
 

 

DUALITY IN MATHEMATICAL 

PROGRAMMING 
 

 

 

THESIS SUBMITTED FOR THE 
DEGREE OF 

Doctor of Philosophy 
 

 

IN 
 

 

STATISTICS 

 

 

BY 
 

MASHOOB MASOODI 
 

 

 

 

 

 

 

POST GRADUATE DEPARTMENT OF STATISTICS 
FACULTY OF PHYSICAL AND MATERIAL SCIENCES 

UNIVERSITY OF KASHMIR 
SRINAGAR-190006 

(2010) 

 



 

DUALITY IN MATHEMATICAL 

PROGRAMMING 
 

THESIS 

 

SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

IN 

 

STATISTICS 

 

BY 

 

MASHOOB MASOODI 

 

(I.Husain)  (Aquil Ahmed) 

Co-Supervisor        Supervisor 
Formerly Professor,  Professor, 

Department of Mathematics                   Department of Statistics 

National Institute of Technology     University of Kashmir 

Srinagar, Kashmir. 

Presently Professor, 

Department of Mathematics 

Jaypee University of Engineering and Technology,  

Guna, M.P 
 

 

 

 

 

 

 

 
POST GRADUATE DEPARTMENT OF STATISTICS 

FACULTY OF PHYSICAL AND MATERIAL SCIENCES 

UNIVERSITY OF KASHMIR 

SRINAGAR-190006 

(2010) 



Certificate 
 

This is to certify that the work embodied in this thesis entitled           

“ON DUALITY IN MATHEMATICAL PROGRAMMING” 

is the original work carried out by Mrs. Mashoob Masoodi under 

our supervision and is suitable for the award of the degree of 

Doctor of Philosophy in Statistics. 

The thesis has reached the standard fulfilling the requirements of 

regulations relating to the degree. The results contained in the 

thesis have not been submitted earlier to this or any other 

university or institute for the award of degree or diploma. 

 

 

 

(I. Husain)  (Aquil Ahmed) 

Co-Supervisor        Supervisor 
Formerly Professor                                                         Professor, 

Department of Mathematics                  Department of Statistics 

National Institute of Technology       University of Kashmir 

Srinagar, Kashmir.                                                                     Srinagar. 

Presently Professor 

Department of Mathematics 

Jay Pee Institute of Engineering and Technology 

Guna, M.P. 

 

 



a 

 

 

A B S T R A C T  

In this thesis entitled, “Duality in Mathematical Programming”, the 

emphasis is given on formulation and conceptualization of the concepts of 

second-order duality, second-order mixed duality, second-order symmetric 

duality in a variety of nondifferentiable nonlinear programming under 

suitable second-order convexity/second-order invexity and generalized 

second-order convexity / generalized second-order invexity. Throughout the 

thesis nondifferentiablity occurs due to square root function and support 

functions. A support function which is more general than square root of a 

positive definite quadratic form. This thesis also addresses second-order 

duality in variational problems under suitable second-order invexity/second-

order generalized invexity. The duality results obtained for the variational 

problems are shown to be a dynamic generalization for thesis of nonlinear 

programming problem. 

The thesis spreads over seven chapters.  

CHAPTER – 1 is an introductory one. It offers a brief survey of related 

work and the summary of the research work reported in the thesis. The 

chapter is followed by the summary of the thesis. 

CHAPTER – 2 consists of two sections, 2.1 and 2.2. The Section 2.1 deals 

with the second-order duality in nonlinear programming containing support 

functions. In this section formulations of Wolfe and Mond-Weir type duals 

to a nondifferentiable mathematical programming are presented and various 

appropriate duality theorems are validated. In the subsection 2.1.5 various 

special cases are also derived. In the section 2.2 mixed type second-order 

duality in order to combine the dual models of previous section is studied, as 
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it is noticed that the concept of mixed duality seems to be interesting and 

useful both from theoretical and algorithmic point of view. 

CHAPTER – 3 is focused on the nondifferentiable multiobjective second-

order duality. This section presents pair of Wolfe and Mond-Weir type 

multiobjective symmetric dual programs. For each pair, various duality 

theorems namely weak, strong and converse type duality are established 

under suitable second-order convexity. The subsection 3.1.2 and 3.2.2 

incorporate self duality for both the pairs. 

CHAPTER – 4 studies second-order symmetric duality in mathematical 

rogramming over cones. The subsection 4.1.3 deals with second-order 

symmetric and self duality for the programming problems containing 

support functions. The subsection 4.1.4 provides maxmin symmetric and self 

duality. The subsection 4.1.5 deduces some special cases. 

CHAPTER – 5 The purpose of chapter 5 is to present multiobjective                                                     

version of second-order mixed and self duality in traditional mathematical 

programming with a single objective. In addition to validation of various 

duality theorems under suitable second-order convexity/ generalized second-

order convexity, in the subsection 5.1.4 self-duality theorem is also validated 

for the pair of dual programs under additional restrictions on the kernel 

function that appears in the formulations of the problems. 

CHAPTER – 6 presents a study of second-order duality in variational 

problems and gives a formulation of Mond-Weir type second-order dual 

problem which allows weakening of second-order invexity/second-order 

pseudoinvexity of Wolfe type second-order dual in variational problems. 

Second-order invexity and generalized invexity functions are introduced. 

Using these second-order invexity and generalized invexity, various duality 

theorems are established in the subsection 6.1.3. The subsection 6.1.4 gives 

the second-order dual problem with natural boundary conditions when the 
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fixed point boundary conditions are ignored. The subsection 6.1.5 points out 

a close relationship between the results established in this chapter with those 

of second-order duality nonlinear programming. 

CHAPTER – 7 is devoted to the study of second-order duality for a class of 

nondifferentiable variational problems in which nondifferentiablity occurs 

due to the presence of square root of a quadratic form and support functions. 

In the section 7.1 variational problem containing square root of quadratic 

form is considered .The nondifferentiable term occurs in the integrant of the 

objective functional. A Wolfe type second-order dual variational problem is 

formulated. In subsection 7.1.1 various duality theorems are proved under 

second-order pseudoinvexity assumptions. The subsection 7.1.2 gives a pair 

of second-order Wolfe type variational problems with natural boundary 

conditions and in subsection 7.1.3 points out a close relationship between 

the results established in this chapter with those of second-order duality 

nonlinear programming. In the section 7.2 a second-order dual problem is 

formulated for a wider class of continuous programming problem in which 

both objective and constrained functions contain support functions. In the 

section 7.2.2 under second-order invexity and second-order pseudoinvexity, 

weak, strong and converse duality theorems are established for the pair of 

dual problems. In section 7.2.3, special cases are deduced and a pair of dual 

continuous problems with natural boundary values is constructed in the 

section 7.2.4. A close relationship between duality results of our problems 

and those of the corresponding (static) nonlinear programming problem with 

support functions is briefly outlined in the section 7.2.5. 
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CHAPTER 1 

 

INTRODUCTION  

 

Chapter 1 

INTRODUCTION 

 

1.1 GENERAL INTRODUCTION 

athematical programming earned a status of scientific field in 

its own right during late 1940’s and since then it has 

undergone significant development. It is now regarded as one of the 

most vital and exciting part of modern mathematics having 

applications in various scientific disciplines such as, engineering 

economics and natural sciences. A very common example of 

mathematical programming model appears in determining minimum 

weight design of structure subject to constraints on stress and 

deflection.  

A general mathematical programming problem (MPP) can 

be stated as: 

(MP) Optimize (minimize/maximize) ( )f x  

Subject to 

  

( ) 0 ( 1,2,..., ),

( ) 0 ( 1,2,..., ),

i

j

g x i m

h x j k

x X

 

 



 

 

M 
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where  

i)      
1 2( , ,..., )T

nx x x x  is the vector of unknown decision variables  and 

ii)  , ( 1,..., ),if g i m  ( 1,..., )jh j k are the real-valued functions of n  

real variables 1,..., nx x and X  nR .In this formulation, the 

function f  is called the objective function, the constraints.

( ) 0,   1,2,3,...,ig x i m   are referred to as an inequality constraints, 

the constraints ( ) 0, 1,2,3,...,jh x j k   are called equality 

constraints. The inclusion x X  is known as abstract constraints.  

If the objective and constraint functions are differentiable then 

we describe above problem as differentiable programming problem. If 

the objective and inequality constraints are affine functions and X  is 

convex set, then the above problem is known as convex programming 

problem. 

If all the functions in the problem (MP) are linear then it is 

called linear programming problem (LPP). Dantzig developed his 

famous Simplex technique for solving linear programming models 

during the mid 1940’s, though initially applied for warfare planning. 

Its elegance drove many scientists to solve linear programming models 

arising in a variety of contexts such as economics, business and 

engineering sciences. If the objective function and atleast one of the 

constraint or both are nonlinear functions in the mathematical 

programming problem, then the problem is termed as nonlinear 

programming problem, which was first introduced by R. Courant in 

1943. It is the most general programming problem and other problems 

can be treated as special cases of the nonlinear programming problem 

(NLPP). Nonlinear programming plays a significant role in 
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management science, engineering, economics, system analysis physical 

sciences and other areas. Some methods for solving nonlinear 

programming problem were discussed by Avriel [4] and Zangwill [99]. 

The pioneer work by Kuhn Tucker in 1951 on necessary and 

sufficient conditions for the optimal solution laid the foundation for the 

researchers to work on the nonlinear system. In 1957, the emergence of 

dynamic programming by Bellman brought a revolution in the subject 

and consequently, linear and non-linear systems have been studied 

simultaneously. It is disappointing to note that possibly no universal 

technique has been established for nonlinear system as yet. 

Optimality conditions and duality have played a vital role in the 

progress of mathematical programming. Fritz John [59] was the first to 

derive necessary optimality conditions for constrained optimization 

problem using a Lagrange multiplier rule. Later, Kuhn and Tucker [62] 

established necessary optimality conditions for the existence of an 

optimal solution under certain constraint qualification in 1951.It was 

revealed afterwards that W.Karush [60] had presented way back in 

1939 without imposing any constraint qualification; thus the Kuhn-

Tucker conditions are now known as Karush-Kuhn-Tucker optimality 

conditions. Abadie [1] established a regularity condition that enabled 

him to derive Karush-Kuhn-Tucker conditions and Fritz John 

optimality conditions. Subsequently, Mangasarian and see Formovitz 

[68] generalized Fritz John optimality conditions which have not only 

laid down the foundation for many computational techniques in 

mathematical programming, but also are responsible for development 

of duality theory to a great deal. The inception of the duality theory in 

linear programming may be traced to the classical minimax theorem of 
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Von Neumann [87] and was explicitly incorporated by Gale, Kuhn and 

Tucker [43].Since then, it has become one of the most widely used and 

investigated area of mathematical programming. An extensive use of 

duality in mathematical programming has been made for many 

theoretical and computational developments in mathematical 

programming itself and in other fields which include engineering, 

operations research, economics and mathematical science. 

The principle of duality connects two programs, one of which is 

called the primal problem and the other is called the dual problem, in 

such a way that the existence of an optimal solution to one of them 

guarantees an optimal solution to other. If the primal problem is 

constraint minimization (or maximization), the dual is the constrained 

maximization (minimization) problem. The duality results have proved 

to be very useful in the development of numerical algorithms for 

solving certain classes of optimization problem. The existence of 

duality theory in nonlinear programming problem helps to develop 

numerical algorithm as it provides suitable stopping rules for primal 

and dual problems. A nonlinear programming problem and its dual are 

said to be symmetric if dual of the dual is the original problems. 

Multiobjective optimization is the art of detecting and making 

good compromises. It is based upon the fact that most real-world 

decisions are compromises between partially conflicting objectives that 

cannot easily be offset against each other. Thus, one is forced to look 

for possible compromises and finally decide which one to implement. 

So, the final decision in multiobjective optimization is always with a 

person-the decision maker. 
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The first notion of optimality in this setting is popularly known 

as Pareto-optimality and is still the most widely used. In Pareto 

optimality every feasible alternative that is not dominated by any other 

in terms of the component wise partial order is considered to be 

optimal. Hence each solution is considered optimal that is not 

definitely worse than another. Thus, multiobjective optimization does 

not yield a single or a set of equally good answers, but rather suggests 

a range of potentially very different answers. 

A general multiobjective programming problem (MOPP) can be 

expressed as: 

(MP): Optimize (minimize/maximize)  1 2( ), ( ),..., ( )pf x f x f x  

 Subject to 

  

( ) 0 ( 1,2,..., ),

( ) 0 ( 1,2,..., ),

.

i

j

g x i m

h x i k

x X

 

 



 

where nx R  , , ( 1,..., ),if g i m  ( 1,..., )jh j k and X are described earlier. 

Duality for continuous programming problems has been studied 

by many researchers. Mond and Hanson [77] were the first to consider 

a class of constrained variational problems and dealt with duality 

aspect of such problem, where the dual problem was the first-order 

dual. Later, a number of researchers have derived duality theorems for 

different forms of continuous programming or control problems, 

notably, Chandra, Craven and Husain [19], Bector, Chandra and 

Husain [13], Mond and Husain [78] and Chen [26,27] . 

Mond and Hanson [78] formulated the following pair of dual 

variational problems: 
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Primal Problem:  

Minimize  , ,
I

f t x x dt  

      Subject to 

     , ,x a x b                                                       

   , , 0, .g t x x t I                                         

Dual problem:    

Maximize              , , , ,

b
T

a

f t u t u t y t g t u t u t dt                 

          Subject to  

     ,u a u b   ,    

           , , , ,
T

u uf t u t u t y t g t u t u t              

           , , , , 0,    
 

T

u uD f t u t u t y t g t u t u t t I
 

                                      0,y t t I   

where  

i)   , ,I a b a real interval and  

ii)   : ,  n nf I R R R mnn RRRIg :  are continuously 

differentiable and : my I R  is piecewise smooth 

functions. 

Second-order duality in mathematical programming has been 

extensively investigated in the literature. A second-order dual 

formulation for a non-linear programming problem was introduced by 

Mangasarian [67]. Later Mond [70] established various duality 

theorems under a condition which is called “Second order convexity”. 

This condition is much simpler than that used by Mangasarian [66]. In 

[84], Mond and Weir reconstructed the second-order duals and higher 
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order dual models to drive usual duality results. It is remarked here that 

second-order dual to a mathematical programming problem presents a 

tighter bound and because of which it enjoys computational advantage 

over a first order dual. Chen [27] was the first to identify second-order 

dual for a constrained variational problem and established various 

duality results under an involved invexity- like assumptions. 

This thesis is a reflection of above narrated brief survey of 

literature. The main contribution of this thesis is to study duality and 

multiobjective duality including self and symmetric duality for a variety of 

mathematical programming problems confined to nondifferentiable 

nonlinear programming with square root of certain quadratic form and 

support functions which generally arise in various contexts such as in 

models representing oscillation of mechanical system and portfolio 

selection. This thesis is also devoted to study second-order duality in 

nonlinear programming and variational problems.  

1.2  PRE-REQUISITES  

1.2.1  Notations 

           nR = n-dimensional Euclidean space, 

           nR
= The non-negative orthand in nR , 

          A
T
= Transpose of the matrix A, 

            
1 1

, , 1,1,...,1 .
m

T m m

ix e x x R e R


     

Let   be a numerical function defined on an open set  in nR , 

then  f x denotes the gradient of   at x , that is  

            
   

1 2
, . . . ,

T

f x f x
f x

x x
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Let   be a real valued twice continuously differentiable function 

defined on an open set contained in n mR R . Then ( , )x x y  and 

( , )y x y denote the gradient (column) vector of   with respect to x  

and y  respectively i.e., 

 
 

1 2

,

, , ,. . . ,

T

x n

x y

x y
x x x

  


   
   

   
 

           
 

1 2

,

, , ,. . . ,

T

y n

x y

x y
y y y

  


   
   

   
 

Further, 2 ( , )xx x y and 2 ( , )xy x y denote respectively the  n n

and  n m  matrices of second- order partial derivative i.e.,  

 
 

2
2

,

,xx i j

x y

x y
x x




 
   

 
 

           
 

2
2

,

,xy i j

x y

x y
x x




 
   

 
  

 The symbols  2 ,yy x y and  2 ,yx x y are similarly defined. 

However, at certain places, to make the meaning of the context more 

clear, the subscript of  and 2 are taken as the variable with respect to 

which the function is being differentiated.  

1.2.2 Definitions 

Definition 1.1: Let X   Rn
 be an open and convex set and f: X R be 

differentiable. Then we define f  to be 

1. Convex, if for all 1 2, ,x x X   

       1 2 1 2 2

T
f x f x x x f x     
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2. Strict convex, if for all 1 2,x x X  and 1 2x x  

       1 2 1 2 2

T
f x f x x x f x     

3. Quasi convex, if for all 1 2, ,x x X  

                                      
       1 2 1 2 2 0

T
f x f x x x f x    

 

4. Psedoconvex, if for all 1 2, ,x x X  

       1 2 2 1 20
T

x x f x f x f x    
 

5. Strictly pseudoconvex, if for all 1 2,x x X and 1 2x x   

       1 2 2 1 20
T

x x f x f x f x    
 

6. Invex, if there exists a vector function : n n nR R R   such 

that for all 1 2, ,x x X    

       1 2 1 2 2,Tf x f x x x f x  
 

7. Pseudoinvex, if there exists a vector function

: n n nR R R   such that for all 1 2, ,x x X    

       1 2 2 1 2, 0T x x f x f x f x    
 

8. Quasi-invex, if there exists a vector function

: n n nR R R   such that for all 1 2, ,x x X    

       1 2 1 2 2, 0Tf x f x x x f x   
. 

Definition 1.2: Let f be a real valued twice differentiable function 

defined on an open set nRX  , then f is said to be 

1. Second-order convex, if for all nRupx ,,  

                      2 21 .
2

T Tf x f u x u f u f u p p f u p          

2. Second-order concave, if for all nRupx ,,  

                    2 21 .
2

T Tf x f u x u f u f u p p f u p          
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3. Second-order pseudoconvex, if for all nRupx ,,  

                              pufpufxfpufufux TT 22

2
10   

4. Second-order pseudoconcave, if for all nRupx ,,  

                              pufpufxfpufufux TT 22

2
10   

5. Second-order quasiconvex, if for all nRupx ,,  

                              .00
2

1 22  pufufuxpufpufxf
TT  

6. Second-order quasiconcave, if for all nRupx ,,  

                             .00
2

1 22  pufufuxpufpufxf
TT  

7. Second-order invex, if there exists a vector function

nnn RRR :  such that for all Xux ,  

                     2 21, .
2

T Tf x f u x u f u f u p p f u p          

8. Second-order incave, if there exists a vector function

nnn RRR :  such that for all Xux ,  

                     2 21, .
2

T Tf x f u x u f u f u p p f u p          

9. Second-order pseudoinvex, if there exists a vector function 

nnn RRR :  such that for all Xux ,  

                      pufpufxfpufufux TT 22

2
10,  . 

10. Second-order pseudoincave, if there exists a vector function 

nnn RRR :  such that for all Xux ,  

              pufpufxfpufufux TT 22

2
10,  . 
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11. Second-order quasi-invex, if there exists a vector function 

nnn RRR :  such that for all Xux ,  

                              .0,0
2

1 22  pufufuxpufpufxf TT   

12. Second-order quasi-incave, if there exists a vector function 

nnn RRR :  such that for all Xux ,  

                        .0,0
2

1 22  pufufuxpufpufxf TT    

Clearly, a differentiable convex, pseudoconvex, quasiconvex 

function is invex, pseudoinvex or quasi-invex respectively with 

   1 2 1 2,
T

x x x x   .Further we define f to be concave, strictly concave 

pseudoconcave, quasiconcave, strictly pseudo convex on X according 

as –f  is convex, strictly convex, quasi convex, pseudoconvex, strictly 

pseudoconvex. 

Definition 1.3: Let C be compact convex set in nR . The support 

function of C is defined by 

  ( | ) max{ : }Ts x C x y y C  . 

Definition 1.4: Let : nf R R be a convex function, then a subgradient 

of f at a point nx R is a vector nR   satisfying 

      , nf y f x y x y R    
 

The set of all subgradients of at nx R is called subdifferential of f at x 

is denoted by  f x . 

Definition 1.5: Let   be a nonempty of nR  

i) The set   is called cone if 
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, 0 ,x x      

ii) A cone nR be a convex  if 

x y   for all ,x y  

iii) A cone nR be a convex cone. Then * defined as 

 : 0,n Tz R z x for all x      

       is called the  polar cone  of   

Consider the following multiobjective programming problem: 

(VP): Minimize          1 2, ,..., pz x x x     

 Subject to 

       0, 1,2,...jh x j n   

Definition 1.6: A feasible point x  is said to be a weak minimum of 

(VP), if there does not exist any 0x X  such that ( ) ( )x x  . 

A feasible point x  is said to be efficient solution of (VP), if 

there does not exist any feasible x such that ( ) ( )x x  . 

 An efficient solution of (VP) is obviously a weak minimum to 

(VP). 

A feasible point x  is said to be properly efficient solution of 

(VP), if it is an efficient solution of (VP) and if there exists a scalar 

0M   such that for each i and 0x X  satisfying ( ) ( )i ix x  , we have 

  
( ) ( )

( ( ) ( )

i i

j j

x x
M

x x

 

 





, 
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for some j, satisfying ( ) ( )j jx x  . 

An efficient point x X that is not properly efficient is said to be 

improperly efficient. Then x  is improperly efficient means that every 

scale M > 0 (no matter how large), then point xX and i such that

( ) ( )i ix x   and 

           
( ) ( )

,
( ) ( )

i i

j j

x x
M

x x

 

 





 

for all j satisfying ( ) ( )j jx x   

Definition 1.7: A function : n nf R R R   is said to be skew-symmetric if  

( , ) ( , )f x y f y x   

There are a number of constraint qualifications [67], which are 

required to be satisfied by the constraints, while establishing the 

necessary optimality criteria to ensure that certain Lagrange multipliers 

exist and are non-zero. Here we describe only four of them for 

completeness of notations. 

i) Slater’s constraint Qualification: Let 0X be a convex                        

set in .nR  The m-dimensional convex vector function                

g on 0X  which defines the convex feasible region

  : , 0oX x x X g x   is said to satisfy Slater’s constraint 

qualification on 0X  if there exist an ox X such that

  0g x  . 

ii) The Kuhn Tucker Constraint Qualification:Let 0X be 

an open set in  nR .Let g be m-dimensional vector function  

on 0X and let   : , 0oX x x X g x   .Then the constraints 
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are said to satisfy Kuhn Tucker constraint qualification at 

x X ,if g is differentiable at  x and if  

 

 

 

 

 

Thereexists a n-dimentional vector function e

in the interval 0,1 such that

( ) 0

( ) 0 1

( ) isdifferentiable 0 and

0
for some 0.0

n

i

y R

a e x

b e X for

c e at

d e
yg x y d

 



 






   



  

 

where   0iI i g x  . 

iii) The reverse convex constraint qualification: Let 0X be 

an open set in  nR .Let g be m-dimensional vector function 

defined on 0X and let   : , 0oX x x X g x   , g is said to 

satisfy the reverse constraint qualification at x X ,if g  is 

differentiable at  x and if for each i I either ig is concave 

at x  or ig is linear on nR ,where   0iI i g x  . 

iv) Linear independence constraint qualification:The 

condition that the vectors    0 0,.....,i mg x g x    are linearly 

independent and is often referred to as linearly 

independence constraint qualification. 

1.3 REVIEW OF THE RELATED WORK 

1.3.1 Duality in Mathematical Programming 

Nonlinear Programming 

Consider the nonlinear programming problem: 

(P):    Minimize   f x  
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          Subject to  

                              0,jh x    1,2, ,j m  

where  : nf R R  and  : , 1,2, ,n

jh R R j m 
 

are continuously 

differentiable. The following problem: 

(WD): Maximize    Tf x y h x  

 Subject to  

     0,Tf x y h x    

 0, my y R   

is known as the Wolfe [98] type dual for the problem (P). Mangasarian 

[67] explained by means of an example that certain duality theorems 

may not be valid if the objective or the constraint function is a 

generalized convex function. This motivated Mond and Weir [82] to 

introduce a different dual for (P) as  

(MWD):  Maximize   f x  

Subject to                       

    0Tf x y h x   . 

                                         0Ty h x   

                                  0, my y R   

and they proved various duality theorems under pseudoconvexity of f

and quasiconvexity of  Ty h   for all feasible solution of (P) and 

(MWD). 

     Later Weir and Mond [95] derived sufficiency of Fritz John 

optimality criteria under pseudoconvexity of the objective and 
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quasiconvexity or semi-strict convexity of constraint functions. They 

formulated the following dual using Fritz John optimality conditions 

instead of Karush-Kuhn-Tucker optimality conditions and proved 

various duality theorems–thus the requirement of constraint 

qualification is eliminated. 

(FrD):  Maximize   f x  

           Subject to  

                  0Ty f x y h x   . 

    0Ty h x   

                        , 0, , 0y y y y   

Duality in Nondifferentiable Mathematical Programming 

 Mond [72] considered the following class of nondifferentiable 

mathematical programming problems: 

(NP):  Minimize     
1
2Tf x x Bx  

      Subject to  

               0,jh x   1,2, ,j m ,  

where f and 
jh  , 1,2, ,j m are twice differentiable function from nR  

to R and B is an n x n positive semidefinite (symmetric) matrix. It is 

assumed that the functions f  and jh  , 1,2, ,j m  are convex functions. 

They established a duality theorem between (NP) and the following 

problem 

(ND): Maximize         T T Tf u y h u u f u y h u       

        Subject to  

                 0,Tf u y h u Bw      
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                             1Tw Bw   

                             0y  . 

Further on the lines of Mond and Weir [82], Chandra, Craven and 

Mond [23] introduced another dual program: 

(NWD): Maximize       T Tf u u f u y h u      

              Subject to  

      0,Tf u y h u Bw     

    0Ty h u  ,   

  1Tw Bw , 

  0y  . 

and established duality theorems by assuming the function    
T

f Bw    

to be pseudoconvex and  Ty h  to be quasiconvex for all feasible 

solutions of (NP) and (NWD). 

 Later, Mond and Schechter [79] replaced the square root term by 

the norm term and considered the nondifferentiable nonlinear 

programming problems as: 

(NP)1:  Minimize    x p
f x S  

      Subject to  

                                 0,jh x   1,2, ,j m  

Here f and jh  ,  1,2, ,j m are twice differentiable function from nR  

to R. The dual for (NP)1 is the problem: 

(ND)1:  Maximize     T T Tf u y h u u S v   
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 Subject to  

      0,T Tf u y h u S v      

  1,
q

v   

                                0y  . 

where p and q are conjugate exponents. 

 Later Schechter [89] replaced the norm term or the square root 

term by a more general function as the support function of  a compact 

set. The problem considered by Schechter [89] is: 

(NP)2:  Minimize     f x S x C  

         Subject to   

                0,jh x   1,2, ,j m , 

where f and
jh  ,  1,2, ,j m are twice differentiable function from nR  

to R  and  S x C is a support function of a compact convex set nC R . 

Using the subdifferential of the support function of  S x C , the dual of 

(NP)2  is the problem: 

(ND)2:  Maximize     T Tf u w u y h u                                            

 Subject to 

      0,Tf u y h u w     

  0y  , w C . 

Duality in Multiobjective Mathematical Programming  

For multiobjective programming problem, we shall follow the 

following conventions for vectors in nR  

, , 1,2, , .i ix y x y i n     
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, , 1,2, , .i ix y x y i n     

          , , 1,2, , , buti ix y x y i n x y      

         ,x y  is the negation of x y . 

Consider the multiobjective programming problem: 

(VP): V- Minimize         1 2, ,..., pF x f x f x f x  

               Subject to  

                             0 , 1,2,...,jh x j m   

 Here nX R is an open and convex set and if and 
jh  are 

differentiable functions where  : , 1,2, ,if X R i p   and : ,jh X R  

1,2, ,j m . Here the symbol “V-Min” stands for vector minimization 

and minimality is taken in terms of either “efficient points” or 

“properly efficient points” given by Koopman [61] and Geoffrion [44] 

respectively. 

 Geoffrion [44] considered the following single objective 

minimization problems for fixed pR : 

(VP):  Minimize   
1

p

i i

i

f x


  

 Subject to 

                     0 , 1,2,...,jh x j m  , 

and prove the following lemma connecting (VP) and ( )VP  . 
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Lemma 1.1  

(i)  Let  0 , 1,2,...,i i p   , 
1

1
p

i

i





 

be fixed. If x is optimal for 

(VP), then x is properly efficient for (VP). 

(ii)  Let if and 
jh  be convex functions Then x is properly efficient for 

(VP) iff x is optimal for are differentiable functions ( )VP  for 

some 0 ,i   
1

1 1,2,...,
p

i

i

i p


  . 

If if and 
jh  are differentiable convex functions then ( )VP  is a convex 

programming problem. Therefore in relation to ( )VP  consider the 

scalar maximization problem: 

(VD): Maximize          T T T Tf x y h x f x y h x     

           Subject to  

                               0T Tf x y h x    

                                , 0,y    

where  1,1, ,1 pe R  and  : 0 , 1P TR e       . 

Now as ( )VD  is a dual program of ( )VP  ,Weir [94] considered the 

following vector optimization problem in relation to (VP) as 

(DV):   Maximize      Tf x y h x e  

 Subject to  

       0T Tw f x y h x    

                               , 0,w y    

where  1,1, ,1 pe R   
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They termed (DV) as the dual of (VP) and proved various duality 

theorems between (VP) and (DV) under the assumption that f and g

are convex functions. 

 Further for the purpose of weakening the convexity requirements 

on objective and constraint functions, Weir [94] introduced another 

dual program (DV1) 

(DV1): Maximize   f x  

             Subject to  

      0T Tw f x y h x    

                         0Ty h x   

                             , 0,w y   

And various duality theorems are proved by assuming the function f  

to be pseudo convex and Ty h  to be quasiconvex for all feasible 

solutions of (VP) and (DV1). 

1.3.2 Symmetric Duality in Mathematical Programming     

Symmetric Duality in Differentiable Mathematical Programming     

Consider a function  ,f x y which is differentiable in mx R and 

.my R  Dantzig et al [38] introduced the following pair of problems:   

(SP):  Minimize      , ,T

yf x y y f x y   

 Subject to    

                , 0y f x y      

                           , 0.x y   
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(SD):  Maximize      , ,T

xf x y x f x y   

 Subject to    

                         , 0x f x y      

                           , 0.x y 
 

and proved the existence of a common optimal solution to the primal 

(SP) and (SD), when (i) an optimal solution of  ,x y to the primal (SP) 

exists (ii) f is convex in x  for each y , concave in y for each x  and  

(iii) f , twice differentiable, has the property that at  ,x y its matrix of 

second partials with respect to y is negative definite.  

 Mond [71] further gave the following formulation of symmetric 

dual programming problems: 

(MSP): Maximize     , ,T

yf x y y f x y   

            Subject to   

                         , 0y f x y      

  0.x    

(MSD): Maximize    , ,T

xf x y x f x y   

             Subject to   

                         , 0x f x y      

  0.y   

 It may be remarked here that in [38], the constraints of both (SP) 

and (SD) include 0, 0x y  , but in [71] only 0x   is required in the 

primal and only 0y   in the dual. 
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 Later Mond and Weir [82] gave the following pair of symmetric 

dual  nonlinear  programming  problems  which  allows  the weakening 

of the convexity-concavity assumptions to pseudoconvexity-

pseudoconcavity. 

(M-WSP):  Minimize    ,f x y  

                  Subject to   

           , 0y f x y      

                          , 0T

yy f x y  , 

  0.x   

(M-WSD):  Maximize  ,f x y  

                    Subject to   

                                , 0x f x y      

                          , 0T

xx f x y  , 

  0.y   

Symmetric Duality in Nondifferentiable Mathematical Programming   

 Let  ,f x y be a real valued continuously differentiable in mx R

and my R . Chandra and Husain [21] introduced pair of symmetric 

dual nondifferentiable programs and proved duality results assuming 

convexity-concavity conditions on the kernel function  ,f x y : 

(NP):  Minimize        
1
2

, ,T T

yf x y y f x y x Bx    

 Subject to   

                         , 0y f x y Cw    ,   

                              1Tw Cw , 

                               , 0.x y   
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(ND):  Maximize      
1
2

, ,T T

xf x y x f x y y Cy    

          Subject to   

                         , 0x f x y Bz    

  1Tz Cz  ,   

   , 0.x y   

where B and C are n x m and m x m positive semidefinite matrices. 

  Further on the lines of Mond and Weir [82], Chandra, Craven 

and Mond [23] presented another pair of symmetric dual 

nondifferentiable  programs  by  weakening  the  convexity conditions 

on the kernel function  ,f x y
 

to the pseudoconvexity and 

pseudoconcavity. The problems considered in [23] are: 

(PS):  Minimum    
1
2

, T Tf x y x Bx y Cz   

 Subject to   

                         , 0y f x y Cz   ,   

                        , 0T

yy f x y Cz      

  1Tz Cz  , 

                          0.x   

(DS):  Maximum     
1
2

, T Tf x y y Cy x Bw   

 Subject to   

                         , 0x f x y Bw    ,   

                        , 0T

xx f x y Bw     , 

                             1Tw Bw , 

                             0.y   
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Following Balas [5] and Kumar, Husain and Chandra [63], 

Gulati, Husain and Izhar [45] formulated two distinct pairs of 

nondifferentiable symmetric dual minimax mixed integer programs: 

(MPS):           
1
2

2
21

2 2 2

,
Max Min  , , ,

T T

yx yx
F x y f x y y f x y x Bx     

              Subject to   

                 2 , 0,
y

f x y Cw       

                           1,Tw Cw  

                           2 0,x   

                           1 1, .x U y V   

(MDS):            
1
2

2
21

2 2 2

,
Max Min  G , , ,

T T

xx yy
x y f x y x f x y y Cy     

 Subject to   

   2 , 0,
x

f x y Bz     

                            1,Tz Bz   

                            2 0,y   

                            1 1, .x U y V      

and 

(SP):         
1
2

21

2 2 2

,
Max Min  , ,

T T

x yx
L x y f x y y Cw x Bx    

          Subject to   

  
 2 , 0,

y
f x y Cw     

                      2

2 , 0,
T

y
y f x y Cw    

                             1,Tw Cw  
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                             2 0,x   

                             1 1, .x U y V   

(SD):         
1
2

1 2

2 2 2

,
Min Max  , ,

T T

y x y
H x y f x y x Bz y Cy    

            Subject to   

               2 , 0,
x

f x y Bz     

                     2

2 , 0,
T

x
x f x y Bz     

                               1,Tz Bz   

                               2 0,y   

                               1 1, .x U y V   

 Subsequently Mond and Schechter [81] introduced the following 

pair of symmetric dual programs one of which is Wolfe [98] type and 

another is Mond and Weir [82] type. 

(P): Minimum      2 1, ,Tf x y y f x y S x C    

 Subject to   

          2 , 0f x y z    ,   

                         2 , 0.z C x   

(D): Maximum      1 2, ,Tf u v u f u v S v C    

       Subject to   

                        1 , 0f u v w    ,   

                       1 , 0.w C v    and  

(P1): Minimum    1, Tf x y y z S x C   
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 Subject to   

                      2 , 0f x y z   ,  

                        2 , 0,Ty f x y z    

                           2 , 0.z C x   

(D1): Maximum    2, Tf u v u w S v C   

 Subject to   

                         1 , 0f u v w   ,  

                   1 , 0,Tu f u v w    

  1 , 0.w C v   

Symmetric Duality in Multiobjective Programming   

Mond and Weir [83] discussed symmetric duality in 

multiobjective programming by considering the following pair of 

programs: 

(PS):  Minimum     2, ,T Tf x y y f x y e   

 Subject to   

   2 , 0,T f x y     

                             0 ,x     

(DS): Maximum      1, ,T Tf x y x f x y e   

 Subject to   

   1 , 0T f x y   ,   

                             0 ,y     
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Where : ,n m pf R R R   1,1, ,1 pe R   and  : 0 , 1P TR e      

and proved the symmetric duality theorem under the convexity – 

concavity assumptions on  ,f x y . Here the minimization/ 

maximization is taken in the sense of proper efficiency as given by 

Geoffrion [44]. 

 Further on the lines of scalar case (Mond and Weir [82]) also 

considered another pair of symmetric dual programs and proved 

symmetric duality results under weaker conditions of pseudoconvexity-

pseudoconcavity: 

(PS1): Minimum  ,f x y  

             Subject to   

                                2 , 0T f x y   

                            2 , 0T Ty f x y         

  0 ,x     

(DS1): Maximum     1, ,T Tf x y x f x y e   

             Subject to   

                              1 , 0T f x y   ,   

                          1 , 0T Tx f x y  , 

                               0 ,y    . 

Later Chandra and D.Prasad [24] introduced following pair of 

multiobjective programs by associating a vector valued infinite game.  
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(PS*): Minimum      2, ,T Tf x y y f x y e   

 Subject to   

                         2 , 0T f x y  ,   

                             0 ,x    . 

(DS*): Maximum       1, ,T Tf x y x f x y e   

         Subject to   

                         1 , 0T f x y   ,   

                            0 ,y     

Here it may be noted that not the same  is appearing in (PS*) 

and (DS*) and this creates certain difficulties which are also discussed 

in [24].  

1.3.3 Second-Order Duality in Mathematical Programming            

    We consider the following nonlinear programming problem: 

(NP):  Minimum    f x  

         Subject to   

                          0g x   

where ,nx R f and g are twice differentiable functions from nR and R  

and mR , respectively. 

Mangasarian [66] formulated the Wolfe [98] type second-order 

dual of (NP). 
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(ND-1):  Maximum        21

2

T T Tf u y g u p f u y g u           

 Subject to 

                                    2 0,T Tf u y g u f u y g u p            

                                  0y   

where  np R  and for any function : nR R  , the symbol  2 x

designates n n  symmetric matrix of second-order partial derivatives. 

Mangasarian [66] established usual duality theorems between (NP) and 

(ND-1) under the assumptions that are involved and rather difficult to 

verify.  

1.3.4 Second-Order Symmetric Duality in Mathematical              

Programming           

Mangasarian [66] was the first introduced the concept of second-

order duality. Later Mond [70] constructed the following pair of 

second-order symmetric dual problems: 

(PP):  Minimum          2 21
, , , ,

2

T T

y y yf x y y f x y f x y p p f x y p      

 Subject to 

                   2, , 0,y yf x y f x y p        

                            0.x   

(DD): Maximum         2 21
, , , ,

2

T T

x x xf x y x f x y f x y q q f x y q      

 Subject to 

               2, , 0,x xf x y f x y q        

  0y  . 
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He studied appropriate duality theorem between (PP) and (DD) 

under the second-order concavity assumptions on the kernel function

 ,f x y . Further Bector and Chandra [10] introduced another pair of 

second-order symmetric dual nonlinear programs on the lines of Mond 

and Weir [82] and studied duality under weaker generalized convexity 

assumptions. 

1.3.5 Variational Problems 

A variational problem can be considered as a particular of an optimal 

control problem in which the control function is a derivative of a state 

function. 

A variational problem is of the form: 

(VP): Minimize   , ,
I

f t x x dt  

 Subject to 

     ,x a x b                                                       

   , , 0, ,g t x x t I        

                                , .nx C I R  

where  ,I a b is a real time interval, x  denotes derivative of x  with 

respect to t , : n nf I R R R   and : n ng I R R R    are continuously 

differentiable functions with respect to each of their arguments; 

 , nC I R  is the space of continuously differentiable functions : nx I R , 

and is equipped with the norm x x Dx
 

  where the  

differentiation operator D is given by    
t

a

u D x x t u s ds     except  

at  discontinuities. 
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  The following necessary conditions for the existence for (VP) 

are derived by Valentine [93]. 

Theorem 1.1.2: For every minimizing arc  x x t of the problem (VP), 

there exists a function of the form 

                       , , , ,
T

H f t x x t g t x x    

Such that 

 
x x

d
H H

dt
  

    , ,
T

t g t x x =0 

 
     , 0 , , 0 ,t t t I       

hold throughout I (except at corners of x  where 
x x

d
H H

dt
 , holds for 

unique right and left limits). Here  is constant and    is continuous 

except possibly for values of  t  corresponding to corners of x .  

 In [77] Mond and Hanson studied Wolfe type duality for 

variational problems (VP) while in [93] they investigated Wolfe type 

duality symmetric duality for the variational problems (VP). Later 

Bector, Chandra and Husain [13] studied Mond-Weir type non-

symmetric as symmetric continuous programs which are variational 

problems.                       

1.3.6   Second-Order Duality for Variational Problems  

A second-order dual to a mathematical programming problem 

presents a tighter bound and hence it enjoys computational advantage 

over a first order dual. Motivated with this remark Chen has identified 

second-order dual. The following is the Wolfe type dual to the above 

problem: 
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Maximize:               , , , ,

b
T

a

f t u t u t t g t u t u t  

                        

              

             
               2

1
, , , ,

2

2 , , , ,

, , , ,

TT

uu u
u

T

uu u
u

T

uu u
u

t f t u t u t g t u t u t t

D f t u t u t g t u t u t t

D f t u t u t g t u t u t t t dt

 



 

 


 


   

 

Subject to  

      0u a u b  ,      0u a u b                     

           , , , ,
T

u uf t u t u t g t u t u t t                                         

         

           

            

             
               2

, , , ,

, , , ,

2 , , , ,

, , , , 0,

T

u u

T

uu u
u

T

uu u
u

T

uu u
u

D f t u t u t g t u t u t t

f t u t u t g t u t u t t

D f t u t u t g t u t u t t

D f t u t u t g t u t u t t t







 

  
  

 


 


  



 

         ,t I  

     , ,m nt R t R t I    ,  

Let 

        

            
             
             2

, , , ,

2 , , , ,

, , , , .

T

uu u
u

T

uu u
u

T

uu u
u

H f t u t u t g t u t u t t

D f t u t u t g t u t u t t

D f t u t u t g t u t u t t







 

 

 

 

The above problem can now be written as 

(VD): Maximize              , , , ,

b
T

a

f t u t u t t g t u t u t  

                                    
1

, , , ,
2

T
t H t u t u t t t dt  
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 Subject to  

       0u a u b  ,      0u a u b                                                            

         

           

           

        

, , , ,

, , , ,

, , 0,

T

u u

T

u u

f t u t u t g t u t u t t

D f t u t u t g t u t u t t

H t u t u t t t t I





 



  
  

  

 

                          , ,m nt R t R t I     

For the above dual pair of problem, Chen [27] established the 

following weak duality under somewhat strange conditions , strong  

and converse duality theorems. 

Theorem 1.1.3 (Weak Duality): Let   Xtx   be a primal feasible 

solution of (VP) and       ttytu ,,  be a dual feasible solution of 

(VD).If   ,.,.

b

a

f t dt  and    ,.,.

b
T

a

t g t dt  are invex in x and x  on I with  

respect to the same  : nnn RRRI   satisfying 0   at t =1and   t = b, 

then there exist       , , , 0k t y t y t t  and       , , , 0K t y t y t t  such 

that the following conditions hold: 

                      
2

, , , , , , ,
T

t H t y t y t t k t y t y t t t t I      

                        , , , , , , ,H t y t y t t K t y t y t t t I    

                  
      
      

, , ,1
, , , .

2 , , ,

K t y t y t t
t t y t y t t I

k t y t y t t


 


   

Then the following inequality holds between the primal (VP) 

and dual (VD) objective functions: 

             

                

          

, , , , , ,

1
, , ,

2

T

I I

T

f t x t x t dt f t u t u t t g t y t y t

t H t y t y t t t
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Theorem 1.1.4 (Strong Duality): If  x t X is a local (or global) 

optimal solution of (VP) and some piecewise smooth function 

: nI R   and Slater condition holds, then there exists a piecewise 

smooth : nI R   such that       , , 0x t t t   is a feasible solution of 

(VD),and the two objective values are equal. Furthermore, if the 

invexity-like requirements among with additional conditions in 

Theorem 1.1.3 hold then       , , 0x t t t   is an optimal solution of 

(VD). 

Theorem 1.1.5 (Converse Duality): Suppose that f and g are thrice 

continuously differentiable. Let        , ,x t y t t   be a local (or global) 

optimal solution of (VD), if the following conditions hold: 

(i):   H is nonsingular at       , ,x t y t t : 

 (ii):             , , ,
T

x

r t H t y t y t t r t 
   

  
          , , , 0

T

x

D r t H t y t y t t r t  
 

 

   0, ,r t for all r t X t I     

Then  y t  is a feasible solution of (VP),       , , 0,
T

t g t y t y t 

and the two objective functions are equal. In addition, if the conditions 

in Theorem 1.1.3, then  y t  is an optimal solution of (VP). 
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1.4    SUMMARY OF THE THESIS 

The results obtained in this thesis are presented in chapters 2-6. 

The results of this thesis are briefly summarized chapter wise. 

CHAPTER 2 

 Chapter 2 is divided in two sections, section 2.1 and section 2.2. 

In section 2.1, we consider the following nondifferentiable nonlinear 

problem with support functions. 

(NP):    Min    CxSxf   

            Subject to, 

                         mjDxSxg jj ...2,1,0    

For this problem, we construct the following Wolfe and Mond-Weir 

type second-order dual. 

(WD): Max             pugyufpuwugyuzuf TT
m

j

T

jjj

T  


2

1
2

1  

 Subject to, 

                           0)( 2

1

 


pugyufwugyuzuf T
m

j

jjj

T ,                     

               ,0y  

                   ,, jj DwCz   ),,.,2,1( mj  .      

Mond-Weir type second-order dual for the problem (NP). 

(SM-WD): Max     pufpuzuf TT 2

2
1   

                  Subject to, 

           ,02

1

 


pugyufwugyzuf T
m

j

jjj         
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                             ,0
2

1 2

1




pugypuwugy T
m

j

TT

jjj         

                ,0y         

                         ,, DwCz j     mj ,...2,1        

For the pair of Wolfe type second-order dual problem (NP) and (WD) 

usual duality theorems are validated under second-order convexity, and 

for the pair of second-order Mond-Weir problem (NP) and (M-

WD),various duality theorems are validated under second-order 

generalized convexity. Special cases are also deduced. In section 2.2, 

mixed type second-order dual to the non-differentiable problem 

containing support functions is formulated and duality theorems are 

proved under generalized second-order convexity conditions. Special 

cases are also studied. 

Mixed type second-order dual to the problem (NP) is formulated as:  

(Mix SD):  

Maximize  



0

)()(
Ii

i

T

ii

T wuugyzuuf  p )()(
2

1

0

2








 

Ii

ii

T ugyufp  

     Subject to, 

 
 ii

m

i

i wugyzuf  


)()(
1

  0)()(2  pugyuf T          (2) 

  0p )(
2

1
)( 2 














 

  Ii

ii

T

Ii

i

T

ii ugypwuugy ,=1,2,…,r.   (3) 

y  0                        (4) 

z  C ,wi  Di ,  i = 1, 2,…,m.       (5) 
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where  

(i) I  M = {1,2,…,m} ,  = 0, 1,2,…,r with MI
r

i





0

  and 

  II  if   . 

(ii) ,n n mu R p R and y R   . 

CHAPTER 3 

 This chapter deals with second-order symmetric duality for non-

differentiable multiobjective programming problems. It consists of two 

sections,3.1 and 3.2.In section 3.1 following Wolfe type non-

differentiable multiobjective second-order symmetric dual problems 

are formulated and for this pair of problem weak, strong and self 

duality theorems are established under suitable convexity conditions.  

Primal (SWP): Minimize F  pzyx ,,,    1, , , , , , ,i k kF x y z p F x y z p   

                 Subject to,  

     0,,
1

2

22 


k

i

iiii pyxfzyxf                      

 kiDz ii ,,,, 21                                    

 0x                      

                      

Wolfe type dual to the problem (SWP) is:  

Dual (SWD): Minimize G  qwvu ,,,    1 1, , , , , , ,k kG u v w q G u v w q    

                Subject to,    

      0,,
1

2

11 


k

i

iiii qvufwvuf                  
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 kiCw ii ,,,, 21            

 0v                                                        

                                                                             

where 

i.        pyxfpzyCxsyxfpzyxF i

T

i

T

iiii ,
2

1
|,,,, 2

2  

     



k

i

iiii

T pyxfzyxfy
1

2

22 ,,  

ii.        qvufqwuDvsvufqwvuG i

T

i

T

iiii ,|,,,
2

1
2

1
  

     



k

i

iiii

T qvufwvufu
1

2

11 ,,,  and 

iii. For each i, s  iCx |  and  iDvs |    represent support functions of        

compact convex sets  Ci and Di in nR  and mR , respectively. 

iv.  with  ii Cw   and  Kzzz ,1  for  each {i = 1,2,, k}                        

v.  








 



k

i

iki

kR
1

10  ,,,|   

In section 3.2 following Mond-Weir type nondifferentiable 

multiobjective second-order symmetric dual problem are formulated 

to the problem (SWP) 

(SVD):  Maximize  1 1( , , , ) ( ( , , , ),..., ( , , , ))k kG u v w q G u v w q G u v w q  

  Subject to,   

 2

1 1

1

( , ) ( , ) 0,
k

i i i i

i

f u v w f u v q


        

 Kwww ,1
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         2

1 1

1

( , ) ( , ) 0,
k

T

i i i i

i

u f u v w f u v q


       

            0  ,     

                 0, , 1,2,..., .i iv w C i k       

where  

(i) 2

2

1
( , , , ) ( , ) ( | ) ( , )

2

T T

i i i i i iF x y z p f x y s x C y z p f x y p      

  2

1

1
( , , , ) ( , ) ( | ) ( , )

2

T T

i i i i i iG u v w q f u v s v D u w q f u v q      

(ii) 1( ,..., )kw w w  with i iw C  for {1,2,..., }i k , 

  1( ,..., )kz z z  with i iz D  for {1,2,..., }i k , and 

  
1( ,..., )T

k    with i R   for {1,2,..., }i k ; and 

(iii)   for each {1,2,..., }i k , ( | )is x C  and ( | )is y D  represent 

support functions of compact  convex set iC  in nR  and 

compact convex set iD  in mR , respectively. 

For this pair of problems weak, strong and self dually theorems 

are established under suitable second-order generalized convexity 

conditions. Some additional restriction is assumed to validate self 

duality theorem. 

CHAPTER 4 

In this chapter following pair of second-order symmetric dual 

programs with cone constraint is formulated. 

(SP):  Minimize 2( , , ) ( , ) ( ( , ) ( , ) )T

y yG x y p f x y y f x y f x y p      

    21
( , )

2

T

yp f x y p   
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 Subject to,     

 2 *

2( , ) ( , )y yf x y f x y p C        

 1 2( , )x y C C   

 (SD):  Maximize          qyxfyxfxyxfqyxH xx

T ,,,,, 2  

     21
( , )

2

T

xq f x y q   

        Subject to,  

 2 *

1( , ) ( , )x xf x y f x y q C         

 1 2( , )x y C C         

where  

(i) 1 2:f C C R   is a twice differentiable function, 

(ii) 1C  and 2C  are closed convex cones with nonempty interior 

in nR  and mR , respectively; 

(iii) *

1C  and *

2C  are positive polar cones of 1C  and 2C  

respectively. 

For this pair of problems various duality theorems including self 

duality theorems are proved under second-order convexity second-

order concavity. In section 4.4 following pair of second-order mixed 

integer symmetric and self duality is investigated. 

Primal Problem 

(MSP):      2 2
21

2 2

, ,
Max Min ( , , ) ( , ) ( ) ( , ) ( , )T

y yx y sx
x y s f x y y f x y f x y s      

    2

21
( , )

2

T

y
s f x y s      
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       Subject to,   

 2 2

2 *

2( , ) ( , )
y y

f x y f x y s K    

 1 2

1,( , )x U x y K T   . 

and  

Dual Problem 

(MSD):           ryxfyxfxyxfryxMinMax
xx

T

ryxy
,,,,. 22

,,
22

21
  yxf ,  

2

21
( ) ( , )

2

T T

x
r f x y r   

                 Subject to,         

 2 2

2 *

1( , ) ( , )
x x

f x y f x y r K    

 1 2

2,( , )y V x y S K    

where 1m ms R 
  and  1 .

n n
r R


  

Finally in this chapter, special cases are generated. 

CHAPTER 5 

 In this chapter following pair of mixed type multiobjective 

second-order symmetric dual problems is formulated. 

Primal Problem: 

(SMP): Minimize F(x
1
, x

2
, y

1
, y

2
, p, r)

 1 2 1 2 1 2 1 2

1( , , , , , ),..., ( , , , , , )kF x x y y p r F x x y y p r  

   Subject to,   

 1 1

1 1 2 1 1( )( , ) ( )( , )  0T T

y y
f x y f x y p    ,      
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 2
2

2 2 2 2 2( )( , ) ( )( , ) r  0
y

T T

y
g x y g x y    ,                

 2
2

2 2 2 2 2 2( ) ( )( , ) ( )( , ) r  0
y

T T T

y
y g x y g x y    

  
,                 

 1 2,  0x x  ,      

   .     

Dual Problem: 

(SMD): Max   1 2 1 2( , , , , , )G u u v v q s  1 2 1 2 1 2 1 2

1( , , , , , ),..., ( , , , , , )kG u u v v q s G u u v v q s  

             Subject to,  

 1 1

1 1 2 1 1( )( , ) ( )( , ) q  0T T

x x
f u v f u v    ,                 

 2 2

2 2 2 2 2( )( , ) ( )( , ) s  0T T

x x
g u v g u v    ,      

   2 2

2 2 2 2 2 2( )( , ) ( )( , ) s  0
T

T T

x x
u g u v g u v      ,                

 0 v,v 21  ,    

  .   

where 

(i) 1

1 2 1 2 1 1 2 1 11
( , , , , , ) ( , ) ( , )

2

T

i i iy
F x x y y p r f x y p f x y p    

   1 1

1 1 1 2 1 1( ) ( )( , ) ( )( , )T T T

y y
y f x y f x y p     

  2

2 2 2 2 21
( , ) ( , )

2

T

i iy
g x y r g x y r    

(ii)  1

1 2 1 2 1 1 2 1 11
( , , , , , ) ( , ) ( , )

2

T

i i ix
G u u v v q s f u v q f u v q    

   1 1

1 1 1 2 1 1( ) ( )( , ) ( )( , )T T T

x x
u f u v f u v q     
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                       2
1

2 2 2 2 21
( , ) ( , )

2

T

i x
g u v s g u v s    

(iii) 1 2 1 2| | | | | | | |, , ,K K J Jp R r R q R s R    and  = (1,…,k)
T
 with 

1R, i =1,2,…,k. 

(iv) 












 



k

1i

1
k ,0|R  

 For this pair of problem, weak, strong and converse duality 

theorems are validated under second-order convexity - second-order 

concavity of the kernel function appearing in the primal and dual 

programs. Under additional conditions on the kernel constituting the 

objective and constraint functions, these programs are shown to be self 

dual. This formulation of the programs not only generalizes mixed type 

first order symmetric multiobjective duality results but also unifies the 

pair of Wolfe and Mond-Weir type second-order symmetric 

multiobjective programs.                       

CHAPTER 6 

 In this chapter, we have constructed Mond -Weir type second-

order dual to the variational problem and derive usual duality results 

under second-order pseudo-invexity and second-order quasi-invexity 

assumptions.These models allows the weakening of the invexity 

assumption required for Wolfe type dual models of Chen [27].The 

following is the pair of Mond-Weir dual models: 

(P):    Minimize  , ,
I

f t x x dt  

    Subject to 

     0 ,x a x b                                                      
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   , , 0, ,g t x x t I                                         

(D):   Maximize          
1

, ,
2

T

I

f t u u t F t t dt 
 

 
 
  

     Subject to  

     buau  0                                                            

           0 ,
T T

u u u uf y t g D f y t g F H t t I                       

          ,0
2

1
,, 









 dttHtuutgty
TT

I

       0,y t t I                            

where  

2

uu uu uuF f Df D f     and         2T T T

u u u
u u u

H y t g D y t g D y t g   and 

define 
d

D
dt

 as defined earlier. 

If f and g  are independent of t  then uuF f  and  T

u
u

H y g and 

consequently (D) will reduce to the second-order dual problem 

introduced in [11]. 

CHAPTER 7 

 This chapter consist of two main sections 7.1 and 7.2. In 7.1 we 

consider the following class of nondifferentiable continuous 

programming problem (CP
+
):  

(CP
+
): Minimize            

1
2

, ,
T

I

f t x t x t x t B t x t dt
 

 
 
  

           Subject to    

   0 ,x a x b 
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    , , 0,g t x t x t t I 
     

Analogously to the second-order dual problem introduced by 

Mangasarian [66] for a nonlinear programming problem, we consider 

the following second-order dual continuous programming problem 

(CD
+
) for (CP

+
).

 

 (CD
+
): Maximize                    , , , ,

T T

I

f t u t u t u t B t z t y t g t u t u t 

 

                

     
1

2

T
p t H t p t dt


 



  Subject to  

     buau  0                              

               

                 

                

, , , ,

, , , , 0 ,

T T

T

u u

f t u t u t u t B t z t y t g t u t u t

D f t u t u t y t g t u t u t H t p t t I

 

    
   

 

 
      1, ,

T
z t B t z t t I 

      
  0, ,y t t I                            

where 

   
               

      2

, , , , 2 , , , ,

, , , ,

T T

uu u uu u
u u

T

uu u
u

H t f t u u y t g t u u D f t u u y t g t u u

D f t u u y t g t u u

    
  

  
  

 

For this pair of problem we have established usual duality results 

under second-order pseudoinvexity as an continuous – time version of 

second-order pseudo invexity for static case. Problems with natural 

boundary are formulated and special cases are obtained. 

In section 7.2 we have studied Wolfe type second-order duality 

for a wider class of nondifferentiable continuous programming 

problems in which support functions occur. The dual models are given 
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below. For this pair of dual models various duality results are derived 

under second-order invexity and second-order pseudoinvexity. 

 Consider the following nondifferentiable continuous programming 

problem with support functions of Husain and Jabeen [52]: 

(CP+):   Minimize      , , |
I

f t x x S x t K dt  

              Subject to    

   0 ,x a x b   

    , , | 0, 1,2... , ,j jg t x x S x t C j m t I     

where,  f and g are continuously differentiable and each , 1,2...jC j m  is 

a compact convex set in R
n
. The following problem is formulated as 

Wolfe type dual for the Problem (CP+): 

(CD+):Maximize               
1

, , , ,
m

T T Tj j j

jI

f t u u u t z t y t g t u u u t w t



  


  

                             
1

2

T
p t H t p t dt


 


      

      Subject to  

                buau  0                                                                        

               

          

          

1

, , , ,

, , , , 0 ,

u

m
Tj j j

u

j

T

u u

f t u u z t y t g t u u w t

D f t u u y t g t u u H t p t t I



  

    



   

               
   , , , 1,2... .j jz t K w t C t I j m   

 

             
  0, .y t t I 
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CHAPTER 2 

 

 

SECOND-ORDER DUALITY AND MIXED TYPE DUALITY 

WITH SUPPORT FUNCTIONS 

 

 

 

 

 

 

 

 

2.0  INTRODUCTORY REMARKS 
 

any authors have studied duality for a class of nonlinear 

programming problems in which the objective function 

contains a differentiable convex  function along with either a positive 

homogenous function or the sum of positive homogenous functions, 

e.g., Sinha [91], Zhang and Mond [101], Mond [72,73], Chandra and 

Gulati [20] and Mond and Schechter [80,81]. These authors have 

introduced the square root of positive semidefinite quadratic form 

  2/1
BxxT or a norm term of the type Px  as a positive homogenous 

function. The popularity of this kind of problem stems from the fact 

that even though the objective function and /or constraint functions are 

nondifferentiable, the dual problem comes out to be a differentiable 

problem and hence is more amenable to handle from the computational 

point of view. As demonstrated by Sinha [91], these problems have 

applications in the modeling of certain stochastic programming 

problem. While most of these studies have considered only the Wolfe 

type of dual, Chandra et al [23] studied duality for such problems in 

the spirit of  Mond and Weir [82] in order to relax convexity conditions 

assumed in aforecited references. 

M 
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Mangasarian [66] was the first to identify a second-order dual 

formulation for non-linear programs under the assumptions that are 

complicated and somewhat difficult to verify. Mond [70] introduced 

the concept of second-order convex functions (named as bonvex 

functions by Bector and Chandra [11]) and studied second-order 

duality for nonlinear programs. 

This chapter has two sections 2.1 and 2.2. The purpose of the 

section 2.1 is to formulate Wolfe and Mond-Weir type second-order 

duals for a nonlinear programming problem in which the objective and 

the constraint functions contains a term of a support function and 

establish various duality results for each pair of dual problems. It is 

pointed out that duality results obtained in [50] become special cases of 

our results. In section 2.2 we present a mixed type second-order dual to 

the non differentiable program which combines Wolfe and Mond–Weir 

second-order duals considered in  section 2.1.It is also pointed out that 

first-order mixed type duality results proved in section 2.1 are special 

cases of our results. It is also indicated that the duality results studied 

by Zhang and Mond [101] becomes special cases of our results if the 

support function is the objective is replaced by square root of positive 

semi definite quadratic form and the support functions that appear in 

the constraints are suppressed. 

2.1 SECOND-ORDER DUALITY IN MATHEMATICAL 

PROGRAMMING WITH SUPPORT FUNCTIONS 

2.1.1   Pre-requisites 

Let RRf n :  and : , ( 1,2.,,, )n

jg R R j m  be subdifferentiable 

functions. Let C be a compact convex set in R
n
. Then consider the 

following nonlinear programming problem: 
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(P):   Minimum   f(x) 

         Subject to  

                           ( ) 0,       1,2,...jg x j m   

                          Cx  

The following lemmas relating to (P) will be used here: 

Lemma 2.1.1 [91]: If x  is an optimal solution for (P), then there exist 

R and ,mR such that  

          xNxgxf Cj

m

j

j  
1

0  , 

                    0
1




m

j

j , 

   ,0xg jj         .,...2,1 mj   

Lemma 2.1.2 [91]: If x  is an optimal solution for (P), and a Slater’s 

constraint qualification holds for (P), then there exist non negative 

constants  1,2, ,j j m  , such that  

       xNxgxf Cj

m

j

j  
1

0  , 

  ,0xg jj             .,...2,1 mj   

It is to be noted that under the conditions of convexity on the 

functions f and , ( 1,2, , )jg j m , these necessary conditions are also 

sufficient for the optimality of x for (P). 

2.1.2  Nondifferentiable Programming Problem Containing 

Support Functions and Duality 

 Let : nf R R   and  : , 1,2,...,n

jg R R j n   be twice differentiable 

functions. Let C and ,  ( 1,2, , )jD j m be compact convex sets in R
n
. 
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We consider the following nondifferentiable nonlinear programming 

problem: 

(NP): Minimum    CxSxf   

Subject to 

                               0, 1,2...j jg x S x D j m      (2.1) 

In studying duality for (NP) certain optimality conditions in the 

non-smooth setting will be required. These conditions which can be 

derived from [91] along with the application of Lemma 2.1.1 and 

Lemma 2.1.2 are given below: 

Theorem 2.1.1: If x  is an optimal solution for (NP), then there exists 

mRyCzR  ,,  and  , 1,2,...,j jw D j m   such that  

      ,0
1

 


m

j

jjj wxgyzxf  

                         ,0
1




m

j

T

jjj xwxgy   

                       Tz x S x C  and    ,j

T

j DxSxw           mj ,..2,1      

              .0,,0,  yy   

When a suitable constraint qualification holds for (NP) the 

above Fritz John optimality conditions reduces to the Karush-Kuhn-

Tucker optimality conditions, as this asserts positiveness of the 

multiplier   associated with the objective function. 

2.1.3 Wolfe Type Duality 

Consider the following nonlinear program, which will be proved 

to be a dual program to (NP) 



52 

 

(WD):  Max              pugyufpuwugyuzuf TT
m

j

T

jjj

T  


2

1
2

1   

 Subject to, 

                               0)( 2

1

 


pugyufwugyuzuf T
m

j

jjj

T ,          

          (2.2)             

                      ,0y                      (2.3) 

                      ,, jj DwCz   ),,.,2,1( mj  .                       (2.4) 

Theorem 2.1.2 (Weak Duality): Let x be feasible for (NP) and 

),...,,,,,( 21 mwwwpyzu  be feasible for (WD) and let for all feasible 

1 2( , , , , , ,..., )mx z y p w w w  ,  f  and  jg , ( 1,2,..., )j m  be second-order 

convex, then 

                .
2

1 2

1

pugyufpuwugyuzufCxSxf TT
m

j

T

jjj

T  


 

i.e.,      inf.(NP) ≥ sup. (WD) 

Proof: Let x be feasible for (NP) and ),...,,,,,( 21 mwwwpyzu  be feasible 

for (WD), therefore, from second-order convexity of  f  and  jg , 

),,.,2,1( mj  we have 

    












 



m

j

T

jj

T xwyxgyxf
1

     












 



m

j

T

jj

T uwyugyuf
1

 

                   


pugyufpuxwy TT
m

j

T

jj

2

1
2

1  

                        2T Tx u f u y g u f u y g u p     
  

(2.5)     

Now from the dual feasibility, we have 

           pugyufugyufux TT  2 = 

                          zux  



m

j

T

jj uxwy
1

               (2.6) 
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Therefore from (2.5) and (2.6) we get, 

    












 



m

j

T

jj

T xwyxgyxf
1

    












 



m

j

T

jj

T uwyugyuf
1

 

                   pugyufpzux TTT
 2

2
1  

i.e., 

            












 



pugyufpuwyugyuzufxzxf TT
m

j

T

jj

TTT 2

1

21  

                      












 



m

j

T

jj

T xwyxgy
1

 

but S   xzCx T , whenever Cz  and   ,xwDxS T

jj  whenever jj Dw  . 

which implies that  

      .0 xwxgDxSxg T

jjjj   

                    0 ≥  
jjj DxSgy (  

                     0 ≥   xwyxgy T

jjjj   =   



m

j

T

jj

T xwyxgy
1

 

                       



m

j

T

jj

T xwyxgy
1

≤ 0  

As ,0y we get   












 



m

j

T

jj

T xwyxgy
1

.0  

Hence 

            












 



pugyufpuwyugyuzufxzxf TT
m

j

T

jj

TTT 2

1

21  

Inf. (NP) ≥ sup. (WD). 



54 

 

Corollary 2.1.1: Let x  be feasible for (NP) and  mwwwpyzu ,...,,,,, 21  is 

feasible for (WD) with corresponding objective functions being equal. 

Let the hypotheses of Theorem 2.1.2 hold. Then x  is optimal for (NP) 

and  mwwwpyzu ,...,,,,, 21  is optimal for (WD). 

Theorem 2.1.3 (Strong Duality): Let x  be optimal for (NP) and the 

suitable constraint qualification [68] hold. Then there exists 

 mjDwRyCz jj

m ,...2,1,,,  such that  1 2, , , 0, , ,... mx z y p w w w  is 

feasible for (WD) and the objective function values of (NP) and (WD) 

are equal. Further if the hypothesis of Theorem 2.1.2 hold then 

 1 2, , , 0, , ,... mx z y p w w w  is an optimal solution for (WD). 

Proof: Since x  be an optimal solution for (NP) and a suitable 

constraint qualification [68] holds for (NP), then there exists 

 mjDwRyCz jj

m ,...2,1,,,   such that 

     ,0
1

 


jj

m

j

j wxgyzxf  

                       ,0
1




xwxgy T

jj

m

j

j  

                     ,CxSxz T   and   ....2,1, mjDxSxw j

T

j   

Hence  1 2, , , 0, , ,... mx z y p w w w  is feasible for (WD) and  

   xzxf T   


T

jj

m

j

j wxgy
1

 xf  ,.CxS  

That is, the objective function values of (NP) and (WD) are equal. 

Remainder of the proof now immediately follows from Corollary 2.1.1. 
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Theorem 2.1.4 (Converse Duality): Let  mwwwpyzu ,...,,,,, 21  is optimal 

for (WD) and the Hessian matrix    










 



m

j

jj ugyuf
1

2  be non-singular 

and    










 



m

j

jj ugyuf
1

222 be either positive or negative definite. 

Then     ,0
1




j

m

j

jj DuSugy  and u  is feasible for (NP) and the 

objective function values of (NP) and (WD) are equal. Further if the 

hypotheses of Theorem 2.1.2 hold then u  is an optimal for (NP). 

Proof: First we rewrite problem (WD) in the form of (P), for this let 

1 2( , , , , , ,... )mq u z y p w w w   mnmR  3 and 

F (q) =             pugyufpuwugyuzuf TT
m

j

T

jjj

T  


2

1

21 , 

G (q) =            ,2

1

pugyufwugyzuf T
m

j

jjj  


 

H (q) =y. 

Let the set S be defined by S= {q:q= ),...,,,,,( 21 mwwwpyzu , Cz , 

jw ,jD  mj ,...2,1 }, then problem (WD) may be rewritten as follows: 

Maximum    F (q) 

Subject to 

                   G (q) =0, 

                   H (q) ≤ 0, 

                   .Sq  

As q   mwwwpyzu ,...,,,,, 21  is optimal for (WD), from Lemma 2.1.1, 

there exist constants mjj ,...2,1,0,0    and ,,...2,1, nii  not all  
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zero, and the normal cone to S at q as  qNS  such that 

              2

1

1
2

m
T T

j j j

j

f u z y g u w p f u y g u p


 
           
 

  

                                     02222  pugyufugyuf TT    (2.7) 

                       0)( 2222  ugyufpugyuf TT            (2.8) 

                   pugpuwug j

TT

jj

2

2
1      pugwug jjj

2   

                                               ,0 j        mj ,...2,1                      (2.9)                   

              ,zNu C                      (2.10) 

              ,jDjj wNyyu
j

                     (2.11) 

             ,0jj y mj ,...2,1                     (2.12) 

From (2.8),we have, 

     2 2( ) 0Tp f u y g u         

But from non-singularity of the matrix     ugyuf T22   we have 

)(  p = 0. If possible, let ,0   then .0  From these values, 

(2.9) implies ,0j  mj ,...2,1 , which makes all the multipliers equal 

to zero. Since this cannot happen as it contradicts   0,,  . So we 

must have ,0  so .0  Using the equality constraint of the dual 

problem in equation (2.7) we have, 

                 2 21

2

T T Tf u y g u p p f u y g u p
 
     

 
 

                          +           02222  pugyufugyuf TT     
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This can be written as  

                     2 2 0
2

T Tp
p f u y g u p f u y g u p


  

 
         

 
 

This along with 0 p   yields, 

                2 0
2

Tp
f u y g u p


     

Because of positiveness of  .This equation is simplified as  

      02  pugyufp TT  

which by the condition of      ugyuf T 2 to be either positive or 

negative definite implies  0p  . Now )(  p = 0, hence 0 .Then 

equation (2.9) implies that  

      

  

 

2

2

0

0, 

j j j j

j j j

j

j j

p
g u w g u p

g u w

g u w


   

 





 
        

 

    

    

 

    0 uwug
T

jj , mj ,...2,1 . 

Now from (2.10) and (2.11) we have  zNu C  and  jD wNu
j

  so that 

 Tz u S u C  and  ,j

T

j DuSuw   mj ,...2,1 .Hence 

      ,0 jj

T

jj DuSuguwug mj ,...2,1  

which implies that u  is feasible for problem (NP).Also from (2.9) and 

(2.12) we get  

                       ,0 uwugy T

jjj  mj ,...2,1 . 
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Therefore, 

          pugyufpuwugyuzuf TT
m

j

T

jjj

T  


2

1

21 =    CuSuf  . 

This by Corollary 2.1.1 implies that u is optimal for (NP). 

2.1.4    Mond - Weir Type Duality 

We state the following problem as a Mond-Weir type second-

order dual for the problem (NP). 

(SMWD):  Maximum      pufpuzuf TT 2

2
1   

 Subject to 

                                      ,02

1

 


pugyufwugyzuf T
m

j

jjj         

          (2.13) 

             ,0
2

1 2

1




pugypuwugy T
m

j

TT

jjj     (2.14) 

   ,0y             (2.15) 

  ,, DwCz j     mj ,...2,1           (2.16) 

Theorem 2.1.5 (Weak Duality): Let x be feasible for (NP) and 

),...,,,,,( 21 mwwwpyzu  be feasible for (SMWD) and let for all feasible 

),...,,,,,,( 21 mwwwpyzux  to (NP) and (SMWD),     zf
T
  is second-order 

pseudoconvex and     



m

j

j

T

jj wgy
1

is second-order quasiconvex, then 

       pufpuzufDxSxf TT

j

2

2

1
 . 

Proof: By the primal feasibility of x and dual feasibility of 

),...,,,,,( 21 mwwwpyzu , we have 
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m

j

TTT

jjj

m

j

jjj pugypuwxgyDxSxgy
1

2

1

.
2

1
 

This in view of  ,j

T

j DxSxw    mj ,...2,1 , gives, 

                       2

1 1

1

2

m m
T T T T

j j j j j j

j j

y g x w x y g x w u p y g u p
 

       (2.17) 

Because of second-order quasiconvexity of     



m

j

j

T

jj wgy
1

, (2.17) 

yields, 

          0
1

2 












 



m

j

T

jjj

T
pugywugyux  

This is conjunction with (2.13), we get, 

                            ,02  pufzufux
T  

which by second-order pseudoconvexity of     zf
T
 gives, 

                          .
2

1 2 pufpuzufxzxf TTT   

Since  CxSxzT  , as earlier, we have, 

                            .
2

1 2 pufpuzufCxSxf TT   

Corollary 2.1.2: Let x  be feasible for (NP) and  mwwwpyzu ,...,,,,, 21  is 

feasible for (SMWD) with corresponding objective function being 

equal. Let the hypotheses of Theorem 2.1.5 hold. Then x  is optimal for 

(NP) and  mwwwpyzu ,...,,,,, 21  is optimal for (SMWD). 

Theorem 2.1.6 (Strong Duality): Let x  be optimal for (NP) and the 

suitable constraint qualification holds for (NP). Then there exists 

 mjDwRyCz jj

m ,...2,1,,,  such that  1 2, , , 0, , ,... mx z y p w w w  is 
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feasible for (SMWD) and the objective function values of (NP) and 

(MWD) are equal. Further if the hypotheses of Theorem 2.1.5 hold 

then  1 2, , , 0, , ,... mx z y p w w w  is optimal for (SMWD). 

Proof: Since x  be optimal for (NP) and the suitable constraint 

qualification holds for (NP), then there exists , ,mz C y R   

 , 1,2,...j jw D j m  such that 

     ,0
1

 


jj

m

j

j wxgyzxf  

                       ,0
1




xwxgy T

jj

m

j

j  

                     ,CxSxz T   and   mjDxSxw j

T

j ...2,1,   

Hence  1 2, , , 0, , ,... mx z y p w w w  is feasible for (MWD) and  

  xzxf T  pxfpT 2

2

1
 =  xf  .CxS . 

Therefore the objective function values of (NP) and (SMWD) 

are equal. Rest of the proof now follows from Corollary 2.1.2. 

Theorem 2.1.7 (Converse Duality): Let ( ),,,, pwyzx  be an optimal 

solution to (SMWD) at which  

(H1): (a) the nn Hessian matrix  










 



m

j

jj xgy
1

2  is positive definite and     

   0
1




m

j

jjj

T wxgyp or 

    (b) the Hessian matrix   xgy j

T

j

2  is negative definite and 

   0
1




jj

m

j

j

T wxgyp , and 
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(H2):    the set     nixgyxf
ii

,...,2,1))((,)( 22  , of vectors is 

linearly independent, where  
i

xf )(2  is the i
th
 row of 

2 ( )f x    and    
i

T xgy2  is i
th
  row of the matrix 

   xgyT2  

(H3):      the vectors    0
1




jj

m

j

j wxgy  

If, for all feasible (x, z, y, u, w1, w2,…,wm, p),     zf
T
  is second-order 

pseudo convex and     j

T

j

m

j

j wgy 
1

 is second-order quasi convex,   

then x  is an optimal solution of the problem (NP). 

Proof: Since ( ),,, wyzx , where  mwwww ,..., 21  is an optimal solution 

of (SM-WD), by generalized Fritz John necessary optimality 

conditions [68], there exists, ,R nR , ,R  and mR ,such that 

  
   

     

2

2 2

1
( ) ( )

2

( ) ( ) ( ) ( )

T

T T T

f x z p f x p

f x y g x f x y g x p





 
       

 

     

 

                 2

1

1
( ( ) ) ( ) 0

2

m
T T

j j j

j

y g x w p y g x p


 
         

 
       (2.18) 

   2( ) ( )j j jg x w g x p     

               21
( ) ( ) 0, 1(1)

2

T T T

j j j j jg x x w p g x p j m 
 

       
 

       (2.19) 

      2( ) ( ) 0
T T

p f x p yg x                      (2.20) 

    2

1

1
( ( ) ) ( ( ) 0 ,

2

m
T T

j j j j j j

j

y g x x w p y g x p


 
    

 
             (2.21) 

          0T y                                   (2.22)     
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 ( )cx N z                                    (2.23) 

   ( ) , 1(1)
jj D jy x N w j m                                  (2.24) 

  , , 0                                      (2.25) 

  , , , 0                                        (2.26) 

The relation (2.20), in view of assumption (A2) yields, 

    0p   ,   and  0p                                      (2.27)  

Multiplying (2.19) by jy , and summing over j , we get, 

               2

1

( ) ( )
m

T T

j j j

j

y g x w y g x p


 
   

 
  

     2

1

1
( ) ( ) 0 , 1(1)

2

m
T T

j j j j

i

y g x x w p y g x p j m


 
      

 
                     

(2.28) 

Using (2.21) in the above relation, we get, 

  











pxgywxgy T

jjj

m

j

)()( 2

1

 = 0   (2.29) 

The relation (2.18) together with the equality constraint of the dual, 

yields, 

             








 


jjj

m

j

wxgy )(
1

        pxfxfp
T 22    

                     +          pxgyxgyp
T 22   

            

         

        0
2

2

1

22

22













pxgyppxgy
p

pxfppxfp

T

TT






 



63 

 

Using (2.27) in this equation, we have, 

    
1

( )
m

j j j

j

y g x w 


 
    

 
                                          

        2 2 0
2

T

T Ty f x p y g x p
 

     
 

            (2.30) 

 If 0),(  , then (2.27) implies 0  and 0  from (2.19) 

consequently we get   0,,,   contradicting (2.26).Thus, 

0),(  ,this implies that at least one of these multipliers   and   

must be positive. We claim 0p .Suppose that 0p , then (2.27) yields, 

    0 p  

This implies  = >0.So from (2.29) along with (2.27), we have, 

            (2.31) 

 

Since  










 



xgy jj

m

j 1

2 is positive definite, i.e.   0
1

2 












 



pxgyp jj

m

j

T and 

   0
1




m

j

jjj

T wxgyp , we have  

                      











pxgywxgyp T

jjj

m

j

T )()( 2

1

0. 

 This is contradicted by (2.31). Hence 0p .By this, (2.27) 

implies 0 . 

From (2.19), we have, 

                      ( ) 0 , 1,2,...
jT

j jg x w x j m



                     (2.32) 

From (2.24), we have, 

                  mjDxSwx jj

T ,...,2,1,   

     0)()( 2

1













pxgywxgyp T

jjj

m

j

T
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Using this in (2.32), we obtain, 

                           ( ) 0 1,2,...,j jg x S x D j m    

This implies x is feasible for (NP). 

Multiplying (2.32) by iy  and adding over i, we have, 

                    
1

( ) 0
m

j j

j

y g x w x


                                                (2.33) 

Now consider                                            

                       pxfpzxxf TT )(
2

1
)( 2   =   zxxf T      

Using 0p  ,from (2.23), we have, 

zxT  CxS  

Thus, 

                        pxfpzxxf T )(
2

1
)( 2 =  xf  CxS           (2.34) 

 If for all feasible (x, z, y, u, w1, w2,…wm, p),     zf
T
  is second-

order pseudo convex and     j

T

j

m

j

j wgy 
1

, is second-order quasi 

convex, by Theorem 2.1.5 ,then x  is an optimal solution of the 

problem (NP). 

2.1.5   Special Cases 

Now for p = 0, the dual program (WD) and (MD), becomes the 

Wolfe and Mond-Weir type programs for (NP) studied by Husain et al [50] 

(WD): Maximum         



m

j

T

jjj

T uwugyuzuf
1

 

 Subject to 

                                0)()(
1

 


m

j

jjj wugyzuf  

                                  ,0y  

                                  mjDwCz jj ,...2,1, ,  . 
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(MD): Maximum   uzuf T  

 Subject to 

                            0)()(
1

 


m

j

jjj wugyzuf  

  ,0y  

                      mjDwCz jj ,...2,1, ,  . 

2.2 MIXED TYPE SECOND-ORDER DUALITY WITH 

SUPPORT FUNCTIONS 

2.2.1  Mixed Second-Order Type Duality 

We propose the following mixed type second-order dual type to 

the problem (NP) which combines both Wolfe and Mond -Weir type 

dual models, considered in the previous section. 

(Mix SD): Maximize  



0

)()(
Ii

i

T

ii

T wuugyzuuf   

        
0

21
( ) ( )  

2

T

i i

i I

p f u y g u p


 
   

 
  

                 Subject to 

   ii

m

i

i wugyzuf  


)()(
1

  0)()(2  pugyuf T           

(2.35) 

                21
( ) ( )  0, =1,2, , .

2

T T

i i i i i

i I i I

y g u u w p y g u p r
 


 

 
    

 
      

         (2.36) 

   y  0             (2.37) 

   z  C ,wi  Di ,  i = 1, 2,…,m.          (2.38) 

where  

1. I  M = {1,2,…,m} ,  = 0, 1,2,…,r with MI
r

i





0

  and 

  II  if   . 

2. ,n n mu R p R and y R   . 
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Theorem 2.2.1 (Weak Duality): Let x be feasible for (NP) and (u, y, z, 

p, w1…wm) feasible for (MixSD).  If for all feasible (x, u, y, z, wi…,wm), 

))()(()()(
0

i

Ii

T

ii

T wgyzf 


  is second-order pseudoinvex and 

))()(( i

Ii

T

ii wgy





,  = 1, 2, …, r is second-order quasi-invex with 

respect to the same , then  

inf (NP)  sup (Mix SD). 

Proof: Since x is feasible for (NP) and (x, y, z, w, … , wm) feasible for     

(Mix SD), we have, in view of x
T
wi  S(x│Di) where wiDi ,                          

i = 1,2,…,m and for  = 1, 2, … , r. 

     



 Ii

i

T

ii

Ii

ii wxxgySxgy )()Di¦x()(  

        pugypwuugy
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T

Ii

i

T

ii  )(
2

1
)(0 2














 

 

 

By second-order quasi-invexity of ))()(( i

Ii

T

ii wgy





,  = 1, 2, … , r, it 

follows that  

   0 )()(),( 2 










































 



pugywuugyux
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ii
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T

ii

T



 , =1,2,…,r 

Hence 

   .0 )()(),(
00

2 










































 



pugywuugyux
IMi

ii

IMi

i

T

ii

T  

Thus from (2.35), this yields   

    0 )()()()(),(
00

2 



























 



pugyufwuugyzuufux
Ii

ii

Ii

i

T

ii

TT  

Since  



0

)()()()(
Ii

i

T

ii

T wgyzf  is second-order pseudoinvex, this 

implies, 
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00

)()()()(
Ii

i

T

ii

T

Ii

i

T

ii

T wuugyzuufwxxgyzxxf  

      
0

21
, ,

2

T

i I

p f u y g u p


 
   

 
  

Since x
T
z  S(x|C) , x

T
wi  S(x|Di), i  I0 and gi(x) + S(x|Di)  0, 

together with y  0, for i  I0 , the above inequality gives,  

   



0

)()()/()(
Ii

i

T

ii

T wuugyzuufCxSxf  

   
0

21
( ) ( )

2

T

i i

i I

p f u y g u p


 
   

 
  

That is, 

Inf. (NP)  sup.(MixSD). 

Theorem 2.2.2 (Strong Duality): If x  is an optimal solution (NP) and 

Slater’s constraint qualification [67] is satisfied at x , then there exists 

mRy  with 1 2( , ,..., )my y y y , Cz  and i iw D , i = 1, 2, … , m such 

that 1 2( , , , , ,..., , 0)mx y z w w w p   is feasible for (MixSD) and the 

corresponding values of (NP) and (MixSD) are equal. 

 If also,  



0

)()()()(
Ii

i

T

ii

T wgyzf  is second-order pseudo-

invex for z  C and wi  Di , i  I0 and  



Ii

i

T

ii wgy )()(   for wi  Di,   

i  I,  = 1, 2, …, r is second-order quasi-invex with respect to the 

same , then 1 2( , , , , ,..., , 0)mx y z w w w p   is an optimal solution of        

(Mix SD). 

Proof: Since x  is an optimal solution to the problem (NP) and the 

Slater’s constraint qualification is satisfied at x , then from Theorem 

2.2.1, there exist mRy , Cz  and ii Dw  , i = 1, 2,… m such that 
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    0)()(
1

 
i

i

T

iii

T wxxgyzxxf  

     0)(
1


i

i

T

iii wxxgy  

                    )C/x(SzxT   

                 miDxSwx ii

T

i ,...,2,1),/(   

                   i,  w , 1,2, ,iz C D i m                                

  0y    

The relation   0)( 
Ii

i

T

iii wxxgy  implies   0)(
0


Ii

i

T

iii wxxgy  

and   0)( 
 Ii

i

T

iii wxxgy , 1,2,...,r   Consequently, it implies that 

1( , , , ,..., , 0)mx y z w w p   is feasible for (Mix SD) and the corresponding 

values of (NP) and (MixSD) are equal. If  



0

)()()()(
Ii

i

T

ii

T wgyzf  

is pseudoinvex, for all z  C and wi  Di , i = 1,2,…,m and 

 



Ii

i

T

ii wgy )()(  is second-order quasi-convex for i  I,   = 1,2,…,r, 

then from Theorem 2.2.1 )0,,...,,,,( 1 pwwzyx m  must be an optimal 

solution of (MixSD). 

We shall prove a Mangasarian type [68] strict converse duality 

theorem for (MixSD) to (NP). 

Theorem 2.2.3 (Strict Converse Duality): Let x  be an optimal solution 

of (NP) at which Slater’s constraint qualification is satisfied. If 

ˆ ˆ ˆ ˆˆ( , , , , )x y p z w  is an optimal solution of (MixSD), where  1
ˆ ˆ ˆ,..., mw w w   

and  



0

ˆ)()(ˆˆ)()(
Ii

i

T

ii

T wgyzf  is second-order strictly pseudoinvex 
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at x̂  and i  I0,   



Ii

i

T

ii wgy ˆ)()(ˆ ,  = 1, 2, …, r is second-order 

quasi-invex at x̂  with respect to the same , then x = x̂ , i.e. x̂  is an 

optimal solution of (NP). 

Proof: We shall assume that x̂  x  and exhibit a contradiction. Since 

x is an optimal solution of (NP) at which Slater’s qualification is 

satisfied, it follows from Theorem 2.2.1 that there exists mRy , ẑ C  

and ˆ
i iw D , i = 1, 2,…,m such that 1

ˆ ˆ ˆ ˆ ˆˆ( , , , ,..., , 0)mx y z w w p   is optimal for 

(MixSD). Hence  
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f x x z y g x x w


     

21
ˆ ˆ ˆ ˆ ˆ( ) ( )  
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p f x y g x p


 
   

 
                    (2.39) 

Since x  is feasible for (NP) and 1
ˆ ˆ ˆ ˆ ˆˆ( , , , ,..., , )  i Imx y z w w p   is feasible for 

(MixSD), we have,  

      21
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

2
i i i i i i i i

i I i I i I

y g x xw y g x xw p y g x p
    

 
      

 
    

By second-order quasi-invexity of  
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i

T

ii wgy ˆ)()(ˆ , this yields, 

    2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) 0T

i i i i i

i I i I

x x y g x xw y g x p
 


 

 
    

 
              (2.40) 

Because ˆ ˆ ˆ ˆˆ( , , , , )x y p z w  is feasible, we have , 

      2

1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( ) 0
m m

T

i i i i i

i i

f x x z y g x xw y g x p
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From this equation, it implies,  

      p̂ )ˆ(ˆˆˆ)ˆ(ˆ 2














 

  Ii

ii

Ii

iii xgywxxgy  

 =    
0 0

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( ) ( ) 0T

i i i i i

i I i I

f x x z y g x xw y g x p
 

  
         
   

   

Using this in (2.40), we obtain, 

   
0

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ( , ) ( ) ( ) ( )  0T T

i i i i i

i I i I

x x f x x z y g x xw y g x p



 

  
        
   

   

This, because of second-order strict pseudo-invexity of  

 ˆ( ) ( )i i i

i I

y g w


    implies,  

  
0

ˆ ˆˆ( ) ( )T T

i i i

i I

f x x z y g x x w


    



0

ˆˆ)ˆ(ˆˆˆ)ˆ(
Ii

i

T

ii

T wxxgyzxxf  

   
0

21
ˆ ˆ ˆ ˆ ˆ( ) ( )  

2

T

i i

i I

p f x y g x p


 
   

 
  

Since  ˆTx z S x C  and  ˆT

i ix w S x D , i = 1,2,…,m, this implies,  

                   
0

ˆ( ) ( )i i i

i I

f x S x C y g x S x D


    ≥ 

           
0

ˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( )T T

i i i

i I

f x x z y g x x w


  
0

21
ˆ ˆ ˆ ˆ ˆ( ) ( )  

2

T

i i

i I

p f x y g x p


 
   

 
             

(2.41) 

Since 0ˆ iy  and  ( ) 0i ig x S x D   for all i  {1,2,…,m}, hence 

iŷ    0)(  ii DxSxg ,  i  I0. Thus from the inequality (2.41), we 

have,  
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0

ˆˆ)ˆ(ˆˆˆ)ˆ()(
Ii

i

T

ii

T wxxgyzxxfCxSxf  

   
0

21
ˆ ˆ ˆ ˆ ˆ( ) ( )  

2

T

i i

i I

p f x y g x p


 
   

 
 . 

This ensues a contradiction to (2.39). Hence ˆ ,x x  i.e., x̂  is an 

optimal solution of (NP). 

Theorem 2.2.4 (Converse Duality): Let ( ),,, pwyx  be an optimal 

solution to (MixSD) at which  

(A1):  for all ,,...2,1 r  either 

a) The nn Hessian matrix  













 

 Ii

ii xgy2  is positive definite 

and    0


i

t

i

Ii

i

T wxxgyp


or 

b)  













 

 Ii

ii xgy2  is negative definite and 

   0


i

t

i

Ii

i

T wxxgyp


 

(A2):  the set of vectors  

               


































































 


j

Ii

ii

j
Ii

ii xgyxgyxf


22 ,
0

, nj ,...2,1 , ,,...2,1 r   

          are linearly independent. 

where    
j

Ii

ii xgyxf

























 

 0

2 is j
th

  row of the matrix 

   

























 

 Ii

ii xgyxf2  and  
j

Ii

ii xgy

























 

 

2  is j
th

  row of the 

matrix  

























 

 Ii

ii xgy2 . 

(A3): the vectors   











ii

Ii

i wxgy


, ,,...2,1 r  are linearly independent. 
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 If for all feasible (x,z,y,u,w1,w2,…wm,p), 

        i

T

i

Ii

i

T
wgyf  

 0

 is second-order pseudoinvex and 

    i

T

i

Ii

i wgy 
 

, ,,...2,1 r  is second-order quasi-invex with 

respect to same  , then x  is an optimal solution of the problem 

(NP). 

Proof: Since ( ),,,, pwyzx , where  mwwww ,..., 21  is an optimal solution 

of (MixSD), by generalized Fritz John necessary optimality conditions 

[68], there exists, ,0 R nR , ,R  ,,...2,1 r ,R and mR , such 

that 

          
 

     

2

0

2 2

1
( ) ( ( ) ) ( ) ( )

2

( ) ( ) ( ) ( )

o o

i i i i i

i I i I

T T

f x z y g x w p f x y g x p

f x y g x f x y g x p





 

    
            

     

     

 
 

            2

1

1
( ( ) ) ( ) 0

2

r
T

i i i i

i I i I

y g x w p y g x p
 





  

    
          

     
        

           (2.42) 

 2

0

1
( ) ( )

2

T T

i i ig x x w p g x p
 

   
 

 

             2

0( ) ( ) 0 ,T

i i i ig x w g x p i I                   (2.43) 

 21
( ) ( )

2

T T

i i ig x x w p g x p
 

   
 

 

                     2

0( ) ( ) 0 , , 1,2,....,T

i i i ig x w g x p i I r           

          (2.44) 

  
0

2

0 ( ) ( )
T

i

i I

p f x y g x 


   
     

   
  

              2

1

( ) 0

Tr

i i

i I

p y g x





 
 

  
    

  
                                   (2.45) 
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2

0

1
( ( ) ) ( ) 0 , , 1,2,....,

2

T

i i i i i

i I i I

y g x x w p y g x p i I r
 

 
 

  
      

  
                  

(2.46) 

 0 ( )cp N z                                                              (2.47) 

  0 0( ) ,
ii Dx y N w i I                                              (2.48) 

  0 ( ) , , 1,2,...,
ii Dx y N w i I r                           (2.49) 

 0T y                                                            (2.50) 

  0 1, ,... , 0r                                                                (2.51) 

  0 1, ,... , , 0r                                                                      (2.52) 

The relation (2.45), in view of assumption (A2) yields, 

 0 p ,       0,1,2,...r                                  (2.53) 

Multiplying (2.44) by Iiyi , , ,,...2,1 r  and summing with respect to 

Ii , ,,...2,1 r we get, 










 


pxgypwxxgy
Ii

iii

T

i

Ii

i



 )(
2

1
))(( 2  

rpxgywxgy i

Ii

iii

Ii

i

T ,....,2,1,0)()( 2 

























 






 

Using (2.46) ,we get, 

      2( ) ( ) 0 , 1,2,....,T

i i i i i

i I i I

y g x w y g x p r
 

 
 

   
       

   
   (2.54) 

By using the equality constraint of the dual in (2.42), we get, 

   




















































 



pxgyxfxgyxfp
Ii

iii

Ii

i

T

00

)()()( 22                                                                 

  2 2

1

( ) ( )

Tr

i i i i

i I i I

p y g x y g x p
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                        +








 


pxgywxxgy
IMi

iii

T

i

IMi

i

00

)())(( 2

0  

                               





































 



pxgyxfp
Ii

ii

T

0

)(
2

1 2

0  

                               +

























 



pxgywxxgy
Ii

iii

T

i

Ii

i

r







 )())(( 2

1

 

                               0)(
2

1 2

1







































 



pxgyp
Ii

ii

T
r







  

From (2.53), it implies, 

             

























 



pxgywxgy
Ii

iiii

Ii

i

r






)())(( 2

0

1

 

    
0 0

2 21
( ) ( ) 0

2

T

i i i i

i I i M I

f x y g x p y g x p
  

        
             

           
   

This implies,                 

              

























 



pxgywxgy
Ii

iiii

Ii

i

r






)())(( 2

0

1

                                                            

 +     0)()(
2

1 2  pxgyxf TT                  (2.55) 

 Assume that 0 , for all  r,...2,1,0 . Then 0 from (2.53), 

and from (2.44) ,0 Then   0,,,..., 10  r which contradicts the Fritz 

John condition (2.52).Thus there exists an  r,...2,1,0  such that 0 . 

The relation (2.53) can be rewritten as  

  00  p ,     0 p ,       1,2,...r   

Which implies,                        

   0 0p                      (2.56) 

We claim 0p Suppose that 0p , then (2.56) yields, 
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  r,...2,1,0                 

Consequently we have, 

                    p0               

Using this in (2.54), we obtain, 

                 0)()( 2

0 

























 



pxgywxgyp
Ii

iii

Ii

i



  

  2( ) ( ) 0i i i i

i I i I

p y g x w y g x p
  

   
       

   
             (2.57) 

From the assumption (A1) i.e. for ,,...2,1 r  

           0)( 


i

Ii

i wxgyp


 

           0)(2 













 



pxgyp i

Ii

i



,    

     0)()( 2 













 



pxgypwxgyp
Ii

ii

T

i

Ii

i



 

This is contradicted by (2.56). Hence  0p . 

Using 0p in (2.55),we have, 

  0))((0

1










 


ii

Ii

i

r

wxgy





  

By (A3), this implies,  

                    r,...2,1,00     

Since 0 , (2.43) and (2.44) implies, 

  00 ,0)( Iiwxxg ii

T

ii    

0

0

( ) 0 , ,T i
i ig x x w i I




      

 ( ) 0 , , 1,2,...,T

i i ig x x w i I r         

Comparing these, we have, 
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   0( ) 0 , , , 1,2,...,T i
i ig x x w i I i I r







               (2.58) 

From (2.48) and (2.49), we have, 

                  0, , , 0,1,2,...,T

i ix w S x D i I i I r      

The relation (2.58) along with this implies, 

                  ( ) 0, 1,2,...,i ig x S x D i m    

This shows that x is feasible for (NP) 

 Multiplying (2.58) by 0, Iiyi  ,and Iiyi , ,,...2,1 r and  adding 

and using 0yT , 

             
0

( ) 0i i

i I

y g x w x


                                                     (2.59) 

         ( ) 0i i

i I

y g x w x


                                                     (2.60) 

         

























 



pxgyxfpxwxgyzxxf
oIi

ii

TT

ii

Ii

i

T )()(
2

1
))(()( 2

0

 

                              =   zxxf T               (using 0p   and (2.59)) 

                              =  xf  CxS  ,         by (2.47) 

 If, for all feasible  pwwuzx m ,...,,, 1 ,         i

T

i

Ii

i

T
wgyf  

 0

 is 

second-order pseudoinvex and     i

T

i

Ii

i wgy 
 

, ,,...2,1 r  is second-

order quasi-invex for z  C and ii Dw  with respect to same  , by 

Theorem 2.2.1, then x  is an optimal solution of the problem (NP). 

2.2.2  Special Cases                                          

  If p = 0, the mixed type dual (MixSD) to the following to the 

following first order mixed type dual formulated in [51]. 
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(Mix SD): Maximize  



0

)()(
Ii

i

T

ii

T wuugyzuuf      

 Subject to 

     i

T

i

m

i

i

T wuugyzuuf  


)()(
1

 = 0              

                                     0)( 
 Ii

i

T

ii wuugy ,   =1,2,…,r.             

 y  0                                           

     z  C ,wi  Di ,  i = 1, 2,…,m.         

where  I  M = {1,2,…,m} ,  = 0, 1,2,…, r  with MI
r

i





0

  and 

  II  if   . 

As discussed in [31], we may write for positive semi definite 

matrix B,    2
1

BxxCxS T  by taking  1 ByyByC T . If the support 

function appearing in the constraints suppressed but the support 

function in the objective function of (NP) is retained and replaced 

by  2
1

BxxT , then we have the following pair of problems treated by 

Zhang and Mond [101] and re-examined Zhang and Yang for 

correcting the converse duality theorem proved in [102]. 

(P): Minimize    2

1

Bxxxf T  

 Subject to 

              ,0xg  

(SD): Maximize  zuugyuf T

Ii

ii 
 0

)()(   

    
0

21
( ) ( )

2

T

i i

i I

p f u y g u p


 
   

 
  

 Subject to 

                   zugyuf T  )(   0)()(2  pugyuf T              
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                   21
( ) ( ) 0

2

T T

i i i i i

i I i I

y g u u w p y g u p
  

 
    

 
  ,  =1,2,…,r, 

                        1zwT  

   y  0             

where I  M = {1,2,…,m} ,  = 0, 1,2,…, r  with MI
r

i





0

  and 

  II  if   . 
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CHAPTER 3 

 

 

SECOND-ORDER NON DIFFERENTIABLE 

MULTIOBJECTIVE SYMMETRIC DUALITY 

 

 

 

 

 

3.0  INTRODUCTORY REMARKS 

ollowing Dorn [41], first order symmetric and self duality results 

in mathematical programming have been derived by a number of 

authors, notably, Dantzig et al [38] Mond [71], Bazaraa and Goode [8], 

Mond and Weir [82]. Later Weir and Mond [97] discussed symmetric 

duality in multiobjective programming by using the concept proper 

efficiency. Chandra and Prasad [24] presented a pair of multiobjective 

programming problem by associating a vector valued infinite game to 

this pair. Gulati, Husain and Ahmed [46] also established duality 

results for multiobjective symmetric dual problem without non-

negativity constraints. 

Mond [70] was the first to study Wolfe type second-order 

symmetric duality bonvexity – boncavity. Subsequently, Bector and 

Chandra [10] established second-order symmetric and self duality 

results for a pair of non-linear programs under pseudobonvexity – 

pseudoboncavity condition. Devi [40] formulated a pair of second-

order symmetric dual programs and established corresponding duality 

results involving  -bonvex functions and Mishra [69] extended the 

F 
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results of [40] to multiobjective nonlinear programming. Recently, 

Suneja et al [92] presented a pair of Mond-Weir type multiobjective 

second-order symmetric and self dual program without nonnegativity 

constraint and proved various duality results under bonvexity and 

pseudobonvexity. 

This chapter consists of two sections 3.1 and 3.2.In section 3.1 a 

pair of Wolfe type second-order multiobjective nonlinear programming 

problems containing support functions is formulated and usual duality 

results are proved under convexity-concavity assumption on functions 

involved in its formulation. Self duality for this pair is also investigated 

under the additional condition on the kernel function. In section 3.2 a 

pair of Mond-Weir type symmetric dual is formulated in order to relax 

convexity-concavity to pseudoconvexity-pseudoconcavity. Self duality 

for this pair is studied under additional condition.Special cases is also 

generated. 

3.1  NONDIFFERENTIABLE MULTIOBJECTIVE 

SECOND-ORDER WOLFE TYPE SYMMETRIC 

DUAL PROGRAMS 

3.1.1  Second-Order Multiobjective Symmetric Duality 

In  this section, we consider a pair  of second-order Wolfe type  

non-differentiable  multiobjective  symmetric dual programs  

and validate weak, strong and converse duality theorems. 

We have taken the auxiliary vectors p and q same throughout the 

formulations of two problems because it seems more natural than 

different p’s and q’s in [92]. 

Consider the following two programs: 
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Primal Program:   

(SWP): Minimize  F  pzyx ,,,    1, , , , , , ,i k kF x y z p F x y z p   

 Subject to  

             0,,
1

2

22 


k

i

iiii pyxfzyxf                    (3.1) 

  kiDz ii ,,,, 21                                 (3.2)                

  0x                                   (3.3) 

                                    (3.4) 

and 

Dual Program: 

(SWD): Minimize G  qwvu ,,,    1 1, , , , , , ,k kG u v w q G u v w q    

 Subject to    

                     0,,
1

2

11 


k

i

iiii qvufwvuf                      (3.5) 

  kiCw ii ,,,, 21                              (3.6) 

  0v                               (3.7)                                        

                               (3.8)                                                            

where 

i.        pyxfpzyCxsyxfpzyxF i

T

i

T

iiii ,
2

1
|,,,, 2

2  

      



k

i

iiii

T pyxfzyxfy
1

2

22 ,,  

ii.        qvufqwuDvsvufqwvuG i

T

i

T

iiii ,|,,,
2

1
2

1
  

      2

1 1

1

, , ,
k

T

i i i i

i

u f u v w f u v q


     and 

iii. for each i,  | is x C  and  iDvs |  represent support functions  of 

compact  convex  sets  Ci and Di in nR  and mR , respectively. 
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iv.  Kwww ,1  with ii Cw  and   Kzzz ,1  for each                   

{i = 1,2,,k} 

v.  








 



k

i

iki

kR
1

10  ,,,|   

Theorem 3.1.1 (Weak Duality): Let  , , , ,x y z p satisfies the constraints 

of (SWD) of  qwvu ,,,,    satisfies the constraints of (SWD). If  for  

each  ki ,,, 21 ,   yf i .,   is  bonvex  at  x  for  fixed  y  and  ,.xf i     be  

boncave  at y  for  fixed  x  for feasible   , , , , , , , ,x y u v p q z w   then 

     , , , , , ,F x y z p G u v w q . 

Proof:  By bonvexity of  yf i .,  for fixed y at u, we have. 

                    2 2

1 1 1

1
, , , , ,

2

T T

i i i i if x v f u v x u f u v f u v q q f u v q                        

(3.9) 

and by  boncavity  of  ,.xf i   for fixed  x  at  v, we have, 

                  pyxfppyxfyxfyvyxfvxf i

T

ii

T

ii ,
2

1
,,,, 2

2

2

22                

(3.10)      

Multiplying (3.10) by (– 1) and adding the resulting the inequality to 

(3.9), we obtain, 

        







 pyxfyxfypyxfpyxf ii

T

i

T

i ,,,
2

1
, 2

22

2

2       

                    







 qvufvufuqvufqvuf ii

T

i

T

i ,,,
2

1
, 2

11

2

2     

                              pyxfyxfvqvufvufx ii

T

ii

T ,,,, 2

22

2

11  . 
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or 

        







 pyxfzyxfypyxfpzyyxf iii

T

i

T

i

T

i ,,,,
2

22

2

2
2

1
    

          2 2

1 1 1

1
, , , ,

2

T T T

i i i i i if u v u w q f u v q u f u v w f u v q
 

        
 

       

                     pyxfyxfvqvufvufx ii

T

ii

T ,,,, 2

22

2

11  . 

Multiplying this by 0i ,  ki ,, 21  and summing and using 1
1




k

i

i  

we have. 

           







 



k

i

iiii

T

i

T

i

T

i

k

i

i pyxfzyxfypyxfpzyyxf
1

2

22

2

2

1 2

1
,,,,                 

        2 2

1 1 1

1 1

1
, , , ,

2

k k
T T T

i i i i i i i i

i i

f u v u w q f u v q u f u v w f u v q 
 

 
        

 
            

         2 2

1 1 2 2

1 1

, , , , .
k k

T T

i i i i i i

i i

x f u v f u v q v f x y f x y p 
 

        

Using   (3.1) with (3.7) and (3.5) with (3.3), this inequality becomes 

            







 



k

i

iiii

T

i

T

i

T

i

k

i

i pyxfzyxfypyxfpzyyxf
1

2

22

2

2

1 2

1
,,,,   

    –         2 2

1 1 1

1 1

1
, , , ,

2

k k
T T T

i i i i i i i i

i i

f u v u w q f u v q u f u v w f u v q 
 

 
       

 
   

     i

T
k

i

ii

T
k

i

i zvwx 



11

  

Since –s   i

T

i wxCx |  for  ii Cw   and –s   i

T

i zvDv | , ,,,, ki 21  

therefore, this inequality reduces to 

          2 2

2 2 2

1 1

1
, | , , ,

2

k k
T T T

i i i i i i i i i

i i

f x y s x C y z p f x y p y f x y z f x y p 
 

 
        

 
 

          







 



k

i

iiii

T

i

T

i

T

ii

k

i

i qvufwvufuqvufqwuDvsvuf
1

2

11

2

1

1

,,,
2

1
|, 

i.e.,      qwvuGpzyxF ii

k

i

iii

k

i

i ,,,,,,
11
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or     qwvuGpzyxF TT ,,,,,,   . 

Thus, 

        , , , , , ,F x y z p G u v w q                                                  

Theorem 3.1.2 (Strong Duality): Let for each  ,,, ki 21 if   be thrice 

differentiable on nn RR  . Let   pzyx ,,,,    be properly efficient 

solution of (SWP); for   in (SWP) and assume that 

(A1):  the set       ,,,,,, 2

22

2

21

2

2 yxfyxfyxf k   is linearly independent. 

(A2):  the set    pyxfT ,2

22   is positive or negative definite. 

(A3):  the set         pyxfwyxfpyxfwyxf kkk ,,,,,, 2

221

2

2112         

is linearly independent. 

Then  0qwyx ,,,,   is feasible solution of (SWD) and 

F    qwyxGpzyx ,,,,,,   

 Moreover, if the hypotheses of Theorem 3.1.1 are satisfied for 

all feasible solution of (SWP) and (SWD), then  qwyx ,,,,    is properly 

efficient solution for (SWD). 

Proof: Since  pzyx ,,,,    is a properly efficient solution of (SWP), 

then it is also weak minimum. Hence there exist nR  with    

 k ,1 , mR , kR  and kR with   k ,1  and ,iC    

ki ,,, 21  such that the following Fritz John optimality conditions [68] 

are satisfied at  pzyx ,,,,  : 

        1 21

1 1

, ,
k k T

t

i i i i i

i i

f x y e y f x y    
 

        

                 2

1 2

1

,
2

Tk T
T i

i i

p
e y f x y p




   



 
     

 
     (3.11) 
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k

i

ii

TT

ii

k

i

T

i

T

i yxfpyezyxfe
1

2
2

2

1

,,   

                    +       0,
2

2

22

1













pyxf
p

ye i

k T

i
i

T




             (3.12) 

      0,2

2  yxfpye i

T

ii

T                                (3.13) 

                 kipyxfzyxfye iiii

TT ,,2,1,0,, 2

22    (3.14) 

      kizNyey iDi

TT

i i
,,2,1,                   (3.15)                   

      0,,
1

2

22 


k

i

iiii

T pyxfzyxf                (3.16) 

 0xT                           (3.17) 

 0T                           (3.18) 

    0,,,                            (3.19) 

   0 ,,,                           (3.20) 

Since   > 0  and 0,   (3.18) implies, .0  

In view of the assumption (A1), (3.13) yields, 

   ,pye ii

T     ki ,,2,1                                  (3.21) 

Using  (3.21) in (3.12), we have, 

         2

2 2

1

, ,
k

T

i i i i i

i

e f x y z f x y p  


     

           +       0,
2

1 2

22

1

 


pyxfye
k

i

i

TT                   (3.22)   

Post multiplying (3.22) by   yeT   and the using (3.14) with 0i , 

we obtain,  

         0,2

22

1

 


yepyxfye T

i

k

i

i

TT   

Which  because  of the  condition (A2) implies, 

   0 yeT                                             (3.23) 
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Using (3.23) in (3.22), we have,  

                           02

22

1




pyxfzyxfe iii

k

i

i

T

i ,,  

This, in view of   (A3), gives, 

  0 i

T

i e  .,,, ki 21                         (3.24) 

If 0i ,  ,,2 ,1 ki  then from (3.23) and (3.11)  imply 0 and 

0 , respectively. Consequently, we get    ,,,  = 0, contradicting 

(3.20). 

Hence 0i .  Then from (3.21) together with (3.23), we have, 

0p                                                (3.25) 

Using   (3.23)  and  (3.25) in (3.11),  we have, 

  



k

i

iii yxf
1

1 ,   

Which by (3.24) implies, 

    



k

i

iii

T yxfe
1

1 ,   

This with (3.17) and (3.19) respectively gives, 

  



k

i

iii yxf
1

1 0 ,  

Which, because of   (3.19) and (3.17) along respectively yields,    

  



k

i

iii yxf
1

1 0,                                                  (3.26) 

and 

  



k

i

iii

T yxfx
1

1 0 ,                                            (3.27) 
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From  (3.23),  we have, 

0y                                                                          (3.28) 

From (3.16), (3.27) and (3.28), we obtain  , , , , 0x y w q    

 0qyx ,,,,     

Where    ki  ,,   is  feasible  for  (SWD). From (3.16) together 

with (3.23)  

      



k

i

iiii

T pyxfzyxfy
1

2

22 0,,                          (3.29) 

From (3.15) along with (3.23) and 0i , it implies for each  

 ki ,,, 21  

   
iD iy N z    giving   ii

T Dyszy |        (3.30) 

From (3.16), (3.27), (3.29) and (3.30) along  with qwp  ,  it implies, 

for  each  ,,, ki 21  

         

     

    

2

2

2

2 2

1

1
, | ,

2

, ,

T T

i i i i

k
T

i i i i

i

f x y s x C y z p f x y p

y f x y z f x y p


   

   
 

                

     

    

2

1

2

2 1

1

1
, | ,

2

, ,

T T

i i i i

k
T

i i i i

i

f x y s y D x w q f x y q

x f x y w f x y q


    

   
 

for  each   ,,,, ki 21  

   qwyxGpzyxF iiii ,,,,,,                                             (3.31)                              

This implies, 

   qwyxGpzyxF ii ,,,,,,   



88 

 

That is, the objective values of (SWP)   and   (SWD) are equal. 

 Now, we shall show the proper efficiency of    qwyx ,,,,    for 

(SWD) by exhibiting a contradiction. If   qzyx ,,,   is not efficient for   

(SWD) such that. 

     ,,,,,,, 1 qwvuGqzyxG   

Which because  of  (3.31)  yields, 

     , , , , , ,i iG u v w q F x y z q     

This contradicts Theorem 3.1.1 

 If  pzyx ,,,  were improperly efficient solution of (SWD)


, then 

for some feasible   Zqwvu ,,,,    and some i  

   qzyxGqwvuG iiii ,,,,,,   

and  

          qzyxGqwvuGMqzyxGqwvuG ijjjiiii ,,,,,,,,,,,,   

For  any  M > 0  and all  j  satisfying. 

   .,,,,,, qwvuGqzyxG jjjj   

This means    qzyxGqwvuG iiii ,,,,,,   is finite for all ij  . Since ,oi   

for all   ki ,,, 21  

     qzyxGqwvuG iiiiii ,,,,,,    

      qzyxGqwvuG i

k

ij

jjj

k

ij

jj ,,,,,,
11




   

i.e., 

     qzyxGqwvuG i

k

i

iii

k

i

ii ,,,,,,
11
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This along with (3.31) implies, 

      pzyxFqwvuG i

k

i

iii

k

i

ii ,,,,,,
11




   

i.e.,  

     pzyxFqwvuG i

TT ,,,,,,    

This again leads to a contradiction to Theorem 3.1.1.Hence the 

theorem is fully validated.                 

Theorem 3.1.3 (Converse Duality): Let for each  ki ,,, 21 , if  be 

thrice differentiable on nn RR  . Let   qwzyx ,,,,   be a proper efficient 

solution of (SWD); fix       in (SWP) and assume that 

(C1):  the set     2 2

1 1, , , ,i kf x y f x y   is linearly independent. 

(C2):  the matrix     qyxfT
,2

11   is positive or negative definite, and  

(C3): the set         qyxfwyxfqyxfwyxf kkki ,,,,,, 2

111

2

111    is 

linearly independent. 

Then   0pzyx ,,,,    is feasible solution of   (SWP) and  

   .,,,,,,,, qwvuGpzyxF    

 Moreover, if the hypotheses of theorem are satisfied for all 

feasible of (SWP) and (SWD).Then   pzyx ,,,,   is a properly efficient 

solution of (SWP).  

Proof: It follows exactly on the lines of Theorem 3.1.2.                                                                             

3.1.2 Second-Order Multiobjective Self Duality 

 A mathematical   program  is said to be  self  dual, if  it is  

formally  identical  with  its  dual,  that is, if  the dual  is  recast  in the 
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form  of the  primal.  The new program so retained is the same as the 

primal. In general the programs (SWP) and (SWD) are not self dual   

without an added restriction on  yxf i ,   with nRx  and nRy    for   

 .,,, ki 21  

 We describe (SWP) and (SWD) as the dual programs if the 

conclusions of Theorem 3.1.2 holds. 

Theorem 3.1.4 (Self Duality): If the kernel  yxf i ,  with    

RRRf nn

i :  for ki ,,, 21  is skew symmetric and ii DC   for all  

 .,,, ki 21 ,   then  (SWP) is self  dual  and   pzyx ,,,,    is a joint  

properly  efficient  solution  then  so is   pzyx ,,,,   and  

   qwyxGpzyxF ,,,,,,,   

Proof: Rewriting the dual program in primal form, we have 

(SWP-1): Minimize  – G       qwyxGqwyxGqwyx kki ,,,,,,,,,,      

 Subject  to   

       0,,
1

2

11 


k

i

iiii qyxfwyxf  

  0y  

    
  kiCw ii ,2,1,   

Where 

       1

1
, , , , | ,

2

T T

i i i iG x y w q f x y x w s y D q f x y q        

       



k

i

iiii

T qyxfwyxfx
1

2

11 ,,  

Since each if  is a skew symmetric,      yxfxyfyxf iii ,,,, 2

121   

 xyfi ,2

2  for all  ,,,, ki 21  and nRk   and nRy . Hence the dual 

program  (SWD – 1) can be   written as 

(SWD-1): Minimize        qwxyGqwxyGqwxyG ki ,,,,,,,,,,   
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 Subject to   

                       



k

i

iiii qxyfzxyf
1

2

22 0,,  

  0y  

  ii Cz   

    

Where  

         qxyfqzyCysxyfqwxyG i

T

i

T

iii ,
2

1
|,,,, 2

2  

       



k

i

iiii

T qxyfzxyfx
1

2

22 ,,  

This show that the program (SWP – 1) is just the primal program 

(SWP). 

 Thus  qwyx ,,,,   optimal for (SWP) implies  qwxy ,,,,    

optimal for (SWD).By an analogous argument,  , , , ,x y z p optimal for 

(SWP) implies  pzxy ,,,,    optimal for (SWD). 

 If (SWP) and (SWD) are dual program and  pzyx ,,,,   is jointly 

optimal,  

Then 

      



k

i

iiii

T qyxfwyxfx
1

2

110 ,,  

      



k

i

iiii

T pyxfzyxfy
1

2

22 ,,  

and    .0 qp  

The objective values of the programs (SWP) and (SWD) 

at  pzyx ,,,,  , 

        .,,2,1,,,,,,,, kiyxfqwyxGpzyxF iiii               (3.32) 
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Since   pzxy ,,,,    is also a joint optimal solution, one can 

similarly show that  

    



k

i

iii

TT pxyfzxyfy
1

2

111 ,,0   

         2

2 2

1

, ,
k

T

i i i i

i

x f y x w f y x q


     

and   .0 qp  

The objective value of (SWP) and (SWD) at  pzxy ,,,,   

becomes 

      .,,2,1,,,,,,,, kixyfqwxyGpzxyF iiiii               (3.33)  

From  (3.32) and (3.33), it implies for each   ,,,, ki 21  

   pzxyGpzyxF iiii ,,,,,,  =      yxfxyfyxf iii ,,,   

Therefore, 

      .,,,,,,,, kiyxfpzyxF iii 210   

This implies, 

    0pzyxFi ,,,                                                  

3.2 NONDIFFERENTIABLE MULTIOBJECTIVE 

SECOND-ORDER MOND-WEIR TYPE SYMMETRIC 

DUAL PROGRAMS 

3.2.1  Second-Order Multiobjective Symmetric Duality 

   Consider the following pair of nondifferentiable second-order 

symmetric dual programs: 

(SVP): Minimize 1( , , , ) ( ( , , , ),..., ( , , , ))k kF x y z p F x y z p F x y z p  

 Subject to  

   2

2 2

1

( , ) ( , ) 0,
k

i i i i

i

f x y z f x y p


       (3.34) 
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        2

2 2

1

( , ) ( , ) 0,
k

T

i i i i

i

y f x y z f x y p


       (3.35) 

  0  ,         (3.36) 

  0, , 1,2,...,i ix z D i k         (3.37) 

and 

(SVD): Maximize 
1 1( , , , ) ( ( , , , ),..., ( , , , ))k kG u v w q G u v w q G u v w q  

 Subject to   

   2

1 1

1

( , ) ( , ) 0,
k

i i i i

i

f u v w f u v q


        (3.38) 

        2

1 1

1

( , ) ( , ) 0,
k

T

i i i i

i

u f u v w f u v q


        (3.39)  

  0  ,         (3.40) 

  0, , 1,2,..., .i iv w C i k         (3.41) 

where  

(i) 2

2

1
( , , , ) ( , ) ( | ) ( , )

2

T T

i i i i i iF x y z p f x y s x C y z p f x y p    

2

1

1
( , , , ) ( , ) ( | ) ( , )

2

T T

i i i i i iG u v w q f u v s v D u w q f u v q      

(ii) 1( ,..., )kw w w  with i iw C  for {1,2,..., }i k , 1( ,..., )kz z z  

with i iz D  for {1,2,..., }i k , and 
1( ,..., )T

k    with i R   

for {1,2,..., }i k ; and 

(iii) for each {1,2,..., }i k , ( | )is x C  and ( | )is y D represent     

support functions of compact  convex set iC  in nR  and 

compact convex set iD  in mR , respectively. 

It is to be remarked here that unlike the formulation of the 

Mond-Weir type second-order symmetric dual programs in [92], here 

we have chosen for each {1,2,..., }i k , m

ip p R   and n

iq q R   as this 
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choice seems to be in conformity with the analysis for identification of 

second-order dual in nonlinear programming by Mangasarian [66]. 

Theorem 3.2.1 (Weak Duality): For feasible solutions ( , , , , )x y z p  and 

( , , , , )u v w q  for the programs (SVP) and (SVD), let 
1

( ( , ) ( ) )
k

T

i i i

i

f y w


   , 

for each 
i iw C , {1,2,..., }i k  be pseudobonvex at u for fixed y and 

1

( ( , ) ( ) )
k

T

i i i

i

f x z


   , for each i iz D , {1,2,..., }i k  be pseudoboncave at y. 

Then 

( , , , , ) ( , , , , )F x y z p G u v w q  . 

Proof: By multiplying (3.38) by Tx  and subtracting (3.39), we have 

 2

1 1

1

( ) ( , ) ( , ) 0
k

T

i i i i

i

x u f u v w f u v q


     . 

This, because of pseudobonvexity of  
1

( , ) ( )
k

T

i i i

i

f y w


   , implies 

  2

1

1

1
( , ) ( , ) ( , ) 0

2

k
T T T

i i i i i i

i

f x v x w f u v u w q f u v q


 
      

 
 .  

  (3.42) 

From (3.34), (3.35) and 0v  , we have, 

   2

2 2

1

( ) ( , ) ( , ) 0
k

T

i i

i

v y f x y z f x y p


     . 

By pseudoboncavity of  
1

( , ) ( )
k

T

i i i

i

f x z


   , from this we get, 

2

2

1

1
( , ) ( , ) ( , ) 0

2

k
T T T

i i i i i i

i

f x v v z f x y y z p f x y p


 
       
 

 .       

  (3.43) 

On adding (3.42) and (3.43), we have 

2

2

1

1
( , ) ( , )

2

k
T T T

i i i i i

i

f x y x w y z p f x y p


 
    

 
  

2

1

1

1
( , ) ( , ) 0

2

k
T T T

i i i i i

i

f u v u w v z q f u v q


 
      

 
 . 
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Since for each i iw C , ( | )T

i ix w s x C  and each 
i iz D , 

( | )T

i iv z s v D , the above inequality gives, 

2

2

1

1
( , ) ( | ) ( , )

2

k
T T

i i i i i

i

f x y s x C y z p f x y p


 
    

 
  

2

1

1

1
( , ) ( | ) ( , )

2

k
T T

i i i i i

i

f u v s v D u w q f u v q


 
     

 
  

or 

1 1

( , , , ) ( , , , )
k k

i i i i i i

i i

F x y z p G u v w q 
 

   

That is, 

  ( , , , ) ( , , , )F x y z p G u v w q  

This implies 

  ( , , , ) ( , , , )F x y z p G u v w q .       

Theorem 3.2.2 (Strong Duality): Let , ( 1,2,..., )if i k  be thrice 

differentiable on n mR R . Let ( , , , , )x y z p  be a properly efficient 

solution of (SVP); fix    in (SVD) and assume that 

            (H1):  The set 2 2

2 1 2{ ,..., }kf f   is linearly independent, 

            (H2):   
2

2 2( ( ) )T f p   is positive or negative definite, and, 

            (H3):  The set 2 2

2 1 2 1 2 2{ ,..., }k k kf z f p f z f p       is linearly 

independent. 

Then ( , , , , 0)x y w q   is feasible for (SVD) and  ( , , , , )F x y z p   

( , , , , )G x y w q . 

 Moreover, if the hypotheses of Theorem 3.2.1 are satisfied for 

all feasible solutions of (SVP) and (SVD), then ( , , , , )x y w q  is a 

properly efficient solution of (SVD). 
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Proof: Since ( , , , , )x y z p  is a properly efficient solution of (SVP), it is 

weak minimum of (SVP). Hence there exists nR , mR  , kR , 

kR , kR   and n

i R  , ( 1,2,..., )i k  such that the following Fritz 

John optimality condition [68] are satisfied at ( , , , , )x y z p , 

(suppressing the arguments): 

  2

1 1 2

1 1

( ) ( )
k k

T

i i i i i

i i

f y f    
 

        

         2

1 1

1

( ) ( )
2

Tk
i

i i

i

p
y f p


   



 
      

 
                   (3.44) 

 2

2 2

1 1

( )( ) ( )
k k

i i i i i

i i

f z y p f     
 

         

            2

2 2

1

( ) ( ) 0
2

Tk
i

i i

i

p
y f p


  



 
      

 
     (3.45) 

    2

2

1

{( ) } 0
k

T

i i i

i

y p f   


                                       (3.46) 

 2

2 2( ) { } 0T

i i i iy f z f p                                       (3.47) 

11 1( ) ( ), 1,2,..., ,D iy y N z i k                                  (3.48) 

   , ( | ), 1,2,..., ,T

i i i iC x s x C i k                                     (3.49) 

    2

1 2 2

1

( ) 0,
k

T

i i i

k

f z f p 


                                     (3.50) 

              2

1 2 2

1

( ) 0,
k

T

i i i

k

y f z f p 


                                     (3.51)   

 0T   ,                                 (3.52) 

 0T x  ,                      (3.53) 

 ( , , , , ) 0      ,                                   (3.54) 

 ( , , , , ) 0                          (3.55) 
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Since 0  , from (3.52), it follows that 0  . Consequently, 

from (3.47), we obtain, 

        2

2 2( ) ( ) 0T

i i iy f z f p                               (3.56) 

In view of (H1), (3.46) yields, 

  ( ) , 1,2,..., .i iy p i k                            (3.57) 

Using (3.57) in (3.45), we have, 

   2 2

2 2 2 2

1 1

1
( ) ( ) ( )( ) 0

2

k k

i i i i i i i

i i

f z f p f p y    
 

                    

(3.58) 

Pre-multiplying (3.58) by ( )Ty   and then using (3.56), we get, 

  2 2( ) ( ( ) ( ) 0T Ty f p y         . 

In view of (H3), this yields, 

0y   .       (3.59) 

Using (3.59) in (3.58), we obtain, 

2

1 2 2

1

( )( ) 0
k

i i i i

i

f z f p 


                    

 This, because of (H3), implies, 

  0, 1,2,...,i i i k    .     (3.60) 

If 0  , from (3.44), (3.59) and (3.60), we have 0  , 0   and 

0   respectively. Hence ( , , , , ) 0      , contradicting (3.55). Thus 

0   and from (3.60), it implies 0i  , ( 1,2,..., )i k . From (3.57) along 

with (3.59), we have 0p  . Consequently from (3.44) together with 

(3.59) and (3.54), we obtain, 

 1

1

( , )
k

i i i

i

f x y  
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By (3.60), it implies, 

 1

1

( , )
k

i i i

i

f x y   


    

Which from (3.53) and (3.54) along implies, 

 1

1

( , ) 0
k

i ii
i

f x y 


                                             (3.61) 

and   

 1

1

( , ) 0
k

T

i i i

i

x f x y 


                          (3.62) 

From (3.49) and (3.59) respectively we have, 

                     , 1,2,..., , 0i iw C i k y                                (3.63) 

From (3.62) and (3.63), it from that ( , , , , 0)x y w q  = ( , , , , 0)x y q    

where  1( ,..., )k    is feasible for (SVD). 

From (3.48) along with (3.59) and 0i  , it implies ( )
iD iy N z , 

{1,2,..., }i k ;  

and this gives, 

                    ( | ), {1,2,..., }T

i iy z s y D i k                          (3.64) 

Now, using (3.50), (3.62) and (3.64) along with p w q  , we have 

2

2

1
( , ) ( | ) ( , )

2

T T

i i i if x y s x C y z p f x y p     

   2

1

1
( , ) ( | ) ( , )

2

T T

i i i if x y s y D x w q f x y q       

for   {1,2,..., }i k  

or 

( , , , ) ( , , , )i i i iF x y z p G x y w q  for each {1,2,..., }i k  

This implies  

( , , , ) ( , , , )F x y z p G x y w q  for each {1,2,..., }i k           (3.65) 
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 We claim that ( , , , )x y w q  is efficient for (SVD). If this would not 

be the case, then there would exist a feasible solution ( , , , , )u v w q  of 

(SVD) such that 

( , , , ) ( , , , )G x y w q G u v w q , 

Which by (3.65) gives 

( , , , ) ( , , , )F x y z p G u v w q  

This is a contradiction to Theorem 3.2.1. 

 If ( , , , )x y w q  were improperly efficient for (SVD), then for some 

feasible ( , , , , )u v w q  of (SVD) and some i 

  

2

1

2

1

1
( , ) ( | ) ( , )

2

1
( , ) ( | ) ( , ) ,

2

T T

i i i i

T T

i i i i

f u v s v D u w q f x y q

f x y s y D x w q f x y q M

 
    

 

 
      
 

 

for any 0M  . Using (3.65), we have, 

  

2

1

2

2

1
( , ) ( | ) ( , )

2

1
( , ) ( | ) ( , ) .

2

T T

i i i i

T T

i i i i

f u v s v D u w q f u v q

f x y s x C y z p f x y p M

 
    

 

 
      
 

 

i.e. 

( , , , ) ( , , , )i i i iG u v w q F x y z p M   

and for any 0  , this yields, 

1 1

( , , , ) ( , , , )
k k

i i i i i i

i i

G u v w q F x y z p 
 

   

i.e., 

( , , , ) ( , , , )T T

i iG u v w q F x y z p  . 

This again contradicts Theorem 3.2.1.      
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Theorem 3.2.3 (Converse Duality): Let 
if  for {1,2,..., }i k  be thrice 

differentiable on n nR R . Let ( , , , , )x y w q  be properly efficient of 

(SVD); fix    in (SVP) and assume that  

(C1):  the set 2 2

1 1 1{ ,..., }kf f   is linearly independent 

(C2):  the set 2 2 2 2

1 1 1 1 1 1{ ,..., }i k k kf w f q f w f q       is linearly 

independent, and 

(C3):  2

1 1( ( ) )T f q   is positive or negative definite. 

Then ( , , , , 0)x y z p   is feasible of (SVP), and 

( , , , , ) ( , , , , )F x y z p G x y w q  . 

Moreover, if the hypotheses of Theorem 3.2.1 are satisfied for 

all feasible solution of (SVP) and (SVD), then ( , , , , )x y z p   is a 

properly efficient of (SVP). 

Proof: It follows on the lines of Theorem 3.2.2.   

3.2.2 Second-Order Multiobjective Self Duality 

       In this section, we now prove the following self duality theorem 

for the primal (SVP) and the dual (SVD). We describe (SVP) and 

(SVD) as the dual programs if the conclusions of Theorem 3.2.2 hold. 

Theorem 3.2.4 (Self Duality): Let for {1,2,..., }i k , if  be skew 

symmetric and i iC D . Then (SVP) is self dual. If also (SVP) and 

(SVD) are dual programs, and ( , , , , )x y z p  is a joint optimal solution, 

then so is ( , , , , )y x z p  and 

  ( , , , ) 0F x y z p  . 

Proof: Recasting the dual (SVD) as a minimization program, we have 
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 Minimize  2

1 1 1 1

1
( , ) ( | ) ( , ),...

2

T T

if x y s y D x w q f x y

    


 

    2

1

1
( , ) ( | ) ( , )

2

T T

k k k kf x y s y D x w q f x y q


     

 

 Subject to  

  2

1 1

1

( ( , ) ( , ) ) 0
k

i i i i

i

f x y w f x y q


      

  2

1 1

1

( ( , ) ( , ) ) 0
k

T

i i i i

i

x f x y w f x y q


      

  0, , 1,2,...,i iw C i k    , 

  0y  . 

Since if  is skew symmetric, therefore, for each {1,2,..., }i k , 

( , ) ( , )i if x y f y x  , 1 2( , ) ( , )i if x y f y x    and 2 2

1 2( , ) ( , )i if x y f y x   . 

Therefore, the above program become, 

 Minimize  2

1 1 1 1

1
( , ) ( | ) ( , ),...

2

T T

if y x s y D x w q f y x


   


 

    2

1

1
( , ) ( | ) ( , )

2

T T

k k k kf y x s y D x w q f y x q


     


 

 Subject to  

  2

2 2

1

( ( , ) ( , ) ) 0
k

i i i i

i

f y x w f y x q


     

  2

2 2

1

( ( , ) ( , ) ) 0
k

T

i i i i

i

x f y x w f y x q


     

  0, , 1,2,...,i iw D i k    , 

  0y  . 

This is just (SVP).Thus ( , , , , )x y z q  optimal for (SVP) implies 

( , , , , )y x z q  optimal for (SVD).By a similar argument, ( , , , , )x y z p   

optimal for (SVP) implies ( , , , , )y x z p  optimal for (SVD). 

 If (SVP) and (SVD) are dual programs and ( , , , , )x y z p  is jointly 

optimal, then by Theorem 3.2.2, we have for each {1,2,..., }i k ,  
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( | ) ( | )T T

i i i is x C y z s y D x w      and   0p q  .  (3.66) 

For joint optimal solution ( , , , , )x y z p , we have for each 

{1,2,..., }i k  

2

2

1
( , , , , ) ( , ) ( | ) ( , )

2

T T

i i i i i iF x y z p f x y s x C y z p f x y p       

 2

1

1
( , ) ( | ) ( , )

2

T T

i i i if x y s y D x w q f x y q      

 ( , , , , )i iG x y w q . 

This, in view of (3.66) yields, 

  ( , , , , ) ( , , , , ) ( , )i i i i iF x y z p G x y w q f x y    for {1,2,..., }i k .      

(3.67) 

Since ( , , , , )iy x z p  is also a joint optimal solution, one can show, 

in a similar manner, that 

  ( , , , , ) ( , ) ( , , , , )i i i i iF x y z p f y x G y x w q    for {1,2,..., }i k .     

(3.68) 

From (3.67) and (3.68), we have, 

( , , , , ) ( , ) ( , ) ( , )i i i i iF x y z p f x y f y x f x y       for  {1,2,..., }i k . 

Therefore, for each {1,2,..., }i k . 

( , , , , ) 0i iF x y z p   for each {1,2,..., }i k . 

That is, 

  ( , , , , ) 0F x y z p  .  

3.2.3 Special Cases 

       If we choose {0}iC   and {0}iD   for each {1,2,..., }i k  and ip  

corresponding to each if  instead of having ip p , for each {1,2,..., }i k  

in the primal (SVP) and iq  corresponding to each if  in the dual (SVD) 

instead of having iq q  for each {1,2,..., }i k , then these programs 
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reduce to the following programs without non-negativity constraints, 

studied by Suneja et al [92]: 

Primal (SVP): Minimize 1( , , ) ( ( , , ),..., ( , , ))k kF x y p F x y p F x y p  

 Subject to  

  2

2 2

1

( ( , ) ( , ) ) 0
k

i i i i

i

f x y f x y p


    

  2

2 2

1

( ( , ) ( , ) ) 0
k

T

i i i i

i

y f x y f x y p


    

   0    

and 

Dual (SVD): Maximize 1 1( , , ) ( ( , , ),..., ( , , ))k kG u v q G u v q G u v q  

 Subject to    

                           2

1 1

1

( ( , ) ( , ) ) 0
k

i i i i

i

f u v f u v q


    

  2

1 1

1

( ( , ) ( , ) ) 0
k

T

i i i i

i

u f u v f u v q


    

   0    

where for each {1,2,..., }i k  

  2

1
( , , ) ( , ) ( , )

2

T

i i i i i iF x y p f x y p f x y p   , 

  1

1
( , , ) ( , ) ( , )

2

T

i i i i i iG u v q f u v q f u v q   ,   

where 1( ,..., )kp p p , m

ip R  and 1( ,..., )kq q q  with n

iq R , 1( ,..., )T

k    

with i R  . 

 If only 0p q  , then our programs reduce to the following pair 

of first order Mond-Weir type symmetric dual programs. 
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Primal (VP):  Minimize 1 1( , , ) ( ( , , ),..., ( , , ))k kF x y z F x y z F x y z  

 Subject to  

                         2

2

1

( ( , ) ) 0
k

i i i

i

f x y z


    

  2

2

1

( ( , ) ) 0
k

T

i i i

i

y f x y z


    

  0, 0x    

  , 1,2,...,i iz D i k  , 

and  

Dual (VD):  Maximize  1 1( , , ) ( ( , , ),..., ( , , ))k kG u v w G u v w G u v w  

 Subject to  

                         2

1

1

( ( , ) ) 0
k

i i i

i

f u v w


    

  2

1

1

( ( , ) ) 0
k

T

i i i

i

u f u v w


    

  0, 0y    

  , 1,2,...,i iw C i k   

where  

  ( , , ) ( , ) ( | ) z

i i i i iF x y z f x y s x C y z    

and 

  ( , , ) ( , ) ( | ) T

i i i i iG u v w f u v s v C u w   . 

For these programs, the duality and self duality results easily follow. 
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CHAPTER 4 

 

SECOND-ORDER SYMMETRIC AND MAXMIN SYMMETRIC 

DUALITY WITH CONE CONSTRAINTS 

4.1 INTRODUCTORY REMARKS 

ond [70] initiated second-order symmetric duality of Wolfe 

type in nonlinear programming and also indicated possible 

computational advantages of second-order dual over the first order 

dual. Later, Bector and Chandra [10] presented a pair of Mond-Weir 

type second-order dual programs and proved weak, strong and self 

duality theorems under pseudobonvexity – pseudoboncarity. Devi [40] 

constructed a pair of second-order symmetric dual programs over 

cones and studied duality for the same; but this formulation of second-

order symmetric dual programs seems quite strange and apparently 

different from the traditional Wolfe type second-order symmetric dual 

programs of Mond [70] as well as Mond-Weir type second-order 

symmetric dual programs formulated by Bector and Chandra [10]. 

 In [5] Balas presented a pair of Wolfe type first order minimax 

mixed integer symmetric dual programs as a generalization of the 

results of Dantzig et al. [38], while Kumar [63] and Husian and 

Chandra [21] dealt with Mond-Weir type first order maximin mixed 

integer symmetric dual programs. Later, Gulati and Ahmed [47] 

formulated second-order maximin mixed integer symmetric dual 

M 
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programs and proved various duality theorems including self duality 

theorem. 

 In this chapter, we formulate Wolfe type second-order dual 

programs with cone constraints and prove weak, strong, converse and 

self duality theorems under bonvexity – boncavity condition. Further, 

we generalize these Wolfe type dual programs to maximin second-

order dual programs by constraining some of the components of the 

two variables of the programs belong to arbitrary sets of integers of 

these programs also, symmetric as well as self duality is incorporated. 

Particular cases are generated from our results. 

4.2  Pre-requisites 

 For the results in this chapter, we shall require the Fritz John 

type necessary optimality conditions derived by Bazaraa and Goode [8] 

and which are embodied in the following proposition. 

Proposition 4.1: Let X be a convex set with nonempty interior in nR  

and C be a closed convex cone in mR . Let F be real valued function and 

G be a vector valued function, both defined on X. 

Consider the problem: 

(P0): Minimize ( )F z  

 Subject to  

( )G z C  and z X  

If z solves the problem (P0), then there exist 0 R   and *C   

such that 

 0 0 0 0[ ( ) ( )] ( ) 0T TF z G z z z      for all z X , 

 0( ) 0TG z  , 
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0( , ) 0   , 

 
0( , ) 0   . 

 The following concept of separability (Balas [5]) is also needed 

in the subsequent analysis of this research. 

Definition 4.3: Let 1 2, ,..., ps s s  be elements of an elementary vector 

space. A real valued function 1 2

0( , ,..., )pH s s s  will be called separable 

with respect to 1s  if there exist real-valued function 1

1( )H s  (independent 

of 2,..., )ps s and 2

2( ,..., )pH s s  (independent of 1)s , such that 

1 2 1 2

0 1 2( , ,..., ) ( ) ( ,..., )p pH s s s H s H s s  . 

4.3  Formulation of the Problems 

In this section, we formulate a pair of second-order symmetric 

dual nonlinear programs with cone constraints and establish appropriate 

duality theorems. 

Consider the following two programs: 

Primal Problem 

(SP): Minimize  2( , , ) ( , ) ( ( , ) ( , ) )T

y yG x y p f x y y f x y f x y p     

    21
( , )

2

T

yp f x y p   

 Subject to  

  2 *

2( , ) ( , )y yf x y f x y p C      (4.1) 

  1 2( , )x y C C       (4.2) 

    

and 
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Dual Problem 

(SD):  Maximize          qyxfyxfxyxfqyxH xx

T ,,,,, 2  

    21
( , )

2

T

xq f x y q   

        Subject to  

  2 *

1( , ) ( , )x xf x y f x y q C       (4.3) 

              1 2( , )x y C C       (4.4)  

where  

(i) 1 2:f C C R   is a twice differentiable function, 

(ii) 
1C  and 2C  are closed convex cones with nonempty interior in 

nR  and mR , respectively; 

(iii) *

1C  and *

2C  are positive polar cones of 1C  and 2C  respectively. 

Theorem 4.1 (Weak Duality): Let ( , , )x y p  and ( , , )u v q  be feasible 

solutions of (SP) and (SD) respectively. Assume that ( , )f y  is bonvex 

with respect to x for fixed y and ( , )f x   is boncave with respect to y for 

fixed x for all feasible ( , , , , , )x y p u v q .  

Then 

inf.(SP) ≥ sup.(SD). 

Proof: By bonvexity of ( , )f y , we have, 

 2 21
( , ) ( , ) ( ) [ ( , ) ( , ) ] ( , )

2

T T

x x xf x v f u v x u f u v f u v q q f u v q         

(4.5)  

and by boncavity of ( , )f x  , we have, 

     2 21
( , ) ( , ) ( ) [ ( , ) ( , ) ] ( , )

2

T T

y y yf x v f x y v y f x y f x y p p f x y p           

(4.6)         
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Multiplying (4.6) by (–1) and adding the resulting inequality to (4.5), 

we obtain, 

 2 21
( , ) ( , ) ( , ) ( , )

2

T T

y y yf x v y f x y f x y p p f x y p
 

      
 

 2 21
( , ) ( , ) ( , ) ( , )

2

T T

x x xf u v u f u v f u v q q f u v q
 

       
 

   2 2( , ) ( , ) ( , ) ( , )T T

x x y yx f u v f u v q v f x y f x y p            . 

(4.7) 

Now since 1x C  and 2 *

1( , ) ( , )x xf u v f u v q C   , we have, 

           2( , ) ( , ) 0T

x xx f u v f u v q     .       (4.8) 

and since 2v C  and 2 *

2[ ( , ) ( , )]y yf x y f x y C    , we have, 

           2[ ( , ) ( , ) ] 0T

y yv f x y f x y p    .       (4.9) 

The inequality (4.7) together with (4.8) and (4.9), yields, 

  

2 2

2 2

1
( , ) [ ( , ) ( , ) ] ( , )

2

1
( , ) [ ( , ) ( , ) ] ( , )

2

T T

y y y

T T

x x x

f x y y f x y f x y p p f x y p

f u v u f u v f u v q q f u v q

    

     

 

This implies, 

inf.(SP) ≥ sup.(SD). 

Theorem 4.2 (Strong Duality): Let ( , , )x y p  be an optimal solution of 

(SP).Also let 

(A1): the matrix 2 ( , )y f x y  is non singular, and 

(A2):  
2( ( , ) )y y f x y p   be negative definite. 

Then ( , , 0)x y q   is feasible for (SD) and the objective values of 

the programs (SP) and (SD) are equal. Moreover, if the requirements of 

Theorem 4.1 are fulfilled, then ( , , )x y q  is an optimal solution of (SD). 
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Proof: We use Proposition 4.1 to prove this theorem. Here ( , , )z x y p , 

( , , )z x y p , 1x C , mp R  and 2y C   

            pyxfppyxfyxfyyxfzF y

T

yy

T ,
2

1
,,, 22   

               zG    pyxfyxf yy ,, 2  and  *

2C C  

Since ( , , )x y p  is an optimal solution of (SP), by Proposition 4.1, 

there exist R  and *

2C   such that 

          2, , ,
2

x x y x y

p
f x y y f x y y f x y p x x


    
  
            

  
 

         2 2, , 0
2

y x y

p
y p f x y y f x y p y y


    

  
            

  
 

(4.10)                

        yxfpy y ,2  = 0                (4.11)   

  2( , ) ( , ) 0T

y yf x y f x y p      ,      (4.12)         

  ( , ) 0   ,         (4.13) 

  ( , ) 0   .                  (4.14)   

The relation (4.11), in view of the hypothesis (A1), gives, 

              py   .                                        (4.15) 

It follows that 0  , for if 0  , (4.15) implies 0  . Hence 

( , ) 0    contradicts (4.14). Thus 0  . 

Now putting x x   and using (4.15) in (4.10), we obtain, 

     0,
2

2 







yypyxf

p
yy

T


, for all 2y C . 
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Putting y p y   and using 0  , from the above inequality 

  2[ ( ( , ) )] 0T

y yp f x y p p    

Which, because of (A2), yields, 

  0p                                         (4.16)  

Using (4.15) and (4.16) along with 0   in (4.10),we have, 

         ,0,  xxyxfx  for all .1Cx                  (4.17)             

Since 1C  is closed convex cone, therefore, for each 1x C  and 

1x C , it implies 
1x x C  . Now, replacing  x by x x  in (4.17), we 

have, 

  2( ( , ) ( , ) 0) 0T

x xx f x y f x y                   (4.18) 

This implies,  

  2 *

1( , ) ( , ) 0x xf x y f x y C    .  

Thus ( , , 0)x y q   is feasible for (SD). 

Putting 0x   in (4.17) and x x  in (4.18), we have respectively, 

  2( ( , ) ( , ) 0) 0T

x xx f x y x y      

and 

  2( ( , ) ( , ) 0) 0T

x xx f x y x y    . 

These together implies, 

  2( ( , ) ( , ) 0) 0T

x xx f x y x y                                   (4.19)  

Using y   and 0p   along with 0   in (4.12), we have, 

  2( ( , ) ( , ) 0) 0T

y yy f x y x y                           (4.20) 

            

Consequently, we obviously have, 
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 2 21
( , , ) ( , ) ( ( , ) ( , ) ) ( , )

2

T T

y y yG x y p f x y y f x y x y p p f x y p       

        2 21
( , ) ( ( , ) ( , ) ) ( , )

2

T T

x x xf x y x f x y x y q q f x y q       

        ( , , )H x y q . 

That is, the objective values of (SP) and (SD) are equal. By 

Theorem 4.1, the optimality of ( , , )x y z  for (SD) follows. 

 We will only state a converse duality theorem (Theorem 4.3) as 

the proof of this theorem would follow analogously to that of Theorem 

4.2. 

Theorem 4.3 (Converse Duality): Let ( , , )x y q  be an optimal solution 

of (SD). Also let 

 (C1): the matrix 2 ( , )x f x y  is nonsingular, and 

 (C2): 
2( ( , ) )x x f x y q   be a positive definite. 

Then ( , , 0)x y p   is feasible for (SP) and the objective values of 

(SP) and (SD) are equal. Furthermore, if the hypothesis of Theorem 4.1 

are met, then ( , , )x y p  is an optimal solution of (SP). 

Theorem 4.4 (Self Duality): Let : n mf R R R   be skew symmetric 

and 1 2C C , then (SP) is self dual. Furthermore, if (SP) and (SD) are 

dual programs and ( , , )x y s  is an optimal solution for (SP), then 

( , , 0)x y p   and ( , , 0)y x q   are optimal solutions for (SP) and (SD), and 

  ( , , ) 0 ( , , )G x y p H x y q  . 

Proof: Recasting the problem (SD) as a minimization problem, we 

have 



113 
 

(SD)1:  Minimize          








 qyxfqqyxfyxfxyxf x

T

xx

T ,
2

1
,,, 22  

 Subject to         

  2 *

1( , ) ( , )x xf x y f x y q C    

  
1 2( , )x y C C  . 

Since f is skew symmetric, 

  ( , ) ( , )x yf x y f y x    and 2 2( , ) ( , )x yf x y f y x   ;  

and 
1 2C C , the problem (SD)1 becomes, 

 Minimize         2 21
, , , ,

2

T T

y y yf y x x f y x f y x q q f y x q
 

     
 

 

 Subject to  

  2 *

2( , ) ( , )y yf y x f y x q C    

   1 2( , )x y C C   

which is just the primal problem (SP).Thus (SP) is self dual. Hence if 

( , , )x y q  is an optimal solution for (SP), then and conversely. 

Also,    .,,,, qyxHpyxG   

Now we shall show that ( , , ) 0G x y p  . 

                     pyxfppyxfyxfyyxfpyxG y

T

yy

T ,
2

1
,,,,, 22            

(4.21)    

Since 2y C  and 2 *

2( , ) ( , )y yf x y f x y p C   , therefore, we have 

 2( ( , ) ( , ) ) 0T

y yy f x y f x y p    .                                (4.22)             

Using (4.22) in (4.21), we have, 

 21
( , , ) ( , ) ( , )

2

T

yG x y p f x y p f x y p   . 
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Using the conclusion 0p   of Theorem 4.2, we get 

                ( , , ) ( , )G x y p f x y .                      (4.23) 

Similarly, in view of 
1x C  together with 2 *

1( , ) ( , )x xf x y f x y q C   , 

and 0q  , we have, 

                ( , , ) ( , )H x y q f x y .                             (4.24) 

By Theorem 4.2, we have, 

  ( , ) ( , , ) ( , , ) ( , )f x y G x y p H x y q f x y   .  

This implies, 

  ( , , ) ( , , ) ( , ) ( , ) ( , )G x y p H y x q f x y f y x f x y     . 

Consequently, we have, 

  ( , , ) 0G x y p  .           

4.4   Maxmin Symmetric and Self Duality 

Let U and V be two arbitrary sets of integers in 1n
R  and 1mR  

respectively.  Let K1 and K2 be closed convex cones with nonempty 

interiors in 1n nR  , and 1m m
R

 , respectively. Let ( , )f x y be a real valued 

function defined on a open set in n mR R containing  S T   where 

1S U K   and 2T V K  . Let *

iK , ( 1,2)i   be the polars  of iK . 

We consider the following pair of nonlinear mixed integer 

programs: 

Primal Problem 

(MSP):  2 2
21

2 2

, ,
Max Min ( , , ) ( , ) ( ) ( , ) ( , )T

y yx y sx
x y s f x y y f x y f x y s      

    2

21
( , )

2

T

y
s f x y s   
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   Subject to   

  2 2

2 *

2( , ) ( , )
y y

f x y f x y s K    

  1 2

1,( , )x U x y K T   . 

and  

Dual Problem 

(MSD):           ryxfyxfxyxfryxMinMax
xx

T

ryxy
,,,,. 22

,,
22

21
  yxf ,  

2

21
( ) ( , )

2

T T

x
r f x y r   

 Subject to         

  2 2

2 *

1( , ) ( , )
x x

f x y f x y r K    

  1 2

2,( , )y V x y S K    

where 1m ms R 
  and  1 .

n n
r R


  

Also their feasible solutions will be denoted by 

 2 2

1 2 2 *

1 1( , , ) | , ( , ) , ( , ) ( , )
x x

A x y s x U x y K T f x y f x y r K        

        2 2

1 2 2

2 2, , , , , , , .
y y

B x y r y V x y S K f x y f x y s K         

Theorem 4.5 (Symmetric Duality): Let ( , , )x y s be an optimal solution 

of  (MSP). Also, Let 

(i) f(x,y) be separable with respect to 1x or 1y , 

(ii) f(x,y) be bonvex in 2x  for every  1( , )x y , and boncave in 2y  

for every 1( , )x y . 

(iii) f(x,y) be thrice differentiable in 2x and 2y , 

(iv) 2

2 ( , )
y

f x y  is non singular, and  

(v) 2 2

2( ( , ) )
y y

f x y s   is negative definite. 
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Then 

(a) 0s   

(b)  2

2( ) ( , ) 0T

x
x f x y   

(c) ( , , 0)x y s  = ( , , 0)x y r  , and 

(d)    ( , , )x y r is an optimal solution of (MSD) 

Proof: Let Z =   syxMinMax
syxx

,,
,,21
 :   Asyx ,,  

and 

1 2, ,
Min Max{ ( , , ) : ( , , ) }

y x y r
W x y r x y r B   

Since f(x,y) is separable with respect to 1x or 1y (say, with respect to 1x ), 

it follows that 

  1 1 2 2( , ) ( ) ( , ).f x y f x f x y             (4.25)            

Therefore, 2 2

2 2( , ) ( , )
y y

f x y f x y   and 2 2

2 2 2 2( , ) ( , ).
y y

f x y f x y   

Now Z can be rewritten as 

 2 2
21

2

1 1 2 2 2 2 2 2 2 2

, ,

2 2 2

Max Min ( ) ( , ) ( ) ( ( , ) ( , ) )

1
( , )

2

T

y yx y sx

T

y

Z f x f x y y f x y f x y s

s f x y s

    


  



 

               Subject to  

2 2

2 2 2 2 2 *

2( , ) ( , )
y y

f x y f x y s K     

  UxKKyx  1

21

22 ,, and 1y V  

= 2 2
2 21

1

1 1 2 2 2 2 2 2 2 2

, ,
Max Min Min ( ) ( , ) ( ) ( ( , ) ( , ) )T

y yx y sx y

f x f x y y f x y f x y s


   


 

    2

2 2 21
( , ) ,

2

T

y
s f x y s
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or 

                    VyUxyxfMinMaxZ
yx

 111111 ,
11

              (4.26)       

where 

(MPS)0: 2 2
2 2

1 1 2 2 2 2 2 2 2 2

, ,
( ) Min ( , ) ( ) ( ( , ) ( , ) )T

y yx y s
y f x y y f x y f x y s


    


 

    2

2 2 21
( , )

2

T

y
s f x y s


  


 

 Subject to   2 2

2 2 2 2 2 *

2( , ) ( , )
y y

f x y f x y s K    

   2 2

1 2( , )x y K K  . 

Similarly, 

       
1 1

1 1 2 1 1 1,
y x

W Min Max f x y x U y V     (4.27)            

where 

(MSD)0:            ryxfyxfxyxfMiny
xx

T

ryx
,,, 22222222

.,

12
22

22
  

    2

2 2 21
( , )

2

T

x
r f x y r


  


 

Subject to  2 2

2 2 2 2 2 *

1( , ) ( , )
x x

f x y f x y r K    

   2 2

1 2( , )x y K K  . 

 For any given 1,y  the program 0(MPS)  and 0(MPD)  are a pair of 

second-order symmetric dual nonlinear program involving cone treated 

in the proceeding section and hence in view of assumptions (ii)-(v), 

Theorem 4.2 becomes applicable.  

Therefore, for 1 1y y  ,we have, 

  2

2 2 20,( ) ( , ) 0T

x
s x f x y        (4.28)         

and  

  1 1 2 1( ) ( )y y        (4.29) 
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 It remains to show that ( , , 0)x y r   is optimal for (MSD). If this 

is not the case, there exists *1y V  such that 2 *1 2 1( ) ( )y y  . But then, 

in view of the assumptions (iv) and  (v) , we have 

  1 1 2 1 2 *1 1 *1( ) ( ) ( ) ( ),y y y y     

which contradicts the optimality of 2 2( , , 0)x y s   for (MSP). Hence 

( , , 0)x y r  is an optimal solution for (MSD). 

Also, (4.25) and (4.28) prove (b), whereas ( , , 0) ( , , 0)x y s x y r     

follows form (4.26), (4.27) and (4.29). 

 As earlier, here to, the converse duality theorem (Theorem 4.6) 

will be merely stated. 

Theorem 4.6 (Converse Duality): Let ( , , )x y r be an optimal solution of 

(MSD), also let 

(i) ( , )f x y  be separable with respect to 1x   and 1y  

(ii) ( , )f y be bonvex in 2x  for every 1( , )x y ,and boncave in 

2y for every 1( , )x y , 

(iii) ( , )f x y be thrice differentiable in 2x and 2y , 

(iv)  2

2 ( , )
x

f x y  is non singular  

(v) 2 2

2( ( , ) )
x x

f x y r   is positive  definite. 

Then 

(e) 0r   

(f) 2

2( ) ( , ) 0T

y
y f x y   
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(g)  ( , , 0) ( , , 0)x y s x y r     and   

(h)  ( , , )x y s  is an optimal solution of (MSP). 

Theorem 4.7 (Self Duality): Let : n mf R R R   be skew symmetric. 

Then (MSP) is self dual. Further, if (MSP) and (MSD) are dual 

programs and ( , , )x y s is an optimal solution for (MSP), then  

( , , 0)x y s   and ( , , 0)x y r   are optimal solution for (MSP) and (MSD) 

respectively, and 

  ( , , ) 0 ( , , )x y s x y r   . 

Proof: The proof follows along the lines of Theorem 4.4. 

4.5   Special Cases 

 If 
1

nC R   and  
2

mC R where nR
 and mR

are nonnegative orthants 

in nR  and mR , Then the problems (SP) and (SD) will  reduce to the 

following problems treated by Mond [70] :    

Primal (P):   Minimize          pyxfyxfyyxfpyxG yy

T ,,,,, 2

0   

     21
( , )

2

T

yp f x y p   

 Subject to   

   2( , ) ( , ) 0y yf x y f x y p   , 

   0, 0x y  . 

and 

Dual (D):  Maximize         2

0 , , , , , )T

x xH x y q f x y x f x y f x y q     

     21
( , )

2

T

xq f x y q   

 Subject to  

  2( , ) ( , ) 0x xf x y f x y q    

  0, 0x y  . 



120 
 

 It is to be remarked that 0y   and 0x   can be deleted 

respectively from the problems (P) and (D) as these constraints are not 

essential. 

 If only p and q are required the zero vectors, then our problem 

(SP) and (SD) become the following (first order) symmetric dual 

programs over cones studied by Bazaraa and Goode [8]:  

Primal (P0):  Minimize   ( , ) ( , )T

yf x y y f x y   

 Subject to  

  *

2( , )y f x y C  , 

 1 2( , )x y C C   

Dual (D0):  Maximize  ( , ) ( , )T

xf x y x f x y   

              Subject to  

  *

1( , )x f x y C  , 

 1 2( , )x y C C   

 Finally, if U and V are empty sets and p s  and r q , Then 

(MSP) and (MSD) will become, the problems (SP) and (SD) 

considered in Section 4.3.  
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CHAPTER 5 

 

MIXED TYPE SECOND-ORDER SYMMETRIC DUALITY IN   

MULTIOBJECTIVE PROGRAMMING 

 

 

 

5.1    INTRODUCTORY REMARKS 

handra, Husain and Abha [22] presented a new symmetric dual 

formulation (called mixed symmetric dual formulation) for a 

class of nonlinear programming problem and derived various duality 

results. Their mixed formulation unifies the Wolfe [98] and Mond-

Weir type [71] symmetric dual formulations respectively, incorporated 

by Dantzig et al. [38] and Mond-Weir [71]. 

Recently Suneja et al. [92] studied Mond-Weir type second-

order symmetric duality in multiobjective programming by establishing 

usual duality theorems under  -bonvexity and  -boncavity 

assumptions. They also proved self duality theorems under skew 

symmetry of the kernel function that occur in the formulation of the 

problems. In [92] each component of the multiobjective dual models 

involves different auxiliary variables ip  and iq  1,2, ,i k , disagreeing 

with the formulation of second-order dual model having single 

auxiliary variable p , presented by Mangasarian [66].   

The purpose of this chapter is to present multiobjective version 

of the second-order mixed symmetric and self duality in traditional 

C 
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mathematical programming with a single objective treated by Husain 

and Abha [49]. This formulation of the problems considers the same 

auxiliary variable p  in the primal and the same auxiliary variable q  in 

the dual, which is the conformity with the Mangasarian’s [66] 

formulation. Obviously, our formulation unifies Wolfe and Mond-Weir 

type symmetric second-order dual models which are not studied in the 

literature.  In addition to validation of various duality theorems under 

suitable second-order convexity/ generalized second-order convexity, 

an attempt is also made to identify self duality for this pair of programs 

under additional restrictions on the kernel functions involved. 

5.2   Pre-requisites and Definitions 

Let R
n
 denoted the n-dimensional Euclidean space. The 

following ordering relations in R
n
 are recalled for our use. If x, y  R

n
, 

then  

x < y   xi < yi, (i = 1,2, …, n) 

x   y      xi   yi, (i = 1,2, …, n) 

x  y       xi   yi, (i = 1,2, …, n), but x y 

x   y is the negation of x   y. 

For  , ,x y R x y and x y    have the usual meaning. 

Let  (x,y) be twice differentiable real-valued function defined 

on R
n
  R

n
. Let y( , ) and  ( , )x x y x y   denote the gradient vectors with 

respect to x and y, respectively evaluated at  ,x y . Also let 

2 ( , ) x x y and 2 ( , ) y x y debits the Hessian matrix of second-order 

partial derivatives of  with respect to x and y, respectively evaluated 
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at ( , ).x y  The symbols ( , ) xx x y and ( , ) yy x y are similarly defined. 

The symbols  2 ( , )  y x x y q  and  2 ( , )  x y x y p  denote the matrices 

whose (i,j)
th 

elements are respectively given as  2 ( , )x
j

i

x y q
y







, with 

qR
n
 and  2 ( , )y

j
i

x y p
x







with pR
m
. 

Definition 5.1: The function  is said to be bonvex in first variable x at 

uR
m
, if for all vR

n
, qR

n
, xR

n  
and for fixed  y. 

2 21
( , ) ( , ) ( ) ( , ) ( , ) ( , )

2

T T

x x xx v u v x u u v u v q q u v q             

and (x,y) is used to be boncave in the second variable y at v, if for all 

uR
m
, piR

m
, yR

m
 and for fixed nx R , 

2 21
( , ) ( , ) ( ) ( , ) ( , ) ( , )

2

T T

y y yx v f x y v y x y x y p p x y p             

Definition 5.2: The function  is said to be pseudobonvex in the first 

variable x at u R
n
, if for all v R

n
, qi  R

n
 and x R

n
 and for fixed y, 

  2( ) ( , ) ( , )   0T

x xx u u v u v q        

                           21
     ( , ) ( , ) ( , )

2

T

xx v u v q u v q       

and  is said to be pseudoboncave in the second variable y at vR
n
, if 

for all uR
m
, pR

m
 and yR

m
  and for fixed nx R  

  2( ) ( , ) ( , )    0T

y yv y x y x y p        

       21
     ( , ) ( , ) ( , )

2

T

yx v x y p x y p       
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5.3   Mixed Type Second-Order Multiobjective Duality 

For N = {1,2,…, n} and M{1,2,…, m}, let  J1  N and K1  M 

and J2= N\ J1 and K2 = M\ K1. Let |J1|denote the number of elements in 

the subset J1. The other symbols |J2|, |K1| and |K2| are defined 

similarly. Let 11 J
x R  and 22 J

x R , then any x R can be written as      

x = (x
1
, x

2
). Similarly for |K|1 1Ry  and 2| |2 .Ky R can be written as                

y = (y
1
, y

2
). Let 1 1| | | |

:
J K

f R R R   and 2 2| | | |
:

J K
g R R R    be twice 

differentiable functions. It is to be noticed here that if J1 is an empty 

set, the J2 = N, |J1| = 0 and |J2| = N. Then |J| 1R and |J| 1R 1| |K
R will be the 

zero-dimensional and |K1|-dimensional vectors respectively. Similarly 

we can describe the cases K1 an empty set, K2 an empty set and J2, as 

an empty set. 

 We now introduce the following pair of nonlinear programs and 

study its second-order symmetric duality by the following theorems: 

Primal Problem: 

(SMP):  Minimize  F(x
1
, x

2
, y

1
, y

2
, p, r) 

       )r,p,y,y,x,x(F),...,r,p,y,y,x,x(F 2121
k

2121
1  

 Subject to   

                         1 1

1 1 2 1 1( )( , ) ( )( , )  0T T

y y
f x y f x y p    ,     (5.1) 

     2
2

2 2 2 2 2( )( , ) ( )( , ) r  0
y

T T

y
g x y g x y    ,     (5.2) 

     2
2

2 2 2 2 2 2( ) ( )( , ) ( )( , ) r  0
y

T T T

y
y g x y g x y    

  
,   (5.3) 

  1 2,  0x x  ,           (5.4) 

  .           (5.5) 
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Dual Problem: 

(SMD): Maximize  G(u
1
, u

2
, v

1
, v

2
, q, s) 

    1 2 1 2 1 2 1 2

1( , , , , , ),..., ( , , , , , )kG u u v v q s G u u v v q s  

             Subject to  

  1 1

1 1 2 1 1( )( , ) ( )( , ) q  0T T

x x
f u v f u v    ,    (5.6) 

                           2 2

2 2 2 2 2( )( , ) ( )( , ) s  0T T

x x
g u v g u v    ,    (5.7) 

                      2 2

2 2 2 2 2 2( )( , ) ( )( , ) s  0
T

T T

x x
u g u v g u v      ,   (5.8) 

            0 v,v 21  ,        (5.9) 

                  .      (5.10) 

where 

(i)  1

1 2 1 2 1 1 2 1 11
( , , , , , ) ( , ) ( , )

2

T

i i iy
F x x y y p r f x y p f x y p    

   1 1

1 1 1 2 1 1( ) ( )( , ) ( )( , )T T T

y y
y f x y f x y p     

  2

2 2 2 2 21
( , ) ( , )

2

T

i iy
g x y r g x y r    

(ii) 1

1 2 1 2 1 1 2 1 11
( , , , , , ) ( , ) ( , )

2

T

i i ix
G u u v v q s f u v q f u v q    

   1 1

1 1 1 2 1 1( ) ( )( , ) ( )( , )T T T

x x
u f u v f u v q     

  2
1

2 2 2 2 21
( , ) ( , )

2

T

i x
g u v s g u v s    

(iii) 1 2 1 2| | | | | | | |, , ,K K J Jp R r R q R s R    and =(1,…,k)
T
 with 1R,  

i =1,2,…,k. 

(iv) 
1

| 0, 1
k

k

i

i

R  



 
     

 
  

Theorem 5.1 (Weak duality): For (x
1
, x

2
,y

1
,y

2
,,p,r) be feasible for 

(SMP) and (u
1
,u

2
,v

1
,v

2
,, q,s) feasible for (SMD), let 

(i) for each  i{1,2,…,k}; f1(.,y
1
) be bonvex at u

1
 for fixed y

1
 

and fi(x
1
,.) be boncave at y

1
 for fixed x

1
, and  
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(ii) 
T
g(.,y

2
) be pseudoconvex at u

2
 for fixed y

2
, and 

T
g(x

2
,.) 

be pseudoboncave at y
2
 for fixed x

2
. 

Then  1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , )F x x y y p r G u u v v q s  

Proof: By the bonvexity-boncavity of  fi , i  {1,2,…,k}, 

  1 1

1 1 1 1 1 1 1 1 2 1 1( , ) ( , ) ( ) ( , ) ( , )T

i i i ix x
f x v f u v x u f u v f u v q        

    
1

2 1 11
( , )

2 x

T

iq f u v q       (5.11) 

and 

  1 1

1 1 1 1 1 1 1 1 2 1 1( , ) ( , ) ( ) ( , ) ( , )T

i i i iy y
f x v f x y v y f x y f x y p     

 
 

1

2 1 11
( , )

2

T

iy
p f x y p      (5.12) 

Multiplying (5.12) by (-1) and adding resulting inequality to 

(5.11), we have, 

 1 1 1

1 1 2 1 1 1 1 1 2 1 11
( , ) ( , ) ( ) ( )( , ) ( )( , )

2

T T T T

i iy y y
f x y p f x y p y f x y f x y p     

 1 1 1

1 1 2 1 1 1 1 1 2 1 11
( , ) ( , ) ( ) { ( , ) ( , ) }

2

T T

i i i ix x x
f u v q f u v q u f u v f u v q

 
      
 

 

   1 1 1 1

1 1 1 1 2 1 1 1 1 1 2 1 1( ) ( , ) ( , ) ( ) ( , ) ( , )T T

i i i ix x y y
x f u v f u v q v f x y f x y p       

Using (5.5) and (5.10), this inequality becomes, 

 1 1 1

1 1 2 1 1 1 1 1 2 1 1

1

1
( , ) ( , ) ( ) ( )( , ) ( )( , )

2

k
T T T T

i i iy y y
i

f x y p f x y p y f x y f x y p  


 
     

 


 1 1 1

1 1 2 1 1 1 1 1 2 1 1

1

1
( , ) ( , ) ( ) ( )( , ) ( )( , )

2

k
T T T T

i i ix x x
i

f u v q f u v q u f u v f u v q  


 
      

 
  

       
   

 

1 1

1 1

T
1 1 1 2 1 1

1 1 1 2 1 1

 x ( )( , ) ( )( , )

( ) ( )( , ) ( )( , )

T T

x x

T T T

y y

f u v f u v q

v f x y f x y p

 

 

  

  
 

This, in view of (5.6) with (5.4), and (5.1) with (5.9), yields, 
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 1 1
1

1 1 2 1 1 1 1 1 2 1 1

1

1
( , ) ( , ) ( ) ( )( , ) ( ) ( , )

2 y

k
T T T T

i i i iy y
i

f x y p f x y p y f x y f x y p  


 
     

 


 

 1 11

1 1 2 1 1 1 1 1 2 1 1

1

1
( , ) ( , ) ( ) ( )( , ) ( )( , )

2 x

k
T T T T

i i i x x
i

f u v q f u v q u f u v f u v q  


 
      

 


(5.13) 

From (5.4), (5.7) and (5.8), we have, 

  2 2

2 2 2 2 2 2 2( ) ( )( , ) ( )( , )  0T T T

x x
x u g u v g u v s        

Also from (5.9), (5.2) and (5.3), we have, 

               2 2

2 2 2 2 2 2 2( ) ( )( , ) ( )( , )  0T T T

y y
v y g x y g x y r     

 
 

By pseudobonvexity of 
T
g(.,y

2
) at u

2
, we have, 

  2

2 2 2 2 2 2 21
( , ) ( )( , ) ( )( , )

2

T T T T

x
g x v g u v s g u v s  

 
   
 

         (5.14) 

and by  pseudoboncavity 
T
g(x

2
,.) at y

2
, we have, 

  2

2 2 2 2 2 2 21
( , ) ( , ) ( )( , )

2

T T T T

y
g x v g x y r g x y r        (5.15) 

From (5.14) and (5.15), we have, 

2 2

2 2 2 2 2 2 2 2 2 21 1
( , ) ( )( , ) ( , ) ( )( , )

2 2

T T T T T T

y x
g x y r g x y r g u v s g x v s                     

(5.16) 

Combing (5.13) and (5.16), we have, 

 1 1 1

1 1 2 1 1 1 1 1 2 1 1

1

1
( , ) ( , ) ( ) ( )( , ) ( )( , )

2

k
T T T T

i i iy y y
i

f x y p f x y p y f x y f x y p  



    


  

                      2

2 2 2 2 21
( , ) ( , )

2

T T

i iy
g x y r g x y r


   


  

 1 1 1

1 1 2 1 1 1 1 1 2 1 1

1

1
( , ) ( , ) ( ) ( )( , ) ( )( , )

2

k
T T T T

i i ix x x
i

f u v q f u v q u f u v f u v q  



     


  

     2

2 2 2 2 21
( , ) ( , )

2

T T

i ix
g u v s g u v s
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or 

1 2 1 2 1 2 1 2

1 1

( , , , , , ) ( , , , , , )
k k

i i i i

i i

F x x y y p r G u u v v q s 
 

   

or 

1 2 1 2 1 2 1 2( , , , , , )  ( , , , , , )T TF x x y y p r G u u v v q s   

This implies 

1 2 1 2 1 2 1 2( , , , , , ) ( , , , , , )F x x y y p r G u u v v q s  

Theorem 5.2 (Strong Duality): Let for each i{1,2,…,k}, fi be thrice 

differentiable on R
n
 R

m
. Let 1 2 1 2( , , , , , , )x x y y p r  be a properly efficient 

solution of (SMP); fix  . Assume that 

(A1):  the set 1 1 1

2 2 2

1 2( , ,..., )ky y y
f f f   is linearly independent, 

(A2):  the set 2 2 2

2 2 2

1 2( , ,..., )ky y y
g g g   is linearly independent, 

(A3):  both the Hessian matrices   1 1

2 T

y y
f p  and 

  2 2

2 T

y y
g r  ,  are either positive or negative definite, 

(A4):  the set 2 2 2 2 2 2

2 2 2

1 1 2 2( , ,..., )k ky y y y y y
g g r g g r g g r       is 

linearly independent and 

(A5): the set 1 1 1 1 1 1

2 2 2

1 1 2 2{ , ,..., }k ky y y y y y
f f p f f p f f p       is 

linearly independent. 

where 1 1 1 1

1 1 1 1( , ),   g ( , ), 1,2,..., .f f x y g x y i k    Then 1 2 1 2( , , , , , 0, 0)x x y y q s    is 

feasible for (SMD) and 1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )F x x y y p r G x x y y q s  . 

Proof: Since 1 2 1 2( , , , , , , )x x y y p r is a properly efficient solution of 

(SMP), it is also a weak minimum. Hence there exist αR
k
, with          

α = (α1,α2,…,αk) and R
k
, 1 2 1 2| | | | | | | |1 2, , ,K K J JR R R R        and R 
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such that the following Fritz John optimality condition [68] are 

satisfied at 1 2 1 2( , , , , , , )x x y y p r
 

               1 1 1

1( ) ( ) ( )
T

T T T

x y x
f e y f                   

                        1 1

1 2 11
1 1

1

( ) ( )
2

k
T

x y
i

p
e y f p


   



 
      

 


         
(5.17) 

2 2 2

2 2

2

2 21
1 1

1

( ) ( ) ( )

( ) ( )
2

T T

x y x

k

x y
i

g y g

r
y g r

   


   



   

 
      

 
  (5.18) 

   1 1

T
1 2( )  ( ) ( ) ( )T T T T

y y
e f e y e p f             

                                   1 1

1 21
1 1

1

( ) ( ) 0
2

k
T

y y
i

p
e y f p


  



 
      

 


          
(5.19) 

 

2 2

2 2

T 2 2

2 2

1

( ) g ( ) ( )

( ) 0
2

T T

y y

T

y y

y r g

r
y gr

     


  

     

 
      
 

      
(5.20) 

1

1 2

1 1 1

1

(( ( ) ) ) 0
k

T

y
i

e y p f   


                       
          (5.21) 

21

2 2

1 1

1

(( ) ) 0
k

y
i

y r g   


                         
(5.22) 

1 1 2 2

1 2 2 2

1( ( ) ) ( ) 0T T T

y y y y
e y f fp y g gr               

   
                        

(5.23) 

         1 1

2

1 0T T

y y
f f p     

 
                     

(5.24) 

   2 2

2 0T T T

y y
g g r     

 
                      

(5.25)
 

   2 2

2 2( ) 0T T T

y y
y g g r     

 
    

(5.26) 

1 1 0x         (5.27) 

2 2 0x         (5.28) 
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0T          (5.29) 

1 2( , , , , , , ) 0             (5.30) 

1 2( , , , , , , , ) 0              (5.31) 

 

Since 0  , from (5.29), we have, 

 = 0        (5.32) 

From (5.21) along with the assumption (A1) and (5.22) along 

with the assumption (A2), we obtain, 

1
1 1( ( ) ) , 1,2,...,Te y p i k          (5.33) 

and 

                      2
1 1( ) , 1,2,..., .y r i k          (5.34) 

Multiplying (5.23) by  and using (5.29), we get, 

      1 1

1 2( ( ) ) ( ( ) ( ) )
TT T T

y y
e y f f p       

                     2 2

2 2( )[ ( ) ( ) ] 0
T TT

y y
y g g r          (5.35) 

From (5.25) and (5.26), we have, 

     2 2

2 2( )[ ( ) ( ) ] 0
T TT

y y
y g g r          (5.36) 

i.e., 

    2 2

2 2( )[ ( ) ( ) ] 0T T T

y y
y g gr          (5.37) 

Using (5.36) i.e. in (5.35), we have, 

1 1

1( ( ) ) ( ( ) ( ) ) 0
T TT T

y y
e y f f p                      (5.38) 
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i.e., 

1 1

1 2( ( ) ) ( (( ) ) (( ) ) 0
T TT T T T

y y
e y e f e f          (5.39) 

Using (5.33) in (5.19) and (5.34) in (5.20), we obtain, 

 1 1 1 1

2 1 21
( ( ) ) ( ) ( ( ) ) ( ( ) ) 0

2

T T T T

y y y y
e f f p e y f p            

 (5.40) 

 2 2 2 2

2 2 21
( ) ( ) ( ) ( ( ) ) 0

2

T T

y y y y
g gr y g r              

 (5.41) 

On multiplying (5.40) by )y)e((
1T and (5.41) by T)(  and then 

adding, we obtain, 

 1 1

1 2( ( ) ) ( ( ) ) (( ( ) )T T T T T

y y
e y e f e f p             

             +   2 2

2 2( ) ( ( )T T T T

y y
y g gr              

          1 1

1 2 11
( ( ) ) ( ( ) ) ( ( ) )

2

TT T T

y y
e y f p e y            

                   2 2

2 2 21
( ) ( ( ) ) ( ) 0

2

TT

y y
y g r y            

                                  (5.42) 

Using (5.32) and then multiply (5.23) by , we have, 

 

      

1 1

2 2

1 2

2 2

( ( ) ) ( ( ) ) (( ( ) )

0

T T T T T

y y

T
T T

y y

e y e f e f p

y g g r

       

   

    

    

 

Summing (5.37) and (5.39) from this inequality ,we have, 

   1 1

1 2( ( ) ) ( ( ) ) (( ( ) )T T T T T

y y
e y e f e f p             

          +   2 2

2 2( ) ( ( ) 0T T T T

y y
y g gr               

           (5.43) 
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Using (5.43) in (5.42), we have, 

  1 1

1 2 1( ( ) ) ( ( ) ) ( ( ) )T T T T

y y
e y f p e y         

            + 2 2

2 2 2( ) ( ( ) ) ( ) 0
TT T

y y
y g r y           (5.44) 

But by the assumption (A3), we have, 

           1 1

1 2 1( ( ) ) ( ( ) )( ( ) ) 0T T T

y y
e y f p e y          

and 

            2 2

2 2 2( ) ( ( ) ) ( ) 0
TT T

y y
y g r y          

Which respectively gives, 

              1( ) 0Te y           (5.45)  

and 

  2 0y           (5.46) 

From (5.40) together with (5.45), we have, 

  1 1

1 2( ( ) ) ( ) 0T T

y y
e f f p            

Which because (A5),gives, 

  0)e(
1T        (5.47) 

The relation (5.41) together with (5.46) ,gives, 

  2 2

1 2( ) { } 0T

y y
g gr      

Which because of (A4) implies, 

  0        (5.48) 

If possible, let = 0. Then from (5.48), we have  = 0 and from 

(5.45) and (5.46) we have  = 0 = . From (5.17) and (5.18), we get   


1
 = 0 and 

2
 = 0. Contradicting (5.31). 
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Hence  > 0.From (5.48) we have 0  . From (5.45) and (5.46) 

we obtain, 

1 20,   0.y y         (5.49) 

From (5.17) along with (5.33)and (5.47), we get, 

1

1( ) .T

x
f           

This along with (5.30)) and (5.27), we obtain, 

            1 ( ) 0.T

x
f                    (5.50) 

and  

              1

1( ) ( ) 0.T T

x
x f        (5.51) 

From (5.18) along with (5.34) and (5.47), yields, 

2

2( ) .T

x
g           

This along with (5.30) and (5.28) ,yields, 

           2 ( ) 0T

x
g         (5.52) 

and 

2

2( ) ( ) 0.T T

x
x g        (5.53) 

From (5.33) along with (5.45) and 1 > 0, and from (5.34) along with 

(5.46) 1 > 0, respectively, we have, 

0 .p r   

From (5.49), (5.50), (5.52) and (5.53), it implies that 1 2 1( , , ,x x y  

2, , 0, 0)y q s   is feasible for (SMD). 
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From (5.24) along with (5.45) and   > 0 and (5.26) with  >0, we 

have respectively, 

  1 1

1 2( ) ( ( ) ( ) ) 0
T TT

y y
y f f p         (5.54) 

and 

2 2

2 2( ) ( ( ) ( ) ) 0
T TT

y y
y g g r        (5.55) 

Consider 

  1

1 2 1 2 1 1 2 1 11
( , , , , , , ) ( , ) ( , )

2
i i iy

F x x y y p r f x y p f x y p     

     1 1

1 1 1 2 1 1{ ( ) ( , ) ( ) ( , ) }
T

T T

y y
y f x y f x y p     

         2 2,ig x y 2

2 2 21
( , )

2

T

i iy
r g x y r   

This, along with (5.54) and r0p  , becomes  

  1 2 1 2 1 1 2 2( , , , , , , ) ( , ) ( , ),  i 1,2,...,ki i iF x x y y p r f x y g x y                            

(5.56) 

Again consider, 

1

1 2 1 2 1 1 2 1 11
( , , , , , , ) ( , ) ( , )

2
i i ix

G x x y y q s f x y q f x y q     

  1 1

1 1 1 2 1 1{ ( ) ( , ) ( ) ( , ) }
T

T T

x x
x f x y f x y q     

2

2 2 2 2 21
( , ) ( , )

2

T

i ix
g x y s g x y s    

This along with (5.51) and ,0sq  becomes  

  1 2 1 2 1 1 2 2( , , , , , , ) ( , ) ( , ),   i 1,2,...,ki i iG x x y y q s f x y g x y     

 (5.57) 

From (5.56) and (5.57), we have, 

 1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , ),  i iF x x y y p r G x x y y q s  for all k}{1,2,...,i  

This implies , 

  1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )i iF x x y y p r G x x y y q s  .  (5.58) 

That is, the objective values of (SMP) and (SMD) are equal. 
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 If 1 2 1 2( , , , , , , )  x x y y q s is not efficient, then there exists 

1 2 1 2( , , , , , , )u u v v q s  such that  

  1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )G u u v v q s G x x y y q s   

Which because of (5.58) gives,  

  1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , ).G u u v v q s F x x y y p r   

This contradicts the weak duality (Theorem 5.1). 

 If 1 2 1 2( , , , , , , ) x x y y q s  were improperly efficient, then for some 

feasible  1 2 1 2( , , , , , , )u u v v q s  and some i  

  1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )i iG u u v v q s F x x y y p r M    

and so is  

  1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , ).T T

iG u u v v q s F x x y y p r     

This again contradicts Theorem 5.1. Hence 1 2 1 2( , , , , , , )x x y y q s  

is, indeed, a properly efficient solution of (SMD). 

We shall merely state the following converse duality as its proof 

is immediate due to symmetry of the formulation of the problem 

(SMP) and (SMD). 

Theorem 5.3 (Converse Duality): Let for each i  {1,2,… ,k}, fi be 

thrice differentiable on R
n
  R

m
. Let 1 2 1 2( , , , , , , ) x x y y q s be a properly 

efficient solution of (SMD); fix .  Assume that  

(C1):  the set 1 1 1

2 2 2

1 2, ,..., kx x x
f f f   is linearly independent, 

(C2):  the set 2 2 2

2 2 2

1 2, ,..., kx x x
g g g   is linearly independent, 
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(C3):  both  the  Hessian  matrices 1 1

2( ( ) )T

x x
f q   and 

2 2

2( ( ) )T

x x
g r   are either positive or negative definite, 

(C4):  the set 1 1 1 1 1 1

2 2 2

1 1 2 2{ , ,..., }k kx x x x x x
f f q f f q f f q       is 

linearly independent; and  

(C5): the set 2 2 2 2 2 2

2 2 2

1 1 2 2{ , ,..., }k kx x x x x x
g g s g g s g g s       is 

linearly independent. 

where  

1 1( , ),i if f x y 1 1( , ), 1,2,..., .i if f x y i k   

Then 1 2 1 2( , , , , , 0, 0)x x y y p r   is feasible for (SMP) and 

1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )F x x y y p r G x x y y q s  . 

 Moreover, if the hypothesis of Theorem 5.1 are satisfied for all 

feasible solutions of (SMP) and (SMD), then 1 2 1 2( , , , , , , )x x y y p r  is a 

properly efficient solution of (SMP). 

5.4   Mixed Type Second-Order Multiobjective Self Duality 

In this section, we now prove the following self-duality 

Theorem. A mathematical program is said to be self-dual, if it is 

formally identical with its dual, that is, if the dual is recast in the form 

of the primal, the new program so obtained is the same as the primal. 

In general the program (SMP) and (SMD) are not self dual without 

added restriction on fi(x,y) and fi(y,x), i  {1,2,…,k}. The functions 

1 2| | | |: J J

if R R R   and 1 2| | | |: J J

ig R R R  , i  {1,2,…,k}, is the skew 

symmetric if for all x, yR
n
, fi(x

1
,y

1
) = fi(y

1
,x

1
), i  {1,2,…,k}and 

gi(x
2
, y

2
) = gi(y

2
,x

2
). 
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We describe the programs (SMP) and (SMD) as dual program if 

the conclusion of Theorem 5.2 hold.  

Theorem 5.4 (Self Duality): If the kernel function 1 1( , )if x y and 

)y,x(g 22
i  for i  {1,2,…,k} are skew symmetric, then (SMP) is self-

dual. If also (SMP) and (SMD) are dual program, and 

1 2 1 2( , , , , , , ) x x y y p r is a joint optimal solution, then so is 

1 2 1 2( , , , , , , ) y y x x p r and 1 2 1 2( , , , , , , ) 0.F x x y y p r   

Proof: Consider (SMP) and note that (SMD) can be written: 

 Minimize 1 2 1 2( , , , , , )G x x y y q s  

     1 2 1 2 1 2 1 2( , , , , , ),..., ( , , , , , )i kG x x y y q s G x x y y q s    

 Subject to  

                          1 1

1 1 1 1( ( )( , ) ( )( , ) )  0,T T

x x
f x y f x y q      

  2 2

2 2 2 2 2( ( )( , ) ( )( , ) )  0,T T

x x
g x y g x y s      

  2 2

2 2 2 2 2 2( ) ( ( )( , ) ( )( , ) ) > 0,T T T

x x
x g x y g x y s     

               1 2, 0y y   

                 *  

where  

 1

1 2 1 2 1 1 2 1 11
( , , , , , , ) ( , ) ( , )

2

T

i i ix
G x x y y q s f x y q f x y q     

                      1 1

1 1 1 2 1 1( ) ( ( )( , ) ( )( , ) ) T T T

x x
x f x y f x y q     

                              2

2 2 2 2 21
( , ) ( , )

2

T

i ix
g x y s g x y s    

Since for each i  {1,2,…,k) fi and gi are skew symmetric, 

1 1

1 1 1 1( , ) ( , ),i ix y
f x y f y x   2 2

2 2 2 2( , ) ( , ),i ix y
g x y f y x    
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2 2

2 2 2 2( )( , ) ( )( , ),T T

x y
g x y g y x    2 2

2 2 2 2 2 2( )( , ) ( )( , ),T T

x y
g x y g y x     

1 1

2 1 1 2 1 1( )( , ) ( )( , ),T T

x y
f x y f y x    1 1

1 1 1 1( )( , ) ( )( , ),T T

x y
f x y f y x     and 

program (SMD) becomes 

 Minimize 1 2 1 2( , , , , , )G y y x x q s  

       1 2 1 2 1 2 1 2

1( , , , , , ),..., ( , , , , , )kG y y x x q s G y y x x q s  

 Subject to  

  1 1

1 1 2 1 1( ( )( , ) ( )( , ) )  0T T

y y
f y x f y x q    , 

             2 2

2 2 2 2 2( ( )( , ) ( )( , ) )  0T T

y y
g y x g y x s    , 

               2 2

2 2 2 2 2 2( ) ( ( )( , ) ( )( , ) )  0T T T

y y
x g y x g y x s    , 

                          0y,y 21   

                 

where 

 1

1 2 1 2 1 1 2 1 11
( , , , , , , ) ( , ) ( , )

2

T

i i iy
G y y x x q s f y x q f y x q     

1 1

1 1 1 2 1 1( ) { ( ) ( , ) ( )( , ) }T T T T

y y
x f y x f y x q   

2

2 2 2 2 21
( , ) ( , ) ,    i 1,2,...,k

2

T

i ix
g y x s g y x s     

This is just (SMP). 

Thus 1 2 1 2( , , , , , , ) x x y y q r optimal for (SMD) implies 1 2 1( , , ,y y x  

2, , , )x q s  optimal for (SMP). By an analogous argument,  

1 2 1 2( , , , , , , ) x x y y p r optimal for (SMP) implies 1 2 1 2( , , , , , , )y y x x p s  

optimal for (SMD). 
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If (SMP) and (SMD) are dual programs and 1 2 1 2( , , , , , , ) x x y y p r  

is jointly optimal, then 

  1 1

1 1 1 2 2 1( ) ( ( )( , ) ( )( , ) )  0T T T

x x
x f x y g x y q    , 

  2 2

2 2 2 2 2 2( ) ( ( )( , ) ( )( , ) ) 0T T T

x x
x g x y g x y r    , 

  2 1

1 1 1 2 1 1( ) ( ( )( , ) ( )( , ) )  0T T T

y y
y f x y f x y p    , 

  2 2

2 2 2 2 2 2( ) ( ( )( , ) ( )( , ) ) 0T T T

y y
y g x y g x y s     

The objective values of (SMP) and (SMD) at 1 2 1 2( , , , , , , )x x y y p r  in 

view of the above relation, becomes for each i  {1,2,…,k}, 

 1 2 1 2 1 1 2 2 1 2 1 2( , , , , , , ) ( , ) ( , ) ( , , , , , , )i i i iF x x y y p r f x y g x y G x x y y q s    . 

Since )r,p,,x,x,y,y( 2121   is also a joint optimal solution, it can be 

similarly shown that  

  1 1

1 1 1 2 1 10,   (x ) { ( )( , ) ( )( , ) } 0T T T

y y
q s f y x f y x q       

and the objective value of (SMP) and (SMD) at )r,p,,x,x,y,y( 2121   can 

be given as  

  1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )i iF y y x x p r G y y x x p r   

       1 1 2 2( , ) ( , ), {1,2,..., }i if y x g y x i k    

        1 1 2 2( , ) ( , ) , {1,2,..., }i if x y g x y i k     

By Theorem 2, we have,  

1 2 1 2 1 2 1 2( , , , , , , ) ( , , , , , , )i iF x x y y p r G x x y y p r   

       1 1 2 2( , ) ( , ), {1,2,..., }i if x y g x y i k    
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Therefore, 

  1 2 1 2( , , , , , , ) 0, {1,2,..., }iF x x y y p r i k    

This implies 

  1 2 1 2( , , , , , , ) 0.F x x y y p r   

5.5    Special Cases 

If k = 1,  = 1, fi = f and gi = g, the second-order symmetric 

multiobjective dual programs (SMP) and (SMD) to the following 

program, studied by Husain and Abha [49]: 

Primal Program 

(SP):  Minimize 1

1 1 1 2 1 1 2 1 11
( , , , , , ) ( , ) ( , )

2

T

y
F x y y y p r f x y p f x y p    

   1 1

1 1 1 2 1 1( ) { ( , ) ( , ) }T

y y
y f x y f x y p    

   2

2 2 2 2 21
( , ) ( , )

2

T

y
g x y r g x y r    

 Subject to  

             1 1

1 1 2 1 1( , ) ( , )   0,
y y

f x y f x y p    

  2 2

2 2 2 2 2( , ) ( , )   0
y y

g x y g x y r    

  2 2

2 2 2 2 2 2( ) { ( , ) ( , )   0T

y y
y g x y g x y r    

  1 2,   0,x x   

Dual Program 

(SD): Maximize 1

1 2 1 2 1 1 2 1 11
( , , , , , ) ( , ) ( , )

2

T

x
G u u v v q s f u v q f u v q    

   1 1

1 1 1 2 1 1( ) { ( , ) ( , ) }T

x x
u f u v f u v q    

   2

2 2 2 2 21
( , ) ( , )

2

T

y
g u v s g u v s    
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 Subject to  

                       1 1

1 1 2 1 1( , ) ( , )   0,
x x

f u v f u v q    

      2 2

2 2 2 2 2( , ) ( , )   0,
x x

g u v g u v s    

  2 2

2 2 2 2 2 2( ) { ( , ) ( , ) }  0,T

x x
u g u v g u v s    

                  1 2,  0.v v   

 If J2 =  and K2 =, the programs (SMP) and (SMD) reduce to 

the following pair of Wolfe type second-order multiobjective dual 

programs which are not explicitly studied in the literature  

Primal Program: 

(SWP): Minimize 1 1 1 1 1 1 1 1 1

1( , , ) ( ( , , ),..., ( , , ))kF x y p F x y p F x y p  

   Subject to  

                   1 1

1 1 2 1 1( )( , ) ( )( , )   0,T T

y y
f x y f x y p     

  ,01 x  

                          

Dual program: 

(SWD): Minimize  1 1 1 1 1 1 1 1 1

1( , , ) ( ( , , ),..., ( , , ))kG u v q G u v q G u v q  

     Subject to:    

  1 1

1 1 2 1 1( )( , ) ( )( , )   0,T T

x x
f u v f u v q     

  1 0,y       

                                   , 

where, for each i  {1,2,…,k}, 

i)      1 1

1 1 1 1 2 1 1 2 1 1( , , ) ( , ) ( )[ ( )( , ) ( )( , ) ]T T T

i i y y
F x y p f x y y f x y f x y p      

    1

2 1 11
( , )

2

T

iy
p f x y p   
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ii)   1 1

1 1 1 1 1 1 1 2 1 1( , , ) ( , ) ( )[ ( )( , ) ( )( , ) ]T T T

i i x x
G u v q f u v u f u v f u v q      

    1

2 1 11
( , ) .

2

T

iy
q f u v q   

 If  1J   and 1K  , the programs (SMP) and (SMD) become the 

Mond-Weir second-order multiobjective dual program which are 

reported in mathematical programming. 

Primal Program 

(SMWP):  Minimize   2 2 2 2 2 2 2 2 2

1( , , ) ( , , ),..., ( , , )kF x y r F x y r F x y r  

                 Subject to                                  

             2
2

2 2 2 2 2( )( , ) ( )( , ) r  0
y

T T

y
g x y g x y                                 

                        
2

2
2

2 2 2 2 2( ) ( )( , ) ( )( , ) r  0
y

T T T

y
y g x y g x y    

  
       

2  0x                                                                                            

0        

Dual Program 

(SMWD): Maximize  2 2 2 2 2 2 2 2 2

1( , , ) ( , , ),..., ( , , )kG u v s G u v s G u v s  

                  Subject to  

                      2 2

2 2 2 2 2( )( , ) ( )( , ) s  0T T

x x
g u v g u v         

                                2 2

2 2 2 2 2 2( )( , ) ( )( , ) s  0
T

T T

x x
u g u v g u v                      

                           2  0v   

                   0      

where , for each i  {1,2,…,k}, 
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i)     2

2 2 2 2 2 2 21
( , , ) ( , ) ( , )

2

T

i i iy
F x y r g x y r g x y r    

  ii)     2

2 2 2 2 2 2 21
( , , ) ( , ) ( , )

2

T

i i ix
G u v s g u v s g u v s    

If 0p q s r    , then the programs (SMP) and (SMD) reduce 

to the mixed type first-order symmetric multiobjective programs 

studied by Bector, Chandra and Abha [12]. 
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CHAPTER 6 

 

SECOND-ORDER DUALITY FOR VARIATIONAL 

PROBLEM 

 

 

 

 

6.1    INTRODUCTORY REMARKS 

he calculus of variation has been one of the prominent branches 

of analysis, for more than two centuries. It is a tool of great 

power that can be used to wide variety of problems, in pure 

mathematics. It can also be used to express basic principles of 

mathematical physics in forms of utmost simplicity and elegance. 

Hanson [48] pointed out that some of the duality results in the 

mathematical programming have the analogues in calculus of 

variations. Exploring this relationship between mathematical 

programming and classical calculus of variation, Mond and Hanson 

[77] formulated a constrained variational problem as mathematical 

programming problem in abstract space and using Valentine [93] 

optimality conditions for the same, presented its Wolfe dual variational 

problem for validating various duality results under usual convexity. 

Later Bector, Chandra and Husain [13] studied Mond-Weir type 

duality for the problem of Mond and Hanson [77] for relaxing its 

convexity requirements. In [19] Chandra, Craven and Husain studied 

optimality and duality for a class of nondifferentiable variational 

T 
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problems in which the integrand of the objective functional contains a 

term of a square root of the quadratic form, while in [52], Husain and 

Jabeen studied optimality criteria and duality for variational problems 

in which integrand of objective and constraint functions contains terms 

of support functions.  

Second-order duality in mathematical programming has been 

extensively studied in recent years. Mangasarian [66] was the first to 

identify a second-order dual formulation for non-linear programs under 

the assumptions that are complicated and somewhat difficult to verify. 

Mond [70] introduced the concept of second-order convex functions 

(named as bonvex functions by Bector and Chandra [11]) and studied 

second-order duality for nonlinear programs. 

Recently Chen [27] is the first to identify second-order duality in 

variational problems. He studied usual duality results under invexity 

assumptions on the functions that occur in the formulation of the 

problem along with some strange assumptions. Mond [70] has pointed 

out that the second-order dual for a nonlinear programming gives a 

tighter bound and has computational advantage over a first order dual. 

Motivated with this of Mond [70] in this exposition, we construct 

Mond -Weir type second-order dual to the variational problem and 

derive usual duality results under second-order pseudo- invexity and 

second-order quasi-invexity assumptions. 

The relationship of our results to second-order duality results in 

nonlinear programming reported in [11] is indicated. In essence it is 

shown that our duality results can be viewed as dynamic 

generalizations of corresponding (static) duality theorems of nonlinear 

programming already in the literature. 
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6.2    Pre-requisites and Definitions 

 Let  ,I a b be a real interval, : n nf I R R R    and 

: n n mg I R R R    be twice continuously differentiable functions. In 

order to consider     , , ,f t x t x t where : nx I R is differentiable with 

derivative x , denoted by x xf and f  the partial derivative of f with 

respect to x and x , respectively, that is, 

     

1 1

2 2, ;x x

n n

f f

x x

f f

f fx x

f f

x x

    
    
   
    

     
   
   
    
   
    

 

denote by xxf the Hessian matrix of f with respect to x , that is, 

                  

2 2 2

1 1 1 2 1

2 2 2

2 1 2 2 2

2 2 2

1 2

n

n
xx

n n n n
n n

f f f

x x x x x x

f f f

f x x x x x x

f f f

x x x x x x 

   
 
      

   
       
 
 
 
    
      

 

 It is obvious that xxf is a symmetric n n  matrix. Denote by xg the 

m n  matrix with respect to x , that is, 

                  

1 1 1

1 2

2 2 2

1 2

1 2

n

n
x

m m m

n
m n

g g g

x x x

g g g

g x x x

g g g

x x x 
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 Similarly , ,x xx xx xf f f and g  can be defined. 

 Denote by X, the space of piecewise smooth functions : nx I R , 

with the norm 2x x Dx D x
  

   , where the differentiation 

operator D  is given by 

                   
t

a

u D x x t u s ds     , 

where  is given boundary value; thus 
d

D
dt

  except at discontinuities. 

 We introduce the following definitions which are needed for the 

duality results to hold. 

Definition 6.1 (Second-order Invexity): If there exists a vector 

function  , , nt x x R   where : n n nI R R R     and  with 0   at                

t = a and t = b, such that for the functional  , ,
I

t x x dt  where 

: n nI R R R     satisfies 

       

    

1
, , , ,

2

,

T

I I

TT T

x x

I

t x x dt t x x t G t dt

D G t dt

   

     

 
  

 

  

 


 

then  , ,
I

t x x dt  is second-order invex with respect to   where  

2

xx xx xxG D D      and  , nC I R  , the space of continuous                         

n-dimensional vector function. The function  is analogous to the 

auxiliary vector p in [11].  

Definition 6.2 (Second-order Pseudoinvex): If the functional 

 , ,
I

t x x dt  satisfies 
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0

1
, , , , ,

2

TT T

x x

I

T

I I

D G t dt

t x x dt t x x t G t dt

     

   

   

 
  

 



 
 

then   , ,
I

t x x dt  is said to be second-order pseudoinvex with respect 

to  . 

Definition 6.3 (Second-Order Quasi-invex): If the functional 

 , ,
I

t x x dt  satisfies 

  

       

    

1
, , , , ,

2

0,

T

I I

TT T

x x

I

t x x dt t x x t G t dt

D G t dt

   

     

 
   

 

  

 


 

then   , ,
I

t x x dt  is said to be  second-order quasi-invex with respect     

to  . 

 If   does not depend on t, then the above definitions reduce to 

those given in [11] for static cases. 

 Consider the following constrained variational problem: 

(VP): Minimize   , ,
I

f t x x dt  

 Subject to 

     0 ,x a x b                                                                

   , , 0, ,g t x x t I   

         , , 0, ,h t x x t I    

where RRRIf nn : , mnn RRRIg :  and : n n kh I R R R   are 

continuously differentiable. 
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Proposition 6.1 [3] (Fritz-John Conditions): If (VP) attains a local 

(or) global minimum at  x x X   then there exist Lagrange multiplier  

R   , : kz I R  and piecewise smooth : my I R  such that 

             
         

         

, , , , , ,

, , , , , , 0, ,

T T

x x x

T T

x x x

f t x x y t g t x x z t h t x x

D f t x x y t g t x x z t h t x x t I

  

     
 

 

     , , 0,
T

y t g t x x t I  , 

                     , 0,y t t I   , 

                       , , 0,y t z t t I   . 

The Fritz John necessary conditions for (VP), become the 

Karush-Kuhn-Tucker conditions [66] if 1  . If 1  , the solution x is 

said to be normal. 

6.3    Second-Order Duality 

       Consider the following variational problem (CP) by ignoring the 

equality constraint of (VP): 

(CP): Minimize   , ,
I

f t x x dt  

 Subject to 

     0 ,x a x b                                                      (6.1) 

   , , 0, ,g t x x t I                                             (6.2) 

Chen [27] presented the following Wolfe type second-order dual 

problem for (CP) analogous to that for nonlinear programming by 

Mangasarian [66] and established various duality results under 

somewhat strange invexity-like conditions.                                     
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Maximize:             , , , ,

b
T

a

f t u t u t t g t u t u t  

                         

              

             
               2

1
, , , ,

2

2 , , , ,

, , , ,

TT

uu u
u

T

uu u
u

T

uu u
u

t f t u t u t g t u t u t t

D f t u t u t g t u t u t t

D f t u t u t g t u t u t t t dt

 



 

 


 


   

 

Subject to  

     0u a u b  ,      0u a u b                                                            

 

           

           

            

             
               2

, , , ,

, , , ,

, , , ,

2 , , , ,

, , , , 0,

T

u u

T

u u

T

uu u
u

T

uu u
u

T

uu u
u

f t u t u t g t u t u t t

D f t u t u t g t u t u t t

f t u t u t g t u t u t t

D f t u t u t g t u t u t t

D f t u t u t g t u t u t t t









 



  
  

 


 


  



 

                                                                                                ,t I  

          , ,m nt R t R t I    ,  

where mR  designates the non-negative orthant of the Euclidean           

space nR . 

Let 

        

            
             
             2

, , , ,

2 , , , ,

, , , , .

T

uu u
u

T

uu u
u

T

uu u
u

H f t u t u t g t u t u t t

D f t u t u t g t u t u t t

D f t u t u t g t u t u t t







 

 

 

 

 Then the above dual problem can be expressed in a much 

simpler form which is given below. 
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(VD):  Maximize             , , , ,

b
T

a

f t u t u t t g t u t u t  

                                     
1

, , , ,
2

T
t H t u t u t t t dt  


 


 

 Subject to  

        0u a u b  ,      0u a u b                                                            

         

           

           

        

, , , ,

, , , ,

, , 0,

T

u u

T

u u

f t u t u t g t u t u t t

D f t u t u t g t u t u t t

H t u t u t t t t I





 



  
 

  

 

                           , ,m nt R t R t I     

It is remarked here that if f and g are independent of t, then (VD) 

becomes second-order dual problem studied by Mangasarian [66]. 

Now we present the following Mond –Weir type second-order 

dual (CD) in the spirit of [11] to relax second-order invexity 

requirements and establish various duality results between the 

problems (CP) and (CD) under generalized second-order invexity 

hypothesis. 

(CD): Maximize      
1

, ,
2

T

I

f t u u t F t dt 
 

 
 
  

 Subject to  

       buau  0                                                     (6.3)   

                  0 ,
T T

u u u uf y t g D f y t g F H t t I                      

(6.4) 

                    ,0
2

1
,, 









 dttHtuutgty
TT

I

              (6.5) 

      0,y t t I                                                   (6.6) 

 



152 
 

where  

 2

uu uu uuF f Df D f    and      T T

u u
u u

H y t g D y t g   

  2 T

u
u

D y t g  and define 
d

D
dt

 as defined earlier. 

 If f and g are independent of t  then uuF f  and  T

u
u

H y g and 

consequently (CD) will reduce to the second-order dual problem 

introduced in [11]. 

Theorem 6.1 (Weak Duality): Let   Xtx   be a feasible solution of 

(CP) and       ttytu ,,  be feasible solution of (CD).If   ,.,.
I

f t dt  be 

second-order pseudoinvex and    ,.,.
T

I

y t g t dt  be second-order quasi-

invex with respect to the same  : nnn RRRI   satisfying 0   at 

t a  and t b , then  

       
1

, , , ,
2

T

I I

f t x x dt f t u u t F t dt 
 

  
 

   

Proof:  The relations,     Ittyxxtg  ,0,0,,   and (6.5) imply 

                              ,
2

1
,,,, 










I

TT

I

T
dttHtuutgtydtxxtgty   

This, because of second-order quasi-invexity of    ,.,.
T

I

y t g t dt , implies 

that,  

           0
T T TT T

u u

I

y t g D y t g H t dt       

i.e.,                      0
T T TT T

u u

I I I

y t g dt D y t g dt H t dt         

This, by integration by parts, this inequality yields, 

                            0  dttHdtgtyDgtydtgty
I

T

I

u

TTb

au

T

I

u

TT    
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Using 0  at t a and t b  in the above inequality, we obtain, 

           0 dttHgtyDgty
I

T

u

T

u

T
  , 

Using (6.4), this gives, 

        ( ) 0T T

u u

I

f Df F t dt       . 

Integrating by parts, gives, 

  ( ) 0
TT T

u u

I

f D f F t dt      . 

This, in view of second-order pseudoinvexity of   ,.,.
I

f t dt  implies, 

       
1

, , , ,
2

T

I I

f t x x dt f t u u t F t dt 
 

  
 

  . 

This implies, 

infimum(CP) ≥ supremum(CD). 

Theorem 6.2 (Strong Duality):  If   Xtx  is an optimal solution of 

(CP) and meets the normality conditions, then there exists a piece wise 

smooth : my R R such that       0,, ttytx   is a feasible for (CD) and 

the two objective values are equal. Furthermore, if the hypothesis of 

Theorem 6.1 holds, then       ttytx ,, is an optimal solution for (CD). 

Proof: From Proposition 6.1, there exists a piece wise smooth function 

: my R R  satisfying the following conditions: 

                         ItxxtgtyxxtfDxxtgtyxxtf x

T

xx

T

x  ,0,,,,,,,, 
  

i.e.,                    , , , , , , , ,
T T

x x x xf t x x y t g t x x D f t x x y t g t x x    

                                  ( ) ( ) 0,F H t                                           (6.7) 
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where                                            

  Itt  ,0         

                        0,, xxtgty
T   

i.e.,                    IttwheredttHtxxtgty
I

TT










 ,0,0
2

1
,,                       

(6.8) 

    Itty  ,0                                                     (6.9) 

From (6.7), (6.8) and (6.9), it implies that       0,, ttytx   is 

feasible for (CD) and the objective value of (CP) and (CD) are equal. 

The optimality of        ,  ,  x t y t t   follows by an application of 

Theorem 6.1. 

Theorem 6.3 (Converse Duality): Suppose that f and g are thrice 

continuously differentiable. Let        ttytx ,,   be an optimal solution 

of (CD) at which 

(A1): the Hessian matrices F and H are not the multiple of each 

other. 

(A2):     
T T

x xy t g Dy t g ≠ 0, 

(A3): i)        0
T T T

x x

I

t y t g Dy t g dt    and     0
T

I

t H t dt            

or 

            ii)        0
T T T

x x

I

t y t g Dy t g dt    and     0
T

I

t H t dt    

If, for all feasible       , ,x t y t t ,  ,.,.
I

f t dt  be second-order 

pseudoinvex and    ,.,.
T

I

y t g t dt  be second-order quasi-invex with 

respect to the same  ,then  tx  is an optimal solution of (P). 
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Proof: Since       , ,x t y t t  is an optimal solution for (CD), by 

proposition 6.1, there exist Lagrange multiplier R , and piece wise 

smooth : , :n mI R R and I R      such that Fritz John conditions 

hold at       ttytx ,, : 

         

             
             

1 1

2 2

T T

x x
x x

T T T

xx x xx x xx x

T T

xx x xx x xx x

f t F t D f t F t

t f y t g D f y t g F H t

D f y t g f y t g F H t

    

 



    
       

    

     

     

   

             1 1
0,

2 2

T T T T

x x
x x

y t g t F t D y t g t F t t I    
  

       
  

      

(6.10) 

            0,t t F t t H t I                   (6.11)                                                                                

     

     

2

21
( ) 0,

2

T

jx jx jxx jxx xx

T

j jxx jxx xx j

t g Dg g Dg D g t

g t g Dg D g t t t I

 

   

    
 

 
       

 

                

(6.12)  

                             0,
T T

x x x xf y t g D f y t g F H t t I                       

(6.13) 

   
1

( ) 0,
2

T

I

y t g t H t dt t I  
 

   
 
           (6.14) 

  IttytT  ,0)(                      (6.15)   

 , , ( ) 0,t t I                         (6.16)       

    , , , 0,t t t I                          (6.17)                 
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In view of hypothesis (A1), the equation (6.11) yields, 









Ittt

Ittt

,0)()(

,0)()(




                           (6.18) 

Multiplying (6.12) by )(ty j  and summing over j, we have, 

            

          

 

2

2

( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( )

2

( ) 0,

T T T T T T

x x x x x
x x x

TT T T T

x x x x
x x x

T

t y t g D y t g y t g D y t g D y t g t

y t g t y t g D y t g D y t g t

t y t

 

  



    
  

 
    

 

 

Using (6.15) and then integrating, we have,                

         T T T

x x

I

t y t g D y t g H t dt    

     
1

0
2

T T

x

I

y t g t H t dt  
 

   
 
  

This, because of (6.14), yields, 

              0
T T T

x x

I

t y t g D y t g H t dt                    (6.19) 

If     0.0, ei , then (6.18), implies   0,t t I    and   0t    

from (6.12).  

Thus, we have, 

    , , , 0.t t      

This contradicts (6.17). Hence      

              .00..0,   orei  

We claim ( ) 0,t t I   . Suppose that .,0)( Itt   
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From (6.18) we have, 

  0)(  t  

implying 0  . Using (6.18) in (6.19), we have, 

          0
T T T

x x

I

t y t g D y t g H t dt     

implies                   0
T T T T

x x

I I

t y t g D y t g dt t H t dt       (6.20) 

In view of the hypothesis (A3) i.e., 

        0
T T T

x x

I

t y t g D y t g dt    

and                   0
T

I

t H t dt   . 

We have, 

              0
T T T

x x

I

t y t g D y t g H t dt     

This contradicts (6.20). Hence ( ) 0,t t I   . Consequently (6.18) 

implies   0,t t I     

From (6.10), we have , 

       0 x

T

x

T

xx gtDygtyDff                (6.21) 

Also from (6.4), we have, 

       T T

x x x xf Df y t g D y t g     

Using this in (6.21), we have, 

       0 x

T

x

T
gtDygty   



158 
 

In view of the hypothesis (A2), this gives, 

0.    

From (6.12) ,we have, 

0)(  tg jj   

Because 0  , this gives,                         

 
0



 t
g

j

j  

        , , 0g t x x   

x  is feasible to (CP). In view of   0,t t I   gives the equality of two 

objective values follows. The optimality of x  for (CP) follows from 

Theorem 6.1. 

6.4   Natural Boundary Values 

   In this section, we formulate dual variational problem with 

natural boundary values rather than fixed end points. 

(CP0):  Minimize  dtxxtf
I

 ,,  

 Subject to 

               , , 0,g t x x t I   

(CD0): Maximize      
1

, ,
2

T

I

F t x x t F t dt 
 

 
 

  

 Subject to  

                      0 ,
T T

x x x xf y t g D f y t g F H t t I                       

                          0,y t t I   

                     0,
T

x
t a

y t g


                               

      0,
T

x
t b

y t g
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 We shall not repeat the proofs of Theorem 6.1-6.3, as these 

follow on the lines of the analysis given in [11].    

6.5   Nonlinear Programming 

 If all functions in (CP0) and (CD0) are independent of t, then 

these problems will reduce to following pair of dual problems, treated 

by Bector and Chandra [11].               

 (P1): Minimize    f x  

 Subject to 

               0,g x   

(D1):  Maximize    21

2

Tf x p f x p     

 Subject to 

                                2 0T Tf y g f y g p      

       21
0

2

T T Ty g x p y g x p    

   0y    

Where                           2, ,T T

x xxf x f x y g x y g f x f x    

       2 T T

x
x

y g x y g and p    
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CHAPTER 7 

 

SECOND-ORDER DUALITY FOR NONDIFFERENTIABLE 

CONTINUOUS PROGRAMMING PROBLEMS 

 

 

7.0.  INTRODUCTORY REMARKS 

he purpose of this chapter is to study second-order duality for 

two classes of nondifferentiable continuous programming 

problem. This chapter comprises two sections 7.1 and 7.2 addressing 

second-order duality for one having nondifferentiability due square 

root of certain quadratic form and other containing support functions. 

The popularity of this type of problems seems to originate from the 

fact that, even though the objective function and or / constraint 

functions are non-smooth, a simple representation of the dual problem 

may be found. The theory of non-smooth mathematical programming 

deals with more general type of functions by means of generalized sub- 

differentials. However, square root of positive semi-definite quadratic 

forms and support functions are amongst few cases of the 

nondifferentiable functions for which one can write down the sub-or 

quasi-differentials explicitly. Here, various duality theorems for this 

pair of Wolfe type dual problems for which each class of problems are 

validated under second-order pseudoinvexity condition. A pair of 

Wolfe type dual variational problems with natural boundary values 

rather than fixed end points is presented and the proofs of its duality 

T 
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results are indicated. It is also shown that our second-order duality 

results can be considered as dynamic generalizations of corresponding 

(Static) second-order duality results established for nondifferentiable 

nonlinear programming problem, considered by Zhang and Mond 

[101]. 

7.1  SECOND-ORDER DUALITY FOR A CLASS OF 

NONDIFFERENTIABLE CONTINUOUS 

PROGRAMMING PROBLEMS 

In this section, we formulate a Wolfe type second-order dual 

associated with a class of nondifferentiable continuous programming 

problems with square root of certain quadratic form appearing in the 

objective functional. Under the second-order pseudo-invexity, various 

duality theorems are validated for this pair of dual problems. A pair of 

dual problems with natural boundary values is constructed and the 

proofs of its various duality results are merely indicated. Further, it is 

shown that our results can be viewed as dynamic generalizations of 

corresponding (static) second –order duality theorems for a class of 

nondifferentiable nonlinear programming problems existing in the 

literature. 

 Consider the following class of nondifferentiable continuous 

programming problem studied in [19]: 

(P
+
): Minimize             

1
2

, ,
T

I

f t x t x t x t B t x t dt
 

 
 
  

 Subject to    

     0 ,x a x b   

      , , 0,g t x t x t t I   

                           , , 0,h t x t x t t I    
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where,  

i)  f, g and h are twice differentiable functions 

from n nI R R  into , m kR R and R respectively ,and 

ii)   B t  is a positive semi definite n n  matrix with 

 B  continuous on I . 

The following proposition gives the Fritz John optimality 

conditions which are derived by Chandra, Craven and Husain [19]. 

Proposition 7.1.1 (Fritz-John Conditions): If (P
+
) attains a local 

minimum at  x X  and if     , ,xh x x    maps X onto a closed 

subspace of  , pC I R  , then there exist Lagrange multipliers  R   , 

piecewise smooth : my I R  and : kI R  ,not all zero, and also 

piecewise smooth : nz I R satisfying ,for all t I , 

                      , , , , , ,
T T T

x x xf t x t x t z t B t y t g t x t x t t h t x t x t   

 
                  , , , , , , ,

T T

x x xD f t x t x t y t g t x t x t t h t x t x t t I     
 

    

      , , 0,
T

y t g t x t x t t I   

          1,
T

z t B t z t t I                                                                                           

                 
1

2
,

T T
x t B t z t x t B t x t t I   

If       , ,xh x x       is subjective, then   and y  are not both zero. 

The following Schwartz inequality has been used in obtaining 

the above optimality conditions and will also be needed in the 

forthcoming analysis.  
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Lemma 7.1.1 (Schwartz inequality):  It states that
         

                   
1 1

2 2
,

T T T
x t B t z t x t B t x t z t B t z t t I    (7.1) 

with equality in (7.1) if (and only if) 

                     0B t x t q t z t   for some   .q t R  

Remark 7.1.1: The Fritz John necessary optimality conditions in 

Proposition 7.1.1 for (P
+
), become the Karush-Kuhn-Tucker type 

optimality conditions if 1  . It suffices for 1  , that the following 

Slater’s condition holds:  

                  , , , , , , 0x xg t x t x t g t x t x t t g t x t x t t    , 

 t X   and all .t I  

7.1.1  Second-Order Duality 

Consider the following continuous programming problem (CP) 

by ignoring the equality constraint,     , , 0, ,h t x t x t t I 
 

in the 

problem (P
+
):  

(CP
+
):   Minimize             

1
2

, ,
T

I

f t x t x t x t B t x t dt
 

 
 
  

 Subject to    

     0 ,x a x b       (7.2) 

                              , , 0,g t x t x t t I 
                  

(7.3) 

Analogously to the second-order dual problem introduced by 

Mangasarian [66] for a nonlinear programming problem, we consider 

the following second-order dual continuous programming problem 

(CD
+
) for (CP

+
).
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(CD
+
):  Maximize                   , , , ,

T T

I

f t u t u t u t B t z t y t g t u t u t 

 
     

1

2

T
p t H t p t dt


 



 
      Subject to  

      buau  0                   (7.4)                                          
 

                    

                 , , , ,
T T

f t u t u t u t B t z t y t g t u t u t   

   
            , , , ,

T

u uD f t u t u t y t g t u t u t 
 

       0 ,H t p t t I       (7.5) 

                            1, ,
T

z t B t z t t I       (7.6) 

    0, ,y t t I                          (7.7) 

where 

   
               

      2

, , , , 2 , , , ,

, , , ,

T T

uu u uu u
u u

T

uu u
u

H t f t u u y t g t u u D f t u u y t g t u u

D f t u u y t g t u u

    
  

  
  

 

Theorem 7.1.1 (Weak Duality): Let   Xtx   be a feasible solution of 

(CP
+
) and       , ,u t y t z t  be a feasible solution of (CD

+
). If  

            ,.,. ,.,.
T T

I

f t B t z t y t g t dt    is second-order pseudoinvex 

with respect to    , ,t x u  , then 

inf. (CP
+
)   ≥ sup. (CD

+
).                      

Proof:  From (7.5), we have, 

               

                

, , , ,

, , , ,

TT

u u

I

T T

u u

I

f t u t u t B t z t y t g t u t u t

D f t u t u t y t g t u t u t dt H t p t dt
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, , , ,

, , , ,

, , , ,

TT

u u

I

T T T

u u

t b
TT

u u
t a

f t u t u t B t z t y t g t u t u t

D f t u t u t y t g t u t u t H t p t dt

f t u t u t y t g t u t u t



 






  


  


 



 

                                                              (by integration by part) 

Using the boundary conditions (7.2) and (7.4), we have, 

                , , , ,
TT

u u

I

f t u t u t B t z t y t g t u t u t  


 
                  , , , , 0

T T T

u uD f t u t u t y t g t u t u t H t p t dt     


 

This,  in  view  of  second-order  pseudoinvexity  of 

            ,.,. ,.,.
T T

I

f t B t z t y t g t dt   , yields, 

            , , , ,
T T

I

f t x x x t B t z t y t g t x x dt   

             

                 
1

, , , ,
2

T T T

I

f t u u u t B t z t y t g t u u p t H t p t dt
 

    
 


 

Because of  Schwartz inequality (7.1) along with (7.5), (7.6) and (7.2), 

this implies,          
 

           
1

2
, ,

T

I

f t x t x t x t B t x t dt
 

 
 
  

                        
1

, , , , ,
2

T T T

I

f t u u u t B t z t y t g t u u p t H t p t dt
 

    
 
  

yielding, 

inf (CP
+
) ≥ sup (CD

+
). 

Theorem 7.1.2 (Strong Duality):  If   Xtx  is an optimal solution of 

(CP
+
) and is also normal, then there exist piecewise smooth function 

: my I R  and : nz I R such that         , , , 0x t y t z t p t   is a feasible 
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solution of (CD
+
) and the two objective values are equal. Furthermore, 

if the hypotheses of Theorem 7.1.1 hold, then         , , ,x t y t z t p t is 

an optimal of (CD
+
). 

Proof: From Proposition 7.1.1, there exist a piecewise smooth function 

: my I R  and : nz I R  such that 

          , , , ,
T

xf t x x B t z t y t g t x x 
 

      , , , , 0,
T

x xD f t x x y t g t x x t I     

   , , 0,
T

y t g t x x t I   

                    
            

1
2
,

T T
x t B t z t x t B t x t t I 

 

                           1, ,
T

z t B t z t t I 
 

    0,y t t I   

Hence         , , , 0x t y t z t p t   satisfies the constraints of (CD
+
) and 

the objective values are equal. Furthermore, for every feasible 

solution         , , ,u t y t z t p t ,from the above conditions we have,  

             
                 

1
, , , ,

2

T T T

I

f t x x x t B t z t y t g t x x p t H t p t dt
 

   
 
  

             

        
1

2, ,
T

I

f t x x x t B t x t dt
  

  
  


 

Using 

                   
1

2
, , 0 , 0, )

T T T
y t g t x x x t B t z t x t B t x t and p t t I   

 

             
                 

1
, , , ,

2

T T T

I

f t u u u t B t z t y t g t u u p t H t p t dt
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So,         , , ,x t y t z t p t is an optimal solution of (CD

+
). 

Theorem 7.1.3 (Converse Duality): Assume that f and g are thrice 

continuously differentiable and          , , ,x t y t z t p t   be an optimal 

solution of (CD
+
) .Let the following conditions hold: 

(i):    The Hessian matrix H(t)  is non-singular, and 

(ii):                       2 0
T T T

xx x

t H t t D t H t t t D H t t       
 

  0,t t I  
 

Then  x t is feasible for (CP
+
),    , , 0 ,

T
y t g t x x t I  . In addition, if 

the hypotheses in Theorem 7.1.1 hold, then  tx  is an optimal solution. 

Proof: Since         , , ,x t y t z t p t  is an optimal solution for (CD
+
), by 

Proposition 7.1.1, there exist Lagrange multiplier R  , and piecewise 

smooth : , :n mI R I R    and : nI R   such that following 

conditions hold at the feasible point of (CD
+
).         

              1

2

T

x x

x

f B t z t y t g p t B t p t


  


 

        1

2

T

x x
x

D f y t g p t B t p t
 

   
 

 

             
T T T

xx x xx x xx x

t f y t g D f y t g H t p t     


 

              0,
T T

xx x xx x xx x

D f y t g D f y t g H t p t t I


      


         

   (7.8)                                                    

         

 

21
2

2

0, , 1(1)    

xx xx xx xx

T Tj j j j j

j

g p t g p t t g Dg D g p t

t t I j m

 



 
    

 

   
    (7.9)
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             2 0
T

x t B t t B t t B t z t         (7.10) 

       0,t p t H t t I              (7.11)                                                                                                                       

             0,
T

x x x xf B t z t y t g D f y t g H t p t       t I  

         (7.12)                                                        

          1 0,
T

t z t B t z t t I   
              (7.13) 

    0,
T

t y t t I  
    (7.14) 

 

 , ( ), ( ) 0,t t t I                          (7.15)      
 

 , ( ), ( ), ( ) 0t t t t I                           (7.16)                 

 By singularity of H (t), (7.11) yields,                                                                                                               

( ) ( ) 0,t p t t I                                      (7.17) 

If 0  , (7.17) implies   0, .t t I    From (7.9), we have   0, .t t I  
 

The relation (7.10) together with (7.13) gives   0.t   Hence 

      , , , 0,t t t t I      , contradicting (7.16). Consequently 0  . 

From (7.17) and 0  , (7.8) becomes,                       

             1

2

T

x x
x

f B t z t y t g p t B t p t    

        1

2

T

x x
x

D f y t g p t B t p t
 

   
 

 

           

                0,

T T

xx x xx x xx x

T T

xx x xx x xx x

f y t g D f y t g H t p t

D f y t g D f y t g H t p t p t t I

    



      



U 

Using the expression of H (t) and (7.12), this gives, 

                   2 0, ,
T T T

xx

p t H t p t D p t H t p t p t D H t p t t I     
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which, because of the hypothesis (ii) implies   0,p t t I  .From (7.9), 

we have, 

   0, , 1,2... 7.18j jg t t I j m      

This, because of 0  , yields, 

 , , 0 ,jg t x x t I   

The relation (7.18) along with (7.14) and 0    gives, 

   , , 0 ,
T

y t g t x x t I       (7.19) 

Using    0,t t I   and 0   , (7.10) yields, 

   
 

     2 , , 7.20
T t

B t x t B t z t t I




 
  

   

Which is the required condition for the equality in Schwartz inequality, i.e., 

                     
1 1

2 2 7.21
T T T

x t B t z t x t B t x t z t B t z t

 

If    0,t t I   , (7.13) gives,       1
T

z t B t z t  , and so (7.20) implies, 

            
1

2 ,
T T

x t B t z t x t B t x t t I 
 

If    0,t t I   , (7.20) implies,     0,B t x t t I  . So we still get 

                      
              

1

2 , 7.22
T T

x t B t z t x t B t x t t I 
 

Therefore, from (7.19), (7.22) and   0,p t t I  , we have 

              

        
1

2, ,
T

I

f t x x x t B t x t dt
  

  
  


      

                 
1

, , , ,
2

T T T

I

f t x x x t B t z t y t g t x x p t H t p t dt
 

   
 


 

This, by the application of Theorem 7.1.1 yields the optimality of 

 x t for (CP
+
). 
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7.1.2. Natural Boundary Values 

  In this section, we formulate a pair of nondifferentiable dual 

variational problems with natural boundary values rather than fixed 

end points: 

(CP0): Minimize            
1

2, ,
T

I

f t x x x t B t x t dt
  

 
  
  

 Subject to 

               , , 0, .g t x x t I   

(CD0): Maximize                     , , , ,
T T

I

f t x t x t x t B t z t y t g t x t x t   

                                    
1

2

T
p t H t p t dt


 


 

  Subject to  

        
          

          

, , , ,

, , , , 0,

T

x x

T

x x

f t x x B t z t y t g t x x

D f t x x y t g t x x H t p t t I

 

      

             
      1,

T
z t B t z t t I 

 

      0,y t t I 
 

                         
     , , , , 0,

T

x x
t a

f t x x y t g t x x


 
 

                         
     , , , , 0,

T

x x
t b

f t x x y t g t x x


 
 

 We shall not repeat the proofs of Theorem 7.1.1-7.1.3, as these 

follow on the lines of the analysis of the preceding section with slight 

modifications.    
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7.1.3. Non-differentiable Nonlinear Programming Problems 

 If all functions in the problems (CP0) and (CD0) are independent 

of t and 1b a  , then these problems will reduce to following 

nondifferentiable dual variational problems, treated by Zhang and 

Mond [101].               

(NP): Minimize      
1

2Tf x x Bx  

 Subject to 

    0,g x   

(ND):  Maximize           21

2

T T T Tf x x Bz y g x p f x y g x p        

 Subject to 

          

         2 0T T Tf x x Bz y g x f x y g x p     

                    1, 0Tz Bz y   

where                           T T T

x xf x x Bz y g x f x Bz y g x       

and                                2 T T

xx x
x

f x y g x f x y g x   
 

7.2  SECOND-ORDER DUALITY FOR CONTINUOUS 

PROGRAMMING  CONTAINING  SUPPORT 

FUNCTIONS   

  In this section, a second-order dual problem is formulated for a 

more general class of continuous programming problem in which both 

objective and constrained function contain support functions, hence it 

is nondifferentiable. Under second-order invexity and second-order 

pseudoinvexity, weak, strong and converse duality theorems are 

established for this pair of dual problems. Special cases are deduced 

and a pair of dual continuous problems with natural boundary values is 
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constructed. A close relationship between duality results of our 

problems and those of the corresponding (static) nonlinear 

programming problem with support functions is briefly outlined. 

7.2.1.  Pre-requisites 

 Consider the following nondifferentiable continuous programming 

problem with support functions of Husain and Jabeen [52]: 

(CP+): Minimize       , , |
I

f t x x S x t K dt  

 Subject to    

     0 , 7.23x a x b 

                                    

      , , | 0, 1,2... , , 7.24j jg t x x S x t C j m t I   

 

where,  f and g are continuously differentiable and each C
j
 ,(j=1,2….m) 

is a compact convex set in R
n
 .Husain and Zamrooda [52] derived the 

following optimality conditions for (CP+):  

Lemma 7.2.1 (Fritz-John Necessary optimality Conditions): If the 

problem (CP+) attains a minimum at x x X  , there exist r R  and 

piecewise smooth function : my I R  with         1 2, ,... my t y t y t y t
, 

: nz I R and : , 1,2...j nw I R j m  ,such that 

            

         

     

1

, , , ,

, , , , ,

m
j j j

x

j

T

x x

r f t x x z t y t g t x x w t

D rf t x x y t g t x x t I



        

   
 



 

          
1

, , 0 ,
m

Tj j j

j

y t g t x x x t w t t I
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                            | ,
T

x t z t S x t K t I       

         | , 1,2... ,
T j jx t w t S x t C j m t I  

 

                         , , 1,2... ,j jz t K w t C j m t I   
 

                       , 0,r y t t I   

                       , 0,r y t t I 
 

 The minimum x of (CP+) may be described as normal if 1r  so 

that the Fritz John optimality conditions reduce to Karush-Kuhn-

Tucker optimality conditions. It suffices for 1r  that Slater’s condition 

holds at x . 

 Now we review some well known facts about a support function 

for easy reference. 

Let  be a compact set in nR , then the support function of  is 

defined by  

         max : ,
T

S x t x t v t v t t I     

A support function, being convex everywhere finite, has a 

subdifferential in the sense of convex analysis i.e., there exist 

  ,nz t R t I  , such that 

       ( ) ( ) ( ) ( )
T

S y t S x t y t x t z t      

From [81], the subdifferential of   S x t  is given by  

            , such that .
T

S x t z t t I x t z t S x t        
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For any set nA R , the normal cone to A at a point  x t A  is defined 

by  

         ( ) ( ) ( ) 0,n

AN x t y t R y t z t x t z t A       

It can be verified that for a compact convex set B,  ( ) ( )By t N x t  if and 

only if  

   ( ) ( ) ,TS y t B x t y t t I   

7.2.2  Second-Order Duality 

The following problem is formulated as Wolfe type dual for the 

Problem (CP+): 

(CD+):Maximize               
1

, , , ,
m

T T Tj j j

jI

f t u u u t z t y t g t u u u t w t



  


                                                                                          

     
1

2

T
p t H t p t dt


 


      

  Subject to  

               buau  0                                                    (7.25)       

                       

 
          

1

, , , ,u

m
Tj j j

u

j

f t u u z t y t g t u u w t


  
 

            , , , , 0 , 7.26
T

u uD f t u u y t g t u u H t p t t I    
   

                                        

     , , , 1,2... . 7.27j jz t K w t C t I j m   
 

                   
   0, . 7.28y t t I     

If   0,p t t I  , the above dual becomes the dual of the problem 

studied in [52]. 
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Theorem 7.2.1 (Weak Duality): Let   Xtx   be a feasible solution of 

(CP+) and               1 2, , , , ,..., ,mu t y t z t w t w t w t p t  be feasible solution 

for (CD+). If for all feasible                  1 2, , , , , ,..., ,mx t u t y t z t w t w t w t p t  

and with respect to  =  , ,t x u   

i)       ,.,.
T

I

f t z t dt   and         
1

, ,
m

j j j

j I

y t g t w t dt


     

second-order invex . 

or 

 ii)                
1

,.,. , ,
m

T Tj j j

jI

f t z t y t g t w t dt


 
       

 


                    
is second-order  pseudoinvex .  

then 

inf (CP+)   ≥  sup (CD+). 

Proof:(i)      , , |
I

f t x x S x t K dt  

                

              

     

1

, , , ,

1

2

m
T T Tj j j

jI

T

f t u u u t z t y t g t u u u t w t

p t H t p t dt



   


 




 

                 

             

              
1

, , , ,

1
, ,

2

T T

I I

m
T Tj j j

j I I

f t x x x t z t dt f t u u u t z t dt

y t g t u u u t w t dt p t H t p t dt


   

  

 

 
 

                

            

              

     

1

, , , ,

, ,

1
,

2

TT T

u u

I

m
T T Tj j j

jI I

T

I

f t u u z t D f t u u F t p t dt

p t F t p t dt y t g t u u u t w t dt

p t H t p t dt
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where   22xx xx xxF t f Df D f     and using the second-order invexity of 

      ,.,.
T

I

f t z t dt   

            , , , , , ,
t b

T T

u u u
t a

I

f t u u z t Df t u u F t p t dt f t u u 



       

                     
1

1 1
, ,

2 2

m
T T T Tj j j

j I I I

y t g t u u u t w t dt p t F t p t dt p t H t p t dt


     

      

 (by Integrating by parts)        

               

        

           

1

1

, , , ,

, ,

1 1

2 2

u

m
T TT j j j

u

jI I

m
T Tj j j

j I

T T

I I

y t g t u u w t D y t g t u u G t p t dt

y t g t u u u t w t dt

p t F t p t dt p t H t p t dt






      

 

 

 



 

 

                  

        

           

1

1

, ,

, ,

1 1

2 2

u

m
T T TT j j j

u

jI I

m
T Tj j j

j I

T T

I I

y t g t u u w t D y t g G t p t G t p t dt

y t g t u u u t w t dt

p t F t p t dt p t H t p t dt

 





     



 

 

 



 

  

              

           

1

1
, ,

2

1 1

2 2

m
T T Tj j j

j I I

T T

I I

y t g t x x u t w t dt p t G t p t dt

p t F t p t dt p t H t p t dt



   

 

 

 
                       

 

                    
       

1

, , | 0
m

Tj j j

j I

y t g t x x S x t C dt
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This implies ,
 

     

              

     

1

, , |

, , , ,

1

2

I

m
T Tj j j

jI

T

f t x x S x t K dt

f t u u u t z t y t g t x x u t w t

p t H t p t dt





   


 






 

yielding, 

inf (CP+) ≥ sup (CD+). 

 (ii)        From (7.26), we have 

            

          

1

0 , , , ,

, , , ,

m
T TT j j j

u

jI

T

u u

f t u u z t y t g t u u u t w t

D f t u u y t g t u u H t p t dt




   

   


 

          

              

1

, , , ,

, , , ,

u

m
TT j j j

u

jI

t bT T T T

u u u u t a

f t u u z t y t g t u u w t

D f t u u y t g t u u H t p t dt f yg



  







    

   



 

                      (by Integrating by parts) 

Using boundary conditions (7.23) and (7.25) 

          

            

1

, , , ,

, , , , 0

u

m
T j j j

u

jI

T T T

u u

f t u u z t y t g t u u w t

D f t u u y t g t u u H t p t dt



 



    

  


 

This, in view of second-order pseudo-invexity of  

              
1

,.,. , ,
m

T Tj j j

jI

f t z t y t g t w t dt


 
       

 


 

yields, 
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1

, , , ,
m

T Tj j j

jI

f t x x x t z t y t g t x x x t w t dt


 
   

 
  

              
1

, , , ,
m

T Tj j j

jI

f t u u u t z t y t g t u u u t w t



   




      
1

2

T
p t H t p t dt


 


 

            
1

, , | , , |
m

j j j

jI

f t x x S x t K y t g t x x S x t C dt


 
    

 


 

              
1

, , , ,
m

T T Tj j j

jI

f t u u u t z t y t g t u u u t w t



   




      
1

2

T
p t H t p t dt


 


 

Using (7.24) and (7.28) together with       |
T

x t z t S x t K  and  

      | , , 1,2,...
T j jx t w t S x t C t I j m    

This gives, 

     , , |
I

f t x x S x t K dt

 
              

1

, , , ,
m

T Tj j j

jI

f t u u u t z t y t g t u u u t w t



   




      
1

.
2

T
p t H t p t dt


 


 

That is, 

inf (CP+) ≥ sup (CD+). 

Theorem 7.2.2 (Strong Duality): If   Xtx  is a local (or global) 

optimal solution of (CP+) and is also normal, then there exist piece 

wise smooth factor : my I R  , : nz I R and : ( 1,2,... )j nw I R j m        

such that               1 2, , , , ..., , 0mx t y t z t w t w t w t p t   is a feasible         



179 

 

solution of (CD+) and the two objective values are equal.              

Furthermore, hypotheses of Theorem 7.2.1 hold, then 

            1 2, , , , ..., , ( )mx t y t z t w t w t w t p t  is an optimal solution of 

(CD+). 

Proof: From Lemma 7.2.1, there exist piecewise smooth function 

: my I R , : nz I R and : ( 1,2,... )j nw I R j m   satisfying    , ,xf t x x z t   

           , , , , , , 0,
m

T Tj j j

x x x

j i

y t g t x x w D f t x x y t g t x x t I


     
   

    , , 0,
m

Tj j j

x

j i

y t g t x x w t I


                   

      | ,
T

x t z t S x t K t I                                                          

      | , 1,2... ,
T j jx t w t S x t C j m t I  

 

                     , , 1,2... ,j jz t K w t C j m t I   
             

                      0,y t t I                                                                                                                        

Hence               1 2, , , , ..., , 0mx t y t z t w t w t w t p t 
 

satisfies the 

constraints of (CD+) and  

              
1

, , , ,
m

T T Tj j j

jI

f t x x u t z t y t g t x x x t w t



  




 

     
1

2

T
p t H t p t dt


 


     , ,

I

f t x x S x t K dt     (7.29) 

That is, the objective values are equal. Furthermore, for every feasible 

solution, we have from (7.29) 
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1

, , , ,
m

T T Tj j j

jI

f t x x u t z t y t g t x x x t w t



  




 

     
1

2

T
p t H t p t dt


 

  

              
1

, , , ,
m

T T Tj j j

jI

f t u u u t z t y t g t u u u t w t



   




 

     
1

2

T
p t H t p t dt


 

  

So,             1 2, , , , ..., mx t y t z t w t w t w t  is optimal for (CD+).  

Theorem 7.2.3 (Converse Duality): Let f and g are thrice continuously 

differentiable and                1 2, , , , ..., ,mx t y t z t w t w t w t p t   be an 

optimal solution of (CD+) .If the following conditions hold: 

(A1):    The Hessian matrix H(t)  is non-singular, and 

(A2):               T T

x x
t H t t D t H t t   

 

      2 0,
x

t D H t t t I   
  

                  0,t t I  
 

Then    x t   is  feasible  solution  of  (CP+),  then 

        
1

, , 0,
m

Tj j j

j

y t g t x x x t w t t I


   . In addition, if the hypotheses 

in Theorem 7.2.1 hold, then  tx  is an optimal solution of (CP+).
 

Proof: Since               1 2, , , , ..., ,mx t y t z t w t w t w t p t  is an optimal 

solution for (CD+), then there exist piece wise smooth : nI R   

and : mI R  such that following conditions [81] are satisfied. 
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1

1
, , , ,

2

1
, , , ,

2

, ,

, ,

, ,

, , 0,

m
Tj j

x x
x

j

T T

x
x

T T

xx x
x

T

xx x
x

T

xx xx x

T

xx x xx

f t x x z t y t g t x x w t p t H t p t

D f t x x y t g t x x p t H t p t

t f t x x y t g

D f t x x y t g

H t p t D f t x x y t g

D f t x x y t g H t p t







 
    

 

 
   

 

 

 

  

   



 

 7.30t I

           

       2

1
, ,

2

2 0, , 1,2,...

xx

xx xx xx

Tj j j

T j j j j

g t x x x t w t p t g p t

t g Dg D g p t t t I I m



 

 
  

 

      

 7.31

 

      

          

           

1

, , , ,

, , , , 0,

m
j j j

x

j

T

x x

f t x x z t y t g t x x w t

D f t x x y t g t x x H t p t t I



 
   

 

    



 
 7.32  

          7.33
T

Kx t t N z t  
                                                                    

 
            , 1,2... 7.34

j

T j j j

Cx t y t t y t N w t j m   
 

        0,   7.35t p t H t t I   

                                                                                                                                                                  

     0,   7.36
T

t y t t I  

 

                      , ( ) 0,t t I                           (7.37)       

                , ( ), ( ) 0t t t I                       (7.38)                 
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 By the singularity of H (t), (7.35) implies, 

( ) ( ) 0,t p t t I          (7.39)     

  If 0  , then   0,t t I    and so   0, .t t I    This contradicts 

(7.38), Hence 0  .      

             

        

             

1

1

2

1

2

x

m
Tj j j

x
x

j

T T

x x
x

T T T

xx x xx x xx x

f z t y t g w t p t H t p t

D f y t g p t B t p t

t f y t g D f y t g H t p t



   

 
   

 

    



          , ,
T T

xx x xx x
x x

D f y t g D f t x x y t g   

 

       0, 7.40
x

H t p t t I      

Using the expression of H (t) and (7.40), this gives, 

            T T

x

p t H t p t D p t H t p t
 

      2 0,
T

x
p t D H t p t t I    

This, in view of the hypothesis (A2) implies,  

   0, 7.41p t t I   

The relations (7.33) and (7.34) imply 

                               , 1,2...
j

T T j

K Cx t N z t and x t N w t j m                

This respectively yields, 

      | ,
T

x t z t S x t K t I    

and           | , 1,2... ,
T j jx t w t S x t C j m t I    

 

The relation (7.31) with   0,p t t I  and (7.36) ,gives, 
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1

, , 0, 7.42
m

j j j

j

y t g t x x x t w t t I


    

The relation (7.31) with   0,p t t I  ,   0,j t t I    and 

      | ,
T

x t z t S x t K t I   

yields 

                  
    , , | 0, 1,2... ,j jg t x x S x t C j m t I     

That is, x is feasible to (CP). 

Now, in view of        ,
T

x t z t S x t K t I  and (7.42), we have 

              
1

, , , ,
m

T T Tj j j

jI

f t x x x t z t y t g t x x x t w t



  




 

          
1

, , |
2

T

I

p t H t p t dt f t x x S x t K dt


  




 
This, along with the hypotheses of Theorem 7.2.1, yields that  x t is an 

optimal solution of (CP+). 

7.2.3  Special Cases 

 Let for  ,t I B t  be a positive semi-definite matrix and 

continuous on I. Then 

                        
1

2
| ,

T
x t B t x t S x t K t I   

where                1,
T

K B t z t z t B t z t t I    

Replacing   |S x t K by       
1

2T
x t B t x t  and suppressing each 

  | jS x t C from the constraints of (CP+), we have following problems 

treated in the previous chapter. 
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(CP2): Minimize          
1

2
, ,

T

I

f t x x x t B t x t dt
 

 
 
  

 Subject to    

   0 ,x a x b 
                       

 

 , , 0,g t x x t I 
          

(CD): Maximize         , ,
T

I

f t u u u t B t z t
 

                                         
1

, ,
2

T T
y t g t u u p t H t p t dt


  


 

 Subject to  

                   buau  0                                                                                             

                       

           

          

, , , ,

, , , , 0 ,

T T

u

T

u u

f t u u u t B t z t y t g t u u

D f t u u y t g t u u H t p t t I

 

        

                        
      1,

T
z t B t z t t I 

                             
 

                                 ,0ty                              

7.2.4  Problems With Natural Boundary Values 

In this section, we formulate a pair of nondifferentiable dual 

variational problems with natural boundary values rather than fixed 

end points. The proof for duality theorems for this pair of dual 

problems is omitted, as they follow immediately on the basis of 

analysis of the preceding section and, of course, slight modifications 

are needed. The problems are: 

(CP0): Minimize       , , |
I

f t x x S x t K dt  

 Subject to 

      , , | 0, , 1,2...,jg t x x S x t C t I j m     
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(CD0):Maximize               
1

, , , ,
m

T T Tj j j

jI

f t x x x t z t y t g t x x x t w t



  




 

  

     
1

2

T
p t H t p t dt


 


 

 Subject to  

 

          

           

1

, , , ,

, , , , 0,

m
j j j

x x

j

T

x x

f t x x z t y t g t x x w t

D f t x x y t g t x x H t p t t I



  

    


 

   , , 1,2... ,j jz t K w t C j m t I     

      0,y t t I 
 

                        
     , , , , 0,

T

x x
t a

f t x x y t g t x x


 
 

                        
     , , , , 0.

T

x x
t b

f t x x y t g t x x


 
 

7.2.5 Nonlinear  Programming  Problems 

 If all functions in the problems (CP0) and (CD0) are independent 

of t, then these problems will reduce to following nonlinear 

programming problems studied earlier.               

(CP1): Minimize     |f x S x t K  

       Subject to 

      | 0, 1,2...j jg x S x t C j m    

(CD1): Maximize           
1

1

2

m
TT j j T j T

j

f u u z t y t g u u w t p Hp


       

 Subject to 

  

          
1

0'

, , 1,2... .,

m
Tj j j

u

j

j j

f u z t y t g u w t Hp

z K w C j m



    

  


  

 where            .T

uu uuH f u y g u   
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