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PREFACE

This thesis represents only a small section of the different issue and topics that I was 

involved since 2010. Yet, it shows one of the consequences of my engagements 

during the past few years. Over these years, I had the historical opportunity to read 

and witness the rise and the fall of the important theories and results that are cited in 

this study and my involvements in these topics became a part of my whole academic 

life.

Fuzzy SetTheory has come a long way since it was formally introduced by 

L.A. Zadeh in his classic paper entitled ‘Fuzzy Sets’ published in the journal 

‘information and Control’ in the year 1965. Since that time the subject has been 

applied to every branch of knowledge. Many research investigations by 

mathematicians, scientists and social scientists, computer and management scientists 

and engineers all over the world have been made in the theory and applications of the 

subject. Applications of fuzzy logic and fuzzy set theory in decision-making, Pattern 

recognition, Image processing, Control systems, Neural networks, Genetic algorithm 

and in many other areas has given significant results.

Much work has been done on this branch of Information theory and statistics. It has 

acquired a great currency in various research journals of statistics and mathematics. In 

this light, I compiled my thesis on the topic “Some Generalizations of Fuzzy Entropy 

Measure and its Applications” and chapter wise scheme is as fallows.

Chapter one: Chapter one is devoted to surveying the relevant literature which is 

required in the development of existing results, the basic concepts and preliminary 

results. This task is to present a bird’s eye view of the following chapters. No effort is 

made to define the technical vocabulary. Such an undertaking requires a detailed 

logical presentation. This introductory chapter discusses generalities leaving a more 

detailed and precise treatment to subsequent chapters.

Chapter Two: Deals with generalizations of fuzzy measures of information and 
theircode word lengths. We propose some generalized fuzzy average codeword length 
and establish relationship with generalized fuzzy entropy. Some fuzzy coding 
theorems have also been developed. The coding theorems obtained in this chapter not 
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only produce new results but also generalizes some well established results in the 
literature of information theory.

Chapter Three: In this chapter, information scheme and bounds for generalized 

measure of cast have been considered and their bounds have been obtainedfor suitable 

generalized mean code word lengths. Also, several coding theorems on fuzzy entropy 

functions depending upon parameter R and V have been derived.

Chapter Four: This chapter deals with lower bounds on the mean length of code 

words using the concept of segment decomposition, and the effective range has been 

established. The bounds obtained provide a measure of optimality for variable length 

error correcting codes. Also fuzzy directed divergence measures and their 

corresponding bounds in the form of theorems have been presented, and their 

particular cases have been studied.

Chapter Five: In this chapter we propose a new characterization result on a life time 

distribution in terms of fuzzy measure of uncertainty. Based on our proposed 

measure,a new class of fuzzy life distributions are defined which mimic the increasing 

failure rate and decreasing failure rate. It is shown that these new classes are different 

from the known classes of life distributions.

A comprehensive bibliography is given at the end

The intent of this manuscript is to present the work related to generalizations 

of fuzzy entropy measures of information and their applications. It will be a useful 

document for the future researchers in this area. The area of generalizations of fuzzy 

entropy measures of information and its applications is fertile and there is a lot of 

scope to work on this concept.

The subject matter of the present thesis is fully published in the form of the 

following research papers written by the author:

[1] “Some Generalizations of Fuzzy Average Codeword Length and Inequalities”, 
International Journal of Statistics and Analysis, ISSN: 2248-9959, Volume 3, 
No. 4, pp. 393 – 400, (2013).

[2] “Some New Results on Fuzzy Directed Divergence Measures and Their 
Inequalities”, Asian Journal of Mathematics and Statistics, Volume 7, Issue 1, 
pp. 12 – 20, (2014).
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[3] “Some New Generalizations of Fuzzy Average Codeword Length and Their 
Bounds”, American Journal of Applied Mathematics and Statistics, Volume 2, 
No. 2, pp. 73 – 76.

[4] “Fuzzy Coding Theorem on Generalized Fuzzy Cost Measure”, Asian Journal 
of Applied Mathematics (ISSN: 2321–564X), Volume 02 – Issue 01, (Feb. 
2014)

[5] “Some Coding Theorems on Fuzzy Entropy Function Depending upon 
Parameter R and V”, IOSR Journal of Mathematics, e-ISSN: 2278-3008, p-
ISSN: 2319-7676, Volume 9, Issue 6, pp. 119-123, (jan. 2014)
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1.1 Introduction:- 

The purpose of this chapter is to clarify the basic concepts of Fuzzy sets theory, 

Information theory, and “fuzzy entropy”.Uncertainty and fuzziness are the basic nature of human 

thinking and of many real world objectives. Fuzziness is found in our decision, in our language 

and in the way we process information. The main use of information is to remove uncertainty 

and fuzziness. In fact, we measure information supplied by the amount of probabilistic 

uncertainty removed in an experiment and the measure of uncertainty removed is also called as a 

measure of information while measure of fuzziness is the measure of vagueness and ambiguity of 

uncertainties. 

By the nineteen sixties it became evident in mathematical systems research that the 

rigorous treatment based on Aristotelian logic is not appropriate in analyzing real systems.Fuzzy 

sets were defined by Zadeh [109] to free the mathematical model from the law of the excluded 

middle. Formally, the characteristic function 𝜇𝐴(𝑥) describing the membership of element x in 

the set 𝐴 was generalized: in classical mathematics the characteristic function takes either the 

value 0 or 1; in the case of fuzzy sets the characteristic function may take any value from the real 

interval [0,1]. 

The concept of fuzziness has been applied to apparently all phenomena already 

formalized in systems research: Statistics, Information theory, Clustering and Decision analysis, 

Medical and Socio-economic predictions, Image processing, etc. This overwhelming success, 

seen in introspect, is not surprising for the following simple reasons. The mathematical ideas 

applied in systems research had well known for the workers involved and their applications had 

prevailed the planning and analysis of information processing systems. Thus both their 

theoretical clarity and practical relevance had been firmly established. The fundamental but 

essentially mathematical generalization of these formal ideas posed many challenging questions 

within the conceptually and methodologically well-known (mathematical) framework. 

Within the extremely large field of theories and applications developed from the concept 

of fuzziness, there has been a relatively small area of dealing with the fuzziness of concepts. The 

most important questions in this area are: How should we calculate a numerical description of 

particularlyfuzzy quantifiers like “very”, “more or less”. “rather,” for such categories as “short,” 
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“old,” “many,” and for statements connecting such ideas, like “much older than”?. How should 

we apply different operations defined on fuzzy sets to formal logic and to conceptual categories? 

The concept of fuzziness was made a scientific one in mathematical systems theory by 

Zadeh’s [109] definition of fuzzy sets. This advantages a “framework which provides a natural 

way of dealing with problems in which the source of imprecision is the absence of sharply 

defined criteria of class membership”. The introduction of fuzzy sets was motivated by the 

fuzziness of concepts, i.e., that “More often than not, the classes of objects encountered in the 

real physical world do not have precisely defined criteria of membership”. 

1.1.1   Fuzzy Models: 

Fuzzy sets are a generalization of conventional set theory that was introduced by Zadeh 

[109] as a mathematical way to represent vagueness in everyday life. The basic idea of fuzzy sets 

is easy to grasp. Suppose, as you approach a red light, you must advise a driving student when to 

apply the brakes. Would you say, "Begin braking 74 feet from the crosswalk"? Or would your 

advice be more like, "Apply the brakes pretty soon"? The latter, of course; the former instruction 

is too precise to be implemented. This illustrates that precision may be quite useless, while vague 

directions can be interpreted and acted upon. Everyday language is one example of ways 

vagueness is used and propagated. Children quickly learn how to interpret and implement fuzzy 

instructions (“go to bed about 10”). We all assimilate and use (act on) fuzzy data, vague rules, 

and imprecise information, just as we are able to make decisions about situations which seem to 

be governed by an element of chance. Accordingly, computational models of real systems should 

also be able to recognize, represent, manipulate, interpret, and use (act on) both fuzzy and 

statistical uncertainties. 

The Process and progress of knowledge unfolds into two stages: an attempt to know the 

character of the world and a subsequent attempt to know the character of the knowledge itself. 

The second reflective stage arises from the failures of the first; it generates an enquiry into the 

possibility of knowledge and into the limits of that possibility. It is in this second stage of 

enquiry that we find ourselves today. As a result, our concerns with knowledge, perception of 

problems and attempts at solutions are of a different order than in the past. We want to know not 

only specific facts or truths but what we cannot know, what we do and do not know, and how we 

know at all. Our problems have shifted from questions of how to cope with the world (how 
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toprovide ourselves with food, shelter and so on), to questions of how to cope with knowledge 

(and ignorance) itself. Ours has been called an “information society,” and a major portion of our 

economy is devoted to the handling, processing, selecting, storing, disseminating, protecting, 

collecting, analyzing and sorting of information, our best tool for this being, of course, the 

computer. 

 Our problems are seen in terms of decision, management and prediction; solutions are 

seen in terms of faster access to more information and of increased aid in analyzing, 

understanding and utilizing the information that is available and in coping with the information 

that is not. These two elements, large amounts of information coupled with the large amounts of 

uncertainty, taken together constitute the ground of many of our problems today: complexity. As 

we become aware of how much we know and how much we do not know, as information and 

uncertainty themselves become the focus of our concern, we begin to see our problems as 

centering on the issue of complexity. 

How do we manage to cope with complexity as well as we do, and how could we manage 

to cope better? The answer seems to lie in the notion of simplifying complexity by making a 

satisfactory trade-off or compromise between the information available to us and the amount of 

uncertainty we allow. One option is to increase the amount of allowable uncertainty by 

sacrificing some of the precise information in favor of a vague but more robust summary. For 

instance, instead of describing the weather today in terms of the exact percentage of cloud cover 

(which would be much too complex), we could just say that it is sunny, which is more uncertain 

and less precise but more useful. In fact, it is important to realize that the imprecision or 

vagueness that is characteristic of natural language does not necessarily imply a loss of accuracy 

or meaningfulness. It is, for instance, generally more meaningful to give travel directions in 

terms of city blocks than in terms of inches, although the former is much less precise than the 

latter. It is also more accurate to say that it is usually warm in the summer than to say that it is 

usually 72 degree in the summer. In order for a term such as sunny to accomplish the desired 

introduction of vagueness, however, we cannot use it to mean precisely 0% cloud cover. Its 

meaning is not totally arbitrary, however a cloud cover of 100% is not sunny and neither, in fact, 

is a cloud cover of 80%. We can accept certain intermediate states, such as 10 or 20 %cloud 

cover, as sunny. But where we draw the line? If, for instance, any cloud cover of 25% or less is 

considered sunny, does this mean that a cloud cover of 26% is not? This is clearly unacceptable 
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since 1% of cloud cover hardly seems like a distinguishing character between sunny and not 

sunny. We could therefore add a qualification that any amount of cloud cover1% greater than a 

cloud cover already considered to be sunny will also be labeled as sunny. We can see, however 

that this definition eventually leads us to accept all degrees of cloud cover as sunny , no matter 

how gloomy the weather looks! In order to resolve this paradox, the term sunny may introduce 

vagueness by allowing some sort of gradual transition from degrees of cloud cover that are 

considered to be sunny and those that are not. This is, in fact precisely the basic concept of fuzzy 

set, a concept that is both simple and intuitively pleasing and that forms, in essence, a 

generalization of the classical or crisp set. 

Fuzzy interpretations of data structures are a very natural and intuitively plausible way to 

formulate and solve various problems. Conventional (crisp) sets contain objects that satisfy 

precise properties required for membership. The set of numbers H from 6 to 8 is crisp; we 

write  H = {r ∈ ℛ/6 ≤ r ≤ 8}. Equivalently, H is described by its membership (or characteristic, 

or indicator) function  MF, μH: ℜ → {0, 1} defined as 

μH(r) = {
      1                  6  ≤   r  ≤   8

0                  otherwise
} 

The crisp set H and the graph of μHare shown in the left half of Fig. 1.1.1(a). Every real number 

(r) either is in H or is not. Since μHmaps all real numbers r ∈ ℜ onto the two points(0, 1), crisp 

sets correspond to two-valued logic: is or isn't, on or off, black or white, 1 or 0. In logic, values 

of μHare called truth values with reference to the question, "Is r in H?" The answer is yes if and 

only if μH(r) = 1; otherwise, no.  

 

 

 

 

 

 

Fig. 1.1.1 (a): Membership functions for hard and fuzzy subsets of ℜ.  
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Consider next the set Fof real numbers that are close to 7. Since the property "close to 7" is 

fuzzy, there is not aunique membership function forF. Rather, the modeler must decide, based on 

the potential application and propertiesdesired for F, what μFshould be. Properties that might 

seem plausible for this F include (i) normality (MF (7) = 1), (ii) monotonicity (the closer r is to 7, 

the closer μF(r) is to 1, and conversely) and (iii) symmetry (numbers equally far left and right of 

7 should have equal memberships). Given these intuitive constraints, either of the functions 

shown in the right half of Fig. 1.1.1 (a)  might be a useful representation of F. μF1is discrete (the 

staircase graph), while μF2is continuous but not smooth (the triangle graph). One can easily 

construct a MF for F so that every number has some positive membership in F, but we would not 

expect numbers "far from 7," 20 000 987 for example, to have much! One of the biggest 

differences between crisp and fuzzy sets is that the former always have unique MFs, whereas 

every fuzzy set has an infinite number of MFs that may represent it. This is at once both a 

weakness and strength; uniqueness is sacrificed, but this gives a concomitant gain in terms of 

flexibility, enabling fuzzy models to be "adjusted" for maximum utility in a given situation. 

1.1.2   Fuzzy Sets Theory: 

Let X be a space of objects and x be a generic element of X. A classical set A, A ⊆ X, is 

defined as a collection of elements or objects x ∈ X, such that each element (x) can either belong 

or not to the set A. By defining a characteristic (or membership) function for each element x in 

X, we can represent a classical set A by a set of ordered pairs (x, 0)or (x, 1) , which indicates 

x ∉ A or x ∈ A, respectively. Unlike the aforementioned conventional set, a fuzzy set expresses 

the degree to which an element belongs to a set. Hence the membership function of a fuzzy set is 

allowed to have values between 0 and 1, which denote the degree of membership of an element 

in the given set.  

1.1.3   Fuzzy sets and membership functions: 

If X is a collection of objects denoted generically by x, then a fuzzy setAin X is defined 

as a set of ordered pairs  A = {(x, μA(x)/x ∈ X)}, where,μA(x) is called the 

membershipfunction(or MF for short) for the fuzzy set A. The MF maps each element of X to a 

membership grade (or membership value) between 0 and 1 (included). Obviously, the definition 

of a fuzzy set is a simple extension of the definition of a classical (crisp) set in which the 

characteristic function is permitted to have any values between 0 and 1. If the value of the 
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membership function is restricted to either 0 or 1, then A is reduced to a classical set. For clarity, 

we shall also refer to classical sets as ordinary sets, crisp sets, non-fuzzy sets, or just sets. 

Usually X is referred to as the universe of discourse,or simply the universe, and it may consist of 

discrete (ordered or non-ordered) objects or it can be a continuous space. This can be clarified by 

the following examples. 

1.1.4   Fuzzy sets with a discrete non-ordered universe: 

Let X = {San Francisco, Boston, Los Angeles} be the set of cities one may choose to live 

in. The fuzzy set A = "desirable city to live in" may be described as follows: A = {(San 

Francisco, 0.9), (Boston, 0.8), (Los Angeles, 0.6)}. Apparently the universe of discourse X is 

discrete and it contains non-ordered objects - in this case, three big cities in the United States. As 

one can see, the foregoing membership grades listed above are quite subjective; anyone can 

come up with three different but legitimate values to reflect his or her preference. 

1.1.5   Fuzzy sets with a discrete ordered universe: 

Let X = {0, 1, 2, 3, 4, 5, 6} be the set of numbers of children a family may choose to 

have. Then the fuzzy set B = "desirable number of children in a family" may be described as 

follows: B = {(0, 0.1), (1, 0.3), (2, 0.7), (3, 1), (4, 0.7), (5, 0.3), (6, 0.1)}. Here we have a discrete 

ordered universe X; the MF for the fuzzy set B is shown in Fig. 1.1.5(a). 

 

 

 

 

 

 

 

        Fig: 1.1.5 (a)     Fig: 1.1.5 (b) 

Again, the membership grades of this fuzzy set are obviously subjective measures. 
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1.1.6    Fuzzy sets with a continuous universe: 

Let X = ℛ+ be the set of possible ages for human beings. Then the fuzzy set C = "about 

50 years old" may be expressed as C = {(x, μc(x)/x ∈ X)}, where  

μc(x) =
1

(1 + (
x−50

10
)
4

)
⁄  

This is illustrated in Figure 1.1.5(b). From the preceding examples, it is obvious that the 

construction of a fuzzy set depends on two things: the identification of a suitable universe of 

discourse and the specification of an appropriate membership function. The specification of 

membership functions is subjective, which means that the membership functions specified for 

the same concept by different persons may vary considerably. This subjectivity comes from 

individual differences in perceiving or expressing abstract concepts and has little to do with 

randomness. Therefore, the subjectivityand non randomness of fuzzy sets is the, primary 

difference between the study of fuzzy sets and probability theory, which deals with objective 

treatment of random phenomena. 

In practice, when the universe of discourse X is a continuous space, we usually partition 

it into several fuzzy sets whose MFs cover X in a more or less uniform manner. These fuzzy sets, 

which usually carry names that conform to adjectives appearing in our daily linguistic usage, 

such as "large," "medium," or "small," are called linguistic values or linguistic labels. Thus, the 

universe of discourse X is often called the linguistic variable. 

1.2       Some nomenclature used in the literature:- 

1.2.1    Support of a Fuzzy Set: 

 The support of a fuzzy set A is the set of all points x in X such that µA(x) > 0.       

1.2.2    Core of a Fuzzy Set:  

The core of a fuzzy set A is the set of all points x in X such that µA(x) = 1. 

1.2.3    Normality of a Fuzzy Set: 

A fuzzy set A is normal if its core is nonempty. In other words, we can always find at 

least a point x ∈ X such that µA(x) = 1.  
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1.2.4   Crossover Points: 

A crossover point of a fuzzy set A is a point x ∈ X at which µA(x) = 0.5. 

1.2.5    Fuzzy Singleton: 

A fuzzy set whose support is a single point in x with µA(x) = 1 is called a fuzzy singleton. 

1.2.6   Cut, Strong  Cut: 

The -cut or-level set of a fuzzy set A is a crisp set defined by Aα={x/µA(x) ≥ α}. 

Strong -cut or strong -level set are defined similarly A'α={x/µA(x) > α}. Using this notation, 

we can express the support and core of a fuzzy set A as support (A) = A'0 and core A=A1. 

1.2.7   Convexity: 

A fuzzy set A is convex if and only if for any x1, x2 ∈ Xand any λ ∈[0,1],  

µA(λx1 +(1-λ) x2 ) ≥ min {µA(x1), µA(x2)}. 

Alternatively, A is convex if all its α-level sets are convex. It is to be noted that the definition of 

convexity of a fuzzy set is not as strict as the common definition of convexity of a function. 

1.2.8   Linguistic variables and linguistic values: 

Suppose that X = "age."Then we can define fuzzy sets "young,""middle aged” and “old" 

that arecharacterized by MFs. Just as a variable canassume various values, a linguistic 

variable"age" can assume different linguistic values,such as "young," "middle aged “and” old"in 

this case. If "age" assumes the value of"young," then we have the expression "ageis young," and 

so forth for the other values.  

1.2.9   Fuzzy numbers: 

A fuzzy number A is a fuzzy set in the real line that satisfies the conditions for normality 

and convexity. Most fuzzy sets used in the literature satisfy the conditions for normality and 

convexity, so fuzzy numbers are the most basic type of fuzzy sets.  

Union, intersection, and complement are the most basic operations on classical sets. On 

the basis of these three operations, a number of identities can be established. Corresponding to 

the ordinary set operations of union, intersection and complement, fuzzy sets have similar 

operations, which were initially defined in Zadeh's seminal paper [109]. Before introducing these 
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three fuzzy set operations, first we shall define the notion of containment, which plays a central 

role in both ordinary and fuzzy sets. This definition of containment is, of course, a natural 

extension of the case for ordinary sets. 

1.2.10  Containment or Subset: 

Fuzzy set A is contained in fuzzy set B (or, equivalently, A is a subset of B, or A is 

smaller than or equal to B, A ⊆ B) if and only µA(x) ≤ µB(x) for all x.  

1.2.11 Union (disjunction): 

The unionof two fuzzy sets A and B is a fuzzy set C, written as  

 C = A ∪ B or C = A OR B, 

whose MF is related to those of A and B by 

μc(x) = max(μA(x),  μB(x)). 

1.2.12 Intersection (conjunction): 

The intersectionof two fuzzy sets A and B is a fuzzy set C, written as C = A ∩ B or C = A 𝑎𝑛𝑑 B, 

whose MF is related to those of A and B by  

μc(x) = min(μA(x),  μB(x)). 

1.2.13 Complement (negation): 

The complement of fuzzy set A, denoted by A̅`or NOT A, is defined as 

μA̅(x) = 1 − μA(x). 

Since, the operations introduced above perform exactly as the corresponding operations 

for ordinary sets if the values of the membership functions are restricted to either 0 or 1. 

However, it is understood that these functions are not the only possible generalizations of the 

crisp set operations. For each of the aforementioned three set operations, several different classes 

of functions with desirable properties have been proposed subsequently in the literature (e.g. 

algebraic sum for union and product for intersection). In general, union and intersection of two 

fuzzy sets can be defined through T-conorm (or S-norm) and T-norm operators respectively. 

These two operators are functions S, T: [0, 1] × [0, 1 → [0, 1]] satisfying some convenient 

boundary, monotonicity, commutativity and associativity properties. As pointed out by Zadeh 
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[109], a more intuitive but equivalent definition of union is the, “smallest” fuzzy set containing 

both A and B. Alternatively, if D is any fuzzy set that contains both A and B, then it also 

contains A ∪ B. Analogously, the intersection of A and B is the "largest" fuzzy set which is 

contained in both A and B. The two fundamental (Aristotelian) laws of crisp set theory are: 

(a)Law of Contradiction: 

 A ∪ A̅ = X(i.e., a set and its complement must comprise the universe of discourse), and 

(b)Law of Excluded Middle: 

 A ∩ A̅ = ∅(i.e., an object can either be in its set or its complement; it cannot 

simultaneously be in both). It can be easily seen that for every fuzzy set that is non-crisp (i.e., 

whose membership function does not only assume values 0 and 1) both laws are broken (i.e., for 

fuzzy sets A ∪ A̅ ≠ X and A ∩ A̅ ≠ ∅. Indeed ∀ x ∈ Asuch that  

μA(x) = α, 0 < 𝛼 < 1: μA∪A̅(x) = max{α, 1 − α} ≠ 1 

and  μA∩A̅(x) = min{α, 1 − α} ≠ 0. 

1.3    Interpreting the Membership Function:- 

The first point to note is that, like 𝑃(𝐴), the probability of a set A, fuzzy set theory does 

not tell us how to specify 𝜇𝐴(𝑥), the membership function of a fuzzy set A. The second point to 

note is that whereas there is a logical requirement that 𝑃(𝐴) ∈ [0, 1], the fact that 𝜇𝐴(𝑥) ∈

[0, 1]is simply a convenience of scaling. The third point to note is that whereas 𝑃(𝐴)can be 

interpreted as a two-sided bet (which in principle can be settled when A reveals 

itself),𝜇𝐴(𝑥)reflects an individual’s view of the extent to which 𝑥 ∈ A; thus 𝜇𝐴(𝑥)cannot be 

made operational in the same sense as 𝑃(𝐴). Finally, it is not a requirement that ∑ 𝜇𝐴(𝑥)𝑥 be 1, 

and thus 𝜇𝐴(𝑥)as a function of x cannot be interpreted as a probability or, for that matter, as a 

conditional probability, as was done by Loginov [73] and also by Barrett and Woodall [19]. How 

then can we interpret the membership function𝜇𝐴(𝑥)? Because𝜇𝐴(𝑥), as a function of x, reflects 

the extent to which𝑥 ∈ A[i.e., 𝜇𝐴(𝑥)is an indicator of how likely it is that𝑥 ∈ A], we may 

view𝜇𝐴(𝑥)as the likelihood of x for a fixed (i.e., specified)𝐴. Even though the interpretation of a 

likelihood is almost always derived from a probability model, the likelihood is not a probability 

(in particular, it does not obey the addition rule) and in statistical inference, the likelihood 



11 
 

function reflects the relative degrees of support that a fixed observation provides to several 

hypotheses. Furthermore, the specification of likelihood is subjective. Thus our interpretation of 

the membership function is that it is a likelihood function with �̃�taking the role of a fixed 

observation and the values of x taking the role of the hypotheses.  

To statisticians specializing in inference, our interpretation of the membership function as 

a likelihood will appear to be unconventional. This is because in the context of inference, the 

likelihood entails a fixed observation and a varying parameter. However, our structure for the 

likelihood is a consequence of the notion of the likelihood from a more philosophical viewpoint, 

and what we have proposed is in keeping with the foundational notion of likelihood. Basu[20]. 

The foregoing points are best illustrated via the following example involving two fuzzy sets 

Aand B, where 

A = {𝑥; 𝑥 ∈ 𝑋𝑎𝑛𝑑 𝑥 𝑖𝑠 "𝑚𝑒𝑑𝑖𝑢𝑚"} 

And  B = {𝑥; 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑖𝑠 "𝑠𝑚𝑎𝑙𝑙"} 

as before,  𝑋 = {1, 2, 3, … ,10}. 

 

Suppose that an assessor assigns the membership functions 𝜇𝐴(𝑥) and 𝜇𝐵(𝑥) given in 

table below. 

Table1.3.1 Membership Functions of 𝑨 and 𝑩 

X 𝝁𝑨(𝒙) 𝝁𝑩(𝒙) 𝝁𝑨(𝒙) + 𝝁𝑩(𝒙) 

0 0 1 1 

1 0 1 1 

2 .2 .8 1 

3 .5 .5 1 

4 .8 .3 1.1 

5 1 .1 1.1 

6 .8 0 .8 

7 .5 0 .5 

8 .2 0 .2 

9 0 0 0 

10 0 0 0 

Col. Sums 4 3.7 7.7 
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Fig: 1.3.1(a). Membership functions of Ã and B̃ 

 

Clearly,∑ 𝜇𝐴(𝑥)𝑥 and ∑ 𝜇𝐵(𝑥)𝑥 are not 1, nor is it true that 𝜇𝐴(𝑥) + 𝜇𝐵(𝑥)is necessarily 1. A plot 

of 𝜇𝐴(𝑥)and𝜇𝐴(𝑥)as a function of x, with𝜇𝐴(𝑥)and𝜇𝐵(𝑥)viewed as likelihoods is shown in 

Figure 1.3.1(a). The plots reflect the extent to which an x belongs to the sets 𝐴and B. 

1.4   Probability: A Calculus For The uncertainty Of Outcomes:- 

The underlying set-theoretic premise for considering probability and its calculus is an 

experiment, ℇ, which is yet to be performed. Let x denote a generic outcome of ℇ, and let 

𝒮denote the set of all conceived outcomes of ℇ; thus x ∈𝒮. It is important to note that the 

probability theory does not tell one how to specify 𝒮; this choice is subjective and is up to the 

user. For convenience, we assume that 𝒮is a countable set. Let Ϝ denote a set whose members are 

subsets of 𝒮; that is, Ϝ is a family of sets. However, Ϝ is such that it contains 𝒮 and φ, where φ is 

the null set. Furthermore, Ϝ is closed under unions and intersections; that is, if 𝐴, 𝐵 ∈ 𝐹, 

then(𝐴 ∪ 𝐵) and (𝐴 ∩ 𝐵) ∈ 𝐹. The subsets of 𝒮are called events, and in probability theory it is 

presumed that the events are well defined or “sharp” (also known as “crisp”); that is, there is no 

ambiguity in declaring whether any outcome x of 𝒮belongs to A or to its complement A
c
. In 

contrast, with fuzzy sets there is ambiguity in classifying an x in a subset A or A
c
, because A is 

not sharply defined. If the outcome ofϜ, say x, is such that x ∈A, then we say that event A has 

occurred. Because ℇis yet to be performed, we are uncertain about the occurrence of any 

particular x. Consequently, we are also uncertain about the occurrence of event A. We describe 

this uncertainty by a number, P(𝐴), where )(;1)(0 APAP  is the probability of event A, or 
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the probability measure of the set A. There are several interpretations of 𝑃(𝐴); the one that is 

germane to our interest here is that 𝑃(𝐴)is a two-sided bet (or wager) on the occurrence of event 

A. Specifically, P(A) is the amount that one is willing to stake out in exchange for a dollar 

should event A occur or, equivalently, (1 − 𝑃(𝐴))is the amount staked in exchange for a dollar 

should event A not occur. Furthermore, the individual specifying 𝑃(𝐴)is required to be 

indifferent between betting on A orA
c
. The two-sided bet will be settled when ℇis performed and 

ω is observed, so that the disposition of A is known. An advantage of the foregoing interpretation 

of  𝑃(𝐴)is that probability can be made “operational” via the mechanism of betting. This 

interpretation of probability is a basis for a personalistic (or a subjectivistic) theory of 

probability. It is important to note that probability theory does not tell us how to arrive at a 

particular 𝑃(𝐴), nor does it in its purely abstract form even attempt to interpret 𝑃(𝐴). Many 

probabilists would declare that the assignment of initial probabilities is a job for a statistician, 

though some would say that the role of a statistician is to help clients formulate their prior 

knowledge, because it is the client who knows.  

The calculus (or the algebra) of probability tells one how the various uncertainties (i.e., 

the initial probabilities) combine or cohere. In particular, if 𝑃(𝐵)denotes the quantification of 

uncertainty of another event B, then 

a).  𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵),  where 

b).  𝑃(𝐴 ∩ 𝐵) = {
0                         𝐼𝑓𝐴∩𝐵=∅
𝑃(𝐴/𝐵)𝑃(𝐵)      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

The quantity 𝑃(𝐴/𝐵)is called the conditional probability of A were B to occur. 

Like 𝑃(𝐴), 𝑃(𝐴/𝐵)should lie between0 and 1; it represents the amount that one is willing to 

stake onthe event A should the event B occur but under the proviso thatall bets on A will be 

called off should B not occur. It is crucialto bear in mind that 𝑃(𝐴/𝐵)is a bet in the subjunctive 

mood;this is because the disposition of B is unknown when 𝑃(𝐴/𝐵)is specified. Finally, 

ignoring the relevance of a conditioningevent, events A and B are said to be mutually 

independent if(𝐴/𝐵) = 𝑃(𝐴). The calculus given earlier has an axiomaticfoundation based on 

behavioristic considerations. 

Thus, to summarize, a foundation for the theory of probabilityis based on the following 

ingredients: 
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a) A well-defined set 𝒮 and subsets of 𝒮.  

b) An adherence to the “law of the excluded middle,” the essential import of which is that 

any outcome ω of ℇbelongs to a set A or to a set A
c
, but not to both. 

c) A calculus based on behaviorist axioms involving numbers between 0 and 1 that can be 

made operational once ℇ is performed and its outcome observed.  

1.4.1  Probability Measures of Fuzzy Events: 

In probability theory [101], an event, 𝐴, is a member of 𝜎-field ,𝛼, of subsets of a sample 

space Ω. A probability measure, 𝑃, is a normed measure over a measurable space (Ω, 𝛼); that is,  

𝑃 is a real valued function which assigns to every 𝐴 𝑖𝑛 𝛼; a probability𝑃(𝐴), such that 

a) 𝑃(𝐴) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ∈ 𝛼;  

b) 𝑃(Ω) = 1; and  

c) 𝑃 is count ably additive, i.e., if {𝐴𝑖} is any collection of disjoint events then 

𝑃(⋃ 𝐴𝑖
∞
𝑖=1 ) = ∑ 𝑃(𝐴𝑖)

∞
𝑖=1       (1.4.1). 

The notion of an event and its probability constitute the most basic concepts of 

probability theory. As defined above, an event is a precisely specified collection of points in the 

sample space. By contrast, in every day experience one frequently encounters situations in which 

an “event” is a fuzzy rather than sharply defined collection of points. For example, the ill defined 

events “it is a warm day,” “𝑥 is approximately equal to 5,” “in twenty tosses of a coin there are 

several more heads than tails,” are fuzzy because of imprecision of the meaning of the underlined 

words. 

By using the concepts of a fuzzy set [109], the notion of an event and its probability can 

be extended in a natural fashion to fuzzy events of the type explained above. It is possible that 

such an extension may eventually significantly enlarge the domain of applicability of probability 

theory, especially in those fields in which fuzziness is a pervasive phenomenon.                                                                  

Let us assume that for simplicity that Ω is an Euclidean n-space 𝑅𝑛. Thus our probability 

space will be assumed to be a triplet ( 𝑅𝑛, 𝛼, 𝑃), 𝑤ℎ𝑒𝑟𝑒 𝛼 is 𝜎-field of Borel sets in  𝑅𝑛 and 𝑃 is 

a probability measure over  𝑅𝑛. A point in  𝑅𝑛 will be denoted by 𝑥. 

Let 𝐴 ∈ 𝛼, then the probability of 𝐴 can be expressed as 
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𝑃(𝐴) = ∫ 𝑑𝑃
𝐴

(1.4.2) 

Or equivalently   

𝑃(𝐴) = ∫ 𝜇𝐴(𝑥)𝑑𝑃𝑅𝑛
= 𝐸(𝜇𝐴).      (1.4.3) 

Where  𝜇𝐴 denotes the characteristic function of 𝐴 (𝜇𝐴(𝑥) = 0 𝑜𝑟 1). And 𝐸(𝜇𝐴) is the 

expectation of  𝜇𝐴.  

The equation (1.4.3) equates the probability of an event 𝐴 with the expectation of the 

characteristic function of 𝐴. It is this equation that can readily be generalized to fuzzy events 

through the use of the concept of fuzzy set. 

Definition 1.4.1: Let ( 𝑅𝑛, 𝛼, 𝑃)  be a probability space in which 𝛼 is a 𝜎-field of Borel sets in 

𝑅𝑛 and 𝑃 is a probability measure over 𝑅𝑛. Then fuzzy event in 𝑅𝑛 is a fuzzy set 𝐴 in 𝑅𝑛 whose 

membership function, 𝜇𝐴: 𝑅
𝑛 → [0, 1] is Borel measurable. The probability of a fuzzy event 𝐴 is 

defined by the Lebesgue-Stieltjes integral 

𝑃(𝐴) = ∫ 𝜇𝐴(𝑥)𝑑𝑃𝑅𝑛
= 𝐸(𝜇𝐴).      (1.4.4) 

Thus as in (1.4.3), the probability of a fuzzy event is the expectation of its membership 

function. The existence of the Lebesgue-Stieltjes integral is insured by the assumption that 𝜇𝐴 is 

Borel measurable. 

The above definition of a fuzzy event and its probability form a basis for generalizing 

within the framework of the theory of fuzzy sets a member of the concepts and results of 

probability theory, information theory and related fields. 

1.5      Information theory:- 

It is a branch of probability and statistics with extensive potential applications to 

communication system. Like several other branches of mathematics, information theory has a 

physical origin. It was initiated by communication scientists C.E. Shannon [87], who were 

studying the statistical structure of electrical communication equipments. The subject followed 

by a flood of research papers speculating upon the possible applications to a broad spectrum of 

research areas, such as pure mathematics, semantics, physics,   management, thermodynamics, 

botany, econometrics, operations research, psychology, epidemiological studies, disease 

management and related disciplines.  
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The Mathematical Theory of Communication is the early work of R. V. L. Hartley on the 

mathematics of information transmission that is recognized. R. A. Fisher introduced notion i.e. 

Fisher information in 1925 which is closely related to Claude Shannon’s notion of entropy. What 

follows is not intended as a general introduction to information theory through two outstanding 

contributions to the mathematical theory of communications in 1948 and 1949.  Despite several 

hasty generalization which produces thousands research papers, one thing became evident; this 

scientific theory has stimulated the interest of thousands of scientists around the world.    

1.5.1   Shannon’s Information Theory: 

 Claude E. Shannon’s “A Mathematical Theory of Communication” [87] is considered as 

the “Magna carta” of the Information Age. Shannon’s discovery of the fundamental laws of data 

comprehension and transmission marks the birth of “Information Theory”. 

 Information theory started out as an engineering project. Shannon’s simple goal was to 

find a way to clear up noisy telephone connections. Today, there would be no internet without 

Shannon’s theory. Every new modem upgrade, every compressed file, which includes any in 

(.gif) or (.jpeg) format, owes something to information theory of Shannon. Even the everyday 

compact disc would not be possible without error connection based on information theory. To 

solve the “noise” problem in communications, Shannon developed a new concept, the “channel” 

and its associated concepts “the channel capacity” and the “redundancy”.  

 Shannon and Weaver [87] suppose a set of possible events whose probabilities of 

occurrence are(𝑝1,𝑝2, … , 𝑝𝑛). These probabilities are known but that is all we know concerning 

which event will occur. Then it is asked: “Can we find a measure of how much ‘choice’ is 

involved in the selection of the event or how uncertain we are of the outcome?” If there is such a 

measure, say 𝐻(𝑝1,𝑝2, … , 𝑝𝑛)it is reasonable to require of it the following properties: 

(i) It should be continuous in the probabilities (𝑝𝑖). 

(ii) If all the (𝑝𝑖) are equal, 𝑝𝑖 = 1/𝑛then H should be monotonic increasing function of (n). 

With equally likely events, there is more choice, or uncertainty, when there are more 

possible events. 

(iii)  If a choice be broken down into two successive choices, the original H should be the 

weighted sum of the individual values of H.   



17 
 

H function was recognized as “Entropy” as in Boltzmann’s famous H theorem in 

statistical mechanics.  

1.5.2 Information Function:  

 Let 𝐸𝑖 be the 𝑖𝑡ℎ event with probability of occurrence  𝑝𝑖,the information function may be 

defined as 

  
)(log)( ii pph 

       
(1.5.1). 

1.5.3 Shannon’s Entropy  

 Let X be a discrete random variable taking on a finite number of possible values  

X =  nxxx ,...,, 21 happening with probabilities   ,0,,...,, 21  in ppppP nip
n

i

i ,...,2,1,1
1




 

we denote  

  










n

n

ppp

xxx

...,,,

....,,,

21

21
           (1.5.2). 

and call the scheme (1.5.2) as the information scheme. Shannon [87] proposed the following 

measure of information for the information scheme (1.5.2) and calls it entropy.  

  𝐻(𝑃) = 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛) = −∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1    (1.5.3). 

 Generally, the base of logarithm is taken ‘2’and it is assume 0log0 = 0. When the 

logarithm is taken as a base ‘2’ the unit of information is called a ‘bit.’ When the natural 

logarithm is taken, the resulting unit is called a ‘nit’. If the logarithm is taken with base 10, the 

unit of information is known as ‘Hartley’. 

The information measure (1.5.3) satisfies the following properties. 

(1) Non –negativity: 

   npppH ...,,, 21 ≥ 0 

The entropy is always non-negative.  

 

 



18 
 

(2) Symmetry: 

  
    PppppppHpppH nnkkkn  ...,,,),...,,(...,,, 21)()2()1(21  

where(𝑘(1), 𝑘(2)… , 𝑘(𝑛))is an arbitrary permutation on (1, 2,…, n)  npppH ...,,, 21  is a 

symmetric function on every pi, i=1,2,…,n 

(3) Normality: 
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H The entropy becomes unity for two equally probable events. 

(4)  Expansibility: 

  𝐻𝑛 (p1, p2, … ,pn) = H n+1 (0, p1, p2, p3, ...,pn) 

 = H n+1 (p1,  p2, .. 𝑝𝑖, 0, pi+1,…,…..pn) 

= ………. 

= H n+1 (p1, p2,…,  pn , 0) 

(5)  Recursively:  
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 where 0ip  with 21 pp  > 0 

(6)  Decisively:  

  H2 (1, 0) = H2 (0, 1) = 0  

 If one of the events is sure to occur then the entropy is zero in the scheme. 

(7)  Maximality 

  H (p1,p2, ..., pn) n
nnn

H log
1

,...,
1

,
1









  

 The entropy is maximum when all the events have equal probabilities. 

(8)   Additivity:   

𝐻𝑛𝑙  (PQ) = 𝐻𝑛𝑙 (p1q1, p1q2,…,p1ql, p2 q2, …, p2 ql, …, pnq1, pnq2, …, pnql) 

= Hn (p1,p2,,…..pn) + Hl (q1,q2,,…..ql) 
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 For all ( p1,p2,,…..pn) ∈ 𝑃 and for all (q1,q2,..., ql)Q. 

 If the two experiments are independent then the entropy contained in the experiment is 

equal to the entropy in the first experiment plus entropy in the second experiment. 

(9) Strong Additivity: 

𝐻𝑛𝑙 (PQ) = 𝐻𝑛𝑙    (p1q1, p1q2, …, p1ql, p2q2,…, p2ql,…, pnq1, pnq2,…, pnql) 

 = 𝐻𝑛 ( p1, p2,….,pn) +


n

i

niiiii qqqHp
1

21 ),...,,(  for all (p1,p2.,..,pn) 𝑃 and for all 

(q1,q2,,…,ql) Q and𝑞𝑖𝑗are conditional probabilities i.e., entropy contained in the two 

experiments is equal to the entropy in the first plus the conditional entropy in the second 

experiment given that the first experiment given that the first experiment has occurred. 

 The Shannon’s entropy (1.5.3) was characterized by Shannon assuming a set of 

postulates. There exists several other characterization of the measure (1.5.3) using different set 

of postulates. 

1.6  Coding theorems:- 

 The elements of a finite set of n input symbols X =  nxxx ,...,, 21 be encoded using 

alphabet of D symbols. The number of symbols in a codeword is called the length of the 

codeword. It becomes clear that some restriction must be placed on the assignment of 

codeword’s. One of the restrictions may be that the sequence may be decoded accurately. A code 

is uniquely decipherable if every finite sequence of code character corresponds to at most one 

message. In other words, we can say uniquely decipherability is to require that no code be prefix 

of another codeword. We mean by prefix that a sequence ‘A” of code character is prefix of a 

sequence ‘B’, if ‘B’ may be written as ‘AC’ for some sequence ‘C’. 

 A code having the property that no codeword is prefix of another codeword is said to be 

instantaneous code. Kraft [65] proved that instantaneous/uniquely decipherable code with 

lengths  nlll ,...,, 21 is possible iff 

  ∑ 𝐷−𝑙𝑖𝑛
𝑖=1 ≤ 1    (1.6.1) 

where D is the size of the code alphabet. Also if 
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  𝐿 = ∑ 𝑙𝑖𝑝𝑖
𝑛
𝑖=1   (1.6.2) 

is the average codeword length where ip is the probability of the   thi  input symbol to a noiseless 

channel then for a code which satisfy (1.6.1), the following inequality holds  

  ,
log

)(

D

PH
L  (1.6.3) 

by suitable encoding the message, the average code length can be arbitrarily close to H (P). 

 Shannon’s [87] and Renyi’s [84] entropies have been studied by several research 

workers. The study has been carried out from essentially two different points of view. The first is 

an axiomatic approach and the second is a pragmatic approach. However, these approaches have 

little connection with the coding theorem of information theory. 

Campbell [28] defined a codeword length of order as   

  

0,1,log
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and developed a noiseless coding theorem for Renyi’s [84] entropy of  order   which is quite 

similar to the noiseless coding theorem for Shannon’s [87] entropy. 

 By means of prefix code  Gurdial and Pessoa [45], Sharma et al [89], Bernard and 

Sharma [24], Autar and Soni [8], Autar and khan  [9]  Beig and Zaheerudin [7], Singh, Kumar 

and Tuteja[92], etc. have established coding theorems for various information measures. 

1.6.1 Theorem: A necessary and sufficient condition for the existence of a instantaneous code 

)( ixS such that the length of each word )( ixS should nili ...,,2,1,  is that the Kraft inequality 

[65]. 

  ∑ 𝐷−𝑙𝑖𝑛
𝑖=1 ≤ 1   (1.6.5) 

should hold, where D is the number of symbols in the code alphabet. 

Proof:  Necessary part: 

 First suppose that there exists a code )( ixS with the word length nili ...,,2,1,  . 
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 Define m = max { nili ...,,2,1,  } and let nju j ...,,2,1,  be the number of codeword’s 

with length j (some 
ju may be zero).Thus the number of codeword’s with only one letter cannot 

be larger than D 

  Du 1         (1.6.6) 

 The number of codeword’s of length 2, can use only of the remaining )( iuD   symbols 

in their first place, because of prefix property four of our codes, while any of the D symbols can 

be used in the second place, thus    

  DuDuDu 1

2

12 )(        (1.6.7). 

Similarly, 

  
  DuDuDDuDuDu 2

2

1

3

213 )( 
   (1.6.8).

 

Finally, if m is the maximum length of the encoded words, one concludes that  

  DuDuDuDu m

mmm

m 1
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1

1 ... 

 
    (1.6.9).

 

Dividing (1.6.9) by
mD

, we get 
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   (1.6.10).

 

Or  
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 It may not be obvious that this condition is identical with (1.6.5) but note that ,ilm 
 

i = 1,2,…n and



n

i

i

i Du
1

≤ 1 means the sum of ‘the members of all sequences of length i  

multiplied by
iD
, where the summation extends from 1  to  m. The left hand side of (1.6.11) can 

be written as  
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                    (1.6.12).
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Each bracketed expression corresponds to message ,ix and thereof the total number of term is n. 

mu

mm

uu

,...,
,

2,...,2
,

1,...,1

21

 

nuuu  321 ...  

 The term in ku corresponds to the encoded messages of length K. These terms can be 

considered as 



n

i

l i

D
1

 when the summation takes place over all those terms with kli 

.Therefore, by a simple re-assignment of terms, we may equivalently write 
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1 (1.6.13)

 

Thus   
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= 1
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liD  

 The desired set of positive integers  nlll ,...,, 21 must satisfy the inequality (1.6.5).This 

proves the necessity requirement of the theorem. 

Sufficient Part: 

 Suppose now, that inequality (1.6.5) is satisfied for  nlll ,...,, 21 then every summand of 

the left hand side of (1.6.5) being non negative, the partial sums are also at most 1. 

  11

1 Du ,        or  11 u  

  12
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1

1   DuDu ,    or  DuDu 1
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or  DuDuDuDu n

nnn

n 1

2

2

1

1 ... 

   

but these are exactly the conditions that we have to satisfy in order to guarantee that no encoded 

message can be obtained from any other by the addition of a sequence of letters of the encoding 

alphabet, thereof, which implies the existence of the instantaneous code. 

Remark:  For binary case the Kraft inequality tells us that the length il  must satisfy the equation 

  



n

i

li

1

2 =≤ 1  (1.6.14) 

where the summation is over all the words of the block code. 

1.6.1 Lemma: For a probability distribution   ,0,,...,, 21  in ppppP 
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1and incomplete 

distribution   0,,...,, 21  in qqqqQ 
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1.The following inequality holds 
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(1.6.15)

 

Before proving Lemma (1.6.1) we state the following lemma. 

1.6.2 Lemma: If  is differentiable concave function in (a, b), then for all nibaxi ...,,2,1,),( 

and for all   0,,...,, 21 in qqqq , ,1
1




n
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iq i = 1,2,…,n, the inequality  

  

.)(
11











 n

i

ii

n

i

ii xqxq   

Define the function 
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 It is differentiable concave function of x on [0, ∞) and continuous at 0 (from right), as  
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x  i = 1,2,….,n in lemma 1.6.2, we get 
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1.6.2 Theorem:Let {X} be a discrete message source, without memory, and ix   be any message 

of this source with probability of transmission ip . If the {X} ensemble is encoded in a sequences 

of uniquely decipherable character taken from the alphabet  naaa ,...,, 21 then    
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 ,(1.6.16)  

Proof: The Condition L ≥ 
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log
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 is equivalent to 
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since ii l
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iii DpDpDlp


 logloglog ,  the above condition may be written as 
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(1.6.17) 

with equality iff ....,,2,1;
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Hence by (1.6.17). 
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By theorem 1.6.1, 1
1





n

i

liD which gives 

  
















n

i

liD
1

log ≤ 0. 

Therefore,  

  DPH log)(    



26 
 

  L  
D

pH

log

)(
  

1.6.3 Theorem:  Given a random variable  nxxxX ,...,, 21 having probability distribution 

  ,0,,...,, 21  in ppppP with entropy (uncertainty) H(P), there  exists a base D, instantaneous 

code for X, whose average code word length 



n

i

ii plL
1

 satisfies 

  L
D

pH


log

)(
1

log

)(


D

pH
 (1.6.18) Proof:   In general we cannot hope to 

construct an absolutely optimal code for a given set of probability  ,,...,, 21 npppP  since if we 

choose il to satisfy il

i Dp


  then 
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log

log
 may not be an integer. However we can do the 

next best thing and select the integer il such that 
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We claim that and instantaneous code can be constructed with word lengths  nlll ...,, 21 To prove 

this we must show that 1
1
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 For the left hand inequality of (1.6.19) it follows that 
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To estimate the average codeword length, we multiply (1.6.19) by ip and sum over i = 1, 2,….,n, 

to obtain  
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1.7      Fuzzy Entropy:- 

The measure of uncertainty is adopted as a measure of information. Hence, the measure 

of fuzziness is known as fuzzy information measures. The measure of a quantity of fuzzy 

information gained from a fuzzy set or fuzzy system is known as fuzzy entropy. 

A fuzzy subset ‘A’ in U (universe of discourse) is characterized by a membership 

function A : U  [0,1] which represents the grade of membership of xU in A as follows:  

 

𝜇𝑥(𝐴) = {

0, 𝑖𝑓 𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 
1, 𝑖𝑓 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 

   0.5, 𝑖𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦, 𝑖. 𝑒. , 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∉ 𝐴
 

In fact A(x) associated with each xU, a grade of membership in the set ‘A’, when 

A(x) is values in {0,1}, it is the characteristic function of a crisp (i.e. non-fuzzy) set.  

A fuzzy set A
*
 is called a sharpened version of A if the following conditions are satisfied:  

     * 1 1 1, 0.5;A A Ax x if x i      

and 

     * , 0.5; .A i A i A ix x if x i      

Since A(x) and 1 –A(x) gives the same degree of fuzziness, therefore, corresponding to 

the entropy due to Shannon [87]. De Luca and Termini [33] suggested the following measure of 

fuzzy entropy:  

         
1

( ) log 1 log 1 .
n

A i A i A i A i

i

H A x x x x   


         (1.7.1) 
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De Luca and Termini [33] introduced a set of four properties and these properties are 

widely accepted as a criterion for defining any new fuzzy entropy. In fuzzy set theory, the 

entropy is a measure of fuzziness which expresses the amount of average ambiguity/difficulty in 

making a decision whether an element belongs to a set or not. So, a measure of average fuzziness 

H(A) in a fuzzy set should have at least the following properties to be valid fuzzy entropy:  

i)Sharpness:H(A) is minimum if and only if A is a crisp sets, i.e.   A(x) = 0 or 1: x. 

ii) Maximality: H(A) is maximum if and only if A is most fuzzy set, i.e. A(x) = 0.5; x. 

iii)  Resolution:H(A)  H(A
*
), where A

*
 is sharpened version of A. 

iv) Symmetry:H(A)=  H A , where A is the complement  of A   i.e. A(xi) = 1A(xi). 

 1.7.1 Entropy of a Fuzzy Event: 

 Let 𝑥 be a random variable which takes the values {𝑥1, 𝑥2, … , 𝑥𝑛} with respective 

probabilities 𝑝1, 𝑝2, … , 𝑝𝑛. Then, the entropy of the distribution 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} is given by  

  𝐻(𝑥) = −∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1  (1.7.2) 

 This definition suggests that entropy of fuzzy event, 𝐴, of the finite set {𝑥1, 𝑥2, … , 𝑥𝑛} 

with respect to a probability distribution 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} be defined as follow 

 𝐻𝑝(𝐴) = −∑ 𝜇𝐴(𝑥𝑖)𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1  (1.7.3) 

 Where 𝜇𝐴 is the membership function of 𝐴. Since (1.7.1) expresses the entropy of a 

distribution𝑃, (1.7.2) represents the entropy of a fuzzy event 𝐴 with respect to the distribution𝑃. 

Thus, (1.7.1) does not reduce to (1.7.2) when 𝐴 is non-fuzzy, unless 𝐴 is taken to be the whole 

space  {𝑥1, 𝑥2, … , 𝑥𝑛}. Intuitively, 𝐻𝑝(𝐴) may be interpreted as the uncertainty associated with a 

fuzzy event.  

1.8     Fuzzy Reliability:- 

System failure engineering is primarily concerned with the failure and related problems. 

Specifically, by system failure engineering we mean the technological area comprising all failure 

oriented or failure driven aspects. So, it may compass reliability, safety, security, and so on. If 

everything went well and met desired requirements, then there would be no dissatisfaction, no 

failure, and therefore there would be no system failure engineering. Unfortunately, this is not the 
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case. Actually, failure is a nearly unavoidable phenomenon with technological products and 

systems. One can observe various kind of failure in various circumstances: space shuttle 

explosion, nuclear reaction accident, airplane crash, chemical plant leak, bridge break and 

electrical network collapse. One can also observe defective screw, faulty VLSI chip, error us 

management decision, and so on. Failures can be frequent or rare. The causes of failure are 

diverse. They can be physical, human, logical and even financial. The effects of failure may be 

minor or disastrous, and various kinds of criteria and factors can be taken into account to define 

what a failure means: structure, performance, cost and even subjective intention. However, 

whatever failure is, if the effect of it tends to be critical, research on it becomes essential. 

In conventional reliability theory [18], it is assumed that components and systems have 

only two abrupt states: good and bad. This implies that the success and failure are precisely 

defined and there is no intermediate state between them. That is, the failure or success criterion is 

binary. Even in the research of multi- stat systems [10], the failure or success criterion is also 

assumed to be binary. In other words, in conventional reliability theory and multi-stat systems, it 

is assumed that the system states can be binary defined in terms of some structure function (e.g., 

coherent structure function) of component states. Needless to say, this assumption is valid in 

extensive cases. 

However, the above assumption may not be true in every case. In degradable computing 

systems the attribute of performance degradation is prominent and should be taken into account 

in the failure or success criterion [29]. If we treat quality as a body of performance indices (static 

or dynamic), it is easy to see that quality can be factor of the failure or success criterion. This 

builds a bridge linking quality control and failure research. Further, it has been argued that other 

factors like cost, purchasability, etc., should also be taken into account in the definition of failure 

or success in some cases [86, 96]. After all, besides the structural factors, others like 

performance, quality, cost, etc., can make contributions to the failure or success criterion. This 

leads us to a general definition of failure or success. 

Let   𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} be a set of factors of concern. Let 

𝑥𝑠𝑖 : 𝑎𝑖 → [0, 1] 

𝑥𝐹𝑖 : 𝑎𝑖 → [0, 1] 
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We call {𝑥𝑠𝑖} success factor variables, and  {𝑥𝐹𝑖} failure factor variable. Let  

𝜇𝑠 = 𝜇𝑠(𝑥𝑠1,𝑥𝑠2 , … . , 𝑥𝑠𝑛):  [0, 1]
𝑛 → [0, 1] 

𝜇𝐹 = 𝜇𝑠(𝑥𝐹1,𝑥𝐹2 , … . , 𝑥𝐹𝑛):  [0, 1]
𝑛 → [0, 1] 

we call 𝜇𝑠 (system) success variable or success membership function, and 𝜇𝐹 (system) failure 

variable or failure variable function. Then system success S and system failure F are defined as 

fuzzy sets. 

  𝑆 = {(𝑥1, 𝑥2, … , 𝑥𝑛), 𝜇𝑠(𝑥1, 𝑥2, … , 𝑥𝑛)}𝑥𝑖  ∈ [0, 1] 

  𝐹 = {(𝑥1, 𝑥2, … , 𝑥𝑛), 𝜇𝑧(𝑥1, 𝑥2, … , 𝑥𝑛)}𝑥𝑖  ∈ [0, 1] 

Since success and failure factor variables are defined on A, we can also define S and F directly 

on A. that is,  

  𝑆 = {(𝑥1, 𝑥2, … , 𝑥𝑛), 𝜇𝑠(𝑥1, 𝑥2, … , 𝑥𝑛)}𝑥𝑖  ∈ 𝐴 

  𝐹 = {(𝑥1, 𝑥2, … , 𝑥𝑛), 𝜇𝑧(𝑥1, 𝑥2, … , 𝑥𝑛)}𝑥𝑖  ∈ 𝐴 

The generality of the above definition can be easily justified. In conventional reliability theory 

[18], we treat 𝑎𝑖 as the ith component in a system, and 𝑥𝑠𝑖and 𝑥𝐹𝑖  represent its states (0 or 1). 

Then 𝜇𝑠 and 𝜇𝐹 coincide with the corresponding system structure function. In a degradable 

computing system [29], 𝑎1, 𝑎2, … , 𝑎𝑛 can represent the system (non-fuzzy) states and the 

corresponding success (failure) factor  variables represent the relative performance indices. Then  

𝜇𝑠 and 𝜇𝐹 can be accordingly determined. For a software system, 𝑎𝑖 can represent the ith 

module, and 𝑥𝑠(𝑥𝐹𝑖) represents its quality index. Then 𝜇𝑠 can be interpreted as a system quality 

variable. Alternatively, we can treat {𝑎𝑖} as a set of quality factors such as correctness, reliability, 

efficiency, integrity, usability, maintainability, flexibility, portability, reusability, and so on. The 

factors in turn determine the quality variable 𝜇𝑠. Anyway, defining failure and success as fuzzy 

sets enable them to be widely interpreted.  
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1.9     Measure and probability:- 

1.9.1  Field and sigma ( ) field: 

 Let   be a space of elements X. A non empty class,  of sets of  , closed under 

complementation and finite union is called a field. i.e.  is a field if it satisfies the following 

axioms:- 

i. ℜ is non empty. 

ii. If  then c  where 
c  is the complement of  relative to . 

iii. If nAAA ,...,, 21 then 
n

i

i

1

    if axiom (iii) is replaced by the axiom. 

iv. If nAAA ,...,, 21 then 
n

i

i

1

 .then   is called the  -field. 

Remark 1.9.1:It can be easily verified that the null set  , the space and the countable 

intersection of sets of field also belongs to .  

1.9.2  Measurable set and measurable space: 

 The subset belonging to the   -field  are called measurable set.  

The doublet ),(  is called measurable space. 

1.9.3   Measure and measure space: 

The measurable space ),(  indicates that this is the structure upon which a measure can 

be defined. 

A real valued function  defined on ),(  is called a measure if it satisfies the fallowing 

axioms. 

(i) ,0)(  where isnon - empty set. 

(ii) ,0)( A for all A . 

(iii) if ...,, 21 AA are disjoint measurable sets, then 




















11

)(
i

i

n

i

i A   

Property (iii) is called  - Additivity. 
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Remarks: 

i) A set of  - measure zero is said to be a  - null set and relations valid outside a  - null 

set are said to be valid almost everywhere  . 

ii) If )( is finite then   is said to be finite measure. 

iii) A measure is said to be a  - finite if the space   can be partitioned into a countable 

numbers of sets in , for each of which the value of   is finite. 

iv) The triplet  ,,  is called measure space. 

v)   is called the finite measure on  , , if an addition the above axioms (i), (ii) and (iii), 

we have 1)(  , where  is the space of elementary events or sample space. A 

probability measure is usually denoted by p. 

A probability space is the triplet  P,, , formed by a sample space , a  -field 

defined on   and a probability measure p defined on  , . All measure sets A  are 

called events. 

 Thus, with every event A consisting of one or more outcomes of an experiment, we 

associated a numerical quantity, called the probability of A denoted by P (A) which will measure 

the chance that event A will occur, we take .1)(0  AP  

1.9.4   Function: 

 If X and Y be two non empty sets, then a function f from the set X into set Y is a 

correspondence (mapping) such that for each element of X, there exists only one element Y.  This 

correspondence is generally denoted as .; YXf   if Xx and Yy  then y is said to be a 

function of x and we write ).(xfy  

1.9.5   Measurable function and random variable: 

 A real valued function )(f defined on , the sample space is said to be anmeasurable 

function or simply measurable function if for every real number r,  .)(:  rxfX  
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If  P,,  is a probability space, then a   measurable function )(f is called a random 

variable. 

1.10 Some Mathematical functions and Inequalities:- 

1.10.1 Convex Function: 

A real valued function  xf  defined on (a, b) is said to be convex function if for every 

such that 10   and for any two points 1x and 2x  such that bxxa  21 , we have 

          2121 11 xfxfxxf                                       (1.10.1) 

If we putα = ½, then (1.10.1) reduces to 

  
   

22

2121 xfxfxx
f










 
 (1.10.2)which is taken as the definition of 

convexity. 

Remark 1.10.1:  

If   0 xf , then  xf  is convex function. 

1.10.2 Strictly Convex Function: 

A real valued function  xf  defined on (a, b) is said to be strictly convex function if for 

every  such that 10   and for any two points 1x   and 2x  in (a, b) we have 

         2121 11 xfxfxxf    (1.10.3) 

Remark 1.10.2: If   0 xf , then  xf is strictly convex function. 

1.10.3 Joint Convexity: 

  Let ),0(f be a convex, then ),( qpC f
is jointly convex in p and q, where 

nqp , . 

1.10.4 Concave Function: 

A function  xf is said to be concave if  xf  is convex. 

Remark 1.10.3: If   0 xf , then  xf  is concave function. 
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1.10.5  Strictly Concave Function: 

 A function  xf  is said to be strictly concave if  xf  is strictly convex. 

Remark 1.10.4:   0 xf , then  xf  is strictly concave function. 

1.10.6  Log - Concave Function: 

 A function  xf  is said to be log - concave if every ,  

  )()(
2

1
)(

2

1
xfInxfInxfIn    

 If a density is log – concave, we can always assume that it is log – concave because 

densities are defined up to a set of measure zero.   

1.10.7 Increasing Function: 

Let I be an open interval contained in the domain of a real function. The function  xf  is 

an increasing function on I if x1< x2in I, implies   

   21 xfxf  . 

1.10.8  Decreasing Function: 

Let I be an open interval contained in the domain of a real function. The function  xf  is 

a decreasing function on I if x1< x2in I, implies 

   21 xfxf  . 

1.10.9  Maximum of a Function: 

 A function  xf  is said to have a maximum value in an interval I at x , if    xfxf   for 

all x in I. 

1.10.10 Minimum of a Function: 

 A function  xf  is said to have a minimum value in an interval I at x , if    xfxf   for 

all x in I. 

The following theorems give the working rule for finding the points of local maxima or 

points of local minima.  
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1.10.11Some inequalities: 

i)  Jensen’s inequality: 

 If X is a random variable such that   XE  exists and  xf is a convex function, then 

     .XEfXfE   

with equality iff the random variable X has a degenerate distribution at  . 

 The following important concept is due to Csiszar and Korner [32]. 

 Let: ),0(f  be a convex function. Then for any nqp ,  with  

   

0
1




n

i

in pp ,   nQ  = 0
1




n

i

iq ,    we have the inequality 

  

.),( 











n

n
nf

q

p
fQqpC  

The equality sign holds iff 

  n

n

q

p

q

p

q

p

q

p
 ...

3

3

2

2

1

1  

In particular, for all we have  

  )1(),( fqpC f   

With equality iff P = Q. 

ii)  Holder’s Inequality: 

If niyx ii ,,2,1   ,0,  and ,1
11


qp
1p ,  then the following inequality holds 

.

1

1

1

11

qn

i

q

i

pn

i

p

i

n

i

ii yxyx 















 



     

iii)  Chebychev’s Inequality: 

  If X is a random variable with mean   and variance 2 , then for any positive number k 
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2

1

k
kXP        

Or 

 
2

1
1 

k
kXP   . 

iv)  Bienayne - Chebychev’s Inequality: 

 Let  xg  be a non-negative function of a random variable 𝑋, then for any 0k , 

  
  

k

xgE
kxgP

.
  

v)   Markov’s Inequality: 

  If we take xxg )(  in inequality (iv), then   

 
k

xE
kxP   

which is Markov’s Inequality.  

  Taking, 
r

xxg )(  and replacing k by rk in inequality (iv), we get a more 

generalized form of Markov’s inequality. 

 
r

r

rr

k

xE
kxP   

vi)  Log Sum Inequality: 

 For non-negative numbers naaa ,...,, 21  and nbbb ,...,, 21 the log sum inequality is given as 
















n

i
n

i

i

n

i

i

i

n

i i

i
i

b

a

a
b

a
a

1

1

1

1

loglog  

with equality, iff k
b

a

i

i  where 𝑘 is a constant. 
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hannon [87] has introduced two important ideas in the theory of information in 

communication engineering. The first idea is that information is a statistical concept. 

The statistical frequency distribution of the symbol that make-up a message must be 

considered before the notion can be discussed adequately. The second idea springs from the first 

and implies that on the basis of the frequency distribution there is an essentially unique function 

of the distribution which measures the amount of information.  

In this chapter, we propose some generalized average codeword length and establish 

relationship with generalized fuzzy entropy. Some new fuzzy coding theorems have also been 

proved.  

Fuzzy sets play a significant role in many deployed systems because of their capability to 

model non-statistical imprecision. Consequently, characterization and quantification of fuzziness 

are important issues that affect the management of uncertainty in many system models and 

designs. The notion of fuzzy sets was proposed by Zadeh [109] with a view to tackling problems 

in which indefinites arising from a sort of intrinsic ambiguity plays a fundamental role. 

Fuzziness, a texture of uncertainty, results from the lack of sharp distinction of the boundary of 

set. The  concept of fuzzy sets in which imprecise knowledge can be used to define an event. A 

fuzzy set ‘A’ is represented as  

  𝐴 =  {𝑋𝑖 𝜇𝐴(𝑋𝑖)⁄ : 𝑖 = 1,2, … , 𝑛}, 

Where  𝜇𝐴(𝑥𝑖) gives the degree of belongingness of the element ′𝑥𝑖′ to the set ‘A’. If every 

element of the set ‘A’ is ‘0’ or ‘1’, there is no uncertainty about it and a set is said to be crisp set. 

On the other hand, a fuzzy set ‘A’ is defined by a characteristic function         

𝜇𝐴(𝑥𝑖) =  {𝑥1, 𝑥2, 𝑥3,…,𝑥𝑛} ⟶ [0,1]. 

The function 𝜇𝐴(𝑥𝑖) associates with each (𝑥𝑖) ∈ 𝑅
𝑛 grade of membership function. 

       A fuzzy set 𝐴∗ is called a sharpened version of fuzzy set 𝐴 if the following conditions are 

satisfied: 

𝜇𝐴∗(𝑥𝑖)  ≤  𝜇𝐴(𝑥𝑖), 𝑖𝑓     𝜇𝐴(𝑥𝑖) ≤ 0.5  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑛 

And               𝜇𝐴∗(𝑥𝑖)  ≥   𝜇𝐴(𝑥𝑖),    𝑖𝑓   𝜇𝐴(𝑥𝑖) ≥   0.5  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑛      

S 
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The importance of fuzzy set comes from the fact that it can deal with imprecise and inexact 

information. Its application areas span from design of fuzzy controller to robotics and artificial 

intelligence.  

2.1. Introduction:- 

Let ∆𝑛= {𝑃 =  (𝑝1, … , 𝑝𝑛): 𝑝𝑖 ≥ 0,∑ 𝑝1 = 1𝑛
𝑖 }, 𝑛 ≥ 2 be a set of n-complete probability 

distributions. For any probability distribution 𝑃 = (𝑝1, … , 𝑝𝑛) ∈ ∆𝑛, Shannon’s entropy is 

defined as 

                          𝐻(𝑃) =  −∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖                                                                                            (2.1.1).  

 Shannon [87] established the first noiseless coding theorem which states that for all uniquely 

decipherable codes, the lower bound for the average length ∑ 𝑝𝑖𝑛𝑖
𝑛
𝑖  lies 

between 𝐻(𝑃) 𝑎𝑛𝑑 𝐻(𝑃) + 1, where 𝐻(𝑃) is defined in (2.1.1). 

Many fuzzy measures have been discussed and derived by Kapur [58], Lowen [75], Pal 

and Bezdek [78] etc. 

The basic noiseless coding theorems give the lower bound for the mean codeword length 

of a uniquely decipherable code in terms of Shannon’s [87] measure of entropy. Kapur [59] has 

established relationship between probabilistic entropy and coding. But, there are situations where 

probabilistic measure of entropy does not work. To tackle such situations, instead of taking the 

probability, the idea of fuzziness was explored.  

De Luca and Termini [33] introduced a measure of fuzzy entropy corresponding to measure 

Shannon’s [87] information theoretic entropy and is given by 

𝐻(𝐴) =  −∑ [𝜇𝐴(𝑥𝑖) log 𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)) log(1 − 𝜇𝐴(𝑥𝑖))]
𝑛
𝑖  (2.1.2).   

A measure of fuzziness in a fuzzy set should have at least the following properties: 

  𝑷𝟏(𝑺𝒉𝒂𝒓𝒑𝒏𝒆𝒔𝒔):𝐻(𝐴)is minimum if and only if 𝐴 is a crisp set, i.e., 𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1  ∀𝑖. 

𝑷𝟐(𝒎𝒂𝒙𝒊𝒎𝒂𝒍𝒊𝒕𝒚): 𝐻(𝐴)is maximum, if and only if 𝐴 is most fuzzy set, i.e,𝜇𝐴(𝑥𝑖) =  
1

2
  ∀𝑖. 

𝑷𝟑(𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏): 𝐻(𝐴
∗)  ≤ 𝐻(𝐴), Where  𝐴∗ is a sharpened version of𝐴. 

𝑷𝟒(𝑺𝒚𝒎𝒎𝒆𝒕𝒓𝒚): 𝐻(𝐴) = 𝐻(𝐴
𝑐), Where 𝐴𝑐 is the complement of set𝐴. 
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Bhandari and Pal [25] gave some new information measure for fuzzy sets. Thus 

corresponding to Renyi’s [84] entropy of order 𝛼, they suggested that the amount of ambiguity or 

fuzziness of order 𝛼 should be: 

𝐻𝛼(𝐴) =
1

1−𝛼
∑ log[𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴)
𝛼]𝑛

𝑖 ;𝛼 ≠ 1, 𝛼 > 0                                        (2.1.3) 

Kapur [58] has taken measure of fuzzy entropy corresponding to HavradaCharvat [50] as 

𝐻𝛼(𝐴) =  
1

1−𝛼
∑ [{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
} − 1]𝑛

𝑖                                                   (2.1.4) 

Corresponding to Campbell’s [28] measure of entropy, the fuzzy entropy can be taken 

as:𝐻𝛼
/(𝐴) =  

1

1−𝛼
log [∑ {𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
}
𝛼

𝑛
𝑖 ] ; 𝛼 ≠ 1, 𝛼 > 0                    (2.1.5)   

Corresponding to Sharma and Taneja [89] measure of entropy of degree(𝛼, 𝛽), Kapur [59] has 

taken the following measure of entropy:  

𝐻𝛼,𝛽
/ (𝐴)

1

𝛽−𝛼
∑
[{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
} − {𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
}] ;

  𝛼 ≥ 1, 𝛽 ≤ 1 𝑜𝑟 𝛼 ≤ 1, 𝛽 ≥ 1  

𝑛
𝑖       (2.1.6) 

Corresponding to Kapur [58] measure of entropy of degree(𝛼, 𝛽), Kapur has given measure of 

entropy for fuzzy sets as:                            

          𝐻𝛼,𝛽
/ (𝐴) =

1

𝛼 + 𝛽 − 2
∑[{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
} + {𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
} − 2]

𝑛

𝑖

 

(2.1.7) 

Tsalli’s,C. [100] has given the following measure of entropy    

𝑇𝛼(𝑃) =  
∑ 𝑝𝑖

𝛼−1𝑛
𝑖

1−𝛼
 , 𝛼 ≠ 1, 𝛼 > 0                                                           (2.1.8).  

Corresponding to (2.1.8), the average codeword length is  

𝐿𝛼 = 
1

1−𝛼
[∑ 𝑝𝑖

𝑛
𝑖 𝐷(1−𝛼)𝑛𝑖 − 1]; 𝛼 ≠ 1, 𝛼 > 0                                     (2.1.9).  

Corresponding to (2.1.8), the fuzzy entropy can be taken as 

𝑇𝛼(𝐴) =  
1

1 − 𝛼
[∑{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
}

𝑛

𝑖

− 1] ;  𝛼 ≠ 1, 𝛼 > 0                     (2.1.10). 

And its corresponding average codeword length as    
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𝐿𝛼 = 
1

1 − 𝛼
[∑{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
}𝐷(1−𝛼)𝑛𝑖

𝑛

𝑖

− 1] ;  𝛼 ≠ 1,   𝛼 > 0        (2.1.11). 

Remark: 

 (i):  As 𝛼 → 1, (2.1.8) tends to (2.1.1) 

(ii): As 𝛼 → 1, (2.1.9) tends to average codeword length given by Shannon a 

𝐿 =  ∑𝑝𝑖𝑛𝑖

𝑛

𝑖

   (2.1.12) 

In section 2.2, we propose some noiseless coding theorems connected with Tsalli’s, C. 

[100] entropy. 

2.2 Noiseless Coding Theorems:- 

Theorem 2.2.1:For all uniquely decipherable codes 

 𝑇𝛼(𝐴)  ≤ 𝐿𝛼(2.2.1) 

Where 

𝐿𝛼 =
1

1 − 𝛼 
[∑{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖) − 1

𝑛

𝑖

] 

Proof:By Holders inequality, we have 

∑ 𝑥𝑖𝑦𝑖 ≥ (∑ 𝑥𝑖
𝑝𝑛

𝑖 )
1

𝑝(∑ 𝑦𝑖
𝑞𝑛

𝑖 )
1

𝑞𝑛
𝑖  ;   0 < 𝑝 < 1, 𝑞 < 0  𝑜𝑟  0 <   𝑞 < 1, 𝑝 < 𝑜  (2.2.2) 

Set          𝑥𝑖  = [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖 ; 

  𝑦𝑖 =   [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡 

and   𝑝 = −𝑡 ⇒ 0 < 𝑝 < 1, 𝑞 =
𝑡

𝑡+1
⇒ 𝑞 < 0 

Thus equation (2.2.2) becomes 

  ∑ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡] ≥𝑛
𝑖  
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[{[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖}
−𝑡

]

−1

𝑡

[{[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡}

𝑡

𝑡+1

]

𝑡+1

𝑡

 

Using Kraft’s inequality, we have 

[[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡+1]

𝑡+1

𝑡

≤ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷
𝑛𝑖𝑡]

−1

𝑡
 

 Or,           ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡𝑛
𝑖 ≤ ∑ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷

𝑛𝑖𝑡]

−1

𝑡𝑛
𝑖  

Or,  ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
𝑛
𝑖 ≤  ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))𝐷

𝑛𝑖𝑡]𝑛
𝑖 (2.2.3) 

Dividing both sides by t, we get 

∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
𝑛
𝑖

𝑡
≤
∑ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷

𝑛𝑖𝑡]𝑛
𝑖

𝑡
 

Subtracting ‘n’ from both sides, we get 

∑
[𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐵(𝑥𝑖))−1]

𝑡

𝑛
𝑖 ≤ ∑

[[𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐵(𝑥𝑖))]𝐷
𝑛𝑖𝑡−1]

𝑡

𝑛
𝑖 (2.2.4) 

Taking  

𝛼 = 1 − 𝑡, 𝛼 > 0, 𝑡 = 1 − 𝛼 

and𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) = 𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
, 

equation (2.1.4) becomes 

  
1

𝛼−1 
∑ [{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
} − 1]𝑛

𝑖  

 ≤
1

𝛼−1 
∑ [{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖) − 1]𝑛

𝑖 (2.2.5) 

That is        𝑇𝛼(𝐴)  ≤  𝐿𝛼 , which proves the theorem. 

Theorem 2.2.2:For all uniquely decipherable codes, 

𝑇𝛼,𝛽 ≤ 𝐿𝛼,𝛽  ,                    (2.2.6) 
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Where  

𝐿𝛼,𝛽 = 
1

𝛽−𝛼
∑ [

{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
𝐷(1−𝛼)(𝑛𝑖)} − 

{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
𝐷(1−𝛽)(𝑛𝑖)}

]𝑛
𝑖                              (2.2.7) 

and either    𝛼 ≥ 1, 𝛽 ≤ 1 𝑜𝑟 𝛽 ≥ 1, 𝛼 ≤ 1 

Proof: Since from (2.2.5), we have 

 
1

𝛼−1 
∑ [{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
} − 1]𝑛

𝑖  

≤
1

𝛼 − 1 
∑[{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖) − 1]                           (2.2.8)

𝑛

𝑖

 

Multiplying both sides by(1 − 𝛼), we have 

∑[{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛼
} − 1]

𝑛

𝑖

 

≤∑[{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛼
}𝐷(1−𝛼)(𝑛𝑖) − 1]                                  (2.2.9)

𝑛

𝑖

 

Changing α to β, we get 

 ∑ [{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛽
} − 1]𝑛

𝑖  

≤ ∑[{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛽
}𝐷(1−𝛽)(𝑛𝑖) − 1]                            (2.2.10)

𝑛

𝑖

 

  Subtracting (2.2.10) from (2.2.9), and dividing by 𝛽 − 𝛼, we get 

1

𝛽 − 𝛼
∑[{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
} – {𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
}]

𝑛

𝑖

 

≤
1

𝛽 − 𝛼
∑[

{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
𝐷(1−𝛼)(𝑛𝑖)}  − 

{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
𝐷(1−𝛽)(𝑛𝑖)}

]

𝑛

𝑖

                              (2.2.11) 

That is  

                          𝑇𝛼,𝛽 ≤ 𝐿𝛼,𝛽 , which proves the theorem 
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Theorem 2.2.3:For all uniquely decipherable codes 

𝑇/𝛼,𝛽 ≤ 𝐿/𝛼,𝛽   (2.2.12)                                                                                                      

Where 

 𝐿/𝛼,𝛽 = 
1

𝛼+𝛽+2
∑ [

{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
𝐷(1−𝛼)(𝑛𝑖)} +

{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
𝐷(1−𝛽)(𝑛𝑖)} − 2

]𝑛
𝑖 (2.2.13) 

Proof: The result can be easily proved by adding (2.2.9) and (2.2.10), then dividing by 

(𝛼 + 𝛽 − 2). 

Corr.:Taking β = 1 in (2.1.11), we get  

1

𝛼 − 1 
∑[{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
} − 1]

𝑛

𝑖

≤
1

𝛼 − 1 
∑[{𝜇𝐴

𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖) − 1]

𝑛

𝑖

 

This is nothing but coding theorem corresponding to Tsalli’s measure of fuzzy entropy. 

Theorem.2.2.4:For all uniquely decipherable codes 

 𝑇𝛼,𝛽 ≤ 𝐿∥𝛼,𝛽 ,        (2.2.14) 

 Where 𝑇𝛼,𝛽 =
1

𝛽−𝛼
[
∑ [{𝜇𝐴

𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))
𝛼
}−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛽
(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛽
}−1]𝑛

𝑖

](2.2.15)         

and 

 𝐿∥𝛼,𝛽 =
1

𝛽−𝛼
[
∑ [{𝜇𝐴

𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖)−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛼
}𝐷(1−𝛼)(𝑛𝑖)−1]𝑛

𝑖

]    (2.2.16)       

To prove this theorem, we first prove the following lemma. 

Lemma 2.2.1: For all uniquely decipherable codes  

∑[{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
} − 1]

𝑛

𝑖=1

≤∑[{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
𝐷(1−𝛼)(𝑛𝑖)} − 1]

𝑛

𝑖=1

 

Proof of the lemma:- From equation (2.2.4), we have 
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∑ 𝐷−𝑛𝑖𝑛
𝑖  ≥ [∑ 𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))𝐷

𝑛𝑖𝑡𝑛
𝑖 ]

−1

𝑡 [∑ 𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))
𝑛
𝑖 ]

1

𝑡 . 

Using Kraft’s inequality, we have 

∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
𝑛
𝑖 ≤ ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))𝐷

𝑛𝑖𝑡]𝑛
𝑖 . 

Subtracting ‘n’ from both sides, we have 

∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))} − 1]
𝑛
𝑖 ≤ ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷

𝑛𝑖𝑡 − 1]𝑛
𝑖 . 

Taking 𝛼 = 1 − 𝑡, 𝛼 > 0, 𝑡 = 1 − 𝛼 

and  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) = 𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
, we have 

  ∑ [{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛼
} − 1]𝑛

𝑖  

 ≤ 𝐷(1−𝛼)(𝑛𝑖) ∑ [{𝜇𝐴
𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛼
} − 1]𝑛

𝑖                                (2.2.17) 

This proves the lemma. 

Proof of the theorem 2.2.4: 

Changing α to β, in (2.2.17), we have 

 ∑ [{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛽
} − 1]𝑛

𝑖  

≤∑[{𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))

𝛽
}𝐷(1−𝛽)(𝑛𝑖) − 1]                                         (2.2.18)

𝑛

𝑖

 

Dividing (2.2.18) to (2.2.17), we get 

∑ [{𝜇𝐴
𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛼
}−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛽(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛽
}−1]𝑛

𝑖

 ≤
∑ [{𝜇𝐴

𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖)−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛽(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛽
}𝐷(1−𝛽)(𝑛𝑖)−1]𝑛

𝑖

. 

Dividing both side by(𝛽 − 𝛼), we have 

1

𝛽−𝛼
[
∑ [{𝜇𝐴

𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))
𝛼
}−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛽
(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛽
}−1]𝑛

𝑖

] ≤   
1

𝛽−𝛼
[
∑ [{𝜇𝐴

𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖)−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛽
(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛽
}𝐷(1−𝛽)(𝑛𝑖)−1]𝑛

𝑖

]     (2.2.19) 

That is  𝑇𝛼,𝛽 ≤ 𝐿∥𝛼,𝛽  , this proves the theorem.  
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The R.H.S. of (2.2.19) is a new exponentiated mean code word length of order α and type β, 

defined by 

𝐿∥𝛼,𝛽 =
1

𝛽−𝛼
[
∑ [{𝜇𝐴

𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))
𝛼
}𝐷(1−𝛼)(𝑛𝑖)−1]𝑛

𝑖

∑ [{𝜇𝐴
𝛼(𝑥𝑖)+(1−𝜇(𝑥𝑖))

𝛼
}𝐷(1−𝛼)(𝑛𝑖)−1]𝑛

𝑖

]. 

It can be easily seen that 

𝐿∥𝛼,𝛽 = 𝐿
∥
𝛽,𝛼and𝑇𝛼,𝛽 = 𝑇𝛽,𝛼 . 

So (2.2.9) holds for both when α < 1, β > 1 or α > 1, β < 1.  

2.3 Generalized Fuzzy Average Codeword Length and Their Bounds:- 

Mathai, A.M.[76] has given the measure of entropy as 

𝑀𝛼(𝑃) =  
1

𝛼−1
[∑ 𝑝𝑖

2−𝛼𝑛
𝑖 − 1];  𝛼 ≠ 1, −∞ <  𝛼 <  2                        (2.3.1) 

Corresponding to this measure, we propose the following average codeword length as; 

𝐿𝛼(𝑃) =  
1

𝛼−1
[∑ 𝑝𝑖𝐷

(
𝛼−1

𝛼
)(𝑛𝑖)𝑛

𝑖 − 1] ;  𝛼 ≠ 1, 𝛼 > 0                          (2.3.2) 

Corresponding to equation (2.3.1) we propose the following measure of  fuzzy entropy as ; 

 𝑀𝛼(𝐴) =
1

𝛼−1 
[∑ {𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
2−𝛼

} − 1𝑛
𝑖 ]                                    (2.3.3) 

And the corresponding average codeword length as; 

𝐿𝛼 =
1

𝛼−1 
[∑ {𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

}𝐷(
𝛼−1

𝛼
)(𝑛𝑖) − 1𝑛

𝑖 ]            (2.3.4) 

Remark: 

(I) When 𝛼 → 1, (2.3.1)tends to Shannon’s entropy given as; 

  𝑆(𝑃) =  −∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖 (2.3.5) 

(II): When  𝛼 → 1, (2.3.2) tends to average codeword length given by; 

  𝐿 =  ∑ 𝑝𝑖𝑛𝑖
𝑛
𝑖    (2.3.6) 

In next section, some noiseless coding theorems connected with fuzzy entropy 

corresponding to Mathai’s [76] entropy have been proved. 

  



46 
 

2.4 Generalized Fuzzy Noiseless Coding Theorems:- 

Theorem 2.4.1: For all uniquely decipherable codes 

𝑀𝛼(𝐴)  ≤ 𝐿𝛼(2.4.1) 

Where 

𝐿𝛼 =
1

𝛼 − 1 
[∑{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
2−𝛼

}𝐷(
𝛼−1

𝛼
)(𝑛𝑖) − 1

𝑛

𝑖

] 

Proof:-By Holders inequality, we have 

∑ 𝑥𝑖𝑦𝑖 ≥ (∑ 𝑥𝑖
𝑝𝑛

𝑖 )
1

𝑝(∑ 𝑦𝑖
𝑞𝑛

𝑖 )
1

𝑞𝑛
𝑖     ; 0 < 𝑝 < 1, 𝑞 < 0 𝑜𝑟 0 < 𝑞 < 1, 𝑝 < 0   (2.4.2) 

Set                   𝑥𝑖  = [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖 ; 

𝑦𝑖 =   [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡and 𝑝 =  −𝑡 ⇒ 0 < 𝑝 < 1,  𝑞 =
𝑡

𝑡+1
⇒  𝑞 < 0 

Thus equation (2.4.2) becomes 

∑[[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡] ≥

𝑛

𝑖

 

[{[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖}
−𝑡

]

−1

𝑡

[{[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡}

𝑡

𝑡+1

]

𝑡+1

𝑡

 

Using Kraft’s inequality, we have 

[[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡+1]

𝑡+1

𝑡

≤ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷
𝑛𝑖𝑡]

1

𝑡
 

or  ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡𝑛
𝑖 ≤ ∑ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷

𝑛𝑖𝑡]

1

𝑡𝑛
𝑖  

or  ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
𝑛
𝑖 ≤ ∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))𝐷

𝑛𝑖𝑡]𝑛
𝑖                          (2.4.3) 

Dividing both sides by t, we get 

∑ [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
𝑛
𝑖

𝑡
≤
∑ [[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷

𝑛𝑖𝑡]𝑛
𝑖

𝑡
 



47 
 

Subtracting n from both sides, we get 

∑
[𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐵(𝑥𝑖))−1]

𝑡

𝑛
𝑖 ≤ ∑

[[𝑓(𝜇𝐴(𝑥𝑖),𝜇𝐵(𝑥𝑖))]𝐷
𝑛𝑖𝑡−1]

𝑡

𝑛
𝑖    (2.4.4) 

Taking  𝛼 =
1

1−𝑡
, 𝑡 =

𝛼−1

𝛼
 , 𝛼 > 0, 𝛼 ≠ 1  and 

𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) = 𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
 

Thus equation (2.4.4) becomes 

𝛼

𝛼 − 1 
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
2−𝛼

} − 1]

𝑛

𝑖

 

≤
𝛼

𝛼 − 1 
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇(𝑥𝑖))
2−𝛼

}𝐷
(
𝛼−1

𝛼
)(𝑛𝑖)

− 1]

𝑛

𝑖

 

Dividing both sides by𝛼, we get; 

1

𝛼 − 1 
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

} − 1]

𝑛

𝑖

≤
1

𝛼 − 1
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

}𝐷
(
𝛼−1

𝛼
)(𝑛𝑖)

− 1]

𝑛

𝑖

 

(2.4.5) 

That is 𝑀𝛼(𝐴)  ≤ 𝐿𝛼. 

Which proves the theorem. 

Theorem 2.4.2:For all uniquely decipherable codes, 

                        𝑀𝛼,𝛽 ≤ 𝐿𝛼,𝛽          (2.4.6) 

Where, 𝐿𝛼,𝛽 = 
1

𝛽−𝛼
∑ [

{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
𝐷(

𝛼−1

𝛼
)(𝑛𝑖)} −

{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1

𝛽
)(𝑛𝑖)

}
]𝑛

𝑖         (2.4.7) 

And                                      𝛼 ≥ 1, 𝛽 ≤ 1 𝑜𝑟 𝛽 ≥ 1, 𝛼 ≤ 1. 

Proof: Since from (2.4.5), we have 
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1

𝛼 − 1 
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

} − 1]

𝑛

𝑖

≤ 

1

𝛼 − 1 
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

}𝐷
(
𝛼−1

𝛼
)(𝑛𝑖)

− 1]

𝑛

𝑖

 

Multiplying both sides by(𝛼 − 1), we have 

∑ [{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
} − 1]𝑛

𝑖  ≤∑ [{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
}𝐷

(
𝛼−1

𝛼
)(𝑛𝑖)

− 1]𝑛
𝑖=1  

(2.4.8). 

Changing α to β, we have 

  [∑ {𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
} − 1𝑛

𝑖 ] ≤ 

  [∑ {𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
}𝐷

(
𝛽−1

𝛽
)(𝑛𝑖)

− 1𝑛
𝑖 ] (2.4.9) 

Subtract (2.4.9) to (2.4.8), and divide by(𝛽 − 𝛼), we get; 

1

𝛽 − 𝛼
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

} – {𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
}]

𝑛

𝑖

  ≤ 

1

𝛽 − 𝛼
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

𝐷
(
𝛼−1

𝛼
)(𝑛𝑖)

} {𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1

𝛽
)(𝑛𝑖)

}]

𝑛

𝑖

 

(2.4.10). 

That is 

𝑀𝛼,𝛽 ≤ 𝐿𝛼,𝛽 . This proves the theorem. 

Theorem 2.4.3: For all uniquely decipherable codes 

𝑀/
𝛼,𝛽 ≤ 𝐿/𝛼,𝛽                  (2.4.11) 

Where 

𝐿/𝛼,𝛽 = 
1

𝛼 + 𝛽 + 2
∑[{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

𝐷(
𝛼−1

𝛼
)(𝑛𝑖)}  −  {𝜇𝐴

2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛽

𝐷
(
𝛽−1

𝛽
)(𝑛𝑖)

} − 2]

𝑛

𝑖

 

(2.4.12) 
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Proof: The result can be easily proved by adding (2.4.8) and (2.4.9) and then dividing by              

  (𝛼 + 𝛽 + 2). 

Theorem 2.4.4:For all uniquely decipherable codes 

𝑀𝛼,𝛽  ≤ 𝐿
/
𝛼,𝛽              (2.4.13) 

Where 

𝑀𝛼,𝛽 =
1

𝛽−𝛼
[
∑ [{𝜇𝐴

2−𝛼(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
2−𝛼

}−1]𝑛
𝑖=1

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

2−𝛽
}−1]𝑛

𝑖=1

]        (2.4.14) 

and 

𝐿/𝛼,𝛽 =
1

𝛽−𝛼
[
∑ [{𝜇𝐴

2−𝛼(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
2−𝛼

𝐷
(
𝛼−1
𝛼 )(𝑛𝑖)

}−1]𝑛
𝑖=1

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1
𝛽

)(𝑛𝑖)
}−1]𝑛

𝑖=1

]      (2.4.15) 

To prove this theorem, we first prove the following lemma. 

Lemma 1: For all uniquely decipherable codes. 

∑[{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
} − 1]

𝑛

𝑖=1

≤∑[{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
𝐷(

𝛼−1

𝛼
)(𝑛𝑖)} − 1]

𝑛

𝑖=1

 

Proof of the Lemma. From equation (2.4.3), we have; 

∑[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]

𝑛

𝑖

≤ ∑[[𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]𝐷
𝑛𝑖𝑡]

𝑛

𝑖

 

Subtracting ‘n’ from both sides, we get 

  ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))} − 1]
𝑛
𝑖 ≤ ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))𝐷

𝑛𝑖𝑡} − 1]𝑛
𝑖  

Taking  𝛼 =
1

1−𝑡
, 𝑡 =

𝛼−1

𝛼
 ,  and  𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) = 𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

 ,  we have; 

  ∑ [{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
} − 1]𝑛

𝑖 ≤ 

∑ [{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
𝐷(

𝛼−1

𝛼
)(𝑛𝑖)} − 1]𝑛

𝑖                                (2.4.16) 

Which proves the lemma. 
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Proof of the theorem 2.4.4: 

Changing 𝛼 𝑡𝑜 𝛽 in (2.4.16), we have; 

  ∑ [{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
} − 1]𝑛

𝑖 ≤ 

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1

𝛽
)(𝑛𝑖)

} − 1]𝑛
𝑖  (2.4.17) 

Dividing (2.4.17) to (2.4.16), we get; 

∑ [{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
} − 1]𝑛

𝑖

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
} − 1]𝑛

𝑖

  ≤ 

∑ [{𝜇𝐴
2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛼
𝐷
(
𝛼−1

𝛼
)(𝑛𝑖)

} − 1]𝑛
𝑖

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1

𝛽
)(𝑛𝑖)

} − 1]𝑛
𝑖

 

Dividing both sides by 𝛽 − 𝛼,𝑤𝑒 ℎ𝑎𝑣𝑒; 

1

𝛽 − 𝛼
[
∑ [{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

} − 1]𝑛
𝑖

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
} − 1]𝑛

𝑖

]  

≤
1

𝛽 − 𝛼
[
∑ [{𝜇𝐴

2−𝛼(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
2−𝛼

𝐷
(
𝛼−1

𝛼
)(𝑛𝑖)

} − 1]𝑛
𝑖

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1

𝛽
)(𝑛𝑖)

} − 1]𝑛
𝑖

] 

(2.4.18) 

⟹𝑀𝛼,𝛽  ≤ 𝐿
/
𝛼,𝛽 . The R.H.S. is a new exponentiated mean codeword length of order α and type 

β and is defined as; 

1

𝛽−𝛼
[
∑ [{𝜇𝐴

2−𝛼(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
2−𝛼

}−1]𝑛
𝑖

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

2−𝛽
}−1]𝑛

𝑖

]  ≤  
1

𝛽−𝛼
[
∑ [{𝜇𝐴

2−𝛼(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
2−𝛼

𝐷
(
𝛼−1
𝛼

)(𝑛𝑖)
}−1]𝑛

𝑖

∑ [{𝜇𝐴
2−𝛽(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

2−𝛽
𝐷
(
𝛽−1
𝛽

)(𝑛𝑖)
}−1]𝑛

𝑖

]. 
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he notion of fuzzy sets was proposed by Zadeh [109] with a view to tackling problems 

in which indefiniteness arising from a sort of intrinsic ambiguity plays a significant 

role. Fuzziness, a feature of uncertainty, results from the lack of sharp distinction of the 

boundary of a set, i.e., an individual is neither definitely a member of the set nor definitely not a 

member of it. The first to qualify the fuzziness was made  by Zadeh [107], who based on 

probabilistic framework introduced the entropy combining probability and membership function 

of a fuzzy event as weighted Shannon entropy. 

In this chapter, several coding theorems have been obtained by considering some 

parametric fuzzy entropy functions involving utilities. In the literature of information theory 

several types of coding theorems involving fuzzy entropy functions exists. The coding theorems 

obtained here are not only new but also generalizes some well known results available in the 

literature. 

3.1. Introduction:- 

Let X be discrete random variable taking on a finite number of possible 

values X = (x1, x2, . . . , xn)with respective membership function 

A = {μA(x1), μA(x2),… , μA(xn)}  → [0,1], μA(xi)gives of the elements the degree of 

belongingness xi to the set A.The function μA(xi) associates with each xi ∈  R
n a grade of 

membership to the set A and is known as membership function. 

Denote   

Χ = [
x1 x2           … xn

μA(x1) μA(x2)    ⋯ μA(xn)
]                                                          (3.1.1) 

We call the scheme (3.1.1) as a finite fuzzy information scheme. Every finite scheme describes a 

state of uncertainty. De Luca and termini [33] introduced a quantity which, in a reasonable way 

to measures the amount of uncertainty (fuzzy entropy) associated with a given finite scheme. 

This measure is given by   

H(A) =  −∑[μA(xi) log μA(xi) + (1 − μA(xi)) log(1 − μA(xi))]

n

i

            (3.1.2) 

T 
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The measure (3.1.2) serve as a very suitable measure of fuzzy entropy of the finite information 

scheme(3.1.1). 

Let a finite source of n source symbols X = (x1, x2, … , xn) be encoded using alphabet of 

D symbols, then it has been shown by Feinstein [39] that there is a uniquely decipherable/ 

instantaneous code with lengths l1, l2… , ln iff the following Kraft [65] inequality is satisfied  

  ∑ D−lin
i ≤ 1                                                                                     (3.1.3). 

Belis and Guiasu [22] observed that a source is not completely specified by the probability 

distribution P  over the source alphabet  X in the absence of qualitative character. So it can be 

assumed (Belis and Guiasu [22]) that the source alphabet letters are assigned weights according 

to their importance or utilities in view of the experimenter. 

Let U = (u1, u2,… , un) be the set of positive real numbers, ui is the utility or importance 

ofxi. The utility, in general, is independent of probability of encoding of source symbol 

xi, i.e,  pi. The information source is thus given by; 

 X = [
X1 X2… Xn
p1 p2… pn
u1 u2… un

] , ui > 0 pi ≥ 0,∑pi

n

i

= 1                                               (3.1.4) 

Belis and Guiasu [22] introduced the following quantitative- qualitative measure of information 

           H(P, U) = −∑ uipi log pi
n
i                                                                                 (3.1.5) 

Which is a measure for the average of quantity of ‘variable’ or ‘useful’ information provided by 

the information source(3.1.4). 

Guiasu and Picard [44] considered the problem of encoding the letter output by the 

source (3.1.4) by means of a single letter prefix code whose codeword’s c1, c2, … , cn  are of 

lengths l1, l2, … , ln respectively and satisfy the Kraft’s inequality(3.1.3), they included the 

following ‘useful’ mean length of the code. 

L(U) =
∑ uipili
n
i

∑ uipi
n
i

                                                                          (3.1.6) 

Further they derived a lower bound for (3.1.6). However, Longo [74] interpreted (3.1.6) as the 

average transmission cost of the letters xi and derived the bounds for this cost function. 

Now, corresponding to (3.1.5) and(3.1.6), we have the following fuzzy measures;   
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H(A, U) = −∑ui{μA(xi) + (1 − μA(xi))} log{μA(xi) + (1 − μA(xi))}   

n

i=1

(3.1.7) 

and 

L(U) =
∑ ui{μA(xi)+(1−μA(xi))}li
n
i=1

∑ ui{μA(xi)+(1−μA(xi))}
n
i=1

                                                          (3.1.8) 

respectively. 

In the next section, the bounds have been derived in terms of generalized ‘useful’ fuzzy 

cost measure and ‘useful’ fuzzy information measure of order α and type β. The main aim of 

studying these bounds is to generalize some well known results available in the literature. 

3.2. Bounds for Generalized Measure of Cost:- 

 In the derivation of the cost   measure (3.1.8), it is assumed that the cost is linear function 

of the code length, but this is not always the case. There are occasions when the cost behaves like 

an exponential function of codeword lengths. Such types of functions occur frequently in market 

equilibrium and growth models in economics. Thus sometimes it might be more appropriate to 

choose a code which minimizes the monotonic function of the quantity.     

C = ∑ ui
βn

i=1 {μA
β(xi) + (1 − μA(xi))

β
} D(

1−α

α
)li.        (3.2.1) 

Where α > 0 (≠ 1), β > 0 are the [parameters related to cost]. 

In order to make the result more comparable with the usual noiseless coding theorem, 

instead of minimizing (3.2.1) we minimize  

Lα
β (U) =

1

21−α − 1
[(
∑   ui

β {μA
β(xi) + (1 − μA(xi))

β
}D

(
1−α

α
)lin

i=1

∑ (ui{μA(xi) + (1 − μA(xi))})
βn

i=1

)

α

− 1]    (3.2.2) 

where, α > 0 (≠ 1), β > 0.  

Which is monotonic function of C and is the ‘useful’ fuzzy average code length of order α and 

type β. 

Clearly, if α→1, β = 1 (3.2.2) reduces to (3.1.8) which further reduces to ordinary mean 

length corresponding to  Shannon [87], when ui = 1, ∀ i = 1,2, … , n. It can also be noted that 
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(3.2.2) is monotonic non-decreasing function of α and if all the li
,s

 are same, say li = l, ∀ i =

1,2, … , n and α→1, then  Lα
β(U) = l. This is an important property for any measure of length to 

posses.  

Now, consider a function, which is ‘useful’ fuzzy information measure of order α and 

type β. 

Hα
β(A, U) =

1

21−α−1
[
∑ ui

β
{μA

α+β−1(xi)+(1−μA(xi))
α+β−1

}n
i=1

∑ (μ
i
β
{μA(xi)+(1−μA(xi))})

β
n
i=1

− 1]                                   (3.2.3) 

Where,  α > 0 (≠ 1), β > 0, μA(xi) ≥ 0; ∀ i = 1,2, … , n;  ∑ μA(xi) ≤ 1n
i=1 . 

Remark 3.2.1: 

1) When β = 1, (3.2.3) reduces to the measure of ‘useful’ fuzzy information corresponding 

to Hooda and Ram [53]. 

2) When α→ 1,β = 1 , (3.2.3) reduces to the measure corresponding Belis and Guiasu [22]. 

3) When α→ 1, β = 1 and ui = 1, ∀ i = 1,2, … , n  (3.2.3) reduces to the Du Luca and 

Termini [33]. 

Also the bounds are obtained for the measure (3.2.3) under the condition; 

∑ui
β

n

i=1

{μA
β−1(xi) + (1 − μA(xi))

β−1
} D−li  ≤   ∑ui

β
{μA
β(xi) + (1 − μA(xi))

β
}          (3.2.4)

n

i=1

 

It may be seen that in case β = 1 and ui = 1, ∀ i = 1,2, … , n  (3.2.4) reduces to the Kraft [65] 

inequality (3.1.3). Also, D is the size of the code alphabet. 

Theorem 3.2.1: For all integers D (D≥2), let li satisfies (3.2.4), then the generalized average 

‘useful’ codeword length satisfies; 

Lα
β (U) ≥ Hα

β(A; U)                                                                                                     (3.2.5) 

Equality holds iff 

li = − log{μi
α(xi) + (1 − μA(xi))

α
} + log

∑ ui
β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ ui
β
{μA
β(xi) + (1 − μA(xi))

β
}n

i=1

 

(3.2.6) 
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Proof: By Holder’s inequality.  

∑xiyi ≥ (∑xi
p

n

i=1

)

1

p

(∑yi
q

n

i=1

)

1

qn

i=1

                                                                           (3.2.7) 

For all,  xi, yi > 0, 𝑖 = 1,2, … , n ; 
1

p
+

1

q
= 1, p < 1 (≠ 0), q < 0 𝑜𝑟 𝑞 < 1(≠ 0), p < 0.We see 

the equality holds iff there exists a positive constant C such that 

xi
p
= cyi

q
                                                                                            (3.2.8) 

Making the substitution  

  p =
α−1

α
, q = 1 − α. 

xi =
(ui{μA(xi) + (1 − μA(xi))})

αβ

α−1D−li

∑ (ui{μA(xi) + (1 − μA(xi))})
αβ

α−1n
i=1

 

And                                 yi = 
ui

β
1−α(μA

α+β−1
1−α (xi)+{1−μA(xi)}

α+β−1
1−α )

∑ ui{μA(xi)+(1−μA(xi))}
β

1−αn
i=1

 

 In (3.2.7), we get; 

∑ ui
βn

i=1 {μA
β−1(xi) + (1 − μA(xi))

β−1
}D−li

∑ ui
βn

i=1 {μA
β−1(xi) + (1 − μA(xi))

β−1
}

 ≥ 

[
∑   ui

β {μA
β(xi) + (1 − μA(xi))

β
}D(

1−α

α
)lin

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

]

α

α−1

[
∑ ui

β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

]

1

1−α

 

Using the condition (3.2.4), we get; 
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[
∑   ui

β {μA
β(xi) + (1 − μA(xi))

β
}D(

1−α

α
)lin

i=1

∑   uiβ {μAβ(xi) + (1 − μA(xi))
β
}n

i=1

]

α

α−1

 

≥ [
∑ ui

β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑   uiβ {μAβ(xi) + (1 − μA(xi))
β
}n

i=1

]

1

1−α

 

Taking 0 < 𝛼 < 1, and raising power both sides (1−α), we get;  

[
∑   ui

β{μA
β(xi)+(1−μA(xi))

β
}D

(
1−α
α

)lin
i=1

∑   ui
β{μA

β(xi)+(1−μA(xi))
β
}n

i=1

]

α

≥[
∑ ui

β
{μA
α+β−1(xi)+(1−μA(xi))

α+β−1
}n

i=1

∑   ui
β{μAβ(xi)+(1−μA(xi))

β
}n

i=1

] 

Multiplying both sides by 
1

21−α−1
> 0 for 0 < 𝛼 < 1 and after simplifying, we get;  

Lα
β (U) ≥ Hα

β(A; U) 

For all α > 1, the proof follows along the similar lines. 

Theorem 3.2.2: For every code with lengths l1, l2, … . lnsatisfies (3.2.4), Lα
β
(U) can be made to 

satisfy the inequality; 

Lα
β (U) < Hα

β(A; U)D1−α +
D1−α − 1

21−α − 1
(3.2.9) 

Proof: Let li be the positive integer satisfying the inequality;  

− log{μA
α(xi) + (1 − μA(xi))

α} + log
∑ ui

β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ (ui
β
{μA
β(xi) + (1 − μA(xi))

β
})n

i=1

≤ 

li − log{μA
α(xi) + (1 − μA(xi))

α
} + log

∑ ui
β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ (ui
β
{μA
β(xi) + (1 − μA(xi))

β
})n

i=1

+ 1        (3.2.10) 

Consider the interval;                                  
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δi = 

[
 
 
 
 
 
 
 
− log(μA

α(xi) + (1 − μA(xi))
α
) + log

∑ ui
β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ (ui
β
{μA

β(xi) + (1 − μA(xi))
β
})n

i=1

,

− log(μA
α(xi) + (1 − μA(xi))

α
) +   log

∑ ui
β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ (ui
β
{μA

β(xi) + (1 − μA(xi))
β
})n

i=1

+ 1

]
 
 
 
 
 
 
 

 

(3.2.11) 

of length 1. In every δi, there lies exactly one positive integer li such that 

0 < − log(μA
α(xi) + (1 − μA(xi))

α
) + log

∑ ui
β
{μA
α+β−1(xi)+(1−μA(xi))

α+β−1
}n

i=1

∑ (μ
i
β
{μA
β(xi)+(1−μA(xi))

β
})n

i=1

≤ li <

    − log(μA
α(xi) + (1 − μA(xi))

α
) +   log

∑ ui
β
{μA
α+β−1(xi)+(1−μA(xi))

α+β−1
}n

i=1

∑ (u
i
β
{μA
β(xi)+(1−μA(xi))

β
})n

i=1

+ 1

   (3.2.12). 

We will first show that the sequence l1, l2, … , ln thus defined satisfies (3.2.4). From (3.2.12), we 

have; 

− log(μA
α(xi) + (1 − μA(xi))

α
) + log

∑ ui
β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ (ui
β
{μA

β(xi) + (1 − μA(xi))
β
})n

i=1

≤ li 

or 

(μA
α(xi) + (1 − μA(xi))

α
)

∑ u
i
β
{μA
α+β−1

(xi)+(1−μA(xi))
α+β−1

}n
i=1

∑ (ui
β
{μA
β
(xi)+(1−μA(xi))

β
})n

i=1

≥ D−li 

Multiplying both sides by ui
β
(μA

β−1(xi) + (1 − μA(xi))
β−1

) and summing over i = 1,2, … , n, we 

get (3.2.4). 

The last inequality in (3.2.12) gives;  

li < − log(μA
α(xi) + (1 − μA(xi))

α
) +   log

∑ ui
β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑ (ui
β
{μA
β(xi) + (1 − μA(xi))

β
})n

i=1

+ 1 
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or  li < log

(

 
 
 

(μA
α(xi)+(1−μA(xi))

α
)

∑ u
i
β
{μA
α+β−1

(xi)+(1−μA(xi))
α+β−1

}n
i=1

∑ (u
i
β
{μ
A
β
(xi)+(1−μA(xi))

β
})n

i=1 )

 
 
 

−1

D 

or       Dli <

(

 
 
 

(μA
α(xi)+(1−μA(xi))

α
)

∑ u
i
β
{μA
α+β−1

(xi)+(1−μA(xi))
α+β−1

}n
i=1

∑ (u
i
β
{μA
β
(xi)+(1−μA(xi))

β
})n

i=1 )

 
 
 

−1

D  

For 0 < 𝛼 < 1, raising power both sides
1−α

α
, we get; 

 Dli(
1−α

α
) <

(

 
 
 

(μA
α(xi)+(1−μA(xi))

α
)

∑ u
i
β
{μA
α+β−1

(xi)+(1−μA(xi))
α+β−1

}n
i=1

∑ (u
i
β
{μA
β
(xi)+(1−μA(xi))

β
})n

i=1 )

 
 
 

α−1

α

D
1−α

α . 

Multiplying both sides by   

 
ui
β
{μA
β
(xi)+(1−μA(xi))

β
}

∑ (ui
β
{μA
β
(xi)+(1−μA(xi))

β
})n

i=1

 

and summing over i = 1,2, … , n, we get; 

[
∑   ui

β {μA
β(xi) + (1 − μA(xi))

β
}D

(
1−α

α
)lin

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

] < [
∑ ui

β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

]

1

α

D
1−α

α  

or 

(
∑   ui

β {μA
β(xi) + (1 − μA(xi))

β
} D(

1−α

α
)lin

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

)

α

< (
∑ ui

β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

)D1−α 

Since 21−α − 1 > 0 𝑓𝑜𝑟 0 < 𝛼 < 1 and after suitable operations, we get; 
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1

21−α − 1
[(
∑   ui

β {μA
β(xi) + (1 − μA(xi))

β
}D

(
1−α

α
)lin

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

)

α

− 1] 

<
1

21−α − 1
[(
∑ ui

β
{μA
α+β−1(xi) + (1 − μA(xi))

α+β−1
}n

i=1

∑   ui
β {μA

β(xi) + (1 − μA(xi))
β
}n

i=1

)]D1−α +  
D1−α − 1

21−α − 1
 

or we can write 

Lα
β (U) < Hα

β(A; U)D1−α +
D1−α−1

21−α−1
. 

As D ≥ 2, we have 
D1−α−1

21−α−1
> 1 from which it follows that upper bound Lα

β (U) in (3.2.9) is 

greater than unity.Also, for α > 1, the proof follows along the similar lines. 

3.3. Some Coding Theorems on Fuzzy Entropy Function Depending Upon Parameter R 

and Ѵ:- 

Consider a function 

𝐻𝑅(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈) =  

𝑅

𝑅−1
[1 − (

∑ 𝑢𝑖(𝜇𝐴
𝑅+𝑣−1(𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

)

1

𝑅

] (3.3.1) 

Where 

𝑅 > 0(≠ 1), 𝑣 > 0, ∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) = 1,

𝑛

𝑖=1

(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) ≥ 0. 

Remark 3.3.1: 

a) When𝑣 = 1, (3.3.1) reduces to the ‘useful’ R-norm fuzzy information measure 

corressponding to Singh, Kumar and Tuteja [92]. 

b) When 𝑣 = 1, 𝑢𝑖 = 1 ∀ 𝑖 = 1,2, … , 𝑛, (3.3.1) reduces to the R-norm fuzzy information 

measure corresponding to Boekee and Lubbee [27]. 

c) When𝑅 → 1, 𝑣 = 1 𝑎𝑛𝑑𝑢𝑖 = 1 ∀ 𝑖 = 1,2, … , 𝑛, (3.3.1) reduces to the De Luca and 

Termini [33] measure of fuzzy entropy corresponding to the Shannon [87] measure of 

entropy. 

Further, consider a generalized ‘useful’ codeword mean length; 
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𝐿𝑅(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈)  =  [1 −

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝐷

−𝑙𝑖(
𝑅−1
𝑅 )𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

]       (3.3.2). 

Where  

𝑅 > 0(≠ 1), 𝑣 > 0, ∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) = 1,

𝑛

𝑖=1

(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) ≥ 0. 𝐷 

is the size of the code alphabet. 
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Remark 3.3.2: 

(1) When 𝑣 = 1, (3.3.2) reduces to the fuzzy ‘useful’ codeword mean length corresponding 

to the Sing, Kumar and Tuteja [92]. 

(2) When 𝑣 = 1, 𝑢𝑖 = 1 ∀ 𝑖 = 1,2, … , 𝑛, (3.3.2) reduces to the fuzzy codeword mean length 

corresponding to the Boekee et al [27]. 

(3) when𝑅 → 1, 𝑣 = 1 𝑎𝑛𝑑𝑢𝑖 = 1 ∀ 𝑖 = 1,2, … , 𝑛, (3.3.2) reduces to the fuzzy optimal 

codeword mean length corresponding to the Shannon [87].                                                   

We now establish a result that in a sense, gives a characterization of 

𝐻𝑅(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈) Under the condition;       

∑𝑢𝑖

𝑛

𝑖=1

(𝜇𝐴
𝑣−1(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣−1
)𝐷−𝑙𝑖  ≤  ∑𝑢𝑖(𝜇𝐴

𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝑣
)

𝑛

𝑖=1

      (3.3.3) 

Remark 3.3.3: 

When 𝑣 = 1, 𝑢𝑖 = 1 ∀ 𝑖 = 1,2, … , 𝑛, and ∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) = 1,𝑛
𝑖=1  (3.3.3) is a 

generalization of (3.1.3) which is Kraft’s [65] inequality. 

Theorem 3.3.1:For every code whose lengths 𝑙1, 𝑙2, … , 𝑙𝑛 satisfies (3.3.3), then the average fuzzy 

codeword length satisfies; 

𝐿𝑅(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈) ≥ 𝐻𝑅(𝜇𝐴

𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑣
, 𝑈)             (3.3.4) 

Equality holds iff 

𝑙𝑖 = − 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
) + 𝑙𝑜𝑔

∑ 𝑢𝑖 (𝜇𝐴
𝑅+𝑣−1(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

(3.3.5) 

Proof: By holder’s inequality  

 ∑ 𝑥𝑖𝑦𝑖 ≥ (∑ 𝑥𝑖
𝑝𝑛

𝑖=1 )
1

𝑝(∑ 𝑦𝑖
𝑞𝑛

𝑖=1 )
1

𝑞𝑛
𝑖=1           (3.3.6) 

∀ 𝑥𝑖 , 𝑦𝑖 > 0, 𝑖 = 1,2, … , 𝑛𝑎𝑛𝑑
1

𝑝
+

1

𝑞
= 1, 𝑝 < 1 (≠ 0), 𝑞 < 0 𝑜𝑟𝑞 < 1 (≠ 0), 𝑝 < 0. We see the 

equality holds iff there exists a positve constant c such that;  

𝑥𝑖
𝑝 = 𝑐𝑦𝑖

𝑞                                                                                                                     (3.3.7) 

Setting  
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              𝑥𝑖 = 𝑢
𝑖

𝑅

𝑅−1 (𝜇𝐴

𝑣𝑅

𝑅−1(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝑣𝑅

𝑅−1𝐷−𝑙𝑖) ; 

𝑦𝑖 = 𝑢𝑖

1

1−𝑅 (𝜇𝐴

𝑅+𝑣−1

1−𝑅 (𝑥𝑖) + (1 − 𝜇A(𝑥𝑖))
𝑅+𝑣−1

1−𝑅 𝐷−𝑙𝑖),  

          𝑝 =
𝑅−1

𝑅
𝑎𝑛𝑑𝑞 = 1 − 𝑅 

In (3.3.6) and using (3.3.3), we get; 

[∑𝑢𝑖(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝐷

−𝑙𝑖(
𝑅−1

𝑅
)

𝑛

𝑖=1

]

𝑅

1−𝑅

≥ 
[∑ ui (μA

R+v−1(x)i + (1 − μA(xi))
R+v−1

)n
i=1 ]

1

1−R

∑ ui(μA
v (x)i + (1 − μA(xi))

v
)n

i=1

 

(3.3.8) 

Dividing both sides of (3.3.8) by 

(∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1 )
𝑅

1−𝑅, we get; 

[
∑ 𝑢𝑖(𝜇𝐴

𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑣
)𝐷

−𝑙𝑖(
𝑅−1

𝑅
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

]

𝑅

1−𝑅

≥ [
∑ 𝑢𝑖 (𝜇𝐴

𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

]

1

1−𝑅

 

Taking 0 < 𝑅 < 1, raising both sides to the power
1−𝑅

𝑅
, 𝑅 ≠ 1, 𝑎𝑙𝑠𝑜

𝑅

𝑅−1
< 0 for 0 < 𝑅 < 1  and 

after suitable operations, we obtain the result (3.3.4). For 𝑅 > 1, the inequality (3.3.4) can be 

obtained in a similar fashion. 

Theorem 3.3.2:For every code with lengths 𝑙1, 𝑙2, … , 𝑙𝑛 satisfies (3.3.3). Then  

𝐿𝑅(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈)can be made to satisfy the inequality 

𝐿𝑅(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈) 

< 𝐻𝑅(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
, 𝑈)𝐷(

𝑅−1

𝑅
) +

𝑅

𝑅 − 1
(1 − 𝐷(

𝑅−1

𝑅
))                 (3.3.9) 

Proof: Let 𝑙𝑖 be the positive integer satisfying the inequality; 

−𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
)

+ 𝑙𝑜𝑔
∑ 𝑢𝑖 (𝜇𝐴

R+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

≤ 𝑙𝑖 
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< − 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
) + 𝑙𝑜𝑔

∑ 𝑢𝑖 (𝜇𝐴
𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=1

+ 1 

Consider the interval 

𝛿𝑖 =   

[
 
 
 
 
 
 
− 𝑙𝑜𝑔 (𝜇𝐴

𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝑅
) + 𝑙𝑜𝑔

∑ 𝑢𝑖 (𝜇𝐴
𝑅+𝑣−1(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

,    

− 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
) + 𝑙𝑜𝑔

∑ 𝑢𝑖 (𝜇𝐴
𝑅+𝑣−1(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

+ 1

]
 
 
 
 
 
 

 

(3.3.11) 

of length 1. In every 𝛿𝑖, there lies exactly one positive integer 𝑙𝑖 such that; 

0 <  − l𝑜𝑔 (𝜇𝐴
𝑅(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
)

+ 𝑙𝑜𝑔
∑ 𝑢𝑖 (𝜇𝐴

𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

 ≤ 𝑙𝑖

< − 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
)

+ 𝑙𝑜𝑔
∑ 𝑢𝑖 (𝜇𝐴

𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

+ 1                  (3.3.12) 

We will first show that the sequence{𝑙1, 𝑙2, … , 𝑙𝑛}, thus defined satisfies (3.3.3). 

From (3.3.12), we have; 

0 <  − 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
)

+ 𝑙𝑜𝑔
∑ 𝑢𝑖 (𝜇𝐴

𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

 ≤ 𝑙𝑖 

or 

− 𝑙𝑜𝑔
𝜇𝐴
𝑅(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑅

(
∑ 𝑢𝑖(𝜇𝐴

𝑅+𝑣−1(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

)

≤ − 𝑙𝑜𝑔𝐷 𝐷
−𝑙𝑖  
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μ𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅

(
∑ 𝑢𝑖(𝜇𝐴

𝑅+𝑣−1(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
𝑅+𝑣−1

)𝑛
𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

)

≥ 𝐷−𝑙𝑖                         (3.3.13) 

Multiplying both sides  ∑ 𝑢𝑖 (𝜇𝐴
𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑣−1
)𝑛

𝑖=1  and summing over𝑖 = 1,2, … , 𝑛. 

we get (3.3.3). The last inequality in (3.3.12) gives; 

𝑙𝑖 < − 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
) + 𝑙𝑜𝑔

∑ 𝑢𝑖 (𝜇𝐴
𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

+ 1 

𝑙𝑖 < − 𝑙𝑜𝑔 (𝜇𝐴
𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑅
) + 𝑙𝑜𝑔

∑ 𝑢𝑖 (𝜇𝐴
𝑅+𝑣−1(𝑥)𝑖 + (1 − 𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

+ 𝑙𝑜𝑔𝐷 𝐷 

Or                           𝑙𝑖 < − 𝑙𝑜𝑔
(𝜇𝐴

𝑅(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))
𝑅
)

∑ 𝑢𝑖(𝜇𝐴
𝑅+𝑣−1(𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

+ 𝑙𝑜𝑔𝐷 𝐷 

𝐷−𝑙𝑖 >
(𝜇𝐴

𝑅(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝑅
)

∑ 𝑢𝑖(𝜇𝐴
𝑅+𝑣−1(𝑥)𝑖+(1−𝜇𝐴(𝑥𝑖))

𝑅+𝑣−1
)𝑛

𝑖=1

∑ 𝑢𝑖(𝜇𝐴
𝑣 (𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖))

𝑣
)𝑛

𝑖=

𝐷−1 

Taking 0 < 𝑅 < 1 and raising both sides to the power
𝑅−1

𝑅
, we get;           

 𝐷−𝑙𝑖(
𝑅−1

𝑅
) <

(

 
 (𝜇𝐴

𝑅(𝑥i)+(1−μA(xi))
R
)

∑ ui(μA
R+v−1(x)i+(1−μA(xi))

R+v−1
)n

i=1

∑ ui(μA
v(xi)+(1−μA(xi))

v
)n

i= )

 
 

R−1

R

D
R−1

R  

Multiplying both sides by 
ui((μA

v (xi)+(1−μA(xi))
v
))

∑ ui(μA
v (xi)+(1−μA(xi))

v
)n

i=

  and summing over i = 1,2, … , n and after 

simplifying, gives (3.3.9). 

For R > 1, the proof follows along the similar lines. 

t is well known that a lower bound on the average length is obtained in terms of Shannon 

entropy [87] for instantaneous codes in noiseless channel (Abramson[1]). Bernard and 

Sharma [23] studied variable length codes for noisy channels and presented some 

combinatorial bounds for this variable length, error correcting codes. Bernard and Sharma [24] 

I 
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obtained a lower bound on average for variable length error correcting codes satisfying the 

criterion of promptness. 

In this chapter, we propose a new generalized fuzzy entropy measure using segment 

decomposition and effective range and study its particular cases. Also some fuzzy coding 

theorems have been established.  

4.1. Introduction:- 

Incoding theory, it is assumed that Q is a finite set of alphabets and there are D code 

characters. A codeword is defined as a finite sequence of code characters and a variable length 

code C of size K is a set of K code words denoted by c1, c2, … , ck with lengths n1, n2, … , nk 

respectively. Without loss of generality it may be assumed that n1 ≤ n2 ≤ ⋯ ≤ nk. 

The channel, which is considered here, is not noiseless. In other words, the codes 

considered are error correcting codes. The criterion for error correcting is defined in terms of a 

mapping α, which depends on the noise characteristics of the channel. This mapping α is called 

the error admissibility mapping. Given codeword ‘c’ and error admissibility α, the set of 

codeword’s received over the channel when c was sent, denoted by α(c) is the error range of c. 

Various kinds of error pattern can be described in terms of mapping α. In particular, α may be 

defined as (Bernard & Sharma [23]) 

αe(c) = {u|w(c − u) ≤ e}, 

Where e is the random substitution error and  w(c − u) is the Humming weight, i.e. the number 

of non-zero coordinates of (c − u). It can be easily verified by Bernard and Sharma [23] that the 

number of sequences in  αe(c) denoted as |αe(c)| is given by 

  |αe(c)| = ∑ (n
i
)(D − 1)in

i=0 , 

where𝑛 is the length of cord word c. 

We may assume that α0 corresponds to the noiseless. In other words, if c is sent then c is 

received w.r.t.  α0. Moreover it is clear that  |αe(c)| depends only on the length 𝑛 of c when α and 

D are given. In noiseless coding, the class of uniquely decodable instantaneous codes is studied. It 

is known that these codes satisfy prefix property (Abramson [1]). 
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In the same way Hartnett [49] studied variables length code over noisy channel, 

satisfying the prefix property in the range. These codes are called α-prompt codes. Such codes 

have the property that they can decode promptly. 

Further, Burnard and Sharma [23] gave a combinational information inequality that must 

necessarily be satisfied by code word lengths of prompt code codes. Two useful concepts, 

namely, segment decomposition and the effective range rα(ci) of code words ci of length ni under 

error mapping α as the Cartesian product of ranges of the segment are also given by Bernard and 

Sharma [23]. The numbers of sequences in effective range of ci denoted by |rα|ni depends only 

on α andni. It is given that; 

|rα|ni = |α|n1|α|n2 … |α|ni−ni−1 . 

Also, we adopt the notion |α|0 = 1. Moreover, Bernard and Sharma [23] obtained the following 

inequality. 

Lemma 4.1.1: For any set of length n1 ≤ n2 ≤ ⋯ ≤ nk 

|rα|ni = |rα|ni−1 . |rα|ni−ni−1 

Proof: The proof easily follows from the definition of the effective range. 

We have 

|rα|ni = |α|n1 . |α|n2−n1 …|α|ni−ni−1 

and  |rα|ni−1 = |α|n1 . |α|n2−1… |α|ni−1−ni−2 

Therefore  |rα|ni = |rα|ni−1 . |rα|ni−ni−1 

Theorem 4.1.1: An α-prompt code with k code words of lengthn1 ≤ n2 ≤ ⋯ ≤ nk, satisfies the 

following inequality. 

  ∑ |rα|ni
k
i=1 D−ni ≤ 1 (4.1.1) 

Proof: Let Ni denote the number of code words of length i in the code. Then, since the range of 

the word of length one has to be disjoint, we have;                                   

  N1 ≤
q

|rα|1
=

q

|α|1
=

q

q
= 1 
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Next, we know that for a code to be α-prompt, no sequence in the range of a code word 

can be prefix of any sequence in the range of another code word. SinceN1 ≤ 1, if there are more 

than one code word and some noise effect is there, then we will not able to get any word of 

length one and we will have to consider words of length 2 or more only. 

The first digit will be one of the code symbols, i.e. for forming words of larger than  

N1 = 0 and the first position can be filled in just one way for purpose of uniformity of arguments 

at larger stages. We will see that the first position can be filled in  [
D

|rα|1
− N1] ways. 

The number of symbols that may be added at the second position is at most 
D

|α|1
 which is 

equivalent to D
|rα|1

|rα|2
  from Lemma 4.1.1. Thus, we will have; 

N2 ≤ [
D

|rα|1
− N1] [D.

|rα|1
|rα|2

] 

=
D2

|rα|2
− N1. D

|rα|1
|rα|2

 

Now to form words of length 3, only those sequences of length 2 which are not code words can 

be accepted as permissible prefix. Their number is; 

D2

|rα|2
−N1. D

|rα|1
|rα|2

− N2. 

Once again, the number of symbols that may be added in the third position is 
D

|α|1
. From Lemma 

4.1.1, we can take  
D

|α|1
= D

|rα|2

|rα|3
. 

Thus,        N3 ≤ [
D2

|rα|2
− N1D

|rα|1

|rα|2
− N2] [D

|rα|2

|rα|3
] 

=
D3

|rα|3
− N1D

2
|rα|1
|rα|3

− N2D
|rα|2
|rα|3

 

We may proceed in the same manner to obtain results for various Ni′s. For the last length nk, we 

will have; 

Nnk ≤
Dnk

|rα|nk
− N1D

nk−1
|rα|1

|rα|nk
− N2D

nk−2
|rα|2

|rα|nk
 … Nnk−1D

|rα|nk−1
|rα|nk

. 
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This can be written as        ∑ |rα|i
k
i=1 NiD

−i ≤ 1. 

Changing the summation from the length 1, 2, … , nk to the code word lengthn1, n2,…,nk. The 

above inequality can be equivalently put as∑ |rα|ni
k
i=1 D−ni ≤ 1, which proves the theorem. 

Remark 4.1.1: If the codes of constant length n are taken, then the average inequality (4.1.1) 

reduces to Hamming sphere packing bound (Hamming [47]). 

Remark 4.1.2: If the channel is noiseless, the inequality (4.1.1) reduces to the well known Kraft 

inequality (Kraft [65]). Bernard and Sharma [24] have obtained a lower bound on average code 

word length for prompt code using a quantity similar to Shannon entropy. 

Campbell [28] considered a code length of order t defined by; 

L(𝑡) = 1
𝑡⁄ 𝑙𝑜𝑔𝐷 ∑ (𝑝𝑖𝐷

𝑡𝑛𝑖)𝑘
𝑖=1 ;  (0 < 𝑡 < ∞)     (4.1.2)   

An application of L-Hospitals rule shows that 

𝐿(0) = 𝑙𝑖𝑚
𝑡→0

𝐿(𝑡) =∑𝑛𝑖𝑝𝑖

𝑘

𝑖=1

                                               (4.1.3) 

For large𝑡, ∑ 𝑝𝑖𝐷
𝑡𝑛𝑖𝑘

𝑖=1 ≅ 𝑝𝑗𝐷
𝑡𝑛𝑗 , where 𝑛𝑗  is the largest of the number𝑛1, 𝑛2, … , 𝑛𝑘. 

Moreover,𝐿(𝑡)  is a monotonic non-decreasing function of 𝑡 (Beckenbach and Bellman 

[21]).Thus 𝐿(0) is the conventional measure of mean length and 𝐿(∞) is the measure which 

would be used if the maximum length were of prime importance. 

Definition 4.1.1: Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets 

were introduced by Lotfi A. Zadeh [109]gave an extension of classical notion of set. In classical 

set theory, the membership of the elements in a set is assessed in binary terms according to a 

bivalent condition—an elementeither belongs or does not belong to the set. By contrast, fuzzy set 

theory permits the gradual assessment of the membership of elements in a set; this is described 

with the aid of the membership function valued in the real unit interval [0,1] expressed as 

𝜇𝐴(𝑥𝑖) ∶ 𝑈 → [0,1], where U is universe of discourse which represents the grade of membership 

of 𝑥 ∈ 𝑈 𝑖𝑛 𝐴 as follows 

𝜇𝐴(𝑥𝑖) = {

0, 𝑖𝑓𝑥 ∉ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑎𝑚𝑏𝑖g𝑢𝑖𝑡𝑦
1, 𝑖𝑓𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦

  0.5, 𝑖𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦, 𝑖. 𝑒. 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∉ 𝐴
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 Let      𝐴 = {𝑥𝑖: 0 < 𝜇𝐴(𝑥𝑖) < 1, ∀𝑖 = 1, 2, … , 𝑛} 

𝐵 = {𝑥𝑖: 0 < 𝜇𝐵(𝑥𝑖) < 1, ∀𝑖 = 1, 2, … , 𝑛} 

And  𝑈 = {𝑢𝑖: 𝑢𝑖 > 0, ∀𝑖 = 1, 2, … , 𝑛}. 

be two fuzzy sets and U, the set of utilities corresponding to fuzzy membership function 𝜇𝐴(𝑥𝑖) 

for any event E. Corresponding to the above membership functions, we have the following fuzzy 

information scheme.  

  𝐹. 𝑆. = [

𝐸1          𝐸2… 𝐸𝑛
𝜇𝐴(𝑥1) 𝜇𝐴(𝑥2)… 𝜇𝐴(𝑥𝑛)

𝜇𝐵(𝑥1) 𝜇𝐵(𝑥2)… 𝜇𝐵(𝑥𝑛)
𝑢1 𝑢2… 𝑢𝑛

] 

4.2   Lower Bound on Code Word Length 𝒕:- 

Suppose that a person believe that the degree of membership of ith event is 𝜇𝐵(𝑥𝑖) and 

the code with code length𝑛𝑖  has been constructed accordingly. But contrary to his belief the true 

degree of membership is 𝜇𝐴(𝑥𝑖).  

We will now obtain a lower bound of mean length 𝐿(𝑡) under the condition; 

∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

(𝜇𝐵
−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

−1
) |𝑟𝛼|𝑛𝑖𝐷

−𝑛𝑖 ≤ 1     (4.2.1) 

Remark 4.2.1: For a noiseless channel  |𝑟𝛼|𝑛𝑖 = 1∀ 𝑖 = 1, 2, … , 𝑘. The inequality (4.2.1) reduces 

to the fuzzy Inequality corresponding to Autar and Soni [8].                     

∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

(𝜇𝐵
−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

−1
)𝐷−𝑛𝑖 ≤ 1      (4.2.2) 

Remark 4.2.2: Moreover, if 𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)) = 𝜇𝐵(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖)) for each𝑖, (4.2.2) 

reduces to Kraft [65] inequality;  

∑𝐷−𝑛𝑖

𝑘

𝑖=1

≤ 1                                                                                                (4.2.3) 
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Theorem 4.2.1:Let a source S have k messages symbols 𝑆1, 𝑆2, … , 𝑆𝑘 with message degree of 

membership 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2),… , 𝜇𝐴(𝑥𝑘); 𝜇𝐴(𝑥𝑖) ≥ 0. Let an 𝛼-prompt code encode these 

messages into a code alphabet of D symbols and let the length of the code word corresponding to 

the messages𝑆𝑖be𝑛𝑖. Then the code length of order𝑡, 𝐿(𝑡), shall satisfy the inequality; 

𝐿(𝑡) ≥
1

1 − 𝛽
𝑙𝑜𝑔𝐷∑(𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
) (|𝑟𝛼|𝑛𝑖)

1−𝛽
𝑘

𝑖=1

   (4.2.4) 

Proof: In the Holder’s inequality 

 [∑ 𝑥𝑖
𝑝𝑘

𝑖=1 ]
1
𝑝⁄ [∑ 𝑦𝑖

𝑞𝑘
𝑖=1 ]

1
𝑞⁄ ≤ ∑ 𝑥𝑖𝑦𝑖

𝑘
𝑖=1   (4.2.5) 

With the equality if and only if 𝑥𝑖 = 𝑐𝑦𝑖, where 𝑐 is a positive number, 

1
𝑝⁄ + 1 𝑞⁄ = 1and𝑝 < 1.  

We note the direction of Holder’s inequality is the reverse of the usual one as  𝑝 < 1 

(Backenbach and Bellman [21]). 

       Substituting 

𝑝 = −𝑡, 𝑞 = 1 − 𝛽,   𝑥 = (𝜇𝐴

−1

𝑡 (𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
−1

𝑡 )𝐷−𝑛𝑖 

and            𝑦𝑖 = (𝜇𝐴

1

𝑡 (𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
1

𝑡) |𝑟𝛼|𝑛𝑖 , 

we get;  

 {∑ [(𝜇𝐴

−1

𝑡 (𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
−1

𝑡 )𝐷−𝑛𝑖]

−𝑡

𝑘
𝑖=1 }

−1
𝑡⁄

{∑ [(𝜇𝐴

1

𝑡 (𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
1

𝑡) |𝑟𝛼|𝑛𝑖]

1−𝛽

𝑘
𝑖=1 }

1
(1−𝛽)⁄

 

≤∑𝐷−𝑛𝑖

𝑘

𝑖=1

|𝑟𝛼|𝑛𝑖 

or  

{∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
𝑡𝑛𝑖

𝑘

𝑖=1

}

−1
𝑡⁄

{∑(𝜇𝐴

1−𝛽

𝑡 (𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
1−𝛽

𝑡 ) [|𝑟𝛼|𝑛𝑖]

1−𝛽𝑘

𝑖=1

}

1
(1−𝛽)⁄

 



71 
 

≤∑𝐷−𝑛𝑖

𝑘

𝑖=1

|𝑟𝛼|𝑛𝑖  

Moreover, 1 𝑝⁄ + 1 𝑞⁄ = 1,⇒ 𝛽 = (1 + 𝑡)−1, with this substitution the above inequality reduces 

to  

{∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
𝑡𝑛𝑖

𝑘

𝑖=1

}

−1
𝑡⁄

{∑(𝜇𝐴
β(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
𝑘

𝑖=1

}

1
(1−𝛽)⁄

 

≤∑𝐷−𝑛𝑖

𝑘

𝑖=1

|𝑟𝛼|𝑛𝑖 

Using inequality of Bernard and Sharma [23], viz. 

 ∑ 𝐷−𝑡𝑛𝑖𝑘
𝑖=1 |𝑟𝛼|𝑛𝑖 ≤ 1 

Which gives; 

{∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
𝑡𝑛𝑖

𝑘

𝑖=1

}

1
𝑡⁄

≥ {∑(𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
𝑘

𝑖=1

}

1
(1−𝛽)⁄

 

or 

1

𝑡
𝑙𝑜𝑔𝐷 {∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) 𝐷

𝑡𝑛𝑖

𝑘

𝑖=1

} ≥
1

1 − 𝛽
𝑙𝑜𝑔𝐷 {∑(𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
𝑘

𝑖=1

} 

Hence      

𝐿(𝑡) ≥
1

1 − 𝛽
𝑙𝑜𝑔𝐷 {∑(𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
𝑘

𝑖=1

}      (4.2.6) 

The quantity 

1

1 − 𝛽
𝑙𝑜𝑔𝐷 {∑(𝜇𝐴

𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
𝑘

𝑖=1

} 

is similar to fuzzy entropy corresponding to Renyi’s entropy of order 𝛽 [84]. 

It can be easily verified that the quantity in (4.2.4) hold if and only if; 
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𝑛𝑖 = −𝛽 𝑙𝑜𝑔𝐷 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) + 𝑙𝑜𝑔𝐷 {∑(𝜇𝐴
𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
𝑘

𝑖=1

} 

Particular Cases:  

a) For 𝑡 = 0 𝑎𝑛𝑑𝛽 = 1, the inequality (4.2.4) reduces to the  fuzzy inequality corresponding 

to the Bernard and Sharma [24]. 

𝑛 ≥∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

𝑙𝑜𝑔𝐷 [
[|𝑟𝛼|𝑛𝑖]

∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

]

1−𝛽

 

b) For noiseless channel,|𝑟𝛼|𝑛𝑖−1∀𝑖, the inequality (4.2.4) reduces to the fuzzy inequality 

corresponding to the Campbell [28]. 

  𝐿(𝑡) ≥ 𝐻𝛽(𝐴), 

where𝐻𝛽(𝐴) is the fuzzy entropy corresponding to the Renyi’s entropy of order 𝛽. 

c) If the channel is noiseless and 𝑡 = 0, 𝛽 = 1, then the inequality reduces the fuzzy 

entropy corresponding to the well known Shannon’s [87] inequality 𝑛 ≥ 𝐻(𝐴), where 

𝐻(𝐴) is the fuzzy entropy corresponding to the Shannon’s entropy. 

Theorem 4.2.2: Let an 𝛼-prompt code encode the K messages 𝑆1, 𝑆2, … , 𝑆𝑘 into a code alphabet 

of D symbols and let the length of the corresponding encoded messages 𝑆𝑖be𝑛𝑖. Then the code 

length of order𝑡,𝐿(𝑡) shall satisfy the inequality. 

𝐿(𝑡) ≥
1

1 − 𝛽
𝑙𝑜𝑔𝐷 {∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵

𝛽−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))
𝛽−1

) [|𝑟𝛼|𝑛𝑖]
1−𝛽

𝑘

𝑖=1

}           (4.2.7) 

With equality if and only if; 

𝑛𝑖 = − 𝑙𝑜𝑔(|𝑟𝛼|𝑛𝑖)
−𝛽
(𝜇𝐵

𝛽(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
) 

+ 𝑙𝑜𝑔𝐷∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

(𝜇𝐵
𝛽−1(𝑥𝑖)  + (1 − 𝜇𝐵(𝑥𝑖))

𝛽−1
) [|𝑟𝛼|𝑛𝑖]

1−𝛽
 

where 𝐿(𝑡) =  
1

𝑡
𝑙𝑜𝑔𝐷 ∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘
𝑖=1 𝐷𝑡𝑛𝑖 . 
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Proof: In the Holder’s inequality 

[∑𝑥𝑖
𝑝

𝑘

𝑖=1

]

1
𝑝⁄

[∑𝑦𝑖
𝑞

𝑘

𝑖=1

]

1
𝑞⁄

≤∑𝑥𝑖𝑦𝑖

𝑘

𝑖=1

 

With the equality if and only if.  

𝑥𝑖
𝑝 = 𝑐𝑦𝑖

𝑞 ,where c is a positive number, 1 𝑝⁄ + 1 𝑞⁄ = 1 and 𝑝 < 1. We note that direction of 

Holder’s inequality is the reverse of the usual one as 𝑝 < 1 (Beckenbach and Bellman [21]). 

Substituting. 

𝑝 = −𝑡, 𝑞 = 𝑡𝛽, 𝑥𝑖 = (𝜇𝐴

−1

𝑡 (𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
−1

𝑡 )𝐷−𝑛𝑖 

and 𝑦𝑖 = (𝜇𝐴

1

𝑡𝛽(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
1

𝑡𝛽)(𝜇𝐵
−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

−1
) |𝑟𝛼|𝑛𝑖 , 

We get; 

(∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
𝑡𝑛𝑖

𝑘

𝑖=1

)

−1

𝑡

 

(∑{(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵
−𝑡𝛽(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

−𝑡𝛽
) |𝑟𝛼|𝑛𝑖

𝑡𝛽
}

𝑘

𝑖=1

)

1

𝑡𝛽

 

≤∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵
−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

−1
)

𝑛

𝑖=1

|𝑟𝛼|𝑛𝑖𝐷
−𝑛𝑖 

Moreover, 1 𝑝⁄ + 1 𝑞⁄ = 1,⇒ 𝛽 = (1 + 𝑡)−1, with this substitution the above inequality reduces 

to; 

(∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
𝑡𝑛𝑖

𝑘

𝑖=1

)

−1

𝑡

(∑{(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵
𝛽−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

𝛽−1
) (|𝑟𝛼|𝑛𝑖)

1−𝛽
}

𝑘

𝑖=1

)

1

1−𝛽

 

≤∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵
−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

−1
)

𝑛

𝑖=1

|𝑟𝛼|𝑛𝑖𝐷
−𝑛𝑖 
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this gives       (∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
𝑡𝑛𝑖𝑘

𝑖=1 )

1

𝑡
≥    

(∑{(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵
𝛽−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

𝛽−1
) (|𝑟𝛼|𝑛𝑖)

1−𝛽
}

𝑘

𝑖=1

)

1

1−𝛽

 

or 

1

𝑡
𝑙𝑜𝑔𝐷 (∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷

𝑡𝑛𝑖

𝑘

𝑖=1

)

≥
1

1 − 𝛽
𝑙𝑜𝑔𝐷 (∑{(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵

𝛽−1(𝑥𝑖)

𝑘

𝑖=1

+ (1 − 𝜇𝐵(𝑥𝑖))
𝛽−1

) (|𝑟𝛼|𝑛𝑖)
1−𝛽

}) 

Hence, 

𝐿(𝑡) ≥  
1

1 − 𝛽
𝑙𝑜𝑔𝐷 (∑{(𝜇𝐴(x𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵

𝛽−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))
𝛽−1

) (|𝑟𝛼|𝑛𝑖)
1−𝛽

}

𝑘

𝑖=1

) 

The quantity;  

1

1 − 𝛽
𝑙𝑜𝑔𝐷 (∑{(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) (𝜇𝐵

𝛽−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))
𝛽−1

) (|𝑟𝛼|𝑛𝑖)
1−𝛽

}

𝑘

𝑖=1

) 

is equivalent to fuzzy inaccuracy corresponding to Nath’s inaccuracy [77] of order 𝛽. 

Particular Cases: 

For 𝑡 = 0 𝑎𝑛𝑑𝛽 → 1, the inequality (4.2.7) reduces to;  

�̅� ≥∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

𝑙𝑜𝑔𝐷 (
|𝑟𝛼|𝑛𝑖

(𝜇𝐵(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖)))
) (4.2.8) 

 For noiseless channel, (|𝑟𝛼|𝑛𝑖) = 1; ∀𝑖, the inequality (4.2.8) reduces to;  

�̅� ≥ ∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

𝑙𝑜𝑔𝐷 (𝜇𝐵(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))) 
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   =  𝐻(𝜇𝐴(𝑥𝑖), (𝑥𝑖)) (4.2.9). 

Where𝐻(𝜇𝐴(𝑥𝑖), (𝑥𝑖))  is a fuzzy measure of inaccuracy corresponding to Kerridge [62] measure 

of inaccuracy. 

a) When 𝜇𝐴(𝑥𝑖) = 𝜇𝐵(𝑥𝑖), then the R.H.S. of (4.2.9) reduces to the fuzzy inequality 

corresponding to the Shannon [87] measure of inaccuracy. 

For noiseless channel (|𝑟𝛼|𝑛𝑖) = 1; ∀𝑖, the inequality (4.2.7) reduces to fuzzy inequality 

corresponding to Autar and Soni [8].                                                                                                          

𝐿(𝑡) ≥ 𝐻𝛽(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))                                                                                    (4.2.10) 

b) Where 𝐻𝛽(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) is fuzzy measure of inaccuracy corresponding to Nath [77] of 

order𝛽. 

4.3  𝜷- measure of Uncertainty Involving Utilities:- 

Consider a fuzzy function corresponding to Gill et.al [42] as;  

𝐻𝑘
𝛽(𝐴, 𝑈) =

∑ (𝜇𝐴(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1 [

𝑢𝑖

∑ 𝑢𝑖(𝜇𝐴(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖)))
𝑖

𝑘
𝑖=1

]

1−𝛽

−1

1−21−𝛽
; 

                                                     𝛽 > 0(≠ 1)                                                                                        (4.3.1) 

Which is 𝛽-measure of uncertainty involving utilities. 

Remark: When the utility aspect of the scheme is considered (i.e. 𝑢𝑖 = 1, 𝑖 = 1, 2, 3, … , 𝑘 as 

well as 𝛽 → 1, the measure (4.3.1) becomes fuzzy information measure corresponding to 

Shannon’s [87] measure of information. 

Further, define a parametric mean length credited with utilities and membership function 𝜇𝐴(𝑥𝑖)  

as; 

𝐿(𝑈𝛽) =
[∑ 𝑢𝑖

𝑘
𝑖=1 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷

(𝛽−1−1)
𝑛𝑖]

𝛽

− 1

1 − 21−𝛽
(4.3.2) 

Where 𝛽 > 0 (≠ 1), 𝜇𝐴(𝑥𝑖) ≥ 0, 𝑖 = 1, 2, … , 𝑘 and ∑ 𝜇𝐴(𝑥𝑖) = 1
𝑘
𝑖=1  which is a generalization 

fuzzy mean length corresponding to Campbell [28], and for 𝛽 → 1, it reduces to fuzzy mean 
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code word length corresponding to Shannon [87] measure and gave a characterization of 

𝐻𝑈𝐾
𝛽(𝐴; 𝑈) under the condition.  

∑𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇A(𝑥𝑖)))𝐷
−𝑛𝑖 ≤

𝑘

𝑖=1

𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))       (4.3.3) 

Theorem 4.3.1: Suppose 𝑛1, 𝑛2, … , 𝑛𝑘 are the lengths of uniquely decodable code words 

satisfying (4.3.3), then the average code length satisfies;   

 𝐿(𝑈𝛽) ≥ 𝐻𝑘
𝛽(𝐴, 𝑈)                                                                                                       (4.3.4) 

With the equality in (4.3.4) if and only if;  

𝑛𝑖 = 𝛽 𝑙𝑜𝑔𝐷 [
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

] + 

𝑙𝑜𝑔𝐷 [∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

1−𝛽
𝑘

𝑖=1

]       (4.3.5) 

Proof: In the Holder’s inequality (Beckenback et.al [21]).               

  [∑ 𝑥𝑖
𝑝𝑘

𝑖=1 ]
1
𝑝⁄ [∑ 𝑦𝑖

𝑞𝑘
𝑖=1 ]

1
𝑞⁄ ≤ ∑ 𝑥𝑖𝑦𝑖

𝑘
𝑖=1                                                                    (4.3.6) 

For all 𝑥𝑖 > 0, 𝑦𝑖 > 0, 𝑖 = 1, 2, … , 𝑘𝑎𝑛𝑑𝑝 < 1,𝑤ℎ𝑒𝑟𝑒
1

𝑝
+

1

𝑞
= 1 with the equality in (4.3.6) if 

and only if there exists a positive number c such that; 

                     𝑥𝑖
𝑝 = 𝑐𝑦𝑖

𝑞                                                                                                                       (4.3.7) 

We substitute  

𝑥𝑖 = (𝜇𝐵

𝛽

𝛽−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))
𝛽

𝛽−1𝐷−𝑛𝑖) ; 

𝑦𝑖= (𝜇𝐵
(1−𝛽)−1(𝑥𝑖) + (1 − 𝜇𝐵(𝑥𝑖))

(1−𝛽)−1

𝐷−𝑛𝑖)(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

) ; ∀𝑖 

 𝑝 = (1 − 𝛽−1)𝑎𝑛𝑑𝑞 = 1 − 𝛽, we get; 
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[∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))) 𝐷
(𝛽−1−1)𝑛𝑖

𝑘

𝑖=1

]

𝛽

𝛽−1

 

[∑(𝜇𝐴(𝑥𝑖) +  (1 −   𝜇𝐴(𝑥i)))

𝑘

𝑖=1

(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

1−𝛽

]

(1−𝛽)−1

 

≤∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

𝑘

𝑖=1

𝐷−𝑛𝑖 

Using the inequality (4.3.3), the above inequality can be written as; 

[∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
(𝛽−1−1)𝑛𝑖

𝑘

𝑖=1

]

𝛽

 

≥ [∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))

𝑘

𝑖=1

(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

1−𝛽

] 

[∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
(𝛽−1−1)𝑛𝑖𝑘

𝑖=1 ]
𝛽

− 1

1 − 21−𝛽

≥

[∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1 (

𝑢𝑖

∑ 𝑢𝑖(𝜇𝐴(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

1−𝛽

] − 1

1 − 21−𝛽
 

Hence,       𝐿(𝑈𝛽) ≥ 𝐻𝑘
𝛽(𝐴, 𝑈). 

Theorem 4.3.2.: Let  𝑛1, 𝑛2, … , 𝑛𝑘 are the lengths of uniquely decodable code words, then the 

average code length 𝐿(𝑈𝛽) can be made to satisfy the inequality;  

 𝐻𝑘
𝛽(𝐴, 𝑈) ≤ 𝐿(𝑈𝛽) ≤ 𝐷.𝐻𝑘

𝛽(𝐴, 𝑈) +
𝐷−1

1−21−𝛽
 (4.3.8) 

Proof: Suppose  

  𝑛𝑖 = 𝛽 𝑙𝑜𝑔𝐷 [
𝑢𝑖

∑ 𝑢𝑖(𝜇𝐴(𝑥𝑖)+(1−𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

] + 
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𝑙𝑜𝑔𝐷 [∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

1−𝛽
𝑘

𝑖=1

]            (4.3.9) 

Clearly, �̃�𝑖 and �̃�𝑖+1 satisfy the inequality in Holder’s inequality. Moreover �̃�𝑖 satisfy the 

inequality (4.3.3). 

          Let 𝑛𝑖 be the (unique) integer between �̃�𝑖 and�̃�𝑖+1. Since𝛽 > 0 (≠ 1), we have; 

 

[∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
(𝛽−1−1)�̃�𝑖

𝑘

𝑖=1

]

𝛽

≤ [∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
(𝛽−1−1)𝑛i

𝑘

𝑖=1

]

𝛽

 

  < 𝐷 [∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
(𝛽−1−1)�̃�𝑖𝑘

𝑖=1 ]
𝛽

                                 (4.3.10) 

We know  

∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))
𝑘
𝑖=1

)

1−𝛽
𝑘

𝑖=1

 

  = [∑ (𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))𝐷
(𝛽−1−1)𝑛𝑖𝑘

𝑖=1 ]
𝛽

 

Hence, (4.3.10) can be expressed as;  

∑(𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)))(
𝑢𝑖

∑ 𝑢𝑖 (𝜇𝐴(𝑥𝑖) + (1 − μA(xi)))
𝑘
𝑖=1

)

1−β
𝑘

𝑖=1

≤ [∑(μA(xi) + (1 − μA(xi)))D
(β−1−1)ni

k

i=1

]

β

 

< 𝐷 [∑(μA(xi) + (1 − μA(xi)))

k

i=1

(
ui

∑ ui (μA(xi) + (1 − μA(xi)))
k
i=1

)

1−β

] 

Thus,                  Hk
β(A, U) ≤ L(Uβ) ≤ D.Hk

β(A, U) +
D−1

1−21−β
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4.4   Fuzzy Directed Divergence Measures and their Bounds:- 

Classical information theoretic divergence measures have witnessed the need to study them. 

Kullback-Leibler [66] first studied the measure of divergence. Jaynes [54] introduced the 

Principle of Maximum Entropy (PME). He emphasized that “choose a distribution which is 

consistent to with the information available and is uniform as possible”. For implementation of 

this consideration another advance was needed in the form of a measure of nearness of two 

probability distribution and it was already provided by Kullback-Leibler in the form of: 

𝐼(𝑃; 𝑄) =∑𝑝𝑖

𝑛

𝑖=1

log
𝑝𝑖
𝑞𝑖
      (4.4.1) 

If the distribution  𝑄 is uniform. This becomes; 

𝐼(𝑃; 𝑄) =∑𝑝𝑖

𝑛

𝑖=1

log 𝑝𝑖 + log 𝑛                          (4.4.2) 

Where, 𝑃, 𝑄 ∈ 𝑇𝑛 and  

𝑇𝑛 = {𝑃 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑝1 > 0,∑𝑝𝑖 = 1

𝑛

𝑖=1

} ;  ∀𝑖 = 1,2, … , 𝑛, 𝑛 ≥ 2. 

Since Shannon’s Entropy 

  𝐻(𝑃) = ∑ 𝑝𝑖
𝑛
𝑖=1 log 𝑝𝑖                                                                                                (4.4.3) 

was already available in the literature , so maximizing 𝐻 is equivalent to minimizing  𝐼(𝑃; 𝑄). 

This is one of the interpretations of PME. 

Analyzing (4.4.1) in the following way: 

𝐼(𝑃; 𝑄) =∑(𝑝𝑖 log 𝑝𝑖 − 𝑝𝑖 log 𝑞𝑖)

𝑛

𝑖=1

(4.4.4) 

The second term present in (4.4.4) is called the Kerridge Inaccuracy which is;  

 = −∑ 𝑝𝑖
𝑛
𝑖=1 log 𝑞𝑖                                                                                                       (4.4.5) 

Considering Kerridge [62] inaccuracy, we can interpret Kullback-Leibler [66] measure of 

divergence.  
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 𝐼(𝑃; 𝑄) = ∑ 𝑝𝑖
𝑛
𝑖=1 log

𝑝𝑖

𝑞𝑖
, as i.e 

  =difference of Kerridge inaccuracy and Shannon’s entropy 

  = ∑ {−𝑝𝑖 log 𝑞𝑖 −(−𝑝𝑖 log 𝑝𝑖)}
𝑛
𝑖=1                                                                        (4.4.6) 

Since 𝐼(𝑃; 𝑄) provides a measure of nearness of 𝑃 𝑓𝑟𝑜𝑚 𝑄. Take the case of Reliability Theory, 

here we can consider how much the information is reliable . Because the distribution is the 

revised distribution /strategies to achieve the goal/ objective /target with certain constraints, so 

optimization theory takes the birth, which is the need of every one. 

Hence, whenever we come across divergence measures, we are interested to minimize the 

divergence to make the information available, reliable. Every walk of life is governed with the 

reliability of information under certain constraints.   

Analogous to information theoretic approach, when we arrive at fuzzy sets or fuzziness, 

we need to study fuzzy divergence measures. As presently, the vast applications of fuzzy 

information in life and social sciences, Interpretational communication, Engineering , Fuzzy 

Aircraft Control, Medicine, Management and Decision making, Computer Sciences, Pattern 

Recognition and Clustering. Hence the wide applications motivates us to consider Divergence 

Measures for fuzzy set theory to minimize or maximize or optimize the fuzziness. 

Let 𝐴 = {𝑥𝑖 ∶ 𝜇𝐴(𝑥𝑖), ∀𝑖 = 1,2, … , 𝑛} 𝑎𝑛𝑑 𝐵 = {𝑥𝑖 ∶ 𝜇𝐵(𝑥𝑖), ∀𝑖 = 1,2, … , 𝑛},where 

0 < 𝜇𝐴(𝑥𝑖) < 1and 0 < 𝜇𝐵(𝑥𝑖) < 1, be two fuzzy sets. The fuzzy divergence corresponding to 

Kullback-Leibler [66] has been defined by Bhandari and Pal [26] as : 

𝐷(𝐴 ∥ 𝐵) =∑[𝜇𝐴(𝑥𝑖) log
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
+ {1 − 𝜇𝐴(𝑥𝑖)} log

1 − 𝜇𝐴(𝑥𝑖)

1 − 𝜇𝐵(𝑥𝑖)
]

𝑛

𝑖=1

                 (4.4.7) 

The fundamental properties of fuzzy divergence are as follows: 

1. Non-negativity, i.e. 𝐷(𝐴 ∥ 𝐵) ≥ 0. 

2. 𝐷(𝐴 ∥ 𝐵) = 0, 𝑖𝑓 𝐴 = 𝐵. 

3. 𝐷(𝐴 ∥ 𝐵) is a convex function in (0, 1). 

4. 𝐷(𝐴 ∥ 𝐵) should not change, when 𝜇𝐴(𝑥𝑖) is changed to 1 − 𝜇𝐴(𝑥𝑖) and  𝜇𝐵(𝑥𝑖) to  

1 − 𝜇𝐵(𝑥𝑖). 
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Bhandari and Pal [26] has established some properties such as: 

(𝒂) 𝐷(𝐴 ∥ 𝐵) = 𝐼(𝐴 ∥ 𝐵) + 𝐼(𝐵 ∥ 𝐴), where 𝐼(𝐴 ∥ 𝐵) = [𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)] log
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
. 

(𝒃) 𝐷(𝐴 ∪ 𝐵 ∥ 𝐴 ∩ 𝐵) = 𝐷(𝐴 ∥ 𝐵). 

(𝒄) 𝐷(𝐴 ∪ 𝐵 ∥ 𝐶) ≤ 𝐷(𝐴 ∥ 𝐶) + 𝐷(𝐵 ∥ 𝐶). 

(𝒅) 𝐷(𝐴 ∥ 𝐵) ≥ 𝐷(𝐴 ∪ 𝐵 ∥ 𝐴). 

(𝒆) 𝐷(𝐴 ∥ 𝐵)is maximum if 𝐵 is the farthest non-fuzzy set of 𝐴.  

Havrda-Charvat [50] has given the measure of directed divergence as; 

𝐷𝛼 = (𝑃;𝑄) =
1

𝛼(𝛼 − 1)
(∑𝑝𝑖

𝛼𝑞𝑖
1−𝛼 − 1

𝑛

𝑖=1

)                                                      (4.4.8) 

Corresponding to (4.4.8), the average code word length can be taken as  

𝐿𝛼 = (𝑃;𝑄) =
1

𝛼(𝛼 − 1)
(∑𝑝𝑖𝑞𝑖𝐷

(𝛼−1)𝑛𝑖 − 1

𝑛

𝑖=1

)               (4.4.9) 

Corresponding to (4.4.8), the fuzzy measure of directed divergence between two fuzzy sets 

𝜇𝐴(𝑥𝑖) and 𝜇𝐵(𝑥𝑖) can taken as; 

𝐷𝛼 = (𝜇𝐴(𝑥𝑖); 𝜇𝐵(𝑥𝑖)) 

=
1

𝛼(𝛼 − 1)
(∑{(𝜇𝐴(𝑥𝑖))

𝛼
+ (1 − 𝜇𝐴(𝑥𝑖))

𝛼
(𝜇𝐵(𝑥𝑖))

1−𝛼
+ (1 − 𝜇𝐵(𝑥𝑖))

1−𝛼
} − 1

𝑛

𝑖=1

) 

and its corresponding fuzzy average code word length as;  

𝐿𝛼 = (𝜇𝐴(𝑥𝑖); 𝜇𝐵(𝑥𝑖)) 

=
1

𝛼(𝛼 − 1)
(∑{(𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷(𝛼−1)𝑛𝑖 − 1

𝑛

𝑖=1

) 

Remark: 

1. As 𝛼 → 1, (4.4.8) tends to (4.4.1). 

2.  As 𝛼 → 1and 𝑞𝑖 = 1, (4.4.8) tends to (4.4.3). 



82 
 

3.  As 𝛼 → 1 (4.4.9) tends to average codeword length given as; 

𝐿 =∑𝑝𝑖𝑞𝑖𝑛𝑖

𝑛

𝑖=1

                                                                                                         (4.4.10) 

4.  As 𝛼 → 1and 𝑞𝑖 = 1, (4.4.9) tends to average codeword length corresponding to Shannon’s 

entropy given as;  

𝐿 =∑𝑝𝑖𝑛𝑖

𝑛

𝑖=1

                                                                                                              (4.4.11) 

4.5 Noiseless directed divergence Coding Theorems:- 

Theorem 4.5.1: For all uniquely decipherable codes 

𝐷𝛼 ≤ 𝐿𝛼                                                                                                                      (4.5. .1) 

where 

𝐿𝛼 = (𝜇𝐴(𝑥𝑖); 𝜇𝐵(𝑥𝑖)) 

=
1

(𝛼 − 1)
(∑{(𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷(𝛼−1)𝑛𝑖 − 1

𝑛

𝑖=1

) 

Proof:-By Holders inequality, we have;  

∑𝑥𝑖𝑦𝑖 ≥ (∑𝑥𝑖
𝑝

𝑛

𝑖=1

)

1

𝑝

(∑𝑦𝑖
𝑞

𝑛

𝑖=1

)

1

𝑞𝑛

𝑖=1

;       0 < 𝑝 < 1, 𝑞 < 0 𝑜𝑟 0 < 𝑞 < 1, 𝑝 < 0        (4.5.2) 

Set      𝑥𝑖 = [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
−1

𝑡 𝐷−𝑛𝑖 

  𝑦𝑖 = [𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))]
1

𝑡   𝑎𝑛𝑑 𝑝 = −𝑡 ⟹ 0 < 𝑝 < 1, 𝑞 =
𝑡

𝑡+1
⟹ 𝑞 < 0 

Thus equation (4.5.2) becomes;                                                                    

∑[{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}
−1

𝑡 𝐷−𝑛𝑖{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}
1

𝑡]

𝑛

𝑖=1

≥ [∑{{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}
−1

𝑡 𝐷−𝑛𝑖}
−𝑡𝑛

𝑖=1

]

−1

𝑡

[∑{{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}
1

𝑡}

𝑡

𝑡+1
𝑛

𝑖=1

]

𝑡+1

𝑡
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Using Kraft’s inequality, we have  

[∑{{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}
1

𝑡}

𝑡

𝑡+1
𝑛

𝑖=1

]

𝑡+1

𝑡

≤  [∑{{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}
−1

𝑡 𝐷−𝑛𝑖}
−𝑡𝑛

𝑖=1

]

−1

𝑡

 

or,        ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}]
𝑛
𝑖=1

1

𝑡   ≤   ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷
𝑛𝑖𝑡]𝑛

𝑖=

−1

𝑡  

or,        ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}]
𝑛
𝑖=1  ≤ ∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷

𝑛𝑖𝑡]𝑛
𝑖=              (4.5.3) 

dividing both sides by 𝑡, we get; 

∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}]
𝑛
𝑖=1

𝑡
≤
∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷

𝑛𝑖𝑡]𝑛
𝑖=

𝑡
 

Subtracting 𝑛 from both sides, we have  

∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))} − 1]
𝑛
𝑖=1

𝑡
≤
∑ [{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷

𝑛𝑖𝑡 − 1]𝑛
𝑖=

𝑡
 (4.5.4) 

Taking 𝛼 = 𝑡 + 1, 𝑡 = 𝛼 − 1 

and 

𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) = {(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)} , 

equation (4.5.4) becomes; 

∑ [{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)} − 1] ≤𝑛

𝑖=1

𝛼 − 1
 

∑ [{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1) − 1]𝑛

𝑖=1

𝛼 − 1
 

(4.5.5) 

Dividing both sides by𝛼, we get;                  



84 
 

∑ [{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)} − 1]𝑛

𝑖=1

𝛼(𝛼 − 1)
 

≤
∑ [{(𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1) − 1]𝑛

𝑖=1

𝛼(𝛼 − 1)
 

that is  𝐷𝛼 ≤ 𝐿𝛼  which proves the theorem. 

Theorem 4.5.2:- For all uniquely decipherable codes, 

𝐷𝛼,𝛽 ≤ 𝐿𝛼,𝛽                                                                                                                  (4.5.6) 

𝐿𝛼,𝛽

=
1

𝛽 − 𝛼
∑[

{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)

 − {(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛽 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)}𝐷𝑛𝑖(𝛽−1)

]

𝑛

𝑖=1

   (4.5.7)  

Where either 𝛼 ≥ 1, 𝛽 ≤ 1 𝑜𝑟 𝛼 ≤ 1, 𝛽 ≥ 1 

Proof:- Since from (4.5.5), we have;                                         

∑ [{(𝜇𝐴(𝑥𝑖)
𝛼+(1−𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛼
)}−1]𝑛

𝑖=1

𝛼−1
≤

                   
∑ [{(𝜇𝐴(𝑥𝑖)

𝛼+(1−𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)−1]𝑛

𝑖=1

𝛼−1
   (4.5.8) 

Multiplying both sides by (𝛼 − 1), we get;  

∑[{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)} − 1]

𝑛

𝑖=1

≤ 

∑ [{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1) − 1]𝑛

𝑖=1 (4.5.9) 

Changing 𝛼 𝑡𝑜 𝛽, (4.5.9) becomes;         

 ∑ [{(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)} − 1]𝑛

𝑖=1 ≤ 

∑[{(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)}𝐷𝑛𝑖(𝛽−1) − 1]

𝑛

𝑖=1

 

(4.5.10)  

Subtracting (4.5.10) from (4.5.9), and dividing both sides by (𝛽 − 𝛼), we have; 
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∑[{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}

𝑛

𝑖=1

− {(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)}] ≤ 

∑[
{(𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1) −

{(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)}𝐷𝑛𝑖(𝛽−1)

]

𝑛

𝑖=1

 

That is  𝐷𝛼,𝛽 ≤ 𝐿𝛼,𝛽 , which proves the theorem.  

Theorem 4.5.3:  

For all uniquely decipherable codes, 

𝐷𝛼,𝛽
′  ≤ 𝐿𝛼,𝛽

′          (4.5.11) 

where 𝐷𝛼,𝛽
′ =

1

𝛽−𝛼
log𝐷 [

{(𝜇𝐴(𝑥𝑖)
𝛼+(1−𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛼
)}

{(𝜇𝐴(𝑥𝑖)
𝛽+(1−𝜇𝐴(𝑥𝑖))

𝛽
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛽
)}
] (4.5.12) 

and 𝐿𝛼,𝛽
′ =

1

𝛽−𝛼
log𝐷 [

{(𝜇𝐴(𝑥𝑖)
𝛼+(1−𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)

{(𝜇𝐴(𝑥𝑖)
𝛽+(1−𝜇𝐴(𝑥𝑖))

𝛽
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛽
)}𝐷𝑛𝑖(𝛽−1)

] (4.5.13) 

To prove this theorem, we first prove the following lemma: 

Lemma 4.5.1: For all uniquely decipherable codes         

 log𝐷[∑ {(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝑛

𝑖=1 ] ≤ 

log𝐷 [∑{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)

𝑛

𝑖=1

] 

Proof of the Lemma: From (4.5.3) we have;  

∑[{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}]

𝑛

𝑖=1

 ≤ ∑[{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷
𝑛𝑖𝑡]

𝑛

𝑖=

 

Taking logarithm on both sides, we have;  

logD [∑[{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}]

𝑛

𝑖=1

] ≤ log𝐷 [∑[{𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖))}𝐷
𝑛𝑖𝑡]

𝑛

𝑖=

] 

Taking    𝛼 = 𝑡 + 1, 𝑡 = 𝛼 − 1 
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and 𝑓(𝜇𝐴(𝑥𝑖), 𝜇𝐵(𝑥𝑖)) = {(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}, 

we have           log𝐷[∑ {(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝑛

𝑖=1 ] 

 ≤ log𝐷 [∑{(𝜇𝐴(𝑥𝑖)
𝛼 + (1 − 𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)

𝑛

𝑖=1

] 

(4.5.14) 

Which proves the Lemma. 

Proof of the Theorem 4.5.3: Changing 𝛼 𝑡𝑜 𝛽 in (4.5.14), we get 

 log𝐷 [∑ {(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)}𝑛

𝑖=1 ] 

 ≤ log𝐷 [∑{(𝜇𝐴(𝑥𝑖)
𝛽 + (1 − 𝜇𝐴(𝑥𝑖))

𝛽
) (𝜇𝐵(𝑥𝑖)

𝛽 + (1 − 𝜇𝐵(𝑥𝑖))
𝛽
)}𝐷𝑛𝑖(𝛽−1)

𝑛

𝑖=1

] 

(4.5.15) 

subtracting (4.5.15) from (4.5.14), we have; 

log𝐷 [
∑ {(𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝑛

𝑖=1

∑ {(𝜇𝐴(𝑥𝑖)𝛽 + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
) (𝜇𝐵(𝑥𝑖)𝛼 + (1 − 𝜇𝐵(𝑥𝑖))

𝛽
)}𝑛

𝑖=1

] 

≤ log𝐷 [
∑ {(𝜇𝐴(𝑥𝑖)

𝛼 + (1 − 𝜇𝐴(𝑥𝑖))
𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼 + (1 − 𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)𝑛

𝑖=1

∑ {(𝜇𝐴(𝑥𝑖)𝛽 + (1 − 𝜇𝐴(𝑥𝑖))
𝛽
) (𝜇𝐵(𝑥𝑖)𝛽 + (1 − 𝜇𝐵(𝑥𝑖))

𝛽
)}𝐷𝑛𝑖(𝛽−1)𝑛

𝑖=1

] 

Dividing both sides by 𝛽 − 𝛼, we have;  

 
1

𝛽−𝛼
log𝐷 [

∑ {(𝜇𝐴(𝑥𝑖)
𝛼+(1−𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛼
)}𝑛

𝑖=1

∑ {(𝜇𝐴(𝑥𝑖)
𝛽+(1−𝜇𝐴(𝑥𝑖))

𝛽
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛽
)}𝑛

𝑖=1

] 

 ≤
1

𝛽−𝛼
log𝐷 [

∑ {(𝜇𝐴(𝑥𝑖)
𝛼+ (1−𝜇𝐴(𝑥𝑖))

𝛼
)(𝜇𝐵(𝑥𝑖)

𝛼+(1−𝜇𝐵(𝑥𝑖))
𝛼
)}𝐷𝑛𝑖(𝛼−1)𝑛

𝑖=1

∑ {(𝜇𝐴(𝑥𝑖)
𝛽+ (1−𝜇𝐴(𝑥𝑖))

𝛽
)(𝜇𝐵(𝑥𝑖)

𝛽+(1−𝜇𝐵(𝑥𝑖))
𝛽
)}𝐷𝑛𝑖(𝛽−1)𝑛

𝑖=1

] 

that is 𝐷𝛼,𝛽
′  ≤ 𝐿𝛼,𝛽

′ . Which proves the theorem. 
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he reliable engineering is one of the important engineering tasks in design and 

development of technical system. The conventional reliability of a system is defined as 

the probability that the system performs its assigned function properly during a 

predefined period under the condition that the system behavior can be fully characterized in the 

context of probability measures. The reliability of a system can be determined on the basis of 

tests or the acquisition of operational data. However, due to the uncertainty and inaccuracy of 

this data, the estimation of precise values of probabilities is very difficult in many systems. (e.g., 

power system, electrical machine, hardware etc., Hammer [46]. For this reason the fuzzy 

reliability concept has been introduced and formulated in the context of fuzzy measures. The 

basis for this approach is constituted by the fundamental works on fuzzy set theory of Zadeh 

[108], Dubois and Prade [34] and other. 

5.1  Introduction:- 

Let 𝑥 denote the set of integers between 0 and 10, both inclusive; that is, 

 𝑋 = {0, 1, 2, … . , 10}. 

Suppose that we are interested in a subset �̃� 𝑜𝑓 𝑋, where �̃� contains all of the “medium” integers 

of 𝑋. Thus  

�̃� = {𝑥; 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑥 𝑖𝑠 "𝑚𝑒𝑑𝑖𝑢𝑚"}. 

Clearly, to be able to specify �̃�, we must be precise as to what we mean by a medium integer; 

that is, we must be able to operationalize the term “medium integer.”Whereas most would agree 

that 5 is a medium integer, what is the disposition of an integer like 7? Is 7 a medium integer, or 

is it a large integer? Our uncertainty (or vagueness) about classifying 7 as a member of the subset 

�̃�makes �̃�a fuzzy set. The uncertainty of classification arises because the boundaries of �̃�are not 

sharp. The subset �̃�rejects the law of the excluded middle, because an integer like 7 can 

simultaneously belong to and not belong to �̃�. 

Membership functions were introduced as a way of dealing with the foregoing form of 

uncertainty of classification. Specifically, the number 𝜇�̃�(𝑥)which lies between 0 and 1, reflects 

T 
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an assessor’s view of the extent to which x ∈�̃�. As a function of x, 𝜇�̃�(𝑥)is known as the 

membership function of set �̃�. Clearly, the membership function is subjective, because it is 

specific to an individual assessor or a group of assessors. We also assume that for each x ∈X, the 

assessor is able to assign an 𝜇�̃�(𝑥), and that this can be done for all subsets of the type �̃�that are 

of interest. 

If 𝜇�̃�(𝑥)= 1 (or 0) for all x ∈X, then �̃�is the usual well defined sharp (or crisp) set. Thus 

the notion of fuzzy sets incorporates that of crisp sets as a special case, and because it is on crisp 

sets that probability measures have been defined. 

Let 𝜇𝐴(𝑇) be a membership function representing the component failure time with failure 

distribution  𝜋𝐴(𝑡) = 𝑃(𝜇𝐴(𝑇)  ≤ t) and survival function �̅�𝐴(𝑡) = 1 − 𝜋𝐴(𝑡). We shall assume 

that the component is functioning at 𝑡 = 0 and it will fail at some 𝑡 > 0, so that �̅�𝐴(0) = 1, and 

differentiability of 𝜋𝐴(𝑡)and shall let 𝑓(𝑡) = 𝜋/𝐴(𝑡) denote its failure density function. The 

conventional approach to characterize the failure distribution, 𝜋𝐴(𝑡), of a component is either by 

its hazard rate function 𝜆𝐴(𝑡) =
𝑓(𝑡)

𝜋𝐴(𝑡)
for 𝑡 < 𝑡∗, where 𝑡∗ = 𝑠𝑢𝑝{𝑡: �̅�𝐴(𝑡) > 0} or by the mean 

residual lifetime function.   

𝛿𝐴(𝑡) = 𝐸(𝜇𝐴(𝑇) − t/𝜇𝐴(𝑇) > 𝑡) = {
∫ �̅�𝐴(𝑥)𝑑(𝑥)
∞

𝑡

�̅�𝐴(𝑡)
, 𝑓𝑜𝑟 𝑡 < 𝑡∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

} 

It is known that each of the function �̅�𝐴, 𝜆𝜋𝐴  𝑎𝑛𝑑 𝛿𝜋𝐴 uniquely determines the other two. More 

specifically,  

�̅�𝐴(𝑡) = 𝑒𝑥𝑝(−∫𝜆𝜋𝐴(𝑢)𝑑𝑢,

𝑡

0

 𝑡 < 𝑡∗)         (5.1.1) 

�̅�𝐴(𝑡) =
𝛿𝜋𝐴(0)

𝛿𝜋𝐴(𝑡)
𝑒𝑥𝑝(−∫

1

𝛿𝜋𝐴(𝑥)
𝑑𝑥

𝑡

0

) , 𝑡 < 𝑡∗              (5.1.2) 

𝜆𝜋𝐴(𝑡) =
𝛿𝜋𝐴
/ (𝑡) + 1

𝛿𝜋𝐴(𝑡)
,    𝑡 < 𝑡∗                                                                                (5.1.3) 

And  𝛿𝜋𝐴(𝑡) = ∫ 𝑒𝑥𝑝(−∫ 𝜆(𝑢)𝑑𝑢
𝑦

𝑡
)𝑑𝑦

𝑡∗

𝑡
, 𝑡 < 𝑡∗                                                       (5.1.4) 
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𝜆𝜋𝐴(𝑡)and𝛿𝜋𝐴(𝑡) can be used in engineering to describe aging of a component.   

In section 5.2, a direct approach to measure fuzziness in the residual life time distribution 

is proposed. It should be emphasized that our goal in this section is not to come up with a new 

measure, but try to modify slightly the existing measures in such a way that can be used in the 

area of “Fuzzy Reliability”. The proposed measure gives an alternative characterization of a 

failure distribution. 

5.2    Residual Life Time Distribution:- 

The basic uncertainty measure for distribution 𝐹 is differential entropy 

𝐻(𝑓) = −∫ 𝑓(𝑥)

∞

0

𝑙𝑜𝑔𝑓(𝑥)𝑑𝑥 = −𝐸(𝑙𝑜𝑔𝑓(𝑇);                                               (5.2.1) 

The corresponding fuzzy measure of uncertainty for fuzzy set distribution 𝐴 is fuzzy differential 

entropy 

𝐻(𝐴) = −∫𝜇𝐴(𝑥)𝑙𝑜𝑔𝜇𝐴(𝑥)𝑑𝑃(𝑥)

𝒮

= −𝐸(𝑙𝑜𝑔𝜇𝐴(𝑇)) 

𝐻(𝑓)is commonly referred to as the Shannon information measure.[87], and  𝐻(𝐴) is  referred to 

as fuzzy information measure. Intuitively speaking  𝐻(𝐴) gives expected fuzzy measure of 

uncertainty contained in 𝑓(𝑡) about the predictability of an outcome of  𝜇𝐴(𝑇). 

Frequently, in survival analysis and in life testing one has information about the current 

age of component under consideration. In such cases, the age must be taken into account when 

measuring uncertainty. Obliviously, the measure 𝐻(𝑓) in (5.2.1) is unsuitable in such situations 

and must be modified to take the age into account. A more reliable approach which makes use of 

the age is given below. Given that a component has served up to time 𝑡, we propose to measure 

fuzzy uncertainty about 𝜇𝐴(𝑇), lifetime component, at time 𝑡, by  

𝐻(𝐴; 𝑡) = −∫
𝜇𝐴(𝑥)

�̅�𝐴(𝑡)

∞

𝑡

𝑙𝑜𝑔
𝜇𝐴(𝑥)

�̅�𝐴(𝑡)
𝑑 = −

1

�̅�𝐴(𝑡)
∫ 𝜇𝐴(𝑥) log 𝜇𝐴(𝑥)  dx + log �̅�𝐴(𝑡)

∞

𝑡

 

(5.2.2) 
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= 1 −
1

�̅�𝐴(𝑡)
∫ (𝑙𝑜𝑔𝜆𝜋𝐴(𝑥))

∞

𝑡

𝜇𝐴(𝑥)𝑑𝑥 

       A natural question to ask is whether 𝐻(𝐴;  𝑡), like  𝛿𝐴 and 𝜆𝐴 characterize �̅�(𝐴) and 

consequently 𝜋(𝐴), where 

𝜋(𝐴) = ∫𝜇𝐴(𝑇)𝑑𝑃(𝑥)

𝒮

= 𝐸[𝜇𝐴(𝑇)]. 

is c.d.f. of  fuzzy set 𝐴. We explore whether  𝐻(𝐴;  𝑡) characterizes 𝜋(𝐴), that is for  𝐻(𝐴;  𝑡) 

does there exists two distinct survival distributions 𝜋𝐴1(𝑥) and 𝜋𝐴2(𝑥) with corresponding fuzzy 

density function 𝜇𝐴1(𝑥) and 𝜇𝐴2(𝑥) respectively, such that for all 𝑡 ≥ 0,   

𝐻(𝜇𝐴1(𝑥), 𝑡) = 𝐻(𝜇𝐴2(𝑥), 𝑡). 

Using  (5.1.1) – (5.1.4), we are able to prove the following theorem. 

Theorem 5.2.1:Let 𝜇𝐴(𝑇) be a membership function corresponding to a fuzzy set 𝐴 with density 

function 𝑓 and with 𝐻(𝑓, 𝑡) < ∞, 𝑡 ≥ 0. Here 𝑓 is assumed to be continuous. Then 𝐻(𝑓, 𝑡) 

uniquely determines �̅�(𝐴). 

Proof: Suppose that 𝑓1 𝑎𝑛𝑑 𝑓2 are density functions with 

𝐻(𝑓1, 𝑡) = 𝐻(𝑓2, 𝑡), 𝑡 ≥ 0                                                                                         (5.2.3) 

And both are finite. Using the equation (5.2.2), we get 

𝐻/(𝑓𝑖, ; 𝑡) = 𝜆𝜋𝐴𝑖
(𝑡) log 𝜆𝐴𝑖(𝑡) −

𝜆𝜋𝐴𝑖
(𝑡)

�̅�𝐴𝑖(𝑡)
∫ (log𝜆𝜋𝐴𝑖

(𝑥))

∞

𝑡

𝑓𝑖(𝑥)𝑑𝑥 

= 𝜆𝜋𝐴𝑖
(𝑡) [

1

�̅�𝐴𝑖(𝑡)
∫ (log 𝜆𝜋𝐴𝑖

(𝑥)) 𝑓𝑖(𝑥)𝑑𝑥 + log 𝜆𝜋𝐴𝑖
(𝑡)

∞

𝑡

]                             (5.2.4) 

= 𝜆𝜋𝐴𝑖
(𝑡) [𝐻(𝑓𝑖, 𝑡) − 1 + log 𝜆𝜋𝐴𝑖

(𝑡)] ,     𝑖 = 1, 2. 

It follows from (5.2.3) that 𝐻/(𝑓1, ; 𝑡) = 𝐻
/(𝑓2, ; 𝑡) for all 𝑡 ≥ 0, and consequently applying the 

equation (5.2.4), we have  

𝜆𝜋𝐴1
(𝑡) [𝐻(𝑓1, 𝑡) − 1 + log 𝜆𝜋𝐴1

(𝑡)] = 𝜆𝜋𝐴2
(𝑡) [𝐻(𝑓2, 𝑡) − 1 + log 𝜆𝜋𝐴2

(𝑡)] ; 
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(5.2.5) 

for all 𝑡 ≥ 0. 

To prove that (5.2.3) implies �̅�𝐴1(𝑥) = �̅�𝐴2(𝑥) we need to show that  𝜆𝜋𝐴1
(𝑡) = 𝜆𝜋𝐴2

(𝑡) for all 

𝑡 ≥ 0. (Note that from the equation (5.1.1), the hazard function uniquely determines the survival 

function). Therefore, it is equivalent to show that (5.2.3), implies 𝜆𝜋𝐴1
(𝑡) = 𝜆𝜋𝐴2

(𝑡) for all 𝑡 ≥

0. Upon introducing 

𝐵 = {𝑡: 𝑡 ≥ 0, 𝑎𝑛𝑑 𝜆𝜋𝐴1
(𝑡) ≠ 𝜆𝜋𝐴2

(𝑡)},                                                             (5.2.6) 

We assume that set 𝐵 is not empty. Because, if the set 𝐵is empty, we will have 𝜆𝜋𝐴1
(𝑡) =

𝜆𝜋𝐴2
(𝑡)  for all 𝑡 ≥ 0. And the proof will be complete. If 𝑡0 ∈ 𝐵, then 𝜆𝜋𝐴1

(𝑡0) ≠ 𝜆𝜋𝐴2
(𝑡0). 

Without loss of generality suppose that 

𝜆𝜋𝐴1
(𝑡0) > 𝜆𝜋𝐴2

(𝑡0).                                                                                                 (5.2.7) 

From the equation (5.2.5), therefore we must have either 

𝐻(𝑓1, 𝑡0) − 1 + log 𝜆𝜋𝐴1
(𝑡0) < 𝐻(𝑓2, 𝑡0) − 1 + log 𝜆𝜋𝐴2

(𝑡0),                      (5.2.8) 

or 

𝐻(𝑓1, 𝑡0) − 1 + log 𝜆𝜋𝐴1
(𝑡0) = 𝐻(𝑓2, 𝑡0) − 1 + log 𝜆𝜋𝐴2

(𝑡0) = 0.     (5.2.9)  

 Suppose (5.2.8) holds. Using (5.2.3) the inequality (5.2.8) reduces to 𝜆𝜋𝐴1
(𝑡0) < 𝜆𝜋𝐴2

(𝑡0).If  

(5.2.9) holds, from the equation (5.2.3), it reduces to  𝜆𝜋𝐴1
(𝑡) = 𝜆𝜋𝐴2

(𝑡). Combining these two 

we get              

𝜆𝜋𝐴1
(𝑡) ≤ 𝜆𝜋𝐴2

(𝑡). 

 This contradicts the equation (5.2.7) and therefore the earlier assumption that 𝐵 is not empty. 

Consequently, 𝐵 is the empty set and this concludes the proof.  

       The following theorem gives a bound for 𝐻(𝑓, 𝑡) 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝛿𝜋𝐴(𝑡). 

Theorem 5.2.2: Suppose𝛿𝜋𝐴(𝑡) < ∞, then  

𝐻(𝑓, 𝑡) ≤ 1 + log 𝛿𝜋𝐴(𝑡)      (5.2.10) 
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Proof:For a given 𝑡, let𝑌𝑡
𝑑 =  𝑌/𝑌 > 𝑡, 𝑑 stands for distribution, and let 𝑔𝑡(𝑦) denote probability 

density function of fuzzy event with density function 𝑌𝑡. Then, 

𝑔𝑡(𝑦) =
𝑑

𝑑𝑦
𝑃(𝑌𝑡 ≤ 𝑦) =

𝑑

𝑑𝑦
𝑃(𝑌𝑡 ≤ 𝑦/ 𝑌 > 𝑡) = {

𝑑

𝑑𝑦

𝜋𝐴(𝑦)

�̅�𝐴(𝑡)
            𝑖𝑓     𝑦 > 𝑡

0                         𝑖𝑓    𝑦 ≤ 𝑡

 

= {

𝑓(𝑦)

�̅�𝐴(𝑡)
            𝑖𝑓 𝑦 > 𝑡

0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

It is clear that 𝐻(𝑓; 𝑡) = −∫ 𝑔𝑡(𝑥) log 𝑔𝑡(𝑥)
∞

𝑡
 𝑎𝑛𝑑 ∫ 𝑥𝑔𝑡(𝑥)𝑑𝑥 =

∞

𝑡
𝛿𝜋𝐴(𝑡) + 𝑡. 

Define, 𝑍𝑡 = 𝑌𝑡 − 𝑡, then the probability density function of fuzzy events with density function 

of 𝑍𝑡 is ℎ𝑡(𝜂), where ℎ𝑡(𝜂) = 𝑔𝑡(𝜂 + 𝑡) and 𝐸(𝑍𝑡) = 𝛿𝜋𝐴(𝑡). Now, the fuzzy entropy of  𝑍𝑡 is  

−∫ ℎ𝑡(𝜂) log ℎ𝑡(𝜂)𝑑𝜂

∞

0

 

= −∫ 𝑔𝑡(𝜂 + 𝑡) log 𝑔𝑡(𝜂 + 𝑡)𝑑𝜂

∞

0

 

= −∫ 𝑔𝑡(𝜂) log 𝑔𝑡(𝜂)𝑑𝜂 = 𝐻(𝑓; 𝑡).

∞

𝑡

 

Given  𝛿𝜋𝐴(𝑡), if the domain is limited to a half line, the maximum entropy occurs when we have 

an exponential with mean 𝛿𝜋𝐴(𝑡). Therefore  

𝐻(𝑓; 𝑡) = −∫ ℎ𝑡(𝜂) log ℎ𝑡(𝜂)𝑑𝜂

∞

0

≤ 1 + log (𝛿𝜋𝐴(𝑡)) . 

This completes the proof.  

From the theorem 5.2.2, it is clear that the fitness of 𝐻(𝑓; 𝑡) is guaranteed whenever  

𝛿𝜋𝐴(𝑡) < ∞.  

5.3   New Class of Fuzzy Life Distributions:- 
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In this section we propose two new class of fuzzy life distributions based on the notion of 

fuzziness of residual lifetime described in the previous section. We should mention that, almost 

all existing classes of life distributions in the literature are based on the notion of aging. 

Throughout this section decreasing means non-increasing and increasing means non-decreasing.   

Definition 5.3.1:�̅�𝐴 has decreasing (increasing) fuzzy uncertainty of residual life DFURL 

(IFURL) if 𝐻(𝑓; 𝑡) is decreasing (increasing) in 𝑡, 𝑡 ≥ 0. 

Intuitively speaking if the component has survival function that belongs to the class of 

DFURL, then as the component ages the conditional fuzzy probability density function becomes 

more informative. 

I. In definition 5.3.1,  �̅�𝐴 DFURL (IFURL) if,  

𝐿(𝑓 ;  𝑡) = −𝐻/(𝑓; 𝑡) ≥ 0(𝐿(𝑓; 𝑡) ≤ 0). 

that is, if we have non-negative (non-positive) local reduction of uncertainty, then  �̅�𝐴 has 

DFURL (IFURL); 

II. Suppose �̅�𝐴 is both DFURL and IFURL, then; 

 �̅�𝐴(𝑡) log 𝜆𝜋𝐴(𝑡) − ∫ 𝑓(𝑥) log 𝜆𝜋𝐴(𝑥)𝑑𝑥 = 0
∞

𝑡
. 

and therefore, 𝜆𝜋𝐴
/ (𝑡) = 0. That is, 𝜆𝜋𝐴(𝑡) = 𝜆and �̅�𝐴(𝑡) = 𝑒𝑥𝑝(−𝜆𝑡), where 𝜆 is some positive 

constant. This means that exponential distribution is the only distribution which is both DFURL 

and IFURL. It should be mentioned that many characterizations of exponential distribution have 

proposed in the literature. 

The following theorem gives the relationship between our class and increasing 

(decreasing) failure rate class of life distributions.  

Theorem 5.3.1: If  �̅�𝐴 is an increasing (decreasing) failure rate, IFR (DFR), then it is also a 

DFURL (IFURL).  (�̅�𝐴is said to be an IFR (DFR) if 𝜆𝜋𝐴(𝑡) is increasing (decreasing) in 𝑡).  

Proof: We will prove it for IFR. Similar arguments can be used for DFR.  

Suppose 𝜆�̅�𝐴 is an IFR, then for 𝑡 ≥ 0. 
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𝐻/(𝑓; 𝑡) = 𝜆𝜋𝐴(𝑡) log 𝜆𝜋𝐴(𝑡) −
𝜆𝜋𝐴(𝑡)

�̅�𝐴(𝑡)
∫(log 𝜆𝜋𝐴(𝑥))𝑓(𝑥)𝑑𝑥

∞

𝑡

. 

≤ 𝜆𝜋𝐴(𝑡) log 𝜆𝜋𝐴(𝑡) − 𝜆𝜋𝐴(𝑡) log 𝜆𝜋𝐴(𝑡) = 0                                   (5.3.1) 

From (5.3.1) we get that  𝐻(𝑓; 𝑡) is decreasing in 𝑡. That is, �̅�𝐴 DFURL. 

Another class of life distributions is the class of increasing failure rate in average (IFRA). 

The following example shows that there is no relationship between our class and this class of life 

distribution. (  �̅�𝐴is said to be IFRA if −
1

𝑡
log �̅�𝐴(𝑡) is increasing in 𝑡.    

Example 5.3.1: Define the survival function  

�̅�𝐴(𝑡) =

{
 

 
1,            𝑖𝑓 0 ≤ 𝑡 ≤ 2

𝑒2−𝑡,     𝑖𝑓 2 ≤ 𝑡 ≤ 3

𝑒−1,        𝑖𝑓  3 ≤ 𝑡 ≤ 4

𝑒7−2𝑡,   𝑖𝑓           𝑡 ≥ 4

 

It is easy to verify that �̅�𝐴 is not an IFRA. However, 

𝐻(𝑓; 𝑡) =  

{
 
 

 
 1 −

log 2

𝑒
,              𝑖𝑓      0 ≤ 𝑡 ≤ 2

1 −
log 2

𝑒
𝑒𝑡−2,      𝑖𝑓  2 ≤ 𝑡 ≤ 3    

1 − log 2,               𝑖𝑓            𝑡 ≥ 3

 

and𝐻(𝑓; 𝑡) is DFURL. This example shows that DFURL does not imply IFR. 

Now we present a lower bound on a DFURL (IFURL) hazard function with known 

𝐻(𝑓; 𝑡). 

Theorem 5.3.2: Let �̅�𝐴 be a DFURL (IFURL), then  

𝜆𝜋𝐴(𝑡) ≤ (≥)𝑒𝑥𝑝(1 − 𝐻(𝑓; 𝑡)),   𝑡 ≥ 0                                                               (5.3.2) 

Proof.We will prove it for DFURL. Similar arguments can be used for IFURL. Since �̅�𝐴  is 

DFURL, we get that;  

log 𝜆𝜋𝐴(𝑡) −
1

�̅�𝐴(𝑡)
∫(log 𝜆𝜋𝐴(𝑥))𝑓(𝑥)𝑑𝑥 ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0

∞

𝑡

 

That is,  
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log 𝜆𝜋𝐴(𝑡) + 𝐻(𝑓; 𝑡) ≤ 1,                                                               (5.3.3) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 

From (5.3.3), we get the result. 

Remark 5.3.1:Using (5.3.1), (5.1.1) and (5.1.3), if �̅�𝐴 is a DFURL (IFURL), then  

�̅�𝐴(𝑡) ≥ (≤) − 𝑒𝑥𝑝∫(1 − 𝐻(𝑓; 𝑥))𝑑𝑥.

𝑡

0

 

and 
𝛿𝜋𝐴
/ (𝑡)+1

𝛿𝜋𝐴
(𝑡)

≤ (≥)𝑒𝑥𝑝(1 − 𝐻(𝑓; 𝑡)) 

for all 𝑡 ≥ 0. Furthermore, in Theorem 5.3.2, the equality holds if �̅�𝐴 is an exponential.  

The following corollary gives an upper bound for 𝐻(𝑓; 𝑡) with known 𝑓(0). 

Corollary 5.3.1: Let  �̅�𝐴 be a DFURL (IFURL), then,  

𝐻(𝑓; 𝑡) ≤ (≥)1 − log 𝜆𝜋𝐴(0) = 1 − log 𝑓(0). 

5.4  A New Class of Generalized Fuzzy entropy Functions:- 

Probability Measure Of Fuzzy Events: In probability theory [101], an event is a member of 𝜎-

field ,𝛼, of subsets of a sample space Ω. A probability measure, 𝑃, is a normed measure over a 

measurable space (𝛼, Ω); that is,  𝑃 is a real valued function which assigns to every 𝐴 𝑖𝑛 𝛼; a 

probability measure𝑃(𝐴), such that (a) 𝑃(𝐴) ≥ 0𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ∈ 𝛼; (b) 𝑃(Ω) = 1; and (c) 𝑃 is 

countably additive, i.e., if {𝐴𝑖} is any collection of disjoint events then; 

𝑃 (⋃𝐴𝑖

∞

𝑖=1

) =∑𝑃(𝐴𝑖)

∞

𝑖=1

 

We shall assume that for simplicity that Ω is an Euclidean n-space 𝑅𝑛. Thus our probability 

space will be assumed to be a triplet ( 𝑅𝑛, 𝛼, 𝑃), 𝑤ℎ𝑒𝑟𝑒 𝛼 is 𝜎-field of Borel sets in  𝑅𝑛 and 𝑃 is 

a probability measure over  𝑅𝑛. A point in  𝑅𝑛 will be denoted by 𝑥. 

Let 𝐴 ∈ 𝛼, then the probability of 𝐴 can be expressed as; 

𝑃(𝐴) = ∫ 𝑑𝑃
𝐴

. 
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or equivalently,  

𝑃(𝐴) = ∫ 𝜇𝐴(𝑥)𝑑𝑃𝑅𝑛
= 𝐸(𝜇𝐴). 

Where  𝜇𝐴 denotes the characteristic function of 𝐴(𝜇𝐴(𝑥) = 0 𝑜𝑟 1). And 𝐸(𝜇𝐴) is the 

expectation of 𝜇𝐴.  

The equation 𝑃(𝐴) = ∫ 𝜇𝐴(𝑥)𝑑𝑃𝑅𝑛
= 𝐸(𝜇𝐴) equates the probability of an event 𝐴 with 

the expectation of the characteristic function of 𝐴. It is this equation that can readily be 

generalized to fuzzy events through the use of the concept of fuzzy set. 

Fuzzy Set and Membership Function:A fuzzy set 𝐴 𝑖𝑛 𝑅𝑛 is defined by a characteristic 

function 𝜇𝐴: 𝑅
𝑛 → [0, 1] which associates with each 𝑥 𝑖𝑛 𝑅𝑛 its “grade of membership,” 

𝜇𝐴(𝑥), 𝑖𝑛 𝐴. To distinguish between the characteristic function of a non-fuzzy set and the 

characteristic function of a fuzzy set, the latter will be referred to as a membership function. 

Definition: Let ( 𝑅𝑛, 𝛼, 𝑃)  be a probability space in which 𝛼 is a 𝜎-field of Borel sets in 

𝑅𝑛 𝑎𝑛𝑑 𝑃 is a probability measure over 𝑅𝑛. Then fuzzy event in 𝑅𝑛 is a fuzzy set 𝐴 in 𝑅𝑛 whose 

membership function, 𝜇𝐴: 𝑅
𝑛 → [0, 1] is Borel measurable. 

The probability of a fuzzy event 𝐴 is defined by the Lebesgue-Stieltjes integral 

𝑃(𝐴) = ∫𝜇𝐴(𝑥)𝑑𝑃

𝑅𝑛

= 𝐸(𝜇𝐴). 

Thus the probability of a fuzzy event is the expectation of its membership function. The 

existence of the Lebesgue-Stieltjes integral is insured by the assumption that 𝜇𝐴 is Borel 

measurable. 

Let 𝜇𝐴(𝑇) be a membership function with density function 𝑃(𝐴). Then corresponding to 

verma’s entropy of  order𝛼 𝑎𝑛𝑑 𝑡𝑦𝑝𝑒 𝛽, the fuzzy entropy is defined as; 

 

𝐻(𝛼, 𝛽) =
1

𝛽 − 𝛼
log∫(𝜇𝐴(𝑡)

𝛼+𝛽−1 + (1 − 𝜇𝐴(𝑡))
𝛼+𝛽−1)𝑑𝑃 

for  𝛽 − 1 < 𝛼 < 𝛽, 𝛽 ≥ 1     (5.4.1) 

and in discrete case;  
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𝐻(𝛼, 𝛽) =
1

𝛽 − 𝛼
log∑(𝜇𝐴(𝑡)

𝛼+𝛽−1 + (1 − 𝜇𝐴(𝑡))
𝛼+𝛽−1)

𝑛

𝑘=1

 

for  𝛽 − 1 < 𝛼 < 𝛽, 𝛽 ≥ 1                              (5.4.2) 

also  lim𝛼→1,𝛽=1𝐻(𝛼, 𝛽) = −∫[𝜇𝐴(𝑡) log 𝜇𝐴(𝑡) + (1 − 𝜇𝐴(𝑡)) log(1 − 𝜇𝐴(𝑡))]𝑑𝑡 

                                                                                                                                         (5.4.3) 

and in discrete case 

lim
𝛼→1,𝛽=1

𝐻(𝛼, 𝛽) = −∑[𝜇𝐴(𝑡𝑖) log 𝜇𝐴(𝑡𝑖) + (1 − 𝜇𝐴(𝑡𝑖)) log(1 − 𝜇𝐴(𝑡𝑖))]

𝑛

𝑖=1

 

                                                                                                                                         (5.4.4) 

This is measure of fuzzy entropy due to Luca and termini [33] in both the cases. 

As argued by Ebrahimi [37], if a unit is known to have survived up to an age t, then𝐻(𝑡) is no 

longer useful in measuring the uncertainty about the remaining life time of the unit. The idea is 

that a unit with great uncertainty is less reliable than a unit with low uncertainty. Accordingly, he 

introduced a measure of uncertainty known as residual entropy for the residual life time 

distribution. The residual entropy of a fuzzy set 𝐴 is defined as,  

𝐻(𝜇𝐴(𝑇), 𝑡) = −∫
𝜇𝐴(𝑥)

�̅�𝐴(𝑡𝑖)
log

𝜇𝐴(𝑥)

�̅�𝐴(𝑡𝑖)

∞

𝑡
   (5.4.5) 

𝐻 (𝜇𝐴(𝑡𝑗)) = −∑
𝜇𝐴(𝑡𝑘)

�̅�𝐴(𝑡𝑗)
log

𝜇𝐴(𝑡𝑘)

�̅�𝐴(𝑡𝑗 )

𝑛
𝑘=𝑗     (5.4.6) 

5.5 Generalized Fuzzy Residual Entropy Function:- 

Let 𝜇𝐴(𝑇) be a membership function representing the component failure time with failure 

distribution  𝜋𝐴(𝑡) = 𝑃(𝜇𝐴(𝑇)  ≤ t) and survival function �̅�𝐴(𝑡) = 1 − 𝜋𝐴(𝑡). We shall assume 

that the component is functioning at 𝑡 = 0 and it will fail at some 𝑡 > 0, so that �̅�𝐴(0) = 1, and 

differentiability of 𝜋𝐴(𝑡)and shall let 𝑓(𝜇𝐴(𝑡)) = 𝜋/𝐴(𝑡) denote its failure density function. We 

define fuzzy entropy corresponding to Verma’s entropy for residual life as, 
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𝐻(𝛼, 𝛽, 𝑡) =
1

𝛽 − 𝛼
log (

∫ 𝜇𝐴
𝛼+𝛽−1(𝑥)

∞

𝑡

�̅�𝐴
𝛼+𝛽−1(𝑡)

𝑑𝑥) , 𝛽 − 1 < 𝛼 < 𝛽, 𝛽 ≥ 1(5.5.1) 

or  (𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡) = log(∫ 𝜇𝐴
𝛼+𝛽−1(𝑥)𝑑𝑥

∞

𝑡
) − (𝛼 + 𝛽 − 1) log �̅�𝐴(𝑡) ; 

𝛽 − 1 < 𝛼 < 𝛽, 𝛽 ≥ 1.       (5.5.2) 

for  𝛽 = 1, 𝛼 → 1 (5.5.1) tends to (5.4.5) 

We now show that 𝐻(𝛼, 𝛽, 𝑡) uniquely determines �̅�𝐴(𝑡). 

Theorem 5.5.1: Let 𝜇𝐴(𝑇) be a random membership function having density function 𝑓 and 

distribution function 𝜋𝐴(𝑡) = 𝑃(𝜇𝐴(𝑇) ≤ 𝑡) and survival function 

�̅�𝐴(𝑡) = 1 − 𝜋𝐴(𝑡). 

 Assume 

𝐻(𝛼, 𝛽, 𝜇𝐴(𝑡)) < ∞, 𝑡 ≥ 0, 𝛽 − 1 < 𝛼 < 𝛽, 𝛽 ≥ 1 

and increasing in 𝑡, then 𝐻(𝛼, 𝛽, 𝑡) uniquely determines�̅�𝐴(𝑡).  

Proof: differentiating (5.5.2) with respect to 𝑡, we get, 

(𝛽 − 𝛼)𝐻/(𝛼, 𝛽, 𝑡) = (𝛼 + 𝛽 − 1)ℎ(𝑡) −
𝜋𝐴
𝛼+𝛽−1(𝑡)

∫ 𝜋𝐴
𝛼+𝛽−1(𝑥)𝑑𝑥

∞
𝑡

                              (5.5.3) 

Where ℎ(𝑡) =
𝜇𝐴(𝑡)

�̅�𝐴(𝑡)
 is the failure rate function. 

From (5.5.2) and (5.5.3), we have; 

ℎ𝛼+𝛽−1(𝑡) = (𝛼 + 𝛽 − 1)ℎ(𝑡)𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡))   (5.5.4) 

−(𝛽 − 𝛼)𝐻/(𝛼, 𝛽, 𝑡)𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡)) 

Hence for fixed 𝑡 > 0, ℎ(𝑡) is a solution of  

𝑔(𝑥) = (𝑥)𝛼+𝛽−1 − (𝛼 + 𝛽 − 1)𝑥 𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡)) (5.5.5) 

  +(𝛽 − 𝛼)𝐻/(𝛼, 𝛽, 𝑡) 𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡)) = 0 

Differentiating both sides with respect to 𝑥, we get; 

𝑔/(𝑥) = (𝛼 + 𝛽 − 1)(𝑥)𝛼+𝛽−2 − (𝛼 + 𝛽 − 1) 𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡))   (5.5.6) 
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For extreme value of 𝑔(𝑥), we have;  

𝑔/(𝑥) = 0, which gives 

𝑥 = 𝑒𝑥𝑝(
𝛽 − 𝛼

𝛼 + 𝛽 − 2
𝐻(𝛼, 𝛽, 𝑡)) = 𝑥𝑡 

also 

𝑔//(𝑥) = (𝛼 + 𝛽 − 1)(𝛼 + 𝛽 − 2)𝑥𝛼+𝛽−3 

Case I: Let 𝛼 + 𝛽 > 2, then  𝑔//(𝑥𝑡) > 0. thus  𝑔(𝑥) attains maximum at 𝑥𝑡. Also, 𝑔(0) > 0and 

𝑔(∞) = ∞. Further,  𝑔(𝑥) decreases for 0 < 𝑥 < 𝑥𝑡 and hence increases for 𝑥 > 𝑥𝑡. So, 

𝑥 = ℎ(𝑡) is the unique solution to 𝑔(𝑥) = 0.    

 Case II:If 𝛼 + 𝛽 < 2, then 𝑔//(𝑥𝑡) < 0. Thus 𝑔(𝑥)  attains maximum at 𝑥𝑡. Also, 

𝑔(0) > 0and 𝑔(∞) = −∞.  

Further it can be seen that 𝑔(𝑥) decreases for 𝑥 > 𝑥𝑡 and increases for  

0 < 𝑥 < 𝑥𝑡. So  𝑥 = ℎ(𝑡). 

is the unique solution to 𝑔(𝑥) = 0.    

Theorem 5.5.2: Let  𝜇𝐴(𝑇) be a random membership function having fuzzy residual entropy 

𝐻(𝛼, 𝛽, 𝑡) =
1

𝛽−𝛼
log(𝑘) −

2−𝛼−𝛽

𝛽−𝛼
log ℎ(𝑡)                                       (5.5.7) 

Where ℎ(𝑡) is the failure rate function of𝜇𝐴(𝑇), then 𝜇𝐴(𝑇) has  

I. Exponential distribution iff𝑘 =
1

𝛼+𝛽−1
. 

II. Pareto distribution iff𝑘 <
1

𝛼+𝛽−1
. 

III. Finite range distribution iff𝑘 >
1

𝛼+𝛽−1
. 

Proof (I): Let  𝜇𝐴(𝑇) has exponential distribution with distribution function 

𝜇𝐴(𝑡) =
1

𝜃
𝑒𝑥𝑝 (−

𝑡

𝜃
) , 𝑡 > 0, 𝜃 > 0 
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The reliability function is given by 

�̅�𝐴(𝑡) = 𝑒𝑥𝑝 (−
1

𝜃
). 

The failure rate function 

ℎ(𝑡) =
1

𝜃
. 

therefore 𝐻(𝛼, 𝛽, 𝑡) =
1

𝛽−𝛼
log (

∫ 𝜇𝛼+𝛽−1(𝑥)
∞
𝑡

�̅�𝛼+𝛽−1(𝑡)
𝑑𝑥) , 𝛽 − 1 < 𝛼 < 𝛽, 𝛽 ≥ 1 

or  𝐻(𝛼, 𝛽, 𝑡) =
1

𝛽−𝛼
log(𝑘) −

2−𝛼−𝛽

𝛽−𝛼
log ℎ(𝑡) 

Where  𝑘 =
1

𝛼+𝛽−1
, ℎ(𝑡) =

1

𝜃
. 

Thus (5.5.7) holds. 

Conversely, suppose 𝑘 =
1

𝛼+𝛽−1
, then 

1

𝛽 − 𝛼
log(𝑘) −

2 − 𝛼 − 𝛽

𝛽 − 𝛼
log ℎ(𝑡) =

1

𝛽 − 𝛼
log (

∫ 𝜇𝛼+𝛽−1(𝑥)
∞

𝑡

�̅�𝛼+𝛽−1(𝑡)
𝑑𝑥) 

or 

∫ 𝜇𝛼+𝛽−1(𝑥)

∞

𝑡

= �̅�𝛼+𝛽−1(𝑡) 𝑒𝑥𝑝(log(𝑘) − (2 − 𝛼 − 𝛽) log ℎ(𝑡)) 

Differentiating both sides with respect to 𝑡, we get; 

ℎ2(𝑡)

ℎ/(𝑡)
=

𝑘(2 − 𝛼 − 𝛽)

1 − 𝑘(𝛼 + 𝛽 − 1)
 

or 

ℎ−2(𝑡)ℎ/(𝑡) =
1 − 𝑘(𝛼 + 𝛽 − 1)

𝑘(2 − 𝛼 − 𝛽)
 

or 

ℎ(𝑡) = (
1−𝑘(𝛼+𝛽−1)

𝑘(2−𝛼−𝛽)
𝑡 +

1

ℎ(0)
)
−1

= (𝑎𝑡 + 𝑏)−1  (5.5.8) 
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where  𝑎 =
1−𝑘(𝛼+𝛽−1)

𝑘(2−𝛼−𝛽)
 𝑎𝑛𝑑 𝑏 =

1

ℎ(0)
. 

now  𝑘 =
1

𝛼+𝛽−1
, therefore 𝑎 = 0 

Cleary (5.5.8) is the failure rate function of the exponential distribution.  

(II) The density function of the Pareto distribution is given by; 

𝜇𝐴(𝑡) =
(𝑏)

1

𝑎

(𝑎𝑡 + 𝑏)1+
1

𝑎

, 𝑡 ≥ 0, 𝑎 > 0, 𝑏 > 0 

The reliability function is given by; 

�̅�𝐴(𝑡) =
(𝑏)

1

𝑎

(𝑎𝑡 + 𝑏)
1

𝑎

, 𝑡 ≥ 0, 𝑎 > 0, 𝑏 > 0 

The failure rate is given by; 

ℎ(𝑡) = (𝑎𝑡 + 𝑏)−1       (5.5.9) 

and 

𝐻(𝛼, 𝛽, 𝑡) =
1

𝛽 − 𝛼
log(𝑘) −

2 − 𝛼 − 𝛽

𝛽 − 𝛼
log ℎ(𝑡) 

Where 𝑘 =
1

(𝛼+𝛽−1)+𝛼(𝛼+𝛽−2)
and ℎ(𝑡) = (𝑎𝑡 + 𝑏)−1. Since 𝛼 + 𝛽 > 2,therefore 𝑘 <

1

𝛼+𝛽−1
, 

thus (5.5.7) holds. 

Conversely, suppose 𝑘 <
1

𝛼+𝛽−1
, proceeding as in (I), (5.5.8) gives 

ℎ(𝑡) = (
1−𝑘(𝛼+𝛽−1)

𝑘(2−𝛼−𝛽)
𝑡 +

1

ℎ(0)
)
−1

= (𝑎𝑡 + 𝑏)−1                                       (5.5.10) 

where  𝑎 =
1−𝑘(𝛼+𝛽−1)

𝑘(2−𝛼−𝛽)
 𝑎𝑛𝑑 𝑏 =

1

ℎ(0)
. 

since  𝑘 <
1

𝛼+𝛽−1
 𝑎𝑛𝑑 𝛼 + 𝛽 > 2, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑎 > 0. 

Clearly (5.5.10) is the failure rate function of the Pareto distribution given in (5.5.9) 
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(III)  The density function of the finite range distribution is given by;  

𝜇𝐴(𝑡) =
𝛽1
𝑣
(1 −

𝑡

𝑣
)
𝛽1−1

, 𝛽1 > 1, 0 ≤ 𝑡 ≤ 𝑣 < ∞ 

The reliability function is given by; 

�̅�𝐴(𝑡) = (1 −
𝑡

𝑣
)
𝛽1

, 𝛽1 > 1, 0 ≤ 𝑡 ≤ 𝑣 < ∞ 

The failure rate function is;  

ℎ(𝑡) =
𝛽1

𝑣
(1 −

𝑡

𝑣
)
−1

  (5.5.11) 

and 

𝐻(𝛼, 𝛽, 𝑡) =
1

𝛽 − 𝛼
log(𝑘) −

2 − 𝛼 − 𝛽

𝛽 − 𝛼
log ℎ(𝑡) 

Where  𝑘 =
𝛽1

(𝛼+𝛽−1)(𝛽1−1)+1
 and ℎ(𝑡) = (

𝛽1

𝑣
) (1 −

𝑡

𝑣
)
−1

 

Since  𝛼 + 𝛽 > 2, therefore 𝑘 >
1

𝛼+𝛽−1
. Proceeding as in (I), (5.5.8) gives 

ℎ(𝑡) = ℎ(0) (1 −
𝑘(𝛼+𝛽−1)

𝑘(𝛼+𝛽−2)
ℎ(0)𝑡)

−1

                                                          (5.5.12) 

which is the failure rate function of the distribution given in (5.5.11). 

5.6 New Class of Life Time Distribution:- 

The survival function has increasing (decreasing) fuzzy entropy corresponding to Verma’s 

entropy for residual life of order 𝛼 and type 𝛽, if 𝐻(𝛼, 𝛽, 𝑡) is increasing (decreasing) in 𝑡, 𝑡 > 0. 

This implies that �̅�𝐴(𝑡)IFERL (𝛼, 𝛽) , DFERL(𝛼, 𝛽) if  

𝐻/(𝛼, 𝛽, 𝑡) ≥ 0 

≤ 0 

Theorem 5.6.1:  If a distribution is IFERL(𝛼, 𝛽) as well as DFERL (𝛼, 𝛽) for some constant, 

then it must be exponential. 
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Proof: Since the membership function  𝜇𝐴(𝑇) is both IFERL (𝛼, 𝛽) and DFERL (𝛼, 𝛽), 

therefore; 

𝐻(𝛼, 𝛽, 𝑡) =constant. 

1

𝛽−𝛼
log (

∫ 𝜇𝛼+𝛽−1(𝑥)
∞
𝑡

�̅�𝛼+𝛽−1(𝑡)
𝑑𝑥) = 𝑘. 

or 

∫ 𝜇𝛼+𝛽−1(𝑥)𝑑𝑥

∞

𝑡

= �̅�𝛼+𝛽−1(𝑡)𝑒𝑥𝑝(𝑘(𝛽 − 𝛼)). 

Differentiating both sides with respect to 𝑡,we get; 

𝜇(𝑡)

ℎ(𝑡)
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

or 

ℎ(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

This means that the distribution is exponential. 

The next theorem gives upper (lower) bounds to the failure rate function. 

Theorem 5.6.2:  If  𝜇𝐴(𝑇) is IFERL (𝛼, 𝛽)DFERL (𝛼, 𝛽), then 

(1) (ℎ(𝑡) ≤ (≥)(𝛼 + 𝛽 − 1)
1

𝛼+𝛽−2) 𝑒𝑥𝑝 (−
𝛼−𝛽

𝛼+𝛽−2
𝐻(𝛼, 𝛽, 𝑡)) 

If 𝛼 + 𝛽 > 2. 

(2) ℎ(𝑡) ≥ (≤)(𝛼 + 𝛽 − 1)
1

𝛼+𝛽−2𝑒𝑥𝑝 (−
𝛼−𝛽

𝛼+𝛽−2
𝐻(𝛼, 𝛽, 𝑡)) 

If 𝛼 + 𝛽 < 2. 

Proof: If 𝜇𝐴(𝑇) is IFERL (𝛼, 𝛽), then 

𝐻/(𝛼, 𝛽, 𝑡) ≥ 0 

Which gives ℎ𝛼+𝛽−2(𝑡) ≤ (𝛼 + 𝛽 − 1)𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡)). 

Similarly,  if  𝜇𝐴(𝑇) is DFERL (𝛼, 𝛽), then 
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 ℎ𝛼+𝛽−2(𝑡) ≥ (𝛼 + 𝛽 − 1)𝑒𝑥𝑝((𝛽 − 𝛼)𝐻(𝛼, 𝛽, 𝑡)). 

Case I:  If  𝛼 + 𝛽 > 2 and 𝜇𝐴(𝑇) is IFERL(𝛼, 𝛽)(𝐃𝐅𝐄𝐑𝐋 (𝛼, 𝛽))(𝛼, 𝛽), then 

 ℎ(𝑡) ≤ (≥)(𝛼 + 𝛽 − 1)
1

𝛼+𝛽−2𝑒𝑥𝑝 (−
𝛼−𝛽

𝛼+𝛽−2
𝐻(𝛼, 𝛽, 𝑡))                                           (5.6.1) 

CaseII:   If  𝛼 + 𝛽 < 2 and 𝜇𝐴(𝑇) is IFERL(𝛼, 𝛽)(𝐃𝐅𝐄𝐑𝐋 (𝛼, 𝛽)), then 

ℎ(𝑡) ≥ (≤)(𝛼 + 𝛽 − 1)
1

𝛼+𝛽−2𝑒𝑥𝑝 (−
𝛼−𝛽

𝛼+𝛽−2
𝐻(𝛼, 𝛽, 𝑡))                                (5.6.2) 
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