
Study of Low Power, Low 
Voltage Analog 
Realization of 

Programmable Cellular 
Neural Networks 

By 
 

NASIR   ALI KANT 

 

 
 

Department of Electronics and Instrumentation 
Technology, 

University of Kashmir, 
Hazratbal, Srinagar, 

190006 
 

January 2014 

 
A Dissertation submitted to the Faculty of Applied Sciences 

and Technology in partial fulfilment of the requirement for the 

Degree of Master of Philosophy in Electronics. 



 
ii 

Certificate 

This is to certify that Mr.  Nasir Ali Kant has worked under my 

supervision for the dissertation entitled, ―Study of Low Power, Low 

Voltage Analog Realization of Programmable Cellular Neural 

Networks‖ and the work is truly commendable of consideration for the 

award of the degree of Masters of Philosophy in Electronics. 

 

 It is further certified that 

(i) The dissertation embodies the work of the candidate. 

(ii) The  candidate  worked  under  my  supervision  for  the  

period required  under statues. 

(iii) The candidate has put in the required attendance in the 

Department. 

(iv) The  conduct  of  the  candidate  remained  very  good  

during  the  period  of  the research. 

 

 

 

(Prof. N. A. Shah) 

Supervisor 

Dept. of Electronics and  

Instrumentation Technology 

University of Kashmir 

Srinagar-190006 

Dated: 

(Prof. G. M. Bhat) 

 Head of Department, 

Department of Electronics and 

 Instrumentation Technology 

University of Kashmir 

Srinagar-190006 

Dated: 

 



 
iii 

Candidate’s Declaration 

I hereby declare that the work presented in this dissertation 

―Study of Low Power, Low Voltage Analog Realization of 

Programmable Cellular Neural Networks‖ in partial fulfilment of the  

requirements  for  the  degree  of  Masters of  Philosophy and  

submitted  in  the Department  of  Electronics  and  Instrumentation  

Technology,  Faculty  of  Applied Sciences and Technology, University 

of Kashmir, Srinagar, has entirely been done by me under the 

supervision of Prof. N. A. Shah. 

I, further, declare that the work contained in the dissertation is the 

original research work  conducted  by  me  and  has  not  been  

submitted  in  part  or  full,  to  any  other University or Institute for the 

award of any degree. 

 

(Nasir Ali Kant) 

This is to certify that the above statement made by the candidate 

is correct to the best of my knowledge. 

 

(Prof. N. A. Shah) 

Supervisor 

Department of Electronics and Instrumentation Technology 

University of Kashmir 

Srinagar-190006 

The Viva-voce examination of Mr. Nasir Ali Kant, Research Scholar, 

has been held on……………………………… 

 

 

Supervisor  Head of the Department  External Examiner 



 
iv 

Acknowledgements 

I am thankful to Almighty Allah for guiding me to the right path & for 

giving me the strength to undertake this work....  

 Words are often too less to reveal one’s deep regards, I take the 

opportunity to express my deep sense of gratitude and respect to all 

those who helped me in this work.  

This work would not have been possible without the encouragement and 

able guidance of my supervisor, Prof. N.  A. Shah. His enthusiasm and 

optimism made this experience really enjoyable. I would like to express 

my deep sense of gratitude towards Prof. G. M. Bhat, Professor and 

Head, Department of Electronics and Instrumentation Technology, 

University of Kashmir for his support, guidance & encouragement and 

for providing necessary facilities in the Department. Further, I wish to 

express my appreciation to Dr. Farooq Ah. Khanday Asst. Professor 

Dept. of Electronics & I.T. University of Kashmir for his support & 

constant encouragement. Special thanks to faculty members of the 

Department of Electronics, University of Kashmir: Dr. M. Tariq 

Banday, Dr. Shabir Ahmad Parah, Dr. Javaid Ahmed Sheikh and others 

who directly or indirectly helped me in the work. Very special thanks to 

all the technical and non-teaching staff of the department for their 

valuable encouragement and support. I would take opportunity to thank 

the research scholars of the Department of Electronics, University of 

Kashmir: Mr. M. Rafiq Beigh, Mr. Imran Yaseen, Mr. Zubair Ahmad 

Bangi, Mr Javeed Iqbal and others for their assistance, encouragement 

and discussions. I would also like to thank all my friends and relatives 

for their valuable suggestions and support. I am highly indebted to my 

Family, my Sister and her family for their unconditional support and 

love. 

 Nasir Ali Kant 



 
v 

Abstract 

―Neural network‖ is the term used to refer to a circuit of neurons 

that perform information processing. They are highly complex, 

nonlinear systems (with huge degree of freedom) which employ 

different principles of information processing than those of the 

conventional algorithmic computation of modern computer systems. The 

basic computational units of neural networks are neurons which are 

simulated mathematically on a computational substrate (e.g. a standard 

computer, an electronic circuit, etc.). 

Cellular Neural Network (CNN) being the derivative of Artificial 

Neural Network (ANN) is also a parallel computing paradigm with the 

difference that communication is allowed between neighbouring units 

only. CNNs are characterized by simplicity of operation. The network 

consists of a large number of nonlinear processing units (cells) that are 

equally spread in the space. Each cell has a simple function that takes an 

element of a topographic map and then interacts with all cells within a 

specified sphere of interest through direct connections. CNNs have 

attracted the attention of a wide variety of scientists, due to their 

intrinsic parallel computing power. They find their use in different fields 

e.g., the fields of image and video processing, robotics. 

A variety of problems can be solved with neural networks in the 

areas of Image Processing, Control Systems etc. and most of them have 

been demonstrated by employing their software based designs. While 

designing the software based solutions, many special features of neural 

networks does not persist as the employed machines perform many of 

their processes in a sequential manner. Therefore to fully utilize the 

application potential of ANNs, they need to be designed in hardware. 

Despite many years of studies involving neural networks, it is only due 
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to advancement in programmable hardware that actual implementation 

for study and their applications have become practical. There are many 

examples of neural network codes running on von Neumann computers, 

but as per the published reports, there is still unavailability of 

commercial Neural Networks (NNs) implemented in hardware. 

In the hardware implementation of neural network, it is important to 

consider flexibility and power consumption in order to satisfy a wide 

range of applications. So designers focus on circuits which consume 

very little power per connection allowing for a high number of 

connections per neuron. The hardware implementation of the neural 

networks can be achieved through analog or digital means.  However, 

analog realization of the neural networks provides a fast and power 

efficient realization compared to the digital realization as the later 

employ digital processors which often work in sequential way. In 

addition, the flexibility in analog hardware is added by employing 

electronic tunablity feature.  

According to data that provides information about the near future 

of semiconductor technology, International Technology Roadmap for 

Semiconductors (ITRS), in 2013-14, the supply voltage of digital 

circuits in 32 nm technologies will be 0.5 V. Therefore, the trend for the 

implementation of analog integrated circuits is the usage of low-voltage 

building blocks that use a compatible single low-voltage power supply. 

In order to achieve all the features of contemporary hardwired 

neural networks, companding (compression-expansion) technique is a 

very promising subclass of Low-Voltage Low-Power circuit design 

technique.  The technique has three types: the Log-Domain (LD), the 

Square-Root Domain (SRD) and the Sinh-Domain (SD).  The basic 

operation in all the three types is same i.e. the input current is first 
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converted into a compressed voltage, the compressed voltage is then 

processed by the companding core and finally the output compressed 

voltage is converted into a linear current.  The companding technique 

provides the features of: resistor less designs, electronic tunability and 

capability of operation low-voltage environment which are the primary 

requirements of the contemporary Very Large Scale Integration (VLSI) 

design. Among the three companding techniques, the inherent class-AB 

operation of SD technique offers the capability for handling signals 

greater than the bias current, leading to a further power saving.  

Therefore, the present investigation was primarily concerned with 

the study and design of low-voltage and low-power companding ANNs. 

The work includes the study about: the building blocks required in 

implementing low-voltage and low-power Sinh-Domain Companding 

ANNs; the implementation of various analog activation functions for 

ANNs. 

The low-voltage design of three Activation Functions (AFs), 

Tanh, Unipolar Sigmoidal, and Bipolar Sigmoidal, using SD technique 

were designed.  The SD blocks have been implemented using MOS 

transistors in weak inversion which ensures the reduction of supply 

voltage operation of the circuits in addition to that provided by the 

companding technique itself. The AFs are subsequently used to design 

the neural network which have been trained in MATLAB environment 

to perform AND, OR, NOT, NAND, NOR, and XOR logic functions.  

The investigations on these designs are based on the SPICE 

simulations using model parameters of the BSIM 0.35µm CMOS 

process MOS transistors. The performance of each circuit has been 

validated by comparing the characteristics obtained using simulation 

with the results present in the open literature.  
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The proposed designs could not be realized in silicon due to non-

availability of foundry facility at the place of study.   
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Chapter 1:  Introduction 

1.1  Introduction 

In spite of the fact that different aspects of computational 

complexity have given rise to different complex computer architectures, 

the concept of scientific computing has not changed during the last six-

seven decades. A computer is still built with stored programmability, i.e. 

with the algorithm as the underlying mechanism [1]. When Alan Turing 

introduced his abstract machine in 1936 it was meant to consist of a tape 

of symbols, a header to read/write the symbols, a state register and 

finally an action table that tells the machine what to do next. About ten 

years later, the foundation established by Turing was adopted in von 

Neumann‘s computer architecture. In general, a von Neumann machine 

stores both the program and the data in a memory that can be unified as 

in a Princeton architecture or separate as in Harvard architecture. A 

control unit features a program counter that keeps track of how 

instructions are executed on the arithmetic and logic unit. The program 

is executed sequentially in line with human thinking, which is the main 

reason for von Neumann machine to gain worldwide acceptance and to 

quickly become the fundament of future digital computing devices [2].  

But being sequential, architectures based on von Neumann machine are 

characterized by low utilization of the computational components. As 

the execution of each instruction is divided into a number of stages, only 

the components belonging to the current stage are active while all other 

units in the architecture remain idle. Furthermore, we know nowadays 

engineering tasks are characterized by the high complexity of the 

underlying algorithms. Here, large amounts of information are handled 

in real-time hence conventional digital computation methods have run 

into a serious speed bottleneck due to their serial nature.  
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Also due to the Sensor revolution which means that cheap sensor 

and Micro-Electro-Mechanical System (MEMS) arrays are proliferating 

in almost all the conceivable forms. Thousands and millions of 

generically analog signals are produced waiting for processing. A new 

computing paradigm is needed. The cited technology assessment reads: 

 “The long-term consequence of the coming sensor revolution 

may be the emergence of a newer analog computing industry in which 

digital technology plays a mere supporting role, or in some instances 

plays no role at all [3]. 

For processing analog array signals, the revolutionary Analogic 

(generic terms for analog and logic) cellular computer paradigm is a 

major candidate. The core of this computer is a nonlinear cellular neural 

network (CNN), an array of analog dynamic processors or cells (called 

neurons). The key features of neural networks are asynchronous parallel 

processing, continuous-time dynamics, and global interaction of network 

elements [4]. At the same time, Analogic CNN computers mimic the 

anatomy and physiology of many sensory and processing organs with an 

additional capability of stored programmability. 

CNNs were, originally proposed by Chua and Yang in 1988 [5], 

and since then they have been the object of a great deal of research 

work, concerning both theoretical studies and application-oriented 

circuit implementations. CNNs are well suited for high-speed image 

processing tasks; their reported applications cover a much wider range 

of activities, such as motion detection, classification and recognition of 

objects, associative memory, solution of partial differential equations, 

statistical and non-linear filtering, etc. [6]. Recent studies on optical and 

nano-scale implementations open up new horizons on the atomic and 

molecular levels. Unlike cellular automata, CNN host processors 
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accepting and generating analog signals, the time is continuous, and the 

interaction values are also real values. Moreover, CNN becomes a 

rigorous framework for complex systems exhibiting emergent behaviour 

and the various forms of emergent computations. This allows not only 

modelling but also engineering of complex systems. 

However, neural networks without learning are rather 

uninteresting. If the weights of a network were fixed from the beginning 

and were not to change, neural networks could be implemented using 

any programming language in conventional computers.  But the main 

objective of building special hardware is to provide a platform for 

efficient adaptive systems, capable of updating their parameters in the 

course of time. Furthermore hardware neural networks are much faster 

compared to their software counterparts owing to the fact that the feature 

of full parallelism is captured by means of hardware realizations only.  

CNNs are particularly well suited for an analog VLSI implementation.  

The recent extension towards the definition of a programmable analogic 

array computer, the CNN Universal Machine, has opened many new 

application fields which can be handled through spatial and temporal 

task sequencing controlled by a stored program [6].  A key feature of 

CNNs is their potential for high operation speed in the processing of 

array signals. 

Typical CNN chips may contain up to about 200 transistors per 

pixel (including sensory and processing devices) [7], [8]. On the other 

hand, practical applications require large enough grid sizes; around 

100×100. Thus, CNN designers must confront a large level of 

complexity. To achieve an acceptable resolution with standard design 

procedures, a large cell-grid size is required, which results in 
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considerable area occupation, low production yield and high-power 

consumption [9]. 

As more and more complex systems are being integrated on the 

same chip, area minimization is becoming of primary importance. As 

the size of batteries is now becoming the limiting factor, it is not 

sufficient to reduce the size of bulky components by integrating them, 

the reduction of the power dissipation is also very important. As a 

consequence, the key point is to develop, simultaneously, both low-

voltage and low-power operating integrated circuits in order to reduce 

the battery size and chip area. 

In this research program I have tried to achieve the Low-Voltage 

Low-Power analog CNN design and in this respect Low-Voltage Low-

power implementation of various analog activation functions were 

designed in Sinh-Domain (SD) technique.  

1.2  Outline of the dissertation 

In this dissertation issues relating to the hardware implementation 

of an ANN in low power and low voltage design regimes are discussed. 

The aim is to present a potential solution to the problem of realizing 

artificial neurons in hardware since most work is currently conducted 

via software synthesis and modelling.  

The outline of the dissertation structure is consequently presented 

below.  

A general overview about neural networks is given in Chapter 2. 

The biological inspiration for designing ANNs is also presented. Besides 

CNNs are discussed in details and different types of CNNs is also 

presented in the chapter. Furthermore the importance of ANNs is also 

given at the end of the chapter.  
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The need for the hardware implementation of ANNs is discussed 

in Chapter 3. Besides different types of hardware implementation of 

ANNs and the complications in hardware implementation are also 

mentioned. Furthermore the special emphasis is lead on the hardware 

implementation of CNNs along with the different approaches of 

achieving its hardware. 

Chapter 4 introduces to Low-Voltage Low-Power Analog Design 

techniques along with a brief discussion on companding techniques i.e. 

Log-Domain (LD), Square-Root-Domain (SRD) and Sinh-Domain (SD). 

Towards the end, the operators and building blocks required to design 

SD classification are discussed in detail. 

Chapter 5 includes the designing of analog activation functions 

(unipolar, bipolar sigmoidal and Tanh) utilizing SD companding 

technique. Besides this the designed activation functions are used in 

designing single-layer and two-layer perceptron whose weights are 

trained in such a manner that the network implements various logic gate 

functions. 
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Chapter 2: Introduction to Neural Networks 

2.1 Neural Networks 

―Neural network‖ is the term used to refer to a circuit of neurons 

that performs information processing. They are highly complex, 

nonlinear systems (with huge degree of freedom) which employ 

different principles of information processing than those of the 

conventional algorithmic computation of modern computer systems. The 

basic computational units of neural networks are neurons which are 

simulated mathematically on a computational substrate (e.g. a standard 

computer, an analogue circuit, etc.). 

2.2 The Biological Inspiration for Artificial Neural Networks (ANNs) 

The roots and inspiration for ANNs are drawn from biological 

nervous system. Such biological system or wetware consists of a 

multitude of simple processing elements which are connected together in 

a massively parallel architecture.  

The human brain is indeed a triumph of nature as it consists of 

many neurons of different varieties but the general format remains 

almost the same and is illustrated in Figure 2.1. Neurons are cells that 

send and receive electro-chemical signals to and from the brain and 

nervous system. The neuron consists of a cell body (or soma) with 

branching dendrites (signal receivers) and a projection called an axon, 

which conduct the nerve signal. The terminating points of the divided 

axon form transmitting connections to the dendrites of other neurons or 

connect directly to the neurons via synaptic junctions or synapses. The 

axon terminals transmit the electro-chemical signal through synapse. 
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Figure 2.1: A simple Neuron. 

A complex chemical process is involved in signalling from one 

neuron to another with chemicals released from the sending side of the 

synapse. The effect of these chemical releases is to alter the electrical 

potential within the cell body. If the cell potential reaches certain given 

level, the neuron is activated releasing a fixed strength and duration 

signal along the axon to other neurons. A recovery period follows before 

the neuron is able to fire again once it is fired. Individual cells can 

achieve limited task, but the collective behaviour of these structures of 

biological formations performs a useful task in the embodying organism. 

Conservatively, it has been estimated that there are at least 10
11

 neurons 

in the human brain with 10
14

 interconnections.  

Also an important point about neural networks (NNs) which 

needs to be mentioned here is that they are not a static i.e., the strengths 

of inter connections vary with time, new ones are formed and old ones 

may decay away. Due to the large quantity of parallelism there is 

redundancy built in to the system and a level of fault tolerance is 

available. Rather than being explicitly programmed, a NN evolves to 

perform an action by learning and adaption. Thus, given that the 

network changes through damage or the network has to increase its 

functionality, it is able to adapt to the new situation. 

Given the above rudimentary description of a neuron's behaviour 

two main approaches can be adopted for the study and development of 
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ANNs. One approach is to study, model and possibly build analogous 

devices as accurately as possible. The second is to draw upon ideas from 

actual systems and develop simple processing element exemplar with in 

a massively parallel architecture. The former approach is normally 

adopted by biologists and psychologists in order to determine the 

functioning of the brain and nervous system. The latter approach is 

usually followed by engineers in pursuit of a system which will perform 

a computationally useful task.  

But few important questions:  

 Why study and develop Artificial Neural Networks at all?  

 What task or tasks could they be used to perform?  

 What benefit can they offer beyond a traditional von 

Neumann architecture machine? 

By answering the latter two questions, hopefully a more complete 

reason for the study of ANNs will become apparent. Within a traditional 

computer, a failure in a processing section is catastrophic in terms of 

system performance; this is not necessarily the case with a NNs. 

Benefits of ANN are their potential robustness and only a  gradual 

degradation in performance, but not the network stops working, if an 

area of the network becomes damaged. Furthermore, certainly for rapid 

exact algorithmic or mathematical operations a traditional computer is 

excellent but this is not the case for noisy, inexact information 

processing. Also as it has been stated that much of the interest and 

power of NNs is the ability they have to adapt and learn from the data 

presented to them. So the ANN designed will not need to be re-

programmed once it is trained which is not the case with simple 

computer.  The ANN has recently been applied in process control, 
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identification, diagnostics, character recognition, sensory prediction, 

robot vision, and forecasting [10-16] etc.  

2.3 The Biological Neural Networks 

The networks formed by biological neurons which are connected 

to carry out the functionalities typical of the nervous system in 

biological life forms are referred as biological neural networks 

However, not all multicellular life forms on the earth have a nervous 

system. For example, sponges are very old life forms comprising 

colonies of cells which do not have a nervous system to allow electrical 

communication between the various parts of the body [17]. In particular 

the presence and the complexity of the nervous system have evolved 

during the various historical eras. 

 In the evolutionary scale, with regard to the nervous system, after 

the sponges it is possible to find the ―Radiata‖ branch: life forms which 

have a radial symmetry. In these life forms it is possible to identify a 

―top‖ and a ―bottom‖, but not ―left‖ and ―right‖ sides; jellyfish are an 

example of this class. These life forms have a simple nerve net which 

allows reactions to external [18]. 

Life forms having the most complex neural system belong to the 

―Bilateria‖ branch. These are the life forms which are (approximately) 

symmetric with respect to a longitudinal axis, and for which it is 

possible to define a ―left‖ and a ―right‖ side in addition to a ―top‖ and a 

―bottom‖. This branch includes the human race which has the most 

complex nervous system known in nature [19], [20]. 

More generally, in the ―Bilateria‖ branch, the ―Vertebrate‖ 

subphylum occurs. In individuals of this subphylum, the nervous system 

can be divided into two interconnected halves [21]: the peripheral 

nervous system and the central nervous system. However, these two 
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parts differ only from an anatomical point of view as depicted in Figure 

2.2. 

 
Figure 2.2: Simplified structure of the nervous system in 

vertebrate animals. 

Considering the human nervous system, human brain consists of 

approximately 10
11

 computing elements called neurons. They 

communicate through a connection network of axons and synapses 

having a density of approximately 10
4
 synapses per neuron. The 

hypothesis regarding the modelling of the natural nervous system is that 

neurons communicate with each other by means of electrical impulses 

[22]. The neurons operate in a chemical environment that is even more 

important in terms of actual brain behaviour. The brain thus can be 

considered to be a densely connected electrical switching network 

conditioned largely by the biochemical processes. The vast NN has an 

elaborate structure with very complex interconnections. The input to the 

network is provided by sensory receptors. Receptors deliver stimuli both 

from within the body, as well as from sense organs when the stimuli 

originate in the external world. The stimuli are in the form of electrical 

impulses that convey the information into the network of neurons. As a 
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result of information processing in the central nervous systems, the 

effectors are controlled and give human responses in the form of diverse 

actions. We thus have a three-stage system, consisting of receptors, 

neural network, and effectors, in control of the organism and its actions. 

A lucid, although rather approximate idea, about the information 

links in the nervous system is shown in Figure 2.3. As we can see from 

the figure, the information is processed, evaluated, and compared with 

the stored information in the central nervous system. The necessary 

commands are generated there and transmitted to the motor organs. 

Notice that motor organs are monitored in the central nervous system by 

feedback links that verify their action. The implementation of 

commands is controlled with the help of both internal and external 

feedbacks. As can be seen, the overall nervous system structure has 

many of the characteristics of a closed-loop control system. 

 
Figure 2.3: Information flow in nervous system. 

2.4 Artificial Neural Networks  

The simplest definition of a neural network, more properly referred 

to as an 'artificial' neural network (ANN), is provided by the inventor of 

one of the first neuro-computers, Dr. Robert Hecht-Nielsen [23]. He 

defines a neural network as: 
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“...a computing system made up of a number of simple, highly 

interconnected processing elements, which process information by their 

dynamic state response to external inputs.” 

There are a number of different answers possible to the question 

of how to define artificial neural networks. At one extreme, the answer 

could be that these are simply a class of mathematical algorithms, since 

a network can be regarded essentially as a graphic notation for a large 

class of algorithms. Such algorithms produce solutions to a number of 

specific problems. At the other end, the reply may be that these are 

synthetic networks that emulate the biological neural networks found in 

living organisms. In light of today's limited knowledge of biological 

neural networks and organisms, the more plausible answer seems to be 

closer to the algorithmic one. Thus we can say ANNs are the result of 

academic investigation that uses mathematical formulations to model 

nervous system operation. They are circuits made by the interconnection 

of artificial neurons, which mimic the behaviour of biological neurons. 

The circuits or simulators comprise hardware (analogue or digital) or 

software (digital) components which compute mathematical models of 

biological neurons and biological synapses. 

Our knowledge about actual brain functions is still limited, and no 

model has been successful in duplicating the performance of the human 

brain. Despite ANNs have undoubtedly been biologically inspired, but 

the close correspondence between the biologic neural systems and ANN 

is still weak. Vast discrepancies exist between both the architectures and 

capabilities of natural and artificial neural networks. Therefore, the brain 

has been and still is only a metaphor for a wide variety of neural 

network configurations that have been developed [24]. 
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Talking about the designing of ANNs, different approaches have 

been adopted resulting in different architectures like Perceptron, 

Madaline, and Hopfield Networks etc. One class of architectures that are 

designed taking the inspiration from the neural networks with the 

difference that communication is allowed between neighbouring units 

only is called as Cellular Neural Networks (CNNs). They are the class of 

neural networks whose concept was first introduced by Chua and Yang, 

in 1988, to efficiently perform large time-consuming tasks in real-time 

by using an array of simple, nonlinearly coupled dynamic circuits [5]. 

2.5 Cellular Neural Networks (CNNs) 

Cellular Neural Network (CNN) is novel class of information-

processing systems. The concept of CNN rests on two major sources of 

inspiration. The architecture possesses some of the key features of NNs 

[25], such as continuous time dynamics and global interaction of the 

network elements, which allows for real-time signal processing. On the 

other hand, it inherits the feature of local interconnectivity from the 

world of Cellular Automata [26], which makes it suitable for VLSI 

implementations. 

Cellular Neural Networks are characterized by simplicity of 

operation. The network consists of a large number of nonlinear 

processing units; called cells; that are equally spread in the space. Each 

cell has a simple function that takes an element of a topographic map 

and then interacts with all cells within a specified sphere of interest 

through direct connections. Due to their intrinsic parallel computing 

power, CNNs have attracted the attention of a wide variety of scientists 

in, e.g., the fields of image and video processing, robotics and higher 

brain functions [27–29]. 
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Since its inception, cellular network has been thoroughly 

investigated. Two-dimensional networks in which each cell is connected 

physically only to its eight nearest neighbours are studied in great detail 

in the literature, although cells in cellular network can be arranged in 

several spatial configurations. The radius of effect or the radius of 

neighbourhood  Nr  determines how a particular cell is affected by the 

neighbouring cells. For example, for 1Nr  the neighbourhood includes 

the cell itself and its eight adjacent cells which directly affect it; for 

2Nr  the neighbourhood includes the cells mentioned for 1Nr  plus16 

additional cells which indirectly affect the central cell; for 3Nr  the 

neighbourhood includes the cells mentioned for 2Nr  plus 24 additional 

cells which again indirectly affect the central cell; and so on. In other 

words, ,2,1Nr  and 3 neighbourhoods can be respectively called as 

3×3, 5×5 and 7×7 neighbourhoods. Each cell has its own input, state, 

and output. Depending on the nature of these variables (e.g. continuous 

vs. discrete) and the way in which the dynamics of each cell is defined, 

the cellular network receives different names in the scientific literature 

(continuous and discrete-time Chua–Yang CNN [5], full signal range 

CNN [30], time-derivative CNN [31]). 

In upcoming section, the network structure is introduced, as it 

eases the understanding of CNNs basic equations, and is followed by a 

brief description of CNN models: Chua and Yang model that is also 

referred to as Continuous-Time CNN (CT-CNN) and the counterpart 

Discrete-Time CNN (DT-CNN), Full Signal Range CNN and Time- 

derivative CNN. The aim is to give an intuitive understanding of the 

concept, rather than discussing the theory in detail. 
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2.5.1 Standard CNN Architecture 

A massive aggregate of regularly spaced processing units, called 

cells, forms the CNN architecture. Similar to Cellular Automata [26], 

any cell in the network is connected only to its neighbour cells, where 

direct interaction only occurs among adjacent cells. However, other cells 

are indirectly affected due the propagation effect of the continuous-time 

dynamics. Furthermore, a CNN of any dimension can be defined 

theoretically, as illustrated in Figure 2.4, which allows a CNN to handle 

spatial relations such as topographic maps. The discussion here will be 

however restricted to the 2-dimensional case. 

 

Figure 2.4: CNN, where the globes represent cells and the links represent direct 

coupling. 

2.5.2 Sphere of Influence (Neighbourhood) 

In the case of 2-dimensional finite-size CNN, cells are arranged in 

M rows and N columns, each cell  jiC ,  is indexed according to row i 

and column j and each cell communicates directly with its sphere of 

influence  jiSr ,  of radius r, also called r-neighbourhood. Equation 2.1 

gives the relation for such a neighbourhood and is defined as the set of 

cells within a certain distance r to  jiC , , where r ≥ 0. 
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    NjMkrjliklkCjiSr  1,1;,max.),(     (2.1) 

For instance, we have a 3×3 neighbourhood when r =1 as we 

obtain a 3×3 matrix in this case as can be seen in Figure 2.5. For r = 2,   

5 × 5 neighbourhood and so on. In general, a neighbourhood of size    

(2r + 1)
2
 is obtained for certain r ≥ 0. Figure 2.5 shows different 

neighbourhood examples, with r = 1, 2 and 3. Observe that when r > 

N/2, and M = N, a fully connected CNN is obtained, i.e.  jiSr ,  is the 

entire network. 

         
Figure 2.5: Different r-neighbourhoods for the centre cell (black circle). To 

avoid clutter all interconnections are dropped. 

2.5.3 Standard CNN Equations 

Considering a case of a cell with no coupling to any other cell in 

the grid, such a cell, called an isolated cell, is associated with four 

variables: input u

ij Ru  , threshold z

ij Rz  , state x

ij Rx  , and output 

y

ij Ry  , which are generally the functions of the continuous time t. The 

cell output value depends on the current state of the cell and also on the 

input value and the threshold. If the given input is  0tuij  at 0tt  , an 

initial state is  0txij  and a threshold is  0tzij  the state  txij  evolves via 

the state equation given in Equation 2.2 where the ―dot‖ denotes the 

time derivate and F is an ordinary nonlinear differential function. 

      tutztxFx ijijijij ,,       (2.2) 
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Now as we know that if the n
th

 derivative of an unknown function 

RRH :  with respect to a variable h  is a function of the lower-order 

derivatives, i.e.     nn HHHHHHhF  1,.....,,,,  then the function H  is 

an ordinary differential.  Furthermore, if the differential function is not 

dependent on the variable h , it is then considered autonomous. Equation 

2.2, in this sense, is simply a non-autonomous system of ordinary 

differential equations [32]. In general, different non-linear functions can 

be used for different cells, but in almost all known applications the cells 

are identical and therefore employ the same function. 

The operative description of a cell is concluded by the 

determination of the output  tyij  
by means of a nonlinear function. In 

most literature, this function is assumed to depend only on the state of 

the cell, as depicted in Equation 2.3 but it may depend on  txij ,  tzij  and 

 tyij .  

    txgty ijij        (2.3) 

For the quality of the obtained output and the speed achieved, the 

choice of function g is crucial. There are different functions that can be 

used but three different types of nonlinear functions are frequently used 

[33]: (a) threshold, (b) hyperbolic tangent and (c) piece-wise linear 

functions. The threshold function, commonly referred to as hard-limiter 

(or Heaviside) function, is binary-valued only and performs a binary 

decision. The hyperbolic tangent function is generally defined as a 

strictly increasing continuous s-shaped function and is a special case of 

the sigmoid function. Figure 2.6(a) shows the nature of this function and 

Equation 2.4 is used to describe it mathematically. By varying δ (the 

slope parameter), different sigmoid functions are obtained. As the slope 

parameter approaches infinity, in the case of Equation 2.4, the sigmoid 
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function simply becomes a threshold function. Finally, the piecewise 

linear function can be defined as the one that is totally linear with 

positive slope within a certain interval [-a, a] and saturates outside this 

interval as illustrated in Figure 2.6(b). The function is mathematically 

described in Equation 2.5. 

 )tanh()( xxf          

(2.4) 
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Figure 2.6: Sigmoid function (a) and piece-wise linear function (b). 

The State equation standard isolated CNN cell is given in 

Equation 2.6, which is the most widely used in the literature. 

Coefficients ija  and ijb  are the two weightings coefficients whose value 

define the contributions of state and input variables while as the 

threshold is simply assumed to be a scalar quantity of constant 

magnitude [32]. ija  and ijb  are called feed-back and control coefficients 

respectively as ija  mirrors the effect of the previous output value, while 

ijb  scales the current input value. A threshold ijz  is used to adjust the 

obtained state value into a desired range. The output is usually obtained 
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by using the piece-wise linear function introduced in Equation 2.5 with 

the interval [-1, 1] and slope δ=1 resulting in Equation 2.7. Assuming all 

coefficients are linear, the dynamics of the isolated CNN cell are due to 

the nonlinear output function only. 

 ijijijijijijij zubyaxx        (2.6) 
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Equation 2.6 is also commonly referred to as ‗cell dynamics‘ as it 

explains how the state of the cell evolves over time. These dynamics 

depends upon two constraints: initial condition constraint where the state 

variable is assumed to be equal to a certain value upon start, and input 

constraint where input value  1,1u . 

In CNN architecture, generally, each cell is directly coupled to all 

other cells within the sphere of influence (
rS ). The new output is 

produced by the consumption of both input klu  and output kly  of all 

available neighbouring cells. Inputs and outputs from cells belonging to 

rS   of the cell are weighted as klb  and kla  respectively, similar to that of 

an isolated cell. The state equation of a standard CNN cell can be 

obtained by simply summing the contributions of all cells in the sphere 

of influence, and can be written as in Equation 2.8. The output value is 

still obtained according to Equation 2.7. 

ij

jiSkl

klkl

jiSkl

klklijij ztubtyaxx
rr





),(),(

)()(      (2.8) 

NjMi ........3,2,1;.......3,2,1   

For solving ordinary differential equation systems, almost all 

theorems and numerical techniques are formulated in vector form [30]. 
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Hence, it is desirable to express the state equation given in Equation 2.8 

in vector form. The vector form of the state equation is given in 

Equation 2.9. The matrices A and B are nn  matrices whose nonzero 

entries are the feed-back coefficient kla  and control coefficient klb . 

zBuAyxx        (2.9) 

One may conclude that in the mesh, each CNN cell is a dynamic 

system whose state evolves according to a prescribed state equation. The 

cell dynamics are coupled to the cells lying within the sphere of 

influence with the centre that is located at the position of the cell itself. 

However, the cell dynamics boundary cells have a great effect on the 

behaviour of the entire CNN. This will be discussed in boundary 

conditions. But first, a concise form of the state equation is introduced in 

the following section. 

2.5.4 Cloning Template 

Generally, all feedback and control coefficients of Equation 2.8 

can be represented by time-dependent nonlinear operators of the coupled 

values. For simplification we consider them to be time-invariant and 

real-valued scalars. Furthermore, in the grid these coefficients are 

identical for all cells. The state Equation 2.8 is written in a more 

compact form by using the two-dimensional convolution operator 

defined in [5], in order to simplify the notation and is re-introduction 

below.  

For any 3×3 matrix M , the convolution operator   is defined by 

Equation 2.10, where  nmM ,  denotes the entry in the m
th

 row and the n
th
 

column of the matrix, and  1,0,1, nm . 
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zuByAxx ijijij      (2.11) 

Equation 2.11 gives the compact form of the state equation which 

resulted as the weighting coefficients can be grouped in two square 

matrices: which holds all feedback coefficients and is accordingly called 

feedback template (A), and the control template (B). Together with the 

real-valued threshold (also known as bias), they constitutes a so-called 

cloning template Г= (A, B, z). The latter term is commonly used to 

emphasize the property of space-invariance [34]. It is now obvious that 

in addition to given input and the initial conditions the cloning template  

Г  also participate in completely determining the dynamic behaviour of 

the cell. 

The matrices in Equation 2.12 show the common notation of 

feedback and control templates respectively, for the case of 1-

neighbourhood. 
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1,00,01,0
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aaa

aaa

aaa

A

 

  (2.12) 

The self-feedback entry i.e. the central entry of the feedback 

template is of significant importance for the stability of operation of a 

CNN. In this sense, in many cases, it is desired to decompose the A 

template in Equation 2.12 as shown in Equation 2.13. Matrices Â  and A  

are called centre and surround feedback template respectively [35]. 
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The neighbourhood determines the number of the real-valued 

template coefficient. Three simple classes of special importance and are 

worth mentioning [17]. These classes are briefly introduced below.  

 Zero-feedback template: in this case all the feedback 

coefficients are zero. Equation 2.15 describes the dynamics of 

each cell of a zero-feedback CNN.  

zuBxx ijij         (2.15) 

 Zero-input template: Zero-input CNNs are also termed as 

autonomous CNNs. In the case of Zero-input CNNs all control 

coefficients are zero. The dynamics of each cell of a zero-input 

CNN is described by Equation 2.16.  

zyAxx ijij         (2.16)  

 Un-coupled template: The dynamics of each cell of uncoupled 

CNN is described by a scalar nonlinear ordinary differential 

equation as shown in Equation 2.17. In the case of uncoupled 

CNN all surround control coefficients are zero, i.e. AA ˆ . 

zuBxfaxx ijijij  )(0,0
      (2.17) 

2.5.5 Boundary Conditions 

So far no restrictions have been imposed on the size of the CNN 

grid. Actually, the conceptual discussion carried out till now is valid for 

infinite CNN grids, but when CNNs of finite size are considered it 

suffers from a number of complications. 
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Equations 2.8 and 2.10 are not completely defined in the case of 

cells whose sphere of interest  jiSr ,  extends outside of the boundary of 

the grid. Thus we can divide CNN cells into two different categories: 

regular cells and boundary cells. A regular cell can be defined as the one 

for which for a certain neighbourhood ― r ‖ it has (2r+1)
2
 neighbour cells. 

All the other cells with less than (2r+1)
2 

neighbours belong to the 

category of boundary cells. Also it is to be noted that all boundary cells 

are not edge cells, if r > 1 (Figure 2.7). Edge cells lie on the perimeter, 

i.e. they are the outermost boundary cells. 

      

Figure 2.7: When r = 1, boundary cells coincide with edge cells (a) but for 

1 boundary cells (light grey) are not located on the edges only (b). 

Furthermore, due to the nature of indirect propagation, the 

absence of neighbouring cells doesn‘t affect the boundary cells only, but 

it has a great impact on the dynamic behaviour of the entire network. 

Thus a different interpretation of boundary cell is required. 

Traditionally, virtual CNN cells are introducing around the grid for 

remedying the boundary cell problem. The virtual cells complete the 

sphere of influence of all boundary cells and each virtual cell is 

associated with a virtual state, a virtual input, a virtual output and a 

virtual threshold [35]. These virtual parameters are specified via various 

boundary conditions. Three of the most commonly used boundary 
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conditions for 1-neighborhood, as described in [34], and are rephrased 

as under: 

 Fixed (Dirichlet) boundary condition: predefined constant 

values are assigned for virtual state and input of each virtual 

cell or in other words we can say that the boundaries of the 

network are tied to fixed values. 

 Zero-flux (Neumann) boundary condition: usually, this 

condition applies to CNNs with no input, i.e. 0iju . In this case 

virtual cells are considered to have the same state and input 

values as their direct neighbouring boundary cells.  

 Periodic (Toroidal) boundary condition: Here the first and last 

rows of the network are identical and the top the bottom 

column are identical as shown in Figure 2.8. Thus, the CNN 

behaves as if it is joined onto itself forming a torus. 

 

Figure 2.8: In periodic boundary condition the CNN is joined onto itself. 

Figure 2.9 shows a block diagram of a CNN cell based on Chua-

Yang‘s model.  Each cell receives/generates a weighted contribution 

from/for each cell in its neighbourhood. Incoming contributions are 

added directly at the input of the cell and integrated. The output of the 

integrator represents the state variable ijx , which is feedback to the input 
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with a scaling factor -1 that represents a normalization factor for the rest 

of the weights. A nonlinear block is then used to generate the output ijy , 

which is replicated and scaled to generate the out-coming contributions 

for the cells in the neighbourhood. The implementation of the control 

and the offset terms is not shown in the figure. Variables ijx  and ijy  in 

Figure 2.9 are identical while the cell is within its linear region. 

Otherwise ijy , saturates at ±1 (after normalization), while ijx  goes 

beyond these limits. This means that the output signal range of the 

integrator must be wide enough as the circuit implementation must 

provide room for these larger variations of the state variable.  

 

Figure 2.9: Block diagram of a CT CNN cell circuitry based on Chua-Yang‘s model. 

Control template and offset-term implementation are not shown. 

2.6 Discrete-Time (DT) CNN 

A DT-CNN poses a regular grid of locally connected cells that can 

theoretically, have any dimension, but again the focus here will be on 

the 2-dimensional case only for simplicity. The DT-CNN is a clocked 

system which is in contrary to CT-CNNs. The dynamics of DT-CNN are 

described by a set of discrete equations. This enforces the introduction 

of slightly different notations, so for that reason notations used in [1] are 

used. Furthermore, it is important to emphasize that the space invariance 

feature is assumed here as well and the size of the grid is assumed to be 

finite, unless it is explicitly stated otherwise. 
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 The coordinate of the position of the cell in the grid, i.e. row ci  

and column cj helps in identifying the cell c. The cell communicates 

directly with all the neighbour cells belonging to the r-neighbourhood. A 

slight modification is made to the definition of r-neighbourhood given in 

Equation 2.1 to reflect the new notation of the cell but as depicted in 

Equation 2.18 the relation remains unchanged. The character  d  

represents any cell belonging to the neighbourhood of cell c, including c  

itself.  

   rcdcddcN jjiir  ,max)( 2     (2.18) 

 The state cx , of a cell c, mainly depends on the contribution of the 

time-independent input du  and the time-variant output dy . These 

dependencies at a discrete time k  are depicted in Equation 2.19. 
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  (2.19) 

 The real-valued coefficients, the feedback coefficients, the control 

coefficients and the threshold/bias values are represented by c

da , c

db  and 

ci  respectively. While c

da  reflect the contribution from the output of all 

cells in the neighbourhood, c

db   describe the dependency on the inputs of 

the neighbours and ci  is added to adjust a cell‘s threshold. For DT-CNN, 

coefficients are commonly expressed in a compact form by means of 

matrices, as was also seen in the case of CT-CNN. The cloning template 

iBA ,,  that is often thought of as an elementary DT-CNN program 

or DT-CNN instruction [1] is thus used to specify the spatially invariant 

DT-CNNs. 

 A compact state equation is, in Equation 2.20, by substituting 

Equation 2.10 into Equation 2.19. Equation 2.20 is obviously equivalent 
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to Equation 2.11. All cells in the DT-CNN have identical functionality, 

because of that cell subscripts can be omitted as shown in Equation 2.21. 

 iuBkyAkx ddc  )()(      (2.20) 

 iuBkyAkx  )()(       (2.21) 

 An initial output )0(cy  is of crucial importance for the dynamic 

behaviour of the network (compare with the initial condition constraint 

in section 2.5.3) in the case of non-zero feedback coefficients. On the 

other hand the output of the system remains constant after the first time 

step if all feedback coefficients are equal to zero. 

The functionality of the system in accordance to CT-CNN is 

defined by the cloning template  .The dynamic behaviour of a DT-

CNN is completely determined by cloning template together with the 

activation pattern u  and the initial output )0(cy . Figure 2.10 illustrates 

the functionality of a cell, explains schematically the influence of all 

involved parameters [1]. The data comes in over the du  input and is 

modified through the control template B , while the interaction with the 

neighbouring cells is gathered through the dy  input and modified 

through the feedback template A . All modified input values are summed 

and discriminated after application of the bias i. 

 

Figure 2.10: A schematic diagram illustrating a DT-CNN cell. [23] 
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2.7 Full Signal Range CNN 

As we have seen in CT-CNN (of Figure 2.9) that the output signal 

range of the integrator must be wide enough which increases the circuit 

complexity. This reason motivates searching for alternative models, and 

resulted in Full Signal Range CNN (FSR-CNN). Again considering CT-

CNN model (Figure 2.9) it appears from a functional point of view, that 

ijx  may be restricted to the unitary interval as well and that the state and 

output variables may be merged into a single one with no influence on 

the functionality. This is actually the idea behind the FSR model, whose 

block diagram is depicted in Figure 2.11(a). The main modification 

centres on the integrator, which in Figure 2.9 is designed with sufficient 

output signal range to avoid its saturation during the dynamic evolution 

of the cell, while in Figure 2.11(a), it is designed to have saturation 

limits equal to those of the output variable. Thus, this block responds to 

the usual integral law while its output ijo  (modified state variable) is 

within its saturation limits (after normalization). Whenever the state 

variable reaches +1 (alternatively−1), it remains clamped to this value as 

long as the input of the integrator is non-negative (alternatively non-

positive), without modifying its value. As soon as the integrator input 

becomes negative (alternatively positive), the modified state variable 

will enter the linear region again. Figure 2.11(b) shows a conceptual 

block diagram to realize the integrator. 

 
(a)             (b) 

Figure 2.11: (a) Block diagram of CNN cell circuitry using the FSR model, 

 (b) Integrator with saturation. [30] 
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2.8 Time-Derivative CNN 

Time-derivative CNN (TDCNN)  [37]  extends  the  original CNN  

description  in  [5]  by  adding  derivative  connections between cells. A 

time-derivative linear CNN is described by 
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The first two terms on the right hand side of (2.22) are the same 

as in the case of original CNN equation, A  and B  are feedback and 

feed-forward cloning templates, u  is input and x denotes the state and 

output of the linear network. Aq and Bq are defined as q
th

 derivative of 

feedback and feed-forward templates, respectively, and r denotes the 

neighbourhood of the CNN. It has been shown that by adding first order 

derivatives  of  the  outputs  of  the  neighbouring  cells  to  the  original 

CNN  equation,  bandpass  spatiotemporal  filters  can  be  realized    

[20, 37]. For these first derivative TDCNNs, Equation 2.22 becomes 
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2.9 Application of ANNs 

ANNs are powerful tools for modelling, especially when the 

underlying data relationship is unknown. Besides ANNs can identify 

and learn correlated patterns between input data sets and corresponding 

target values. They have seen an explosion of interest over the last few 

decades, as they perform ―intelligent‖ tasks similar to those performed 
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by the human brain, and are being successfully applied across an 

extraordinary range of problem domain, in the areas as diverse as 

medicine, engineering, biology, physics and finance. From a statistical 

perspective NNs are interesting because of their potential use in 

prediction and classification problems. ANNs acquires knowledge 

through learning and after training, ANNs can be used to predict the 

outcome of new independent input data. 

ANNs imitate the learning process of the human brain and can 

process problems involving non-linear and complex data even if the data 

are imprecise and noisy. A very important feature of these networks is 

their adaptive nature, where ―programing‖ is replaced by ―learning by 

example‖ in solving problems. This feature makes such computational 

models very appealing in application domains where training data is 

readily available but one has little or incomplete understanding of the 

problem to be solved. 

The applications of ANNs are limitless. They have been used in 

classification problems, such as identifying underwater sonar currents, 

recognizing speech, and predicting the secondary structure of globular 

proteins. In time-series applications, ANNs have been used in predicting 

stock market performance. Besides they have been applied within the 

medical domain for clinical diagnosis [38], image analysis and 

interpretation [39], signal analysis and interpretation, drug development 

[40] and to design and discover new drugs in pharmacology [41]. 

Furthermore, their application also covers activities such as motion 

detection, classification and recognition of objects, associative memory, 

and solution of partial differential equations, statistical and non-linear 

filtering and much more. 
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2.10 Conclusion 

Neural networks are discussed in brief along with the biological 

inspiration for the implementation of ANNs. Besides this an 

introduction about CNNs is given in this chapter along with its various 

types. Few of the applications of ANNs are mentioned in the end of the 

chapter. 
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Chapter 3:   Hardware Implementation of ANNs: An Overview 

3.1 Introduction 

Implementation of neural networks can be achieved either by 

software simulation in conventional computers or by a special hardware 

solution. Most of the Neural Network architectures and algorithms exist 

only as mathematical models or are implemented as a software solution 

upon a standard von Neumann style architecture machine, and despite 

the high speed of modern computer platforms for the simulation of 

ANNs, the platforms are not fast enough for very large networks or real-

time applications. The hardwired neural network is capable of 

dramatically decreasing execution time as the feature of full parallelism 

is captured by means of hardware realizations only. Furthermore, the 

main objective of building special hardware is to provide a platform for 

efficient adaptive systems, capable of updating their parameters in the 

course of time as the main problem is the time required for the learning 

process, which can increase exponentially with the size of the network. 

Neural networks without learning, however, are rather uninteresting and 

if the weights of a network were fixed from the beginning and were not 

to change, neural networks could be implemented using any 

programming language in conventional computers. 

 The first modelling of neurons was devised by Pitts and 

McCulloch in 1943. In their view a neuron, which they called a formal 

neuron, is a logical gate with two possible internal states, active and 

silent. A neuron has a few entries provided by the outputs of other 

neurons. The entries are summed up and the state of the neuron is 

determined by the value of the resulting signal with respect to a certain 
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threshold, if the signal is larger than the threshold the neuron is active 

otherwise it is silent. 

3.2 Hardware implementation Artificial Neural Networks 

Hardware implementation of neural networks can be achieved in 

different ways. They can be Analog, Digital or Hybrid depending upon 

the way signals is processed. A brief introduction of these is given in the 

next sections. 

3.2.1 Analogue Artificial Neural Networks 

In the analog implementation of neural networks, a coding 

method is used in which signals are represented by currents or voltages. 

This allows us to think of these systems as operating with real numbers 

during the neural network simulation. The basic operation of an ANN 

processing element can be summarized as 

         Fout    (3.1) 

Therefore three operations of multiplication, summation ∑ and 

activation function are to be performed within analogue hardware. Graf 

and Jackal [42] and Foo et al [43] provide a general introduction into 

analogue implementations, while Mead [44] provides a greater depth 

and more specialized viewpoint for using analogue circuits. 

3.2.2 Digital Artificial Neural Networks 

In a digital implementation of an ANN it is obviously necessary 

to perform the same operations as with an analogue approach. A number 

of approaches can be taken: one is to form all the components of a 

neuron separately using digital technology, second is to generate digital 

architectures and processors tailored towards ANN implementation and 

application, i.e. to design neuro-computer devices/accelerator boards 

and the third is to make use of existing high performance parallel 
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computers and devices to construct purpose built machines, for example 

using transputers, or parallel DSP devices [45, 46]. Atlas and Suziki in 

[47] have provided a general introduction to digital NN systems. 

Yet another approach using digital circuits is to use pulse coded 

computation as exemplified by Murray et al [48], Tomlinson et al [49] 

and Leaver [50]. 

3.2.3 Hybrid Artificial Neural Networks  

Analogue and digital techniques for the hardware implementation 

of ANNs could be combined to provide a hybrid solution. This could 

lead to the best of both disciplines being combined.  

In a hybrid system actual computation could be performed using 

analogue processing circuits as this often provides the smaller, faster 

circuits while as weight storage and update can be performed digitally 

since this provides a more stable method than their analogue 

counterparts.  Inter-element communication could be a mixture of digital 

and analogue. Analogue communication links could be used internally 

within an individual neural chip 

Alternatively, pseudo analogue systems could be realized using 

digital signals by means of pulse encoding. 

3.3 Hardware Implementations of CNN 

Fabrication of Fully connected analogue neural networks is a very 

difficult task as they suffer because of number of connections and the 

distance that these connections need to propagate. CNNs in contrary to 

simple neural networks are characterized by local connectivity. The 

adoption of the concept of nearest neighbour interactions found in 

cellular automata [51] allows for the arrangement of the cells which are 

equidistant in regular grid. The routing and layout problems usually 
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faced in traditional analogue circuits are then easily tackled in analogue 

CNN VLSI implementations. A cell is designed and replicated to form a 

regular network that is placed and routed rapidly. The first VLSI 

implementation of a CNN [52] has, naturally, been based on the 

analogue model of the standard cell as presented by Chua [5].  

Fabrication usually has its issues as most of the fabricated circuits 

come with parasitic capacitances and resistances, which in many cases 

leads to undesired behaviour. In order to reduce the sensitivity of the cell 

to such fabrication deviations, the dynamics of the cell are dominated by 

large state capacitor. Furthermore, the state capacitors affect the 

initialization procedure. A single row of state capacitors (cells) is loaded 

at a time as all cells cannot be loaded with initial states simultaneously. 

Also while initialized, the state capacitors have to be disconnected from 

the remainder of the cells in order to prevent their voltages from 

dropping to such a level that it may affect the processing.  

Another issue has to do with the degree of adaptability. High 

flexibility is difficult to achieve, as one can tell by the experience gained 

from neural network VLSI implementations. Hence, the CNN array is 

very difficult to be ‗programmed‘, so the array is designed to perform 

one or a related set of processing functions using fixed coefficients. 

Complex tasks are proposed to be solved by cascading or paralleling 

multiple CNN VLSI devices. This is, apparently, not practical and 

removes most of the attraction of the CNN VLSI implementation as time 

and cost are then much higher in comparison to other established 

systems. Next, due to fabrication and the available VLSI technology 

issues, only small CNN chips (20 × 20) were realized. But with the 

advancement in hardware technology a wide range of concepts, models 

and architectures were proposed. 



 
36 

The first attempt toward a VLSI implementation of a CNN was 

presented by Yang and Chua [5]. Meanwhile, a hardware accelerator 

board (CNN-HAC), mainly for hardware simulation was developed by 

Roska et al. [53]. Chua and Roska in 1992 introduced first 

algorithmically programmable analogue array computer having real time 

and super-computer power on a single chip [54] called as the CNN 

Universal Machine (CNN-UM). A key feature in the CNN-UM is the 

―dual computing‖ paradigm. Logic operations that only involve the 

symbolic variables YES/NO are combined with analogue array 

processing; therefore denoted analogic computing. All signals and 

operators are either analogue or logic, which in principle removes the 

need for Analog to Digital and Digital to Analog conversions. 

Now as we have already discussed in previous chapter that the 

Equation 3.2, re-written below, explains how the state of the cell evolves 

over time and is therefore commonly referred to as ‗cell dynamics‘. The 

state equation of a standard CNN cell can be obtained by simply 

summing the contributions of all cells in the sphere of influence, and can 

be written as in Equation 3.4. The output value is obtained according to 

the Equation 3.3. By interpreting cell state as voltage across an RC 

dipole realizing first-order dynamics, Equation 3.4 can be translated in a 

circuit scheme. Furthermore, so as the summations are performed by 

injecting currents into the same node, the connections are realized by 

voltage-controlled current sources (VCCS). This scheme is shown in 

Figure 3.1. 
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(a) 

 

(b) 

Figure 3.1: Alternative models of CNN cell: (a) Chua & Yang's model, with bias 

represented as voltage instead of current; (b) dual model with weighting at the 

output. [55] 

Based on the scheme shown in Figure 3.1(a) and taking 

Operational Transconductance Amplifiers (OTA) as basic blocks, 

several implementations were proposed. Also to mention here is that the 

weighting of signals is not performed at the input but instead of that it is 

performed at the output of cells, together with nonlinear output function 

(Figure 3.1(b)).  

OTAs are used both in their linear operation range and in 

saturation, exploiting their transfer function that approximates a 

Piecewise linear (PWL) sigmoid very well. Utilizing the above 

mentioned concept, a cell composed of three OTAs and two capacitors 
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was designed by Cruz and Chua [56] as depicted in Figure 3.2.  In this 

circuit, Cu is loaded with cell input while as Cx represents the state 

capacitor, OTA ‗A‘ implements all current sources controlled by state 

voltage, and PWL output function. OTAs ‗B‘ and ‗R‘ work in their 

linear range; while the latter works as state resistor (with voltage bias), 

the first implements all current sources controlled by input voltage. A 

6×6 prototype was realized in 2µm CMOS technology. Each cell 

contains about 50 transistors and occupies an area of 31,000µm
2
 

(32cells/mm
2
). Settling time of the circuit is of order 1µs. 

 

Figure 3.2: Cruz & Chua's CNN cell. [55] 

In a similar way a CNN containing local digital memory and logic 

was realized by Halonen and et al. [57]. A 4×4 prototype was realized in 

2µm CMOS technology. In this prototype each cell contained about 500 

transistors and occupied 1mm
2
. Settling time was about 3µs.  Moreover, 

the weights were programmable in a discrete set and biased 

continuously. 

Also a fully-programmable scheme based on Operational 

Amplifiers (Op-Amp) and variable conductance blocks was proposed by 

Nossek et al [58] as shown in Figure 3.3. The inner cell circuit in their 

proposed design was first transformed by adding an op amp, so that 
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currents could be drawn from virtual ground node instead of inner node, 

thereby stabilizing its voltage against loading effects. 

 

Figure 3.3: Equivalent inner circuit structures. 

The circuit is then transformed to a balanced structure as shown in 

Figure 3.4 that employs variable conductance blocks that can be realized 

with four transistors, as in Figure 3.5. 

 

Figure 3.4: Balanced inner circuit structure. 

 

Figure 3.5: Balanced variable conductance block. 

Almost the same structure was used by Harrer and et al [59] to 

design a DT-CNN. A 4×4 prototype on hexagonal grid was fabricated in 

1.5µm CMOS technology, with 12cells/mm
2
. The circuit was checked to 

operate correctly at 1MHz clock frequency. 
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Rodriguez-Vazquez and et al. took a different approach [60].  

They associated all variables to currents. The reason to abandon voltage 

variables is that combination of voltage and current variables 

complicates design for the necessity of scaling signals to compensate 

nonlinearities, and requires high impedance internal nodes, that cause 

large time constants to appear. Besides, an efficient way of realizing 

input is by means of photo sensors that give current output. 

The design given by Rodriguez-Vazquez and et al. was based on 

the FR-CNN model, obtaining simplified design, good speed/power 

ratio and low cell complexity. Basic building blocks for this realization 

were current mirrors, which were used for weighted state replication for 

connections, and to realize lossy integration and delay operators 

required to generate continuous- or discrete time dynamics Figure 3.6. 

    

(a)                                                    (b) 

Figure 3.6: (a) lossy integrator; (b) half-clock delay in current mode. 

Realization and testing of several CT and DT prototypes in 1.6µm 

CMOS technology are reported in [60]. 9×9 and 1×16 CT prototypes 

have less than 20 transistors per cell and 60 to 160 cells/mm
2
 density is 

achieved. These circuits settle in about 0.25 to 1.5µs. A DT-CNN 
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programmable 9×9 network with local logic was successfully tested at 5 

MHz clock frequency.  

In practical realizations the important issues that need to be 

confronted are those of control and initialization. Generally, accessing 

all cells by means of electronic signals at once is impossible because of 

the excessive number of lines required. Multiplexed accessing (e.g. by 

rows) is therefore necessary, together with analog storage, that may be 

done by capacitors connected to voltage followers. Besides, the weight 

programming is one of the most difficult task. 

The easiest case is when cloning templates are used, and 

programming is only allowed in discrete values, that can be selected by 

a few global lines and some local logic and memory. Using on-chip 

photo sensors as input devices is a promising alternative, especially for 

image processing purposes.  

An attempt to realize CNNs was also attempted by use of optical 

devices [58]. Main advantages are speed-of-light computing in the 

forward path along with the possibility of large neighbourhood. 

However, bottlenecks occur in electronic addressing of cells for input 

(but optical addressing might also be implemented) and in electronic 

feedback of intermediate results. 

Liquid crystal devices (Spatial Light Modulators - SLM), and 

lenses are the main building blocks for the optical realization. SLMs are 

used to perform analog multiplication between images, by applying 

variable attenuation to an image transmitted through the panel. Their 

nonlinear sigmoid-like transparency vs. voltage characteristic is also 

used to implement output nonlinearity. Lenses are used to realize cross-

correlation with cloning template. In fact, they realize a Fourier 

transform, which can be followed by SLM multiplication by a hologram 
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representing cloning template. Inverse transform is obtained by another 

lens, after observing that a second direct transform yields a mirror image 

of the desired inverse transform. Complete optical CNN block scheme is 

depicted in Figure 3.7 [57]. 

 

Figure 3.7: Optical realization of a DT-CNN. 

In order to minimize speed limitations of optical CNNs, design 

should concentrate on minimizing the number of time steps necessary to 

obtain desired task, by maximizing derivatives of state components and 

enlarging neighbourhood size [61]. 

3.4 Conclusion 

Among the software simulation in conventional computers and a 

special hardware solution for the implementation of neural networks, the 

lateral one is the most preferred way. The hardware implementation of 

neural networks gives a lot of advantages over the software 

implementation. Besides the speed that the hardware implementation 

provides owing to its parallel nature it is also cost efficient. However 

one of the most difficult part in the implementation of neural network is 

its training.  
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Chapter 4:   Low-Voltage Low-Power Analog Design 

4.1 Introduction 

Besides the need of hardware implementation of ANNs, as 

discussed in the previous chapter, another matter of great concern is the 

power and voltage requirements of the ANN electronic circuits. It is 

important that the designed circuits consume less power and also should 

be able to operate al low voltage levels.  

 The advancements in the VLSI technologies have led to the 

dramatic increase in the achievable integration densities that has made 

possible to achieve the rapid improvement of circuit functionality. But 

unfortunately the battery technologies do not evolve as fast as 

applications demand, so the combination of battery supply and 

miniaturization often turns into a low-voltage and/or low-current circuit 

design problem. In particular, these restrictions affect more drastically 

the analog part of the whole mixed system-on-chip. As a result, specific 

analog circuit techniques are needed to cope with such power supply 

limitations. In [62] Wang et al have suggested that weak inversion mode 

is one of the remedy suitable for the design of continuous time ultra-low 

power systems. 

In our work we have tried to use the companding technique (Sinh-

Domain (SD)) to achieve the goal of low-power low-voltage design of 

ANNs. The implementation of different analog activation functions for 

ANNs in SD companding technique is done besides the implementation 

of SD complex TD-CNN cell, which are presented in the chapters to 

follow. But firstly, a short description of the specific circuit approaches 

for low-voltage operation is listed below: 
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 Rail-to-Rail: this includes all the strategies oriented to extend 

the signal voltage range up to the available room between 

supply rails. Most of the techniques under this category are 

mainly based on the redesign of the input and output stages in 

order to increase their linear range [63–67]. 

 Multistage: instead of single cascaded structures multiple but 

simple cascaded stages are used in this technique.  Efforts are 

then focused on their frequency stabilization with nested 

compensating loops [68, 69]. 

 Bulk-Driven: strategies make use of the MOSFET local 

substrate as an active signal terminal to obtain lower 

equivalent threshold voltages [70, 71]. 

 Supply Multipliers: a step-up conversion of supply voltage 

through charge pumps [72–78], typically from 1.5V to 3V, to 

bypass the low-voltage restriction. 

The said low-voltage techniques have the following drawbacks: 

 The said low-voltage strategies are only the  partial  solutions  

since  they  are  addressed  mainly  to  the  design  of 

operational amplifiers only. This is not the case only in case of 

strategies which employ supply multipliers. 

 The bulk-driven option is also in opposition to general anti-

latch-up rules of any standard CMOS process. 

 Although  the  most used solution  for  very  low-voltage  

operation  is using  supply  multipliers but they require  large  

capacitive components, which take an important Si area 

overhead and exhibit high extra current consumption. Thus 

making them unsuitable for small package and low current 

applications. 
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In a similar way, the main circuit techniques for low-current 

consumption applications are enumerated as follows: 

 Adaptive Biasing: to optimize consumption according to 

signal demands a non-static current bias is used. Bias 

dynamics are defined either by local positive feedback [79, 80] 

or by feed-forward [81, 82] controls. 

 Subthreshold Biasing: MOS transistors operating in the weak 

inversion region at very low-current levels are utilized in these 

topologies [83]. 

In addition to the techniques mentioned above, LP LV designs have 

been achieved by substituting traditional voltage-mode techniques by 

the current-mode techniques. Current-mode approaches deserve 

particular mention [84] since they provide a large dynamic range for the 

currents, considered now as processing variables, while maintaining 

reduced voltage swings, being accompanied by an increase in circuit 

bandwidth. Therefore, many current-mode techniques came into 

existence, Companding-mode design being one such technique for 

AICs. Companding describes the linearization mechanism in which the 

signals are first compressed to an intermediate integration node and then 

subsequently expanded after being processed. The distinct characteristic 

from the classical techniques is that it is the large-signal transfer 

function of the circuit that is linearized and not the individual trans-

conductance or active resistive elements. Thus the Companding systems  

perform  an externally Linear and Time-Invariant (LTI) operation on the 

signal, even though internally this is not  the  case;  these  systems  can  

thus  be  considered  as  a  particular  case  of  Externally Linear and 

Internally Nonlinear (ELIN) systems [85]. 
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4.2 Companding Techniques 

In companding, the input and output amplifiers can have 

characteristics of the form y= gx with a variable gain g. The gain of 

these amplifiers is made to depend on the input signal. We have two 

special companding techniques that are described depending upon how 

gain is dependent on the signal. 

 Instantaneous companding: The  input  amplifier  includes  

nonlinearity  whose  slope  (equivalently,  the  small signal 

gain) decreases as the input  increases. The output amplifier 

should have the opposite behaviour. This case, where the 

output of the amplifier is a nonlinear function  of  the  

instantaneous  value  of  the  input  is  termed  instantaneous 

companding. 

 Syllabic companding:  In this case, the output of the amplifier 

is a nonlinear function of an average measure of the input 

signal strength (e.g.  The envelope or the root-mean-square 

value). 

4.3 Types of Companding 

Low-voltage operation is the current requirement for realizing 

analog designs and an endeavour of achieving these goals thus gained a 

significant research effort. Companding technique for designing the 

analog circuits is an interesting technique with potential for low-voltage 

operation. In companding the linear input current is initially converted to 

a non-linear compressed voltage and then processed by a companding 

core. The resulted compressed output voltage is then expanded and 

simultaneously converted into a linear current. The three of ways in 

which input current compression could be performed are given as:  
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 Log-Domain (LD) companding: compression through the 

logarithmic V–I relationship of bipolar transistor in active 

region or MOS transistor in weak inversion [86–90]. 

 Square-Root Domain  (SRD) technique: compression through  

the  square-root V–I  relationship  of  MOS  transistor  in  

strong inversion [91–94]. 

 Sinh-Domain  (SD)  companding: compression through the  

inverse  of  the  hyperbolic  sine  function  realized  by  

translinear loops  formed  by  bipolar  transistors  in  active  

region  or  MOS  transistors  in weak inversion [95– 97]. 

The concept of LD companding was first introduced in the 1970's 

[98]. LD belongs to instantaneous companding systems that use 

Logarithmic (LOG) and Exponential (EXP) functions for compression 

and expansion [99] respectively. This makes it possible for LD circuits 

to operate with very low supply voltage without sacrificing the dynamic 

range. Also, these circuits contain low impedance nodes along the signal 

path, which can be exploited to achieve greater bandwidths. But LD 

circuits are limited by the fact that they have to be operated in class A, 

i.e., a DC component has to be introduced at the input in order to 

guarantee their proper operation [100]. This constraint increases the 

quiescent power consumption and severely limits the dynamic range that 

is potentially offered by the companding action. Besides, they are also 

sensitive to threshold voltage matching, and the bandwidth becomes 

restricted due to its limited operation that is merely within the kHz 

range. 

The problems encountered in the above method were solved by 

using MOS transistors operated in the strong inversion; the resulted 

circuits are known as SRD circuits, due to the quadrature I-V 
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characteristic of MOS transistor in strong inversion region [101–106].  

But SRD has its limitations too. They like LD do not have inherent 

class-AB nature. The most used technique, now days, is SD 

companding. 

4.4 Sinh-Domain (SD) Companding 

Sinh-Domain (SD) companding is an important technique for 

realizing analog circuits with inherent class-AB nature. In contrast to LD 

where a pseudo class-AB operation is realized by establishing two 

identical class-AB signal paths and employing a current splitter at the 

input, the required current splitting is simultaneously realized with the 

compression of the linear input current and its conversion into a non-

liner voltage. The produced intermediate output currents are then 

subtracted in order to derive the final output. Besides, the 

aforementioned feature, SD technique also offers the capability for 

electronic adjustment of their frequency characteristics because the 

realized time constants are controlled by a dc current. Because of the 

companding nature, SD circuits also allow the capability of operation 

under a low-voltage environment. SD compared to their corresponding 

counterparts LD and SRD, offer more power efficient realizations but 

the price paid may be an increased circuit complexity [95, 96, 107, and 

108]. 

The basic building blocks of the Sinh Domain technique are Sinh 

and Sinh
-1 

operators, Lossy and Lossless Integrators, and, algebraic 

summation/subtraction blocks. Therefore, SD design of the said blocks 

will be discussed in the following section. 

4.4.1 Sinh-Cosh (SC) transconductor cells 

The weak inversion MOSFET (WIMOSFET) based Sinh, Cosh, 

negative Sinh and negative Cosh cells along with their corresponding 
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symbols are given in Figures 4.1(a)−(d). In case of Figure 4.1(a) and 

4.1(b) utilizing the translinear principle (109) and performing a routine 

algebraic analysis, it can be easily obtained that the output currents are 

given by the following equations 

 

(a) 

 

(b) 

 

 

(c) 
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(d) 

Figure 4.1: (a) Positive Sinh, (b) Positive Cosh, 

(c) Negative Sinh and (d) Negative Cosh transconductor cell. 
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where, UT= nVT, n is the sub-threshold slope factor of a WIMOSFET 

and VT is the well-known thermal voltage. The corresponding S cell 

with an inverted output is shown in Figure 4.2(b). Using  Equation  4.1  

and  inspecting  the  topology  in  Figure 4.2(a),  it  is  readily obtained  

that  the  voltage  ( INv̂ )  at  its non-grounded  terminal  is  given  by  

Equation 4.3.  That is, a linear input current is converted into a 

compressed voltage. In addition, from the configuration in Figure 4.2(b) 

and the employment of Equation 4.1, it is derived that the expression in 

Equation 4.4 is realized. In other words, the topology in Figure 4.5(b) 

performs an expansion of a compressed voltage and simultaneously a 

conversion of it into a linear current. Consequently, the topologies in 

Figure 4.5 perform two complementary operations as those described by 

SINH
−1 

and SINH operators introduced in Equations 4.3 and 4.4, 

respectively. 
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(a)                                            (b) 

Figure 4.2: Realization of the SD operators: (a) SINH
−1

 and (b) SINH. 
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Expressions for COSH and COSH
-1

 can be derived in a similar 

manner and are given as 
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For the simplification of the circuit complexities we can make use 

of a multiple output transconductor cell where we get all the functions 

from the same circuit as depicted in Figure 4.3. In a similar way with 

slight change in the topology of circuit of Figure 4.3 we can achieve the 

circuit that will give multiple Sinh outputs, multiple Cosh outputs and so 

on. 
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Figure 4.3: Multiple output non-linear transconductor cell. 

 

4.4.2 Low-Voltage Two-Quadrant SD Divider 

Another important block is a two-quadrant multiplier/divider 

block. Following a similar concept to that introduced in [59] the 

derivation of this class-AB divider will be performed. The topology and 

the corresponding symbol are depicted in Figure 4.4, where the label 2Q 

depicts the two-quadrant operation capability of the cell. This originates 

from the fact that both currents I0 and i2 are dc bias currents and, 

consequently, they must be strictly positive. In addition, due to the 

employment of the proposed S cell, the benefit for low-voltage operation 

capability is preserved. 

According to Equation 4.4 and the fact that the cell S1 is biased at 

a current i2, the intermediate voltage  v̂ is given by Equation 4.5 as 
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where, VDC is a dc voltage. 

The configuration of the cell S2 establishes that its output current 

could be written, using Equations 4.4 and 4.5, as in Equation 4.6 
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                   (a)                             (b) 

Figure 4.4: (a) Two-quadrant multiplier/divider and (b) associated symbol. 

4.4.3 SD Summation/Subtraction Block 

The realization of SD algebraic summation block with a weighted 

input is that given in Figure 4.5. Applying the KCL at the output node, it 

is derived that 
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Using Equations 4.4 and 4.7 can be written as 

      21
ˆˆˆ

ININOUT SINHaSINHSINH       (4.8) 

 

Figure 4.5: SD algebraic summation/subtraction block with weighted input. 
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4.4.4 SD Integrators 

A typical configuration of SD two-input lossless integrator, 

constructed from blocks mentioned is demonstrated in Figure 4.6(a). 

The current that flows through the capacitor Ĉ  is given by 
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After some algebraic manipulations, we have 
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(4.10) 

Defining the pair of inverse SINH
-1 

and SINH mappings as given 

in Equations 4.3 and 4.4, we can rewrite Equation 4.10 as 

 )ˆ()ˆ()ˆ(ˆ
INIPOUT vSINHvSINHvSINH

dt

d
    (4.11) 

where, oT ICU 2ˆ  , is the time-constant in SD. As the value of ̂  is 

dependent on oI , which can be changed externally, the SD circuits 

possess the inherent property of tunability. 

 The SD two-input damped (lossy) integrator is shown in Figure 

4.6(b). Following the same procedure, the input-output relationship of 

the damped integrator can be given as: 

 dtvSINHvSINHvSINH
UC

I
vSINH OUTINIP

T

o
OUT   )ˆ()ˆ()ˆ(

ˆ

2
)ˆ(

 

 (4.12) 
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(a)                                                                       (b) 

Figure 4.6: SD Integrators. (a) Two-input SD lossless integrator. (b)Two input SD 

lossy integrator. 

In  Laplace  domain,  the  input-output  relationships  of  the  SD  

two-input  lossless and lossy integrators can be respectively given by 

Equations 4.13 and 4.14. 
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where, 
T

m U
I

g 02
 , is the trans-conductance of the SC cell and ( Cgm

ˆ ) is 

the reciprocal of the integrator‘s time-constant. 

4.5 Conclusion 

A brief introduction about the need of Low-power Low-voltage 

circuit implementation along with the different ways of achieving it is 

presented in this chapter. Among the various techniques used for Low-

power Low-voltage circuit designing Companding techniques is 

elaborated with special emphasis being laid on the Sinh-Domain 
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companding technique. Various building Blocks required in SD 

companding circuit design are discussed besides their characteristic 

equations are also derived in this chapter.  
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Chapter 5:   Sinh-Domain Implementation of Various Activation 

Functions 

5.1 Introduction  

The main building block of neuron is the activation function.  

Among  the  activation functions,  the  sigmoid  and  hyperbolic  tangent  

functions  are  most  often  used  in  the  design  of  ANNs [110]. These 

activation functions have a wide range of applications in Sigma-pi and 

Hopfield neural networks in addition to being employed in multilayer 

perceptron neural network. 

 Straightforward  implementation  of  these  functions  in  

hardware  is  not  practical  because  it  will require  exponentiation  and  

division,  both  of  which  are  expensive operations. Several different 

approaches exist for the hardware implementation of the activation 

functions, including piecewise linear approximation, piecewise non-

linear approximation, and lookup tables [111–114]. As per author‘s best 

knowledge, only few attempts have been made in the open literature to 

obtain direct realizations of activation functions [115–122].  Most of 

these implementations are either using high voltage circuits or floating 

gate MOSFETs which is a costly technique in itself. 

 In this chapter, the SD technique has been employed to design 

circuits to achieve three different activation functions (Tanh, Unipolar 

Sigmoidal and Bipolar Sigmoidal). Attractive offered benefits are the 

capabilities for achieving resistor less realizations, electronic 

adjustment, and operating in a low-voltage and low-power environment 

essential for hardware NN design.  In  fact  the  electronic  adjustment  

feature  can  be  explored  for programming  the  network  in  the  form  
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of  weights  to  obtain  the  various  logic  functions.  In addition,  the  

inherent  class-AB  operation  of  SD technique  offers  the  capability  

for handling signals greater than the bias current , leading to a power 

saving  [123–131].  It is worth to mention here that added advantage of 

the SD technique is that the transistors do not have to jump from one 

region to the other thereby avoiding the noise spikes to the power line 

[115]. 

 The SD design of activation functions are used to design single 

neuron network and multilayer perceptron whose weights are trained in 

such a manner that the network implements various logic gate functions.  

 The chapter is organized as follows: the multi-layer perceptron 

and the activation functions are introduced in Section 5.2. The SD 

implementation of activation functions, single neuron network, multi-

layer perceptron and the SD building blocks are presented in Section 5.3 

while as the derived simulation results are presented in Section 5.4. 

5.2 Neural Network Design  

The multi-layer perceptron design of neural network is shown in 

Figure 5.1, where the dash line enclosed blocks represent the neuron 

circuit. 

 

Figure 5.1: A Multilayer Perceptron. 
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 It is clear from the diagram that it contains two neurons in the 

hidden layer and one neuron in the output layer. The multi-layer 

perceptron can be mathematically represented by Equation 5.1 
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Where jiW , are weights, kb  is the bias, and AF is the activation function. 

 An important component of artificial neural network is the 

nonlinear activation function, which is used at the output of every 

neuron. Therefore, the special focus is laid on its implementation during 

the hardware implementation of neural networks.  

 Several  different  activation  functions  are  available  today  

including  the  sigmoid,  hyperbolic tangent (Tanh) and step functions 

[132]. The Tanh and sigmoid functions both produce a curve with an 

―S‖ shape.  Mathematically, these functions are defined by Equations 

5.2 − 5.4 as 
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 The proposed idea of their SD implementations is expressed in 

Equations 5.5 − 5.7. 
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 From  Equations  5.5 − 5.7,  it  is  clear  that  the  required  

operations  for implementing the activation functions are Sinh, Cosh, 

summation/subtraction,  and  multiplication;  these  could  be readily  

realized  through the SD circuit  design  technique as discussed in 

chapter 4. Further, the included constants K1, K2 and K3 will get 

electronically adjusted in the associated weights. The implementation of 

these activation functions in SD is given in the next Section. 

5.3 SD design of activation function and multi-layer perceptron 

5.3.1 SD Building Blocks 

As we have already seen in chapter 4 the non-linear 

transconductor cell [127, 128] depicted in Figure 5.2 realizes the 

expression given by Equation 5.8 for a hyperbolic sine output 
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by Equation 5.9 for an hyperbolic cosine output 
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by Equation5.10 for an inverted hyperbolic sine output 
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by Equation5.11 for an inverted hyperbolic cosine output 
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 In Equations 5.8 − 5.11, Io is a dc current, VT is the thermal 

voltage (26mV @ 27
o
C), n is the sub-threshold slope factor (1<n<2), 

and are the voltages at the non-inverting and inverting inputs, 

respectively. 

Also,  the  two-quadrant  divider  employed  in  the  design  of  

activation  functions and multilayer perceptron is constructed from 

appropriately configured S cells as shown in Figure 5.3, in order to 

realize the relationship given  by Equation 5.12. 

2

1

i

i
Ii oOUT                                                              (5.12) 

 
Figure 5.2: Multiple output non-linear transconductor cell. 

  

 
Figure 5.3: Two-quadrant multiplier/divider. [130] 
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5.3.2 SD Realization of Activation Functions 

The  SD  realizations  of  Tanh,  Unipolar  Sigmoidal  and  

Bipolar  Sigmoidal  activation functions  are  respectively  given  in  

Figures 5.4(a) − (c),  respectively.   

 

(a) 

 

(b) 

 

(c) 

Figure 5.4: SD realization of activation functions (a) Tanh, (b) Unipolar Sigmoidal, 

and (c) Bipolar Sigmoidal. 
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After routine algebraic manipulations the equations  for Tanh, 

Unipolar  Sigmoidal and Bipolar Sigmoidal activation functions can be 

obtained as given by Equations 5.13, 5.14, and 5.15 respectively 
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where,  K1, K2 and K3 are respectively given by Equations 5.16, 5.17, 

and 5.18 as 













21

11
311

o

o
o

I

I
IK       (5.16) 













22

12
322

o

o
o

I

I
IK       (5.17) 













23

13
333

o

o
o

I

I
IK       (5.18) 

5.3.3 SD Realization of Single Neuron Network and Multi-Layer 

Perceptron  

The SD realizations of the single neuron network and multi-layer 

perceptron using the three activation functions given in Figure 5.4 are 

respectively given in Figures 5.5(a) and 5.5(b).  
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(a) 

 

(b) 

Figure 5.5: SD realization of: (a) Single neuron Network (b) Multi-layer perceptron. 
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 The single layer and multi-layer perceptron can be mathematically 

represented in SD by Equations 519 and 5.20 respectively. 
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 It  is  worth  to  mention  here  that  the  I-V  converter  circuit  

given  in  reference  [133]  has  been employed in Figure 5.5.  

5.4 Simulation Results 

The SD circuits were simulated using the SPICE software and the 

model parameters of 0.35µm AMS CMOS process were utilized for the 

MOS transistor. The chosen bias scheme is given in Table 5.1. The 

aspect ratio of MOS transistors employed in the non-linear 

transconductor cell in Figure 5.2 are given in Table 5.2. The bias scheme 

was realized by employing current sources and current-mirrors in order 

to distribute the required dc bias currents. For this purpose PMOS 

transistors with aspect ratio 55m/1.5m have been employed. With the 

above mentioned values the input output characteristics of the three 

activation functions are given in Figure 5.6.  

 The  activation  functions  almost  show  symmetry  in  the  

saturation  levels,  or,  if  not, nonzero  offset.  It  is  desirable  to  have  

a  function  with  programmable saturation  limits,  so  that these can be 

adjusted to control the dynamics  [116].  For programmable saturation 

limits together with the monolithic integration feature, electronic tuning 

of the circuits is a desired parameter. Out of the reported 

implementations, only reference [116] includes the tunability of the 

saturation limits. In order to demonstrate the electronic tunability of the 
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proposed circuits, currents I012 and I022 are tuned to change the saturation 

limits of the unipolar sigmoidal activation function and the results are 

given in Figure 5.7.  

The SD single layer and multi-layer perceptron given in Figure 

5.5 have been trained using the back propagation algorithm in the 

MATLAB environment to obtain the outputs of the various logic 

functions. For this purpose, Figure 5.5(a) has been trained for NOT 

(single input and single weight), AND, OR, NAND and NOR, and, the 

employed values of the weights and biases for different logic functions 

are given in Table 5.3(a) for NOT and 5.3(b) for AND, OR, NAND and 

NOR. Secondly, the multi-layer perceptron given in Figure 5.5(b) has 

been trained for typical XOR function and the employed values of the 

weights for different activation functions are given in Table 5.3(c).  The 

obtained results of the NOT, AND, OR, NAND, NOR and XOR 

functions, for different activation functions are respectively given from 

Figure 5.8 to Figure 5.13.  

       
  (a) (b) (c) 

Figure 5.6: Input/output characteristics of activation functions (a) Tanh (b) Unipolar 

Sigmoidal (c) Bipolar Sigmoidal. 
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Figure 5.7: Demonstration of electronic tunability of saturation limits for Unipolar 

Sigmoidal Activation Function. 

 

 

 

(a)         (b)           (c) 

 Figure 5.8: Simulation results of trained single neuron network for NOT 

function (a) Tanh function (b) Sigmoidal function (c) Bipolar Sigmoidal function. 
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(a)           (b)         (c) 

Figure 5.9: Simulation results of trained single neuron network for AND function, 

(a) Tanh function (b) Sigmoidal function (c) Bipolar Sigmoidal function. 

 

 

 

     (a) (b) (c) 

Figure 5.10: Simulation results of trained single neuron network for OR function,  

(a) Tanh function (b) Sigmoidal function (c) Bipolar Sigmoidal function. 
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 (a) (b) (c) 

Figure 5.11: Simulation results of trained single neuron network for NAND function, 

(a) Tanh function (b) Sigmoidal function (c) Bipolar Sigmoidal function. 

 

 

 

 

 (a) (b) (c)  

Figure 5.12: Simulation results of trained single neuron network for NOR function, (a) 

Tanh function (b) Sigmoidal function (c) Bipolar Sigmoidal function. 
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(a)    (b)          (c) 

Figure 5.13:  Simulation results of trained single neuron network for XOR function, 

(a) Tanh function (b) Sigmoidal function (c) Bipolar Sigmoidal function. 

 

 It  is  worth  to  mention  here  that  the  easy  training  of  the  

various  logic  functions  has  been possible due to the inherit flexibility 

of the circuits which  is due to the fact that the weights are represented 

by the current sources. The current sources can be adjusted externally 

which leads to the complete integrability of the proposed circuits. 

 The total power dissipation of various circuits is given in Table 

5.4. From Table 5.4, it is clear that  the  proposed  circuits  consume  

smaller  power  than  the  only  value  (134nW)  reported  in Reference 

[122].  Further, the proposed SD uses lower supply voltage than the 

reported implementations and is therefore compatible with the 

contemporary IC design. 
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Parameter Value Parameter Value 

VDD 0.5V 
012I  25pA 

VDC 0.1V 
022I  25pA 

0I   1pA 
032I  100pA 

01I  30pA 
013I  15pA 

02I  30pA 023I  15pA 

03I  100pA 033I  50pA 

Table 5.1: Bias scheme for the circuits. 

 

Transistor Aspect Ratio 
Mp1-Mp4 35um/0.55um 

Mp5-Mp12 58um/0.6um 

Mn1-Mn8 21um/1um 

Table 5.2: The aspect ratio of MOS transistors employed of the non-linear 

transconductor. 
 

 

Weights & 

bias 

Tanh 

function  

Unipolar 

Sigmoidal 

Bi-polar 

Sigmoidal 

W1,1 -17.73pA -38.93pA -18.73pAdc 

B 45.87pA 83.87pA 35.87pA 

(a) 

 

Activation 

Function 

Weight 

and 

bias 

Logic Function 

AND OR NAND NOR 

Tanh 

W1,1 6.98pA 9.25pA  -7.99pA -9.25pA 

W2,1 6.98pA 11.25pA  -7.480pA -11.25pA 

B -21.87pA -111.07pA 38.87pA 111.07pA 

Unipolar 

Sigmoidal 

W1,1 5.83pA 10.80pA -5.80pA -10.80pA 

W2,1 5.98pA 12.88pA -5.88pA -12.88pA 

B -17.97pA -110.87pA 18.87pA 110.87pA 

Bi-polar 

Sigmoidal 

W1,1 10.88pA 6.80pA -6.98pA -11.80pA 

W2,1 10.88pA 6.88pA -6.98pA -12.88pA 

B -15.98pA -92.87pA 15.87pA 110.87pA 

(b) 
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Weights & 

bias 

Tanh function  Unipolar Sigmoidal Bi-polar 

Sigmoidal 

W1,1 -30.83pA -28.99pA -30.83pA 

W2,1 11.98pA 11.64pA 11.98pA 

b1 -7.97pA -7.97pA -7.97pA 

W1,2 28.21pA 27.11pA 28.21pA 

W2,2 -42.96pA -40.44pA -42.96pA 

b2 -9.70pA -9.70pA -9.70pA 

W1,3 -9.99 pA -5.821pA -3.5740pA 

W2,3 -8.984pA -5.58pA -3.56pA 

b3 101.89pA 191.89pA 284.89pA 

(c) 

Table 5.3: Weights and bias for different activation functions for: (a) NOT (b) AND, 

OR, NAND and NOR (c) XOR 
 

 NOT AND OR NAND NOR XOR 

Tanh 

function 

2.82nW 5.24nW 17.18nW 2.82nW 2.85nW 7.42nW 

Unipolar 

Sigmoidal 

1.34nW 4.36nW 13.90nW 1.36nW 2.55nW 8.46nW 

Bi-polar 

Sigmoidal 

3.58nW 2.62nW 16.81nW 4.10nW 3.64nW 8.25nW 

 

Table 5.4: Total power dissipation of the SD neural network trained for various logic 

functions employing the three activation functions. 

 

5.5 Conclusion 

Low-power low-voltage realizations of three activation functions 

using SD technique have been introduced. The SD realizations of the 

activation functions have been subsequently applied to realize the 

artificial neural network. Finally, the neural  network has been trained  

to obtain  the  all  the  basic,  universal  and  typical  XOR  logic  

functions. The performed simulation results verify the theoretical 
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predictions. The simulation results indicate that the realized low-voltage 

NN can be well applied for computational purposes with contemporary 

technology requirements. 
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Chapter 6:   Conclusions and Scope for Future work 

6.1 Conclusion   

An attempt to summarize the work done during the course of this 

study is made in this chapter. The physical realization of circuits 

presented in this dissertation was not done due to the lack of adequate 

resources at the place of research. The theoretical behaviour of the 

circuits has only been supported by SPICE simulation results.  

The present investigation is primarily concerned with the study 

and design of low-voltage low-power neural networks (NNs). The 

motivation for this study emanated because NNs are finding a great deal 

of applications. They are being applied successfully across an 

extraordinary range of problem domain, in the areas as diverse as 

medicine, engineering, physics, finance, and biology. Furthermore 

design of circuits using low-voltage low-power techniques is the 

demand of the day. The amalgamation of low-voltage low-power 

technique and ANNs will prove to be very fruitful. Though work on the 

low power implementation of ANNs is already present in the literature 

but no work is present in the field of ANN implementation using 

companding techniques. In this work the implementation of various 

analog activation functions, which are one of the main component in the 

design of ANNs, and single cell architecture of complex TD-CNN is 

done in Sinh-Domain companding technique.  The circuits have been 

tested using simulation results and verified for theoretical predictions.  

Furthermore, the idea about implementation of CNN network, which 
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will later be trained for real time image processing, is also drawn at the 

end of this chapter. 

Chapter 1gives a brief idea about the motivation for the study and 

objectives achieved in the dissertation.  

Chapter 2 gives the brief introduction of the NNs. The inspiration 

of designing ANNs drawn from the biological neuron is given in this 

chapter. Besides CNNs are discussed in details and different types of 

CNNs is also presented in the chapter. 

Chapter 3 discusses the need for the hardware implementation of 

ANNs. Besides, different types of hardware implementation of ANNs 

and the difficulties in achieving hardware implementation are also 

included. Furthermore the special emphasis is lead on the hardware 

implementation of CNNs along with the different approaches of 

achieving its hardware. 

Chapter 4 presents a brief introduction of different techniques for 

low-power low-voltage implementation given in the literature. 

Companding techniques for designing low-power low-voltage circuits 

are discussed with the special emphasis on the SD companding 

technique. Besides various building blocks for the implementation of 

low-power low-voltage circuits in the SD technique are discussed in this 

chapter. 

In chapter 5, analog activation functions (unipolar sigmoidal, 

bipolar sigmoidal and Tanh) implemented utilizing SD companding 

technique is presented. Besides, the designed activation functions are 

used in designing single-layer and two-layer perceptron whose weights 

are trained in such a manner that the network implements various logic 

gate functions. 
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6.2 Suggestions for Future Work 

Despite much work has been done on low-voltage low-power 

designing of ANNs and in spite of the fact that wealth of the literature is 

available on the subject, there is still a lot of scope to further this 

knowledge. 

The simulated results may not be exactly same as the results 

obtained from the hardware implementations despite the fact that SPICE 

simulators now have the capability to model the devices as close to the 

actual parameters. Thus, the first and foremost proposal for further work 

is to implement the proposed circuits in silicon. The proposed designs 

then can be applied by the real time signal obtained from the live source. 

This will give the scope for improving the circuit performances. 

The designed activation functions are tested for their 

implementation for digital functions only but for further consideration 

they can be utilized for training and implementation of pure analog NNs 

besides their performances tested for different analog ANNs.  

Also for the future works, the new nano-electronic devices (Multi-

Gate FETs) can be used for designing of companding circuits. As the 

devices are compatible with the present planer CMOS technology and 

helps in designing of low-voltage circuits, their assimilation with 

companding techniques will help in further reduction of voltage and 

power requirements. Along with this, the newly found, the fourth basic 

circuit element ‗Memristor‘ which has the property of remembrance 

besides the property of changing its value with the applied supply value, 

they are thought to be well suited for the implementation of synaptic 

connections of NNs. So the utilization of Memristors in the designing of 

ANNs can be tested and then those NNs can be used for achieving 

different applications.  
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C: Nomenclature 

Activation Functions (AFs) 

Artificial Neural Network (ANN) 

Bipolar Complementary Metal Oxide Semiconductor (Bi-CMOS) 

Boltzmann’s Constant (k) 

Cellular Neural Network (CNN) 

Continuous -Time Cellular Neural Network (CT-CNN) 

Discrete-Time (DT) 

Discrete-Time Cellular Neural Network (DT-CNN) 

Externally Linear and Internally Nonlinear (ELIN) 

Full Signal Range (FSR) 

Hardware Accelerator Board (HAC) 

International Technology Roadmap for Semiconductors (ITRS) 

Linear and Time-Invariant (LTI) 

Log-Domain (LD) 

Low-Power Low-Voltage (LP LV) 

Micro-Electro-Mechanical System (MEMS) 

Micro-Meter (um) 

Milli-Volt (mV) 

Nano-Watt (nW) 

Operational Amplifiers (Op-Amp) 

Operational Transconductance Amplifiers (OTA) 
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Pico-Ampere (pA) 

Pico-Farad (pF) 

Piecewise linear (PWL) 

Resistance Capacitance (RC) 

Sinh-Domain (SD) 

 Spatial Light Modulators (SLM) 

Square-Root Domain (SRD) 

Very Large Scale Integration (VLSI) 

Voltage-Controlled Current Sources (VCCS) 

Weak Inversion MOSFET (WIMOSFET) 

 

 

 

 

 

 


