (SD).
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Proof: We use Proposition 4.1 to prove this theorem. Herez=(x,y, p),

Z=(X,¥,p), xeC,, peR™ and yeC,

F(2)= 1(,9)-" (7, 1 (0 9)+ V3 1 (% 9)p) -5 PV 1 (%, )p

G(z)=-V,f(x,y)+Vif(x,y)p and C=C;
Since (X,y,p) is an optimal solution of (SP), by Proposition 4.1,

there exist « R and g eC, such that

{avx f(X,¥)-(ay+p)V,V,f(X, 7)—[0{7+ P +ﬂjvxv§ f(X,y) ﬁ}(x—i)

2

(4.10)
(y+ap+ BV E(%,y)=0 (4.11)
B[V, f(X,9)+Vif(X,9)p]=0, (4.12)
(a. )20, (4.13)
(. ) #0. (4.14)

The relation (4.11), in view of the hypothesis (A,), gives,

p=-a(y+p). (4.15)

It follows that « =0, for if =0, (4.15) implies p=0. Hence

(a, B) =0 contradicts (4.14). Thus «>0.

Now putting x =x and using (4.15) in (4.10), we obtain,

(?)T [vy(v§ f(x, y)r))ky— y)>0, forall yeC,.
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Putting y=p+vy and using « >0, from the above inequality
p'IV,(V; (X, Y)PIp=0

Which, because of (A,), yields,

p=0 (4.16)
Using (4.15) and (4.16) along with « >0 in (4.10),we have,
v, f(x,y)x-x)>0, forall xeC, (4.17)

Since C, is closed convex cone, therefore, for each xeC, and
X eC,, it implies x+xeC,. Now, replacing x by x+x in (4.17), we

have,
X"(V, f(X,y)+V2f(X,y)-0)>0 (4.18)
This implies,
V. (X, y)+V:f(X,¥)-0eC,.
Thus (x,y,g=0) is feasible for (SD).
Putting x=0 in (4.17) and x=x in (4.18), we have respectively,

X" (V, f(X,¥)+Vi(X,¥)-0)<0
and
X' (V, f(X,¥)+Vi(X,¥)-0)>0.

These together implies,
X (V, f(X,¥)+Vi(X,¥)-0)=0 (4.19)
Using p=ay and p=0 along with « >0 in (4.12), we have,

Y (V, f(X,¥)+Vi(X,Y)-0)=0 (4.20)

Consequently, we obviously have,
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G(X,¥.p)=f(X,V)-¥ (v, f(X,y) + V(X V)E)—%ﬁTvi f(X,y)p

(X 9)-X"(V, (X, 9)+ Vi (X, Y)T) —%GT% f(x,9)a

H( ).

X
<
o

That is, the objective values of (SP) and (SD) are equal. By
Theorem 4.1, the optimality of (x,y,z) for (SD) follows.

We will only state a converse duality theorem (Theorem 4.3) as
the proof of this theorem would follow analogously to that of Theorem
4.2

Theorem 4.3 (Converse Duality): Let (x,y,q) be an optimal solution

of (SD). Also let
(Cy): the matrix V2 f (X, ) is nonsingular, and
(Co): V, (V31 (x,¥)q) be a positive definite.

Then (x,y,p=0) is feasible for (SP) and the objective values of
(SP) and (SD) are equal. Furthermore, if the hypothesis of Theorem 4.1

are met, then (x,y, p) is an optimal solution of (SP).

Theorem 4.4 (Self Duality): Let f:R"xR™ >R be skew symmetric

and C,=C,, then (SP) is self dual. Furthermore, if (SP) and (SD) are

dual programs and (x,y,s) is an optimal solution for (SP), then

(x,¥,p=0) and (y,x,g=0) are optimal solutions for (SP) and (SD), and
G(X,y,p)=0=H(X,y.7).

Proof: Recasting the problem (SD) as a minimization problem, we

have
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(SD);: Minimize —{f(x,y)—xT(fo(x, y)+V§f(x,y)q)—%qTV§f(x, y)q}
Subject to
V, f(xy)+Vif(xy)geC;
(x,y)eC, xC,.
Since f is skew symmetric,
v, f(xy)=-V,f(y,x) and V; f(x,y)=-V;f(y,x);
and C, =C,, the problem (SD); becomes,
Minimize {f(y,x)—xT(Vyf(y,x)+V§f(y,x)q)—%qTV§f(y,x)q}
Subject to
-V, f(y,x)-Vif(y,x)qeC;
(X! y) € Cl ><CZ

which is just the primal problem (SP).Thus (SP) is self dual. Hence if

(x,v,q) is an optimal solution for (SP), then and conversely.

Also,G(x,y,p)=H(X,y,q).

Now we shall show that G(x,y,p) =0.

6(%.9.p)= 1(%,9)-5" (7, (%, 9)+ V3 1 (%.9)p)-5 PV £ (2.9)p
(4.21)

Since yeC, and -V, f(X,y)-V:f(X,¥)p eC,, therefore, we have
-y (V,f(X,¥)+V,f(X,y)p) =0. (4.22)

Using (4.22) in (4.21), we have,

o 1 o
G(X,y,p) > f(x,y)—E p'VIE(X,Y)P.
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Using the conclusion p=0 of Theorem 4.2, we get

G(X,7.Pp) 2 f(X,Y). (4.23)
Similarly, in view of xeC, together with v f(x,y)+V:f(X,y)geC,,
and g =0, we have,

H(X,y,9) < f(X,Y). (4.24)
By Theorem 4.2, we have,

f(X,y)<G(X,y,p) =H(X,y,q) < f(X,y).
This implies,

G(X,¥,P)=H(Y.X.q)=f(X,y) = f(y,x) =-F(x,y).
Consequently, we have,

G(X,y,p)=0.

4.4 Maxmin Symmetric and Self Duality

Let uand V be two arbitrary sets of integers in R™ and R™
respectively. Let K; and K, be closed convex cones with nonempty
interiors in R™™, and R™™, respectively. Let f(x,y)be a real valued
function defined on a open set in R"xR™containing SxT  where

S=UxK, and T =V xK,. Let K", (i=1,2) be the polars of K.

We consider the following pair of nonlinear mixed integer

programs:
Primal Problem

(MSP): Max Min ¢(x, ,5) = £ (x ¥) = (") (V2 f () + V2 f (. ¥)s)

12
_ES Vyz f(x,y)s
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Subject to

_vyz f (X, y) _viz f(X1 y)S € K;
X' eU,(x%,y) e K xT.

and

Dual Problem
(MSD): MinMaxy(x.y,r)= f (x, y)— () (V. (6 y)+ V2 (xy)r) f(xy)
VA )T
Subject to
V. f(Y)+ V5L E(x y)rek;
y eV, (x,y?) e SxK,

where seR™™ and reR"™™.

Also their feasible solutions will be denoted by
Az{(x, y,9) [ X eU, (X%, y) e K xT,V, f(x, )+ V4 (X, y)r e Kl}
B={x,y,r} ‘ y' eV,(x, yz)e SxK,, -V . f (X, y)—V2y2 f(xy)se KZ*}.

Theorem 4.5 (Symmetric Duality): Let (X,y,5)be an optimal solution

of (MSP). Also, Let
(i)  f(x,y) be separable with respect to x'or y*,

(i)  f(x,y) be bonvex in x* for every (x',y), and boncave in y?

for every (x,y").
(ii1)  f(x,y) be thrice differentiable in x*and y?,
(iv) V.. f(xy) isnon singular, and
(v) V. (V; f(X,¥)s) is negative definite.
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Then
@ s=0

(b)  (*)V.f(xy)=0

w(X,y,F =0), and

x|
<

() #(X,¥,5=0)

(d) (x,y,r)is an optimal solution of (MSD)
Proof: Let  Z=MaxMin {¢(x,y,s):(x,y,s)e A |
X X5y,

and
W = MinMax{w(x, y,r):(x,y,r) € B}
y X, y©.r

Since f(x,y) is separable with respect to x'or y*(say, with respect to x'),
it follows that
f(x,y)=f1(x")+ f2(x%y). (4.25)
Therefore,vyz f(xy)=V., f2(x%y) and Vizf(x, y)zviz f2(x%, ).
Now Z can be rewritten as
Z =Max M;n {fl(xl)+ P20, y) = (y*) (V. £, y) + V2 T2(X°, y)s)
—%sTviz f2(x?, y)s}
Subject to
-V, f2(x, y)—Viz f2(x%,y)seK,
(xz, yz)e K.,K,,x'*eUand y'eV

= Max Min Min {fl(x1)+ f2(x2,y)—(yz)T(Vyzfz(xz,y)+V§2f2(x2,y)s)
X yl X7,¥y°,8

1 Tyvr2 2 2
_ES Vyzf (x ,y)s},
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or
Z = MaxMin({f l(xl)JrG)l(yl)‘ x'eU,y' eV } (4.26)
Xy

where

(MPS),: ©'(y") = X'}”yizfl{ PO, y) = () (V. T2, y) + VI, T2(X, y)s)
—lsTvzzfz(xz, y)s}
2> Vy
Subject to -V, f2(x%,y) —Viz f2(x%,y)seK,
(X, y?) e K, xK,.
Similarly,
W = l\/yn szlax{fl(xl)+®2(yl) [x'eU,y'eV } (4.27)
where
(MSD),: @%(y!)= XIylyiznr{f 2(x?,y)-(x*) (sz £2(x2, y)+ Ve i (x2, y)r)
—%rTVizfz(xz, y)r}
Subjectto v, f*(x%,y)+ V2 20, y)reK;
(X, y?) e K xK,.

For any given y', the program (MPS), and (MPD), are a pair of

second-order symmetric dual nonlinear program involving cone treated
in the proceeding section and hence in view of assumptions (ii)-(v),
Theorem 4.2 becomes applicable.

Therefore, for y'=y" ,we have,

§=0,(x*)'V,f*(x*y)=0 (4.28)
and
0" (V") =0*(V) (4.29)
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It remains to show that (x,y,7=0) is optimal for (MSD). If this
Is not the case, there exists y™ eV such that ©*(y™") <@®*(y"). But then,

in view of the assumptions (iv) and (v) , we have
O'(y)=0*(y) >0 (y")=6'(y"),

which contradicts the optimality of (x? y?,5=0) for (MSP). Hence

(X,y,7 =0)is an optimal solution for (MSD).

Also, (4.25) and (4.28) prove (b), whereas ¢(X,y,5=0)=w(X,y,F =0)
follows form (4.26), (4.27) and (4.29).

As earlier, here to, the converse duality theorem (Theorem 4.6)

will be merely stated.

Theorem 4.6 (Converse Duality): Let (x,y,7)be an optimal solution of

(MSD), also let

(i) f(x,y) be separable with respect to x* and y*

(i)  f(,y)be bonvex in x* for every (x',y),and boncave in

y for every (x,y'),
(i)  f(x,y)be thrice differentiable in x*and y?,
(iv) V2 f(x,y) isnon singular
(V) V. (Vi (X, ¥)r) is positive definite.
Then
(e) T1=0

M )V,.f(xN=0

118



(9) ¢ y,5=0=w(xyr=0) and
(h)  (x,y,5) is an optimal solution of (MSP).

Theorem 4.7 (Self Duality): Letf:R"xR™ —»R be skew symmetric.
Then (MSP) is self dual. Further, if (MSP) and (MSD) are dual

programs and (x,y,5)is an optimal solution for (MSP), then
(X,¥,5=0) and (x,y,7 =0) are optimal solution for (MSP) and (MSD)
respectively, and

#X,y,5)=0=yp(X,y,T).

Proof: The proof follows along the lines of Theorem 4.4,

4.5 Special Cases

If C,=R! and C,=R"where R! and Rare nonnegative orthants

in R" and R™, Then the problems (SP) and (SD) will reduce to the
following problems treated by Mond [70] :

Primal (P): Minimize Gy(x,y,p)=f(xy)-y'V,f(xy)+Vif(xy )p)
PVt )P
Subject to
vV, f(xy)+ViE(xy)p<0,
x>0,y=>0.
and
Dual (D): Maximize H,(x,y,q)=f(xy)-x"V,f(xy)+Vif (x,y)q)
—%qTVif(x, y)q
Subject to
VvV (X y)+V2f(xy)q=0
x>0,y >0.
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It is to be remarked thaty>0 and x>0 can be deleted

respectively from the problems (P) and (D) as these constraints are not

essential.

If only p and q are required the zero vectors, then our problem
(SP) and (SD) become the following (first order) symmetric dual

programs over cones studied by Bazaraa and Goode [8]:
Primal (Pg): Minimize f(x,y)-y'V, f(x,y)

Subject to
-V, f(x,y)eC;,

(x,y)eC, xC,
Dual (Do): Maximize  f(x,y)-x"V, f(x,y)
Subject to
-V, f(x,y)eC/,
(x,y)eC, xC,

Finally, if U and V are empty sets and p=s and r=q, Then
(MSP) and (MSD) will become, the problems (SP) and (SD)

considered in Section 4.3.
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5.1 INTRODUCTORY REMARKS

handra, Husain and Abha [22] presented a new symmetric dual
Cformulation (called mixed symmetric dual formulation) for a
class of nonlinear programming problem and derived various duality
results. Their mixed formulation unifies the Wolfe [98] and Mond-
Weir type [71] symmetric dual formulations respectively, incorporated
by Dantzig et al. [38] and Mond-Weir [71].

Recently Suneja et al. [92] studied Mond-Weir type second-
order symmetric duality in multiobjective programming by establishing
usual duality theorems wunder #5-bonvexity and #-boncavity
assumptions. They also proved self duality theorems under skew
symmetry of the kernel function that occur in the formulation of the
problems. In [92] each component of the multiobjective dual models

involves different auxiliary variables p, and g, i=12,...,k, disagreeing

with the formulation of second-order dual model having single

auxiliary variable p, presented by Mangasarian [66].

The purpose of this chapter is to present multiobjective version

of the second-order mixed symmetric and self duality in traditional
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mathematical programming with a single objective treated by Husain
and Abha [49]. This formulation of the problems considers the same

auxiliary variable p in the primal and the same auxiliary variable q in

the dual, which is the conformity with the Mangasarian’s [66]
formulation. Obviously, our formulation unifies Wolfe and Mond-Weir
type symmetric second-order dual models which are not studied in the
literature. In addition to validation of various duality theorems under
suitable second-order convexity/ generalized second-order convexity,
an attempt is also made to identify self duality for this pair of programs

under additional restrictions on the kernel functions involved.
5.2 Pre-requisites and Definitions

Let R" denoted the n-dimensional Euclidean space. The
following ordering relations in R" are recalled for our use. If x, y € R",
then

X<y < X<V, (i=12,...,n)

X<y < x<Vy,(0=12,...,n)

X<y < X<V, (1=12,...,n),butxzy
X £y is the negation of X < y.

For x,yeR,x<yandx<y have the usual meaning.

Let ¢ (x,y) be twice differentiable real-valued function defined

on R" x R". Let Vv, 4(X,y) and V ¢(x,y)denote the gradient vectors with
respect to x and Y, respectively evaluated at(x,y). Also let
Vig(X,y) andVig(x,y) debits the Hessian matrix of second-order

partial derivatives of ¢ with respect to x and y, respectively evaluated
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at(x,y). The symbols v ¢(x,y) and v ¢(x,y) are similarly defined.

The symbols Vv, (Vig(x,y)q) and v, (Vig(x,y)p) denote the matrices

whose (i,j)™ elements are respectively given as %(vi;&(i, y)q)j, with

P - .
qeR" and&(vw(x, V) p)jWIth peR™.

Definition 5.1: The function ¢ is said to be bonvex in first variable x at

ueR"™, if for all veR", geR", xeR" and for fixed .
T 1+
PxV) = 9(UV) 2 (=)' [ V,4(u, V) + Vi(u)a | -2 a"Vig(u,v)d

and ¢(x,y) is used to be boncave in the second variable y at v, if for all

ueR™ pieR™, yeR™ and for fixed xeR",
POV — £ (%, Y) € (V=y)[ V,0(x, ¥) +Vid(x. ) p]—% P V(X )P

Definition 5.2: The function ¢ is said to be pseudobonvex in the first

variable x at ue R", if for all ve R", gi e R" and x e R" and for fixed y,
(x—u)" [ V,(u,v) +Vig(u,v)q | 20

S gxY) 2 g(u,v) —%qu§¢(u,v)q

and ¢ is said to be pseudoboncave in the second variable y at veR", if

forallueR™, peR™ and yeR™ and for fixed x e R"
V=Y V,8(xy)+Vig(x, y)p]| <0

S V)< B, Y) —% PTV24(X, )P
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5.3 Mixed Type Second-Order Multiobjective Duality

For N = {1,2,..., n} and M{1,2,..., m}, let J;c Nand K;c M
and J,= N\ J; and K, = M\ K;. Let |J;|denote the number of elements in
the subset J;. The other symbols [J,|, |Ki] and |K;| are defined
similarly. Let x*eR™ and x? <R, then any xe R can be written as
x = (x*, x%. Similarly for y!<rkland y’><R*!.can be written as
y = (Y, y9). Let f:R*xR% R and g:R™xR* >R be twice
differentiable functions. It is to be noticed here that if J; is an empty
set, the J, = N, [J;] = 0 and |J,| = N. ThenrMand rRM! xR*'will be the
zero-dimensional and |Ky|-dimensional vectors respectively. Similarly
we can describe the cases K; an empty set, K, an empty set and J,, as

an empty set.

We now introduce the following pair of nonlinear programs and

study its second-order symmetric duality by the following theorems:
Primal Problem:

(SMP): Minimize F(x', %% y*, ¥ p, 1)

:(Fl(xl’xz’yl’y2’p1 r)11Fk (Xllleylvyzip! r))

Subject to

V(AT HOE Y+ VA AT Y) p£0, (5.1)

V. (AT9)0¢, ) + V2, (AT g)(¢, y*) r< 0, (5.2)

0|V, (T 9)0¢ )+ V(190 y) T2 0, (5.3)

x5 x?>0, (5.4)

reAt. (5-5)
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Dual Problem:
(SMD): Maximize G(u, u? v}, V2, q, 9)

:(Gl(ul,uz,vl,vz,q, s),... G, (u*,u?,v*,v?,q, s))
Subject to
V(AT ) V) +VE@AT U V) g2 0, (5.6)

V(AT V) +VE (AT Q) v) s 2 0, (5.7)
(UZ)T [sz (AT V?) + V2 (AT g)(u?, V) s] <0, (5.8)

viv?20, (5.9)

LeA". (510)
where

(i) RO YLy e = fi(x, yl)—% p'VLR (O y)P
)V, (AT O YY) + V2T Y pf

1
+0; (Xz, yz) —EI'TV§2 gi(xza yz)r

(i) GV a9 = V) -2 d V)
—U{V L (AT )V + VA (AT ) v)a)
+g; (U*,v?) —%STVizgl(UZ,VZ)S

(iii)  peRM,reR% geR%seR™, and A=(As,.... )" With AR,
i=12,...k

(iv) A" ={/16Rk |/1>o,ix,, =1}

Theorem 5.1 (Weak duality): For (x!, x*,y",y%A.p,r) be feasible for
(SMP) and (u*,u®v' V2,4, q,s) feasible for (SMD), let

(i) foreach ie{l,2, ... k}; f.(.y") be bonvex at u' for fixed y*

and fi(x',.) be boncave at y* for fixed x*, and
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(i)  A"g(..y?) be pseudoconvex at u® for fixed y*, and A'g(x?,.)

be pseudoboncave at y* for fixed x%.
Then F(x', %%y, y% p,r) £G(u',u®,v',v?%,q,s)
Proof: By the bonvexity-boncavity of fi, i e {1,2,...,k},

f OV = iUt V2 (¢ —u)T [V f (Ut V) + V2 Lt Vg |
1 Ty72 1.1
Bl Ve R va (5.11)
and
OV = 04T (=YD VO V) + V2R O,y |

—% PV (¢, y)p (5.12)

Multiplying (5.12) by (-1) and adding resulting inequality to
(5.11), we have,

ACH%) —% PV, 0,y p— () V(T )0 ) + VA (AT ),y p)
{fi (uivl)—%quil fL UV = (U)LY, (V) + VA (uﬂvl)q}}

2 ()T (Vo f V) + V2 £ a7V 06 Y) + V26 0¢ v p)

Using (5.5) and (5.10), this inequality becomes,

Kk

> 2 [ f(d, yl)—% PV, 0,y p— ()T V(AT )0 Y + VA (AT O, YY) p}}

—ii. [ AR —%quil (Ut V) — () {V L (A )t V) + VA (AT f)(u%vl)q}}
> () {V, (AT ) V) + VA (AT ) v)a)
—(W) VAT OO Y VEAT Y p)

This, in view of (5.6) with (5.4), and (5.1) with (5.9), yields,
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Zﬂf.[fi (,9) =2 BTVE 106 )= () {V,, (27 D)0 ) + VA (2" f»(xﬂyl)pﬂ

i=1

>3 [fi (U, v —%qui (U V) — () {V, (A )t V) + VA4 (AT f)(ul,vl)q}}
(5.13)

From (5.4), (5.7) and (5.8), we have,

(X =u")" [V, (AT ) V") + V2 (AT g)(U’ V)5 | 2 0
Also from (5.9), (5.2) and (5.3), we have,

(V" =y)T | V. (AT 9)0¢, ¥2) + V2 (AT )0, yA)r | £
By pseudobonvexity of A'g(.,y%) at u?, we have,

Fg0e | (O V) - SV s | (5.14)

and by pseudoboncavity A'g(x?,.) at y*, we have,

A0V ATG0C Y~ STV (2T g0t )T (5.15)

From (5.14) and (5.15), we have,

T 2 2 1 Ty72 T 2 2 T 2,2 1 Ty72 T 2 \,2
A 9(x,y )—Er V(A 9)(x%, y)r=4 g(u,v )_ES Ve (A7 9)(X7,v)s
(5.16)
Combing (5.13) and (5.16), we have,

> % [ ACH —% PV, 0,y ) p= () V(AT )¢,y + VA (AT ),y p)

+gi(><2,yz)—%rijz/ngi(xz,yz)r}
Kk
=DW! [ fuv) —%qu; U Vg —(U){V, (A7 )l v) +VE (AT (U v)a)
T 2,2 1 Ty72 2,2
+14'g,(us,v )_ES V.. g;(us,v )SJ
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or

k k
D AR XYL YE por) 2D AG (Ut u? VvV g, 5)
i=1 i=1
or
AT F(Xl,XZ, yl’ y2’ p’ r) 2 lTG(Ul,UZ,Vl,VZ,q,S)
This implies

F(x', X2, ¥ Y2, p,r) £G(ut,u?, v v2,q,s)

Theorem 5.2 (Strong Duality): Let for each ie{1,2,....k}, f; be thrice
differentiable on R"x R™. Let (x*,x?, vy, 1, p,F) be a properly efficient

solution of (SMP); fixa = . Assume that

(A):  theset (V0. 1,V f,..V,f)is linearly independent,
(A2):  theset (V1.0,,V:.0,,...V..g,) is linearly independent,

(A;):  both the Hessian matrices Vyl(V; (27 f) p) and

v, (Viz (ZTg)r), are either positive or negative definite,

(A,): the set (Vyzgl+V§Zglf,Vyzgz+V§ngT,...,Vyzgk+V§zgkf) IS
linearly independent and
(As): the set {Vylfl+V§1flﬁ,Vylfz+V§1f2|3,...,vylfk+V§lfkﬁ} IS
linearly independent.
where f, = f,(x",¥"), ¢,=0,(x¥"),i=12,...k. Then (x',x*¥,y*41,0=0,5=0) is
feasible for (SMD) and F(x*,x% v, ¥% 4,p,F)=G(x", X%, V", ¥, 4,0,5).
Proof: Since (x',x% v,y A4,p,r)is a properly efficient solution of

(SMP), it is also a weak minimum. Hence there exist aeR¥, with

o = (04,00,...,04) and peR¥, peRM 9eR¥ 5t cR¥ 52 cR™ and neR
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such that the following Fritz John optimality condition [68] are
satisfied at (x*,x?,y*, V%, 4, p,T)

V@ ) +H(p-(@'eF) V(27 f)
+_§k:{(ﬁ—(oﬂe)yl)zl—%ﬁ}vxl(v;flﬁ):(sl (5.17)

V. (a'g)+ ((9—7772)Vy2x2 (279)

+ Zk:{(e—ny)ﬂj —%F}VXZ (Vi2 9,7)=6" (5.18)

Vi, (06—(oﬂe)17)T f +(,B—(aTe)yl—(aTe)§)V§1(ZT f)
+Z{(ﬂ—(oﬂe))71)ﬂ_1 —%ﬁ}vyl (v4fp)=0  (5.19)

V (a=n2)'g+(0-ny*-nF) Vi (AT9)

+{(H—}772)//{_1—a;r}vyz(V§ng):O (520)
;((ﬂ—(aTe)Vl)/ﬂ—%ﬁ)V; f,=0 (5.21)
;«0—7772)1 ~aT)V2.0, =0 (5.22)

(B-(@ V) [V 4 VL1P|+(0-ny") | V,.q+V2gr [+ u=0

(5.23)
ALV, (2 6)+Vy (A7)0 (5.24)
o[V, (F9)+V%(T7g)F |=0 (5.25)
1) [V, (T70)+ V2 (27g)T =0 (5.26)
S0 (5.27)
sis2 g (5.28)
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u'A=0 (5.29)
(a, 5,6,1n,6, 6% 1) >0 (5.30)

(a,,0,1,6%, 8% A, 1) #0 (5.31)

Since 2>0, from (5.29), we have,
u=0 (5.32)

From (5.21) along with the assumption (A;) and (5.22) along

with the assumption (A,), we obtain,

(B- (&)Y )Vu=a,pi=12,...,k (5.33)
and

(O-ny) A =aiF,i=12,...k (5.34)
Multiplying (5.23) by i and using (5.29), we get,

(B-(@"OY) (V (2" )+ VA 1))
HO -7V, (A 9)+ VA (A g)F]=0 (5.35)

From (5.25) and (5.26), we have,

(0" =7y (A 9)+ V4 (2 g)F]=0 (5.36)

6" —nY)V . (A) 9+ V2. () gr]1=0 (5.37)
Using (5.36) i.e. in (5.35), we have,

(B-(@"OY) (V,(2 £)+V (2 £)p)=0 (5.38)
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(B-(@OY) (V (@' 1)+Vi (@2 f)=0  (5.39)
Using (5.33) in (5.19) and (5.34) in (5.20), we obtain,

(@~ (a"e)A) (VT + V. f E)+%(ﬁ—(aTe)71)TVyl(le(Zf)ﬁ) =0
(5.40)
T \T 2 1 =2 2 (7 N\
(a-n A) (Vyzg+Vyzgr)+§(9—77y )VyZ(VyZ(lg)r):O
(5.41)
On multiplying (5.40) by - (a"e)y")and (5.41) by 6 -nx)Tand then

adding, we obtain,

(B-(@ V)|V (a—(@"e)D) f+ V2 (@—(a"e)A) f P}
HO-1' )V, (a-n"Z) g+ (Vi (a—n" 2T |
+%(ﬂ—(oﬁe)71fvyl (VA2 H)P)+(B-(a"e)¥")
+2 =19V (Vi (2 9N+ (0-ny) =0
(5.42)
Using (5.32) and then multiply (5.23) by o, we have,

(B-(@ V)V, (a-(@"D) f+V2((a—(a"e)2) T P}
+(¢9—7772)T {Vyz (aTg) + Viz (aTg)F} =0
Summing (5.37) and (5.39) from this inequality ,we have,

(B-(@ YNV, (@@ D) T +V2(@—(@'e)2)  p|
+(O-7"Y) |V, (@ =1 2) 9+ (VE (a—n"2)gr} =0
(5.43)
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Using (5.43) in (5.42), we have,

(B-(@"Q)YIV (VA2 D)P) (B-(a9)Y")
+(O-7¥)'V . (V3 )F) (0-1y?) =0 (5.44)

But by the assumption (As), we have,
(B-(@' YV (V4 (A)P)(B-(a"e)y") =0
and

O-19°)'V (V4 (2 9)F) (0-7¥%) =0
Which respectively gives,

p—(a'e)y =0 (5.45)
and

0-ny°>=0 (5.46)
From (5.40) together with (5.45), we have,

(a—(a")) (V,f+V5 1 P)=0
Which because (As),gives,

a—(aTe)r =0 (5.47)
The relation (5.41) together with (5.46) ,gives,

(-2 ){V :9+V2gr}=0
Which because of (A4) implies,

a-nh=0 (5.48)

If possible, let n= 0. Then from (5.48), we have o = 0 and from
(5.45) and (5.46) we have 6 = 0 = . From (5.17) and (5.18), we get
8' = 0 and & = 0. Contradicting (5.31).
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Hence n > 0.From (5.48) we have « >0. From (5.45) and (5.46)

we obtain,

y'20, y*20. (5.49)
From (5.17) along with (5.33)and (5.47), we get,

V(AT f)=5"
This along with (5.30)) and (5.27), we obtain,

V.(2Tf)>0. (5.50)
and

(xH'v,.@a'f)=0. (5.51)
From (5.18) along with (5.34) and (5.47), yields,

V.(A'g)=6"
This along with (5.30) and (5.28) ,yields,

V.(27g)=0 (5.52)
and

(X*)'V.(1"g)=0. (5.53)
From (5.33) along with (5.45) and o, > 0, and from (5.34) along with
(5.46) a,; > 0, respectively, we have,

p=0=T.
From (5.49), (5.50), (5.52) and (5.53), it implies that (x'x* V"
y%,1,q=0,s=0)is feasible for (SMD).
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From (5.24) along with (5.45) and o > 0 and (5.26) with 1 >0, we
have respectively,
(F)(V, (A 1)+ VA2 £)P)=0 (5.54)
and
(7 (V. (2 9)+ V24 (2 g)F) =0 (5.55)
Consider
1 g2 ol o2 = = ol o1 1—2 ol o\~
ROGXLYLYSADRT) = (X Y) S PV, Hi(XLY)P
(V) 4V, ) (7)) + VA1) (2,7 )

STV, (X% YT

H

+9,(X*.¥7) -

I\)

This, along with (5.54) andp=0=r, becomes

(X' %%, ¥4 Y, 2, p,F)=fi (X, y)+g,(X* %), i=12,.k
(5.56)

Again consider,
G (%K1, 7, 4.68) = £(% 7) -2 aV3 £ (7,79
() V()T (R Y+ VA (R YT
+9, (%%, 7) 57 VEg, (K7, 7S
This along with (5.51) and g =5 =0, becomes
G (X%, %2, ¥, ¥%,4,0,5) = f.(x, ¥ +0.(X%, ¥2), i=1,2,...k

(5.57)
From (5.56) and (5.57), we have,

H
|
N
|
i
|
N

F (%2, V2,4, P, F) =G, (X, X2, ¥4, ¥2, 4,0,5), forall ie{1.2,...k}
This implies,
F(x', %%y, y2, 4, p,F) =G, (X', X%, V', 2, 4,0,5) . (5.58)

That is, the objective values of (SMP) and (SMD) are equal.
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If  (x',%%y%y2%4,G,5) is not efficient, then there exists

(@*,u?v',v? 4,q,5) such that

G(@",u?v'v% 1,q,5) >G(x*, X%, v, ¥, 4,0,5)
Which because of (5.58) gives,
G®@,u*v',v%1,q,5) > F(x" x4y, y%, 4, p.T)

If (x*,%x%y%v%4,G,5) were improperly efficient, then for some

feasible (@ ,u?v',v? A,q,5) and some i

and so is
ATG, @@ ,u*,v',v?, 4,q,5) > ATF(x, X%, ¥4, V2, 4, p.T).
This again contradicts Theorem 5.1. Hence (x, %2,V V2, 4,7,5)
IS, indeed, a properly efficient solution of (SMD).

We shall merely state the following converse duality as its proof
is immediate due to symmetry of the formulation of the problem
(SMP) and (SMD).

Theorem 5.3 (Converse Duality): Let for each i € {1,2,... k}, f; be
thrice differentiable on R" x R™. Let (x*,x%¥',y2,4,0,5) be a properly

efficient solution of (SMD); fix » =x. Assume that

(Cy):  theset V21, V2f,,. V2T is linearly independent,

(Cy): theset v2,g,,V2.0,,... V.9, Iis linearly independent,
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(Cs):  both the Hessian matrices v, (V% (4" f)q) and

V. (V% (2T g)r) are either positive or negative definite,

(Cy): theset{v f+Vifa, v, f,+Vif,q,..V, f+Vifq}is

linearly independent; and

(Ce):  theset{v .9, +V2.05.V.0,+V>0,5,...V .0, +V20,5} IS

linearly independent.
where
f=f(x4yY), f="f&,y)i=12..k

Then (x*,x%,v',y%, 4,p=0,7r =0) is feasible for (SMP) and
F(X' X% ¥y 4,p.1) =G(X, X",y ¥*,4,0.5).
Moreover, if the hypothesis of Theorem 5.1 are satisfied for all
feasible solutions of (SMP) and (SMD), then (x*,x* v,y A,p,T) is a
properly efficient solution of (SMP).

5.4 Mixed Type Second-Order Multiobjective Self Duality

In this section, we now prove the following self-duality
Theorem. A mathematical program is said to be self-dual, if it is
formally identical with its dual, that is, if the dual is recast in the form
of the primal, the new program so obtained is the same as the primal.
In general the program (SMP) and (SMD) are not self dual without
added restriction on fi(x,y) and fi(y,x), i € {1,2,....k}. The functions
f:R™xR% >R and g :R"xRY R, i € {1,2,...,k}, is the skew
symmetric if for all x, yeR", fi(x'y") = —fi(y'.x), i € {1,2,....k}and
gi(x", ¥°) = —Gi(y"x).
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We describe the programs (SMP) and (SMD) as dual program if
the conclusion of Theorem 5.2 hold.

Theorem 5.4 (Self Duality): If the kernel function f(x',y") and
g;(x%,y%) fori e {1,2,...,k} are skew symmetric, then (SMP) is self-

dual. If also (SMP) and (SMD) are dual program, and

Ly2,A4,p,F) is a joint optimal solution, then so s
X2, 4,p,F) and F(x', %2, ¥, v%, 4, p,F) =0.
Proof: Consider (SMP) and note that (SMD) can be written:

Minimize -G(x*,x?,y",y?,q,5)

=(—Gi(x1,x2,y1,y2,q,s) ..... —Gk(xl,xz,yl,yz,q,s))
Subject to

~(V (AT )X, y)+V (AT )X, y)a) <0,

~(V . (AT9)(x*, y*) + VL (ATg)(x*, y*)s) < O,
() (V. (AT )(x*, y*) + VL (A 9) (X%, y*)s) > O,
y',y*>0

*X eA’
where
GO Y Y2, 4,0,8) = 1,06, yl)—%quil £0¢,y9)q
) (VL (AT ), Y1) + VA (AT )0, y)a)

1
+0,(x*,y%) _ESTViz 9:(x*, y*)s

Since for each i € {1,2,....k) fj and g; are skew symmetric,

Vxl fi (Xl’ yl) = —Vyl fi (yla Xl)a sz g (Xz’ yz) = _vyz fi(yz’ X2)1
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Ve (AT9)(x% y) ==V . (ATg)(y*, x°), VL (ATg)(X*,y*) ==V (A" 9)(y*, X°),
VLA Y) ==V (AT )y X), V(AT )X, y) ==V (A" f)(y',x), and
program (SMD) becomes

Minimize —G(y*, y*,x*, x%,q,5)

=(G,(v" ¥, ¥, %%,0,5),...G, (¥, ¥, X', X2, ,9))
Subject to

(V, (A" )Y, x)+ V5L (AT )y, x)a) <0,
(V. (AT 9)(y*, x*) + V1, (AT g)(y*, x*)s) £ 0,

(x*) (V. (ﬂTg)(yz,X2)+V§2 (A" g)(y*,x*)s) > 0,
y',y?>0
re A"
where
G(y"y* x',x*,1,0,8) = fi(yl,xl)%qTVil fi(y' x)g
—O) LV, (AT ) (Y XD+ V5 (AT )Y x)a}
+gi(y2,x2)—%sTVizgi(y2,xz)s, i=12,..k
This is just (SMP).

Thus (x*,x% v v%4,G,F) optimal for (SMD) implies (v v %%,
x%,2,0,5) optimal for (SMP). By an analogous argument,
(x4, %%, y*,v% 4, p,F) optimal for (SMP) implies (y!,y2 %' %% 4,P,3)
optimal for (SMD).

138



If (SMP) and (SMD) are dual programs and (x*,x2,¥*,y2,4, p,F)

Is jointly optimal, then
X' (V, (AT H(E, Y)Y+ VL (AT9X*, y)a) = 0,
(X*) (V. (AT 9)(X*, ¥*) + VL (A g)(X*, ¥7)r) =0,
(V) (VAT ¥+ VL (AT )X, ¥)P) = 0,
(V) (V. (AT9)(X*, ¥*) + V2 (AT 9)(X*,¥*)5) =0

The objective values of (SMP) and (SMD) at (x*,x% ",y 4,p,r) in

view of the above relation, becomes for each i € {1,2,...,k},
R(XYLY5 4P T) = Fi(XL ¥ +0,(X%,¥) =G/(X, X, ¥, ¥, 4,0,5).

Since (y%,y?,x%%x2,x,p,F) is also a joint optimal solution, it can be

similarly shown that
G=5=0, (X){V, (A" )", x)+ V(A" F)(¥",x)q}=0

and the objective value of (SMP) and (SMD) at (y*,y?,x%%?,x,p,F) can

be given as
R,y %, %% 4, p,F) =G (', ¥, X', X*, 4, P,T)
= (¥, X)) +9g,(V°,x%),iefl,2,...,k}
=—(f,(¢, ¥ +9,(x%¥%)).iefl.2..... K}
By Theorem 2, we have,
F (X', %x%¥, 9%, 4, B, F) =G (X', X, V', V%, 4, B,F)
=f. (X" )+, (X% ¥),iefl,2,..,k}
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Therefore,
This implies

5.5 Special Cases

Ifk=1, A =1, f="fand g = g, the second-order symmetric
multiobjective dual programs (SMP) and (SMD) to the following
program, studied by Husain and Abha [49]:

Primal Program

(SP): Minimize F(x',y" y",y* p,r) = f(xl,yl)—%pTlef(il,Vl)p
)V, T (X y) +VET (X y) p}
+9(X2,yz)—%rTV;g(xz,yz)r

Subject to

V(YD +VELE(X, y)p <0,
V:9(x%y*)+VLg(x*, y)r <0
(Y){V,.9(x%, y) +V.9(x*, y)r > 0
X', x> >0,
Dual Program
(SD): Maximize G(u',u?,v',v?,q,s) = f(ul,vl)—%qTVilf(ul,vl)q
+Hu) vV, f (U, v+ V2 (U vh)a}

FOUE V) -2 STVE g Vs
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Subject to
VU V) +VE U, V)g >0,
V. g(u*v?)+VZ,gu®,v?)s > 0,
UV .g(u* V) +VZg(u®,v*)s} <O,
1.2

v,ve> 0.

If J, = ¢ and K, =¢, the programs (SMP) and (SMD) reduce to
the following pair of Wolfe type second-order multiobjective dual

programs which are not explicitly studied in the literature
Primal Program:

(SWP): Minimize F'(x,y', p)=(F' (%Y, p),... FE (XL Y p))
Subject to

VLT B0 Y + VAT )0, Y <0,

Dual program:

(SWD): Minimize G'(u',v},q)=(G/(u"V',q),...,G;(u",v',q))
Subject to:
V(AT )t V) +VE (AT )t v >0,
y' >0,

reA",
where, foreach i € {1,2,....k},
) R YL )= f0Ey) = (yDIV, (AT y) +VE (AT (X, y) p]
1 Ty72 1 1
—5 PV OGP
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i) Gl(u',v\g)= (' v) - UV, (A ) V) + V(A f)(u',v)d]
—%quil f.(u',vha.

If J,=¢ andK, =¢, the programs (SMP) and (SMD) become the

Mond-Weir second-order multiobjective dual program which are

reported in mathematical programming.
Primal Program
(SMWP): Minimize F*(x*,y*,r)=(F (X*,y*.1),...F2 (¢, y.r))

Subject to
V. (ATg)(x%, y*)+ V2 (ATg)(x*, y*) r< 0

() | 7, (2T 908y + VL (g0, y) T | 2 0

Dual Program
(SMWD): Maximize G*(u?,v?,s) =(GZ(u?,V*,5),.... GZ (U?,V%,5))
Subject to
V. (ATg)(U? V) + V(AT g)(u?v¥) s 2 0
(u?) [V, (A Ut v?) + VA (A g)(u v?) s | < 0
V>0
A>0

where , foreachi e {1,2,...k},
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) ROV =006,y -2V 00 y)r
i) Gi(uz,vz,s):gi(uz,vz)—%sTvizgi(uz,vz)s

If p=gq=s=r=0, then the programs (SMP) and (SMD) reduce
to the mixed type first-order symmetric multiobjective programs
studied by Bector, Chandra and Abha [12].
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6.1 INTRODUCTORY REMARKS

The calculus of variation has been one of the prominent branches
of analysis, for more than two centuries. It is a tool of great
power that can be used to wide variety of problems, in pure
mathematics. It can also be used to express basic principles of
mathematical physics in forms of utmost simplicity and elegance.
Hanson [48] pointed out that some of the duality results in the
mathematical programming have the analogues in calculus of
variations. Exploring this relationship between mathematical
programming and classical calculus of variation, Mond and Hanson
[77] formulated a constrained variational problem as mathematical
programming problem in abstract space and using Valentine [93]
optimality conditions for the same, presented its Wolfe dual variational
problem for validating various duality results under usual convexity.
Later Bector, Chandra and Husain [13] studied Mond-Weir type
duality for the problem of Mond and Hanson [77] for relaxing its
convexity requirements. In [19] Chandra, Craven and Husain studied

optimality and duality for a class of nondifferentiable variational
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problems in which the integrand of the objective functional contains a
term of a square root of the quadratic form, while in [52], Husain and
Jabeen studied optimality criteria and duality for variational problems
in which integrand of objective and constraint functions contains terms

of support functions.

Second-order duality in mathematical programming has been
extensively studied in recent years. Mangasarian [66] was the first to
identify a second-order dual formulation for non-linear programs under
the assumptions that are complicated and somewhat difficult to verify.
Mond [70] introduced the concept of second-order convex functions
(named as bonvex functions by Bector and Chandra [11]) and studied

second-order duality for nonlinear programs.

Recently Chen [27] is the first to identify second-order duality in
variational problems. He studied usual duality results under invexity
assumptions on the functions that occur in the formulation of the
problem along with some strange assumptions. Mond [70] has pointed
out that the second-order dual for a nonlinear programming gives a
tighter bound and has computational advantage over a first order dual.
Motivated with this of Mond [70] in this exposition, we construct
Mond -Weir type second-order dual to the variational problem and
derive usual duality results under second-order pseudo- invexity and

second-order quasi-invexity assumptions.

The relationship of our results to second-order duality results in
nonlinear programming reported in [11] is indicated. In essence it is
shown that our duality results can be viewed as dynamic
generalizations of corresponding (static) duality theorems of nonlinear

programming already in the literature.
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6.2 Pre-requisites and Definitions

Let 1=[ab]be a vreal interval, f:1xR"xR">R and
g:1xR"xR"—>R™ be twice continuously differentiable functions. In
order to consider f(t,x(t),x(t)),where x:1 —R"is differentiable with

derivativex, denoted by f, and f, the partial derivative of f with

respect tox and x, respectively, that is,

of of
ot ot
of of
fo=lox|, f,=|oc];
of of
ox" ox"

denote by f, the Hessian matrix of f with respect to x, that is,

o f o0 f 0% f
oot oxox oxox”
o0 f 0% f 0% f
fo= ox?oxt oxox?  oxPox”

0’ f 0’ f N o* f
ox"oxt  ox"ox®  ox"ox"

nxn

It is obvious that f_is a symmetric nxn matrix. Denote by g, the

mxn matrix with respect to x, that is,

9 99 . 99
ot ox? ox"
9, 99, . 99
g.=| oxt  ox? ox"
9n  0Gn .
ot ox? ox"
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Similarly f, f_, f, and g, can be defined.

X1 OURK Y TXX

Denote by X, the space of piecewise smooth functionsx: 1 —R",
with the norm x| =], +[Dx], +|Dx|_, where the differentiation
operator D is given by

t

u:Dxc>x(t):a+ju(s)ds,

a

where « is given boundary value; thus %: D except at discontinuities.

We introduce the following definitions which are needed for the

duality results to hold.

Definition 6.1 (Second-order Invexity): If there exists a vector

function n=n(t,x,X)eR" where 7:1xR"xR"—>R" and with =0 at

t = a and t = b, such that for the functional j¢(t,x,>‘<)dt where

#:1xR"xR" - R satisfies

N |-

() G,B(t)}dt
{UT 3 +(D77)T ¢X+77TG,B(t)} dt,
then j¢(t,x,>‘<)dt is second-order invex with respect to » where

G=¢,-Dg,+D’, and pBeC(I,R"), the space of continuous

n-dimensional vector function. The function gis analogous to the

auxiliary vector p in [11].

Definition 6.2 (Second-order Pseudoinvex): If the functional

[#(t.x x)dt satisfies
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[{n"¢.+(Dn)" g, +1n"GB(1)|dt>0 =

[#(tx%)dt zj{¢(t,7,i)—%ﬁ(t)T Gﬁ(t)}dt,

then j¢(t,x,>‘<)dt Is said to be second-order pseudoinvex with respect
to 7.

Definition 6.3 (Second-Order Quasi-invex): If the functional
[#(t.x x)dt satisfies

'I[gb(t,x,)'()dtS'I[{¢(t,¥,x*)—%ﬂ(t)T G,B(t)}dt,:
Ij{rfqﬁx +(Dy) 4, +77TGﬁ(t)} dt <0,

then j¢(t,x, x)dt is said to be second-order quasi-invex with respect
to 7.

If 4 does not depend on t, then the above definitions reduce to

those given in [11] for static cases.

Consider the following constrained variational problem:

(VP): Minimize [ f(t,xx)dt

|
Subject to
x(a)=0=x(b),
g(t,x,X)<0, tel,
h(t,x,x)=0, tel,

where f :IxR"xR" >R , g:IxR"xR"—>R™ and h:1xR"xR" —R* are

continuously differentiable.
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Proposition 6.1 [3] (Fritz-John Conditions): If (VP) attains a local
(or) global minimum at x=xe X then there exist Lagrange multiplier

reR ,z:1 —»R" and piecewise smooth y:1 —R™ such that

(T,y(t))ZO, tel,

(z.y(t).z(t)) =0, tel.

The Fritz John necessary conditions for (VP), become the
Karush-Kuhn-Tucker conditions [66] if z=1. If =1, the solution xis

said to be normal.
6.3 Second-Order Duality

Consider the following variational problem (CP) by ignoring the
equality constraint of (VP):

(CP): Minimize [ f (t,xX)dt

Subject to
x(a)=0=x(b), (6.1)
g(t,x,x) <0, tel, (6.2)
Chen [27] presented the following Wolfe type second-order dual
problem for (CP) analogous to that for nonlinear programming by

Mangasarian [66] and established various duality results under

somewhat strange invexity-like conditions.
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Maximize: T{f (tu(r).a(t)+a(t) g(tu(t).u(t))
%ﬂ(t)T[fuu(t,u(t),U(t))Jr(gu (t,U(t),U(t))TOZ(t))u
=201, (L0 0).0(0)) (s, (Lu(®).0(0) () |
+D2(fuu(t,u(t),u(t))+( o\l

(@]
—_
~—+
e
—~
—
N—"
[
—~
—
N—
~—
—
]
—~
—
SN—"
~——
o
S~———
| IN—|
—~
—+
N—"
Hr_J
[oX
d

Subject to
u(a)=0=u(b), u(a)=0=u(b)
f, (tu(t).u()+ g, (Lu(t).u(t) a(t)
-D| f,(tu(t).u(t))+g, (tu(t).u(t)) a(t) |
+[fuu(t,u(t),u(t))+(gu |
-2D( 1, (Lu(t).0(1)+(, (Lu(0).0 (1) «() |
07, (tu().0(0) (o (Le@.0 ) a)) | |50)-0

tel,
a(t)eR!, B(t)eR" tel,

where R" designates the non-negative orthant of the Euclidean

space R".

Let

Then the above dual problem can be expressed in a much

simpler form which is given below.
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(VD): Maximize T{f(t,u(t),u(t))+a(t)Tg(t,u(t),u(t))

-2 H{tu() 0().a(0), A()
Subject to
u(a)=0=u(b), u(a)=0=u(b)

f, (tu(),0()+9, (tu(0).0(1) a(t)
-D| £, (Lu(t),4(1) + 9, (tu().u()) a(t) |
+H (tu(t),u(t))e(t) B(t) =0, tel

a(t)eR!, B(t)eR" tel

It is remarked here that if f and g are independent of t, then (VD)

becomes second-order dual problem studied by Mangasarian [66].

Now we present the following Mond —Weir type second-order
dual (CD) in the spirit of [11] to relax second-order invexity
requirements and establish various duality results between the
problems (CP) and (CD) under generalized second-order invexity

hypothesis.

(CD): Maximize Hf(t,u,u)_%ﬁ(t)T Fﬁ(t)}dt

Subject to
u(@)=0=u(b) (6.3)
fu+y(t)T gu_D(fu+y(t)T gu)+(F+H)IB(t):O,tEI
(6.4)
| {y(t)T g(t,u,u)—%ﬂ(t)T H,B(t)}dt >0, (6.5)
y(t)=0,tel (6.6)
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where

F=f,—-Df, +D? fa and H :(y(t)T gu) _D(y(t)T gu)

u u

+D*(y(t)' g,) and define D :%as defined earlier.

u

If fand gare independent of t then F=f, and H=(y'g,) and

consequently (CD) will reduce to the second-order dual problem
introduced in [11].

Theorem 6.1 (Weak Duality): Let x(t)e X be a feasible solution of
(CP) and (u(t),y(t),A(t)) be feasible solution of (CD).If j )dt be

second-order pseudoinvex and jy(t) g(t,...)dt be second-order quasi-

invex with respect to the same 7:I1xR"xR" —»R" satisfying =0 at

t=a and t=b, then

I f(t,x,X)dt zj.{f (t,u,u)—%lg(t)T Fﬂ(t)}dt

Proof: The relations, g(t,x,x)<0, y(t)>0,tel and (6.5) imply

Iy(t)T t,x x)dt<j{ g(t,u u)—%ﬂ(t)T H,B(t)}dt,

This, because of second-order quasi-invexity oij(t)T g(t,.,.)dt, implies

that,

J {”T (v(®)" g, )+(On) (v(t) gu)+77TH,B(t)}dt <0

ie., jyf( )dt+j (D) ( (t)' gu)dt+j77THﬁ(t)dt£O

This, by integration by parts, this inequality yields,
J’? ( )dt+77y ) 9, | —In D( )1t+j'77 HpA(t)dt <0
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Using »=0at t=aand t=b in the above inequality, we obtain,
[nlly®) g,)-Dly) g, )+ HAW <0,

Using (6.4), this gives,

[ [#" (f,—Df,)+n"Fp(t)]dt=0.

Integrating by parts, gives,

f(?f f, +(Dn)" f, +77TF,B(t)dt)zo.

This, in view of second-order pseudoinvexity of jf (t,...)dt implies,

jf(t,x,x)dtzj{f (tu0) -2 A F,B(t)}dt.

This implies,

infimum(CP) > supremum(CD).

Theorem 6.2 (Strong Duality): If x(t)e X is an optimal solution of
(CP) and meets the normality conditions, then there exists a piece wise
smooth y:R — R"such that (x(t),y(t), A(t)=0) is a feasible for (CD) and
the two objective values are equal. Furthermore, if the hypothesis of
Theorem 6.1 holds, then (x(t), y(t), A(t))is an optimal solution for (CD).

Proof: From Proposition 6.1, there exists a piece wise smooth function

y:R — R" satisfying the following conditions:

)-Dlf, . %,%)+ ¥t 9, t.%.%))=0, tel

-

(f, (6%, %)+ vt 0, (%,

—
x|
x|

~
+
<
—~~
—t
~
4
(=]
.
—~
—t
x|
|
~—
~—

ie., (£(t%.%)+¥() g, (t%.%))-D(f (t.X,
+(F+H)A(t) =0, (6.7)
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where

ie., I{V(t)Tg(tT()"()—%ﬂ( )THﬁ(t)}dt 0, where fB(t)=0, tel
(6.8)
y(t)>0, tel (6.9)

From (6.7), (6.8) and (6.9), it implies that (x(t)y(t),(t)=0) is
feasible for (CD) and the objective value of (CP) and (CD) are equal.
The optimality of (x(t), y(t), g(t)) follows by an application of
Theorem 6.1.

Theorem 6.3 (Converse Duality): Suppose that f and g are thrice
continuously differentiable. Let (x(t) y(t). A(t) be an optimal solution
of (CD) at which

(Ap): the Hessian matrices F and H are not the multiple of each
other.

(A): y(t) g,- Dy(t)T 9,70,

(Ag): i) jﬂ "(v(t) 9,-Dy(t) g,)dt=0 and [ (1) HA(t)dt >0

or
||)jﬁ "(v(1) 9, -Dy(t)' g, )dt<0 and [A(t) HA(t)dt <0
If, for all feasible (x(t), (t)),] f(t...)dt be second-order

pseudoinvex and [y(t)' g(t,...)dt be second-order quasi-invex with

respect to the same 7 ,then x(t) is an optimal solution of (P).
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Proof: Since (x(t),y(t),A(t)) is an optimal solution for (CD), by

proposition 6.1, there exist Lagrange multipliera R, and piece wise

smooth 1:1 -R", yeR and u:1 —R"™ such that Fritz John conditions
hold at(x(t), y(t), A(t)):

e f o)

A {fxx H{y() 9,) -D(fa+(y) gx_)x)+((p +H)A(D),
_D( o+ (y(1) g))_( (v gx.)x)+((F +H ),B(t))x}

+y{y(t)T 0,280 FA() - D(y(t)T 0, 2(p0) Fﬂ(t))xj}=0, tel
(6.10)
(A(t)+aB(t))F +(A(t)+yB(t))H =0, tel (6.11)

;t(t)T [ng_DgiX+(giXX_ngxX+ngxx)ﬂ(t)]
+J/[gj+%ﬂ(t)T(gixx_ngxk+ngxx)ﬂ(t):l+ﬂj(t):0, tel

(6.12)

(fx+y(t)T gx-)—D(fX—Fy(t)T gx)+(F+H)ﬁ(t):0, tel

(6.13)
Ay 0= 0 HA0 =0, e (614)
p )y =0, tel (6.15)
(.7, 1())20, tel (6.16)
(a.7,A(t), u(t))=0, tel (6.17)
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In view of hypothesis (A,), the equation (6.11) yields,

At)+apt)=0, te |} (6.18)
At +78(1)=0, tel

Multiplying (6.12) by y, (t) and summing over j, we have,
A |y 9, -D(y0" 0.)+((y©'g,), ~D(y®'g,), +D* () g,), ) A(1) |
—y[y(tfgx—%ﬂ(tf (y©'9,),-D(v"g,), +D* (v g,), ) 8 t)}

X X

+u' (t)y(t)=0,
Using (6.15) and then integrating, we have,

JAO"{y(©) 0, -D(y(1)' 0,)+ HA(D)et
_yj{y(t)T 0,2 A) Hﬁ(t)}dt o

This, because of (6.14), yields,

JAW" {y(0) 9,-D(¥() 6, )+ HA()|dt =0 (6.19)

If (e,7)=0ie a=0=y, then (6.18), implies A(t)=0, tel and u(t)=0

from (6.12).
Thus, we have,

(a7, A(t), u(t))=0.
This contradicts (6.17). Hence

(a,7)#0 e a>0 or y>0.

We claim g(t) =0, tel. Suppose that g(t) =0, tel.
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From (6.18) we have,
(a-7)p®)=0

implying a=y>0. Using (6.18) in (6.19), we have,

Jap () {y(t) 9,-D(y(t)" g, )+ HA()dt =0

implies  [A(t) {y(t)T 9,-D(y(t) g)} dt+ [ B(t)" HA(t)dt=0 (6.20)

In view of the hypothesis (A3) i.e.,

1A y(t) 0.-0(y()' 0,)}ct=0

and [B() HB(t)dt>0.

We have,

[B(t) {y(t)T 0,~D(v(t) g, )+ Hﬁ(t)}dt >0

This contradicts (6.20). Hence g(t) =0, t 1. Consequently (6.18)

implies A(t)=0,tel
From (6.10), we have,
—a(f, - Df, )+ y(t) g, - Dy(t) g,)=0 (6.22)
Also from (6.4), we have,
(f,-Df,)=(y(1) 6, ~D(y(t)' g,))
Using this in (6.21), we have,

(a-7)y(t) g, - Dy(t) g,)=0
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In view of the hypothesis (A,), this gives,
a=y>0.

From (6.12) ,we have,
Wt 4 (t)=0
Because y >0, this gives,

H;j (t)

j=——=<0
v

g(t,x,x)<0
x Is feasible to (CP). In view of g(t)=0, te gives the equality of two

objective values follows. The optimality of x for (CP) follows from

Theorem 6.1.

6.4 Natural Boundary Values

In this section, we formulate dual variational problem with

natural boundary values rather than fixed end points.
(CPg): Minimize [ f(tx, X}t
|

Subject to
g(t,x %)<0, tel

(CDy): Maximizej {F(t,x,)'()—%ﬂ(t)T Fﬂ(t)}dt

Subject to
fx+y(t)T gX—D(fX+y(t)T gx,)+(F+H)ﬂ(t):0 tel

y(t)=0, tel

y(t)T gxt=a =0,
T

y(t) 9s| _ =0,
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We shall not repeat the proofs of Theorem 6.1-6.3, as these

follow on the lines of the analysis given in [11].
6.5 Nonlinear Programming

If all functions in (CPy) and (CDg) are independent of t, then
these problems will reduce to following pair of dual problems, treated
by Bector and Chandra [11].

(P1): Minimize f(x)

Subject to

(D.): Maximize f(x)— p'V*f (x)p
Subject to
V(f+y'g)+V?(f+y'g)p=0
yTg(X)—%pTvz(yTg(X))pzo
y20
Where f(X)=VE(x), y'9(x)=V(y'g), f, (x)=V*f(x)

Vi(y'g(x))=(y"gs), and B=p
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7.0. INTRODUCTORY REMARKS

The purpose of this chapter is to study second-order duality for
two classes of nondifferentiable continuous programming
problem. This chapter comprises two sections 7.1 and 7.2 addressing
second-order duality for one having nondifferentiability due square
root of certain quadratic form and other containing support functions.
The popularity of this type of problems seems to originate from the
fact that, even though the objective function and or / constraint
functions are non-smooth, a simple representation of the dual problem
may be found. The theory of non-smooth mathematical programming
deals with more general type of functions by means of generalized sub-
differentials. However, square root of positive semi-definite quadratic
forms and support functions are amongst few cases of the
nondifferentiable functions for which one can write down the sub-or
quasi-differentials explicitly. Here, various duality theorems for this
pair of Wolfe type dual problems for which each class of problems are
validated under second-order pseudoinvexity condition. A pair of
Wolfe type dual variational problems with natural boundary values

rather than fixed end points is presented and the proofs of its duality
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results are indicated. It is also shown that our second-order duality
results can be considered as dynamic generalizations of corresponding
(Static) second-order duality results established for nondifferentiable
nonlinear programming problem, considered by Zhang and Mond
[101].

7.1 SECOND-ORDER DUALITY FOR A CLASS OF
NONDIFFERENTIABLE CONTINUOUS
PROGRAMMING PROBLEMS

In this section, we formulate a Wolfe type second-order dual
associated with a class of nondifferentiable continuous programming
problems with square root of certain quadratic form appearing in the
objective functional. Under the second-order pseudo-invexity, various
duality theorems are validated for this pair of dual problems. A pair of
dual problems with natural boundary values is constructed and the
proofs of its various duality results are merely indicated. Further, it is
shown that our results can be viewed as dynamic generalizations of
corresponding (static) second —order duality theorems for a class of
nondifferentiable nonlinear programming problems existing in the

literature.

Consider the following class of nondifferentiable continuous

programming problem studied in [19]:

(P+)I Minimize .!'{f(t,x(t),>'<(t))+(x(t)T B(t)X(t))%}dt

Subject to



where,

) f, g and h are twice differentiable functions

fromIxR"xR" into R,R™and R* respectively ,and

i)  B(t) is a positive semi definite nxn matrix with

B(-) continuous on | .

The following proposition gives the Fritz John optimality

conditions which are derived by Chandra, Craven and Husain [19].

Proposition 7.1.1 (Fritz-John Conditions): If (P*) attains a local

minimum at xeX and if h(.x(-),x(-)) maps X onto a closed
subspace ofC(I,R") , then there exist Lagrange multipliers zeR,

piecewise smooth y:1 -R™ and A:1—R“not all zero, and also

piecewise smooth z:1 — R"satisfying ,for all tel,

If h(.x(),x()) issubjective, then r and y are not both zero.

The following Schwartz inequality has been used in obtaining
the above optimality conditions and will also be needed in the

forthcoming analysis.
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Lemma 7.1.1 (Schwartz inequality): It states that

X(t) B()z(t) < (x (1)’ B(t)x(t))%(z(t)T B(t)z(t))
with equality in (7.1) if (and only if)

% el (1)

B(t)(x(t)—q(t)z(t))=0 for some q(t)<R.

Remark 7.1.1: The Fritz John necessary optimality conditions in
Proposition 7.1.1 for (P"), become the Karush-Kuhn-Tucker type
optimality conditions ifz=1. It suffices forr=1, that the following

Slater’s condition holds:
9(LX(8),%(0)+ 9, (LX (1), X (1) v() + 0, (6% (). X() (1) <O,
v(t)eX andall tel.
7.1.1 Second-Order Duality

Consider the following continuous programming problem (CP)

by ignoring the equality constraint, h(t,x(t),x(t))=0, tel, in the

problem (P"):
(CP"): Minimize I{f(t,x(t),X(t))+(x(t)TB(t)x(t))%}jt

Subject to

x(a)=0=x(b), (7.2)

g(t.x(t),x(t))<0,  tel (7.3)

Analogously to the second-order dual problem introduced by
Mangasarian [66] for a nonlinear programming problem, we consider
the following second-order dual continuous programming problem

(CD") for (CP™).
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(CD"): Maximize [{f (tu(t).u(t))+u(t) B(t)z(t)+y(t) g(tu(t).u(t)

Subject to

z(t) B(t)z(t) <1, tel, (7.6)
y(t)=0, tel, (7.7)

where
H ()= £, (Luu)+(y() g, (b)) —ZD[fuu (tuu)+(y(t) g, (t,u,u))u}
+ Dz[fuu (t,u,u’)+(y(t)T g, (t,u,u‘))u}

Theorem 7.1.1 (Weak Duality): Let x(t)e X be a feasible solution of

(CP") and (u(t),y(t),z(t)) be a feasible solution of (CD"). If
[{f(t.)+() BE)z()+y(t) g(t..)jdt is second-order pseudoinvex

with respect to 7 =7(t,x,u) , then
inf. (CP") > sup. (CD").
Proof: From (7.5), we have,
[ {1 (eu(0.000)+BO2(0)+y() 8, (tu().0(0)
-D{t(bu)()+y() g, (tu)a())fde [ H (O p(e)dt
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- ﬂyf {fu (tu(t),u(t))+B(t)z(t)+ y(t) g, (tu(t),u(t))
+(Dn)’ (fu. (tu(t),u(t))+y(t) g, (t,u(t),u(t)))+77TH (t) p(t)}}dt
' (fu. (tu(t),u(t))+y(t) g, (t,u(t),u(t)))tb

(by integration by part)

Using the boundary conditions (7.2) and (7.4), we have,

! [ {1,(tu(),0(0) + BOZ(0) + (1) g, (tu(t) (1)
+(Dn)' (1,(L0(0).0(0)+ y(1) 0, (tu(t).6(1))+n H (1) p(V)} dt =0

This, in view of second-order pseudoinvexity of

[ (60 + () BO2(t)+y(1) g(t.)}dt, yields,

[ (tx30+x(7 BO)2()+ (1) g (tx 0)jet
= {0 Bz +y(0) o(tu0) 3o ) HEOPO fo
Because of Schwartz inequality (7.1) along with (7.5), (7.6) and (7.2),
this implies,
I X r0) (x0) BOx(0)
ZHf (tu.0)+u(®) BE2()+y () 9 (tud)—5p() H (t)p(t)}dt’

yielding,
inf (CP") > sup (CD").

Theorem 7.1.2 (Strong Duality): If x(t)e X is an optimal solution of

(CP™) and is also normal, then there exist piecewise smooth function

y:1 >R™ and z:1 —R"such that (x(t),y(t),Z(t), p(t)=0) is a feasible
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solution of (CD") and the two objective values are equal. Furthermore,
if the hypotheses of Theorem 7.1.1 hold, then (X(t),¥(t),z(t), p(t))is

an optimal of (CD").

Proof: From Proposition 7.1.1, there exist a piecewise smooth function

y:1 ->R™ and z:1 - R" such that

y(t)=0, tel

Hence(x(t),y(t).z(t),p(t)=0) satisfies the constraints of (CD") and
the objective values are equal. Furthermore, for every feasible

solution(u(t), y(t),z(t), p(t)),from the above conditions we have,



So, (x(t),¥(t),Z(t), p(t))is an optimal solution of (CD").
Theorem 7.1.3 (Converse Duality): Assume that f and g are thrice
continuously differentiable and (X (t),¥(t),z(t),p(t)) be an optimal

solution of (CD") .Let the following conditions hold:

(i):  The Hessian matrix H(t) is non-singular, and

(i): (v(®) HEOw (1) -D(w (1) H©w (1) +2w (1) D(H () (1)), =0

=y (t)=0, tel
Then x(t)is feasible for (CP"), y(t)" g(t.x,x)=0.tel. In addition, if
the hypotheses in Theorem 7.1.1 hold, then x(t) is an optimal solution.
Proof: Since (X(t),¥(t),Z(t),p(t)) is an optimal solution for (CD"), by
Proposition 7.1.1, there exist Lagrange multiplierz <R, and piecewise

smooth #:1 »>R", x#:1 >R™ and «:1—>R" such that following

conditions hold at the feasible point of (CD").

r[gj —% p(t)T g’ p(t)j+¢9(t)T (gJ -2Dg’ + ngi) p(t)

+luj(t)=0,t€ I, J =1(1)m (79)
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E(t) y(1)=0, tel
(Z',a(t),,u(t))ZO, tel
(r,a(t),y(t),@(t))io tel

By singularity of H (t), (7.11) yields,

o(t)+zp(t) =0, tel

(7.17)

If z=0, (7.17) implies 6(t)=0, tel. From (7.9), we have u(t)=0, tel.

The relation (7.10) together with (7.13) gives «(t)=0. Hence

(z.x(t),0(t), u(t))=0, tel, contradicting (7.16). Consequently z>0.

From (7.17) and 7 >0, (7.8) becomes,

Using the expression of H (t) and (7.12), this gives,
p(t) H(t)P(t)+D(P(t) H(t)P(t)] —2p(t) D(H(t)P
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which, because of the hypothesis (ii) implies p(t)=0,tel.From (7.9),
we have,

g+ (1)=0,tel ,j=12.m (7.18)
This, because of 7 >0, yields,

g’ (t%x,X)<0 tel
The relation (7.18) along with (7.14) and >0 gives,

y(t) g(tx,x)=0,tel (7.19)

Using 6(t)=0, tel and >0, (7.10) yields,

B(t)%(t)' =2(@j5(t)7(t),te 1, (7.20)

T

Which is the required condition for the equality in Schwartz inequality, i.e.,

l —

) BOZ()=(x(1) BOXO)] (z(t) BOZ(M))F  (7.21)

badl

If «(t)>0,tel, (7.13) gives, z(t) B(t)z(t)=1, and so (7.20) implies,

bal

(1) BO)Z(t)=(x (1) B(t))‘((t)); tel
If «(t)=0,tel, (7.20) implies, B(t)X(t)=0tel. So we still get

1

x(t) B(t)?(t)=(¥(t)T B(t)Y(t))E,tel (7.22)

Therefore, from (7.19), (7.22) and p(t)=0,tel, we have
H t,%,X)+ (7 ' B(t)i(t))z}dt:
H t,X,X)+x(t) B(t)Z(t)+y(t) g(t.x,x)->p(t)' H (t)ﬁ(t)}dt

This, by the application of Theorem 7.1.1 yields the optimality of
x(t)for (CP™).

-

N |-
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7.1.2. Natural Boundary Values

In this section, we formulate a pair of nondifferentiable dual
variational problems with natural boundary values rather than fixed

end points:

(CPg): Minimize I{f(t,x,x)+(i(t)TB(t)Y(t));}dt
Subject to
g(t,x,%)<0, tel .

(CDy): Maximize j{f(t,x(t),>‘<(t))+x(t)T B(t)z(t)+y(t) g(t.x(t),x(t))

Subject to

(£ (tx%)+BO)Z(0)+T() 9,(t.x%))

D[ (txX)+¥(t) g, (t.x X)) +H (1) p(t)=0, tel

y(t)=0, tel
f(tx %)+ ¥ (1) g, (tx%) =0,
f (tx,X)+¥(t) g, (t X, X) =0,

We shall not repeat the proofs of Theorem 7.1.1-7.1.3, as these
follow on the lines of the analysis of the preceding section with slight

modifications.
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7.1.3. Non-differentiable Nonlinear Programming Problems

If all functions in the problems (CP,) and (CD,) are independent
of t and b-a=1, then these problems will reduce to following
nondifferentiable dual variational problems, treated by Zhang and
Mond [101].

(NP): Minimize f (x)+(x"Bx)”

Subject to

(ND): Maximize f (x)+xTBz+yTg(x)—% pTVZ(f (x)+ yTg(x)) p

Subject to

V( f (x)+xTBz+yTg(x))+V2(f (x)+y'g (x))p =0

2'Bz<1,y>0
where V(f(x)+xTBz+yTg(x))= f (X)+Bz+y'g,(x)
and Vz(f(x)+yTg(x)):fxx(x)+(yTgX(x))X

7.2 SECOND-ORDER DUALITY FOR CONTINUOUS
PROGRAMMING CONTAINING SUPPORT
FUNCTIONS

In this section, a second-order dual problem is formulated for a
more general class of continuous programming problem in which both
objective and constrained function contain support functions, hence it
is nondifferentiable. Under second-order invexity and second-order
pseudoinvexity, weak, strong and converse duality theorems are
established for this pair of dual problems. Special cases are deduced

and a pair of dual continuous problems with natural boundary values is
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constructed. A close relationship between duality results of our
problems and those of the corresponding (static) nonlinear

programming problem with support functions is briefly outlined.
7.2.1. Pre-requisites

Consider the following nondifferentiable continuous programming

problem with support functions of Husain and Jabeen [52]:

(CP.): Minimize [{f (t,x,%)+S(x(t)|K)ldt

Subject to

x(a)=0=x(b), (7.23)

o’ (t.xX)+S(x(t)|C')<0, j=1,2.m,  tel,  (7.24)

where, fand g are continuously differentiable and each C' ,(j=1,2....m)
is a compact convex set in R" .Husain and Zamrooda [52] derived the
following optimality conditions for (CP.):

Lemma 7.2.1 (Fritz-John Necessary optimality Conditions): If the

problem (CP,) attains a minimum at x=X e X , there exist r eR and
piecewise smooth function y:1 —R™ with ¥(t)=(7'(t),¥*(t)...7" (t))

Z:1 ->R"and w':1 - R", j=1,2..m,such that



x|
VS

—+
N—
2

=]

I(t)=s(x(t)IC'), j=12.m, tel
Z(t)eK,wi(t)eCl, j=12.m, tel
(ry(t)=0, tel

(r.y(t))#0, tel

The minimum x of (CP,) may be described as normal if ¥ =1s0
that the Fritz John optimality conditions reduce to Karush-Kuhn-
Tucker optimality conditions. It suffices for 7 =1that Slater’s condition

holds at x .

Now we review some well known facts about a support function

for easy reference.

Let T be a compact set in R", then the support function of ris
defined by

S(x(t)|r) = max {x(t) v(t):v(t)eT tel |

A support function, being convex everywhere finite, has a
subdifferential in the sense of convex analysis i.e., there exist

z(t)eR",tel, such that

S(y®|T)-S(x®T)= (v -x(®)" z(t)

From [81], the subdifferential of S(x(t)|r)is given by

38 (x(1)]r) ={z(t) €T te Isuch that[x(t)" z(t) =S (x()|)}.
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For any setAcR", the normal cone to A at a point x(t)e A is defined

by

N (x(®)={y() eR"

y(®)(2(t)-x(t))<0,vz(t) A}
It can be verified that for a compact convex set B, y(t) e N (x(t)) if and
only if
S(y®)|B)=x"(t)y®) , tel
7.2.2 Second-Order Duality
The following problem is formulated as Wolfe type dual for the

Problem (CP,):

(CD.):Maximize Hf(t,u,u)+U(t)Tz(t)+zm:yj(t)T(gj(t,u,u)+u(t)ij(t))

Subject to
u(@)=0=u(b) (7.25)

m

f,(tuu)+z(t)+ > y! (t)' (guj (t,u,u)+w’ (t))

-1

-D(f, (tu,0)+y(t) g, (tuu))+H (1) p(t)=0,tel  (7.26)

z(t)eK,w'(t)eCltel,j=12..m. (7.27)
y(t)=0tel. (7.28)
If p(t)=0, tel, the above dual becomes the dual of the problem

studied in [52].
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Theorem 7.2.1 (Weak Duality): Let x(t)e X be a feasible solution of
(CP.) and (u(t),y(t),z(t),w (t),w (t),...w"(t), p(t)) be feasible solution

and with respect to 7 =n(t,x,u)

D [+ 2fat and 2L O ()W )

second-order invex .

or
i) Hf(t,.,.)+(-)Tz(t)+jzn;l“y"(t)T(g"(t,-,~)+(~)w"(t))}dt
Is second-order pseudoinvex .
then

inf (CP,) > sup (CD.).

Proof:(i) J'{ (%, %)+ S (x(t)| K)}dt

[ ) s 203y @) (0! (L) +u(e) w ()

I =1
1

~Zp(t) H (1) p(t)}dt

2

>

( (LX) +x(8) 2(O)fdt=[{ f (tu,0)+u(t) 2(t)]et

zj )(g’ (tu0)+u(t) wj(t))dt+JI%p(t)TH(t)p(t)dt

—_—

zﬂff {fu (tu,0)+2(t)++(Dn)’ 1, (tu,0)+7"F (6) ()] ot |
_ij() p(t)dt - ;!y ( (tu,0)+u(t) w! (t))dt

+j p(t)dt,
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where F(t)=f, -2Df,+D?*f, and using the second-order invexity of

[ )+ () 2(0))et
=If[’7T (£, (t,U,0) + 2(t) ++Df, (t,u,u)+ F (t) p(t)}dt ]+ 7" f, (tu,u)

-il!yi(t)T (o' (tu.u)+u(t) w! (t))dt—j% (t) F t)dt+j )p(tyt

(by Integrating by parts)

=—[n' {ZI ! () (0! (tu0) +w! (6)-D(y(t) 0, (t.0)) -G (1) p(t) i
Sy (o (u)+ul) w <t>)dt

—I t)dt+J )p(t)t

—
11
_
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This implies,
[ (tx%)+S(x(1)|K))dt

zj{f(tuu)+u(t) 2(t)+ 2y (10’ (tx.x)+u(t) wi (1)

~2p(0 HOP( o
yielding,
inf (CP.) > sup (CD.).
(i)  From (7.26), we have
0= [ {f,(t.u.0) O3y (0 (9" () vu () w!(0)
—D(fu- (tu0)+y(0) 0, (60.0)}+H (1) p(O)}et]
= [ {1 ()20 2y () (0! () o' ()
(0n)' (1 (6w 0) +y()' 0, (t0.0)) +7H () POt -7 (£ +y0,)[" |
(by Integrating by parts)

Using boundary conditions (7.23) and (7.25)

If[?f{f (t,u,u)+z( Zy ( tuu)+WJ(t))}+

(Dn)’ (fu(t,u,u)+y() gu(t,u,u))+77 H(t) p(t)]dt=0

This, in view of second-order pseudo-invexity of

| {f<t,-,->+<-f 2(£)+ 2y (1) (g () + ()W <t>>}‘“

1 j=1
yields,
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I{f(t,x,X)+x(t)Tz(t)+ yj(t)(gj(t,x,>‘<)+x(t)TWj(t))}dt

1Mz

[aN

]

v (1) (tuu)+u(t) w! (1))
Lo H () p(t)}dt

2_!‘{f (t,u,u)+u(t) z(t)+

H'MB

—
N

M

N

:j{f(t,x,x)+s(x(t)|K)+ yj(t)(gj(t,x,X)+S(x(t)|Cj))}dt

j=

zj{f (t,u,u)+u(t)’ z(t)Jriyj (t)' (gj(t,u,u)Jru(t)T w (t))

=1

_% p(t) H (1) p(t)}dt

—

Using (7.24) and (7.28) together withx(t)' z(t)<S(x(t)|K) and

x(t) w (t)<S(x(t)|C') ,tel, j=12,..m

This gives,

.Hf (t, %, %) +S(x(t)] K)}dt

zj{f (t,u,u)+u(t)’ z(t)Jr%:yj (t)(gj (t,u,u)+u(t) w! (t))
3P(0)" H () p() .

That is,
inf (CP,) > sup (CD.).

Theorem 7.2.2 (Strong Duality): If x(t)eXis a local (or global)
optimal solution of (CP.) and is also normal, then there exist piece
wise smooth factory:1 ->R™ , z:I >R"and w':1 >R"(j=12,..m)
such that (X(t),y(t),Z(t),w (t), & (t)...w"(t),p(t)=0) is a feasible
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solution of (CD.) and the two objective values are equal.

Furthermore, hypotheses of Theorem 7.2.1 hold, then
(X(t), ¥(t),Z(t), (t),& (t)...&w"(t), p(t)) is an optimal solution of
(CD.).

Proof: From Lemma 7.2.1, there exist piecewise smooth function

y:1->R",z:1 >Rand w': 1 -»R"(j=12,..m) satisfying f (t,X,X)+Z(t)

Hence  (x(t),y(t),Z(t), W (t),w(t)...w"(t),p(t)=0) satisfies the

constraints of (CD.) and

That is, the objective values are equal. Furthermore, for every feasible

solution, we have from (7.29)
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Zj{f (t,u,u)+u(t)’ z(t)+iy" (t)' (gj(t,u,u)+u(t)T w! (t))

j=1

~2p() H(OP()} o
So, (X(t),¥(t),z(t),w (t), W (t)..,w" (t)) is optimal for (CD.).

Theorem 7.2.3 (Converse Duality): Let f and g are thrice continuously
differentiable and (X (t),y(t),z(t), W' (t), w*(t)...@w" (t), p(t)) bean

optimal solution of (CD.) .If the following conditions hold:

(Ay): The Hessian matrix H(t) is non-singular, and

(A): (v(O HOw (1) -y HOw()

X X

+2y (t)D(H (t)y (t)) =0tel
=y(t)=0, tel

Then x(t) is feasible solution of (CP.), then
iyi (t)(gj (t.%,%)+x (1) W (t))zo, tel. In addition, if the hypotheses

]

in Theorem 7.2.1 hold, then x(t) is an optimal solution of (CP.).
Proof: Since (X(t),y(t),z(t),w" (t),w’(t)...w"(t), p(t)) is an optimal
solution for (CD.), then there exist piece wise smooth 6:1 »R"

and x:1 — R™such that following conditions [81] are satisfied.
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tel (7.30)

+0(t)' (9) —2Dg! +Dg! )p(t)+ 4! (t)=0,tel, 1 =12,..m

(7.31)
(f (t.x X)+z(t)+gyj(t)(gj(t X,X)+ W (t))J
-D(f, (t%,%)+ ¥ ()" 0, (L. X.%))+(H () p(1) =0, tel
(7.32)
X (1) +0(t) e Ny (2(t)) (7.33)
X (1) yl (1) +0(t)y’ (t) eNe (W (1)), j=1,2..m (7.34)
(6(t)-7p(t))H(t)=0, tel (7.35)
a(t) y(t)=0, tel (7.36)
(7,u())=0, tel (7.37)
(7, 1(t),6(t)) =0 tel (7.38)
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By the singularity of H (t), (7.35) implies,
o(t)+7p(t) =0, tel (7.39)

If =0, then 6(t)=0 tel and so u(t)=0 tel. This contradicts

(7.38), Hencer >0.

Using the expression of H (t) and (7.40), this gives,

p(t) H(1)p(t)+D(p(t) H(1)p()

-2p(t) D(H(t)p(t)) =0 tel

This, in view of the hypothesis (A,) implies,

p(t)=0tel (7.41)
The relations (7.33) and (7.34) imply

X(t) eNg(z(t)) and  X(t)" eNg (W (t)),j=12.m
This respectively yields,

(1) z(t)=S(x(1)K), tel

and X(t)' W (t)=S(X(t)|C’), j=12.m, tel

The relation (7.31) with p(t)=0, teland (7.36) ,gives,
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2yi(t)(gi(t,i,i)+i(t)wj (t))=0, tel (7.42)

]
The relation (7.31) with p(t)=0, tel '(t)=0, tel and
(1) z(t)=S(x(1)IK), tel

yields
g’ (t.%,%)+S(X(t)|C’')<0, j=12..m, tel

That is, x is feasible to (CP).

Now, in view of x(t)" z(t)=S(X(t)|K), teland (7.42), we have

o s riss s

This, along with the hypotheses of Theorem 7.2.1, yields that x(t)is an

optimal solution of (CP.).

7.2.3 Special Cases

Let for tel,B(t) be a positive semi-definite matrix and

continuous on I. Then

where K={B(O)z(t)|2(t) B(t)2(t)<itel

Replacing S(x(t)|K)by(x(t)T B(t)x(t))% and suppressing each
s(x(t)|c’)from the constraints of (CP.), we have following problems

treated in the previous chapter.
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(CP,): Minimize I{f(t,x,X)Jr(x(t)TB(t)x(t))%}dt
Subject to
x(a)=0=x(h),

g(t,x %) <0, tel
(CD): Maximize [{f (tu,u)+u(t) B(t)z(t)

+y(0) 9(tu,0)-Z p(t) H () p(t)}dt

Subject to
u(@)=0=u(b)

f (t,u,u)+u(t)T B(t)z(t)+ y(t)T g, (t,uu)
-D(f, (tu,0)+y(t) g, (tu,u))+H () p(t)=0, te

7.2.4 Problems With Natural Boundary Values

In this section, we formulate a pair of nondifferentiable dual
variational problems with natural boundary values rather than fixed
end points. The proof for duality theorems for this pair of dual
problems is omitted, as they follow immediately on the basis of
analysis of the preceding section and, of course, slight modifications

are needed. The problems are:
(CPo): Minimize [{f (t,x,%)+S(X(t)|K)}dt

Subject to

g(t.xx)+S(X(t)|C)<0,  tel,j=L2.,m
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(CDy): Maxnmlzej{ t,x %) +x(t) z(t)+i:yi(t)T(gJ(t,x,X)+x(t)T w! (t))

Subject to

f,(t, % X)+2(t +i‘ ( (t.x,%)+w! (t))

-D(f (tx0)+y (1) g, (tx%))+(H () (1) =0, tel
Z(t)eK,Wj(t)eCj,j:1,2...m,te|
y(t)ZO, tel

f(txx)+y (1) g, (txX)| =

7.2.5 Nonlinear Programming Problems

If all functions in the problems (CPg) and (CD,) are independent
of t, then these problems will reduce to following nonlinear

programming problems studied earlier.

(CP,): Minimize  f(x)+S(X(t)|K)
Subject to

g’ (x)+S(x(t)|C')<0,j=12.m

(CD.): Maximize f(u)+uTz(t)+iyj(t)T(gj(u)+uTWj(t))—%pTHp

Subject to
Zy‘ " (9J (u)+w (t))+Hp=0"
zeK, eC‘,j_l,Z...m.,
where H="f,(u)+y g, (u).
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