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ABSTRACT

In Chapter 1, we present a brief introduction of spectra of graphs and some

definitions. Chapter 2 is a brief review of energy of graphs and digraphs. We

study the problem of real numbers which cannot be the energy of a digraph. In

Chapter 3, we study the problem of minimal energy in unicyclic signed graphs.

We also construct pairs of equienergetic signed graphs. In Chapter 4, we have

introduced the concept of energy in signed digraphs. We characterize unicyclic

signed digraphs with minimal and maximal energy. We extend the concept of

non extended p-sum (NEPS) to signed digraphs and study its spectra. We obtain

upper bounds for the energy of signed digraphs. We also construct pairs of non

cospectral equienergetic signed digraphs. In Chapter 5, we obtain a sufficient

condition for the even coefficients of the characteristic polynomial of a bipartite

signed digraph to alternate in sign and in this case we show it is possible to compare

the energy of bipartite signed digraphs by means of a quasi-order relation defined

on coefficients. We also obtain a sufficient condition for all the even coefficients

of a bipartite signed digraph to be nonnegative. We construct integral, real and

Gaussian signed digraphs and qausi-cospectral digraphs.
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CHAPTER 1

Introduction

1.1 Background

Spectral graph theory (Algebraic graph theory) which emerged in 1950s and

1960s is the study of properties of a graph in relationship to the characteristic

polynomial, eigenvalues and eigenvectors of matrices associated to the graph. The

major source of research in spectral graph theory has been the study of relation-

ship between the structural and spectral properties of graphs. Another source

has research in quantam chemistry. The 1980 monograph ‘spectra of graphs’ by

Cvetković, Doob and Sach [14] summarised nearly all research to date in the area.

In 1988 it was updated by the survey ‘Recent results in the theory of graph spec-

tra’. The third edition of spectra of graphs (1995) contains a summary of the

further contributions to the subject. Since then the theory has been developed to

a greater extend and many research papers have been published. It is important to

mention that spectral graph theory has a wide range of applications to other areas

of mathematics and to other areas of sciences which include Computer Science,

Physics, Chemistry, Biology, Statistics etc.

One of the richest theories in spectral graph theory is the energy of graphs.

The concept of energy of a graph is formulated from the pioneering work of Hückel

[27, 42] who made certain simplification of Schrodinger’s wave equations [14].

Chemists are interested in finding the wave functions and energy levels of a given

molecule. The wave functions φ are the solutions of Schrodinger’s wave equation

(H − E)φ = 0, where H is the energy operator and E is the electron energy. In

order to solve this equation for molecules, Hückel [42] replaced the Schrodinger’s

wave function by the speculation equation |(H − ES)| = 0, where H = αI + βA

and S = I+σA. Here α (the Coulomb integral for carbon atom), β (the resonance

integral for two carbon atoms) and σ are all constants. If we normalize the system

so that α = 0 (the zero energy reference point) and β = 1 (the energy unit), then

H is the adjacency matrix A(G) of the associated graph G. The wave functions

φ are then eigenvalues of A(G). Both wave functions and energy levels can be

measured experimentally and accord well with the predictions of Hückel theory.
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The spectra of graphs can be used to calculate the energy levels of a conju-

gated hydrocarbon as calculated with Hückel Molecular Orbital (HMO) method.

The details of Hückel theory and how it is related to spectral graph theory can be

found in [14].

To study the energy levels of general class of graphs certainly help us in deter-

mining the energy levels of various classes of conjugated hydrocarbons in chemistry.

Considerable work on this aspect has been done from Hückel [42] till today.

Conjugated hydrocarbons are of great importance for both science and tech-

nology. A conjugated hydrocarbon can be characterized as a molecule composed

entirely of carbon and hydrogen atoms, every carbon atom having exactly three

neighbours (which may be either carbon or hydrogen atoms). For example benzene

is a conjugated hydrocarbon. There are theoretical reasons [27, 76] to associate a

graph with a conjugated hydrocarbon according to the following rule:

Every carbon atom is represented by a vertex and every carbon-carbon sigma

bond by an edge, hydrogen atoms are ignored, e.g., the molecular graph of benzene

is C6, a cycle on six vertices.

An important quantam-chemical characteristic of a conjugated molecule is its

total π-electron energy. Within the Hückel Molecular Orbital (HMO) theory this

quantity can be reduced to

E = E(G) =
n∑
j=1

|xj|,

where xj, j = 1, 2, · · · , n, are the eigenvalues of the respective molecular graph.

Gutman [29] in 1978 defined the concept of energy for graphs. This concept

became so popular that more than 300 papers have been published in this direction

till date. At the begining some chemical problems were given graph theoretical

shape and were solved using spectral graph theory. One such problem can be seen

in [31]. Upper and lower bounds for energy were obtained for different classes

of graphs which can be used to estimate the total π-electron energy of molecular

graphs. Pẽna and Rada [62] in 2007 extended energy to digraphs and defined the

energy of a digraph as the sum of the absolute values of real parts of eigenvalues

of the digraph. They obtained Coulson’s integral formula for energy of digraphs

and also characterized unicyclic digraphs with minimal and maximal energy.

Germina, Hameed and Zaslavsky [23] in 2011 extended the concept of energy
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to signed graphs. They defined the energy of a signed graph as the sum of the

absolute values of eigenvalues of a signed graph. They studied the eigenvalues and

energy and laplacian energy for different products of signed graphs. We extend

the concept of energy to signed digraphs in a similar way as graph energy was

extended to energy of digraphs and obtain Coulson’s integral formula for energy

of signed digraphs. We characterize unicyclic signed digraphs with minimal and

maximal energy and also obtain upper bounds for the energy of signed digraphs.

We study the problem of equienergetic signed digraphs.

Here are some definitions.

1.2 Basic Definitions

Definition 1.2.1. Graph. A graph G is a pair (V,E ), where V is a nonempty

set of objects called vertices and E is a subset of V (2), (the set of unordered pairs

of distinct elements of V ). The elements of E are called edges of G.

Definition 1.2.2. Multigraph. A multigraph G is a pair (V,E ), where V is a

nonempty set of vertices and E is a multiset of edges. The number of times an

edge occurs in G is called its multiplicity and edges with multiplicity greater than

one are called multiple edges.

Definition 1.2.3. General graph. A general graph G is a pair (V,E ), where V

is a non empty set of vertices and E is a multiset of edges. We denote by (u, v) an

edge from vertex u to vertex v. An edge of the form (u, u), where u ∈ V , is called

the loop of G and edges which are not loops are called the proper edges. The

number of times a loop occurs is called its multiplicity. A loop with multiplicity

greater than one is called a multiple loop.

Definition 1.2.4. Subgraph of a graph. Let G = (V,E ) be a graph, H = (U,E ′)

is the subgraph of G whenever U ⊆ V and E ′ ⊆ E . If U = V the subgraph is said

to be spanning.

Definition 1.2.5. Bipartite graph. A graph G(V,E ) is said to be bipartite if its

vertex set V can be partitioned into two parts, say V1 and V2 such that each edge

has one vertex in V1 and other in V2.

Definition 1.2.6. Degree. Degree of a vertex v in a graph G(V,E ) is the number

of edges incident on v and is denoted by dv or d(v).
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Definition 1.2.7. k-Regular graph. A graph G(V,E ) is said to be k-regular if

for every vertex v ∈ V , dv = k.

Definition 1.2.8. Path. A path of length n − 1 (n ≥ 2), denoted by Pn,

is a graph with n vertices v1, v2, · · · , vn and with n − 1 edges (vi, vi+1), where

i = 1, 2, · · · , n− 1.

Definition 1.2.9. Cycle. A cycle of length n, denoted by Cn, is the graph with

vertex set v1, v2, · · · , vn having edges (vi, vi+1), i = 1, 2, · · · , n− 1 and (vn, v1).

Definition 1.2.10. Connectedness in graphs. A graph G(V,E ) is said to be

connected if for every pair of vertices u, v there is a path form one to other.

Definition 1.2.11. Matching. Let G(V,E ) be a graph with n vertices and m

edges. A k-matching of G is a collection of k independent edges (i.e., edges which

do not share a vertex) of G.

Definition 1.2.12. Cartesian product. The Cartesian product of two graphs

G1(V1,E1) andG2(V2,E2) denoted byG1×G2 is the graph (V,E ), where V = V1×V2
and ((x1, x2), (y1, y2)) ∈ E if either x1 = y1 and (x2, y2) ∈ E2 or (x1, y1) ∈ E1 and

x2 = y2.

Definition 1.2.13. Kronecker product. The Kronecker product of two graphs

G1(V1,E1) andG2(V2,E2) denoted byG1⊗G2 is the graph (V,E ), where V = V1×V2
and ((x1, x2), (y1, y2)) ∈ E if (x1, y1) ∈ E1 and (x2, y2) ∈ E2.

Definition 1.2.14. (i)Elementary figure. We call a graph to be an elementary

figure if it is either K2 or a cycle Cp, p ≥ 3.

(ii)Basic figure. A graph whose components are elementary figures is called a basic

figure.

Definition 1.2.15. Digraph (or directed graph). A digraph D is a pair (V,A ),

where V is a nonempty set of objects called vertices and A is a subset of V (2),

(the set of ordered pairs of distinct elements of V ). The elements of A are called

arcs of D.

Definition 1.2.16. Multidigraph. A multidigraph D is a pair (V,A ), where V

is a nonempty set of vertices and A is a multiset of arcs (directed edges). The

number of times an arc occurs in D is called its multiplicity and arcs with multi-

plicity greater than one are called multiple arcs.
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Definition 1.2.17. General digraph. A general digraph D is a pair (V,A ),

where V is a non empty set of vertices and A is a multiset of arcs. We denote by

(u, v) an arc from vertex u to vertex v. An arc of the form (u, u), where u ∈ V , is

called the loop of D and arcs which are not loops are called the proper arcs. The

number of times a loop occurs is called its multiplicity. A loop with multiplicity

greater than one is called a multiple loop.

Definition 1.2.18. Subdigraph of a digraph. Let D = (V,A ) be a digraph,

H = (U,A ′) is the subdigraph of D whenever U ⊆ V and A ′ ⊆ A . If U = V the

subdigraph is said to be spanning.

Definition 1.2.19. Outdegree and indegree. In a digraph D = (V,A ), the out-

degree of a vertex v is the number of vertices to which the vertex v is adjacent, it

is denoted by d+(v) or d+v . Similarly the indegree of a vertex v in a digraph D is

the number of vertices from which v is adjacent and it is denoted by d−(v) or d−v .

If d+v = d−v = k, then the digraph is said to be k-regular. A vertex v is said to be

isolated if d+v = d−v = 0.

Definition 1.2.20. Two digraphs D1 and D2 are said to be isomorphic if their

underlying graphs are isomorphic and the direction of arcs are same and we write

D1
∼= D2.

Definition 1.2.21. Complement of a Digraph. The complement of digraph

D = (V,A ) is denoted by D̄. It has a vertex set V and (u, v) ∈ Ā if and only

if (u, v) /∈ A . D̄ is the relative complement of D in K∗n, where K∗n is a complete

symmetric digraph, i.e., a digraph in which for every pair of vertices there is a

directed arc from one to other.

Definition 1.2.22. Self complementary digraph. A digraph D is said to be self

complementary if D ∼= D̄, and D is said to be self converse if D ∼= D′.

Definition 1.2.23. Directed Path. A path of length n − 1 (n ≥ 2), denoted by

Pn, is a digraph with n vertices v1, v2, · · · , vn and with n− 1 arcs (vi, vi+1), where

i = 1, 2, · · · , n− 1.

Definition 1.2.24. Directed cycle. A cycle of length n, denoted by Cn, is the

digraph with vertex set v1, v2, · · · , vn having arcs (vi, vi+1), i = 1, 2, · · · , n− 1 and

(vn, v1). A digraph is acyclic if it has no cycles.
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Definition 1.2.25. Strong connectedness. A digraph D is called strongly con-

nected if for any two vertices there is a path from one to other. The strong

components of a digraph are the maximally strongly connected subdigraphs.

Definition 1.2.26. Oriented graph. An oriented graph is a digraph with no

symmetric pairs of directed arcs and without loops.

Definition 1.2.27. Signed graph. A signed graph is defined to be a pair

S = (G, σ), where G = (V,E ) is the underlying graph and σ : E → {−1, 1}
is the signing function. The sets of positive and negative edges of S are respec-

tively denoted by E + and E −.

Definition 1.2.28. Signed digraph. A signed digraph is defined to be a pair

S = (D, σ) where D = (V,A ) is the underlying digraph and σ : A → {−1, 1} is

the signing function. The sets of positive and negative arcs of S are respectively

denoted by A + and A −.
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CHAPTER 2

On the energy of graphs and digraphs

In this Chapter, we study the energy of graphs and digraphs and present some

well known results on energy of graphs and digraphs. We study the problem of

the real numbers that cannot be the energy of a digraph. We also obtain a sharp

lower bound for the energy of a strongly connected digraph.

2.1 Introduction

Let G be a graph with n vertices v1, v2, · · · , vn and m edges. The adjacency

matrix of G is the n× n matrix A(G) = (aij), where

aij =

{
1, if there is an edge from vi to vj,

0, otherwise.

The characteristic polynomial |xI − A(G)| of the adjacency matrix A(G) of

G is called the characteristic polynomial of G and is denoted by φG(x). The eigen-

values of A(G) are called the eigenvalues of G. The set of distinct eigenvalues of G

together with their multiplicities is called the spectrum of G. If G has k distinct

eigenvalues x1, x2, · · · , xk with respective multiplicities m1,m2, · · · ,mk, then we

write the spectrum of G as spec(G) = {x(m1)
1 , x

(m2)
2 , · · · , x(mk)k }.

The following result relates the coefficients of the characteristic polynomial

of a graph with the structure of the graph and is also known as Sach’s Theorem [14].

Theorem 2.1.1. Let G be a graph of order n and with characteristic polynomial

φG(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an.

Then

aj =
∑
L∈£j

(−1)p(L)2|c(L)|,
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for all j = 1, 2, · · · , n, where £j is the set of all basic figures L of G of order j,

p(L) denotes number of components of L and c(L) denotes the set of all cycles of L.

A graph is bipartite if and only if it contains no odd cycles. As basic figures

of odd order must possess at least one odd cycle, therefore for a bipartite graph

£2j+1 = ∅ for all j ≥ 0 and hence a2j+1 = 0 for all j ≥ 0. Consequently, the

characteristic polynomial of a bipartite graph B takes the form

φB(x) =

bn
2
c∑

j=0

a2jx
n−2j.

The even coefficients of a bipartite graph alternate in sign [14] i.e., (−1)ja2j ≥
0 for all j. Therefore

φB(x) = xn +

bn
2
c∑

j=1

(−1)jb2jx
n−2j, (2.1)

where a2j = (−1)jb2j and b2j are non negative integers.

2.2 Energy of graphs

Definition 2.2.1. Energy of a graph. Let G be a graph of order n with eigen-

values x1, x2, · · · , xn. The energy of G is defined as

E(G) =
n∑
j=1

|xj|.

This concept was first introduced in 1978 by Gutman [29]. The following is

the integral representation for the energy of a graph (also known as the Coulson’s

integral formula).

Theorem 2.2.2. Let G be a graph with n vertices having characteristic polynomial

8



φG(x). Then

E(G) =
n∑
j=1

|xj| =
1

π

∞∫
−∞

(n− ιxφ′G(ιx)

φG(ιx)
)dx,

where x1, x2, · · · , xn are the eigenvalues of graph G, ι =
√
−1 and

∞∫
−∞

F (x)dx de-

notes the principle value of the respective integral.

The following observations [30] follow from Coulson’s integral formula.

Theorem 2.2.3. If G is a graph of order n, then

E(G) =
1

π

∞∫
−∞

1

x2
log |xnφG(

ι

x
)|dx.

Theorem 2.2.4. If G1 and G2 are two graphs of same order, then

E(G1)− E(G2) =
1

π

∞∫
−∞

log |φG1(ιx)

φG2(ιx)
|dx.

Coulson’s integral formula and its various consequences have important chem-

ical applications. Note that the Sach’s Theorem establishes the explicit dependence

of the coefficients of the characteristic polynomial of a graph on the structure of

the graph. The Coulson’s integral formula establishes the explicit dependence of

the energy of a graph on the characteristic polynomial of this graph. By combin-

ing Coulson’s integral formula with Sach’s Theorem, we see the dependence of the

energy of a graph on the structure of this graph and hence a complete information

on the dependence of the total π−electron energy of molecule (as computed within

the HMO model) on the structure of this molecule.

Combining (2.1) and Theorem 2.2.3, the energy of a bipartite graph B is

given as under [33].
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Theorem 2.2.5. If B is a bipartite graph on n vertices, then

E(B) =
1

π

∞∫
−∞

1

x2
log[1 +

bn
2
c∑

j=1

b2jx
2j]dx,

where b2j ≥ 0.

From this energy expression, we see that the energy of a bipartite graph is

an increasing function of the coefficients b2j. Given bipartite graphs B1 and B2

(not of same order), we say B1 � B2 if and only if b2j(B1) ≤ b2j(B2). If for some

j, b2j(B1) < b2j(B2), then we say B1 ≺ B2. Thus the relation � is a quasi-order

relation and energy increases with respect to this relation. That is, if B1 ≺ B2

then E(B1) < E(B2).

2.3 Bounds for the energy of a graph

Several upper and lower bounds for the energy are known. The following

upper and lower bound of energy of a graph in terms of order n, size m and de-

terminant of adjacency matrix is due to McClelland [57].

Theorem 2.3.1. If G is a graph with n vertices and m edges, then√
2m+ n(n− 1)|A(G)|n2 ≤ E(G) ≤

√
2mn. (2.2)

An immediate consequence of Theorem 2.3.1 is the following observation.

Corollary 2.3.2. If |A(G)| 6= 0, then E(G) ≥
√

2m+ n(n− 1) ≥ n.

The graph energy as a function of the number of edges satisfies the following

inequalities [15].

Theorem 2.3.3. If G is a graph with m edges, then

2
√
m ≤ E(G) ≤ 2m.
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with equality on the left if and only if G is a complete bipartite graph plus some

isolated vertices and equality on the right if and only if G is a matching of m edges

plus some isolated vertices.

The following is a lower bound for the energy of a graph in terms of its num-

ber of vertices.

Theorem 2.3.4. If G is a graph with n vertices, then

E(G) ≥ 2
√
n− 1

with equality if and only if G = K1,n−1.

Definition 2.3.5 Strongly regular graph. A k-regular graph G on n vertices is

said to be strongly regular with parameters (n, k, λ, µ) if each pair of adjacent

vertices has the same number λ ≥ 0 of common neighbours, and each pair of non

adjacent vertices has the same number µ ≥ 0 of common neighbours. If µ = 0,

then G is a disjoint union of complete graphs, whereas if µ ≥ 1 and G is non

complete, then eigenvalues of G are k (trivial eigenvalue) and the roots r and s of

quadratic equation

x2 + (µ− λ)x+ (µ− k) = 0.

The eigenvalue k has the multiplicity one, whereas multiplicities mr of r and

ms of s can be calculated by solving the simultaneous equations

mr +ms = n− 1, k + rmr + sms = 0.

A strongly regular graph G is said to be primitive if both G and Ḡ (complement of

G) are connected. A strongly regular graph with parameters (n, k, λ, µ) is denoted

by SRG(n, k, λ, µ).

The following result due to Koolen and Moulton [47] improves the McClelland

upper bound for the graphs with 2m
n
≥ 1, where n is the number of vertices and
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m is the number of edges of the graph.

Theorem 2.3.6. If 2m ≥ n and G is a graph on n vertices and m edges, then

E(G) ≤ 2m

n
+

√
(n− 1)[2m− (

2m

n
)2] (2.3)

holds. Moreover, equality holds in (2.3) if and only if G is either n
2
K2 or Kn or

a non-complete connected strongly regular graph with two non trivial eigenvalues

both with absolute value
√

(2m−( 2m
n

)2)

(n−1) .

Since a graph G with n vertices has at most n(n−1)
2

edges, it follows from

McClelland’s bound (2.2) that

E(G) ≤ n
√
n− 1 (2.4)

must hold.

The following result shows that inequality (2.3) allows to improve the bound

given by (2.5)

Theorem 2.3.7. Let G be a graph on n vertices. Then

E(G) ≤ n

2
(1 +

√
n) (2.5)

holds, with equality if and only if G is a strongly regular graph with parameters

(n, (n+
√
n)

2
, (n+2

√
n)

4
, (n+2

√
n)

4
).

Koolen and Moulton in [46] conjectured that for a given ε > 0, there exists a

graph G of order n such that for almost all n ≥ 1,

E(G) ≥ (1− ε)n
2

(
√
n+ 1),

which was later proved by Nikiforov [59]. For energy bounds about bipartite graphs

see [47, 68].
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2.4 Equienergetic graphs

Two graphs G1 and G2 are said to be cospectral if they have same spec-

trum and non cospectral, otherwise. Isomorphic graphs are cospectral, since adja-

cency matrices of isomorphic graphs are similar by means of a permutation matrix.

There exist non isomorphic cospectral graphs [14]. Cospectral graphs are obviously

equienergetic, therefore problem of equienergetic graphs reduces to the problem of

construction of non cospectral equienergetic graphs.

Definition 2.4.1. Line graph and iterated line graph. The line graph L(G) of

a graph G is the graph whose vertex set is the edge set of G and any two ver-

tices in L(G) are adjacent if and only if the corresponding edges in G share a vertex.

Given a graphG, let L1(G) = L(G), L2(G) = L(L(G)), · · · , Lk(G) = L(Lk−1(G)).

Then Lk(G) is called the k-th iterated line graph of G.

Equienergetic graphs were first constructed by Ramane et al. [72]. The fol-

lowing result shows that for a regular graph, the energy of second iterated line

graph depends only on degree and number of vertices.

Theorem 2.4.2. If G is an r-regular graph of order n, then

E(L2(G)) = 2nr(r − 2).

From Theorem 2.4.2 and noting that iterated line graphs of non cospectral

regular graphs are non cospectral, the following result [72] yields the existence of

non cospectral equienergetic graphs.

Theorem 2.4.3. Let G1 and G2 be two non cospectral regular connected graphs

both on n vertices and both of degree r ≥ 3. Then L2(G1) and L2(G2) are con-

nected, non cospectral and equienergetic.

An inductive argument shows that k-th iterated line graphs of any two con-

nected, non cospectral regular graphs both with same degree and same number of

13



vertices are connected, non cospectral and equienergetic.

The following result due to Ramanne et al. [75] gives a method of construc-

tion of equienergetic complement graphs.

Theorem 2.4.4. If G is a regular graph of order n and of degree r ≥ 3, then

E(L2(G)) = (nr − 4)(2r − 3)− 2.

From Theorem 2.4.4 and noting that complemented iterated line graphs of

non cospectral regular graphs are non cospectral, the following observation shows

the existence of equienergetic complement graphs.

Corollary 2.4.5. Let G1 and G2 be two non cospectral regular graphs on n ver-

tices and of degree r ≥ 3. Then L2(G1) and L2(G2) are non cospectral equiener-

getic.

An inductive argument gives the following result.

Corollary 2.4.6. Let G1 and G2 be two non cospectral regular graphs on n ver-

tices and of degree r ≥ 3. Then for k ≥ 2, Lk(G1) and Lk(G2) are non cospectral

equienergetic.

Balakrishnan [6] proved that for a non trivial graph Q, if G = C4 and

H = K2⊗K2, then Q⊗G and Q⊗H are non cospectral and equienergetic. Bonifa-

cio et al. [11] have given conditions on an arbitrary pair G and H of equienergetic

non cospectral graphs to make assertion true for any non trivial connected graph Q.

Theorem 2.4.7. Let G and H be two equienergetic non cospectral graphs such

that there is an eigenvalue x of G for which x > |y|, for all eigenvalues y of H. If

Q is a non trivial connected graph, then Q⊗G and Q⊗H are equienergetic non

cospectral graphs.

The following result due to Bonifacio et al. [11] characterizes a graph G for
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which G⊗K2 and G×K2 are non cospectral and equienergetic.

Theorem 2.4.8. Let G be a connected graph with eigenvalues x1, x2, · · · , xn.

Then G ⊗ K2 and G × K2 are equienergetic non cospectral graphs if and only if

|xi| ≥ 1, for all i = 1, 2, · · · , n.

Liu and Liu [50] proved that there exist a pair of equienergetic graphs on p

vertices for all p ≥ 10. Indulal and Vijaykumar [43] constructed self complemen-

tary graphs on p vertices for every p = 4k, where k ≥ 2 and p = 24t + 1, where

t ≥ 3. For more about equienergetic graphs see [45, 78].

2.5 Hyperenergetic graphs

From Theorem 2.3.1, a graph G with n vertices and m edges satisfies the

upper bound E(G) ≤
√

2mn. This bound depends only on m and n. As among

all n-vertex graphs, the complete graph Kn has maximum number of edges which

is n(n−1)
2

. This motivated Gutman to conjecture that among all n-vertex graphs,

the complete graph Kn has maximum energy which is equal to 2(n − 1). Later

Godsil [26] in 1980’s proved that there exists graphs of order n with energy greater

than 2(n− 1). This motivated the following definition.

Definition 2.5.1. Hyperenergetic graph. A graph G of order n is said to be

hyperenergetic if E(G) > 2(n− 1).

Gutman et al. [34] proved that no Hückel graph (molecular graph) is hyperen-

ergetic. Pirzada [63] proved that Frutch graph is not hyperenergetic. Panigrahi and

Mohapatra [60] proved all primitive strongly regular graphs except SRG(5, 2, 0, 1),

SRG(9, 4, 1, 2), SRG(10, 3, 0, 1)and SRG(16, 5, 0, 2) are hyperenergetic. Balakrish-

nan posed an open problem in [6] that Kn − H is non-hyperenergetic for n ≥ 4,

where H is a Hamiltonian cycle of Kn. Stevanović and Stanković [79] proved that

Kn−H is indeed hyperenergetic, where H is the Hamiltonian cycle of Kn. In fact,

they proved the following stronger result.
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Theorem 2.5.2. If Ci(n, k1, k2, . . . , km), n ∈ N, k1 < k2 < · · · < km < n
2
, ki ∈ N

for i = 1, 2, . . . ,m, denotes a circulant graph with vertex set V = {0, 1, · · · , n− 1}
such that a vertex u is adjacent to all vertices of V − {u} except u± ki (mod n),

i = 1, 2, . . . ,m, then for any given k1 < k2 < · · · < km almost all circulant graphs

Ci(n, k1, k2, . . . , km) are hyperenergetic.

Remark 2.5.3. If H is a Hamiltonian cycle of Kn, then Kn −H = Ci(n, 1).

2.6 Energy of digraphs

Pẽna and Rada [62] extended the concept of energy to digraphs in such a way

that Coulson’s integral formula remains valid. Before defining energy of a digraph,

we give a brief introduction of spectra of digraphs.

Let D be a digraph with n vertices v1, v2, · · · , vn. The adjacency matrix of D

is the n× n matrix A(D) = (aij), where

aij =

{
1, if there is an arc from vi to vj,

0, otherwise.

Unlike graphs the adjacency matrix of a digraph need not be real symmetric,

so eigenvalues can be complex numbers. We denote the characteristic polynomial

|xI − A(D)| of the adjacency matrix A(D) by φD(x). If z1, z2, . . . , zn are eigen-

values of digraph D, we label them so that <z1 ≥ <z2 ≥ · · · ≥ <zn, where <zj
denotes the real part of complex number zj. By Perron Frobenius theorem <z1 is

an eigenvalue of D with largest absolute value and is called spectral radius of D. It

is denoted by ρ. A linear subdigraph of a digraph D is a subdigraph with indegree

and outdegree of each vertex equal to one. Consequently, a linear subdigraph is

either a cycle or disjoint union of cycles. The following result due to Sach [14] re-

lates the coefficients of the characteristic polynomial of a digraph with its structure.

Theorem 2.6.1. If D is a digraph of order n with characteristic polynomial

φD(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an,
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then

aj =
∑
L∈£j

(−1)p(L),

where £j is the set of all linear subdigraphs of D of order j and p(L) denotes the

number of components of L.

The following is the definition of the energy of a digraph as given by Pẽna

and Rada [62].

Definition 2.6.2. LetD be a digraph on n vertices with eigenvalues z1, z2, · · · , zn.

The energy of D is defined as

E(D) =
n∑
j=1

|<zj|,

where <zj denotes the real part of the complex number zj. This definition was

motivated by following integral formula.

Theorem 2.6.3. (Coulson’s integral formula). If D is a digraph on n vertices

and with characteristic polynomial φD(x), then

E(D) =
n∑
j=1

|<zj| =
1

π

∞∫
−∞

(n− ιxφ′D(ιx)

φD(ιx)
)dx,

where z1, z2, · · · , zn are eigenvalues of D, ι =
√
−1 and

∞∫
−∞

F (x)dx stands for the

principal value of the respective integral.

The following result is an immediate consequence of Coulson’s integral for-

mula.

Theorem 2.6.4. If D is a digraph with n vertices, then

E(D) =
1

π

∞∫
−∞

1

x2
log |xnφD(

ι

x
)|dx.
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2.7 Bounds for the energy of digraphs

Recall that a digraph is said to be symmetric if (u, v) ∈ A , then (v, u) ∈ A ,

where u, v ∈ V . A one to one correspondence between graphs and symmetric di-

graphs is given by G 
←→
G , where

←→
G has the same vertex set as the graph G and

each edge (u, v) is replaced by a pair of symmetric arcs (u, v) and (v, u). Under

this identification, a graph can be regarded as a symmetric digraph.

Gudiño and Rada [28] extended the Koolen and Moulton bound for graph

energy to energy of digraphs. The following extends the upper bound (2.3) of

graph energy to digraphs.

Theorem 2.7.1. If D is a digraph with n vertices, a arcs and c2 closed walks of

length 2, then

E(D) ≤ c2
n

+

√
(n− 1)[a− (

c2
n

)2].

Equality holds if and only if D is the empty digraph (i.e., n isolated vertices ) or

D =
←→
G , where G is one of the following:

(i) G = n
2
K2, (ii) G = Kn, (iii) G is a non-complete connected strongly regular

graph with two non trivial eigenvalues both with absolute value
√

(a−( c2
n
)2)

(n−1) .

Definition 2.7.2. Let D be a digraph with a arcs and c2 closed walks of length

2. The symmetry index of D, denoted by s, is defined as s = a − c2. Clearly,

0 ≤ s ≤ n(n − 1) for every digraph D. Also note that a digraph D is symmetric

if and only if s = 0.

The following result extends bound (2.5) of graph energy to digraphs.

Theorem 2.7.3. If D is a digraph with n vertices and symmetry index s, then

E(D) ≤ n

2
(1 +

√
n+

4s

n
).

Equality hods if and only if D =
←→
G , where G is a strongly regular graph with
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parameters (n, (n+
√
n)

2
, (n+2

√
n)

4
, (n+2

√
n)

4
).

The following result due to Tian and Cui [80] improves in some cases the

upper bound in Theorem 2.7.1.

Theorem 2.7.4. Let D be a digraph with n vertices and a arcs. Also let

(c
(1)
2 , c

(2)
2 , . . . , c

(n)
2 ) be the closed walk sequence of length 2 of D. Then

E(D) ≤

√∑n
j=1(c

(j)
2 )2

n
+

√
(n− 1)(a−

∑n
j=1(c

(j)
2 )2

n
).

The equality holds if and only if D =
←→
G , where G is either n

2
K2 or Kn or a non-

complete strongly regular graph with two non trivial eigenvalues both with absolute

value

√
(a−

∑n
j=1

(c
(j)
2 )2

n
)

(n−1) or nK1.

Ayyaswamy, Balachandran and Gutman [5] obtained the following upper

bounds for the energy of strongly connected digraphs.

Theorem 2.7.5. If D is a strongly connected digraph on n vertices and a arcs,

such that <(z1) ≥ (a+c2)
2n
≥ 1, then the inequality

E(D) ≤ a+ c2
2n

+

√
(n− 1)[

a+ c2
2
− (

a+ c2
2n

)2].

Equality holds if and only if D =
←→
G is either n

2
K2 or Kn or a non complete

strongly regular graph with two non trivial eigenvalues both with absolute value√
a+c2

2
−(a+c2

2n
)2

(n−1) .

Suppose that D is a digraph on n vertices with adjacency matrix A(D). We

say D is strongly regular digraph with parameters (n, k, t, λ, µ) if 0 < t < k and A

satisfies the following matrix equations.

JA(D) = A(D)J = kJ
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and

A2(D) = tI + λA(D) + µ(J − I − A),

where J is the matrix whose all elements are equal to unity.

The following result [19] connects parameters of a strongly regular digraph.

Lemma 2.7.6. For a strongly regular digraph with parameters (n, k, t, λ, µ), the

following holds.

0 ≤ λ < t < k

and

0 < µ ≤ t < k.

The following result [19] gives the spectrum of a strongly regular digraph.

Lemma 2.7.7. Let A(D) be the adjacency matrix of a strongly regular di-

graph with parameters (n, k, t, λ, µ). Then A(D) has integer eigenvalues θ0 = k,

θ1 = λ−µ+δ
2

, θ2 = λ−µ−δ
2

with multiplicities m0 = 1, m1 = −k+θ2(n−1)
θ1−θ2 and

m2 = k+θ1(n−1)
θ1−θ2 respectively, provided δ =

√
(µ− λ)2 + 4(t− µ) is a positive inte-

ger.

The following result [5] gives the upper bound for energy of strongly con-

nected digraphs in terms of number of vertices.

Theorem 2.7.8. Let D be a strongly connected digraph on n vertices and a arcs,

such that <z1 ≥ (a+c2)
2n
≥ 1. Then

E(D) ≤ n(1 +
√
n)

2
with equality if and only if D is a strongly regular digraph with parameters

(n, n+
√
n

2
, 3n+2

√
n

8
, n+2

√
n

8
, n+2

√
n

8
).

The following result [70] gives a lower bound for the energy of a digraph.
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Theorem 2.7.9. If D is a digraph with c2 closed walks of length 2, then

E(D) ≥
√

2c2.

Further, E(D) =
√

2c2 if and only if D is acyclic or spec(D) = {−
√

c2
2
, 0(n−2),

√
c2
2
},

where n is the number of vertices of D.

For more about bounds for energy of digraphs see [18].

2.8 Real numbers that cannot be the energy of a digraph

We recall from [10] that every rational algebraic integer is an integer and sum

and product of algebraic integers is an algebraic integer. We have the following

observation.

Lemma 2.8.1. Let A = (aij) be a square matrix of order n having integral entries

and zero trace and let z1, z2, · · · , zn be its eigenvalues. Put α =
n∑
j=1

|<zj|, then α

cannot be of the form (i) (2ts)
1
h with h ≥ 1, 0 ≤ t < h and s odd (ii) (m

n
)
1
r , where

m
n

is non-integral rational and r is a positive integer.

Proof. We note that α = 2
∑
<zj≥0

zj. Put z =
∑
<zj≥0

zj, then z being sum of alge-

braic integers is an algebraic integer.

(i) Assume α = (2ts)
1
h , so that 2z = (2ts)

1
h . Simplifying gives zh = s

2l
, where

l = h − t ≥ 1. As s is odd, therefore we see zh is non-integral rational algebraic

integer, a contradiction.

(ii) As in part (i), assume α = (m
n

)
1
r , so that 2z = (m

n
)
1
r . This gives, zr = m

n2r
.

As m
n

is non-integral rational, so is m
n2r

, i.e., zr is a non-integral rational algebraic

integer, a contradiction.

Bapat and Pati [7] proved that the energy of a graph cannot be an odd inte-

ger. Later Pirzada and Gutman [64] proved that energy of a graph cannot be the

square root of an odd integer. We next extend these results to digraphs.

Theorem 2.8.2. Energy of a digraph cannot be of the form (i) (2ts)
1
h with

h ≥ 1, 0 ≤ t < h and s odd (ii) (m
n

)
1
r , where m

n
is non-integral rational num-
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ber and r ≥ 1.

Proof. Let D be a digraph with adjacency matrix A(D). Apply Lemma 2.8.1 to

A(D) and note that E(D) =
n∑
j=1

|<zj|, the result follows.

The following result gives a sharp lower bound for the energy of strongly con-

nected digraphs.

Theorem 2.8.3. If D is a strongly connected digraph of order n, then E(D) ≥ 2,

with equality if and only if D = Cr, r = 2, 3, 4.

Proof. Let D be a strongly connected digraph with n vertices v1, v2, · · · , vn, there-

fore d+vi ≥ 1 for all i = 1, 2, · · · , n. Now it is well known that the spectral radius

ρ ≥ min (d+v1 , d
+
v2
, · · · , d+vn) which implies that ρ ≥ 1. Hence

E(D) = 2
∑
<zj≥0

zj ≥ 2ρ ≥ 2.

If E(D) = 2, then ρ = 1. Since D is a strongly connected digraph, then from

[6], D is a cycle, say D = Cr. It is shown in [62] that E(Cr) > 2 for all r ≥ 5.

Consequently r = 2, 3 or 4.

In [69] it was shown that a digraph is acyclic if and only if its energy is zero.

Also energy of a digraph is the sum of the energies of its strong components [62].

With these arguments and Theorem 2.8.3, we have the following result.

Theorem 2.8.4. No Positive real number less than two can be the energy of a

digraph.
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CHAPTER 3

On the energy of signed graphs

In this Chapter, we characterize unicyclic signed graphs with minimal en-

ergy. We show that for each positive integer n ≥ 3, there exists a pair of con-

nected, non-cospectral and equienergetic unicyclic signed graphs on n vertices

with one constituent balanced and other constituent unbalanced. It is shown that

for each positive integer n ≥ 4, there exists a pair of connected, non-cospectral

and equienergetic signed graphs of order n with both constituents unbalanced.

3.1 Introduction

A signed graph is defined to be a pair S = (G, σ), where G = (V,E ) is

the underlying graph and σ : E → {−1, 1} is the signing function. The sets of

positive and negative edges of S are respectively denoted by E + and E −. Thus

E = E +∪E −. Our signed graphs have simple underlying graphs. A signed graph is

said to be homogeneous if all of its edges have either positive sign or negative sign

and heterogeneous, otherwise. A graph can be considered to be a homogeneous

signed graph with each edge positive; thus signed graphs become a generalization

of graphs. Throughout this Chapter bold lines denote positive edges and dotted

lines denote negative edges. The sign of a signed graph is defined as the product of

signs of its edges. A signed graph is said to be positive (respectively, negative) if its

sign is positive (respectively, negative) i.e., it contains an even (respectively, odd)

number of negative edges. A signed graph is said to be all-positive (respectively,

all-negative) if all of its edges are positive (respectively, negative). A signed graph

is said to be balanced if each of its cycles is positive and unbalanced, otherwise.

We denote by −S the signed graph obtained by negating each edge of S and call it

the negative of S. We call balanced cycle a positive cycle and an unbalanced cycle

a negative cycle and respectively denote them by Cn and Cn, where n is number

of vertices.

The adjacency matrix of a signed graph S whose vertices are v1, v2, · · · , vn is

the n× n matrix A(S) = (aij), where
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aij =

{
σ(vi, vj), if there is an edge from vi to vj,

0, otherwise.

Clearly, A(S) is real symmetric and so all its eigenvalues are real. The char-

acteristic polynomial |xI −A(S)| of the adjacency matrix A(S) of signed graph S

is called the characteristic polynomial of S and is denoted by φS(x). The eigen-

values of A(S) are called the eigenvalues of S. The set of distinct eigenvalues

of S together with their multiplicities is called the spectrum of S. Let S be a

signed graph of order n with distinct eigenvalues x1, x2, · · · , xk and let their re-

spective multiplicities be m1,m2, · · · ,mk. Then we write the spectrum of S as

spec(S) = {x(m1)
1 , x

(m2)
2 , · · · , x(mk)k }.

The following is the coefficient Theorem for signed graphs [1].

Theorem 3.1.1. If S is a signed graph with characteristic polynomial

φS(x) = xn + a1x
n−1 + · · ·+ an−1x+ an,

then

aj =
∑
L∈£j

(−1)p(L)2|c(L)|
∏

Z∈c(L)

s(Z),

for all j = 1, 2, · · · , n, where £j is the set of all basic figures L of S of order j,

p(L) denotes number of components of L, c(L) denotes the set of all cycles of L

and s(Z) the sign of cycle Z.

From this result, it is clear that the spectrum of a signed graph remains in-

variant by changing the signs of non cyclic edges. Here we note that whenever we

need to compare the energy of two signed graphs we use aj(S) for j-th coefficient

of characteristic polynomial of S instead of aj.

The spectral criterion for balance of signed graphs given by Acharya [1] is as

follows.
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Theorem 3.1.2. A signed graph is balanced if and only if it is cospectral with the

underlying unsigned graph.

The Cartesian product of two signed graphs S1 = (V1,E1, σ1) and S2 =

(V2,E2, σ2) denoted by S1 × S2 is the signed graph (V1 × V2,E , σ), where the

edge set is that of the Cartesian product of underlying unsigned graphs and the

sign function is defined by

σ((ui, vj), (uk, vl)) =

{
σ1(ui, uk), if j = l,

σ2(vj, vl), if i = k.

The Kronecker product of two signed graphs S1 = (V1,E1, σ1) and S2 =

(V2,E2, σ2) denoted by S1 ⊗ S2 is the signed graph (V1 × V2,E , σ), where edge

set is that of the Kronecker product of underlying unsigned graphs and the sign

function is defined by σ((ui, vj), (uk, vl)) = σ1(ui, uk)σ2(vj, vl).

Let S be a signed graph with vertex set V . Switching S by set X ⊂ V , means

reversing the signs of all edges between X and its complement.

Another way to define switching is by means of a function θ : V → {+1,−1},
called a switching function. Switching S by θ means changing σ to σθ defined by

σθ(u, v) = θ(u)σ(u, v)θ(v).

We denote switched graph by Sθ. Two signed graphs are said to be switching

equivalent if one can be obtained from the other by switching. Switching equiva-

lence is an equivalence relation on the signings of a fixed graph. An equivalence

class is called a switching class. A switching class of S is denoted by [S]. If S ′ is

isomorphic to a switching of S, we say S and S ′ are switching isomorphic.

The concept of energy was extended to signed graphs by Germina, Hameed

and Zaslavsky [23]. They defined the energy of a signed graph S to be the sum of

absolute values of eigenvalues of S.

A connected signed graph of order n is said to be unicyclic if the number of

its edges is also n. The girth of signed graph is the length of its smallest cycle and
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we denote it by g. Let Sgn, n ≥ g ≥ 3 (respectively, Sgn) denote the balanced (re-

spectively, unbalanced) unicyclic signed graph of order n obtained by identifying

the root vertex of a signed star on n − g + 1 vertices with a vertex of a positive

(respectively, negative) cycle of order g (see Fig. 3.1) and let S(n, g) denote the set

of all unicyclic signed graphs with n vertices and girth g ≤ n. For unicyclic graphs

with minimal energy see [38, 53]. Caprossi et al. [15] posed the following conjec-

ture based upon the results attained with the computer system AutoGraphix.

Conjecture 3.1.3. Among all connected graphs G with n ≥ 6 vertices and

n − 1 ≤ m ≤ 2(n − 2) edges, the graph with minimum energy are stars with

m− n + 1 additional edges all connected to the same vertex for m ≤ n + b (n−7)
2
c,

and bipartite graphs with two vertices on one side, one of which is connected to all

vertices on the other side, otherwise.

For m = n− 1 and m = 2(n− 2) Caprossi et al. [15] proved the conjecture.

The following result of Hou [38] proves conjecture for m = n.

Theorem 3.1.4. Let G be a unicyclic graph with n ≥ 6 vertices and G 6= S 3
n .

Then E(S 3
n ) < E(G), where S 3

n is the graph obtained from the star graph with n

vertices by adding an edge.

We show for m = n, a signed analogue of the conjecture is true, that is, among

all unicyclic signed graphs with n ≥ 6 vertices and n edges, all signed graphs in

[S3
n] and [S3

n] have the minimal energy.

3.2 Switching in signed graphs

The following result can be seen in [85].

Lemma 3.2.1. A signed graph is balanced if and only if it switches to an all-

positive signing.

The following result shows that there are only two switching classes on sign-

ings of unicyclic graph.
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Theorem 3.2.2. There exists only two switching classes on the signings of fixed

unicyclic graph.

Proof. Let G be a unicyclic graph. By Lemma 3.2.1, all balanced unicyclic signed

graphs on G comprise one switching class. We show that all unbalanced signed

graphs on G are switching equivalent to an unbalanced signed graph with exactly

one negative cyclic edge and all other edges positive. Let S be any unbalanced

signed graph on G. Choose a negative edge e = (u, v). Then S − e is balanced

and hence by Lemma 3.2.1, S − e switches to an all positive signed graph. Now

return edge e in the all positive signed graph of S − e. Again, by Lemma 3.2.1,

with this switching e must be a negative edge. Thus S is switching equivalent to

an unbalanced signed graph with exactly one negative cyclic edge and all other

edges positive.

The following result shows that adjacency matrices of switching equivalent

signed graphs are similar by means of a signature matrix.

Theorem 3.2.3. Signed graphs S1 and S2 with same underlying graph are switch-

ing equivalent if and only if their adjacency matrices satisfy A(S2) = D−1A(S1)D

for some (0,±1)-matrix D whose diagonal has no zeroes.

Theorem 3.2.3 shows that switching equivalent signed graphs are always

cospectral. It is not known whether the converse is true or not. However, we

have examples of cospectral unbalanced signed graphs whose underlying graphs

are non-isomprphic (Signed graphs S1 and S2 in Fig. 3.1). It is shown in Remark

3.3.8 (i) that all unbalanced signed graphs on a fixed unicyclic graph are cospec-

tral. Thus there are only two cospectral classes on the signings of a fixed unicyclic

graph, one for balanced and one for unbalanced. Therefore, by Theorem 3.2.2, the

following result is true for unicyclic signed graphs.

Theorem 3.2.4. Two unicyclic signed graphs with the same underlying graph are

cospectral if and only if they are switching equivalent.
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3.3 Integral representation for energy of signed graphs and its appli-

cations

First we obtain Coulson’s integral formula and then discuss its consequences

for signed graphs.

Theorem 3.3.1. Let S be a signed graph with n vertices having characteristic

polynomial φS(x). Then

E(S) =
n∑
j=1

|xj| =
1

π

∞∫
−∞

(n− ιxφ′S(ιx)

φS(ιx)
)dx,

where x1, x2, · · · , xn are the eigenvalues of signed graph S, ι =
√
−1 and

∞∫
−∞

F (x)dx

denotes principle value of the respective integral.

Proof. Let x1, x2, . . . , xn be the zeroes of polynomial φS(x). Then

φS(x) =
n∏
j=1

(x− xj) and φ′S(x) =
n∑
j=1

∏
k 6=j

(x− xk), so that
φ′S(x)

φS(x)
=

n∑
j=1

1
x−xj .

Using the integrals 1
π

∞∫
−∞

x2j
(x2j+x

2)
dx = |xj| and 1

π

∞∫
−∞

x2jx

(x2j+x
2)
dx = 0, we have

|xj| = |xj|+ ι0 =
1

π

∞∫
−∞

x2j
(x2j + x2)

dx+ ι
1

π

∞∫
−∞

x2jx

(x2j + x2)
dx

=
1

π

∞∫
−∞

x2j + ιxjx

(x2j + x2)
dx =

1

π

∞∫
−∞

(1− ιx

ιx− xj
)dx.

Therefore, E(S) =
n∑
j=1

|xj| = 1
π

∞∫
−∞

n∑
j=1

(1− ιx
ιx−xj )dx = 1

π

∞∫
−∞

(n− ιxφ′S(ιx)

φS(ιx)
)dx.

The following result is a consequence of Coulson’s integral formula.

Theorem 3.3.2. If S is a signed graph on n vertices, then

E(S) =
1

π

∞∫
−∞

1

x2
log |xnφS(

ι

x
)|dx.
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Proof. By Theorem 3.3.1, we have

E(S) =
1

π

∞∫
−∞

(n− ιxφ′S(ιx)

φS(ιx)
)dx

=
1

π

0∫
−∞

(n− ιxφ′S(ιx)

φS(ιx)
)dx+

1

π

∞∫
0

(n− ιxφ′S(ιx)

φS(ιx)
)dx

Put x = 1
y
, so that

E(S) =
1

π

∞∫
−∞

(n−
ι 1
y
φ′S(ι 1

y
)

φS(ι 1
y
)

)
1

y2
dy.

Now, integrating by parts and taking u = 1
y

and dv = (n
y
−

ι 1
y2
φ′S(ι

1
y
)

φS(ι
1
y
)

),

so that du = − 1
y2
dy and v = log |ynφS( ι

y
)|.

Therefore

E(S) =
1

π
(
1

y
log |ynφS(

ι

y
)|)∞−∞ +

1

π

∞∫
−∞

1

y2
log |ynφS(

ι

y
)|dy

=
1

π

∞∫
−∞

1

y2
log |ynφS(

ι

y
)|dy.

Using change of variable, the result follows.

Theorem 3.3.3. If S is a signed graph on n vertices with characteristic polyno-

mial φS(x) = xn + a1x
n−1 + · · ·+ an−1x+ an, then

E(S) =
1

2π

∞∫
−∞

1

x2
log[(

bn
2
c∑

j=0

(−1)ja2jx
2j)2 + (

bn
2
c∑

j=0

(−1)ja2j+1x
2j+1)2]dx.

Proof. Let ψ(x) = (−ιx)nφS( ι
x
) and note that

ψ(x) =
n∑
j=0

aj(−ιx)j =

bn
2
c∑

j=0

(−1)ja2jx
2j − ι

bn
2
c∑

j=0

(−1)ja2j+1x
2j+1,
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where a0 = 1 and aj = 0 for j > n. By Theorem 3.3.2, E(S) = 1
π

∞∫
−∞

1
x2

log |ψ(x)|.

Substituting the value for ψ(x), the result follows.

u

u
u u

u

u

u u

u u

u

u
S1 S2Fig. 3.1

We know from [[14], Theorem 3.11] that a graph containing at least one

edge is bipartite if and only if its spectrum, considered as a set of points on the

real axis, is symmetric with respect to the origin. This is not true for signed

graphs. There exists non bipartite signed graphs whose spectrum is symmetric

about origin. Signed graphs S1 and S2 in Fig. 3.1 are clearly non bipartite, but

spec(S1) = spec(S2) = {−
√

5,−1(2), 1(2),
√

5}. We say a signed graph has a pairing

property if its spectrum is symmetric about the origin. We denote by ∆n, the set

of all signed graphs on n vertices with pairing property. The next result shows

that all the odd coefficients of the characteristic polynomial of a signed graph in

∆n are zero and all the even coefficients alternate in sign.

Lemma 3.3.4. Let S ∈ ∆n, then φS(x) = xn +
bn
2
c∑

j=1

(−1)jb2jx
n−2j, where bj = |aj|

and aj is the j-th coefficient of characteristic polynomial for j = 1, 2, · · · , n.

Proof. Assume S ∈ ∆n. Let α1, α2, · · · , αp be the positive eigenvalues of S, where

p ≤ bn
2
c. Then

φS(x) = xδ
p∏
j=1

(x2 − αj2) = xδψ(x2),

where ψ(x2) =
p∏
j=1

(x2 − αj
2) is a polynomial in x2 and δ ≥ 0 is a non negative

integer. Using the fact that if the zeroes of a polynomial are real and positive then

its coefficients alternate in sign, we see that the coefficients of ψ(x2) and hence

φS(x) alternate in sign. Therefore the result follows.
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Remark 3.3.5. Let S be a bipartite signed graph. Then S has no odd cycles

and consequently no basic figure of odd order. By Theorem 3.1.1, we see that the

characteristic polynomial of S is of the form φS(x) = xδψ(x2), where δ = 0 or 1

and ψ(x2) is a polynomial in x2. This shows that S has the pairing property, i.e.,

S ∈ ∆n.

We now define a quasi-order relation for signed graphs in ∆n and show it is

possible to compare energy of signed graphs in ∆n.

Given signed graphs S1 and S2 in ∆n, by Theorem 3.3.4, for i = 1, 2, we have

φSi(x) = xn +

bn
2
c∑

j=1

(−1)jb2j(Si)x
n−2j,

where b2j(Si) are non negative integers for all j = 1, 2, · · · , bn
2
c. If b2j(S1) ≤ b2j(S2)

for all j = 1, 2, · · · , bn
2
c, then we define S1 � S2. If in addition b2j(S1) < b2j(S2)

for some j = 1, 2, · · · , bn
2
c, then we write S1 ≺ S2. Clearly � is a quasi-order

relation. The following result which is a consequence of Theorem 3.3.3 shows that

the energy increases with respect to this quasi-order relation.

Theorem 3.3.6. If S ∈ ∆n, then

E(S) =
1

π

∞∫
−∞

1

x2
log[1 +

bn
2
c∑

j=1

b2j(S)x2j]dx.

In particular, if S1, S2 ∈ ∆n and S1 ≺ S2 then E(S1) < E(S2).

Put bj = |aj|, j = 1, 2, · · · , n. Note b1 = 0, b2 =number of edges of signed

graph S and so on. We denote by m(S, j) the number of matchings of S of size j.

This number is independent of signing. We use the convention that m(S, 0) = 1.

The following result shows that the even and odd coefficients of the characteristic

polynomial of a unicyclic signed graph alternate in sign.

Theorem 3.3.7. Let S ∈ S(n, g). Then (−1)ja2j ≥ 0 for all j ≥ 0 irrespective of

S is balanced or unbalanced and g is odd or even. Moreover, if g = 2r + 1, r ≥ 1,

then (−1)ja2j+1 ≥ 0 (respectively, (≤ 0)) for all j ≥ 0 if either r is odd and S is
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balanced or r is even and S is unbalanced (respectively, if either r is even and S

is balanced or r is odd and S is unbalanced).

Proof. If g is even, then S is bipartite. By Remark 3.3.5, a2j+1 = 0 for all

j ≥ 0 and a2j = (−1)jb2j. This gives (−1)ja2j = b2j ≥ 0. Also if g is odd,

say g = 2r + 1, then S is non bipartite. Now, a2j = (−1)jm(S, j) which gives

(−1)ja2j = m(S, j) ≥ 0. The odd coefficients in balanced and unbalanced case are

respectively given by

a2j+1 =

{
0, if 2j + 1 < g,

−2(−1)j−rm(S − Cg, j − r), if 2j + 1 ≥ g.

and

a2j+1 =

{
0, if 2j + 1 < g,

2(−1)j−rm(S −Cg, j − r), if 2j + 1 ≥ g.

From this, the result follows.

Remark 3.3.8.(i) From the above result, it follows that all unbalanced signed

graphs on a fixed unicyclic graph are cospectral.

(ii) It is now possible to compare the energy in unicyclic signed graphs of odd

girth as well by means of a quasi-order relation defined on bj’s.

Given two unicyclic signed graphs S1 and S2, by Theorem 3.3.7, for i = 1, 2,

we have

φSi(x) =
∑
j≥0

{(−1)jb2j(Si)x
n−2j + (−1)j+[s]b2j+1(Si)x

n−(2j+1)},

where [s] = 1 if the girth gi of Si satisfies gi = 2ri + 1 with either ri is even and Si

is balanced or ri is odd and Si is unbalanced, otherwise [s] = 0. If bj(S1) ≤ bj(S2)

for all j ≥ 0, then we define S1 � S2. If in addition bj(S1) < bj(S2) for some j,

then we write S1 ≺ S2. The following result is a consequence of Theorem 3.3.3
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and it shows that the energy increases with respect to this quasi-order relation.

Theorem 3.3.9. Let S be a unicyclic signed graph of order n. Then

E(S) =
1

2π

∞∫
−∞

1

x2
log[(

bn
2
c∑

j=0

b2j(S)x2j)2 + (

bn
2
c∑

j=0

b2j+1(S)x2j+1)2]dx.

In particular, if S1 and S2 are unicyclic signed graphs and S1 ≺ S2, then E(S1) <

E(S2).

We now show that all signed graphs on a unicyclic graph of odd girth are

equienergetic.

Corollary 3.3.10. For each positive integer n ≥ 3, there exists a pair of con-

nected, non cospectral and equienergetic unicyclic signed graphs of order n with

one constituent balanced and other constituent unbalanced.

Proof. Let G be a unicyclic graph of order n and odd girth g. Let S be any

balanced signed graph on G and T be any unbalanced signed graph on G. Then

S and T are non cospectral by Theorem 3.1.2. The coefficients of signed graphs S

and T are related as follows

a2j+1(S) = −a2j+1(T ) for all j = 0, 1, 2, · · · bn
2
c and a2j(S) = a2j(T ) for all

j = 1, 2, · · · , bn
2
c. Thus bj(S) = bj(T ) for all j = 1, 2, · · · , n. By Theorem 3.3.9

E(S) = E(T ).

Now we use Theorem 3.3.9 to compare the energies of signed graphs obtained

from a unicyclic bipartite graph.

Theorem 3.3.11. Let G be a unicyclic graph of order n and even girth g i.e.,

bipartite unicyclic graph, and let S be any balanced signed graph on G and T be

any unbalanced one. Then

(i)E(S) < E(T ) if and only if g ≡ 0 (mod 4);

(ii)E(S) > E(T ) if and only if g ≡ 2 (mod 4).

Proof. Let G be a unicyclic graph of order n and even girth g ≥ 4 and let S and

T respectively be any balanced signed graph and any unbalanced signed graph on
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G. The coefficients of S are given by

a2j(S) = m(S, j) for all j = 1, 2, . . . , g
2
− 1; ag+2j(S) = −2(−1)jm(S − Cg, j) +

(−1)
g
2
+jm(S, g

2
+ j) for all j = 0, 1, · · · , bn−g

2
c and a2j+1(S) = 0 for all j =

0, 1, 2, · · · , bn
2
c.

whereas the coefficients of T are given by

a2j(T ) = m(T, j) for all j = 1, 2, . . . , g
2
− 1; ag+2j(T ) = 2(−1)jm(T − Cg, j) +

(−1)
g
2
+jm(T, g

2
+ j) for all j = 0, 1, · · · , bn−g

2
c and a2j+1(T ) = 0 for all j =

0, 1, 2, · · · , bn
2
c.

Two cases arise here (i) g ≡ 0 (mod 4) and (ii) g ≡ 2 (mod 4).

Case (i) g ≡ 0 (mod 4). We have b2j+1(S) = b2j+1(T ) = 0 for all j = 0, 1, · · · , bn
2
c;

b2j(S) = b2j(T ) for all j = 1, 2, . . . , g
2
−1; bg+2j(S) = |−2m(S−Cg, j)+m(S, g

2
+j)|

for all j = 0, 1, · · · , bn−g
2
c and bg+2j(T ) = |2m(T − Cg, j) + m(T, g

2
+ j)| for all

j = 0, 1, · · · , bn−g
2
c.

Clearly, bj(S) ≤ bj(T ) for all j = 1, 2, · · · , n. In particular bg(S) < bg(T ). There-

fore S ≺ T and by Theorem 3.3.9, E(S) < E(T ).

The proof of case (ii) follows on similar lines.

3.4 Unicyclic signed graphs with minimal energy

Gill and Acharya [24] obtained the following recurrence formula for the char-

acteristic polynomial of a signed graph.

Lemma 3.4.1. Let S be a signed graph and v be its arbitrary vertex. Then

φS(x) = xφ(S−v)(x)−
∑

(w,v)∈E

φ(S−v−w)(x)−2[
∑

Z∈C+(v)

φ(S−V (Z))(x)−
∑

Z∈C−(v)

φ(S−V (Z))(x)],

where C+(v) and C−(v) denote the set of positive and negative cycles containing

vertex v.

Now we have the following result.

Lemma 3.4.2. Let S ∈ S(n, g) be unbalanced, and let (u, v) be the pendant edge

of S with pendant vertex v. Then
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bj(S) = bj(S − v) + bj−2(S − v − u).

Proof. Since S is unicyclic and v is a pendant vertex, Lemma 3.4.1 takes the form

φS(x) = xφ(S−v)(x)− φ(S−v−u)(x)

which gives

aj(S) = aj(S − v)− aj−2(S − v − u).

We now claim that the coefficients aj(S − v) and aj−2(S − v − u) are of op-

posite signs. In case S is bipartite, then all is clear by Remark 3.3.5. Assume S

is non bipartite and both the signed graphs S − v and S − v − u contain the odd

cycle Cg, then claim follows by Theorem 3.3.7. Finally, suppose only S − v − u is

acyclic; for odd j, aj(S − v − u) = 0, so aj(S − v) = −aj−2(S − v − u) and same

holds for even j, since basic figures are only matchings. This proves our claim.

Now bj(S) = |aj(S)| = |aj(S− v)− aj−2(S− v−u)| = |aj(S− v)|+ |aj−2(S−
v − u)| = bj(S − v) + bj−2(S − v − u).

The following result shows that among all unbalanced unicyclic signed graphs

in S(n, g), Sgn has minimal energy.

Theorem 3.4.3. Let S ∈ S(n, g) be unbalanced and S 6= Sgn. Then Sgn ≺ S and

E(Sgn) < E(S).

Proof. We prove the result by induction on n − g. If n − g = 0, the result is

vacuously true. Let p ≥ 1 and suppose the result is true for n− g < p. We show it

holds for n− g = p. Since S is unicyclic and n > g, so S is not a cycle and hence

it must have a pendant vertex, say v, and v is adjacent to a unique vertex say u.

By Lemma 3.4.2, we have

bj(S) = bj(S − v) + bj−2(S − v − u),

bj(S
g
n) = bj(S

g
n−1) + bj−2(Pg−1).

By induction hypothesis,

bj(S − v) ≥ bj(S
g
n−1) (3.1)
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for all j ≥ 0.

As

bj−2(Pg−1) =

{
0, if j is odd or if j is even and j > g + 1;

m(Pg−1,
j−2
2

), if j is even and j ≤ g + 1.

Since S − v − u contains the signed path Pg−1 as its subgraph, therefore if j

is odd or j > l + 1, then bj−2(S − u− v) ≥ bj−2(Pg−1). If j is even and j ≤ g + 1,

then bj−2(S − v − u) = m(S − v − u, (j−2)
2

) ≥ m(Pg−1,
(j−2)

2
). Therefore, we have

bj−2(S − v − u) ≥ bj−2(Pg−1) (3.2)

From (3.1) and (3.2), we see bj(S) ≥ bj(S
g
n). Also if S 6= Sgn, then b2(S −

v − u) > g − 2 = b2(Pg−1). Hence b4(S
g
n) < b4(S). The second part follows by

Theorem 3.3.9.

The following result shows that S4
n has minimal energy among all unicyclic

signed graphs Sgn, where n ≥ g, n ≥ 6 and g ≥ 4.

Theorem 3.4.4. Let n ≥ g, where n ≥ 6 and g ≥ 5. Then S4
n ≺ Sgn and

E(S4
n) < E(Sgn).

Proof. We use induction on n−g for n ≥ g, where n ≥ 6 and g ≥ 5. By Theorem

3.1.1, we have

φS4
n
(x) = xn−4{x4 − nx2 + 2(n− 2)}. (3.3)

It is enough to show that b4(S
4
n) < b4(S

g
n). If n− g = 0, then Sgn = Cn. Note

that b4(Cn) = n
2
(n − 3) and b4(S

4
n) = 2(n − 2). Clearly b4(S

4
n) < b4(Cn) for all

n ≥ 6.

By Lemma 3.4.2, we have

b4(S
g
n) = b4(S

g
n−1) + b2(Pg−1) = b4(S

g
n−1) + g − 2 = 2(n − 1 − 2) + g − 2 =

2(n− 2) + g − 4 > 2(n− 2), for g ≥ 5.

Now we determine unicyclic unbalanced signed graphs with minimal energy.
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Theorem 3.4.5. Let S be an unbalanced unicyclic signed graph with n ≥ 6 ver-

tices and S 6= S3
n. Then E(S3

n) < E(S).

Proof. In view of Theorems 3.4.3 and 3.4.4, it suffices to prove that E(S3
n) <

E(S4
n) for all n ≥ 6. By Theorem 3.1.1, we have

φS3
n
(x) = xn−4{x4 − nx2 + 2x+ (n− 3)}. (3.4)

From equations (3.3) and (3.4) and Theorem 3.3.9, we have

E(S4
n)− E(S3

n) =
1

π

∞∫
0

1

x2
log

[(1 + nx2 + 2(n− 2)x4)]2

[(1 + nx2 + (n− 3)x4)2 + 4x6]
dx.

Let f(x) = [1 + nx2 + 2(n− 2)x4]2 and g(x) = [(1 + nx2 + (n− 3)x4)2 + 4x6].

Then

f(x)− g(x) = [1 + nx2 + 2(n− 2)x4]2 − [(1 + nx2 + (n− 3)x4)2 + 4x6]

= 2(n− 1)x4 + 2(n− 2)(n+ 1)x6 + (3n− 7)(n− 1)x8 > 0,

for all n ≥ 6. Therefore, E(S3
n) < E(S4

n) for all n ≥ 6.

The following result characterizes unicyclic signed graphs with minimal en-

ergy.

Theorem 3.4.6. Among all unicyclic signed graphs with n ≥ 6 vertices, all signed

graphs in [S3
n] and [S3

n] have minimal energy. Moreover, for n = 3, 4 and 5 all

signed graphs in [S] have minimal energy, where S is one of the signed graphs C3

or C3 or C4 or S4
5 .

Proof. A manual calculation shows that for m = 3, 4 and 5 all signed graphs in

[S] have minimal energy, where S is one of the signed graphs C3 or C3 or C4 or S4
5 .

As in Theorem 3.3.10, E(S3
n) = E(S3

n). By Theorems 3.1.4 and 3.4.5 and noting

that all graphs in a switching class are equienergetic, the result follows.
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3.5 Equienergetic signed graphs

Two signed graphs are said to be isomorphic if their underlying graphs are

isomorphic such that the signs are preserved. Any two isomorphic signed graphs

are obviously cospectral. There exist unbalanced non isomorphic cospectral signed

graphs, e.g., signed graphs S1 and S2 in Fig. 3.1. Two signed graphs S1 and S2

of same order are said to be equienergetic if E(S1) = E(S2). Cospectral signed

graphs are obviously equienergetic, therefore in view of Theorem 3.1.2, the problem

of equienergetic signed graphs reduces to problem of construction of non cospec-

tral pairs of equienergetic signed graphs such that for every pair not both signed

graphs are balanced. In this regard, we have shown for each positive integer n ≥ 3,

there exists a pair of connected, non cospectral and equienergetic unicyclic signed

graphs on n vertices with one constituent balanced and the other unbalanced.

We note that the spectral radius of S, ρ(S) = max1≤k≤n|xk| is an eigenvalue

of S for every S ∈ ∆n. The following Lemma gives the spectrum of Cartesian

and Kronecker product of two signed graphs in terms of that of the corresponding

signed graphs [22].

Lemma 3.5.1. Let S1 and S2 be two signed graphs with respective eigenvalues

ξ1, ξ2, · · · , ξn1 and ζ1, ζ2, · · · , ζn2. Then

(i) the eigenvalues of S1×S2 are ξi+ζj, for all i = 1, 2, · · · , n1 and j = 1, 2, · · · , n2;

(ii) the eigenvalues of S1⊗S2 are ξiζj, for all i = 1, 2, · · · , n1 and j = 1, 2, · · · , n2.

We have the following result.

Lemma 3.5.2. (i) E(S1 ⊗ S2) = E(S1)E(S2)

(ii) For each n ≥ 3, (Kn,−Kn) is a pair of non cospectral and equienergetic signed

graphs with one constituent balanced and the other unbalanced.

(iii) For all positive integers m,n ≥ 2, the signed graphs S = −Km × −Kn and

T = −Km⊗−Kn are non cospectral equienergetic signed graphs with S unbalanced

and T balanced.

Proof. Let x1, x2, . . . , xn1 be eigenvalues of S1 and y1, y2, · · · , yn2 be eigenvalues

of S2. By Lemma 3.5.1, eigenvalues of S1 ⊗ S2 are xiyj, where i = 1, 2, . . . , n1 and
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j = 1, 2, . . . , n2. Therefore, E(S1⊗S2) =
∑
i,j

|xiyj| =
n1∑
i=1

|xi|
n2∑
j=1

|yj| = E(S1)E(S2).

This proves part (i).

(ii) We know that for each positive integer n ≥ 3, spec(Kn) = {−1(n−1), n− 1} so

that spec(−Kn) = {1− n, 1(n−1)}. Therefore, E(Kn) = E(−Kn) = 2(n− 1). Note

that Kn is balanced whereas −Kn is unbalanced.

(iii) We have, Spec(S) = {2 − m − n, (2 − m)(n−1), (2 − n)(m−1), 2(m−1)(n−1)} 6=
{(1 − m)(1 − n), (1 − m)(n−1), (1 − n)(m−1), 1(m−1)(n−1)} = spec(T ). Therefore S

and T are non cospectral.

Also, E(S) = |2−m−n|+(n−1)|2−m|+(m−1)|2−n|+(m−1)(n−1)|2| =
4(m − 1)(n − 1). By part (i), E(T ) = E(−Km ⊗ −Kn) = E(−Km)E(−Kn) =

4(m− 1)(n− 1). Therefore S and T are equienergetic. S is unbalanced and T is

balanced follows from Theorem 3.1.2.

The following result characterizes a signed graph S in ∆n for which the Carte-

sian product and Kronecker product of S with K2 are unbalanced, non cospectral

and equienergetic.

Theorem 3.5.3. Let S be an unbalanced signed graph in ∆n with at least one

edge having eigenvalues x1, x2, · · · , xn. Then S ×K2 and S ⊗K2 are unbalanced,

noncospectral and equienergetic if and only if |xj| ≥ 1, for all j = 1, 2, · · · , n.
Proof. By Theorem 3.1.2, it is clear that S ∈ ∆n is unbalanced if and only if

both S × K2 and S ⊗ K2 are unbalanced. We first suppose that |xj| ≥ 1 for all

j = 1, 2, . . . , n. Let x1 ≥ x2 ≥ · · · ≥ xn. Assume x1, x2, . . . , xk are positive and

xk+1, xk+2 . . . , xn are negative.

Also

E(S ×K2) =
k∑
j=1

(|xj + 1|+ |xj − 1|) +
n∑

j=k+1

(|xj + 1|+ |xj − 1|).

As |xj| ≥ 1 for all j = 1, 2, . . . , n, we have

39



E(S ×K2) =
k∑
j=1

(|xj|+ 1 + |xj| − 1) +
n∑

j=k+1

(|xj| − 1 + |xj|+ 1)

= 2
k∑
j=1

|xj|+ 2
n∑

j=k+1

|xj| = 2
n∑
j=1

|xj| = 2E(S)

= E(S)E(K2) = E(S ⊗K2).

Note that x1 + 1 ∈ spec(S ×K2) but x1 + 1 /∈ spec(S ⊗K2), therefore S ×K2 and

S ⊗K2 are non cospectral.

Conversely, suppose |xs| < 1 for some s. Because of pairing property, we

can assume xs ≥ 0. Choose a real number αs such that xs + αs = 1. Therefore,

|xs + 1| + |xs − 1| = 1 + xs + αs = 2 > 2|xs|. Suppose |xj| ≥ 1 for j = 1, 2, . . . , k

and |xj| < 1 for j = k + 1, k + 2, . . . , n. Then as before
k∑
j=1

(|xj + 1|+ |xj − 1|) = 2
k∑
j=1

|xj| and
n∑

j=k+1

(|xj + 1|+ |xj − 1|) > 2
n∑

j=k+1

|xj|.

Therefore

E(S×K2) =
k∑
j=1

(|xj+1|+|xj−1|)+
n∑

j=k+1

(|xj+1|+|xj−1|) > 2
n∑
j=1

|xj| = E(S⊗K2),

a contradiction.

Example 3.5.4. Consider signed graphs S1 and S2 in Fig. 3.1. Clearly, eigen-

values of S1 and S2 have absolute value at least 1, therefore by Theorem 3.5.3,

Si×K2 and Si⊗K2 are unbalanced, non cospectral and equienergetic for i = 1, 2.

We know from [22] the eigenvalues of a positive and negative cycles with n

vertices are given by the following result

Lemma 3.5.5. The eigenvalues of Cn and Cn are respectively given by xk =

2 cos 2kπ
n
, k = 0, 1, · · · , n− 1 and xk = 2 cos (2k+1)π

n
, k = 0, 1, · · · , n− 1.

From Lemma 3.5.5 one can derive the following energy formulae. For proof

see Theorem 4.3.1
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E(Cn) =


4 cot π

n
, if n = 4k,

4 csc π
n
, if n = 4k + 2,

2 csc π
2n
, if n = 2k + 1.

and

E(Cn) =


4 csc π

n
, if n = 4k,

4 cot π
n
, if n = 4k + 2,

2 csc π
2n
, if n = 2k + 1.

From energy formulae we see that for each odd n ≥ 3, E(Cn) = E(Cn), where

Cn is balanced and Cn is unbalanced as already proved in Theorem 3.3.10 but here

we have exact formulae for energy.
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It is easy to see that there does not exist a pair of non cospectral and equiener-

getic signed graphs on 3 vertices with both constituents unbalanced. The following

result proves the existence of a pair of connected, non cospectral and equienergetic

signed graphs on n ≥ 4 vertices with both the constituents unbalanced.

Theorem 3.5.6. For each positive integer n ≥ 4, there exists a pair of connected,

non cospectral equienergetic signed graphs of order n with both constituents unbal-

anced.

Proof. Case 1. When n is odd. Assume n ≥ 5 is an odd integer. Consider the

signed graphs Sn,1 and Sn,2 with vertex and edge sets given by

V (Sn,1) = V (Sn,2) = {v1, v2, · · · , vn},
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E (Sn,1) = {(v1, v2), (v2, v3), · · · , (vk, vk+1), · · · , (vn, v1), [v1, vk]}

and

E (Sn,2) = {[v1, v2], (v2, v3), · · · , (vk, vk+1), · · · , (vn, v1), (v1, vk)},

where (u, v) means edge from vertex u to v is positive and [u, v] means edge from

u to v is negative and we choose vertex vk such that the positive integer k is even.

The signed graphs so constructed are shown in Fig. 3.2.

As both the signed graphs have only one even cycle Ck and their underlying

graphs are same, it follows by Theorem 3.1.1 that a2j(Sn,1) = a2j(Sn,2), for all

j = 1, 2, · · · , n−1
2
.

Also, the odd coefficients of Sn,1 are given by

a2j−1(Sn,1) = 0 for all j = 1, 2, · · · , n−k+1
2

and

an−k+2+2j(Sn,1) =

{
2(−1)(j+2)m(Sn,1 −Cn−k+2, j), if j = 0, 1, 2, · · · , k−4

2
,

2{(−1)
k+2
2 m(Sn,1 −Cn−k+2,

k−2
2

)− 1}, if j = k−2
2

,

whereas the odd coefficients of Sn,2 are given by

a2j−1(Sn,2) = 0 for all j = 1, 2, · · · , n−k+1
2

and

an−k+2+2j(Sn,2) =

{
2(−1)(j+1)m(Sn,2 − Cn−k+2, j), if j = 0, 1, 2, · · · , k−4

2
,

2{(−1)
k
2m(Sn,2 − Cn−k+2,

k−2
2

) + 1}, if j = k−2
2

.

It is clear that a2j(Sn,1) = a2j(Sn,2), for all j = 1, 2, · · · , n−1
2

and a2j−1(Sn,1) =

−a2j−1(Sn,2) for all j = 1, 2, · · · , n+1
2

. Thus Sn,1 and Sn,2 are non cospectral.

From the relation between coefficients of these two signed graphs, it follows that

φSn,1(−x) = −φSn,2(x) which gives spec(Sn,1) = −spec(Sn,2). Thus E(Sn,1) =

E(Sn,2).

Case 2. When n is even. Assume n ≥ 6 is even. Consider the signed graphs

Sn,3 and Sn,4 with vertex and edge sets given by

V (Sn,3) = V (Sn,4) = {v1, v2, · · · , vn},

E (Sn,3) = {(v1, v2), (v2, v3), · · · , (vk, vk+1), · · · , (vn−1, v1), [v1, vk], (vk, vn)},
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and

E (Sn,4) = {[v1, v2], (v2, v3), · · · , (vk, vk+1), · · · , (vn−1, v1), (v1, vk)(vk, vn)},

where k is even. The signed graphs so constructed are shown in Fig. 3.3. As in

Case 1, it is easy to check that Sn,3 and Sn,4 are two non cospectral equienergetic

signed graphs. Clearly, all the signed graphs are unbalanced.

For n = 4, consider the signed graphs S1 and S2 as shown in Fig. 3.4. By The-

orem 3.1.1, the characteristic polynomials of S1 and S2 are φS1(x) = x4 − 5x2 + 4

and φS2(x) = x4 − 6x2 + 8x− 3 so that spec(S1) = {−2,−1, 1, 2} and spec(S2) =

{−3, 1(3)}. That is, S1 and S2 are non cospectral. Also E(S1) = E(S2) = 6 and

S1 and S2 are unbalanced.
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3.6 Conclusion

We conclude this Chapter with the following open problem.

Problem 3.6.1. Characterize signed graphs having pairing property.
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CHAPTER 4

Energy of signed digraphs

In this Chapter, we extend the concept of energy to signed digraphs and we

obtain Coulson’s integral formula for the energy of signed digraphs. We charac-

terize unicyclic signed digraphs with minimal and maximal energy. We extend the

concept of non complete extended p sum (or briefly, NEPS) to signed digraphs.

We construct pairs of non cospectral equienergetic signed digraphs. Moreover, we

extend McClelland’s inequality to signed digraphs and also obtain sharp upper

bound for energy of signed digraph in terms of the number of arcs.

4.1 Introduction

A signed digraph is defined to be a pair S = (D, σ) where D = (V,A ) is

the underlying digraph and σ : A → {−1, 1} is the signing function. The sets of

positive and negative arcs of S are respectively denoted by A + and A −. Thus

A = A + ∪A −. A signed digraph is said to be homogeneous if all of its arcs have

either positive sign or negative sign and heterogeneous, otherwise.

Two vertices are adjacent if they are connected by an arc. A path of length

n− 1 (n ≥ 2), denoted by Pn, is a signed digraph on n vertices v1, v2, · · · , vn with

n − 1 signed arcs (vi, vi+1), i = 1, 2, . . . , n − 1. A cycle of length n is a signed

digraph having vertices v1, v2, · · · , vn and signed arcs (vi, vi+1), i = 1, 2, · · · , n− 1

and (vn, v1). The sign of a signed digraph is defined as the product of signs of

its arcs. A signed digraph is said to be positive (respectively, negative) if its

sign is positive (respectively, negative) i.e., it contains an even (respectively, odd)

number of negative arcs. A signed digraph is said to be all-positive (respectively,

all-negative) if all its arcs are positive (respectively, negative). A signed digraph

is said to be cycle balanced if each of its cycles is positive, otherwise non cycle

balanced. Throughout this Chapter, we call cycle balanced cycle a positive cycle

and non cycle balanced cycle a negative cycle and respectively denote them by

Cn and Cn, where n is the number of vertices. Further dotted arcs denote the

negative arcs and bold arcs denote the positive arcs. A linear signed subdigraph

of a signed digraph is a subdigraph with indegree and outdegree of each vertex
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equal to one.

The adjacency matrix of a signed digraph S whose vertices are v1, v2, · · · , vn
is the n× n matrix A(S) = (aij), where

aij =

{
σ(vi, vj), if there is an arc from vi to vj,

0, otherwise.

The characteristic polynomial |xI − A(S)| of the adjacency matrix A(S) of

signed digraph S is called the characteristic polynomial of S and is denoted by

φS(x). The eigenvalues of A(S) are called the eigenvalues of S.

A signed digraph is said to be symmetric if (u, v) ∈ A + or A −, then

(v, u) ∈ A + or A −, where u, v ∈ V . A one to one correspondence between

signed graphs and symmetric signed digraphs is given by S  
←→
S , where

←→
S has

the same vertex set as that of signed graph S, and each signed edge (u, v) is re-

placed by a pair of symmetric arcs (u, v) and (v, u) both with same sign as that

of edge (u, v). Under this correspondence a signed graph can be identified with a

symmetric signed digraph. A signed digraph is said to be skew symmetric if its

adjacency matrix is skew symmetric. We denote a skew symmetric signed digraph

of order n by Sn.

The weighted directed graph S of an n×n matrix M = (mij) of reals consists

of n vertices with vertex i joined to vertex j by a directed arc with weight mij

if and only if mij is non-zero. In case the matrix consists of entries −1, 0 and 1,

then we get a signed digraph. Thus there is a one to one correspondence between

the set of integral (−1, 0, 1)-matrices of order n and the set of signed digraphs of

order n.

The following is the coefficient Theorem for signed digraphs [2].

Theorem 4.1.1. If S is a signed digraph with characteristic polynomial

φS(x) = xn + a1x
n−1 + · · ·+ an−1x+ an,
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then

aj =
∑
L∈£j

(−1)p(L)
∏

Z∈c(L)

s(Z),

for all j = 1, 2, · · · , n, where £j is the set of all linear signed subdigraphs L of S

of order j, p(L) denotes number of components of L and c(L) denotes the set of

all cycles of L and s(Z) the sign of cycle Z.

Remark 4.1.2. For undirected signed graph (when considered as symmetric

signed digraph) Theorem 4.1.1 takes the form of Theorem 3.1.1.

The spectral criterion for cycle balance of signed digraphs given by Acharya

[1] is as follows.

Theorem 4.1.3. A signed digraph is cycle balanced if and only if it is cospectral

with the underlying unsigned digraph.

4.2 Energy of signed digraphs

In this section, we extend the concept of energy to signed digraphs in a similar

way as graph energy has been extended to energy of digraphs in [62]. Unlike signed

graphs the adjacency matrix of a signed digraph need not be real symmetric, so

eigenvalues can be complex numbers.

Definition 4.2.1. Let S be a signed digraph of order n having eigenvalues

z1, z2, · · · , zn. The energy of S is defined as

E(S) =
n∑
j=1

|<zj|,

where <zj denotes the real part of complex number zj.

If S is a signed graph and
←→
S be its symmetric signed digraph, then clearly

A(S) = A(
←→
S ) and so E(S) = E(

←→
S ). In this way, definition 4.2.1 generalizes the

concept of energy of undirected signed graphs.
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Example 4.2.2. Let S be a signed digraph shown in Figure 4.1. Clearly,

S is non cycle balanced signed digraph. By Theorem 4.1.1, the characteris-

tic polynomial of S is φS(x) = x10 + x7 = x7(x3 + 1). The spectrum of S is

spec(S) = {−1, 07, 1−
√
3ι

2
, 1+

√
3ι

2
}, where ι =

√
−1, so E(S) = 2.

u u
u u

u

u

uu
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?
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u

u7 �

^

S

Figure 4.1

Example 4.2.3. Let S be an acyclic signed digraph. Then by Theorem 4.1.1, the

characteristic polynomial of S is φS(x) = xn, so that spec(S) = {0n} and hence

E(S) = 0.

Example 4.2.4. Consider Sn, the skew symmetric signed digraph on n ≥ 2 ver-

tices, then eigenvalues are of the form ±ια, where α ∈ R and therefore E(S) = 0.

Example 4.2.5. If S is the signed directed cycle on n vertices, then the char-

acteristic polynomial of S is φS(x) = xn + (−1)[s], where the symbol [s] is de-

fined as [s] = 1 or 0 according as S is positive or negative. If S = Cn, then

spec(S) = {e 2ιjπ
n , j = 0, 1, · · · , n− 1} so that E(S) =

∑n−1
j=0 | cos(2jπ

n
)|. If S = Cn,

then spec(S) = {e
ι(2j+1)π

n , j = 0, 1, · · · , n−1} so that E(S) =
∑n−1

j=0 | cos( (2j+1)π
n

)|.
In particular if S = C4, then spec(S) = {1−ι√

2
, 1+ι√

2
, −1−ι√

2
, −1+ι√

2
} and E(S) = 2

√
2.

Example 4.2.6. Let S be a signed digraph having n vertices and unique cycle of

length r, where 2 ≤ r ≤ n. Then by Theorem 4.1.1, φS(x) = xn + (−1)[s]xn−r =

xn−r(xr + (−1)[s]), where the symbol [s] is defined as [s] = 1 or 0 according as S is

cycle balanced or non cycle balanced. Clearly, energy equals to the energy of the

unique cycle.
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Given t signed digraphs S1, S2, · · ·St, their direct sum denoted by S1 ⊕ S2 ⊕

· · · ⊕ St is the signed digraph with V (S1 ⊕ S2 ⊕ · · · ⊕ St) =
t⋃

j=1

V (Sj) and arc set

A (S1 ⊕ S2 ⊕ · · · ⊕ St) =
t⋃

j=1

A (Sj).

Now we have the following result.

Theorem 4.2.7. Let S be a signed digraph on n vertices and S1, S2, · · · , Sk be

its strong components. Then E(S) =
k∑
j=1

E(Sj).

Proof. Let Y = {a ∈ A : a /∈ c(S)}, where c(S) is the set of all cycles of S. By

Theorem 4.1.1, φS(x) = φS−Y (x), where S−Y is the signed digraph obtained from

S by deleting the non-cyclic arcs. Clearly, S − Y = S1 ⊕ S2 ⊕ · · · ⊕ Sk and adja-

cency matrix of signed digraph S−Y is in block diagonal form with diagonal blocks

as the adjacency matrices of strong components (isolated vertex is considered as

strong component of order one). Therefore φS−Y (x) = φS1(x)φS2(x) · · ·φSk(x) and

so E(S) =
k∑
j=1

E(Sj).

Remark 4.2.8. From Theorem 4.1.1, aj =
∑
L∈£j

(−1)p(L)s(L), for j = 1, 2, · · · , n,

where s(L) =
∏

Z∈c(L)
s(Z). Clearly, this sum contains positive and negative ones.

Clearly

+1 arises if and only if

(a) Number of components of L ∈ £j is odd and s(L) < 0. We call such linear

signed digraphs as type a linear signed digraphs.

(b) Number of components of L ∈ £j is even and s(L) > 0. We call such linear

signed digraphs as type b.

−1 will occur if and only if

(c) Number of components of L ∈ £j is odd and s(L) > 0. We call such linear

signed digraphs as type c.

(d) Number of components of L ∈ £j is even and s(L) < 0. We call such linear

signed digraphs as type d.

From the above remark, we observe that aj = 0 if and only if either S is
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acyclic or in S, for each j, number of linear signed digraphs of order j of type a

or type b or both types is equal to the number of linear signed digraphs of order

j of type c or type d or both types.

An immediate consequence of the Remark 4.2.8 is the following Lemma.

Lemma 4.2.9. An integral (−1, 0, 1)-matrix is nilpotent if and only if its un-

derlying signed digraph S is either acyclic or in S, for each j = 1, 2, · · · , n, the

number of linear signed digraphs of order j of type a or type b or both types is equal

to number of linear signed digraphs of order j of type c or type d or both types.

Unlike unsigned strong component, energy of a signed directed strong com-

ponent can be zero, for example, signed digraph S1 in Figure 4.2. Now we have

the following result.

Theorem 4.2.10. Let S be a signed digraph of order n. Then E(S) = 0 if S

satisfies one of the following conditions (i) S is acyclic or (ii) each strong compo-

nent of S is skew symmetric or (iii) for each j = 1, 2, · · · , n, the number of linear

signed digraphs of order j of type a or type b or both types is equal to number of

linear signed digraphs of order j of type c or type d or both types.

Proof. Let S be a signed digraph of order n. If S is acyclic or satisfies (iii),

then by Lemma 4.2.9, φS(x) = xn and so E(S) = 0. If S satisfies (ii), then the

eigenvalues of S are of the form ±ια, where α ∈ R, therefore E(S) = 0.

Here we note that Lemma 4.2.9 characterizes signed digraphs with zero as

the only eigenvalue. Skew-symmetric signed digraphs have eigenvalues of the form

±ια, where α ∈ R. But there are signed digraphs with eigenvalues of the form

±ια, where α ∈ R, which are not skew symmetric. For example, consider the

signed digraph S obtained by joining two copies of S2, a skew symmetric signed

digraph of order two, by an arc (sign being immaterial). The spectrum of S is

spec(S) = {ι(2),−ι(2)}, where ι =
√
−1. But S is not skew symmetric digraph

as A(S) is not a skew symmetric matrix. Therefore characterization of signed di-

graphs with energy zero reduces to the problem of characterizing signed digraphs

with eigenvalues of the form ±ια, where α ∈ R.
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4.3 Computation of energy of signed directed cycles

We first give energy formulae for positive cycles. Let Cn be a positive cycle

on n ≥ 2 vertices. The characteristic polynomial of Cn is φCn(x) = xn− 1, so that

spec(Cn) = {e 2πιj
n , j = 0, 1, · · · , n − 1}, where ι =

√
−1. Consequently energy of

Cn is

E(Cn) =
n−1∑
j=0

| cos
2jπ

n
|.

Given a positive integer n, it has one of the forms 4k, or 2k + 1, or 4k + 2,

where k ≥ 0.

If n = 4k, then

E(Cn) =
4k−1∑
j=0

| cos
2jπ

4k
| =

4k−1∑
j=0

| cos
jπ

2k
| = 2

2k−1∑
j=0

| cos
jπ

2k
|

= 2 + 4
k−1∑
j=1

cos
jπ

2k
= 2 + 4{−1

2
+

sin
(k− 1

2
)π

2k

2 sin π
4k

} = 2 cot
π

n
.

If n = 2k + 1, then

E(Cn) =
2k∑
j=0

| cos
2jπ

2k + 1
| = 1 + 2

k∑
j=1

| cos
2jπ

2k + 1
| = 1 + 2

k∑
j=1

cos
jπ

2k + 1

= 1 + 2{−1

2
+

sin
(k+ 1

2
)π

2k+1

2 sin π
2(2k+1)

} = csc
π

2n
.

If n = 4k + 2, then

E(Cn) =
4k+1∑
j=0

| cos
2jπ

4k + 2
| =

4k+1∑
j=0

| cos
jπ

2k + 1
| = 2

2k∑
j=0

| cos
jπ

2k + 1
|

= 2 + 4
k∑
j=1

cos
jπ

2k + 1
= 2 + 4{−1

2
+

sin
(k+ 1

2
)π

2k+1

2 sin π
4k+2

} = 2 csc
π

n
.

We now give exact formulae for the energy of negative cycles of length n.

Let Cn denote the negative cycle with n vertices. Then φCn(x) = xn + 1 and so
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Spec(Cn) = {e
(2j+1)πι

n , j = 0, 1, · · · , n− 1}, where ι =
√
−1. Therefore the energy

is given by

E(Cn) =
n−1∑
j=0

| cos
(2j + 1)π

n
|.

If n = 4k, then

E(Cn) =
4k−1∑
j=0

| cos
(2j + 1)π

4k
| = 2

2k−1∑
j=0

| cos
(2j + 1)π

4k
| = 4

k−1∑
j=0

cos
(2j + 1)π

4k

= 4{cos
π

4k
+ cos

3π

4k
+ · · ·+ cos

(2k − 1)π

4k
}

= 4
cos( π

4k
+ k−1

2
2π
4k

) sin k 2π
8k

sin 2π
8k

= 2 csc
π

n
.

If n = 4k + 2, then

E(Cn) =
4k+1∑
j=0

| cos
(2j + 1)π

4k + 2
| = 4

k−1∑
j=0

cos
(2j + 1)π

4k + 2

= 4{cos
π

4k + 2
+ cos

3π

4k + 2
+ · · ·+ cos

(2k − 1)π

4k + 2
} = 2 cot

π

n
.

If n = 2k + 1, then since −1 is the eigenvalue of Cn, we have spec(Cn)

= −spec(Cn), and so E(Cn) = E(Cn).

Summarizing, all the above cases can be written as follows:

E(Cn) =


2 cot π

n
, if n = 4k,

2 csc π
n
, if n = 4k + 2,

csc π
2n
, if n = 2k + 1.

and

E(Cn) =


2 csc π

n
, if n = 4k,

2 cot π
n
, if n = 4k + 2,

csc π
2n
, if n = 2k + 1.
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Pẽna and Rada [62] proved that the energy of directed unsigned cycles in-

creases monotonically with respect to order n ≥ 4. From energy formulae for

positive and negative signed directed cycles, the following two results are immedi-

ate.

Theorem 4.3.1. Energy of negative cycles increases monotonically with respect

to the order. Among all non cycle balanced unicyclic signed digraphs on n vertices,

the cycle has the largest energy. Moreover, the minimal energy is attained in uni-

cyclic signed digraph with unique cycle C2.

Theorem 4.3.2. Energy of positive and negative cycles satisfy the following:

(i) Energy of positive cycle of odd order equals energy of negative cycle of same

order.

(ii) Energy of negative cycle of even order is greater than energy of positive cycle

of same order if and only if n = 4k.

(iii) Energy of negative cycle of even order is less than energy of positive cycle of

same order if and only if n = 4k + 2.

We now obtain Coulson’s integral formula for energy of signed digraphs.

Theorem 4.3.3. Let S be a signed digraph with n vertices having characteristic

polynomial φS(x). Then

E(S) =
n∑
j=1

|<zj| =
1

π

∞∫
−∞

(n− ιxφ′S(ιx)

φS(ιx)
)dx,

where z1, z2, · · · , zn are the eigenvalues of signed digraph S and
∞∫
−∞

F (x)dx denotes

principle value of the respective integral.

Proof. Consider the function

f(z) = n− zφ′S(z)

φS(z)
,

where φS(z) is the characteristic polynomial of S and zj = aj + ιbj, j = 1, 2, . . . , n

are its zeros.
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Then

f(z) = n−
n∑
j=1

z

z − zj
=

n∑
j=1

zj
zj − z

implying that

1

π

∞∫
−∞

(n− ιyφ′S(ιy)

φS(ιy)
)dy =

1

π

∞∫
−∞

f(ιy)dy =
1

π

n∑
j=1

∞∫
−∞

zj
zj − ιy

dy.

Using the integrals
∞∫
−∞

a
(y−b)2+a2dy = π.sgn(a) and

∞∫
−∞

y−b
(y−b)2+a2dy = 0, where a

and b are real numbers and sgn(a) denotes the sign of real number a, we have

∞∫
−∞

zj
zj − ιy

dy =

∞∫
−∞

aj + ιbj
aj − ι(y − bj)

dy

=

∞∫
−∞

a2j − bj(y − bj) + [aj(y − bj) + ajbj]ι

(y − bj)2 + a2j
dy

= πaj.sgn(aj) + πbj.sgn(aj)ι = π.sgn(aj)(aj + ιbj)

= π.sgn(aj)zj.

Therefore

1

π

∞∫
−∞

(n− ιyφ′S(ιy)

φS(ιy)
)dy =

1

π

n∑
j=1

π.sgn(aj)zj =
n∑
j=1

sgn(<zj)zj =
n∑
j=1

|<zj| = E(S).

The Coulson’s integral formula given above is another motivation to define the

energy of a signed digraph as the sum of absolute values of real parts of eigenvalues.

Example 4.3.4. Consider the cycle C4, the characteristic polynomial is φC4(x) =

x4 + 1 and hence

E(C4) =
1

π

∞∫
−∞

[4− 4ιx(ιx)3

(ιx)4 + 1
]dx =

1

π

∞∫
−∞

4

x4 + 1
dx =

4

π

π

2 sin π
4

= 2
√

2,
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as calculated in example 4.2.5.

An immediate consequence of Coulson’s integral formula is the following ob-

servation, the proof being similar to the proof of Theorem 3.3.2 for signed graphs.

Theorem 4.3.5. If S is a signed digraph on n vertices, then

E(S) =
1

π

∞∫
−∞

1

x2
log |xnφS(

ι

x
)|dx.

4.4 NEPS in signed digraphs

We recall that [41] Kronecker product of two matrices A = (aij)r×s and

B = (bij)t×u denoted by A ⊗ B is a matrix of order rt × su obtained by re-

placing each entry aij of A by a block aijB. Thus A ⊗ B consists of all rtsu

possible products of an entry of A with an entry of B. The Kronecker product is

a component wise operation, i.e., (A⊗ B)(C ⊗D) = (AC)⊗ (BD), provided the

products AC and BD exist. This operation is also associative, so we can define the

multiple product A1⊗A2⊗· · ·⊗Am. Let order of Ai be ri×si. We index elements

of Ai by ai;jk and those of multiple product by a pair of m−tuples, a row index

j = (j1, j2, · · · , jm) and a column index k = (k1, k2, · · · , km), where 1 ≤ ji ≤ ri and

1 ≤ ki ≤ si. The element ajk of the product matrix is ajk = a1;j1k1a2;j2k2 · · · am;jmkm .

Lemma 4.4.1. [23]. Let Ai, for i = 1, 2, · · · ,m, be a square matrix of or-

der ni and ξij, for j = 1, 2, · · · , ni be its eigenvalues. If k1, k2, · · · , km are non-

negative integers, then the n1n2 · · ·nm eigenvalues of the matrix Ak11 ⊗ · · · ⊗ Akmm
are ξj1j2···jm = ξk11j1 · · · ξ

km
mjm

for 1 ≤ ji ≤ ni. Let kp = (kp1, kp2, · · · , kpm), for

p = 1, 2, · · · , q, be vectors of non-negative integers. Then the n1n2 · · ·nm eigenval-

ues of
q∑
p=1

A
kp1
1 ⊗ · · · ⊗ A

kpm
m are ξj1j2···jm =

q∑
p=1

ξ
kp1
1j1
· · · ξkpmmjm

.

For NEPS in graphs see [14]. The following definition extends this concept

to signed digraphs.
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Definition 4.4.2. Let B be a set of binary n−tuples called basis for the product.

The non-complete extended p−sum (or simply called NEPS) of signed digraphs

S1, S2, · · · , Sn with basis B denoted by NEPS(S1, S2, · · · , Sn; B) is a signed di-

graph with vertex set V (S1) × V (S2) × · · · × V (Sn). There is an arc from vertex

(u1, u2, · · · , un) to (v1, v2, · · · , vn) if and only if there exists (β1, β2, · · · , βn) ∈ B

such that (ui, vi) ∈ A(Si) whenever βi = 1 and ui = vi whenever βi = 0. The sign

of the arc is given by

σ((u1, u2, · · · , un), (v1, v2, · · · , vn)) =
n∏
i=1

σi(ui, vi)
βi =

∏
i:βi=1

σi(ui, vi).

Assume that the basis B has r ≥ 1 elements, i.e., B = {β1, β2, · · · , βr} ⊆
{0, 1}n\{(0, 0, · · · , 0)}, we define

NEPS(S1, S2, · · · , Sn; B) =
⋃
β∈B

NEPS(S1, S2, · · · , Sn; β).

Example 4.4.3. The Kronecker product S1 ⊗ S2 ⊗ · · · ⊗ Sn of signed digraphs

S1, S2, · · · , Sn is the NEPS of these signed digraphs with basis B = {(1, 1, · · · , 1)};
the Cartesian product S1 × S2 × · · · × Sn is NEPS with basis B = {ei}, i =

1, 2, · · · , n, where ei is n−tuple with 1 at ith position and 0 otherwise.

The following result shows that two different basis vectors give disjoint arc

sets. Proof is similar to signed graphs [23].

Lemma 4.4.4. If S = NEPS (S1, S2, · · · , Sn; β) and S ′ = NEPS (S1, S2, · · · , Sn; β′),

β 6= β′, then A (S) ∩A (S ′) = ∅.

The following result gives adjacency matrix and spectra of NEPS in terms of

the constituent factor signed digraphs.

Theorem 4.4.5. If S =NEPS(S1, S2, · · · , Sn; B), then the adjacency matrix is

given by A(S) =
∑
β∈B

Aβ11 ⊗ · · · ⊗ Aβnn , and eigenvalues are given by zj1j2···jn =∑
β∈B

zβ11j1 · · · z
βn
njn

, where 1 ≤ ji ≤ |V (Si)|, i = 1, 2, · · · , n.

Proof. Let u = (u1j1 , u2j2 , · · · , unjn) and v = (v1k1 , v2k2 , · · · , vnkn), where 1 ≤
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ji, ki ≤ |V (Si)|, for i = 1, 2, · · · , n, be any two vertices of S. Then

[A(S)]uv =
∑
β∈B

(Aβ11 )u1j1v1k1 (Aβ22 )u2j2v2k2 · · · (A
βn
n )unjnvnkn

= σ1(u1j1 , v1k1)
β1σ2(u2j2 , v2k2)

β2 · · ·σn(unjn , vnkn)βn

= aβ11;j1k1a
β2
2;j2k2

· · · aβnn;jnkn = [
∑
β∈B

Aβ11 ⊗ · · · ⊗ Aβnn ]uv.

The second part of the result follows by Lemma 4.4.1.

We note two special cases of Theorem 4.4.5.

(i) The Kronecker product S1⊗S2⊗· · ·⊗Sn has eigenvalues zj1j2···jn = z1j1z2j2 · · · znjn ,

for 1 ≤ ji ≤ |V (Si)|, i = 1, 2, · · · , n.

(ii) The Cartesian product S1 × S2 × · · · × Sn has eigenvalues zj1j2···jn = z1j1 +

z2j2 + · · ·+ znjn , 1 ≤ ji ≤ |V (Si)|, for i = 1, 2, · · · , n.

Germina, Hameed and Zaslavsky [23] considered the problem of balance in

NEPS of signed graphs. It is natural to consider the problem of cycle balance for

signed digraphs. The next result gives sufficient but not necessary condition for cy-

cle balance of NEPS and the proof follows on same lines as that in undirected case.

Theorem 4.4.6. NEPS(S1, S2, · · · , Sn; B) is balanced if S1, S2, · · · , Sn are cycle

balanced.

Remark 4.4.7. (i) Theorem 4.4.6 does not have a general converse. A counter

example is S = NEPS(−C3,−
←→
K2, {(1, 1)}), where −C3 denotes all negative di-

rected cycle of order 3 and −
←→
K2 is symmetric signed digraph of order 2 with both

arcs negative. S is all positive and hence cycle balanced. However −C3 is non

cycle balanced.

(ii) In view of Theorem 4.1.3, the converse of Theorem 4.4.6 is always true if basis

B = {ei}, i = 1, 2, · · · , n.

Now we have the following result.

Theorem 4.4.8. The following statements are equivalent about Cartesian prod-

uct S = S1 × S2 × · · · × Sn.
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(i) S is cycle balanced.

(ii) All of S1, S2, · · · , Sn are cycle balanced.

(iii) S and Su are cospectral.

Proof. Theorem 4.1.3 implies equivalence of (i) and (iii). Also (ii) of Remark

4.4.7 implies equivalence of (i) and (ii).

4.5 Upper bounds for the energy of signed digraphs

Let S be a signed digraph of order n with adjacency matrix A(S) = (aij).

The powers of A(S) count the number of walks in signed manner. Let w+
ij(l) and

w−ij(l) respectively denote the number of positive and negative walks of length l

from vi to vj. The following result relates the integral powers of the adjacency

matrix with the number of positive and negative walks.

Theorem 4.5.1. If A is an adjacency matrix of a signed digraph on n vertices,

then [Al]ij = w+
ij(l)− w−ij(l).

Proof. We prove the result by induction on l. For l = 1, the result is vacuously

true. For l = 2, let n+
ij denote the number of positive neighbours of distinct vertices

vi and vj, and let n−ij the number of their common negative neighbours and n±ij be

the number of neighbours that are positive to one vertex and negative to other.

The (i, i) entry of A2 equals w+
ii (2) − w−ii (2). For (i, j), i 6= j, n+

ij + n−ij = w+
ij(2)

and n±ij = w−ij(2), so that (i, j)th entry= w+
ij(2) − w−ij(2). Now assume the result

to be true for l = m.

We have, [Am+1]ij = [AmA]ij =
n∑
k=1

[Am]ik[A]kj = w+
ij(m+ 1)−w−ij(m+ 1), by

induction hypothesis. Therefore, the result follows.

In the signed digraph S, let c+m denote the number of positive closed walks of

length m and c−m the number of negative closed walks of length m. In view of the

fact that sum of eigenvalues of a matrix equals to its trace, we have the following

observation.

Corollary 4.5.2. If z1, z2, · · · , zn are the eigenvalues of a signed digraph S, then
n∑
j=1

zmj = c+m − c−m.
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Now we extend the results of [76] to signed digraphs.

Lemma 4.5.3. Let S be a signed digraph having n vertices and a arcs and let

z1, z2, · · · , zn be its eigenvalues. Then

(i)
n∑
j=1

(<zj)2 −
n∑
j=1

(=zj)2 = c+2 − c−2 , (ii)
n∑
j=1

(<zj)2 +
n∑
j=1

(=zj)2 ≤ a = a+ + a−.

Proof. By Corollary 4.5.2, we have

c+2 − c−2 =
n∑
j=1

z2j =
n∑
j=1

(<zj)2 −
n∑
j=1

(=zj)2 + 2ι
n∑
j=1

<zj=zj.

Equating real and imaginary parts proves (i).

By Schur’s unitary triangularization, there exists a unitary matrix U such

that the adjacency matrix A of the signed digraph S is unitarily similar to an

upper triangular matrix T = (tjk) with tjj = zj for each j = 1, 2, · · · , n. Then
n∑

j,k=1

|ajk|2 =
n∑

j,k=1

|tjk|2. As A is (−1, 0, 1)−matrix, we have

a =
n∑

j,k=1

|σ(vj, vk)| =
n∑

j,k=1

|ajk| =
n∑

j,k=1

|ajk|2 =
n∑

j,k=1

|tjk|2 ≥
n∑
j=1

|tjj|2

=
n∑
j=1

|zj|2 =
n∑
j=1

<z2j +
n∑
j=1

=z2j .

thereby proving (ii).

Theorem 4.5.4. Let S be a signed digraph with n vertices and a = a+ + a− arcs,

and let z1, z2, · · · , zn be its eigenvalues. Then E(S) ≤
√

1
2
n(a+ c+2 − c−2 ).

Proof. Subtracting part (i) of Lemma 4.5.3 from (ii), we see that

n∑
j=1

(=zj)2 ≤
1

2
(a− (c+2 − c−2 )).

Applying Cauchy-Schwarz inequality to vectors (|<z1|, |<z2|, · · · , |<zn|) and

(1, 1, · · · , 1), we have
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E(S) =
n∑
j=1

|<zj| ≤
√
n

√√√√ n∑
j=1

(<zj)2 =
√
n

√√√√(c+2 − c−2 ) +
n∑
j=1

(=zj)2

≤
√
n

√
(c+2 − c−2 ) +

1

2
(a− (c+2 − c−2 )) =

√
1

2
n(a+ c+2 − c−2 ).

Remark 4.5.5. (i). The upper bound in Theorem 4.5.4 is attained by signed di-

graphs S1 = (n
2

←→
K2,+), S2 = (n

2

←→
K2,−), (where (

←→
K 2,+) and (

←→
K 2,−) respectively

denote symmetric digraphs obtained from +K2 and −K2) and skew symmetric

signed digraph of order n. Note that spec(S1) = spec(S2) = {−1(n
2
),+1(n

2
)} and

eigenvalues of skew symmetric signed digraph of order n are of the form ±ια,

where α ∈ R.

(ii). The Above result extends McClleland’s inequality for signed graphs [35] which

states that E(S) ≤
√

2pq, holds for every signed graph with p vertices and q edges.

Let
←→
S be the symmetric signed digraph of signed graph S, then in

←→
S , a = 2q =

c+2 = c+2 − c−2 . By Theorem 4.5.4, E(S) = E(
←→
S ) ≤

√
1
2
p(2q + 2q) =

√
2pq.

Note that if S is strongly connected, then d+vj ≥ 1(respectively, d−vj ≥ 1) for

all j = 1, 2, . . . , n. Therefore, a =
n∑
j=1

d+vj ≥ n. Also, for any signed digraph S,

a ≥ c+2 − c−2 .

The following result gives the sharp upper bound of energy of signed digraphs

in terms of the number of arcs.

Theorem 4.5.6. Let S be a signed digraph with a arcs. Then E(S) ≤ a with

equality if and only if S = (a
2

←→
K2,+) or S = (a

2

←→
K2,−) plus some isolated vertices.

Proof. If S is acyclic, then the result is obvious. Assume S is strongly connected,

then by Theorem 4.5.4, we have

E(S) ≤
√

1

2
n(a+ c+2 − c−2 ) ≤

√
na ≤

√
a2 = a. (4.1)
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In general, let S1, S2, . . . , Sk be strong components of S and let the number

of vertices and arcs of Sj respectively be nj and aj. By Theorem 4.2.7, we have

E(S) =
k∑
j=1

E(Sj) ≤
k∑
j=1

aj ≤ a. (4.2)

It is easy to see that if S = (a
2

←→
K2,+) or (a

2

←→
K2,−) plus some isolated vertices,

then E(S) = a. Conversely, if S is strongly connected and E(S) = a, then all in-

equalities in (4.1) are equalities. From (4.1), na = a2, which gives a = 0 or a = n.

If a = 0, then S is a vertex, otherwise a = n. Also from (4.1), 1
2
n(a+c+2 −c−2 ) = na,

which gives c+2 − c−2 = a = n, which is possible only if S = (
←→
K2,+) or (

←→
K2,−).

In general case, all inequalities in (4.2) are equalities. Also, from E(Sj) ≤ aj, we

conclude that E(Sj) = aj for j = 1, 2, . . . , k. Then as earlier Sj = (
←→
K2,+) or

(
←→
K2,−) or a vertex. So, in this case S = (a

2

←→
K2,+) or S = (a

2

←→
K2,−) plus some

isolated vertices.

Remark 4.5.7. Theorem 4.5.6 extends the result for signed graphs [35], which

states that E(S) ≤ 2q for every signed graph with q edges with equality if and

only if S = ( q
2
K2,+) or S = ( q

2
K2,−) plus some isolated vertices.

4.6 Equienergetic signed digraphs

Two signed digraphs are said to be isomorphic if their underlying digraphs

are isomorphic such that the signs are preserved. Any two isomorphic signed di-

graphs are obviously cospectral. There exist non isomorphic signed digraphs which

are cospectral, e.g., consider the signed digraphs S1 and S2 shown in Figure 4.2.

Clearly, S1 and S2 are nonisomorphic, but spec S1 = {0(5)} = spec S2.

uu
uu

uu uu
uu

uu
uu

uu
jj

**

66

--

??

33

++
??

kk

??

uu

S1

Figure 4.2Figure 4.2
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S2

Two nonisomorphic signed digraphs S1 and S2 of same order are said to be

60



equienergetic if E(S1) = E(S2). Rada [76] proved the existence of pairs of non-

symmetric and non cospectral equienergetic digraphs. Cospectral signed digraphs

are obviously equienergetic, therefore the problem of equienergetic signed digraphs

reduces to the problem of construction of non cospectral pairs of equienergetic

signed digraphs such that for every pair not both signed digraphs are cycle bal-

anced.

We have the following result.

Theorem 4.6.1. Let S be a signed digraph of order n having eigenvalues z1, z2, · · · , zn
such that |<zj| ≤ 1 for every j = 1, 2, · · · , n. Then E(S ×

←→
K2) = 2n.

Proof. Let z1, z2, · · · , zt be eigenvalues with nonnegative real part and zt+1, · · · , zn
be those with negative real part. Eigenvalues of Cartesian product S ×

←→
K2 are

z1 ± 1, z2 ± 1, · · · , zt ± 1, zt+1 ± 1, · · · , zn ± 1. Therefore

E(S ×
←→
K2) =

t∑
j=1

(|<zj + 1|+ |<zj − 1|) +
n∑

j=t+1

(|<zj + 1|+ |<zj − 1|).

As |<zj| ≤ 1, for all i = 1, 2, · · · , n, it follows that

E(S×
←→
K2) =

t∑
j=1

(<zj +1+1−<zj)+
n∑

j=t+1

(<zj +1−<zj +1) = 2t+2(n− t) = 2n.

Now we have the following consequence.

Corollary 4.6.2. For n ≥ 2, E(Cn ×
←→
K2) = E(Cn ×

←→
K2) = 2n. Moreover,

Cn ×
←→
K2 and Cn ×

←→
K2 are non cospectral signed digraphs with 2n vertices.

Proof. We know the eigenvalues of Cn are e
ι(2j+1)π

n , j = 0, 1, · · · , n− 1 and those

of Cn are e
2ιjπ
n , j = 0, 1, · · · , n − 1. Clearly, eigenvalues of Cn and Cn meet the

requirement of Theorem 4.6.1, so E(Cn ×
←→
K2) = E(Cn ×

←→
K2) = 2n. Moreover,

2 /∈ spec(Cn×
←→
K2), but 2 ∈ spec(Cn×

←→
K2) implying that Cn×

←→
K2 and Cn×

←→
K2 are

non cospectral. The number of vertices in both signed digraphs is 2n which follows

by the definition of Cartesian product. In view of Remark 4.4.7 (ii), Cn ×
←→
K2 is
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non cycle balanced, whereas Cn ×
←→
K2 is cycle balanced.

Example 4.6.3. For each odd n, Cn and Cn is a non cospectral pair of equiener-

getic signed digraphs, because spec(Cn) = −spec(Cn) and 1 /∈ spec(Cn) but

1 ∈ spec(Cn).

From Corollary 4.6.2 and Example 4.6.3, we see for each positive integer

n ≥ 3, there exits a pair of non cospectral signed digraphs with one signed digraph

cycle balanced and another non cycle balanced. Now we construct pairs of non

cospectral equienergetic signed digraphs of order 2n, n ≥ 5 with both constituents

non cycle balanced. Let P l
n (n ≥ l+1) be a signed digraph obtained by identifying

one pendant vertex of the path Pn−l+1 with any vertex of Cl. Sign of non cyclic

arcs is immaterial.

Theorem 4.6.4. For each n ≥ 5, P 3
n×
←→
K2 and P 4

n×
←→
K2 is a pair of non cospectral

equienergetic signed digraphs of order and energy equal to 2n.

Proof. Using the fact that φP ln(x) = xn−lφCl(x) and Theorem 4.6.1, it follows

that E(P 3
n ×
←→
K2) = E(P 4

n ×
←→
K2) = 2n. Now 1 is an eigenvalue of P 3

n ×
←→
K2 with

multiplicity n−3 but 1 is an eigenvalue of P 4
n×
←→
K2 with multiplicity n−4, therefore

these two signed digraphs are non cospectral. The order of both signed digraphs

equals to 2n follows by the definition of Cartesian product. In view of Remark

4.4.7 (ii), it follows that both P 3
n ×
←→
K2 and P 4

n ×
←→
K2 are non cycle balanced.

4.7 Conclusion

We conclude with the following open problems.

Problem 4.7.1. Characterize signed digraphs with energy equal to the number

of vertices.

Problem 4.7.2. Determine bases other than {ei} for which converse of Theorem

4.4.6 holds.
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CHAPTER 5

Spectra and energy of bipartite signed digraphs

In this Chapter, we study spectra and energy in bipartite signed digraphs.

We obtain a sufficient condition for the even coefficients of the characteristic poly-

nomial of a bipartite signed digraph to alternate in sign. In this case, we obtain

an integral expression and define a quasi-order relation and show it is possible to

compare the energy of signed digraphs. Further, it is shown that signed digraph

in this case has the property that energy decreases when we delete an arc from

a cycle of length 2. We also obtain a sufficient condition for the even coefficients

of the characteristic polynomial of a bipartite signed digraph to be non negative.

We study integral, real, Gaussian signed digraphs and quasi-cospectral digraphs

and show for each positive integer n ≥ 4, there exists a family of n cospectral, non

symmetric, strongly connected, integral, real, Gaussian signed digraphs (non cycle

balanced) and quasi-cospectral digraphs of order 4n.

5.1 Introduction

Esser and Harary [21] showed that a strongly connected digraph is bipartite

if and only if its spectrum remains invariant under multiplication by −1. We show

that there are non bipartite strongly connected signed digraphs with this property.

As in bipartite digraphs, in general the even coefficients of a non cycle balanced

bipartite signed digraph do not alternate in sign. For example, the characteris-

tic polynomial of a non cycle balanced bipartite signed digraph S in Fig. 5.3 is

φS(x) = x4 + x2. Clearly, even coefficients do not alternate in sign. Consider the

non cycle balanced bipartite signed digraph S1 shown in Fig. 5.2. The charac-

teristic polynomial is φS1(x) = x6 − x4 + 2x2 and in this case even coefficients

alternate in sign. Rada, Gutman and Cruz [71] considered bipartite digraphs with

characteristic polynomial of the form

φD(x) = xn +

bn
2
c∑

j=1

(−1)jb2jx
n−2j (5.1)

where b2j are nonnegative integers for every j = 1, 2, · · · , bn
2
c and studied a large

family of bipartite digraphs on n vertices ∆∗n consisting only of cycles of length

63



≡ 2 (mod 4) and with characteristic polynomial of the form (5.1). Because of

this alternating nature of even coefficients it is possible to compare energies of

digraphs in ∆∗n by means of quasi-order relation. It is natural to consider the same

problem for signed digraphs. We show that bipartite signed digraphs on n vertices

with each cycle of length ≡ 0 (mod 4) negative (i.e., containing odd number of

negative arcs) and each cycle of length ≡ 2 (mod 4) positive (i.e., containing an

even number of negative arcs) have characteristic polynomial of the form (5.1).

We denote this class of signed digraphs by ∆1
n. We derive an integral expression

for the energy and define a quasi-order relation to compare energies of signed di-

graphs in this case. We also study another class of bipartite signed digraphs on n

vertices with all cycles negative (i.e., each cycle has odd number of negative arcs)

and show a signed digraph in this class has characteristic polynomial of the form

φS(x) = xn +

bn
2
c∑

j=1

b2jx
n−2j (5.2)

where b2j are nonnegative integers for every j = 1, 2, · · · , bn
2
c. We denote this

class of signed digraphs by ∆2
n.

Two signed digraphs of same order are said to be cospectral (or isospectral) if

they have same spectrum. Esser and Harrary [20] studied digraphs with integral,

real and Gaussian spectra. We study signed digraphs with integral, real and

Gaussian spectra and we show for each positive integer n ≥ 4 there exists a

collection of n non cycle balanced, non symmetric, strongly connected, integral,

real and Gaussian cospectral signed digraphs of order 4n. Further, we study quasi-

cospectral and strongly quasi-cospectral digraphs.

5.2 Spectra of signed digraphs

Recall a signed digraph S is bipartite if its underlying digraph is bipartite.

The following result shows that spectrum of a bipartite signed digraph remains

invariant under multiplication by −1.

Theorem 5.2.1. If S is a bipartite signed digraph of order n, then
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φS(x) = xn +

bn
2
c∑

j=1

a2jx
n−2j,

where a2j are integers for every j = 1, 2, · · · , bn
2
c.

Proof. Let S be a bipartite signed digraph of order n. Then S has no odd cycles

and consequently no linear signed subdigraph on odd number of vertices. There-

fore, a2j−1 = 0 for all j ≥ 1. By Theorem 4.1.1, the characteristic polynomial of S

is

φS(x) = xn + a2x
n−2 + a4x

n−4 + · · ·

= xn +

bn
2
c∑

j=1

a2jx
n−2j,

where a2j are integers. It is clear from last expression that the spectrum of bipar-

tite signed digraph remains invariant under multiplication by −1.
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Remark 5.2.2. Unlike in digraphs, the converse of Theorem 5.2.1 is not true.

For example signed digraphs S1 and S2 shown in Fig. 5.1 are two strongly

connected non bipartite signed digraphs of order 17. It is easy to check that

φS1(x) = φ−S1(x) = x17 + 3x11 + x5 and φS2(x) = φ−S2(x) = x17 + x11 + x5. Thus

both S1 and S2 have the property that spectrum remains invariant under multi-

plication by −1.
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We have the following result.

Theorem 5.2.3. Let S be a signed digraph of order n. Then the following state-

ments are equivalent.

(i) Spectrum of S remains invariant under multiplication by −1.

(ii) S and −S are cospectral.

(iii) In S, for each odd j, number of linear signed subdigraphs of order j of type a

or type b or both types is equal to number of linear signed subdigraphs of order j

of type c or type d or both types.

Proof. (i) =⇒ (ii) This follows from the fact that spec(−A) = −spec(A) for any

square matrix A.

(ii) =⇒ (iii) Assume S and −S are cospectral. Then φS(x) = φ−S(x) = ±φS(−x).

The sign is positive or negative according as the order n of signed digraph is re-

spectively even or odd. This clearly indicates that the coefficient aj = 0 for each

odd j and therefore (iii) follows.

(iii) =⇒ (i) Assume (iii) holds. Then aj = 0 for all odd j, therefore φS(x) =∑bn
2
c

j=0 a2jx
n−2j. From this we see that φS(−x) = ±φS(x), the sign is + or − ac-

cording as n is even or odd and hence (i) holds.

Lemma 5.2.4. If S is a bipartite signed digraph, then for all j = 1, 2, · · ·
(i) £2j−1 = ∅.
(ii) Every element of £4j has an even number of cyclic components of length ≡ 2

(mod 4). The number of components of length ≡ 0 (mod 4) is either even or odd.

(iii) Every element of £4j+2 has an odd number of cyclic components of length ≡ 2

(mod 4). The number of components of length ≡ 0 (mod 4) is either even or odd.

Proof. (i). Since S is bipartite, therefore as in Theorem 5.2.1, £2j−1 = ∅, for all

j = 1, 2, · · · .
(ii). Assume L ∈ £4j has p components of length 4lr + 2, for r = 1, 2, · · · , p and

q components of length 4mr for r = 1, 2, · · · , q. Then

4j =

p∑
r=1

(4lr + 2) +

q∑
r=1

(4mr),

which gives p = 2j − 2
p∑
r=1

(lr) − 2
q∑
r=1

(mr). This shows that p is even irrespective
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of whether q is even or odd.

(iii). Same as in part (ii).

The following result shows that the characteristic polynomial of a signed di-

graph in ∆1
n is of the form (5.1).

Theorem 5.2.5. If S ∈ ∆1
n, then

φS(x) = xn +

bn
2
c∑

j=1

(−1)jb2jx
n−2j, (5.3)

where b2j = |£2j| is the cardinality of the set £2j.

Proof. Let φS(x) = xn+
n∑
j=1

ajx
n−j. By Theorem 4.1.1, we have aj =

∑
L∈£j

(−1)p(L)s(L),

where s(L) =
∏

Z∈c(L)
s(Z). By Lemma 5.2.4, for all j = 1, 2, · · · , we have a2j−1 = 0.

Also,

a4j =
∑
L∈£4j

(−1)p(L)s(L)

=
∑
L∈£1

4j

(−1)p(L)s(L) +
∑
L∈£2

4j

(−1)p(L)s(L) +
∑
L∈£3

4j

(−1)p(L)s(L),

where
∑

L∈£1
4j

denotes the sum over those linear signed subdigraphs L ∈ £4j whose

components are only those cycles whose length ≡ 0 (mod 4),
∑
l∈£2

4j

denotes the

sum over those linear signed subdigraphs L ∈ £4j whose components are cycles

of length ≡ 2 (mod 4) only and
∑
l∈£3

4j

denotes the sum over those linear signed

subdigraphs L ∈ £4j which have components consisting of both types of cycles.

Now ∑
L∈£1

4j

(−1)p(L)s(L) =
∑
I

(−1)p(L)s(L) +
∑
II

(−1)p(L)s(L),

where
∑
I

denotes the sum over those L ∈ £1
4j which have an even number of cycles
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of length ≡ 0 (mod 4) and
∑
II

denotes the sum over those L ∈ £1
4j which have an

odd number of cycles of length ≡ 0 (mod 4).

Therefore, by Lemma 5.2.4, we have∑
L∈£1

4j

(−1)p(L)s(L) =
∑
I

(−1)even(+1) +
∑
II

(−1)odd(−1)

=
∑
I

1 +
∑
II

1 = |£1
4j|.

Now, by Lemma 5.2.4, we have∑
L∈£2

4j

(−1)p(L)s(L) =
∑
L∈£2

4j

(−1)even(+1)

= |£2
4j|.

Again, by Lemma 5.2.4, we have

∑
L∈£3

4j

(−1)p(L)s(L) =
∑
I

(−1)p(L)s(L) +
∑
II

(−1)p(L)s(L),

where
∑
I

denotes the sum over those L ∈ £3
4j which have an even number of cycles

of length ≡ 0 (mod 4) and
∑
II

denotes the sum over those L ∈ £3
4j which have an

odd number of cycles of length ≡ 0 (mod 4). Note that the number of cycles of

length ≡ 2 (mod 4) is even.

Therefore,∑
L∈£3

4j

(−1)p(L)s(L) =
∑
I

(−1)even(+1) +
∑
II

(−1)odd(−1)

=
∑
I

1 +
∑
II

1 = |£3
4j|.

Thus a4j = |£1
4j|+ |£2

4j|+ |£3
4j| = |£4j|.

Also,

a4j+2 =
∑

L∈£4j+2

(−1)p(L)s(L)

=
∑

l∈£1
4j+2

(−1)p(L)s(L) +
∑

L∈£2
4j+2

(−1)p(L)s(L),
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where
∑

l∈£1
4j+2

denotes the sum over those linear signed subdigraphs L ∈ £4j+2

whose components are only those cycles whose length ≡ 2 (mod 4), and
∑

l∈£2
4j+2

denotes the sum over those linear signed subdigraphs L ∈ £4j+2 which have com-

ponents consisting of both types of cycles.

By Lemma 5.2.4, we have

∑
L∈£1

4j+2

(−1)p(L)s(L) =
∑

L∈£1
4j+2

(−1)odd(+1) = −|£1
4j+2|.

Also, ∑
L∈£2

4j+2

(−1)p(L)s(L) =
∑
I

(−1)p(L)s(L) +
∑
II

(−1)p(L)s(L),

where
∑
I

denotes the sum over those L ∈ £2
4j+2 which have an even number of

cycles of length ≡ 0 (mod 4) and
∑
II

denotes sum over those L ∈ £2
4j+2 which have

an odd number of cycles of length ≡ 0 (mod 4).

Again, by Lemma 5.2.4, we have∑
L∈£2

4j+2

(−1)p(L)s(L) =
∑
I

(−1)odd(+1) +
∑
II

(−1)even(−1)

=
∑
I

(−1) +
∑
II

(−1) = −|£2
4j+2|.

Therefore, a4j+2 = −|£1
4j+2| − |£2

4j+2| = −|£4j+2|.
Thus we conclude that

φS(x) = xn +

bn
2
c∑

j=1

(−1)jb2jx
n−2j,

where b2j = |£2j| is the cardinality of the set £2j.

Remark 5.2.6. Here we note that there exist bipartite and non bipartite non

cycle balanced signed digraphs not in ∆1
n which have characteristic polynomial
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with alternating coefficients. Signed digraphs S1 and S2 shown in Fig. 5.2 clearly

do not belong to ∆1
n. By Theorem 4.1.1, φS1(x) = x6−x4+2x2 and φS2(x) = x6−1.
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The following result shows that the characteristic polynomial of a signed di-

graph in ∆2
n is of the form (5.2). Proof is same as the proof of Theorem 5.2.5.

Theorem 5.2.7. If S ∈ ∆2
n, then characteristic polynomial is given by

φS(x) = xn +

bn
2
c∑

j=1

b2jx
n−2j,

where b2j = |£2j| is the cardinality of the set £2j.

u
R

6

u

uu

?

� I	

S Fig. 5.3

Remark 5.2.8. We note that there exist bipartite and non bipartite non cycle

balanced signed digraphs not in ∆2
n which have characteristic polynomial of the

form (5.2). Signed digraphs S1 and S2 shown in Fig. 5.1 and signed digraph S

shown in Fig. 5.3 do not belong to ∆2
n, because former are non bipartite and

latter has a positive cycle of length 2. By Theorem 4.1.1, φS1(x) = x17 +3x11 +x5,
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φS2(x) = x17 + x11 + x5 and φS(x) = x4 + x2.

Recall the definition of Cartesian product of two signed digraphs. Let S1 =

(V1,A1, σ1) and S2 = (V2,A2, σ2) be two signed digraphs, their Cartesian product

(or sum) denoted by S1 × S2 is the signed digraph (V1 × V2,A , σ), where the arc

set is that of the Cartesian product of underlying unsigned digraphs and the sign

function is defined by

σ((ui, vj), (uk, vl)) =

{
σ1(ui, uk), if j = l,

σ2(vj, vl), if i = k.

Unlike Kronecker product [56], Cartesian product of two strongly connected

signed digraphs is always strongly connected as can be seen in the following result.

Lemma 5.2.9. If S1 and S2 be two strongly connected signed digraphs, then

S1 × S2 is strongly connected.

Proof. Let (ui, vj), (up, vq) ∈ V (S1 × S2), where we assume p ≤ q (case p > q can

be dealt similarly). Since S1 is strongly connected, there exists a directed path

(ui, ui+1)(ui+1, ui+2) · · · (up−1, up). Also, strong connectedness of S2 implies there

exists a directed path (vj, vj+1)(vj+1, vj+2) · · · (vq−1, vq). By definition of Carte-

sian product, Fig. 5.4 illustrates that there exists a directed path from (ui, vj) to

(up, vq). Signs do not play any role in connectedness, so we take all arcs in Fig.

5.4 positive. Similarly, one can prove the existence of a directed path from (up, vq)

to (ui, vj).
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Definition 5.2.10. A signed digraph is said to integral (real or Gaussian) ac-

cording as spectrum of S is integral (real or Gaussian) respectively.
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The following three results show the existence of non cycle balanced integral,

real and Gaussian signed digraphs.
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Theorem 5.2.11. For each positive integer n ≥ 4, there exists a family of n in-

tegral cospectral, strongly connected, non symmetric and non cycle balanced signed

digraphs of order 4n.

Proof. Consider signed digraphs S1 and S2 shown in Fig. 5.5. Clearly S1 and S2

are non cycle balanced and strongly connected. By Theorem 4.1.1,

φS1(x) = φS2(x) = x4 − 3x2 + 2x.

Therefore, spec(S1) = spec(S2) = {−2, 0, 1(2)}. That is, S1 and S2 are integral

cospectral.

Let

S(k) = S1 × S1 × · · · × S1 × S2 × S2 × · · · × S2,

where we take k copies of S1 and n−k copies of S2. Clearly, for each n, we have n

cospectral signed digraphs S(k), k = 1, 2, · · · , n of order 4n. Now, S1 and S2 are

non symmetric implies S(k) is non symmetric. By repeated application of Lemma

5.2.9 and using the fact that Cartesian product of signed digraphs is cycle bal-

anced if and only if the constituent signed digraphs are cycle balanced, the result

follows.
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Integral signed digraphs are obviously real. There exists non integral real

signed digraphs as can be see in the following result.
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Theorem 5.2.12. For each positive integer n ≥ 4, there exists a family of n

real cospectral, strongly connected, non symmetric and non cycle balanced signed

digraphs of order 4n.

Proof. Consider signed digraphs S1, S2 and S3 shown in Fig. 5.6. Clearly, all three

signed digraphs are non cycle balanced and strongly connected. By Theorem 4.1.1,

φS1(x) = φS2(x) = φS3(x) = x4 − 3x2 + 2.

Therefore, spec(S1) = spec(S2) = spec(S3) = {−
√

2,−1, 1,
√

2}. Take any

two signed digraphs among S1, S2 and S3 and apply the procedure of Theorem

5.2.11, the result follows.
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Every integral signed digraph is obviously Gaussian. The next result shows

that there exists non integral Gaussian signed digraphs i.e., signed digraphs with

eigenvalues of the form a+ ιb, where a and b are integers with b 6= 0 for some b.

Theorem 5.2.13. For each positive integer n ≥ 4, there exists a collection of

n Gaussian cospectral, strongly connected, non symmetric and non cycle balanced

signed digraphs of order 4n.

Proof. Consider signed digraphs S1, S2 and S3 shown in Fig. 5.7. It is clear that

S1 is cycle balanced, whereas S2 and S3 are non cycle balanced. Moreover all three

signed digraphs are strongly connected. By Theorem 4.1.1,

φS1(x) = φS2(x) = φS3(x) = x4 − 1.

Therefore, spec(S1) = spec(S2) = spec(S3) = {−1, 1,−ι, ι}. Hence S1, S2 and S3

are Gaussian cospectral. Take any two signed digraphs among S1, S2 and S3 and

proceed in a similar way as in Theorem 5.2.11, the result follows.

Two digraphs D1 and D2 are said to be quasi-cospectral if there exist signed

digraphs S1 and S2 respectively on D1 and D2 such that φS1(x) = φS2(x). That

is, S1 and S2 are cospectral. Two cospectral digraphs are quasi-cospectral by The-

orem 4.1.2, for we can take any two cycle balanced signed digraphs one on each

digraph. Two digraphs are said to be strictly quasi-cospectral if they are quasi-

cospectral but not cospectral. Two digraphs D1 and D2 are said to be strongly

quasi-cospectral if both D1 and D2 are cospectral and there exists non cycle bal-

anced signed digraphs respectively S1 and S2 on them such that φS1(x) = φS2(x).

Clearly, if D1 and D2 are strongly quasi-cospectral digraphs, then both should

have at least on cycle.

Definition 5.2.14. We say two digraphs D1 and D2 are integral, real and Gaus-

sian strongly quasi-cospectral if both D1 and D2 are respectively integral, real and

Gaussian cospectral and there exists non cycle balanced signed digraphs S1 and

S2 on them which are respectively integral, real and Gaussian cospectral.
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The following result shows the existence of integral strongly quasi-cospectral

digraphs.

Theorem 5.2.15. For each positive integer n ≥ 4, there exists a family of n

integral, strongly connected, non symmetric and strongly quasi-cospectral digraphs

of order 4n.

Proof. Let D1 and D2 respectively be the underlying digraphs of integral signed

digraphs S1 and S2 shown in Fig. 5.5. Then D1 and D2 are all-positive signed

digraphs. By Theorem 4.1.1, we have

φD1(x) = φD2(x) = x4 − 3x2 − 2x.

Therefore, spec(D1) = spec(D2) = {−1(2), 0, 2}.
Put D(k) = D1×D1× · · · ×D1×D2×D2× · · · ×D2, where we take k copies

of D1 and n− k copies of D2. In this way, for each n ≥ 4 we get n cospectral, non

symmetric and strongly connected integral digraphs. Thus for any two of these

integral cospectral digraphs D(k1) and D(k2) there exist corresponding non cycle

balanced signed digraphs S(k1) and S(k2) on them which are integral cospectral.

The following result shows the existence of real strongly quasi-cospectral di-

graphs.

Theorem 5.2.16. For each positive integer n ≥ 4, there exists a collection of n

real, strongly connected, non symmetric and strongly quasi-cospectral digraphs of

order 4n.

Proof. Let D1 and D2 be the underlying digraphs of signed digraphs S1 and

S2 as shown in Fig. 5.6. It is easy to see that φD1(x) = φD2(x) = x4 −
3x2 − 2x and spec(D1) = spec(D2) = {−1(2), 0, 2}. Also spec(S1) = spec(S2) =

{−
√

2,−1, 1,
√

2}.
Thus D1 and D2 are real strongly quasi-cospectral. Applying the same tech-

nique as in Theorem 5.2.15, the result follows.
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5.3 Energy of bipartite signed digraphs

Rada, Gutman and Cruz [71] compared the energies of digraphs in ∆∗n. We

now derive integral expressions for signed digraphs in ∆1
n and ∆2

n and compare

energies of signed digraphs in ∆1
n by means of quasi-order relation.

Given signed digraphs S1 and S2 in ∆1
n, by Theorem 5.2.5, for i = 1, 2, we have

φSi(x) = xn +

bn
2
c∑

j=1

(−1)jb2j(Si)x
n−2j,

where b2j(Si) are non negative integers for all j = 1, 2, · · · , bn
2
c. If b2j(S1) ≤ b2j(S2)

for all j = 1, 2, · · · , bn
2
c, then we define S1 � S2. If in addition b2j(S1) < b2j(S2)

for some j = 1, 2, · · · , bn
2
c, then we write S1 ≺ S2. The following result shows that

energy increases with respect to this quasi-order relation.

Theorem 5.3.1. If S ∈ ∆1
n, then

E(S) =
1

π

∞∫
−∞

1

x2
log[1 +

bn
2
c∑

j=1

b2j(S)x2j]dx.

In particular, if S1, S2 ∈ ∆1
n and S1 ≺ S2 then E(S1) < E(S2).

Proof. We know that the energy of a signed digraph S satisfies the integral ex-

pression

E(S) =
1

π

∞∫
−∞

1

x2
log |xnφS(

ι

x
)|dx.

Assume S ∈ ∆1
n, then φS(x) = xn +

bn
2
c∑

j=1

(−1)jb2j(S)xn−2j,

so that

E(S) =
1

π

∞∫
−∞

1

x2
log |xn ι

n

xn
(1 +

bn
2
c∑

j=1

b2j(S)x2j)|dx
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=
1

π

∞∫
−∞

1

x2
log |ιn(1 +

bn
2
c∑

j=1

b2j(S)x2j)|dx

=
1

π

∞∫
−∞

1

x2
log[1 +

bn
2
c∑

j=1

b2j(S)x2j]dx.

If S1 ≺ S2, then from the last integral expression it is clear that E(S1) < E(S2).

That is, energy increases with respect to quasi-order relation defined above.

The following integral expression whose proof is same as that of Theorem

5.3.1, holds good for a signed digraph in ∆2
n.

Theorem 5.3.2. If S ∈ ∆2
n, then

E(S) =
1

π

∞∫
−∞

1

x2
log |1 +

bn
2
c∑

j=1

(−1)jb2j(S)x2j|dx.

Remark 5.3.3. We note that the same integral expression holds for all non bi-

partite signed digraphs which have characteristic polynomial of the form (5.2). It

remains a question to define a quasi-order relation (if possible) for signed digraphs

in ∆2
n for comparison of energy.

Rada et al. [71] proved that the energy of a digraph in ∆∗n decreases when we

delete an arc from a cycle of length 2. As in digraphs, in general it is not possible

to predict the change in the energy of a non cycle balanced signed digraph by

deleting an arc from a cycle of length 2. It can decrease, increase or remain same

by deleting an arc of a cycle of length 2 as can be seen in the following example.

Example 5.3.4. Consider the signed digraphs S1, S2 and S3 as shown in Fig.

5.8. It is easy to see that φS1(x) = x6 + 2x4 + 1 and φ
S
(v1,v2)
1

(x) = x6 + x4 + 1,

where S
(v1,v2)
1 denotes the signed digraph obtained by deleting the arc (v1, v2).

Note E(S1) ≈ 2.4916 and E(S
(v1,v2)
1 ) ≈ 2.9104. So the energy increases in this

case. Also, φS2(x) = x6 + x4 − x2 − 1 and spec(S2) = {−1, 1,−ι(2), ι(2)} so that

E(S2) = 2. If we delete arc (v1, v2), the resulting signed digraph has eigenvalues
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{−1, 0(2), 1,−ι, ι} so the energy of the resulting signed digraph is again 2. That is,

energy remains same in this case. It is not difficult to check that E(S3) = 2 + 2
√

2

and E(S
(v1,v2)
3 ) = 2

√
2. So the energy decreases in this case.
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The following result shows that the energy of a signed digraph in ∆1
n decreases

when we delete an arc from a cycle of length 2.

Theorem 5.3.5. Let S be a signed digraph in ∆1
n with a pair of symmetric arcs

and let S ′ be the signed digraph obtained by deleting one of these arcs. Then

E(S ′) < E(S).

Proof. Let S ∈ ∆1
n. If we delete an arc of S from a cycle of length two, then

the resulting signed digraph S ′(say) also belongs to ∆1
n. By Theorem 5.2.5, the

characteristic polynomial of S is given by

φS(x) = xn +

bn
2
c∑

j=1

(−1)jb2j(S)xn−2j,

where b2j(S) = |£2j| is the cardinality of the set £2j.

It is clear that S ′ � S and b2(S
′) < b2(S). So, S ′ ≺ S. By Theorem 5.3.1

E(S ′) < E(S).

5.4 Conclusion

We conclude with the following open problem.

Problem 5.4.1. Characterize signed digraphs with characteristic polynomial of

the form (5.1) or (5.2).
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