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ABSTRACT

In Chapter 1, we present a brief introduction of digraphs and some def-

initions. Chapter 2 is a review of scores in tournaments and oriented graphs.

Also we have obtained several new results on oriented graph scores and we

have given a new proof of Avery’s theorem on oriented graph scores. In chap-

ter 3, we have introduced the concept of marks in multidigraphs, non-negative

integers attached to the vertices of multidigraphs. We have obtained several

necessary and sufficient conditions for sequences of non-negative integers to

be mark sequences of some r-digraphs. We have derived stronger inequalities

for these marks. Further we have characterized uniquely mark sequences in

r-digraphs. This concept of marks has been extended to bipartite multidi-

graphs and multipartite multidigraphs in chapter 4. There we have obtained

characterizations for mark sequences in these types of multidigraphs and we

have given algorithms for constructing corresponding multidigraphs. Chap-

ter 5 deals with imbalances and imbalance sequences in digraphs. We have

generalized the concept of imbalances to oriented bipartite graphs and have

obtained criteria for a pair of integers to be the pair of imbalance sequences

of some oriented bipartite graph. We have shown the existence of an oriented

bipartite graph whose imbalance set is the given set of integers.
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CHAPTER 1

Introduction

1.1 Background

The theory of digraphs (or directed graphs) is one of the richest theories

in Graph Theory and has developed enormously within the last three decades.

There is an extensive literature on digraphs (more than 3000 papers). Many

of these papers contain, not only interesting theoretical results, but also

important algorithms as well as applications. The earlier work for digraphs

can be found in Chartrand [10], Harary et. al [27], Chartrand and Lesniak-

Foster [9] and Behzad, Chartrand [8]. The recent book on digraphs is by

Jorgen Bang-Jensen, Gregory Gutin [30]. There are numerous applications

of directed graphs in many areas of science and technology. Algorithms on

(directed) graphs often play an important role in problems arising in several

areas, including computer science and operations research. Secondly, many

problems on (directed) graphs are inherently algorithmic.

The concept of degrees and degree sequences in graphs has been ex-

tended to digraphs in many ways, like outdegrees, indegrees, scores, imbal-

ances and marks as seen in the present work. This concept of attaching a

non-negative integer to the vertices of a digraph is interesting for research

as it finds applications in many ways like in the investigation of the struc-

ture of the digraphs and also in the ranking of objects. Ranking of objects

is a typical practical problem. One of the popular ranking methods is the

pairwise comparison of the objects. Many authors describe different ap-

plications: e.g., biological, chemical, network modeling, economical, human

relation modeling, and sport applications.

The tournament theory is one of the interesting areas of research in di-

graphs, and an earlier collection of results in tournaments is given by Moon

[38]. One of the important aspects of tournaments is the score structure

in which much work has been done and some of the results can be seen

in the survey article by Reid [52]. Other classes of tournaments are bipar-

tite tournaments and k-partite tournaments which were studied by Beineke
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[12], Beineke and Moon [13], Merajuddin [35] and Moon [37]. The score se-

quence problem of an r-tournament and the score sequence pair problem of

an (r11, r12, r22)-tournament are applied to the theoretical framework of the

communication network central technique.

We mention here some definitions which have been used throughout this

dissertation. The other definitions are given in the thesis wherever required.

1.2 Basic Definitions

Definition 1.2.1. Digraph (or directed graph). A digraph is a pair (V,A),

where V is a nonempty set of objects called vertices and A is a subset of

V (2), (the set of ordered pairs of distinct elements of V ). The elements of A

are called arcs of D.

Definition 1.2.2. Multidigraph. A multidigraph D is a pair (V,A), where

V is a nonempty set of vertices and A is a multiset of arcs (directed edges)

of V (2). The number of times an arc occurs in D is called its multiplicity and

arcs with multiplicity greater than one are called multiple arcs.

Definition 1.2.3. General digraph. A general digraph D is a pair (V,A),

where V is a non empty set of vertices and A is a multiset of arcs, being a

multisubset of V (2). An arc of the form uu, where u ∈ V , is called the loop

of D, and arcs which are not loops are called the proper arcs. The number of

times a loop occurs is called its multiplicity. A loop with multiplicity greater

than one is called a multiple loop. An arc (u, v) ∈ A is represented by u→ v.

In this case u is said to be adjacent to v, and v is said to be adjacent from u.

Definition 1.2.4. Subdigraph of a digraph. Let D = (V,A) be a digraph,

H = (U,B) is the subdigraph of D whenever U ⊆ V and B ⊆ A. If U = V

the subdigraph is said to be spanning.

Definition 1.2.5. Underlying graph of a digraph D. The underlying graph

of a digraph D = (V,A) is obtained by removing all directions from the

arcs of D and replacing any resulting pair of parallel edges by a single edge.

Equivalently, the underlying graph of a digraph D is obtained by replacing

each arc (u, v) or a symmetric pair of arcs (u, v) and (v, u) by the edge uv.
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Definition 1.2.6. Outdegree and indegree. In a digraph D = (V,A), the

outdegree of a vertex v is the number of vertices to which the vertex v is

adjacent, it is denoted by d+(v) or d+v . Similarly the indegree of a vertex

v in a digraph D is the number of vertices from which v is adjacent and

it is denoted by d−(v) or d−v . The total degree or (simply) degree of v is

dv = d+v + d−v . If dv = k for every v ∈ V , then D is said to be k-regular

digraph. If for every v ∈ V , d+v = d−v , the digraph is said to be an isograph,

or diregular or a balanced digraph. A vertex v for which d+v = d−v = 0, is

called an isolate. A vertex v is called a transmitter, or receiver accordingly

as d+v > 0, d−v = 0, or d+v = 0, d−v > 0. A vertex v is called a carrier if

d+v = d−v = 1.

Definition 1.2.7. Complete symmetric digraph. A digraph D is said to be

complete symmetric, if both uv ∈ A and vu ∈ A for all u, v ∈ V . Clearly

this corresponds to Kn, where | V |= n, and is denoted by K∗n.

Definition 1.2.8. Two digraphs D1 and D2 are said to be isomorphic if

their underlying graphs are isomorphic and the direction of arcs are same

and we write D1
∼= D2.

Definition 1.2.9. Complement of a Digraph. The complement of digraph

D = (V,A) is denoted by D̄. It has a vertex set V and uv ∈ Ā if and only if

uv /∈ A. D̄ is the relative complement of D in K∗n, where K∗n is a complete

symmetric digraph, and | V |= n.

Definition 1.2.10. Converse of a digraph. The converse of a digraph D is

the digraph D′ with vertex set V and uv ∈ A′ if and only if vu ∈ A that is,

the arc set A′ is obtained by reversing the direction of each arc of D. Clearly,

(D′)′ = D′′ = D.

Definition 1.2.11. Self complementary digraph. A digraph D is said to be

self complementary if D ∼= D̄, and D is said to be self converse if D ∼= D′.

A digraph is said to self dual if D ∼=D̄∼= D′.

Definition 1.2.12. Directed Walk. A directed walk in a digraph D is a

sequence v0a1v1a2 · · · akvk, where vi ∈ V and ai ∈ A are such that ai = vi−1vi

for 1 ≤ i ≤ k and no arc being repeated. As there is only one arc of the form
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vivj, the walk can also be represented by the vertex sequence v0v1 · · · vk. The

number of occurrences of arcs on a walk is the length of the walk. So the

length of the above walk is k. A vertex may appear more than once in a

walk. If v0 6= vk, the walk is open, and if v0 = vk the walk is closed. A walk

is spanning if V = v0v1 · · · vk.

Definition 1.2.13. A semiwalk is a sequence v0a1v1a2 · · · akvk, with vi ∈ V
and ai ∈ A such that either ai = vi−1vi or vivi−1, 1 ≤ i ≤ k and no arc being

repeated. The length of the above semiwalk is k. If v0 6= vk, the semiwalk is

open. If v0 = vk, the semiwalk is closed.

Definition 1.2.14. Directed Path. A directed path is an open walk in which

no vertex is repeated. A directed cycle is a closed walk in which no vertex is

repeated. A digraph is acyclic if it has no cycles. If no vertex is repeated in

an open(closed) semiwalk, it is called a semipath(semicycle).

Definition 1.2.15. Joining and Reaching. In a digraph D, a vertex u is said

to be joined to a vertex v, if there is a semipath from u to v. A vertex u is

said to be reachable from a vertex v, if there is a path from v to u. A vertex

v is called a source of D, if every vertex is reachable from v and v is called

a sink of D, if v is reachable from every other vertex.

Definition 1.2.16. Connectedness in digraphs. A digraph D is said to be

strongly connected or strong if every two of its distinct vertices u and v are

such that u is reachable from v and v is reachable from u. A digraph is

unilaterally connected or unilateral if either u is reachable from v or v is

reachable from u, and is weakly connected or weak if u and v are joined by

a semipath. A digraph is said to be disconnected if it is not even weak. A

digraph is said to be strictly weak if it is weak but not unilateral. It is strictly

unilateral if it is unilateral but not strong.

Definition 1.2.17. Oriented graph. An oriented graph is a digraph with no

symmetric pairs of directed arcs and without loops.
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CHAPTER 2

On scores in tournaments and oriented

graphs

In this Chapter, we report the results available in literature on score

sequences in tournaments and oriented graphs. We obtain many new results

on score sequences in oriented graphs. Also we give a new proof for Avery’s

theorem on oriented graph scores.

2.1 Introduction

Definition 2.1.1. A tournament T = (V,A) is a complete oriented graph

with vertex set V (T ) = V = {v1, v2...vn} and arc set A, that is for any pair

of vertices vi, vj either (vi, vj) is an arc or (vj, vi) is an arc, but not both.

In other words, a tournament is an orientation of a complete simple graph.

The score of a vertex vi is denoted by svi (or simply by si), is the outdegree

of vi. Clearly, 0 ≤ svi ≤ n − 1. The sequence S = [s1, s2, · · · , sn] in non-

decreasing order is the score sequence or the score structure of a tournament

T . A sequence S of non-negative integers in non-decreasing order is said to

be realizable if there exists a tournament with score sequence S.

A tournament can be considered as the result of a competition where n

participants play each other once that cannot end in a tie and score one point

for each win. Player vi is represented in the tournament by vertex vi and

an arc from vi to vj means that vi defeats vj. The player vi obtains a total

score svi points in the competition, and the vertex scores can be ordered to

obtain the score sequence of the tournament. If there is an arc from a ver-

tex x to vertex y, then we say x dominates y and we write x→ y or x(1−0)y.

Definition 2.1.2. A triple in a tournament is an induced subtournament

with three vertices. For any three vertices x, y and z, the triple of the form

x(1 − 0)y(1 − 0)z(0 − 1)x is said to be transitive, while as the triple of the
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form x(1−0)y(1−0)z(1−0)x is said to be intransitive. A tournament is said

to be transitive if all its triples are transitive. Also, a regular tournament on

n vertices (n odd) is one whose all vertices have scores n−1
2

.

2.2 Score in tournaments

In this section we present the characterizations for sequences on non-

negative integers to be score sequences of tournaments. Landau [31] in 1953

gave the following necessary and sufficient conditions for the non-negative

integers in non-decreasing order to be the score sequences of a tournament.

Theorem 2.2.1. A sequence S = [si]
n
1 of non-negative integers in non-

decreasing order is a score sequence of a tournament if and only if for each

I ⊆ [n] = {1, 2, · · · , n}, ∑
i∈I

si ≥
(
|I|
2

)
, (2.1)

with equality when |I| = n, where |I| is the cardinality of the set I.

Since s1 ≤ · · · ≤ sn, the inequality (2.1), called Landau inequalities, are

equivalent to
k∑
i

si ≥
(
k
2

)
, for k = 1, 2, · · · , n− 1, and equality for k = n.

There are now several proofs of this fundamental result in tournament

theory, clever arguments involving gymastics with subscripts, arguments in-

volving arc reorientations of properly chosen arcs, arguments by contradic-

tion, arguments involving the idea of majorization, a constructive argument

utilizing network flows, another one involving systems of distinct representa-

tives. Landau’s original proof appeared in 1953 [31], Matrix considerations

by Fulkerson [23] (1960) led to a proof, discussed by Brauldi and Ryser [17]

in (1991). Berge [14] in (1960) gave a network flow proof and Alway [3] in

(1962) gave another proof. A constructive proof via matrices by Fulkerson

[24] (1965), proof of Ryser (1964) appears in the monograph of Moon (1968).

An inductive proof was given by Brauer, Gentry and Shaw [15] (1968). The

proof of Mahmoodian [33] given in (1978) appears in the textbook by Be-
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hzad, Chartrand and Lesnik-Foster [8](1979). A proof by contradiction was

given by Thomassen [58] (1981) and was adopted by Chartrand and Les-

niak [20] in subsequent revisions of their 1979 textbook, starting with their

1986 revision. A nice proof was given by Bang and Sharp [7](1979) using

systems of distinct representatives. Three years later in 1982, Achutan, Rao

and Ramachandra-Rao [1] obtained a proof as result of some slightly more

general work. Bryant [19] (1987) gave a proof via a slightly different use of

distinct representatives. Partially ordered sets were employed in a proof by

Aigner [2] in 1984 and described by Li [32] in 1986 (his version appeared in

1989). Two proofs of sufficiency appeared in a paper by Griggs and Reid [26]

(1996) one a direct proof and the second is self contained. Again two proofs

appeared in 2009 one by Brauldi and Kiernan [18] using Rado’s theorem from

Matroid theory, and another inductive proof by Holshouser and Reiter [29]

(2009). More recently Santana and Reid [55] (2012) have given a new proof

in the vein of the two proofs by Griggs and Reid (1996).

The following is the recursive method to determine whether or not a

sequence is the score sequence of some tournament. It also provides an algo-

rithm to construct the corresponding tournament.

Theorem 2.2.2. Let S be a sequence of n non-negative integers not ex-

ceeding n − 1, and let S ′ be obtained from S by deleting one entry sk and

reducing n − 1 − sk largest entries by one. Then S is the score sequence of

some tournament if and only if S ′ is the score sequence.

Brauldi and Shen [16] obtained stronger inequalities for scores in tour-

naments. These inequalities are individually stronger than Landau’s inequal-

ities, although collectively the two sets of inequalities are equivalent.

Theorem 2.2.3. A sequence S = [si]
n
1 of non-negative integers in non-

deceasing order is a score sequence of a tournament if and only if for each

subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

si ≥
1

2

∑
i∈I

(i− 1) +
1

2

(
|I|
2

)
(2.2)
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with equality when |I| = n.

It can be seen that equality can occur oftenly in (2.2), for example,

equality hold for regular tournaments of odd order n whenever |I| = k and

I = {n− k + 1, · · · , n}. Further Theorem 2.2.3 is best possible in the sense

that, for any real ε > 0, the inequality∑
i∈I

si ≥ (
1

2
+ ε)

∑
i∈I

(i− 1) + (
1

2
− ε)

(
|I|
2

)
(2.3)

fails for some I and some tournaments, for example, regular tournaments.

Brauldi and Shen [16] further observed that while an equality appears in

(2.3), there are implications concerning the strong connectedness and regu-

larity of every tournament with the score sequence S. Brauldi and Shen also

obtained the upper bounds for scores in tournaments.

Theorem 2.2.4. A sequence S = [si]
n
1 of non-negative integers in non-

deceasing order is a score sequence of a tournament if and only if for each

subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

si ≤
1

2

∑
i∈I

(i− 1) +
1

4
|I|(2n− |I| − 1),

with equality when |I| = n.

Brauldi and Shen also obtained the lower bounds for scores in tourna-

ments.

Theorem 2.2.5. A sequence S = [si]
n
1 of non-negative integers in non-

deceasing order is a score sequence of a tournament if and only if for each

subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

si ≥
1

2

∑
i∈I

(i− 1) +
1

2

(
|I|
2

)
,

with equality when |I| = n.
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Definition 2.2.6. A score sequence is simple (uniquely realizable) if it be-

longs to exactly one tournament.

Avery [4] observed that the score sequence S is simple if and only if every

strong component of S is simple. Further a strong score sequence is simple

if and only if it is one of [0], [1,1,1], [1,1,2,2], or [2,2,2,2,2]. The following

characterization of simple score sequences in tournaments is due to Avery [4].

Theorem 2.2.7. The score sequence S is simple if and only if every strong

component of S is one of [0], [1,1,1], [1,1,2,2], or [2,2,2,2,2].

Definition 2.2.8. A tournament T is called self converse if T ∼= T ′, where

T ′ is the converse of T obtained by reversing the orientations of all arcs of

T . Transitive tournaments are examples of self-converse tournaments.

Eplett [22] characterized self converse score sequences in tournaments.

Theorem 2.2.9. A sequence S = [si]
n
1 of non-negative integers in non-

decreasing order is a score sequence of a self-converse tournament if and

only if for each 1 ≤ k ≤ n,

k∑
i

si ≥
(
k

2

)
with equality when k = n, and for 1 ≤ i ≤ n,

si + sn+1−i = n− 1.

Definition 2.2.10. A bipartite tournament is a complete oriented bipartite

graph. A bipartite tournament T is a directed graph whose vertex set is the

union of two disjoint nonempty sets X and Y , and whose arc set comprises

exactly one of the pairs (x, y) or (y, x) for each x ∈ X and each y ∈ Y .

Bipartite tournaments are bipartite analogues of tournaments. The score of

a vertex is its outdegree. There are two sequences (lists of scores) one for

each set and are called as the pair of score lists. If |X| = m and |Y | = n, it is
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mXn bipartite tournament. A bipartite tournament is reducible if there is a

nonempty proper subset of its vertex set to which there are no arcs from the

other vertices, otherwise irreducible. The property of irreducibility is equiv-

alent to having all pairs of vertices mutually reachable or to being strongly

connected.

A bipartite tournament represents the outcomes of a competition be-

tween two groups of participants, each participant of one group competing

with every participant of the other group.

The following recursive characterization is due to Gale [25].

Theorem 2.2.11. The lists of non-negative integers A = [a1, a2, · · · , am]

and B = [b1, b2, · · · , bn] in non-decreasing order are the score lists of some

bipartite tournament if and only if the lists A′ = [a1, a2, · · · , am−1] and

B′ = [b1, b2, · · · , bam , bam+1 − 1, · · · , bn − 1] are the score lists.

Beineke and Moon [11] showed that if two bipartite tournaments have

the same score lists then one can be transformed to another.

Theorem 2.2.12. If two bipartite tournaments have the same score lists,

then each can be transformed into the other by successively reversing the arcs

of 4-cycles.

Analogous to Landau’s theorem, Moon [36] was the first to establish the

following result for scores in bipartite tournaments.

Theorem 2.2.13. A pair of lists A and B of non-negative integers in non-

decreasing order are the score lists of some bipartite tournament if and only

if for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

k∑
i=1

ai +
l∑

j=1

bj ≥ kl (2.4)

with equality when k = m and l = n.
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The realizations are irreducible if and only if a1 > 0 and b1 > 0 and the

inequalities (2.4) are all strict except k = m and l = n.

The following characterization of bipartite score lists is due to Ryser [53].

Theorem 2.2.14. A pair of lists A and B of non-negative integers with A

in non-increasing order are the score lists of some bipartite tournament if

and only if for 1 ≤ k ≤ m,

k∑
i=1

ai ≤
n∑
j=1

min (k,m− bj) (2.5)

with equality when k = m.

The realizations are irreducible if and only if 0 < bj < m for each jand

the inequalities (2.5) are all strict except k = m.

Let A = [a1, a2, · · · , am] and B = [b1, b2, · · · , bn] be two lists of integers.

Let Ā = [n− a1, n− a2, · · · , n− am] and B̄ = [m− b1,m− b2, · · · ,m− bn].

Definition 2.2.15. If a pair (A,B) is realizable and all is realizations

are isomorphic, then (A,B) is said to be uniquely realizable. The pair

A = [1, 1, · · · , 1] = [1m] and B = [b1, b2, · · · , bn] is uniquely realizable. (A,B)

is uniquely realizable if and only if (Ā, B) is uniquely realizable. Since de-

composition into irreducible components is determined by the lists, so only

irreducible bipartite tournaments are considered for unique realizability.

Bagga and Beineke [6] characterized uniquely realizable score lists in

bipartite tournaments.

Theorem 2.2.16. An irreducible pair (A,B) of score lists is uniquely real-

izable if and only if one of the following holds.

I (wlog) A = [1m] and B is arbitrary

Ī (dual of I) A = [(n− 1)m] and B is arbitrary

II (wlog) A = [1m−1, a] and B = [bn]

ĪI dual of II

11



III (wlog) A = [1, am−1] and B = [2n]
¯III dual of III

Definition 2.2.17. An r-tournament is a complete oriented multigraph in

which there are exactly r arcs between every two vertices. The score of a ver-

tex in an r-tournament is the outdegree of that vertex and the scores listed

in non-decreasing order is the score sequence.

Takahashi [56] has considered several variations of the score sequence

problem of an r-tournament and has given efficient algorithms.

Definition 2.2.18. A directed graph D is said to be an (r11, r12, r22)-

tournament if the vertex set of D is partitioned into two disjoint sets A

and B such that there are r11 directed arcs between every pair of vertices in

A, r22 directed arcs between every pair of vertices in B, and r12 directed arcs

between each vertex of A and each vertex of B. The score of the vertex is

the outdegree of the vertex.

Let T be an (r11, r12, r22)-tournament with parts U = {u1, u2, · · · , um}
and V = {v1, v2, · · · , vn}. Let a(ui) or ai be the score of a vertex ui,

1 ≤ i ≤ m and b(vj) or bj be the score of a vertex vj, 1 ≤ j ≤ n. The

sequences A = [a1, a2, · · · , am] and B = [b1, b2, · · · , bn] is called the score se-

quence pair of (r11, r12, r22)-tournament and is denoted by [A,B]. Takahashi,

Watanabe and Yoshimura [57] have characterized the score sequence pair of

(r11, r12, r22)-tournament and have also given an algorithm for determining in

linear time whether a pair of two non-negative integer sequences is realizable

or not.

2.3 Scores in oriented graphs

Definition 2.3.1. An oriented graph D is a digraph with no symmetric pairs

of directed arcs and with no loops. In D, let d+i and d−i be the outdegree and

indegree of the vertex vi. Define the score avi or simply ai of a vertex vi as

12



follows.

ai = n− 1 + d+i − d−i .

Evidently, 0 ≤ ai ≤ 2n − 2. The list of scores [ai]
n
1 in non-decreasing or

non-increasing order is the called the score sequence of D.

One of the interpretations of an oriented graph is the result of a round

robin competition in which the participants play each other exactly once, ties

(draws) are allowed, that is, the participants play each other once with an

arc from u to v if and only u defeats v. A player receives two points for each

win and one point for each tie. The total points received by a participant vi

is ai.

Let d+i , d−i and d∗i respectively be outdegree, indegree and non-arcs

incident at vi. Then

d+i + d−i + d∗i = n− 1 = ai − d+i + d−i

or,

ai = 2d+i + d∗i

This shows that ai = n− 1 + d+i − d−i = 2(wins) + (draws).

Avery [5] extended Landau’s theorem on tournament scores to oriented

graph scores.

Theorem 2.3.2.(Avery) A sequence A = [ai]
n
1 of non-negative integers in

non-deceasing order is a score sequence of an oriented graph if and only if

for each subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

ai ≥ k(k − 1)

with equality when |I| = n.

Avery’s theorem on oriented graph scores can be restated in the fol-

lowing. We give here the proof which appeared in Pirzada, Merajuddin and

13



Samee [47].

Theorem 2.3.2.(Avery) A sequence A = [ai]
n
1 of non-negative integers in

non-deceasing order is a score sequence of an oriented graph if and only if

for 1 ≤ k ≤ n− 1,
k∑
i=1

ai ≥ k(k − 1) (2.6)

with equality when k = n.

Proof. Necessity. Let [ai]
n
1 be a score sequence of some oriented graph D.

Let W be the oriented subgraph induced by any k vertices w1, w2, · · · , wk of

D. Let α denote the number of arcs of D that start in W and end outside

W and let β denote the number of arcs of D that start outside of W and end

in W . Clearly, β ≤ k(n− k).

Thus,
k∑
i=1

awi
=

k∑
i=1

(n − 1 + d+D(wi) − d−D(wi)) = nk − k +
k∑
i=1

d+D(wi) −
k∑
i=1

d−D(wi) = nk − k + [
k∑
i=1

d+W (wi) + α] − [
k∑
i=1

d−W (wi) + β] = nk − k +

(number of arcs of W ) + α− (number of arcs of W )− β.

Therefore,
k∑
i=1

awi
= nk − k + α− β.

Hence,
k∑
i=1

awi
≥ nk − k − β ≥ nk − k − k(n− k) = k(k − 1).

Sufficiency. Let n denote the least integer so that there is a non-decreasing

sequence of non-negative integers satisfying conditions (2.6) that is not a

score sequence of any oriented graph. Among all such sequences of length n,

pick one, denoted by A = [ai]
n
1 , in which the smallest term a1 is as small as

possible.

We consider two cases, (a) equality in (2.6) holds for some k < n and

(b) each inequality in (2.6) is strict for all k < n.

Case(a). Assume k(k < n) is the smallest integer such that

k∑
i=1

ai = k(k − 1).

Clearly the sequence [a1, a2, · · · , ak] satisfies conditions (2.6) and is a se-

quence of length less than n. Therefore by the given assumption [a1, a2, · · · , ak]
is a score sequence of some oriented graph, say D1.

14



Now,
p∑
i=1

(ak+i − 2k) =
p+k∑
i=1

ai −
k∑
i=1

ai − 2pk ≥ (p + k)(p + k − 1) −

k(k − 1) − 2pk = p(p − 1), for each p, 1 ≤ p ≤ n − k, with equality when

p = n − k. Since p < n, the minimality of n implies that the sequence

[ak+1 − 2k, ak+2 − 2k, · · · , an − 2k] is the score sequence of some oriented

graph D2. The oriented graph D of order n, consisting of disjoint copies of

D1 and D2, such that there is an arc from each vertex of D2 to every vertex

of D1, has score sequence a = [ai]
n
1 , a contradiction.

Case(b). Assume that each inequality in conditions (2.6) is strict for all

k < n. Clearly, a1 > 0. Consider the sequence A′ = [a′i]
n
1 , where a′i = ai − 1,

or ai + 1, or ai according as i = 1, or i = n, or otherwise.

Then,
k∑
i=1

a′i = (
k∑
i=1

ai)− 1 > k(k − 1)− 1, for all k, 1 ≤ k < n.

Therefore,
k∑
i=1

a′i ≥ k(k − 1), for all k, 1 ≤ k < n.

Also,
n∑
i=1

a′i = (
n∑
i=1

ai)− 1 + 1 = n(n− 1).

Thus the sequence A′ = [a′i]
n
1 satisfies conditions (2.6) and therefore is

a score sequence of some oriented graph D. Let u and v, respectively denote

the vertices with score a′1 = a1− 1 and a′n = an + 1. If in D either v(1− 0)u,

or v(0− 0)u, then transforming them respectively to v(0− 0)u, or v(0− 1)u,

we get an oriented graph with score sequence A, a contradiction.

Now let u(1 − 0)v. We claim that there exists at least one vertex w

so that the triple formed by the vertices u, v and w is intransitive, that is,

of the form u(1 − 0)v(1 − 0)w(1 − 0)u, or u(1 − 0)v(1 − 0)w(0 − 0)u, or

u(1 − 0)v(0 − 0)w(1 − 0)u. Assume to the contrary that for each vertex

w ∈ V − {u, v}, the triple formed by the vertices u, v and w are transitive,

that is, of the form u(1−0)v(1−0)w(0−1)u, or u(1−0)v(0−1)w(1−0)u, or

u(1−0)v(0−1)w(0−1)u, or u(1−0)v(0−0)w(0−0)u, or u(1−0)v(0−1)w(0−
0)u, or u(0− 0)v(0− 0)w(0− 0)u. Then in all such cases, d+(u) > d+(v) and

d−(u) < d−(v). This shows that au > av. This proves the claim.

Hence transforming the intransitive triples respectively to u(1−0)v(0−
0)w(0 − 0)u, or u(1 − 0)v(0 − 0)w(0 − 1)u, or u(1 − 0)v(0 − 1)w(0 − 0)u,

we obtain an oriented graph with score sequence A. This contradicts the

assumption. �
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A constructive proof of Avery’s theorem can be seen in Pirzada, Mera-

juddin and Samee [47]. The following results appear in Pirzada, Merajuddin

and Samee [48].

Theorem 2.3.3. A sequence A = [ai]
n
1 of non-negative integers with a1 ≤

a2 ≤ · · · < ak = ak+1 = · · · = ak+m−1 < ak+m ≤ ak+m+1 ≤ · · · ≤ an and let

A′ = [a′i]
n
1 where a′i = ai − 1, ai + 1, ai according as i = k, or i = k + m − 1

or otherwise. Then A is a score sequence of some oriented graph if and only

if A′ is a score sequence of an oriented graph.

Proof. Clearly, k ≥ 1 and m ≥ 2, so that either k + m − 1 = n, or

ak = ak+1 = · · · = ak+m−1 < ak+m. For 1 ≤ i ≤ n, A′ = [a′i]
n
1 where

a′i = ai − 1, ai + 1, ai according as i = k, or i = k +m− 1 or otherwise.

Obviously, a′1 ≤ a′2 ≤ · · · ≤ a′n.

Let A′ be the score sequence of some oriented graph D′ of order n in

which vertex v′i has score a′i, 1 ≤ i ≤ n. Then a′k+m−1 = a′k + 2. If either

v′k+m−1(1− 0)v′k, or v′k+m−1(0− 0)v′k then making respectively, the transfor-

mation v′k+m−1(0− 0)v′k, or v′k(1− 0)v′k+m−1, gives an oriented graph of order

n with score sequence A.

If v′k(1−0)v′k+m−1, since a′k ≤ a′k+m−1 there exists at least one vertex v′j in

V ′−{v′k, v′k+m−1} such that triple formed by v′k, v
′
k+m−1 and v′j is transitive and

of the form v′k(1−0)v′k+m−1(1−0)v′j(1−0)v′k or v′k(1−0)v′k+m−1(1−0)v′j(0−0)v′k
or v′k(1− 0)v′k+m−1(0− 0)v′j(1− 0)v′k. These can be transformed respectively

to v′k(1− 0)v′k+m−1(0− 0)v′j(0− 0)v′k or v′k(1− 0)v′k+m−1(1− 0)v′j(0− 1)v′k or

v′k(1− 0)v′k+m−1(0− 1)v′j(0− 0)v′k, and we obtain an oriented graph of order

n with score sequence A.

If for every vertex v′j ∈ V ′−{v′k, v′k+m−1} the triple formed by v′k, v
′
k+m−1

and v′j is transitive, we again get a contradiction.

Now, let A be the score sequence of some oriented graph D of order

n in which vertex vi has score ai, 1 ≤ i ≤ n. We have ak+m−1 = ak.

If either vk(1 − 0)vk+m−1, or vk(0 − 0)vk+m−1, then making respectively,

the transformation vk(0 − 0)vk+m−1, or vk(0 − 1)vk+m−1, gives an oriented

graph of order n with score sequence A′. If vk+m−1(1 − 0)vk, we claim that

there exists at least one vertex vj ∈ V − {vk+m−1, vk} such that the triple
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formed by the vertices vk+m−1, vk and vj is intransitive, and of the form

vk+m−1(1−0)vk(1−0)vj(1−0)vk+m−1, or vk+m−1(1−0)vk(1−0)vj(0−0)vk+m−1

, or vk+m−1(1 − 0)vk(0 − 0)vj(1 − 0)vk+m−1. These can be transformed re-

spectively to vk+m−1(1− 0)vk(0− 0)vj(0− 0)vk+m−1, or vk+m−1(1− 0)vk(0−
0)vj(0− 1)vk+m−1 , or vk+m−1(1− 0)vk(0− 1)vj(0− 0)vk+m−1 and we obtain

an oriented graph of order n with score sequence A′.

In case for every vertex vj ∈ V − {vk, vk+m−1}, then the triple formed

by vk+m−1, vk and vj is transitive, we again get a contradiction. Thus A′ is a

score sequence if and only if A is a score sequence. �

Theorem 2.3.4. Let A = [ai]
n
1 be a sequence of non-negative integers in non-

decreasing order with at least two odd terms ak and am(say) with ak < am

and let A′ = [a′i]
n
1 with a′i = ai − 1, or ai + 1, or ai according as i = k or

i = k + m− 1 or otherwise. Then A is a score sequence if and only if A′ is

a score sequence.

Proof. Let ak be the lowest odd term, and am be the greatest odd term and

let A′ = [a′1, a
′
2, · · · , a′n], where a′i = ai−1, or ai+1, or ai according as i = k

or i = k +m− 1 or otherwise. Clearly, a′1 ≤ a′2 ≤ · · · ≤ a′n.

Let A′ be the score sequence of some oriented graph D′ of order n in

which vertex v′i has score a′i, 1 ≤ i ≤ n. Then, a′m ≥ a′k + 2 with equality

appearing when the two odd terms are same. Therefore, it follows by the

argument used in Theorem 2.3.3, that is the score sequence of some oriented

graph D of order n in which vertex vi has score ai, 1 ≤ i ≤ n. We have

am ≥ ak. The equality appears when the two odd terms are same, and in

this case A′ is a score sequence of some oriented graph of order n, again by

Theorem 2.3.3. If am > ak, then am ≥ ak + 2, since am = ak + 1 implies that

one of ak or am is even, which contradicts the choice of ak and am. Thus, by

using again the argument as in Theorem 2.3.3, it follows that A′ is a score

sequence of some oriented graph of order n. �

Lemma 2.3.5. (a) Let A and A′ be given as in Theorem 2.3.3. Then A

satisfies (2.6) if and only if A′ satisfies (2.6).

(b) Let A and A′ be given as in Theorem 2.3.4. Then A satisfies (2.6) if and

only if A′ satisfies (2.6).
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Proof(a). If A satisfies (2.6), then
j∑
i=1

a′i =
j∑
i=1

ai, or
k−1∑
i=1

ai + (ak − 1) +

j∑
i=k+1

ai, or
k−1∑
i=1

ai + (ak − 1) +
k+m−2∑
i=k+1

ai + (ak+m−1 + 1) +
j∑

i=k+m

ai according as

j ≤ k − 1, or k ≤ j ≤ k +m− 2, or j ≥ k +m− 1 respectively.

If j ≤ k − 1 and j ≥ k +m− 1, then
j∑
i=1

a′i ≥ j(j − 1).

If k ≤ j ≤ k +m− 2, claim
j∑
i=1

ai > j(j − 1), for k ≤ j ≤ k +m− 2.

Assume to the contrary, that for some j, k ≤ j < k+m−2,
j∑
i=1

ai ≤ j(j−1).

For (2.6), we have
j∑
i=1

ai ≥ j(j − 1).

Combining the two, we obtain
j∑
i=1

ai = j(j − 1).

Therefore, again by (2.6), we have aj+1 + j(j − 1) = aj+1 +
j∑
i=1

ai =
j+1∑
i=1

ai ≥

j(j + 1) = j(j − 1 + 2) = j(j − 1) + 2j.

That is, aj+1 ≥ 2j. Also, aj = aj+1 implies that aj ≥ 2j.

Thus,
j∑
i=1

ai =
j−1∑
i=1

ai + aj ≥ (j − 1)(j − 2) + 2j = j(j − 1)− (j − 1) + 2j.

Therefore
j∑
i=1

ai ≥ j(j − 1) + 2 > j(j − 1), contradicting the assumption.

Hence,
j∑
i=1

ai > j(j − 1), for k ≤ j ≤ k +m− 2. (2.7)

Thus, when k ≤ j ≤ k + m − 2, using (2.7), we obtain
j∑
i=1

a′i =
j∑
i=1

ai − 1 >

j(j − 1).

Therefore in all cases A′ satisfies (2.6). Now, if A′ satisfies (2.6), it can be

easily seen that A also satisfies (2.6).

Proof of (b) follows similarly. �

Now we give a direct proof for the sufficiency of Avery’s theorem 2.3.2.

Proof of Theorem 2.3.2. Sufficiency. Let the sequence A = [ai]
n
1 of non-

negative integers in non-decreasing order satisfy (2.6). Clearly, the sequence
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An = [0, 2, 4, · · · , 2n − 2] satisfies (2.6),since it is the score sequence of the

transitive tournament of order n. Now, if any sequence A 6= An satisfies

(2.6), then a1 ≥ 0 and an ≤ 2n − 2. We claim that A contains either (a)

a repeated term, or (b) at least two odd terms, or both (a) and (b). To

verify the claim, suppose that there is no repeated term. If at least one

term is odd, then a parity argument shows that there are at least two odd

terms. So assume that all terms are even. Therefore, a1 ≥ 0, a2 > a1,

and a2 is even imply that a2 ≥ 2. And a2 ≥ 2, a3 > a2, and a3 is even

imply that a3 ≥ 4. Inductively, ai ≥ 2(i − 1), for all 1 ≤ i ≤ n. Thus,

n(n− 1) =
n∑
i=1

ai ≥ 2
n∑
i=1

(i− 1) = n(n− 1). This implies that equality holds

throughout. Thus, ai = 2(i− 1), for all 1 ≤ i ≤ n, and A = An, a contradic-

tion. Consequently, if there is no repeated term, then at least two terms are

odd.

We produce a new sequence A′ from A which also satisfies (2.6), A′

is closer to An than A, and A′ is a score sequence if and only if A is a

score sequence. When A contains a repeated term, reduce the first occur-

rence of that repeated term in A by one and increase the last occurrence

of that repeated term by one to form A′. If A contains at least two odd

terms, reduce the first odd term by one and increase the last odd term

by one to form A′. The process is repeated until the sequence An is ob-

tained. Let the total order on the non-negative integer sequences be defined

by X = [x1, x2, · · · , xn] � Y = [y1, y2, · · · , yn] if either X = Y , or xi < yi

for some i, 1 ≤ i ≤ n, and xi+1 = yi+1, · · · , xn = yn. Clearly, � is reflex-

ive, antisymmetric and satisfies comparability. We write X ≺ Y , if X ≺ Y

but X 6= Y . For any sequence A 6= An, satisfies (2.6), A ≺ An, where

An = [0, 2, 4, · · · , 2n − 2], the score sequence of a transitive tournament of

order n. Thus, we have shown that for any sequence A satisfies (2.6), we

can form another sequence A′ satisfying (2.6)(By Lemma 2.3.5) such that

A ≺ A′, and A is a score sequence if and only if A′ is a score sequence (By

Theorem 2.3.3 and 2.3.4). Therefore, by the repeated application of this

transformation, starting from the original sequence satisfying (2.6), we reach

An. Hence A is a score sequence. �
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A recursive characterization of score sequences in oriented graphs also

appears in Avery [5].

Theorem 2.3.6 (Avery) Let A be a sequence of integers between 0 and 2n−2

inclusive and let A′ be obtained from A by deleting the greatest entry 2n−2−r
say, and reducing each of the greatest r remaining entries in A by one. Then

A is a score sequence if and only if A′ is a score sequence.

Theorem 2.3.6 provides an algorithm for determining whether a given

non-decreasing sequence A of non-negative integers is a score sequence of an

oriented graph and for constructing a corresponding oriented graph.

Pirzada, Merajuddin, Samee [47] obtained the following stronger in-

equalities for oriented graph scores.

Theorem 2.3.7.A sequence A = [ai]
n
1 of non-negative integers in non-

deceasing order is a score sequence of an oriented graph if and only if for

each subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

ai ≥
∑
i∈I

(i− 1) +

(
|I|
2

)
(2.8)

with equality when |I| = n.

Proof. Sufficiency. Let the sequence A = [ai]
n
1 of non-negative integers

satisfy (2.8).

Now, for any I ⊆ [n],∑
i∈I(i− 1) ≥

∑|I|
i=1(i− 1) =

(|I|
2

)
.

Therefore inequalities (2.8) give∑
i∈I ai ≥

(|I|
2

)
+
(|I|
2

)
= 2
(|I|
2

)
.

This shows that inequalities (2.8) imply inequalities (2.6). Thus A is a score

sequence.

Necessity. Assume A = [ai]
n
1 is a score sequence of some oriented graph.
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For any subset I ⊆ [n], define

f(I) =
∑
i∈I

ai −
∑
i∈I

(i− 1)−
(
|I|
2

)
.

Consider all subsets that minimize the function f . Among all such

subsets that minimize the function f , choose one, say I, of the smallest car-

dinality. Claim I = {i : 1 ≤ i ≤ |I|}. If not, then there exists i 6∈ I and

j ∈ I such that j = i+ 1. Then, ai ≤ aj.

For j ∈ I, we have f(I) =
∑

t∈I at −
∑

t∈I(t− 1)−
(|I|
2

)
=
∑

t∈I,t 6=j at −
(
∑

t∈I,t 6=j(t− 1) + (j − 1))−
(|I|
2

)
.

Therefore, f(I)− f(I − j) = aj − (j + |I| − 2).

Since f(I)− f(I − j) < 0, so aj − (j + |I| − 2) < 0.

Again, f(I ∪ {i}) =
∑

t∈I at + ai − (
∑

t∈I(t− 1) + (i− 1))−
(|I|+1

2

)
.

So, f(I ∪ {i})− f(I) = ai − (i− 1)− |I|.
As f(I ∪ {i})− f(I) ≥ 0, therefore ai − (i− 1)− |I| ≥ 0.

Thus, aj < j + |I| − 2 and ai < i+ |I| − 1.

Therefore, i+ |I| − 1 ≤ ai ≤ aj < j = |I| − 2 and this gives i+ |I| − 1 <

i+ |I| − 1, since j = i+ 1. This is a contradiction and the claim is proved.

Hence, f(I) =
∑|I|

i=1 ai −
∑|I|

i=1(i − 1) −
(|I|
2

)
=
∑|I|

i=1 ai −
(|I|
2

)
−
(|I|
2

)
≥

−2
(|I|
2

)
− 2
(|I|
2

)
= 0. �

Equality in (2.8) occurs, for example, in the transitive tournament of

order n with score sequence [0, 2, · · · , 2n − 2] and in regular tournaments

of order 2m + 1 with score sequence [2m, 2m, · · · , 2m]. Also (2.8) is best

possible in a certain sense since for any real ε > 0, the inequality∑
i∈I

ai ≥ (1 + ε)
∑
i∈I

(i− 1) +

(
|I|
2

)
(2.9)

fails for some subsets I involving some oriented graphs in which the outde-

gree equals the indegree at each vertex.

Pirzada, Merajuddin, Samee [47] obtained the following upper bound

for oriented graph scores.
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Theorem 2.3.8.A sequence A = [ai]
n
1 of non-negative integers in non-

decreasing order is a score sequence of an oriented graph if and only if for

each subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

ai ≤
∑
i∈I

(i− 1) +
1

2
|I|(2n− |I| − 1)

with equality when |I| = n.

Proof. A is a score sequence if and only if for every I ⊆ [n] = {1, 2, · · · , n}
and J = [n]− 1, ∑

i∈I ai +
∑

i∈J ai = 2
(|I|
2

)
and ∑

i∈J ai ≥
∑

i∈J(i− 1) +
(|J |

2

)
,

or, if and only if
∑

i∈I ai = 2
(|I|
2

)
−
∑

i∈J ai ≤ 2
(|I|
2

)
− (
∑

i∈J(i− 1) +
(|J |

2

)
) =

2
(|I|
2

)
− [n(n−1)

2
−
∑

i∈I(i − 1) +
(
n−|I|

2

)
] = n(n−1)

2
+
∑

i∈I(i − 1) −
(
n−|I|

2

)
] =∑

i∈I(i− 1) + n(n−1)
2
− (n−|I|)(n−|I|−1)

2
=
∑

i∈I(i− 1) + 1
2
|I|(2n− |I| − 1),

(because
∑

i∈I(i− 1) +
∑

i∈J(i− 1) = n(n−1)
2

and |I|+ |J | = n). �

Definition 2.3.9. A score sequence is said to be simple if it belongs to

exactly one oriented graph. An oriented graph D is reducible if it is pos-

sible to partition its vertices into two nonempty sets V1 and V2 in such a

way that every vertex of V2 is adjacent to all vertices of V1. If this is not

possible D is irreducible. Let D1, D2, · · · , Dk be irreducible oriented graphs

and let D = [D1, D2, · · · , Dk] denote the oriented graph having all arcs of

Di, 1 ≤ i ≤ k, and every vertex of Dj is adjacent to all vertices of Di with

1 ≤ i < j ≤ k. D1, D2, · · · , Dk are called irreducible components of D. A

score sequence A is said to be irreducible if all the oriented graphs D with

score sequence A are irreducible.

We note that the score sequence A is irreducible if and only if the in-

equalities in Avery’s theorem are strict for all 1 ≤ k ≤ n−1. A is irreducible

if D is irreducible and the irreducible components of A are the score sequences

of the irreducible components of D. Pirzada [40] showed that [0] and [1,1] are
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the only irreducible score sequences that are simple. Thus the score sequence

A of an oriented graph is simple if and only if every irreducible component

of A is one of [0] or [1, 1].
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CHAPTER 3

Marks in digraphs

In this chapter we introduce the concept of marks, non-negative integers

attached to the vertices of an r-digraph. We obtain several necessary and

sufficient conditions for the sequence of non-negative integers to be the mark

sequence of r-digraphs. These conditions provide algorithms for constructing

corresponding r-digraphs. We obtain stronger inequalities for marks in di-

graphs. We characterize irreducible and uniquely realizable mark sequences

in r-digraphs.

3.1 Introduction

We start with the following definition of a multidigraph.

Definition 3.1.1. An r-digraph (or multidigraph) is an orientation of a

multigraph that is without loops and contains at most r edges between any

pair of distinct vertices. An r-digraph D is complete if there are exactly

r arcs between every pair of vertices of D. In an r-digraph D, if there are

exactly r arcs which are parallel, then D is called an r-tournament. A double

tournament can be treated as a tournament whose arcs have been duplicated.

Let D be an r-digraph with vertex set V = {v1, v2, · · · , vn}, and let d+vi
and d−vi denote respectively the outdegree and indegree, of a vertex vi.

Definition 3.1.2. The mark (or r-score) pvi (or simply pi) of vi is defined

as

pi = r(n− 1) + d+vi − d
−
vi
.

Note 0 ≤ pvi ≤ 2r(n− 1). The sequence P = [pi]
n
1 in non-decreasing order is

called the mark sequence of D. A sequence P = [pi]
n
1 of non-negative integers

in non-decreasing order is said to be realizable if there exists an r-digraph

whose mark sequence is P . Clearly 1-digraph is an oriented graph and a
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complete 1-digraph is a tournament.

Definition 3.1.3. A regular r-digraph on n vertices is one whose all ver-

tices have marks r(n− 1). The converse D′ of an r-digraph D is obtained by

reversing each arc of D.

An r-digraph can be interpreted as the result of a competition in which

the participants play each other at most r times, with an arc from u to v

if and only if u defeats v. A player receives two points for each win, and

one point for each tie, that is the case in which two players do not play one

another or the competition between the players yields no result. With this

marking system, player v receives a total of pv points.

Between any two vertices u and v in an r-digraph, we have u(x − y)v,

where 0 ≤ x ≤ r, 0 ≤ y ≤ r and 0 ≤ x+ y ≤ r. In particular, we have one of

the following possibilities between any two vertices u and v in a 2-digraph.

(i) Exactly two arcs directed from u to v, and no arc directed from v to u,

and this is denoted by u(2−0)v. (ii) Exactly one arc from u to v, and exactly

one arc from v to u, and this is denoted by u(1 − 1)v. (iii) Exactly one arc

from u to v, and no arc from v to u. This is denoted by u(1 − 0)v. (iv) No

arcs from u to v, and no arc from v to u, and is denoted by u(0− 0)v.

An r-triple in an r-digraph is an induced r-subdigraph with three ver-

tices and is of the form u(x1 − x2)v(y1 − y2)w(z1 − z2)u, where for i = 1, 2,

we have 0 ≤ xi, yi, zi ≤ r and 0 ≤
2∑
1

xi,
2∑
1

yi,
2∑
1

zi ≤ r. Further, in

an r-digraph, an oriented triple (1-triple) is an induced 1-subdigraph with

three vertices. An oriented triple is said to be transitive if it is of the form

u(1−0)v(1−0)w(0−1)u, or u(1−0)v(0−1)w(0−0)u, u(1−0)v(0−0)w(0−1)u,

or u(1 − 0)v(0 − 0)w(0 − 0)u, or u(0 − 0)v(0 − 0)w(0 − 0)u, otherwise it is

intransitive. An r-triple is said to be transitive if it contains only transi-

tive 1-triples and an r-digraph is said to be transitive if every of its r-triples

is transitive. In particular, a triple C in a 2-digraph is transitive if every

oriented triple of C is transitive.
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3.2 Characterization of mark sequences

The following result can be easily established.

Lemma 3.2.1. If D and D′ are two r-digraphs with the same mark sequence,

then D can be transformed to D′ by successively transforming (i) appropriate

oriented triples in one of the following ways,

either (a) by changing the intransitive oriented triple u(1−0)v(1−0)w(1−0)u,

to a transitive oriented triple u(0− 0)v(0− 0)w(0− 0)u, which has the same

mark sequence, or vice versa,

or (b) by changing an intransitive oriented triple u(1− 0)v(1− 0)w(0− 0)u

to a transitive oriented triple u(0− 0)v(0− 0)w(0− 1)u, which has the same

mark sequence, or vice versa.

or (ii) by changing a double u(1 − 1)v to a double u(0 − 0)v which has the

same mark sequence, or vice versa.

As an application of Lemma 3.2.1, we have the following observation.

Lemma 3.2.2. Among all r-digraphs with a given mark sequence those with

the fewest arcs are transitive.

We have the following results on marks in 2-digraphs.

Theorem 3.2.3. Let [pi]
n
i=1 be a sequence of non-negative integers with

p1 ≤ p2 ≤ · · · ≤ pk = pk+1 = · · · = pk+m−1 < pk+m ≤ pk+m+1 ≤ · · · ≤ pn and

let P ′ = [p′i]
n
1 with

P ′i =


pi − 1, for i = k,

pi + 1, for i = k +m− 1,

pi, otherwise.

Then P is a mark sequence of a 2-digraph if and only if P ′ is a mark

sequence of a 2-digraph.

Proof. Clearly, k ≥ 1 and m ≥ 2, and that either k + m − 1 = n, or

pk = pk+1 = · · · = pk+m−1 < pk+m. Now, P ′ is defined as (for 1 ≤ i ≤ n),
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P ′i =


pi − 1, for i = k,

pi + 1, for i = k +m− 1,

pi, otherwise.

Clearly, p′1 ≤ p′2 ≤ · · · ≤ p
/
n.

Let P ′ be a mark sequence of some 2-digraph D′ with n vertices in

which vertex v′i has mark p′i, 1 ≤ i ≤ n. We denote v′k+m−1 by v′j. Then

p′j = p′k+2. If in D′, v′j(2−0)v′k, or v′j(1−1)v′k, or v′j(1−0)v′k, or v′j(0−1)v′k, or

v′j(0−0)v′k, then transforming these respectively to v′j(1−0)v′k, or v′j(0−1)v′k,

or v′j(0− 0)v′k, or v′j(0− 2)v′k, or v′j(0− 1)v′k, we obtain a 2-digraph D with

mark sequence P .

If v′j(0 − 2)v′k, claim that there exists at least one vertex w′ in W ′ =

V ′ − {v′j, v′k} such that the 2-triple C formed by v′k, v
′
j and w′ contains at

least one intransitive 1-triple of the form v′k(1 − 0)v′j(1 − 0)w′(1 − 0)v′k, or

v′k(1− 0)v′j(0− 0)w′(1− 0)v′k, or v′k(1− 0)v′j(1− 0)w′(0− 0)v′k, which can be

transformed respectively to v′k(0− 0)v′j(1− 0)w′(0− 0)v′k, or v′k(0− 0)v′j(0−
0)w′(0−1)v′k, or v′k(0−0)v′j(0−1)w′(0−0)v′k with marks remaining unchanged.

Assume that this is not true, so that for every vertex w′ ∈ W ′, the 2-

triple C formed by v′k, v
′
j and w′ contains only transitive 1-triples of the form

(i) v′k(1− 0)v′j(1− 0)w′(0− 1)v′k, (ii) v′k(1− 0)v′j(0− 1)w′(1− 0)v′k
(iii) v′k(1− 0)v′j(0− 1)w′(0− 1)v′k, (iv) v′k(1− 0)v′j(0− 0)w′(0− 1)v′k
(v) v′k(1− 0)v′j(0− 1)w′(0− 0)v′k, (vi) v′k(1− 0)v′j(0− 0)w′(0− 0)v′k.

If at least one among (i)-(vi) appears in C, then clearly p′j < p′k since

number of arcs directed away from v′j is less than those directed away from

v′k, and number of arcs directed towards v′j is greater than those directed

towards v′k. So, we get a contradiction.

If (i) appears for every vertex w′ in W , so that 2-triple C formed by v′k,

v′j and w′ is of the form v′k(2− 0)v′j(2− 0)w′(0− 1)v′k, then

p′j = 2n− 2 + d+v′j
− d−v′j = 2n− 2 + 2(n− 2)− 2 = 4n− 8,

and

p′k = 2n− 2 + d+v′k
− d−v′k = 2n− 2 + 2(n− 2)− 2 = 3n− 2,

Therefore, p′j = p′k + n− 6.

For each n 6= 8, clearly p′j 6= p′k + 2, a contradiction.
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If n = 8, p′j = p′k + 2, but then for any w′,v′k(2− 0)v′j(2− 0)w′(0− 1)v′k
can be transformed to v′k(1−0)v′j(1−0)w′(0−2)v′k, and the marks remaining

unchanged.

If (ii) appears for every vertex w′ in W , so that the 2-triple C formed

is of the form v′k(2− 0)v′j(1− 0)w′(2− 0)v′k, then p′j = n− 2 and p′k = 4.

Thus, p′j = p′k + n− 6.

For each n, n 6= 8, clearly p′j 6= p′k + 2, a contradiction. For n = 8,

p′j = p′k + 2, but then for some ′w, v′k(2− 0)v′j(0− 1)w′(2− 0)v′k can be trans-

formed to v′k(1− 0)v′j(0− 2)w′(1− 0)v′k, with marks remaining unchanged.

Hence in all cases, we obtain v′k(1 − 0)v′j, and marks remaining un-

changed. Then, transforming v′k(1− 0)v′j to v′k(2− 0)v′j, we get a 2-digraph

D with mark sequence P .

Now, let P be a mark sequence of some 2-digraph D with n vertices

in which vertex vi has mark pi , 1 ≤ i ≤ n. Then, pj = pk. We denote

vk+m−1 by vj. If in D, either vj(0 − 2)vk, or vj(1 − 1)vk, or vj(1 − 0)vk, or

vj(0−1)vk, or vj(0−0)vk, then transforming these respectively to vj(0−1)vk,

or vj(1−0)vk, or vj(2−0)vk, or vj(1−1)vk, or vj(1−0)vk, we get a 2-digraph

with mark sequence P ′.

If vj(2− 0)vk, we claim that there exists at least one vertex w in W =

V −{vj, vk} such that the 2-triple C formed by the vertices vj, vk and w con-

tains at least one intransitive 1-triple of the form vj(1−0)vk(1−0)w(1−0)vj,

vj(1−0)vk(1−0)w(0−0)vj, or vj(1−0)vk(0−0)w(1−0)vj, which can be trans-

formed respectively to vj(0−0)vk(0−0)w(0−0)vj, vj(0−0)vk(0−0)w(0−1)vj,

or vj(0− 0)vk(0− 1)w(0− 0)vj with the marks remaining same.

Assume that this is not true, so that for every vertex w ∈ W , the

2-triple C formed by vj, vk and w contains only transitive 1-triples of the

form (i) vj(1 − 0)vk(1 − 0)w(0 − 1)vj, (ii) vj(1 − 0)vk(0 − 1)w(1 − 0)vj,

(iii) vj(1 − 0)vk(0 − 1)w(0 − 1)vj, (iv) vj(1 − 0)vk(0 − 1)w(0 − 0)vj, (v)

vj(1− 0)vk(0− 0)w(0− 1)vj, (vi) vj(1− 0)vk(0− 0)w(0− 0)vj.

If at least one among (i)-(vi) appear in C, then clearly pj > pk, since

in each case the number of arcs directed away from vj is greater than those

directed away from vk, and the number of arcs directed towards vj is less

than those directed towards vk. Therefore, we get a contradiction.

If (i) appears for every vertex w in W so that C is of the form vj(2 −
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0)vk(2− 0)w(0− 1)vj, then

pj = 2n− 2 + d+vj − d
−
vj

= 2n− 2 + 2 + n− 2 = 3n− 2

and

pk = 2n− 2 + d+vj − d
−
vj

= 2n− 2 + 2(n− 2)− 2 = 4n− 8.

For every n 6= 6, pj 6= pk, again a contradiction. If n = 6, we have pj = pk.

But then for any w, vj(2 − 0)vk(2 − 0)w(0 − 1)vj can be transformed to

vj(1− 0)vk(1− 0)w(0− 2)vj with the marks remaining unchanged.

If (ii) appears for every vertex w in W so that C is of the form vj(2 −
0)vk(0 − 1)w(2 − 0)vj, then pj = 2n − 2 + 2 − 2(n − 2) = 4, and pk =

2n − 2 − 2 − (n − 2) = n − 2. Clearly, for every n 6= 6, pj 6= pk, and

we get a contradiction. For n = 6, we get pj = pk. But then for any w,

vj(2−0)vk(0−1)w(2−0)vj can be transformed to vj(1−0)vk(0−2)w(1−0)vj

with the marks unchanged.

Thus in all cases, we have v′j(0−1)v′k, and transforming it to v′j(0−2)v′k,

we obtain a 2-digraph D with mark sequence P . �

Theorem 3.2.4. Let P = [pi]
n
1 be a sequence of non-negative integers in non-

decreasing order with at least two terms pt and pr such that 1 ≤ pr − pt ≤ 3

and let P ′ = [p′i]
n
1 with

P ′i =


pi − 1, for i = t,

pi + 1, for i = r,

pi, otherwise.

Then P is a mark sequence of a 2-digraph if and only if P ′ is a mark

sequence of a 2-digraph.

Proof. Let the sequence P contain at least two terms pt and pr such that

1 ≤ pr − pt ≤ 3, where without loss of generality, we may assume that

pt−1 < pt and pr < pr+1. If, (i) pt−q−1 < pt−q = · · · = pt−1 = pt, we take

1 ≤ pr − pt−q ≤ 3, or (ii) pr = pr+1 = · · · = pr+m < pr+m+1, we take

1 ≤ pr+m − pt ≤ 3, or if both (i) and (ii), we take 1 ≤ pr+m − pt−q ≤ 3. As

P ′ is defined as (for 1 ≤ i ≤ n),
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P ′i =


pi − 1, for i = t,

pi + 1, for i = r,

pi, otherwise.

Therefore, p′1 ≤ p′2 ≤ · · · ≤ p′n.

Let P ′ be a mark sequence of some 2-digraph D′ in which vertex v′i has

mark p′i, 1 ≤ i ≤ n. Then 3 ≤ p′r−p′t ≤ 5. If in D′, v′r(2−0)v′t, or v′r(1−1)v′t,

or v′r(1− 0)v′t, or v′r(0− 1)v′t, or v′r(0− 0)v′t, transforming these respectively

to v′r(1− 0)v′t, or v′r(0− 1)v′t, or v′r(1− 1)v′t, or v′r(0− 2)v′t, or v′r(0− 1)v′t we

obtain a 2-digraph with mark sequence P .

If v′r(0− 2)v′t, we claim that there exists at least one vertex w′ in W ′ =

V ′ − {v′r, v′t} such that the 2-triple C formed by the vertices v′r, v
′
t and w′

contains at least one intransitive 1-triple of the form v′t(1− 0)v′r(1− 0)w′(1−
0)v′t, or v′t(1− 0)v′r(1− 0)w′(0− 0)v′t, or v′t(1− 0)v′r(0− 0)w′(1− 0)v′t, which

can be transformed respectively to v′t(0 − 0)v′r(0 − 0)w′(0 − 0)v′t, or v′t(0 −
0)v′r(0− 0)w′(0− 1)v′t, or v′t(0− 0)v′r(0− 1)w′(0− 0)v′t, with marks remaining

unchanged.

Assume that this is not true, so that for every vertexw′ in W ′, the 2-

triple C formed by v′r, v
′
t and w′ contains only transitive 1-triples of the form

(i) v′t(1− 0)v′r(1− 0)w′(0− 1)v′t, (ii) v′t(1− 0)v′r(0− 1)w′(1− 0)v′t, (iii) v′t(1−
0)v′r(0− 1)w′(0− 1)v′t, (iv) v′t(1− 0)v′r(0− 0)w′(0− 1)v′t, (v) v′t(1− 0)v′r(0−
1)w′(0− 0)v′t, (vi) v′t(1− 0)v′r(0− 0)w′(0− 0)v′t.

If at least one among (i)-(vi) appear in C, then p′r < p′t + 3, since the

number of arcs directed away from v′r is less than those directed away from

v′t, and the number of arcs directed towards v′r is greater then those directed

towards v′t. This is a contradiction.

If (i) appears for every vertex w′ in W ′ so that C is of the form v′t(2−
0)v′r(2− 0)w′(0− 1)v′t, then

p′r = 2n− 2 + d+v′r − d
−
v′r

= 2n− 2 + 2(n− 2)− 2 = 4n− 8,

and

p′t = 2n− 2 + d+v′r − d
−
v′r

= 2n− 2 + 2 + n− 2 = 3n− 2.

Therefore, p′r − p′t = n− 6.

Clearly, for n 6= 9, 10, 11, we have 6 ≤ p′r − p′t ≤ 2, which is a contradic-

tion.
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For n = 9, 10, 11, p′r − p′t = 3, 4, 5. But then for any w′, v′t(2− 0)v′r(2−
0)w′(0 − 1)v′t can be transformed to v′t(1 − 0)v′r(1 − 0)w′(0 − 2)v′t without

changing the marks.

If (ii) appears for every vertex w′ in W ′ so that C is of the form

v′t(2 − 0)v′r(0 − 1)w′(2 − 0)v′t, then p′r = 2n − 2 − 2 − (n − 2) = n − 2,

and p′t = 2n− 2 + 2− 2(n− 2) = 4.

Therefore, p′r − p′t = n− 6.

For n 6= 9, 10, 11, clearly 6 ≤ p′r − p′t ≤ 2, a contradiction.

For n = 9, 10, 11, we get p′r − p′t = 3, 4, 5. But then for any w′,

v′t(2−0)v′r(0−1)w′(2−0)v′t can be transformed to v′t(1−0)v′r(0−2)w′(1−0)v′t
with the marks remaining unchanged.

Hence in all cases, we have v′t(1 − 0)v′r, and then transforming it to

v′t(2− 0)v′r, we obtain a 2-digraph D with mark sequence P .

Conversely, let P be a mark sequence of some 2-digraph D in which

vertex vi has mark pi, 1 ≤ i ≤ n. Then, 1 ≤ pr − pt ≤ 3. If in D, either

vt(2− 0)vr, or vt(1− 1)vr, or vt(1− 0)vr, or vt(0− 1)vr, or vt(0− 0)vr, then

transforming them respectively to vt(1− 0)vr, or vt(0− 1)vr, or vt(1− 1)vr,

or vt(0− 2)vr, or vt(0− 1)vr, we get a 2-digraph with mark sequence P ′.

If in D, vt(0 − 2)vr, we claim that there exists at least one vertex w

in W = V − {vr, vt} such that the 2-triple C formed by the vertices vr, vt

and w contains at least one intransitive 1-triple of the form vr(1 − 0)vt(1 −
0)w(1 − 0)vr, vr(1 − 0)vt(1 − 0)w(0 − 0)vr, or vr(1 − 0)vt(0 − 0)w(1 − 0)vr.

Then these can be respectively transformed to vr(0− 0)vt(0− 0)w(0− 0)vr,

or vr(0−0)vt(0−0)w(0−1)vr, or vr(0−0)vt(0−1)w(0−0)vr with the marks

remaining same.

If this is not true, then for every vertex w in W , the 2-triple C formed

by vr, vt and w contains only transitive 1-triples of the form (i) vr(1−0)vt(1−
0)w(0−1)vr, or (ii) vr(1−0)vt(0−1)w(1−0)vr, or (iii) vr(1−0)vt(0−1)w(0−
1)vr, or (iv) vr(1− 0)vt(0− 1)w(0− 0)vr, or (v) vr(1− 0)vt(0− 0)w(0− 1)vr,

or (vi)vr(1− 0)vt(0− 0)w(0− 0)vr.

If at least one among (i) - (vi) appear in C, clearly pr > pt + 3, since

outgoing arcs from vr is greater than those going out of vt, and incoming arcs

to vt is greater than those of vr. Thus, we get a contradiction.

If (i) appears for every vertex w in W , so that C is of the form vr(2 −
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0)vt(2 − 0)w(0 − 1)vr, then pt = 2n − 2 + 2(n − 2) − 2 = 4n − 8, and

pr = 2n− 2 + 2 + (n− 2) = 3n− 2.

Therefore, pr − pt = 6− n.

Clearly, for n ≤ 3, 4, 5, we have pr − pt ≥ 4, or pr − pt ≤ 0 which is a

contradiction.

For n = 3, 4, 5, we obtain 1 ≤ pr − pt ≤ 3. But then vr(2 − 0)vt(2 −
0)w(0− 1)vr, can be transformed to vr(1− 0)vt(1− 0)w(0− 2)vr, with marks

remaining unchanged.

If (ii) appears for every vertex w in W , so that C is of the form

vr(2 − 0)vt(0 − 1)w(2 − 0)vr, then pt = 2n − 2 − (n − 2) − 2 = n − 2,

and pr = 2n− 2 + 2− 2(n− 2) = 4.

So, pr − pt = 6− n.

For n ≤ 3, 4, 5, we have pr− pt ≥ 4, or pr− pt ≤ 0, which is a contradic-

tion. For n = 3, 4, 5, we obtain 1 ≤ pr − pt ≤ 3, but then we can transform

vr(2− 0)vt(0− 1)w(2− 0)vr to vr(1− 0)vt(0− 2)w(1− 0)vr with the marks

remaining unchanged.

Hence in all cases, we have vr(1 − 0)vt, and finally transforming it to

vr(2− 0)vt, we obtain a 2-digraph D′ with mark sequence P ′. �.

An analogous result to Landau′s theorem on tournament scores is the

following characterization of marks in 2-digraphs by Pirzada and Samee [42].

Theorem 3.2.7. A sequence P = [pi]
n
1 of non-negative integers in non-

decreasing order is the mark sequence of a 2-digraph if and only

k∑
i=1

pi ≥ 2k(k − 1), (3.1)

for 1 ≤ k ≤ n, with equality when k = n.

Theorem 3.2.8. Let P and P ′ be given as in Theorem 3.2.3. Then P

satisfies (3.1) if and only if P ′ satisfies (3.1).

Proof. If P satisfies (3.1),then

j∑
i=1

p′i =
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j∑
i=1

pi, for j ≤ k − 1,

k−1∑
i=1

pi + (pk − 1) +
j∑

i=k+1

pi, for k ≤ j ≤ k +m− 2,

k−1∑
i=1

pi + (pk − 1) +
k+m−2∑
i=k+1

pi + (pk+m−1 + 1) +
j∑

i=k+m

pi, for j ≥ k +m− 1.

When j ≤ k−1 and j ≥ k+m−1, we observe that
j∑
i=1

p′i ≥ 2j(j−1). When

k ≤ j ≤ k +m− 2, we show that
j∑
i=1

pi > 2j(j − 1), k ≤ j ≤ k +m− 2.

Assume to the contrary, that for some j, k ≤ j ≤ k + m − 2,
j∑
i=1

pi ≤

2j(j − 1). From conditions (3.1), we have,
j∑
i=1

pi ≥ 2j(j − 1). Combining the

two, we get
j∑
i=1

pi = 2j(j − 1). Therefore, again by (3.1), we have

pj+1 + 2j(j − 1) = pj+1 +
j∑
i=1

pi =
j+1∑
i=1

pi ≥ 2j(j + 1) = 2j(j − 1) + 4j.

Therefore, pj+1 ≥ 4j. Also, pj = pj+1 gives pj ≥ 4j. Thus,

j∑
i=1

pi =
j−1∑
i=1

pi + pj ≥ 2(j − 1)(j − 2) + 4j = 2j(j − 1) + 4 > 2j(j − 1),

which contradicts our assumption. Thus, we have

j∑
i=1

p′i =
j∑
i=1

pi−1 > 2j(j − 1)− 1 ≥ 2j(j − 1).

Hence, in all cases, P ′ satisfies (3.1).

If P ′ satisfies (3.1) then it is easy to see that P also satisfies (3.1). �

Lemma 3.2.9. Let P and P ′ be given as in Theorem 3.2.4. Then P satisfies

(3.1) if and only if P ′ satisfies (3.1).

Proof. If P satisfies (3.1), then

j∑
i=1

p′i =
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j∑
i=1

pi, for j ≤ t− 1,

t−1∑
i=1

pi + (pt − 1) +
r−1∑
i=t+1

pi, for t ≤ j ≤ r − 1,

t−1∑
i=1

pi + (pt − 1) +
r−1∑
i=t+1

pi + (pr + 1) +
j∑

i=r+1

pi, for j ≥ r.

For j ≤ t− 1 and j ≥ r, clearly,
j∑
i=1

p′i ≥ 2j(j − 1). For t ≤ j ≤ r − 1, claim,

j∑
i=1

pi > 2j(j − 1). If not, let for some j, t ≤ j ≤ r − 1,
j∑
i=1

pi ≤ 2j(j − 1).

From conditions (3.1), we have
j∑
i=1

pi ≥ 2j(j − 1). Combining the two, we

get
j∑
i=1

pi = 2j(j − 1). Again by (3.1), we have

pj+1 + 2j(j − 1) = pj+1 +
j∑
i=1

pi =
j+1∑
i=1

pi ≥ 2j(j + 1) = 2j(j − 1) + 4j.

Thus, pj+1 ≥ 4j. Now, 1 ≤ pr−pt ≤ 3, so that pt = pr−x, where 1 ≤ x ≤ 3.

If pt and pr are consecutive terms, then j = t and j+1 = t+1 = r. Therefore,

pr = pt+1 ≥ 4t so that pt ≥ 4t− x. Now,

t∑
i=1

pi =
t−1∑
i=1

pi + pt ≥ 2(t− 1)(t− 2) + pt ≥ 2(t− 1)(t− 2) + 4t− x =

2t(t− 1) + 4− x > 2t(t− 1),

as 1 ≤ x ≤ 3, and thus contradicts the assumption. If pt−1 < pt = pt+1 =

· · · = pj = pj+1 = · · · = pr−1 < pr, then pt = 4t, so that

t∑
i=1

pi =
t−1∑
i=1

pi + pt ≥ 2(t− 1)(t− 2) + 4t = 2t(t− 1) + 4 > 2t(t− 1)

again a contradiction. Thus the claim is proved.

Therefore,
j∑
i=1

p′i =
j∑
i=1

pi > 2j(j − 1)− 1 ≥ 2j(j − 1).

If P ′ satisfies (3.1), then P also satisfies (3.1). �

Proof of Theorem 3.2.7. Necessity. Let D be a 2-digraph with mark

sequence[pi]
n
1 . Let W be the 2-subdigraph induced by any set of k vertices

w1, w2, · · · , wk of D. Let α denote the number of arcs of D that start in
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W and end outside W , and let β denote the number of arcs of D that

start outside of W and end in W . Note that each vertex w in W , and

for every vertex v of D not in W , there are at most two arcs from v to

w, so that β ≤ 2k(n − k). Therefore, we have β ≤ 2nk − 2k2. Then,
k∑
i=1

pwi
=

k∑
i=1

(2n−2+d+D(wi)−d−D(wi)) = 2nk−2k+
k∑
i=1

d+D(wi)−
k∑
i=1

d−D(wi) =

2nk − 2k + [
k∑
i=1

d+W (wi) + α]− [
k∑
i=1

d−W (wi) + β] = 2nk − 2k+(number of arcs

of W )+α−(number of arcs of W )−β. Therefore,

k∑
i=1

pwi
= 2nk − 2k + α− β (3.2)

Now, from (3.2) we have,

k∑
i=1

pwi
≥ 2nk − 2k − β ≥ 2nk − 2k − 2nk + 2k2 = 2k(k − 1).

Applying this result to the k vertices with marks p1, p2, · · · , pk yields the de-

sired inequality. If k = n, then α = β = 0, and the required equality follows

from Equation (3.2).

Sufficiency. Clearly, the sequence Pn = [0, 4, 8, · · · , 4n − 4] satisfies

conditions (3.2) as it is the mark sequence of the transitive double tourna-

ment. In a sequence P 6= Pn, satisfying (3.1), we have p1 ≥ 0 and pn ≤ 4n−4.

We claim that P contains either (a) a repeated term, or (b) at least two terms,

say pr and pt such that 1 ≤ pr − pt ≤ 3, or both (a) and (b). To verify the

claim, suppose that there is no repeated term. Then, p1 < p2 < · · · < pn.

If there is no consecutive pair pi < pi+1 for which 1 ≤ pi+1 ≤ pi ≤ 3, then

pi+1 − pi ≥ 4, for all 1 ≤ i ≤ n. Since p1 ≥ 0 , p2 ≥ 4, p3 ≥ 8,· · · ,
pn ≥ 4(n− 1). Thus, by (3.1)

2n(n− 1) =
n∑
i=1

pi ≥ 4
n−1∑
i=1

i = 4
(n− 1)n

2
= 2n(n− 1).

Thus there is equality throughout. This implies that pi = 4(i− 1), and that

P = Pn, a contradiction.

In case of (a), when P has a repeated term, reduce its first occurrence

by one, and increase its last occurrence by one to form P ′, and in case of (b)
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when P contains at least two terms, say pr and pt with 1 ≤ pr−pt ≤ 3, reduce

pt by one and increase pr by one to form P ′. The process of applying (a), or

(b), or both is repeated (using Theorem 3.2.3 and Theorem 3.2.4 ) till we get

the sequence Pn. Let the total order on the non-negative integer sequences

of length n be defined by X = [x1, x2, · · · , xn] � Y = [y1, y2, · · · , yn] if either

X = Y , or for some i, 1 ≤ i ≤ n, xn = yn , xn−1 = yn−1,· · · ,xi+1 = yi+1,

xi < yi. Clearly,� is reflexive, antisymmetric, transitive, and satisfies com-

parability, we write X ≺ Y if X � Y but X 6= Y . For any sequence

P 6= Pn, satisfying (1), we form another sequence P ′ satisfying (3.1) such

that P ≺ P ′, and P is mark sequence if and only if P ′ is a mark sequence.

Therefore, by repeated application of this transformation, starting from the

original sequence satisfying (3.1), we reach Pn. Hence P is a mark sequence.�

The following is the combinatorial criteria for sequences of non-negative

integers to be the mark sequence of an r-digraph. One proof of this charac-

terization can be seen in Pirzada [43] and the other proof uses networks and

flows has appeared in Pirzada and Samee [42].

Theorem 3.2.10. A sequence P = [pi]
n
1 of non-negative integers in non-

decreasing order is the mark sequence of a r-digraph if and only

k∑
i=1

pi ≥ rk(k − 1), (3.3)

for 1 ≤ k ≤ n, with equality when k = n.

Proof. (i) Sufficiency. Let qi = pi − r(n− 1). Then
∑n

i=1 qi = 0, and we

may assume that q1 ≤ q2 ≤ · · · ≤ qk < 0 ≤ qk+1 ≤ · · · ≤ qn.

Construct a network with vertex set {s, v1, v2, . . . , vn, t} of cardinality

n+ 2 as follows.

1. There are arcs (s, vi), 1 ≤ i ≤ k from the source s to vertex vi. The

arc (s, vi) has capacity −qi, 1 ≤ i ≤ k.

2. Arcs (vi, t) from vi to the sink t, r + 1 ≤ i ≤ n. The arc (vi, t) has

capacity −qi.
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3. For each pair vi, vj of distinct vertices (i 6= j), we have one arc from vi

to vj and one arc from vj to vi, each with capacity r.

It is easy to check that a r-digraph with mark sequence [pi]
n
i can be

obtained from an integral flow of value −
∑k

i=1 qi =
∑n

i=k+1 qi by reducing

the flow on cycles of length 2 until one of the two edges has flow value zero.

In view of the max-flow-min-cut-Theorem, it suffices to check that each

cut has capacity at least
∑n

i=k+1 qi.

We thus assume that {s}∪C is a cut, C ⊆ {v1, v2, . . . , vn}, |C| = t, and

that |C ∩ {v1, v2, . . . , vk}| = a and |C ∩ {vk+1, vk+2, . . . , vn}| = b = t− a.
For its capacity, we have the following estimate.

cap({s} ∪ C) =
∑

i:i≤k,vi /∈C

−qi +
∑

i:i>k,vi∈C

qi + t(n− t) · r

≥ −
k∑

i=a+1

qi +
k+b∑
i=k+1

qi + t(n− t) · r.

This expression is bounded from below by −
∑k

i=1 qi =
∑n

i=k+1 qi if and only

if
a∑
i=1

qi +
k+b∑
i=k+1

qi + t(n− t) · r ≥ 0,

if and only if

a∑
i=1

pi +
k+b∑
i=k+1

pi + t(n− t) · r ≥ t · r(n− 1)

(since pi = r(n− 1) + qi), if and only if

a∑
i=1

pi +
k+b∑
i=k+1

pi ≥ rt(t− 1).

This latter inequality is certainly implied by the inequality

t∑
i=1

pi ≥ rt(t− 1),

since the pi are non-decreasing.
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(ii) Necessity. Follows from the construction in (i) if we use the cuts

{s} ∪ {v1, v2, . . . , vt}, 1 ≤ t ≤ n. �

Now we give two recursive characterizations for mark sequences in r-

digraphs.

Theorem 3.2.11. Let P = [pi]
n
1 be a sequence of non-negative integers in

non-decreasing order, where for each i, 0 ≤ pi ≤ 2r(n − 1). Let P ′ be ob-

tained from P by deleting the greatest entry pn(= 2r(n− 1)−k, say) and (a)

if k ≤ n − 1, reducing the k greatest remaining entries by one each, or (b)

if k > n − 1, reducing the k − (n − 1) greatest entries by two each and the

remaining 2n− 2− k entries by one. Then P is the mark sequence of some

r-digraph if and only if P ′ (arranged in non-decreasing order) is the mark

sequence of some r-digraph.

Proof. Let P ′ be a mark sequence of some r-digraph D′. If P ′ is obtained

from P as in (a), then an r-digraph D with mark sequence P is obtained by

adding a vertex v inD′ such that v((r−1)−0)vi for those vertices vi inD′ with

mark vi = pi− 1, and v(r− 0)vi for those vertices vi in D′ with mark vi = pi.

If P ′ is obtained from P as in (b), then again an r-digraph D with mark

sequence P is obtained by adding a vertex v in D′ such that v((r− 1)− 1)vi

for those vertices vi in D′ with mark vi = pi−2 and v((r−1)−0)vi for those

vertices vi in D′ with mark vi = pi − 1.

Conversely, let P be the mark sequence of some r-digraph D. We assume

D is transitive, if not D becomes transitive by using Lemma 3.2.1. Let

V = {v1, v2, · · · , vn} be the vertex set of D, and let pn = 2r(n − 1) − k. If

k ≤ n−1, construct D such that vn((r−1)−0)vi for all i, n−k ≤ i ≤ n−1,

and vn(r − 0)vj for all j, 1 ≤ j ≤ n − k − 1. Clearly, D − vn realizes P ′

(arranged in non-decreasing order). If k > n − 1, construct D such that

vn((r − 1) − 1)vi for all i, 2n − k − 1 ≤ i ≤ n − 1, and vn((r − 1) − 0)vj

for all j, 1 ≤ j ≤ 2n − k − 2. Then again, D − vn realizes P ′ (arranged in

non-decreasing order). �

Theorem 3.2.11 provides an algorithm for determining whether a given

non-decreasing sequence of non-negative integers is a mark sequence and
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for constructing a corresponding r-digraph. At each stage, we form P ′

according to Theorem 3.2.11 such that P ′ is in non-decreasing order. If

pn = 2r(n− 1)− k, deleting pn and performing (a) or (b) of Theorem 3.2.11

according as k ≤ n − 1 or k > n − 1, we get P ′ = [p′1, p
′
2, · · · , p′n−1]. If

the mark of vertex vi was decreased by one in the process, then the con-

struction yielded vn ((r − 1)− 0) vi and if it was decreased by two, then the

construction yielded vn ((r − 1)− 1) vi. For a vertex vj whose mark remained

unchanged, the construction yielded vn (r − 0) vj. If this process is applied

recursively, then it tests whether or not P is a mark sequence, and if P is

a mark sequence the corresponding r-digraph with mark sequence P is con-

structed.

Theorem 3.2.12. Let P = [pi]
n
1 be a sequence of non-negative integers in

non-decreasing order, where for each i, 0 ≤ pi ≤ 2r(n − 1). Let P ′ be ob-

tained from P by deleting the greatest entry pn(= 2r(n − 1) − k, say) and

(a) if k is even, say k = 2t, reducing the t greatest remaining entries by two

each, or (b) if k is odd, say k = 2t + 1, reducing the t greatest remaining

entries by two and reducing the greatest among the remaining entries by one.

Then P is the mark sequence of some r-digraph if and only if P ′ (arranged

in non-decreasing order) is the mark sequence of some r-digraph.

Proof. This can be proved by using the same argument as in the proof of

Theorem 3.2.11.

Theorem 3.2.12 also provides an algorithm for determining whether a

given non-decreasing sequence of non-negative integers is a mark sequence

and for constructing a corresponding r-digraph.

Definition 3.2.13. In a 2-digraph, the set of distinct marks of the ver-

tices is called its mark set. For example, the 2-digraph D with vertex set

V = {v1, v2, v3, v4, v5}, and arcs as v5(1 − 0)v4, v5(1 − 0)v3, v4(2 − 0)v3,

v4(1−0)v1, v3(2−0)v2, v2(1−0)v1 has mark sequence [6,7,7,10,10] and mark

set {6, 7, 10}.

The following existence result for mark sets in 2-digraphs is due to
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Pirzada and Naikoo [51].

Theorem 3.2.14. Let P = {p1, p2, · · · , pn} be the set of non-negative even

integers in decreasing order and for all even g, 2 ≤ g ≤ n,

pg > 2(pg−1 − pg−2 + · · · − p2 + p1 + 1),

and for all odd h, 3 ≤ h ≤ n,

ph > 2(ph−1 − ph−2 + · · ·+ p2 − p1 − 1).

Then there is a 2-digraph with mark set P .

In Theorem 3.2.14, if pg ≤ 2(pg−1−pg−2+· · ·−p2+p1+1), for some even

g, 2 ≤ g ≤ n, then the existence of a 2-digraph with mark set P is not always

true. To see this, let g = n = 2 and p1 = 2, p2 = 4. If there is a 2-digraph

with mark set P = {2, 4}, there exist positive integers n1 and n2 such that

2n1+4n2 = 2(n1+n2)(n1+n2−1) < 2(n1+2n2 = 2n1+4n2 (since n1 and n2

are positive integers), implying 2n1 + 4n2 < 2n1 + 4n2, which is impossible.

Similarly, in Theorem 3.2.14, if ph ≤ 2(ph−1 − ph−2 + · · · + p2 − p1 − 1) for

some odd h, 3 ≤ h ≤ n, the existence of a 2-digraph with mark set P is not

always true.

Further we note that in general, every set of odd positive integers is not

the mark set of any 2-digraph. For example, there is no 2-digraph with mark

set P = {1, 5}. For if P = {1, 5} is a mark set of some 2-digraph, there exist

vertices v1 and v2 with pv1 = 1 and pv2 = 5 such that v1(0 − 1)v2. Since

pv2 = 5, there exists another vertex v3 with pv3 = 5 such that v3(2−0)v1 and

either v3(0− 1)v2 or v3(0− 2)v2. If v3(0− 1)v2, then pv2 ≥ 6, or if v3(0− 2)v2

then pv2 ≥ 6, both cases lead to a contradiction.

The above facts imply that in general, every set of non-negative integers

is not a mark set. The next result [51] provides a construction of a 2-digraph

on kr vertices using a 2-digraph on r vertices.

Theorem 3.2.15. Let D be a 2-digraph on r vertices with mark set {p1, p2, · · · , pn}.
Then for each k ≥ 1, there exists a 2-digraph on kr vertices with mark set

40



{p1 + 2(k − 1)r, p2 + 2(k − 1)r, · · · , pn + 2(k − 1)r}.

3.3 Stronger inequalities on marks of r-digraphs

The following result gives a lower bound for
∑
i∈I
pi .

Theorem 3.3.1. A sequence P = [pi]
n
1 of non-negative integers in non-

decreasing order is a mark sequence of an r-digraph if and only if for every

subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

pi ≥ r
∑
i∈I

(i− 1) + r

(
|I|
2

)
(3.4)

with equality when |I| = n.

Proof. Sufficiency. Let the sequence P = [pi]
n
1 of non-negative integers in

nondecreasing order satisfy equation (3.4). Now, for any I ⊆ [n], we have

∑
i∈I

(i− 1) ≥
|I|∑
i=1

(i− 1) =

(
|I|
2

)
.

Therefore, from equation (3.4), we have∑
i∈I

pi ≥ r
∑
i∈I

(i− 1) + r

(
|I|
2

)
≥ r

(
|I|
2

)
+ r

(
|I|
2

)
= 2r

(
|I|
2

)
.

Hence, by Theorem 3.2.3, P is a mark sequence.

Necessity. Assume that P = [pi]
n
1 is a mark sequence of some r-

digraph. For any subset I ⊆ [n], define

f(I) =
∑
i∈I

pi − r
∑
i∈I

(i− 1)− r
(
|I|
2

)
.

Claim I = {i : 1 ≤ i ≤ |I|}. If not, then there exists i /∈ I and j ∈ I
such that j = i+ 1. So, pi ≤ pj. For j ∈ I, we have

f(I) =
∑
t∈I

pt − r
∑
t∈I

(t− 1)− r
(
|I|
2

)
,
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f(I − j) =
∑

t∈I,j /∈I

pt + pj − r

 ∑
t∈I,j /∈I

(t− 1) + (j − 1)

− r(|I| − 1

2

)
.

Therefore

f(I)− f(I − {j}) = pj − r(j − 1)− r
(
|I|
2

)
+ r

(
|I| − 1

2

)
= pj − r(j − 1)− r(|I| − 1)

= pj − r(j + |I| − 2).

Since f(I) − f(I − {j}) < 0, so pj − r(j + |I| − 2) < 0. Again f(I ∪

{i}) =
∑
t∈I
pt + pi− r

(∑
t∈I

(t− 1) + (i− 1)

)
− r
(|I|+1

2

)
. So f(I ∪ {i})− f(I) =

pi− r(i− 1)− r
(|I|+1

2

)
+ r
(|I|
2

)
= pi− r(i+ |I| − 1). As f(I ∪{i})− f(I) ≥ 0,

therefore pi−r(i+|I|)−1) ≥ 0. Thus pj < r(j+|I|−2) and pi ≥ r(i+|I|−1).

Therefore r(i+ |I| − 1) ≤ pi ≤ pj < r(j + |I| − 2). Since j = i+ 1, therefore

r(i + |I| − 1) < r(i + 1 + |I| − 2). That is, r(i + |I| − 1) < r(i + |I| − 1),

which is a contradiction. Hence

f(I) =

|I|∑
i=1

pi − r
|I|∑
i=1

(i− 1)− r
(
|I|
2

)

=

|I|∑
i=1

pi − r
(
|I|
2

)
− r
(
|I|
2

)
≥ r|I|(|I| − 1)− 2r

(
|I|
2

)
= 0.

(by Theorem 3.2.3)

Thus
∑
i∈I
pi− r

∑
i∈I

(i− 1)− r
(|I|
2

)
≥ 0, that is,

∑
i∈I
pi ≥ r

∑
i∈I

(i− 1) + r
(|I|
2

)
.

This proves the necessity. �

We note that equality can occur often in Equation (3.4). For example, in

the transitive r-digraph of order n with mark sequence [0, 2r, 4r, · · · , 2r(n−
1)], and in the regular r-digraph of order n with mark sequence [r(n−1), r(n−
1), · · · , r(n − 1)]. We further observe that Theorem 3.3.1 is best possible,

since for any real ε > 0, the inequality∑
i∈I

pi ≥ (1 + ε)r
∑
i∈I

(i− 1) + (1− ε)r
(
|I|
2

)

42



fails for some I, and some r-digraphs. This can been seen, for example, in the

transitive r-digraph of order n with mark sequence [0, 2r, 4r, · · · , 2r(n− 1)],

and in the regular r-digraph of order n with mark sequence [r(n− 1), r(n−
1), · · · , r(n− 1)].

The next result gives a set of upper bounds for
∑

i∈I pi and is equivalent

to the set of lower bounds for
∑

i∈I pi in Theorem 3.3.1.

Theorem 3.3.2. A sequence P = [pi]
n
1 of non-negative integers in non-

decreasing order is a mark sequence of an r-digraph if and only if for every

subset I ⊆ [n] = {1, 2, · · · , n},∑
i∈I

pi ≤ r
∑
i∈I

(i− 1) +
1

2
r|I|(2n− |I| − 1),

with equality when |I| = n.

Proof. We have [n] = {1, 2, · · · , n}. Let J = [n] − I, so that I + J = [n]

and |J |+ |I| = n. Therefore, by Theorem 3.3.1, P is a mark sequence if and

only if ∑
i∈[n]

pi = rn(n− 1) and
∑
i∈J

pi ≥ r
∑
i∈J

(i− 1) + r

(
|J |
2

)

if and only if∑
i∈I

pi +
∑
i∈J

pi = rn(n− 1) and
∑
i∈J

pi ≥ r
∑
i∈J

(i− 1) + r

(
|J |
2

)
if and only if∑

i∈I

pi = rn(n− 1)−
∑
i∈J

pi

≤ rn(n− 1)− r
∑
i∈J

(i− 1)− r
(
|J |
2

)

= rn(n− 1)−

(
r
n(n− 1)

2
− r

∑
i∈I

(i− 1)

)
− r
(
n− |I|

2

)
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(because r
∑

i∈I(i− 1) + r
∑

i∈J(i− 1) = r
(
n
2

)
and |I|+ |J | = n)

Thus∑
i∈I

pi = rn(n− 1)− rn(n− 1)

2
+ r

∑
i∈I

(i− 1)− r

2
(n− |I|)(n− |I| − 1)

= r
∑
i∈I

(i− 1) +
r

2
|I|(2n− |I| − 1),

which proves the result.

We now have the following results.

Theorem 3.3.3. If P = [pi]
n
1 is a mark sequence of an r-digraph, then for

each i, r(i− 1) ≤ pi ≤ r(n+ i− 2).

Proof. Let I = {i} in Theorem 3.3.1 and Theorem 3.3.2. Then∑
i∈I

pi ≥ r
∑
i∈I

(i− 1) + r

(
|I|
2

)
implies that pi ≥ r(i− 1), and∑

i∈I

pi ≤ r
∑
i∈I

(i− 1) +
r

2
|I|(2n− |I| − 1)

implies that pi ≤ r(n+ i− 2). Therefore

r(i− 1) ≤ pi ≤ r(n+ i− 2).

Theorem 3.3.4. Let P = [pi]
n
1 be a mark sequence of an r-digraph. If∑

i∈I

pi = r
∑
i∈I

(i− 1) + r

(
|I|
2

)
,

for some I ⊆ [n], then one of the following holds.

(a) I = [1, |I|] and
∑|I|

i=1 pi = r|I|(|I| − 1).

(b) I = [t, t+ |I| − 1] for some t, 2 ≤ t ≤ n− |I|+ 1,

t+|I|−1∑
i=1

pi = r(t+ |I| − 1)(t+ |I| − 2)
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and pi = r(t+ |I| − 2) for all i ≤ t+ |I| − 1.

(c) I = [1,m] ∪ [m + t, t + |I| − 1] for some m and t such that 1 ≤
m ≤ |I| − 1 and 2 ≤ t ≤ n − |I| + 1,

∑m
i=1 pi = rm(m − 1),

∑t+|I|−1
i=1 pi =

r(t+|I|−1)(t+|I|−2) and pi = r(m+t+|I|−2) for all i , m+1 ≤ i ≤ t+|I|−1.

An application of Holder’s theorem gives the inequalities of the sum of

the squares of marks.

Theorem 3.3.5. If P = [pi]
n
1 is a mark sequence of an r-digraph, then

(a)
∑t

i=1 p
2
i ≥

∑t
i=1(2rt − 2r − pi)2, for 1 ≤ t ≤ n, with equality when

t = n.

(b) For 1 < g < ∞, 1
g

+ 1
h

= 1,
∑t

i=1 p
g
i ≥ t(rt− r)g, where 1 ≤ t ≤ n,

with equality when t = n and p1 = p2 = · · · = pt.

Proof (a). By Theorem 3.2.3, we have for 1 ≤ t ≤ n with equality when

t = n,

rt(t− 1) ≤
t∑
i=1

pi,

or

t∑
i=1

p2i + 2(2rt− 2r)rt(t− 1) ≤
t∑
i=1

p2i + 2(2rt− 2r)
t∑
i=1

pi,

or
t∑
i=1

p2i + t(2rt− 2r)2 − 2(2rt− 2r)
t∑
i=1

pi ≤
t∑
i=1

p2i ,

or

p21+· · ·+p2t+(2rt− 2r)2 + · · ·+ (2rt− 2r)2︸ ︷︷ ︸
k−times

−2(2rt−2r)p1−· · ·−2(2rt−2r)pt ≤
t∑
i=1

p2i ,

or

(2rt− 2r − p1)2 + · · ·+ (2rt− 2r − pt)2 ≤
t∑
i=1

p2i ,

or
t∑
i=1

(2rt− 2r − pi)2 ≤
t∑
i=1

p2i .
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(b) Again, by Theorem 3.2.3, we have for 1 ≤ t ≤ n with equality when

t = n,

rt(t− 1) ≤
t∑
i=1

pi =
t∑
i=1

(pt)(1) ≤

(
t∑
i=1

pgi

) 1
g
(

t∑
i=1

1h

) 1
h

and p1 = p2 = · · · = pt, (by Holders inequality). Therefore

rt(t− 1) ≤
t∑
i=1

pi =

(
k∑
i=1

pgi

) 1
g

t
1
h ,

and p1 = p2 = · · · = pt. That is,

rt1−
1
h (t− 1) ≤

(
t∑
i=1

pgi

) 1
g

,

and p1 = p2 = · · · = pt.

Hence
t∑
i=1

pgi ≥ t(rt− r)g,

for 1 ≤ t ≤ n with equality when t=n, and p1=p2 = · · · = pt, since 1
g

+ 1
h

=

1.

Given an r-digraph on n vertices, the following result provides the exis-

tence of an r-digraph with more vertices.

Theorem 3.3.6. Let D be an r-digraph on n vertices with mark sequence

[pi]
n
1 . Then, for each t ≥ 1, there exists an r-digraph on tn vertices with

mark sequence [pi + r(t− 1)n]tn1 .

Proof. For each i, 1 ≤ i ≤ t, let Di be a copy of D with n vertices. Define

an r-digraph D1 as

D1 = D1 ∪D2 ∪ · · · ∪Dt,

such that vertices and arcs of D1 are that of Di, and let there be no arc

between the vertices of Di and Dj (i 6= j). Then D1 is an r-digraph on tn

vertices with mark sequence [pi + r(t− 1)n]tn1 .
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3.4 Uniquely realizable mark sequences

Definition 3.4.1. An r-digraph is reducible if it is possible to partition its

vertices into two non empty sets V1 and V2 in such a way that there are ex-

actly r arcs directed from every vertex of V2 to each vertex of V1, and there is

no arc from any vertex of V1 to any vertex of V2. If D1 and D2 are r-digraphs

having respectively vertex sets V1 and V2, then the r-digraph D consisting

of all arcs of D1 and all arcs of D2, and exactly r arcs directed from each

vertex of D2 to every vertex of D1, we denote it by D = [D1, D2]. If this is

not possible the r-digraph is said to be irreducible.

Let D1, D2, · · · , Dh be irreducible r-digraphs with disjoint vertex sets.

Then D = [D1, D2, · · · , Dh] is the r-digraph having all arcs of Di, 1 ≤ i ≤ h,

and exactly r arcs from each vertex of Dj to every vertex of Di, 1 ≤ i < j ≤ h.

we say D1, D2, · · · , Dh are the irreducible components of D, and such a de-

composition is called the irreducible decomposition of D.

Definition 3.4.2. A mark sequence P is said to be irreducible if all the

r-digraphs D with mark sequence P are irreducible.

The following result characterizes irreducible r-digraphs.

Theorem 3.4.3. If D is a connected r-digraph with mark sequence P = [pi]
n
1 ,

then D is irreducible if and only if for k = 1, 2, · · · , n− 1,
k∑
i=1

pi > rk(k − 1)

and
n∑
i=1

pi = rn(n− 1).

Proof. Let D be a connected, irreducible k-digraph having mark sequence

P = [pi]
n
1 .

k∑
i=1

pi > rk(k − 1) holds, since it has already been established for

any r-digraph. Also
n∑
i=1

pi = rn(n − 1) implies that for any integer t < n,

the r-subdigraph D′ induced by any set of t vertices has a sum of marks in

D′ equal to kt(t− 1). Since D is irreducible, therefore either there is an arc

from at least one of these t vertices to at least one of the other n− t vertices,

or there is exactly one arc from at least one of the other n− t vertices to at
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least one vertex in D′. Therefore, for 1 ≤ t < n− 1,

t∑
i=1

pi ≥ kt(t− 1) + 1 > kt(t− 1).

For the converse, suppose the given conditions hold. It follows that

there exists an r-digraph with mark sequence P = [pi]
n
1 . Assume such an

r-digraph is reducible, and let D = [D1, D2, . . . , Dh] be the irreducible com-

ponent decomposition of D. Since there are exactly r arcs from every vertex

of Dj to each vertex of Di, 1 ≤ i < j ≤ h, D is evidently connected. If m is

the number of vertices in D1, then m < n, and
∑m

i=1 pi = km(m− 1), which

is a contradiction to the given hypothesis. Hence, D is irreducible. �

We note that a disconnected r-digraph is always irreducible, since if D1

and D2 are the components of D, then there are no arcs between the vertices

of D1 and D2.

As a consequence of Theorem 3.4.3, we have the following result which

characterizes the irreducible components of an r-digraph.

Theorem 3.4.4. If D is an r-digraph with mark sequence P = [pi]
n
1 , and

k∑
i=1

pi = rk(k−1),
t∑
i=1

pi = rt(t−1) and
q∑
i=1

pi > rq(q−1), for k+1 ≤ q ≤ t−1,

0 ≤ k < t ≤ n, then the r-subdigraph induced by the vertices vk+1, vk+2, · · · , vt
is an irreducible component of D with mark sequence P = [pi − rk]tk+1.

The mark sequence P is irreducible if D is irreducible and the irreducible

components of P are the mark sequences of the irreducible components of

D. That is, if D1, D2, · · · , Dh is the irreducible component decomposition of

an r-digraph D with mark sequence P , then the irreducible components Pi

of P are the mark sequences of the r-subdigraphs induced by the vertices of

Di, 1 ≤ i ≤ h. Theorem 3.4.4 shows that the irreducible components of P

are determined by the successive values of k (1 ≤ k ≤ n) for which

k∑
i=1

pi = rk(k − 1).
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This is illustrated by the following examples of 2-digraphs.

(i) Let P = [1, 3, 9, 12, 15, 20]. Equation (3.2.1) is satisfied for k = 2, 5, 6.

Therefore, the irreducible components of P are [0], [1, 4, 7], [0] in ascending

order.

(ii) Let P = [0, 5, 8, 11, 17, 19]. Here Equation (3.2.1) is satisfied for

k = 1, 4, 6. Therefore, the irreducible components of P are [0], [1, 4, 7] and

[1, 3] in ascending order.

Definition 3.4.5. A mark sequence is uniquely realizable if it belongs to

exactly one r-digraph.

We have the following observation.

Theorem 3.4.6. The mark sequence P of an r-digraph D is uniquely real-

izable if and only if every irreducible component of P is uniquely realizable.

The following result determines which irreducible mark sequences in 2-

digraphs are uniquely realizable.

Theorem 3.4.7. The only irreducible mark sequences in 2-digraphs that are

uniquely realizable are [0] and [1, 3].

Proof. Let P be an irreducible mark sequence, and let D with vertex set V

be a 2-digraph having mark sequence P. Then D is irreducible. Therefore,

D cannot be partitioned into 2-subdigraphs D1, D2, . . . , Dk such that there

are exactly two arcs from every vertex of Dα to each vertex of Dβ, 1 ≤ β <

α ≤ k. First assume D has n ≥ 3 vertices. Let W = {w1, w2, . . . , wr} and

U = {u1, u2, . . . , us} respectively be any two disjoint subsets of V such that

r + s = n. Since D is irreducible, (1) there do not exist exactly two arcs

from every wi (1 ≤ i ≤ r) to each uj (1 ≤ j ≤ s), and (2) there do not exist

exactly two arcs from every uj (1 ≤ j ≤ s) to each wi (1 ≤ i ≤ s). First of all

we consider Case (1), and then Case (2) follows by using the same argument

as in (1).

Case (1). There exists at least one vertex, say w1, in W , and at least
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one vertex, say u1, in U such that either (a) w1(1− 1)u, or (b) w1(0− 2)u1,

or (c) w1(1− 0)u1, or (d) w1(0− 1)u1, or (e) w1(0− 0)u1.

Assume wi(2 − 0)uj for each i (1 ≤ i ≤ r) and j (1 ≤ j ≤ s), except

for i = j = 1.

If in D, either (a) w1(1 − 1)u1, or (e) w1(0 − 0)u1, then transforming

them respectively to w1(0− 0)u1, or w1(1− 1)u1, gives a 2-digraph D′ with

the same mark sequence. In both cases, D and D′ have different number of

arcs, and thus are non-isomorphic.

(b) Let w1(0 − 2)u1. Since there are only six possibilities between w1

and wi, therefore, for any other vertex wi in W we have one of the following

cases:

(i) w1(2 − 0)wi(2 − 0)u1(2 − 0)w1, (ii) w1(1 − 1)wi(2 − 0)u1(2 − 0)w1,

(iii) w1(1 − 0)wi(2 − 0)u1(2 − 0)w1, (iv) w1(0 − 1)wi(2 − 0)u1(2 − 0)w1, (v)

w1(0− 0)wi(2− 0)u1(2− 0)w1, (vi) w1(0− 2)wi(2− 0)u1(2− 0)w1.

Transforming (i)–(v) respectively to w1(1−0)wi(1−0)u1(1−0)w1, w1(0−
1)wi(1−0)u1(1−0)w1, w1(0−0)wi(1−0)u1(1−0)w1, w1(0−2)wi(1−0)u1(1−
0)w1, w1(0− 1)wi(1− 0)u1(1− 0)w1, gives a 2-digraph with the same mark

sequence. In all these five cases, D and D′ have different number of arcs,

and thus are non-isomorphic.

If (vi) occurs in D, and also wq(2 − 0)wi for 1 ≤ i < q ≤ r, then

the 2-digraph D is reducible with irreducible components D1, D2, . . . , Dr

respectively having vertex sets V1 = {u1, u2, . . . , us, w1}, V2 = {w2}, V3 =

{w3}, . . . , Vk = {wr}.
Also for any vertex uj in U , since there are only six possibilities between

u1 and uj, we have one of the following cases:

(vii) w1(0− 2)u1(0− 2)uj(0− 2)w1, (viii) w1(0− 2)u1(1− 1)uj(0− 2)w1,

(ix) w1(0 − 2)u1(1 − 0)uj(0 − 2)w1, (x) w1(0 − 2)u1(0 − 1)uj(0 − 2)w1, (xi)

w1(0− 2)u1(0− 0)uj(0− 2)w1, (xii) w1(0− 2)u1(2− 0)uj(0− 2)w1.

If any one of (vii)–(xi) appears in D, then making respectively the trans-

formations w1(0 − 1)u1(0 − 1)uj(0 − 1)w1, w1(0 − 1)u1(1 − 0)uj(0 − 1)w1,

w1(0−1)u1(2−0)uj(0−1)w1, w1(0−1)u1(1−1)uj(0−1)w1, w1(0−1)u1(1−
0)uj(0−1)w1, we get a 2-digraph with the same mark sequence, but the num-

bers of arcs in D and D′ are different, and thus D and D′ are non-isomorphic.
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If (xii) and any of (i)–(v) appear simultaneously, then there exists a

2-digraph D′ with the same mark sequence, but D and D′ have different

numbers of arcs. Thus, D and D′ are non-isomorphic.

If (vi) and (xii) appear simultaneously, and also wq(2 − 0)wi for all

1 ≤ i < q ≤ r, then D is reducible with the irreducible components D1, D2,

. . . , Dr having vertex sets V1 = {u1, u2, . . . , us, w1}, V2 = {w2}, V3 = {w3},

. . . , Vr = {wr} respectively.

(c) Let w1(1 − 0)u1. For any vertex wi in W , since there are only six

possibilities between w1 and wi, we have one of the following cases:

(i) w1(2 − 0)wi(2 − 0)u1(0 − 1)w1, (ii) w1(1 − 1)wi(2 − 0)u1(0 − 1)w1,

(iii) w1(1 − 0)wi(2 − 0)u1(0 − 1)w1, (iv) w1(0 − 1)wi(2 − 0)u1(0 − 1)w1, (v)

w1(0− 0)wi(2− 0)u1(0− 1)w1, (vi) w1(0− 2)wi(2− 0)u1(0− 1)w1.

For (i)–(v) making respectively the transformations w1(1 − 0)wi(1 −
0)u1(0− 2)w1, w1(0− 1)wi(1− 0)u1(0− 2)w1, w1(0− 1)wi(1− 0)u1(0− 2)w1,

w1(1 − 1)wi(1 − 0)u1(2 − 0)w1, w1(0 − 1)wi(1 − 0)u1(2 − 1)w1, we obtain a

2-digraph D′ with the same mark sequence, but the numbers of arcs in D

and D′ are not equal. Thus, D and D′ are non-isomorphic.

Now, for any other vertex uj in U , there are only six possibilities between

u1 and uj, and we have one of the following cases:

(vii) w1(1− 0)u1(0− 2)uj(0− 2)w1, (viii) w1(1− 0)u1(1− 1)uj(0− 2)w1,

(ix) w1(1 − 0)u1(1 − 0)uj(0 − 2)w1, (x) w1(1 − 0)u1(0 − 1)uj(0 − 2)w1, (xi)

w1(1− 0)u1(0− 0)uj(0− 2)w1, (xii) w1(1− 0)u1(2− 0)uj(0− 2)w1.

If any one of (vii)–(xi) appears, then making respectively the trans-

formations w1(2 − 0)u1(0 − 1)uj(0 − 1)w1, w1(2 − 0)u1(1 − 0)uj(0 − 1)w1,

w1(2−0)u1(2−0)uj(0−1)w1, w1(2−0)u1(1−1)uj(0−1)w1, w1(2−0)u1(1−
0)uj(0 − 1)w1, we get a 2-digraph D′ with the same mark sequence, but D

and D′ have different numbers of arcs. Thus, D and D′ are non-isomorphic.

If (xii) and one of (i)-(v) appears simultaneously, we once again arrive

to the conclusion that there exists a 2-digraph D′ with the mark sequence

P , but D and D′ are non-isomorphic.

Thus, we are left with the case when (vi) and (xii) appear simultane-

ously, and also wq(2 − 0)wi for all 1 ≤ i < q ≤ r. But, then D is re-

ducible having the irreducible components D1, D2, . . . , Dr with vertex sets
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V1 = {u1, u2, . . . , us, w1}, V2 = {w2}, . . . , Vr = {wr} respectively.

(d) Let w1(0 − 1)u1. Since there are only six possibilities between w1

and wi, therefore for any other vertex wi in W , we have one of the following

cases:

(i) w1(2 − 1)wi(2 − 0)u1(1 − 0)w1, (ii) w1(1 − 1)wi(2 − 0)u1(1 − 0)w1,

(iii) w1(1 − 0)wi(2 − 0)u1(1 − 0)w1, (iv) w1(0 − 1)wi(2 − 0)u1(1 − 0)w1, (v)

w1(0− 0)wi(2− 0)u1(1− 0)w1, (vi) w1(0− 2)wi(2− 0)u1(1− 0)w1.

If any one of (i)–(v) appears, then making respectively the transfor-

mations w1(1 − 0)wi(1 − 0)u1(0 − 0)w1, w1(0 − 1)wi(1 − 0)u1(0 − 0)w1,

w1(0 − 0)wi(1 − 0)u1(0 − 0)w1, w1(0 − 2)wi(1 − 0)u1(0 − 0)w1, w1(0 −
1)wi(1− 0)u1(0− 0)w1, gives a 2-digraph D′ with the same mark sequence,

but the numbers of arcs in D and D′ are different so that D and D′ are

non-isomorphic.

If (vi) appears in D, and also if wq(2− 0)wi for all 1 ≤ i < q ≤ r, then

D becomes reducible.

Now, for any other vertex uj in U , there are only six possibilities between

u1 and uj, and we have one of the following cases:

(vii) w1(0− 1)u1(0− 2)uj(0− 2)w1, (viii) w1(0− 1)u1(1− 1)uj(0− 2)w1,

(ix) w1(0 − 1)u1(1 − 0)uj(0 − 2)w1, (x) w1(0 − 1)u1(0 − 1)uj(0 − 2)w1, (ix)

w1(0− 1)u1(0− 0)uj(0− 2)w1, (xii) w1(0− 1)u1(2− 0)uj(0− 2)w1.

If any one of (vii)–(xi) appears in D, then making respectively the trans-

formations w1(0 − 0)u1(0 − 1)uj(0 − 1)w1, w1(0 − 0)u1(1 − 0)uj(0 − 1)w1,

w1(0−0)u1(2−0)uj(0−1)w1, w1(0−0)u1(0−0)uj(0−1)w1, w1(0−0)u1(1−
0)uj(0 − 1)w1, gives a 2-digraph D′ with the same mark sequence, but the

numbers of arcs in D and D′ are different so that D is not isomorphic to D′.

If (xii) and any one of (i)–(v) appear simultaneously, then once again

there exists a 2-digraph D′ with the same mark sequence, but D and D′ have

different numbers of arcs so that D and D′ are non-isomorphic.

If (vi) and (xii) appear simultaneously, and also wq(2 − 0)wi for all

1 ≤ i < q ≤ r, then D is reducible.

Now, let D have exactly two vertices say u and v. The only irreducible

mark sequences realizing D are [2, 2], and [1, 3]. Obviously the sequence [2, 2]

has two non-isomorphic realizations namely u(0−0)v and u(1−1)v, and [1, 3]
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has the unique realization u(0− 1)v. Thus P = [1, 3] is uniquely realizable.

If D has only one vertex, then P = [0], which evidently is uniquely

realizable. �

On combining Theorem 3.4.6 and 3.4.7, we have the following result for

2-digraphs.

Theorem 3.4.8. The mark sequence P of a 2-digraph is uniquely realizable

if and only if every irreducible component of P is of the form [0] and [1, 3].

We observe that in the mark sequence P = [4i − 4]n1 every irreducible

component is [0] and thus P is uniquely realizable. Therefore the mark se-

quence P of an r-digraph is uniquely realizable if and only if every irreducible

component of P is of the form [0] and [1, 2k − 1].
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CHAPTER 4

Marks in bipartite multidigraphs

In this chapter, we extend the concept of marks to bipartite multidi-

graphs and multipartite multidigraphs. We obtain necessary and sufficient

conditions for a pair of sequences of non-negative integers to be mark se-

quences of some bipartite multidigraph. These characterizations give al-

gorithms for constructing the corresponding bipartite multidigraphs. We

provide analogous characterizations for multipartite multidigraphs.

4.1 Introduction

A bipartite r-digraph is an orientation of a bipartite multigraph that

is without loops and contains at most r edges between any pair of vertices

from distinct parts. So bipartite 1-digraph is an oriented bipartite graph and

a complete bipartite 1-digraph is a bipartite tournament. Let D(X, Y ) be

a bipartite r-digraph with X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , yn}.
For any vertex vi in D(X, Y ), let d+vi and d−vi be the outdegree and indegree,

respectively, of vi. Define pxi (or simply pi) = rn + d+xi − d−xi and qyj (or

simply qj)= rm + d+yj − d−yj as the marks (or r-scores) of xi in X and yj

in Y respectively. Clearly, 0 ≤ pxi ≤ 2rn and 0 ≤ qyj ≤ 2rm. Then the

sequences P = [pi]
m
1 and Q = [qj]

n
1 in non-decreasing order are called the

mark sequencesof D(X, Y ).

A bipartite r-digraph can be interpreted as the result of a competition

between two teams in which each player of one team plays with every player

of the other team atmost r times in which ties(draws) are allowed. A player

receives two points for each win, and one point for each tie. With this mark-

ing system, player xi (respectively yj) receives a total of pxi (respectively qyj)

points. The sequences P and Q of non-negative integers in non-decreasing

order are said to be realizable if there exists a bipartite r-digraph with mark

sequences P and Q.
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In a bipartite r-digraph D(X, Y ), if there are a1 arcs directed from a

vertex x ∈ X to a vertex y ∈ Y and a2 arcs directed from vertex y to vertex

x, with 0 ≤ a1, a2 ≤ r and 0 ≤ a1 + a2 ≤ r, we denote it by x(a1 − a2)y.

For example, if there are exactly r arcs directed from x ∈ X to y ∈ Y and

no arc directed from y to x, and this is denoted by x(r− 0)y, and if there is

no arc directed from x to y and no arc directed from y to x, this is denoted

by x(0− 0)y.

An oriented tetra in a bipartite r-digraph is an induced 1-subdigraph

with two vertices from each part. Define oriented tetras of the form x(1 −
0)y(1− 0)x′ (1− 0)y′(1− 0)x and x(1− 0)y(1− 0)x′(1− 0)y′(0− 0)x to be of

α-type and all other oriented tetras to be of β-type. A bipartite r-digraph

is said to be of α-type or β-type according as all of its oriented tetras are of

α-type or β-type respectively. We assume, without loss of generality, that β-

type bipartite r-digraphs have no pair of symmetric arcs because symmetric

arcs x(a − a)y, where 1 ≤ a ≤ r
2
, can be transformed to x(0 − 0)y with the

same marks. A transmitter is a vertex with indegree zero.

4.2 Characterization of marks in bipartite multidigraphs

The work in this section has appeared in Chishti and Samee [21]. We

start with the following observation.

Lemma 4.2.1. Among all bipartite r-digraphs with given mark sequences,

those with the fewest arcs are of β-type.

Proof. Let D(X, Y ) be a bipartite r-digraph with mark sequences P and Q.

Assume D(X, Y ) is not of β-type. Then D(X, Y ) has an oriented tetra of α-

type, that is, x(1−0)y(1−0)x′(1−0)y′(1−0)x or x(1−0)y(1−0)x′(1−0)y′(0−
0)x where x, x′ ∈ X and y, y′ ∈ Y . Since x(1− 0)y(1− 0)x′(1− 0)y′(1− 0)x

can be transformed to x(0−0)y(0−0)x′(0−0)y′(0−0)x with the same mark

sequences and four arcs fewer, and x(1 − 0)y(1 − 0)x′(1 − 0)y′(0 − 0)x can

be transformed to x(0 − 0)y(0 − 0)x′(0 − 0)y′(0 − 1)x with the same mark

sequences and two arcs fewer, therefore, in both cases we obtain a bipartite

r-digraph having same mark sequences P and Q with fewer arcs. Note that if
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there are symmetric arcs between x and y, that is x(a−a)y, where 1 ≤ a ≤ r
2
,

then these can be transformed to x(0 − 0)y with the same mark sequences

and a arcs fewer. Hence the result follows.

Lemma 4.2.2. Let P = [pi]
m
1 and Q = [qj]

n
1 be mark sequences of a β-type

bipartite r-digraph. Then either the vertex with mark pm, or the vertex with

mark qn, or both can act as transmitters.

We know if P = [p1, p2, · · · , pm] and Q = [q1, q2, · · · , qn] are mark

sequences of a bipartite r-digraph, then pi ≤ 2rn and qj ≤ 2rm, where

1 ≤ i ≤ m and 1 ≤ j ≤ n. We have the following observation.

Lemma 4.2.3. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, 0] with

each pi = rn are mark sequences of some bipartite r-digraph, then P ′ =

[p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0] are also mark sequences of some bi-

partite r-digraph.

We now have some observations about bipartite 2-digraphs, as these will

be required in application of Theorem 4.2.11.

Lemma 4.2.4. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, qn] with

4n−pm = 3 and qn ≥ 3 are mark sequences of some bipartite 2-digraph, then

P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, qn − 3] are also mark sequences

of some bipartite 2-digraph.

Proof. Let P and Q as given above be mark sequences of bipartite 2-digraph

D with parts X = {x1, x2, · · · , xm−1, xm} and Y = {y1, y2, · · · , yn−1, yn}.
Since 4n−pm = 3 and 3 ≤ qn ≤ 4m, therefore in D necessarily xm(2−0)yi, for

all 1 ≤ i ≤ n−1. Also yn(1−0)xm, because if yn(0−0)xm, or yn(0−2)xm,or

yn(0 − 1)xm, then in all these cases pxm ≥ 4(n − 1) + 2, a contradiction

to our assumption. Also yn(2 − 0)xm is not possible because in that case

pxm = 4(n− 1) < 4n− 3.

Now delete xm, obviously this keeps marks of y1,y2, · · · ,yn−1 as zeros

and reduces mark of yn by 3, and we obtain a bipartite 2-digraph with mark

sequences P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, qn − 3], as required.

56



Lemma 4.2.5. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, qn] with

4n−pm = 4 and qn ≥ 4 are mark sequences of some bipartite 2-digraph, then

P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, qn − 4] are also mark sequences

of some bipartite 2-digraph.

Proof. Let P and Q as given above be mark sequences of bipartite 2-digraph

D with parts X = {x1, x2, · · · , xm−1, xm} and Y = {y1, y2, · · · , yn−1, yn}.
Since 4n− pm = 4 and 4 ≤ qn ≤ 4m, therefore in D necessarily xm(2− 0)yi,

for all 1 ≤ i ≤ n−1. Also yn(2−0)xm, because if yn(0−0)xm, or yn(1−0)xm,

or yn(0− 2)xm,or yn(0− 1)xm, then in all these cases pxm ≥ 4(n− 1) + 1, a

contradiction to our assumption.

Now delete xm, obviously this keeps marks of y1,y2, · · · ,yn−1 as zeros

and reduces mark of yn by 4, and we obtain a bipartite 2-digraph with mark

sequences P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, qn − 4], as required.

Lemma 4.2.6. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, qn] with

4n−pm = 4 and qn ≥ 3 are mark sequences of some bipartite 2-digraph, then

P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, qn − 3] are also mark sequences

of some bipartite 2-digraph.

Proof. The proof follows by using the same argument as in Lemma 4.2.5.

Lemma 4.2.7. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, 1, 3]

with 4n − pm = 4, are mark sequences of some bipartite 2-digraph, then

P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, 0, 0] are also mark sequences of

some bipartite 2-digraph.

Lemma 4.2.8. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, 1, 1, 2]

with 4n − pm = 4, are mark sequences of some bipartite 2-digraph, then

P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, 0, 0] are also mark sequences of

some bipartite 2-digraph.

Lemma 4.2.9. If P = [p1, p2, · · · , pm−1, pm] and Q = [0, 0, · · · , 0, 1, 1, 1, 1]

with 4n − pm = 4, are mark sequences of some bipartite 2-digraph, then

P ′ = [p1, p2, · · · , pm−1] and Q′ = [0, 0, · · · , 0, 0, 0] are also mark sequences of

some bipartite 2-digraph.
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Remarks 4.2.10. We note that the sequences of non-negative integers [p1]

and [q1, q2, · · · , qn], with p1 + q1 + q2 + · · · + qn = 2rn, are always mark se-

quences of some bipartite r-digraph. We observe that the bipartite r-digraph

D(X, Y ), with vertex sets X = {x1} and Y = {y1, y2, · · · , yn}, where for qi

even, say 2t, we have x1((r − t) − t)yi and for qi odd, say 2t + 1, we have

x1((r − t − 1) − t)yi, has mark sequences [p1] and [q1, q2, · · · , qn]. Also we

note that the sequences [0] and [2r, 2r, · · · , 2r] are mark sequences of some

bipartite r-digraph.

The next result provides a useful recursive test whether or not a pair of

sequences is realizable.

Theorem 4.2.11. Let P = [pi]
m
1 and Q = [qj]

n
1 be the sequences of non-

negative integers in non-decreasing order with pm ≥ qn and rn ≤ pm ≤ 2rn.

(A) If qn ≤ 2r(m− 1) + 1, let P ′ be obtained from P by deleting one entry

pm, and Q′ be obtained as follows.

For [2r−(i−1)]n ≥ pm ≥ (2r−i)n, 1 ≤ i ≤ r, reducing [2r−(i−1)]n−pm
largest entries of Q by i each, and reducing pm−(2r− i)n next largest entries

by i− 1 each.

(B) In case qn > 2r(m−1)+1, say qn = 2r(m−1)+1+h, where 1 ≤ h ≤ r−1,

then let P ′ be obtained from P by deleting one entry pm, and Q′ be obtained

from Q by reducing the entry qn by h+ 1.

Then P and Q are the mark sequences of some bipartite r-digraph if and

only if P ′ and Q′ (arranged in non-decreasing order) are the mark sequences

of some bipartite r-digraph.

Proof. Let P ′ and Q′ be the mark sequences of some bipartite r-digraph

D′(X ′, Y ′). First suppose Q′ is obtained from Q as in A. Construct a bipar-

tite r-digraph D(X, Y ) as follows. Let X = X ′ ∪x, Y = Y ′ with X ′ ∩x = φ.

Let x((r − i) − 0)y for those vertices y of Y ′ whose marks are reduced by

i in going from P to P ′ and Q to Q′, and x(r − 0)y for those vertices y of

Y ′ whose marks are not reduced in going from P to P ′ and Q to Q′. Then

D(X, Y ) is the bipartite r-digraph with mark sequences P and Q. Now, if

Q′ is obtained from Q as in B, then construct a bipartite r-digraph D(X, Y )
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as follows. Let X = X ′ ∪x, Y = Y ′ with X ′ ∩x = φ. Let x((r−h− 1)− 0)y

for that vertex y of Y ′ whose marks are reduced by h in going from P and Q

to P ′ and Q′. Then D(X, Y ) is the bipartite r-digraph with mark sequences

P and Q.

Conversely, suppose P and Q be the mark sequences of a bipartite r-

digraph D(X, Y ). Without loss of generality, we choose D(X, Y ) to be of

β-type. Then by Lemma 4.2.2, any of the vertex x ∈ X or y ∈ Y with mark

pm or qn respectively can be a transmitter. Let the vertex x ∈ X with mark

pm be a transmitter. Clearly, pm ≥ rn and because if pm < rn, then by

deleting pm we have to reduce more than n entries from Q, which is absurd.

(A) Now qn ≤ 2r(m − 1) + 1 because if qn > 2r(m − 1) + 1, then on re-

duction q′n = qn − 1 > 2r(m − 1) + 1 − 1 = 2r(m − 1), which is impossible.

Let [2r − (i − 1)]n ≥ pm ≥ (2r − i)n, 1 ≤ i ≤ r, let V be the set of

[2r − (i − 1)]n − pm vertices of largest marks in Y , and let W be the set of

pm − (2r − i)n vertices of next largest marks in Y and let Z = Y − {V,W}.
Construct D(X, Y ) such that x((r− i)−0)v for all v ∈ V , x((r− i−1)−0)w

for all w ∈ W and x(r − 0)z for all z ∈ Z. Clearly, D(X, Y )− x realizes P ′

and Q′ (arranged in non-decreasing order).

(B) Now in D, let qn > 2r(m − 1) + 1, say qn = 2r(m − 1) + 1 + h, where

1 ≤ h ≤ r − 1. This means yn(r − 0)xi, for all 1 ≤ i ≤ m − 1. Since

xm is a transmitter, so there cannot be an arc from yn to xm. Therefore

xm((r − h − 1) − 0)yn, since yn needs h + 1 more marks. Now delete xm, it

will decrease the mark of yn by h + 1, and the resulting bipartite r-digraph

will have mark sequences P ′ and Q′ as desired.

Theorem 4.2.11 provides an algorithm of checking whether or not the

sequences P and Q of non-negative integers in non-decreasing order are the

mark sequences, and for constructing a corresponding bipartite r-digraph.

Let P = [p1, p2, · · · , pm] and Q = [q1, q2, · · · , qn], where pm ≥ qn, rn ≤
pm ≤ 2rn and qn ≤ 2r(m − 1) + 1, be the mark sequences of a bipartite

r-digraph with parts X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , yn} respec-

tively. Deleting pm and performing A of Theorem 4.2.11 if [2r − (i− 1)]n ≥
pm ≥ (2r − i)n, 1 ≤ i ≤ r, we get Q′ = [q′1, q

′
2, · · · , q′n]. If the marks of the

vertices yj were decreased by i in this process, then the construction yielded

59



xm((r − i) − 0)yj, if these were decreased by i − 1, then the construction

yielded xm((r − i+ 1)− 0)yj. If we perform B of Theorem 4.2.11, the mark

of yn was decreased by h+ 1, the construction yielded xm((r−h− 1)− 0)yn.

For vertices yj whose marks remained unchanged, the construction yielded

xm(r − 0)yj. Note that if the conditions pm ≥ rn does not hold, then we

delete qn for which the conditions get satisfied and the same argument is

used for defining arcs. If this procedure is applied recursively, then it tests

whether or not P and Q are the mark sequences, and if P and Q are the

mark sequences, then a bipartite r-digraph with mark sequences P and Q is

constructed.

We illustrate this reduction and the resulting construction with the fol-

lowing examples.

Example 4.2.12. Consider the two sequences of non-negative integers given

by P = [14, 14, 15] and Q = [6, 6, 8, 9]. We check whether or not P and Q

are mark sequences of some bipartite 3-digraph.

1. P = [14, 14, 15], Q = [6, 6, 8, 9]

We delete 15. Clearly [2r−(i−1)]n = [2.3−(3−1)]4 = 16 ≥ 15 ≥ (2r−i)n =

(2.3−3)4 = 12. So reduce [2r−(i−1)]n−pm = [2.3−(3−1]4−15 = 16−15 = 1

largest entry of Q by i = 3 and pm− (2r− i)n = 15− (2.3−3)4 = 15−12 = 3

next largest entries of Q by i − 1 = 3 − 1 = 2 each, we get P1 = [14, 14],

Q1 = [4, 4, 6, 6], and arcs are defined as x3(0− 0)y4, x3(1− 0)y3, x3(1− 0)y2,

x3(1− 0)y1.

2. P1 = [14, 14], Q1 = [4, 4, 6, 6]

We delete 14. Here [2r− (i− 1)]n = [2.3− (3− 1)]4 = 16 ≥ 14 ≥ (2r− i)n =

(2.3−3)4 = 12. Reduce [2r−(i−1)]n−pm = [2.3−(3−1]4−14 = 16−14 = 2

largest entries of Q1 by i = 3 and pm−(2r−i)n = 14−(2.3−3)4 = 14−12 = 2

next largest entries of Q1 by i − 1 = 3 − 1 = 2 each, we get P2 = [14],

Q2 = [2, 2, 3, 3], and arcs are defined as x2(0− 0)y4, x2(0− 0)y3, x2(1− 0)y2,

x2(1− 0)y1.

3. P2 = [14], Q2 = [2, 2, 3, 3]

We delete 14. Here [2r− (i− 1)]n = [2.3− (3− 1)]4 = 16 ≥ 14 ≥ (2r− i)n =

(2.3−3)4 = 12. Reduce [2r−(i−1)]n−pm = [2.3−(3−1]4−14 = 16−14 = 2
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largest entries of Q2 by i = 3 and pm−(2r−i)n = 14−(2.3−3)4 = 14−12 = 2

next largest entries of Q2 by i − 1 = 3 − 1 = 2 each, we get P3 = φ,

Q3 = [0, 0, 0, 0], and arcs are defined as x1(0− 0)y4, x1(0− 0)y3, x1(1− 0)y2,

x1(1− 0)y1.

The resulting bipartite 3-digraph has mark sequences P = [14, 14, 15]

and Q = [6, 6, 8, 9] with vertex sets X = {x1, x2, x3} and Y = {y1, y2, y3, y4}
and arcs as x3(0 − 0)y4, x3(1 − 0)y3, x3(1 − 0)y2, x3(1 − 0)y1, x2(0 − 0)y4,

x2(0 − 0)y3, x2(1 − 0)y2, x2(1 − 0)y1, x1(0 − 0)y4, x1(0 − 0)y3, x1(1 − 0)y2,

x1(1− 0)y1.

Example 4.2.13. Consider the two sequences of non-negative integers given

by P = [13, 16, 22, 24] and Q = [5, 6, 10]. We check whether or not P and Q

are mark sequences of some bipartite 4-digraph.

1. P = [13, 16, 22, 24] and Q = [5, 6, 10]

We delete 24. Here [2r − (i − 1)]n = [2.4 − (1 − 1)]3 = 24, so reduce

[2r−(i−1)]n−pm = [2.4−(1−1]3−24 = 24−24 = 0 largest entries of Q by

i = 1, and obviously we reduce pm− (2r− i)n = 24− (2.4−1)3 = 24−21 = 3

next largest entries of Q by i − 1 = 1 − 1 = 0 each, we get P1 = [13, 16, 22]

and Q1 = [5, 6, 10], and arcs are x4(4− 0)y3, x4(4− 0)y2, x4(4− 0)y1.

2. P1 = [13, 16, 22] and Q1 = [5, 6, 10]

We delete 22. Here [2r− (i− 1)]n = [2.4− (1− 1)]3 = 24 ≥ 22 ≥ (2r− i)n =

(2.4−1)3 = 21. Reduce [2r−(i−1)]n−pm = [2.4−(1−1]3−22 = 24−22 = 2

largest entries of Q1 by i = 1 and pm−(2r−i)n = 22−(2.4−1)3 = 22−21 = 1

next largest entries of Q1 by i − 1 = 1 − 1 = 0 each, we get P2 = [13, 16],

Q2 = [5, 5, 9], and arcs are defined as x3(3− 0)y3, x3(3− 0)y2, x3(4− 0)y1.

3. P2 = [13, 16], Q2 = [5, 5, 9]

We delete 16. Here [2r− (i− 1)]n = [2.4− (3− 1)]3 = 18 ≥ 16 ≥ (2r− i)n =

(2.4−3)3 = 15. Reduce [2r−(i−1)]n−pm = [2.4−(3−1]3−16 = 18−16 = 2

largest entries of Q2 by i = 3 and pm−(2r−i)n = 16−(2.4−3)3 = 16−15 = 1

next largest entry of Q2 by i− 1 = 3− 1 = 2, we get P3 = [13], Q3 = [3, 2, 6],

and arcs are defined as x2(3− 0)y3, x2(3− 0)y2, x2(2− 0)y1.

4. P3 = [13], Q3 = [3, 2, 6]. Here 13 + 3 + 2 + 6 = 24 which is same as

2rn = 2.4.3 = 24. Thus by the argument as discussed in the remarks, P3 and

Q3 are mark sequences of some bipartite 4-digraph. Here arcs are x1(1−3)y3,
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x1(3− 1)y2, x1(2− 1)y1.

The resulting bipartite 4-digraph with mark sequences P = [13, 16, 22, 24]

and Q = [5, 6, 10] has vertex sets X = {x1, x2, x3, x4} and Y = {y1, y2, y3}
and arcs as x4(4 − 0)y3, x4(4 − 0)y2, x4(4 − 0)y1, x3(3 − 0)y3, x3(3 − 0)y2,

x3(4 − 0)y1, x2(3 − 0)y3, x2(3 − 0)y2, x2(2 − 0)y1, x1(1 − 3)y3, x1(3 − 1)y2,

x1(2− 1)y1.

Now we give a combinatorial criterion for determining whether the se-

quences of non-negative integers are realizable as marks. This is analogous

to Landau’s theorem [31] on tournament scores and similar to the result by

Beineke and Moon [11] on bipartite tournament scores.

Theorem 4.2.14. Let P = [pi]
m
1 and Q = [qj]

n
1 be the sequences of non-

negative integers in non-decreasing order. Then P and Q are the mark

sequences of some bipartite r-digraph if and only if

f∑
i=1

pi +

g∑
j=1

qj ≥ 2rfg, (4.1)

for 1 ≤ f ≤ m and 1 ≤ g ≤ n, with equality when f = m and g = n.

Proof. The necessity of the condition follows from the fact that the sub-

bipartite r-digraph induced by f vertices from the first part and g vertices

from the second part has a sum of marks 2rfg.

For sufficiency, assume that P = [pi]
m
1 and Q = [qj]

n
1 be the sequences

of non-negative integers in non-decreasing order satisfying conditions (4.1)

but are not mark sequences of any bipartite r-digraph. Let these sequences

be chosen in such a way that m and n are the smallest possible and p1 is the

least with that choice of m and n. We consider the following two cases.

Case(a). Suppose the equality in (4.1) holds for some f ≤ m and g ≤ n, so

that ∑f
i=1 pi +

∑g
j=1 qj = 2rfg.

By the minimality of m and n, P1 = [pi]
f
1 and Q1 = [qj]

g
1 are the mark se-

quences of some bipartite r-digraph D1(X1, Y1). Let P2 = [pf+1−2rg, pf+2−
2rg, · · · , pm − 2rg] and Q2 = [qg+1 − 2rf, qg+2 − 2rf, · · · , qn − 2rf ].
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Consider the sum

s∑
i=1

(pf+i − 2rg) +
t∑

j=1

(qg+j − 2rf) =

f+s∑
i=1

pi +

g+t∑
j=1

qj −

(
f∑
i=1

pi +

g∑
j=1

qj

)
− 2rsg − 2rtf

≥ 2r(f + s)(g + t)− 2rfg − 2rsg − 2rtf

= 2r(fg + ft+ sg + st− fg − sg − tf)

= 2rst,

for 1 ≤ s ≤ m − f and 1 ≤ t ≤ n − g, with equality when s = m − f and

t = n−g. Thus, by the minimality of m and n, the sequences P2 and Q2 form

the mark sequences of some bipartite r-digraph D2(X2, Y2). Now construct

a new bipartite r-digraph D(X, Y ) as follows.

Let X = X1 ∪ X2, Y = Y1 ∪ Y2 with X1 ∩ X2 = φ, Y1 ∩ Y2 = φ. Let

x2(r − 0)y1 and y2(r − 0)x1 for all xi ∈ Xi, yi ∈ Yi, where 1 ≤ i ≤ 2, so that

we get the bipartite r-digraph D(X, Y ) with mark sequences P and Q, which

is a contradiction.

Case (b). Suppose the strict inequality holds in (4.1) for some f 6= m and

g 6= n. Also, assume that p1 > 0. Let P1 = [p1− 1, p2, · · · , pm−1, pm + 1] and

Q1 = [q1, q2, · · · , qn]. Clearly, P1 and Q1 satisfy the conditions (2.1). Thus,

by the minimality of p1, the sequences P1 and Q1 are the mark sequences of

some bipartite r-digraph D1(X1 , Y1). Let px1 = p1−1 and pxm = pm+1. Since

pxm > p1 + 1, therefore there exists a vertex y ∈ Y1 such that xm(1− 0)y(1−
0)x1, or xm(0− 0)y(1− 0)x1, or xm(1− 0)y(0− 0)x1, or xm(0− 0)y(0− 0)x1,

is an induced sub-bipartite 1-digraph in D1(X1, Y1), and if these are changed

to xm(0 − 0)y(0 − 0)x1, or xm(0 − 1)y(0 − 0)x1, or xm(0 − 0)y(0 − 1)x1, or

xm(0−1)y(0−1)x1 respectively, the result is a bipartite r-digraph with mark

sequences P and Q, which is a contradiction. Hence the result follows.

4.3 Marks in multipartite multidigraphs

A k-partite 2-digraph (or briefly multipartite 2-digraph(M2D))is an ori-

entation of a k-partite multigraph that is without loops and contains at

most 2 edges between any pair of vertices from distinct parts. So k-partite 1-

digraph is an oriented k-partite graph, and a complete k-partite 1-digraph is
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a k-partite tournament. Let D = D(X1, X2, · · · , Xk) be an M2D with parts

Xi = {xi1, xi2, · · · , xini
}, 1 ≤ i ≤ k. Let d+xij and d−xij , 1 ≤ j ≤ ni, be respec-

tively the outdegree and indegree of a vertex xij ∈ Xi. Define pxij(or simply

pij) = 2
(∑k

t=1,t 6=i nt

)
+ d+xij − d

−
xij

as the mark (or 2-score) of xij. Clearly,

0 ≤ pxij ≤ 4
∑k

t=1,t6=i nt. Then the k sequences Pi = [pij]
ni
1 , 1 ≤ i ≤ k, in

non-decreasing order are called the mark sequences of D.

An M2D can be interpreted as a result of a competition among k teams

in which each player of one team plays with every player of the other k − 1

teams at most 2 times in which ties (draws) are allowed. A player receives

two points for each win, and one point for each tie. With this marking sys-

tem, player xij receives a total of pxij points. The k sequences of non-negative

integers pi, 1 ≤ i ≤ k, in non-decreasing order are said to be realizable if

there exists an M2D with mark sequences Pi.

For two vertices xij inXi and xst inXs, i 6= s in an M2DD(X1, X2, ..., Xk),

we have one of the following six possibilities. (i) exactly two arcs directed

from xij to xst and no arc directed from xst to xij, this is denoted by

xij(2 − 0)xst, (ii) exactly two arcs directed from xst to xij and no arc di-

rected from xij to xst, this is denoted by xij(0 − 2)xst, (iii) exactly one arc

directed from xij to xst and exactly one arc directed from xst to xij, this is

denoted by xij(1− 1)xst, and is called a pair of symmetric arcs between xij

and xst, (iv) exactly one arc directed from xij to xst and no arc directed from

xst to xij, this is denoted by xij(1− 0)xst, (v) exactly one arc directed from

xst to xij and no arc directed from xij to xst, this is denoted by xij(0− 1)xst,

(vi) no arc directed from xij to xst and no arc directed from xst to xij, this

is denoted by xij(0− 0)xst.

A triple in M2D (k-partite 2-digraph) (k ≥ 3) is an induced 2-subdigraph

of three vertices with exactly one vertex from one part, and is of the form

xij(a1 − a2)xmn(b1 − b2)xst(c1 − c2)xij, (i 6= m 6= s, 1 ≤ j ≤ ni, 1 ≤ n ≤ nm,

1 ≤ t ≤ ns), where for 1 ≤ g ≤ 2, 0 ≤ ag ≤ 2, 0 ≤ bg ≤ 2, 0 ≤ cg ≤ 2

and 0 ≤
∑2

g=1 ag ≤ 2, 0 ≤
∑2

g=1 bg ≤ 2, 0 ≤
∑2

g=1 cg ≤ 2. An oriented
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triple in M2D is an induced 1-subdigraph of three vertices with exactly one

vertex from one part. An oriented triple is said to be transitive if it is of the

form xij(1− 0)xmn(1− 0)xst(0− 1)xij, or xij(1− 0)xmn(0− 1)xst(0− 0)xij,

or xij(1− 0)xmn(0− 0)xst(0− 1)xij, or xij(1− 0)xmn(0− 0)xst(0− 0)xij, or

xij(0−0)xmn(0−0)xst(0−0)xij, otherwise it is intransitive. An M2D is said

to be transitive if every of its oriented triple is transitive. In particular, a

triple C in M2D is transitive if every oriented triple of C is transitive.

Through out this section we discuss k-partite 2-digraphs, with k ≥ 3,

except at few places where we require bipartite 2-digraphs. We know if

P = [p1, p2, · · · , pl] and Q = [q1, q2, · · · , qm] are mark sequences of a bi-

partite 2-digraph, then pi ≤ 4m, 1 ≤ i ≤ l and qj ≤ 4l, 1 ≤ j ≤ m.

Also the sequences of non-negative integers [p1] and [q1, q2, · · · , qm], with

p1 + q1 + q2 + · · ·+ qm = 4m are always mark sequences of some bipartite 2-

digraph. Obviously the sequences [0] and [4, 4, · · · , 4] are the mark sequences

of a bipartite 2-digraph.

We have the following observation about k-partite 2-digraphs, k ≥ 3.

Lemma 4.3.1. Let D and D′ be two M2D’s with the same mark sequences.

Then D can be transformed to D′ by successively transforming (i) appropri-

ate oriented triples formed by vertices xij ∈ Xi, xmn ∈ Xm and xst ∈ Xs,

i 6= m 6= s, in one of the following ways:

either (a) by changing an intransitive oriented triple xij(1−0)xmn(1−0)xst(1−
0)xij to a transitive oriented triple xij(0 − 0)xmn(0 − 0)xst(0 − 0)xij, which

has same mark sequences, or vice versa,

or (b) by changing an intransitive oriented triple xij(1− 0)xmn(1− 0)xst(0−
0)xij to a transitive oriented triple xij(0 − 0)xmn(0 − 0)xst(0 − 1)xij, which

has same mark sequences, or vice versa,

or (ii) by changing the symmetric arcs xij(1− 1)xmn to xij(0− 0)xmn, which

has same mark sequences, or vice versa.

Proof. Let Pi be mark sequences of an M2D D whose parts are Xi,

1 ≤ i ≤ k. Suppose D′ be an M2D with parts X ′i, 1 ≤ i ≤ k. To prove

the result it is sufficient to show that D′ can be obtained from D by trans-

forming oriented triples in any one of the ways as given in i(a) or i(b) or by
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changing the arcs as given in (ii).

We fix ni for 2 ≤ i ≤ k and use induction on n1. For n1 = 1, n2 = 1, · · · ,
nk = 1 and k = 3 the result is obvious. Assume that the result is true when

there are fewer than n1 vertices in the first part. Let j2, j3, · · · , jk be such

that for m2,m3, · · · ,mk, 1 ≤ ji < mi ≤ ni (2 ≤ i ≤ k), the corresponding

arcs have same orientations in D and D′. For j2, j3, · · · , jk, 2 ≤ i, p, q ≤ k,

p 6= q, the oriented triples are of the form

(I) x1n1(1− 0)xijp(1− 0)xijq and x′1n1
(0− 0)x′ijp(0− 0)x′ijq

(II)x1n1(0− 0)xijp(0− 1)xijq and x′1n1
(1− 0)x′ijp(0− 0)x′ijq

(III)x1n1(1− 0)xijp(0− 0)xijq and x′1n1
(0− 0)x′ijp(0− 1)x′ijq

(IV)x1n1(1− 0)xijp and x′1n1
(0− 0)x′ijp

Case (I). Since x1n1 and x′1n1
have equal marks, therefore x1n1(0−1)xijq and

x′1n1
(0−0)x′ijq , or x1n1(0−0)xijq and x′1n1

(1−0)x′ijq . Thus there is an oriented

triple x1n1(1−0)xijp(1−0)xijq(1−0)x1n1 , or x1n1(1−0)xijp(1−0)xijq(0−0)x1n1

in D and corresponding to these x′1n1
(0 − 0)x′ijp(0 − 0)x′ijq(0 − 0)x′1n1

, or

x′1n1
(0− 0)x′ijp(0− 0)x′ijq(0− 1)x′1n1

respectively is an oriented triple in D′.

Case II. Since x1n1 and x′1n1
have equal marks, so x1n1(1−0)xijq and x′1n1

(0−
0)x′ijq and thus there is an oriented triple x1n1(0−0)xijp(0−1)xijq(0−1)x1n1

in D and corresponding to this x′1n1
(1 − 0)x′ijp(0 − 0)x′ijq(0 − 0)x′1n1

is an

oriented triple in D′.

Case III. Since x1n1 and x′1n1
have equal marks, so x1n1(0−1)xijq and x′1n1

(0−
0)x′ijq and thus there is an oriented triple x1n1(1−0)xijp(0−0)xijq(1−0)x1n1

in D and corresponding to this x′1n1
(0 − 0)x′ijp(0 − 1)x′ijq(0 − 0)x′1n1

is an

oriented triple in D′.

Case IV. Since x1n1 and x′1n1
have equal marks, so x1n1(1 − 1)xijq and

x′1n1
(0− 0)x′ijq .

Thus it follows from (I)-(IV) that there is an M2D that can be obtained

from D by any one of the transformations i(a) or i(b) or (ii) with mark se-

quences remaining unchanged. Hence the result follows by induction. �

Lemma 4.3.1 leads to the following observation.

Corollary 4.3.2. Among all M2D’s with given mark sequences those with

the fewest arcs are transitive.
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A transmitter is a vertex with indegree zero. We assume without loss

of generality that transitive M2D’s have no arcs of the form x(1 − 1)y, as

they can be transformed to x(0 − 0)y with same marks. This implies that

in a transitive M2D with mark sequences Pi = [pij]
ni
1 , 1 ≤ i ≤ k, any of the

vertex with mark pini
can act as transmitter.

Let Pi = [pij]
ni
1 , 1 ≤ i ≤ k, be k sequences of non-negative integers in

non-decreasing order with p1n1 ≥ pini
,

2
k∑
t=2

nt ≤ p1n1 ≤ 4
k∑
t=2

nt and 0 ≤ pini
≤ 4

(
k∑

t=2,t6=i

nt

)
− 3

for all 2 ≤ i ≤ k. Let P ′1 be obtained from P1 by deleting one entry p1n1 , and

let P ′2, P
′
3, · · · , P ′k be obtained as follows.

(A)(i). If p1n1 ≥ 3
∑k

t=2 nt, then reducing 4
(∑k

t=2 nt

)
− p1n1 largest entries

of P2, P3, · · · , Pk by one each,

or(ii). If p1n1 < 3
∑k

t=2 nt, then reducing 3
(∑k

t=2 nt

)
− p1n1 largest entries

of P2, P3, · · · , Pk by two each, and p1n1 − 2
(∑k

t=2 nt

)
remaining entries by

one each.

(B). In case any one of pini
= 4

(∑k
t=2 nt

)
− 2, 2 ≤ i ≤ k, say for instance

pjnj
= 4

∑k
t=2 nt− 2, then also p1n1 = 4

(∑k
t=2 nt

)
− 2 as p1n1 ≥ pini

. In this

case we reduce pjnj
by two.

The next result provides a useful recursive test whether the sequences

of non-negative integers form the mark sequences of some M2D.

Theorem 4.3.3. Pi are the mark sequences of some M2D if and only if P ′i
(arranged in non-decreasing order) as obtained in (A) or (B) are the mark

sequences of some M2D.

Proof. Let P ′i , 1 ≤ i ≤ k, be the mark sequences of some M2DD′(X ′1, X
′
2, · · · , X ′k).

First assume P ′2, P
′
3, · · · , P ′k be obtained from P2, P3, · · · , Pk as in (A)(i).

Construct an M2D D(X1, X2, · · · , Xk) as follows. Let X1 = X ′1 ∪ {x}, Xi =

X ′i, 2 ≤ i ≤ k, with X ′1 ∩ {x} = φ. Let x(1 − 0)y for those vertices y of
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X
/
2 , X

′
3, · · ·X ′k whose marks are reduced by one in going from Pi to P ′i , and

x(2−0)y for those vertices y of X ′2, X
′
3, · · · , X ′k whose marks are not reduced

in going from Pi to P ′i , 1 ≤ i ≤ k. Then D(X1, X2, · · · , Xk) is M2D with

mark sequences Pi, 1 ≤ i ≤ k.

Now, if P ′2, P
′
3,· · · , P ′k are obtained from P2, P3,· · · , Pk as in (A)(ii),

then construct an M2D D(X1, X2, · · · , Xk) as follows. Let X1 = X ′1 ∪ {x},
Xi = X ′i, 2 ≤ i ≤ k, with X ′1 ∩ {x} = φ. Let x(1− 0)y for those vertices y of

X ′2, X
′
3, · · · , X ′k whose marks are reduced by one in going from Pi to P ′i , and

x(1− 1)y for those vertices y of X ′2, X
′
3, · · · , X ′k whose marks are reduced by

two in going from Pi to P ′i , 1 ≤ i ≤ k. For (B), we take x(1− 1)y for those

vertices y of X ′2, X
′
3, · · · , X ′k whose marks are reduced by two in going from

Pi to P ′i , 1 ≤ i ≤ k. Then D(X1, X2, · · · , Xk) is M2D with mark sequences

Pi, 1 ≤ i ≤ k.

Conversely, suppose Pi be mark sequences of some M2DD(X1, X2, · · · , Xk),

1 ≤ i ≤ k. Now any of the vertex xini
∈ Xi with mark pini

, 1 ≤ i ≤ k,

can act as a transmitter. Clearly for (i) and (ii) p1n1 ≥ 2
∑k

t=2 nt and

pini
≤ 4

∑k
t=1,t 6=i nt − 3 for all 2 ≤ i ≤ k, because if p1n1 ≤ 2

∑k
t=2 nt,

then by deleting p1n1 we have to reduce more than
∑k

t=2 nt entries from

P2, P3, · · · , Pk, which is absurd.

(i) If p1n1 ≥ 3
∑k

t=2 nt, letX be the set of 4
(∑k

t=2 nt

)
−p1n1 vertices of largest

marks in X2, X3, · · · , Xk and let Y = ∪kt=2Xt−X. In case X does not contain

all 4
(∑k

t=2 nt

)
− p1n1 vertices of largest marks, we can bring them to X by

using Lemma 4.3.1. Construct D(X1, X2, · · · , Xk) such that x1n1(1− 0)x for

all x in X and x1n1(2−0)y for all y in Y . Clearly, D(X1, X2, · · · , Xk)−{x1n1}
realizes P ′1, P

′
2, · · · , P ′k.

(ii) If p1n1 < 3
∑k

t=2 nt, let X be the set of 3
(∑k

t=2 nt

)
− p1n1 vertices

of largest marks in X2, X3, · · · , Xk and let Y = ∪kt=2Xt − X. Construct

D(X1, X2, · · · , Xk) such that x1n1(1 − 1)x for all x in X and x1n1(1 − 0)y

for all y in Y . Then again D(X1, X2, · · · , Xk)−{x1n1} realizes P ′1, P
′
2, · · · , P ′k.

(B) If for instance pjnj
= 4

(∑k
t=2 nt

)
−2, then necessarily p1n1 = 4

(∑k
t=2 nt

)
−

2 so that x1n1(0 − 0)xjnj
or x1n1(1 − 1)xjnj

. Clearly, D(X1, X2, · · · , Xk) −
{x1n1} realizes P ′1, P

′
2, · · · , P ′k. �

Theorem 4.3.3 provides an algorithm for determining whether or not
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the k sequences Pi, 1 ≤ i ≤ k, of non-negative integers in non-decreasing

order are mark sequences, and for constructing a corresponding M2D. Let

Pi = [pi1, pi2, · · · , pini
], 1 ≤ i ≤ k, with (a) p1n1 ≥ 2

∑k
t=2 nt, (b) pini

≤
4
(∑k

t=1,t 6=i nt

)
− 2 for all 2 ≤ i ≤ k, be mark sequences of an M2D with

parts Xi = {xi1, xi2, · · · , xini
}, 1 ≤ i ≤ k. Deleting p1n1 and perform-

ing A(i) or A(ii), or B of Theorem 4.3.3 according as p1n1 ≥ 3
∑k

t=2 nt or

p1n1 < 3
∑k

t=2 nt, or any one of pini
= 4

(∑k
t=2 nt

)
− 2, 2 ≤ i ≤ k, we obtain

P ′2, P
′
3, · · · , P ′k. If the marks of the vertices xij were decreased by one in this

process, then the construction yielded x1n1(1 − 0)xij, and if these were de-

creased by two, then the construction yielded x1n1(1− 1)xij. For vertices xst

whose marks remained unchanged, the construction yielded x1n1(2 − 0)xst.

Note that if any of the conditions A or B does not hold, then we delete pini

for that i for which the conditions get satisfied, and the same argument is

used for defining arcs. If this procedure is applied recursively, then it tests

whether or not Pi are mark sequences, and if Pi are mark sequences, then

an M2D with mark sequences Pi, 1 ≤ i ≤ k is constructed. During the

application of Theorem 4.3.3, the algorithm may reach a stage where we get

just two sequences, and it is not possible to apply Theorem 4.3.3, in those

cases we apply Lemma 4.2.3 to Lemma 4.2.9 by choosing r = 2.

We illustrate this reduction and the resulting construction with the fol-

lowing examples.

Example 4.3.4. Consider the five sequences of non-negative integers as

follows: P1 = [15, 16, 21], P2 = [16, 20], P3 = [15, 20], P4 = [17, 19], P5 =

[16, 17].

1. [15,16], [15,18], [14,18], [16,17], [15,16] x13(0−0)x22, x13(0−0)x32, x13(0−
0)x42, x13(1− 0)x21, x13(1− 0)x31, x13(1− 0)x41, x13(1− 0)x51, x13(1− 0)x52

2. [15], [13,16], [12,16], [14,15], [13,14] x12(0 − 0)x21, x12(0 − 0)x22, x12(0 −
0)x31, x12(0− 0)x32, x12(0− 0)x41, x12(0− 0)x42, x12(0− 0)x51, x12(1− 0)x52

3. [13], [13], [11,14], [12,13], [12,12] x22(0−0)x32, x22(0−0)x11, x22(0−0)x42,

x22(0− 0)x41, x22(0− 0)x52, x22(1− 0)x31, x22(1− 0)x51

4. [11], [11], [11], [10,11], [11,11] x32(0 − 0)x11, x32(0 − 0)x21, x32(0 − 0)x42,

x32(0− 0)x41, x32(1− 0)x51, x32(1− 0)x52
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5. [9], [9], [9], [10], [9,10] x42(0− 0)x11, x42(0− 0)x21, x42(0− 0)x31, x42(0−
0)x52, x42(1− 0)x51

6. [7], [8], [8], [8], [9]

x51(0− 0)x41, x51(0− 0)x11, x51(1− 0)x21, x51(1− 0)x31

7. [5], φ, [6], [6], [7], x21(0− 0)x52, x21(0− 0)x31, x21(0− 0)x41, x21(0− 0)x11

8. [3], φ, φ, [4], [5], x31(0− 0)x52, x31(0− 0)x41, x31(0− 0)x11

9. [1], φ, φ, φ, [3], x41(0− 0)x52, x41(0− 0)x11

10. [0], φ, φ, φ, φ, x52(0− 0)x11

The resulting 5-partite 2-digraph has mark sequences P1 = [15, 16, 21],

P2 = [16, 20], P3 = [15, 20], P4 = [17, 19], P5 = [16, 17] with vertex sets

X1 = {x11, x12, x13}, X2 = {x21, x22}, X3 = {x31, x32}, X4 = {x41, x42},
X5 = {x51, x52}, and arcs as x13(0 − 0)x22, x13(0 − 0)x32, x13(0 − 0)x42,

x13(1 − 0)x21, x13(1 − 0)x31, x13(1 − 0)x41, x13(1 − 0)x51, x13(1 − 0)x52,

x12(0 − 0)x21, x12(0 − 0)x22, x12(0 − 0)x31, x12(0 − 0)x32, x12(0 − 0)x41,

x12(0 − 0)x42, x12(0 − 0)x51, x12(1 − 0)x52, x22(0 − 0)x32, x22(0 − 0)x11,

x22(0 − 0)x42, x22(0 − 0)x41, x22(0 − 0)x52, x22(1 − 0)x31, x22(1 − 0)x51,

x32(0 − 0)x11, x32(0 − 0)x21, x32(0 − 0)x42, x32(0 − 0)x41, x32(1 − 0)x51,

x32(1 − 0)x52, x42(0 − 0)x11, x42(0 − 0)x21, x42(0 − 0)x31, x42(0 − 0)x52,

x42(1 − 0)x51, x51(0 − 0)x41, x51(0 − 0)x11, x51(1 − 0)x21, x51(1 − 0)x31,

x21(0 − 0)x52, x21(0 − 0)x31, x21(0 − 0)x41, x21(0 − 0)x11, x31(0 − 0)x52,

x31(0− 0)x41, x31(0− 0)x11, x41(0− 0)x52, x41(0− 0)x11, x52(0− 0)x11

Example 4.3.5. Consider the three sequences of non-negative integers as

follows: P1 = [12, 18], P2 = [1, 2, 3], P3 = [10, 18].

1. [12], [1,2,3], [10,16]

x12(2− 0)x21, x12(2− 0)x22, x12(2− 0)x23, x12(2− 0)x31, x12(0− 0)x32

2. [12], [1,2,3], [10]

x32(2− 0)x11, x32(2− 0)x21, x32(2− 0)x22, x32(2− 0)x23

3. φ, [1,2,1], [8]

x11(2− 0)x21, x11(2− 0)x22, x11(0− 0)x23, x11(0− 0)x31

3. φ, [0,0,0], φ

x31(1− 0)x21, x31(0− 0)x22, x31(1− 0)x23

The resulting 3-partite 2-digraph has mark sequences P1 = [12, 18], P2 =

[1, 2, 3], P3 = [10, 18] and vertex sets X1 = {x11, x12}, X2 = {x21, x22, x23},
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X3 = {x31, x32} and arcs x12(2− 0)x21, x12(2− 0)x22, x12(2− 0)x23, x12(2−
0)x31, x12(0− 0)x32, x32(2− 0)x11, x32(2− 0)x21, x32(2− 0)x22, x32(2− 0)x23,

x11(2 − 0)x21, x11(2 − 0)x22, x11(0 − 0)x23, x11(0 − 0)x31, x31(1 − 0)x21,

x31(0− 0)x22, x31(1− 0)x23.

The next result gives a combinatorial criterion for determining whether

k sequences of non-negative integers in non-decreasing order are realizable

as marks.

Theorem 4.3.6. Let Pi = [pij]
ni
1 , 1 ≤ i ≤ k, be k sequences of non-negative

integers in non-decreasing order. Then, Pi are the mark sequences of some

M2D if and only if
k∑
i=1

si∑
j=1

pij ≥ 4
k−1∑
i=1

k∑
j=i+1

sisj, (4.2)

for all sequences of k integers si, 1 ≤ si ≤ ni, with equality when si = ni for

all i.

Proof. A sub k-partite 2-digraph induced by si vertices for 1 ≤ i ≤ k, 1 ≤
si ≤ ni, has a sum of marks 4

∑k−1
i=1

∑k
j=i+1 sisj. This proves the necessity.

For sufficiency, let Pi = [pij]
ni
1 , 1 ≤ i ≤ k, be the sequences of non-

negative integers in non-decreasing order satisfying conditions (4.2) but are

not the mark sequences of any M2D. Let these sequences be chosen in such

a way that ni, 1 ≤ i ≤ k, be smallest possible and p11 is the least with that

choice of ni. We consider the following two cases.

Case (i). Assume equality in (4.2) holds for some sj ≤ nj, 1 ≤ j ≤ k − 1,

sk < nk, so that
k∑
i=1

si∑
j=1

pij = 4
k−1∑
i=1

k∑
j=i+1

sisj.

By the minimality of ni, 1 ≤ i ≤ k, the sequences Pi = [Pi1, Pi2, · · · , Pisi ]
are mark sequences of some M2D D′(X ′1, X

′
2, · · · , X ′k).

For 1 ≤ i ≤ k, define

P ′′i =

[(
pi(si+1) − 4

k∑
t=1,t6=i

st

)
,

(
pi(si+2) − 4

k∑
t=1,t 6=i

st

)
, · · · ,

(
pi(ni) − 4

k∑
t=1,t6=i

st

)]
.
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Now consider the sum

k∑
i=1

fi∑
j=1

[pi(si+j) − 4
k∑

t=1,t6=i

st]

=
k∑
i=1

fi∑
j=1

pi(si+j) − 4
k∑
i=1

fi∑
j=1

k∑
t=1,t6=i

st

=
k∑
i=1

fi+si∑
j=1

pij −
k∑
i=1

si∑
j=1

pij − 4
k∑
i=1

fi∑
j=1

k∑
i=1

st + 4
k∑
i=1

fi∑
j=1

si

≥ 4
k−1∑
i=1

k∑
j=i+1

[(si + fi)(sj + fj)]− 4
k−1∑
i=1

k∑
j=i+1

sisj − 4
k∑
i=1

fi

k∑
t=1

st + 4
k∑
i=1

fisi

= 4
k−1∑
i=1

k∑
j=i+1

(sisj + sifj + fisj + fifj)− 2r
k−1∑
i=1

k∑
j=i+1

sisj

− 4
k∑
i=1

k∑
t=1

fist + 4
k∑
i=1

fisi

= 4
k−1∑
i=1

k∑
j=i+1

sisj + 4
k−1∑
i=1

k∑
j=i+1

(sifj + fisj) + 4
k−1∑
i=1

k∑
j=i+1

fifj

− 4
k−1∑
i=1

k∑
j=i+1

sisj − 4
k∑
i=1

k∑
t=1

fist + 4
k∑
i=1

fisi

= 4
k−1∑
i=1

k∑
j=i+1

fifj

+ 4
k−1∑
i=1

[(sifi+1) + fisi+1) + (sifi+2) + fisi+2) + · · ·+ (sifk) + fisk)]

− 4
k∑
i=1

(fis1 + fis2 + · · ·+ fisk) + 4(f1s1 + f2s2 + · · ·+ fksk)

= 4
k−1∑
i=1

k∑
j=i+1

fifj

+ 4{[(s1f2 + f1s2) + (s1f3 + f1s3) + · · ·+ (s1fk + f1sk)]

+ [(s2f3 + f2s3) + (s2f4 + f2s4) + · · ·+ (s2fk + f2sk)]

+ · · ·+ [(sk−1fk + fk−1sk)]}
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− 4[(f1s1 + f1s2 + · · ·+ f1sk) + (f2s1 + f2s2 + · · ·+ f2sk)

+ · · ·+ (fks1 + fks2 + · · ·+ fksk)]

+ 4(f1s1 + f2s2 + · · ·+ fksk)

= 4
k−1∑
i=1

k∑
j=i+1

fifj,

for 1 ≤ fi ≤ ni− si with equality when fi = ni− si for all i, 1 ≤ i ≤ k. Then

by minimality of ni, 1 ≤ i ≤ k, the sequences P ′′i form the mark sequences

of some M2D D′′(X ′′1 , X
′′
2 , · · · , X ′′k ).

Now construct a new M2D D(X1, X2, · · · , Xk) as follows. Let

X1 = X ′1 ∪X ′′1 , X2 = X ′2 ∪X ′′2 , · · · , Xk = X ′k ∪X ′′k

with X ′i ∩X ′′i = φ.

Let

x′′i (2− 0)x′1, x
′′
i (2− 0)x′2, · · · , x′′i (2− 0)x′i−1, x

′′
i (2− 0)x′i+1, · · · , x′′i (2− 0)x′k,

for all x′′i inX ′′i and for all x′i inX ′i, 1 ≤ i ≤ k. Then clearlyD(X1, X2, · · · , Xk)

is an M2D with mark sequences Pi, 1 ≤ i ≤ k, which is a contradiction.

Case (ii). Assume strict inequality in (4.2) holds for some si 6= ni, 1 ≤ i ≤ k.

Let P ′1 = [p11 − 1, p12, · · · , p1n1−1, p1n1 + 1] and P ′j = [pj1, pj2, · · · , pjnj
] for

all j, 2 ≤ j ≤ k. Clearly the sequences P ′i , 1 ≤ i ≤ k, satisfy conditions

(4.2). Therefore by the minimality of p11, the sequences P ′i , 1 ≤ i ≤ k,

are mark sequences of some M2D D′(X ′1, X
′
2, · · · , X ′k). Let px11 = p11 − 1

and px1n1
= p1n1 + 1. Since px1n1

> px11 + 1, there exists a vertex

xij in Xi, 2 ≤ i ≤ k, 1 ≤ j ≤ ni, such that x1n1(1 − 0)xij(1 − 0)x11, or

x1n1(0−0)xij(1−0)x11, or x1n1(1−0)xij(0−0)x11, or x1n1(0−0)xij(0−0)x11

in D′(X ′1, X
′
2, · · · , X ′k), and if these are changed to x1n1(0−0)xij(0−0)x11, or

x1n1(0−1)xij(0−0)x11, or x1n1(0−0)xij(0−1)x11, or x1n1(0−1)xij(0−1)x11

respectively, the result is an M2D with mark sequences Pi, 1 ≤ i ≤ k, which

is again a contradiction. Hence the result follows. �

Definition 4.3.7. A k-partite r-digraph (or briefly multipartite multidi-

graph(MMD))is an orientation of a k-partite multigraph that is without loops

73



and contains at most r edges between any pair of vertices from distinct parts.

So, k-partite 1-digraph is an oriented k-partite graph, and a complete k-

partite 1-digraph is a k-partite tournament. Let D = D(X1, X2, · · · , Xk) be

a multipartite multidigraph with parts Xi = {xi1, xi2, · · · , xini
}, 1 ≤ i ≤ k.

Let d+xij and d−xij , 1 ≤ j ≤ ni, be respectively the outdegree and indegree of a

vertex xij ∈ Xi. Define pxij(or simply pij) = r
(∑k

t=1,t6=i nt

)
+ d+xij − d

−
xij

as

the mark (or r-score) of xij. Clearly, 0 ≤ pxij ≤ 2r
∑k

t=1,t6=i nt. Then the k

sequences pi = [pij]
ni
1 , 1 ≤ i ≤ k, in non-decreasing order are called the mark

sequences of D.

An MMD can be interpreted as a result of a competition among k teams

in which each player of one team plays with every player of the other k − 1

teams at most r times in which ties (draws) are allowed. A player receives

two points for each win, and one point for each tie. With this marking sys-

tem, player xij receives a total of pxij points. The k sequences of non-negative

integers pi, 1 ≤ i ≤ k, in non-decreasing order are said to be realizable if

there exists an MMD with mark sequences Pi. All the results on multipar-

tite 2-digraphs can be extended to MMD. The following is the combinatorial

characterization for mark sequences in MMD. We prove it here in a different

way.

Theorem 4.3.8. Let Pi = [pij]
ni
1 , 1 ≤ i ≤ k, be k sequences of non-negative

integers in non-decreasing order. Then, Pi are the mark sequences of some

MMD if and only if

k∑
i=1

si∑
j=1

pij ≥ 2r
k−1∑
i=1

k∑
j=i+1

sisj, (4.3)

for all sequences of k integers si, 1 ≤ si ≤ ni, with equality when si = ni for

all i.

Proof. A sub k-partite r-digraph induced by si vertices for 1 ≤ i ≤ k,

1 ≤ si ≤ ni, has a sum of marks 2r
∑k−1

i=1

∑k
j=i+1 sisj. This proves the

necessity.

For sufficiency, let Pi = [pij]
ni
1 , 1 ≤ i ≤ k, be the sequences of non-

negative integers in non-decreasing order satisfying conditions (4.3) but are
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not the mark sequences of any MMD. Let these sequences be chosen in such

a way that ni, 1 ≤ i ≤ k, be smallest possible and p11 is the least with that

choice of ni. We consider the following two cases.

Case (i). Assume equality in (4.3) holds for some sj ≤ nj, 1 ≤ j ≤ k − 1,

sk < nk, so that
k∑
i=1

si∑
j=1

pij = 2r
k−1∑
i=1

k∑
j=i+1

sisj.

By the minimality of ni, 1 ≤ i ≤ k, the sequences Pi = [Pi1, Pi2, · · · , Pisi ]
are mark sequences of some MMD D′(X ′1, X

′
2, · · · , X ′k).

Define

P ′′i =

[
pi(si+1) − 2r

k∑
t=1,t6=i

st, pi(si+2) − 2r
k∑

t=1,t 6=i

st, · · · , pi(ni) − 2r
k∑

t=1,t 6=i

st

]
,

1 ≤ i ≤ k.

Now consider the sum

k∑
i=1

fi∑
j=1

(pi(si+j) − 2r
k∑

t=1,t6=i

st)

=
k∑
i=1

fi∑
j=1

pi(si+j) − 2r
k∑
i=1

fi∑
j=1

k∑
t=1,t6=i

st

=
k∑
i=1

fi+si∑
j=1

pij −
k∑
i=1

si∑
j=1

pij − 2r
k∑
i=1

fi∑
j=1

k∑
i=1

st + 2r
k∑
i=1

fi∑
j=1

si

≥ 2r
k−1∑
i=1

k∑
j=i+1

[(si + fi)(sj + fj)]− 2r
k−1∑
i=1

k∑
j=i+1

sisj

− 2r
k∑
i=1

fi

k∑
t=1

st + 2r
k∑
i=1

fisi
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k∑
i=1

fi∑
j=1

(pi(si+j) = 2r
k−1∑
i=1

k∑
j=i+1

(sisj + sifj + fisj + fifj − 2r
k−1∑
i=1

k∑
j=i+1

sisj

− 2r
k∑
i=1

k∑
t=1

fist + 2r
k∑
i=1

fisi

= 2r
k−1∑
i=1

k∑
j=i+1

sisj + 2r
k−1∑
i=1

k∑
j=i+1

(sifj + fisj) + 2r
k−1∑
i=1

k∑
j=i+1

fifj

− 2r
k−1∑
i=1

k∑
j=i+1

sisj − 2r
k∑
i=1

k∑
t=1

fist + 2r
k∑
i=1

fisi

= 2r
k−1∑
i=1

k∑
j=i+1

fifj

+ 2r
k−1∑
i=1

[(sifi+1) + fisi+1) + (sifi+2) + fisi+2) + · · ·+ (sifk) + fisk)]

− 2r
k∑
i=1

(fis1 + fis2 + · · ·+ fisk) + 2r(f1s1 + f2s2 + · · ·+ fksk)

= 2r
k−1∑
i=1

k∑
j=i+1

fifj

+ 2r{[(s1f2 + f1s2) + (s1f3 + f1s3) + · · ·+ (s1fk + f1sk)]

+ [(s2f3 + f2s3) + (s2f4 + f2s4) + · · ·+ (s2fk + f2sk)]

+ · · ·+ [(sk−1fk + fk−1sk)]}
− 2r[(f1s1 + f1s2 + · · ·+ f1sk) + (f2s1 + f2s2 + · · ·+ f2sk)

+ · · ·+ (fks1 + fks2 + · · ·+ fksk)]

+ 2r(f1s1 + f2s2 + · · ·+ fksk)

= 2r
k−1∑
i=1

k∑
j=i+1

fifj,

for 1 ≤ fi ≤ ni − si with equality when fi = ni − si for all i, 1 ≤ i ≤ k.

Then by minimality of ni, 1 ≤ i ≤ k, the sequences P ′′i form the mark

sequences of some MMD D′′(X ′′1 , X
′′
2 , · · · , X ′′k ).
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Now construct a new MMD D(X1, X2, · · · , Xk) as follows. Let

X1 = X ′1 ∪X ′′1 , X2 = X ′2 ∪X ′′2 , · · · , Xk = X ′k ∪X ′′k

with X ′i ∩X ′′i = φ.

Let

x′′i (r − 0)x′1, x
′′
i (r − 0)x′2, · · · , x′′i (r − 0)x′i−1, x

′′
i (r − 0)x′i+1, · · · , x′′i (r − 0)x′k,

for all x′′i inX ′′i and for all x′i inX ′i, 1 ≤ i ≤ k. Then clearlyD(X1, X2, · · · , Xk)

is an MMD with mark sequences Pi, 1 ≤ i ≤ k, which is a contradiction.

Case (ii). Assume strict inequality in (4.3) holds for some si 6= ni, 1 ≤ i ≤ k.

Let

P ′1 = [p11 − 1, p12, · · · , p1n1−1, p1n1 + 1]

and

P ′j = [pj1, pj2, · · · , pjnj
]

for all j, 2 ≤ j ≤ k. Clearly the sequences P ′i , 1 ≤ i ≤ k, satisfy conditions

(4.3). Therefore by the minimality of p11, the sequences P ′i , 1 ≤ i ≤ k, are

mark sequences of some MMD D′(X ′1, X
′
2, · · · , X ′k). Let

px11 = p11 − 1

and

px1n1
= p1n1 + 1.

Since

px1n1
> px11 + 1,

there exists a vertex xij in Xi, 2 ≤ i ≤ k, 1 ≤ j ≤ ni, such that x1n1(1 −
0)xij(1 − 0)x11, or x1n1(0 − 0)xij(1 − 0)x11, or x1n1(1 − 0)xij(0 − 0)x11, or

x1n1(0 − 0)xij(0 − 0)x11 in D′(X ′1, X
′
2, · · · , X ′k), and if these are changed to

x1n1(0−0)xij(0−0)x11, or x1n1(0−1)xij(0−0)x11, or x1n1(0−0)xij(0−1)x11,

or x1n1(0 − 1)xij(0 − 1)x11 respectively, the result is an MMD with mark

sequences Pi, 1 ≤ i ≤ k, which is again a contradiction. Hence the result

follows. �
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CHAPTER 5

Imbalances in digraphs

In this chapter, we study imbalances and imbalance sequences in di-

graphs. We extend this concept of imbalances to oriented bipartite graphs.

We provide necessary and sufficient conditions for sequences of integers to

be imbalance sequences of some oriented bipartite graphs. We show the

existence of an oriented bipartite graph with given imbalance set.

5.1 Introduction

Definition 5.1.1. The imbalance of a vertex vi in a digraph as bvi (or

simply bi)= d+vi − d
−
vi

, where d+vi and d−vi are respectively the outdegree and

indegree of vi. The imbalance sequence of a simple digraph is formed by

listing the vertex imbalances in non-increasing order. A sequence of integers

F = [f1, f2, · · · , fn] with f1 ≥ f2 ≥ · · · ≥ fn is feasible if it has sum zero and

satisfies
∑k

i=1 fi ≤ k(n− k), for 1 ≤ k < n.

The following result [39] provides a necessary and sufficient condition

for a sequence of integers to be the imbalance sequence of a simple digraph.

Theorem 5.1.2. A sequence is realizable as an imbalance sequence if and

only if it is feasible.

The above result is equivalent to saying that a sequence of integers

B = [b1, b2, · · · , bn] with b1 ≥ b2 ≥ · · · ≥ bn is an imbalance sequence of a

simple digraph if and only if
∑k

i=1 bi ≤ k(n−k), for 1 ≤ k < n, with equality

when k = n.

On arranging the imbalance sequence in non-decreasing order, we have

the following observation.

Corollary 5.1.3. A sequence of integers B = [b1, b2, · · · , bn] with b1 ≤ b2 ≤
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· · · ≤ bn is an imbalance sequence of a simple digraph if and only if

k∑
i=1

bi ≥ k(k − n),

for 1 ≤ k < n with equality when k = n.

Pirzada [45] obtained the following result on imbalances in simple di-

rected graphs.

Theorem 5.1.4. If B = [b1, b2, · · · , bn] is an imbalance sequence of a simple

directed graph with b1 ≥ b2 ≥ · · · ≥ bn, then
∑k

i=1 b
2
i ≤

∑k
i=1(2n− 2k − bi)2,

for 1 ≤ k < n with equality when k = n.

Definition 5.1.5. The set of distinct imbalances of the vertices in an ori-

ented graph is called its imbalance set.

The following result due to Pirzada [45] gives the existence of an ori-

ented graph with a given imbalance set.

Theorem 5.1.6. Let P = {p1, p2, · · · , pm} and Q = {−q1,−q2, · · · ,−qn}
where p1, p2, · · · , pm, q1, q2, · · · , qn are positive integers such that p1 < p2 <

· · · < pm and q1 < q2 < · · · < qn. Then there exists an oriented graph with

imbalance set P ∪Q.

5.2 Imbalance sequences in multidigraphs

Define bvi (or simply bi) = d+vi − d
−
vi

as imbalance of vi. Clearly, −r(n−
1) ≤ bvi ≤ r(n − 1). The imbalance sequence of D is formed by listing the

vertex imbalances in non-decreasing order. Let u and v be distinct vertices

in D. If there are f arcs directed from u to v and g arcs directed from v to

u, we denote this by u(f − g)v, where 0 ≤ f, g, f + g ≤ r.

The work of this section has appeared in [49]. The following observation
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can be easily established and is analogues to Theorem 2.2 of Avery[1].

Lemma 5.2.1. If D1 and D2 are two multi digraphs with same imbalance

sequence, then D1 can be transformed to D2 by successively transforming (i)

appropriate oriented triples in one of the following ways,

either (a) by changing the intransitive oriented triple u(1−0)v(1−0)w(1−0)u

to a transitive oriented triple u(0− 0)v(0− 0)w(0− 0)u, which has the same

imbalance sequence or vice versa,

or (b) by changing the intransitive oriented triple u(1− 0)v(1− 0)w(0− 0)u

to a transitive oriented triple u(0− 0)v(0− 0)w(0− 1)u, which has the same

imbalance sequence or vice versa;

or (ii) by changing a double u(1−1) to a double u(0−0), which has the same

imbalance sequence or vice versa.

The above observations lead to the following result.

Theorem 5.2.2. Among all multidigraphs with given imbalance sequence,

those with the fewest arcs are transitive.

Proof. Let B be an imbalance sequence and let D be a realization of B

that is not transitive. Then D contains an intransitive oriented triple. If it

is of the form u(1− 0)v(1− 0)w(1− 0)u, it can be transformed by operation

i(a) of Lemma 3 to a transitive oriented triple u(0 − 0)v(0 − 0)w(0 − 0)u

with the same imbalance sequence and three arcs fewer. If D contains an

intransitive oriented triple of the form u(1 − 0)v(1 − 0)w(0 − 0)u, it can

be transformed by operation i(b) of Lemma 3 to a transitive oriented triple

u(0 − 0)v(0 − 0)w(0 − 1)u with the same imbalance sequence but one arc

fewer. In case D contains both types of intransitive oriented triples, they

can be transformed to transitive ones with certainly lesser arcs. If in D there

is a double u(1− 1), by operation (ii) of Lemma 5.2.1, it can be transformed

to u(0− 0), with same imbalance sequence but two arcs fewer. �

The next result gives necessary and sufficient conditions for a sequence

of integers to be the imbalance sequence of some multi digraph.
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Theorem 5.2.3. A sequence B = [b1, b2, · · · , bn] of integers in non-decreasing

order is an imbalance sequence of a multi digraph if and only if for 1 ≤ k ≤ n

k∑
i=1

bi ≥ rk(k − n), (5.1)

with equality when k = n.

Proof. Necessity. A multi subdigraph induced by k vertices has a sum of

imbalances rk(k − n).

Sufficiency. Assume that B = [b1, b2, · · · , bn] be the sequence of integers

in non-decreasing order satisfying conditions (5.1) but is not the imbalance

sequence of any multi digraph. Let this sequence be chosen in such a way

that n is the smallest possible and b1 is the least with that choice of n. We

consider the following two cases.

Case(i). Suppose equality in (5.1) holds for some k ≤ n, so that

k∑
i=1

bi = rk(k − n),

for 1 ≤ k < n.

By minimality of n, B1 = [b1, b2, · · · , bk] is the imbalance sequence of

some multi digraph D1 with vertex set, say V1. Let B2 = [bk+1, bk+2, · · · , bn].

Consider,

f∑
i=1

bk+i =

k+f∑
i=1

bi −
k∑
i=1

bi

≥ r(k + f)[(k + f)− n]− rk(k − n)

= r(k2 + kf − kn+ fk + f 2 − fn− k2 + kn)

≥ r(f 2 − fn)

= rf(f − n),

for 1 ≤ f ≤ n − k, with equality when f = n − k. Therefore, by the min-

imality for n, the sequence B2 forms the imbalance sequence of some multi

digraph D2 with vertex set, say V2. Construct a new multi digraph D with

vertex set as follows.

Let V = V1 ∪ V2 with, V1 ∩ V2 = φ and the arc set containing those
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arcs which are in D1 and D2. Then we obtain the multi digraph D with the

imbalance sequence B, which is a contradiction.

Case (ii). Suppose that the strict inequality holds in (5.1) for some k < n,

so that

k∑
i=1

bi > rk(k − n),

for 1 ≤ k < n. Let B1 = [b1 − 1, b2, · · · , bn−1, bn + 1], so that B1 satisfy

the conditions (1). Thus by the minimality of b1, the sequences B1 is the

imbalances sequence of some multi digraph D1 with vertex set, say V1). Let

bv1 = b1−1 and bvn = bn+1. Since bvn > bv1 +1, there exists a vertex vp ∈ V1
such that vn(0−0)vp(1−0)v1, or vn(1−0)vp(0−0)v1, or vn(1−0)vp(1−0)v1,

or vn(0− 0)vp(0− 0)v1, and if these are changed to vn(0− 1)vp(0− 0)v1, or

vn(0− 0)vp(0− 1)v1, or vn(0− 0)vp(0− 0)v1, or vn(0− 1)vp(0− 1)v1 respec-

tively, the result is a multi digraph with imbalances sequence B, which is

again a contradiction. This proves the result. �

On arranging the imbalance sequence in non-increasing order, we have

the following observation.

Corollary 5.2.4. A sequence B = [b1, b2, · · · , bn] of integers with b1 ≥ b2 ≥
· · · ≥ bn is an imbalance sequence of a multi digraph if and only if

k∑
i=1

bi ≤ rk(n− k),

for 1 ≤ k ≤ n, with equality when k = n.

The converse of a multidigraph D is a multidigraph D′, obtained by

reversing orientations of all arcs of D. If B = [b1, b2, · · · , bn] with b1 ≤
b2 ≤ · · · ≤ bn is an imbalance sequence of a multi digraph D, then B′ =

[−bn,−bn−1, · · · ,−b1].

The next result gives lower and upper bounds for the imbalance bi of a

vertex vi in a multidigraph D.
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Theorem 5.2.5. If B = [b1, b2, · · · , bn] is an imbalance sequence of a multi-

digraph D, then for each i

r(i− n) ≤ bi ≤ r(i− 1).

Proof. Assume to the contrary that bi < r(i− n), so that for k < i,

bk ≤ bi < r(i− n).

That is, b1 < r(i− n), b2 < r(i− n), · · · , bi < r(i− n).

Adding these inequalities, we get
∑i

k=1 bk < ri(i − n), which contradicts

Theorem 5.2.3. Therefore, r(i− n) ≤ bi.

The second inequality is dual to the first. In the converse multi digraph

with imbalance sequence B = [b′1, b
′
2, · · · , b′n] we have, by the first inequality

b′n−i+1 ≥ r[(n− i+ 1)− n] = r(−i+ 1).

Since bi = −b′n−i+1, therefore

bi ≤ −r(−i+ 1) = r(i− 1).

Hence, bi ≤ r(i− 1), completing the proof. �

Now we obtain the following inequalities for imbalances in multidi-

graphs.

Theorem 5.2.6. If B = [b1, b2, · · · , bn] is an imbalance sequence of a multi

digraph with b1 ≥ b2 ≥ · · · ≥ bn, then

k∑
i=1

b2i ≤
k∑
i=1

(2rn− 2rk − bi)2,

for 1 ≤ k ≤ n with equality when k = n.

Proof. By Corollary 5.2.4, we have for 1 ≤ k ≤ n with equality when k = n

rk(n− k) ≥
k∑
i=1

bi,
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or
k∑
i=1

b2i + 2(2rn− 2rk)rk(n− k) ≥
k∑
i=1

b2i + 2(2rn− 2rk)
k∑
i=1

bi,

or
k∑
i=1

b2i + k(2rn− 2rk)2 − 2(2rn− 2rk)
k∑
i=1

bi ≥
k∑
i=1

b2i ,

or

b21 + b22 + · · ·+ b2k + (2rn− 2rk)2 + (2rn− 2rk)2 + · · ·+ (2rn− 2rk)2

− 2(2rn− 2rk)b1 − 2(2rn− 2rk)b2 − · · · − 2(2rn− 2rk)bk

≥
k∑
i=1

b2i ,

or
k∑
i=1

(2rn− 2rk − bi)2 ≥
k∑
i=1

b2i .

�

The set of distinct imbalances of vertices in a multi digraph is called its

imbalance set. the following result gives the existence of a multidigraph with

a given imbalance set.

Theorem 5.2.7. If P = {p1, p2, · · · , pm} and Q = {−q1,−q2, · · · ,−qn}
where p1, p2, · · · , pm, q1, q2, · · · , qn are positive integers such that p1 < p2 <

· · · < pm and q1 < q2 < · · · < qn and (p1, p2, · · · , pm, q1, q2, · · · , qn) = t,

1 ≤ t ≤ r, then there exists a multidigraph with imbalance set P ∪ Q.

Note that(p1, p2, · · · , pm, q1, q2, · · · , qn) denotes the greatest common divisor

of p1, p2, · · · , pm, q1, q2, · · · , qn.

Proof. Since (p1, p2, · · · , pm, q1, q2, · · · , qn) = t, 1 ≤ t ≤ r, there exist pos-

itive integers f1, f2, · · · , fm and g1, g2, · · · , gn with f1 < f2 < · · · < fm and

g1 < g2 < · · · < gn such that pi = tfi for 1 ≤ i ≤ m and qi = tgi for

1 ≤ j ≤ n.

We construct a multi digraph D with vertex set V as follows. Let

V = X1
1∪X1

2∪· · ·∪X1
m∪X2

1∪X3
1∪· · ·∪Xn

1 ∪Y 1
1 ∪Y 1

2 ∪· · ·∪Y 1
m∪Y 2

1 ∪Y 3
1 ∪· · ·∪Y n

1 ,
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with Xj
i ∩X l

k = φ, Y j
i ∩ Y l

k = φ, Xj
i ∩ Y l

k = φ and

|X1
i | = g1, for all 1 ≤ i ≤ m, |X i

1| = gi, for all 2 ≤ i ≤ n,

|Y 1
i | = fi, for all 1 ≤ i ≤ m, |Y i

1 | = f1, for all 2 ≤ i ≤ n.

Let there be t arcs directed from every vertex of X1
i to each vertex of

Y 1
i , for all 1 ≤ i ≤ m and let there be t arcs directed from every vertex of X i

1

to each vertex of Y i
1 , for all 2 ≤ i ≤ n so that we obtain the multi digraph

D with imbalances of vertices as under.

For 1 ≤ i ≤ m, for all x1i ∈ X1
i

bx1i = t|Y 1
i | − 0 = tfi = pi,

for 2 ≤ i ≤ n, for all xi1 ∈ X i
1

bxi1 = t|Y i
1 | − 0 = tf1 = p1,

for 1 ≤ i ≤ m, for all y1i ∈ Y 1
i

by1i = 0− t|X1
i | = −tgi = −qi,

and for 2 ≤ i ≤ n, for all yi1 ∈ Y i
1

byi1 = 0− t|X i
1| = −tgi = −qi.

Therefore imbalance set of D is P ∪Q. �

5.3 Imbalances in oriented bipartite digraphs

Defintion 5.3.1. An oriented bipartite graph is the result of assigning a

direction to each edge of a simple bipartite graph. Let U = {u1, u2, · · · , up}
and V = {v1, v2, · · · , vq} be the parts of an oriented bipartite graph D(U, V ).

For any vertex x in D(U, V ), let d+x and d−x denote the outdegree and indegree

of x. Define aui(or simply ai) = d+ui − d
−
ui

and bvj(or simply bj) = d+vj − d
−
vj

respectively, as imbalances of the vertices ui in U and vj in V . The sequences

A = [a1, a2, · · · , ap] and B = [b1, b2, · · · , bq] in non-decreasing order is a pair

of imbalance sequences of D(U, V ).

In any oriented bipartite graph D(U, V ), we have one of the following

possibilities between a vertex u in U and a vertex v in V . (i) An arc directed
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from u to v, denoted by u(1−0)v, or (ii) An arc directed from v to u, denoted

by u(0− 1)v, or (iii) There is no arc from u to v and there is no arc from v

to u and this is denoted by u(0− 0)v.

A tetra in an oriented bipartite graph is an induced sub-oriented graph

with two vertices from each part. Define tetras of the form u1(1 − 0)v1(1 −
0)u2(1 − 0)v2(1 − 0)u1 and u1(1 − 0)v1(1 − 0)u2(1 − 0)v2(0 − 0)u1 to be of

α-type, and all other tetras to be of β-type. An oriented bipartite graph is

said to be of α-type or β-type according as all of its tetras are of α-type or

β-type respectively.

Some results on oriented bipartite graphs can be found in [2,4]. The re-

sults of this section have appeared in Chishti and Samee [54]. The following

observation is an immediate consequence of above definitions and facts.

Theorem 5.3.2. Among all oriented bipartite graphs with given imbalance

sequence, those with the fewest arcs are of β-type.

A transmitter is a vertex with indegree zero. In a β-type oriented

bipartite graph with imbalance sequences A = [a1, a2, · · · , ap] and B =

[b1, b2, · · · , bq], either the vertex with imbalance ap, or the vertex with imbal-

ance bq, or both may act as transmitters.

The next result provides a useful recursive test whether the given se-

quences are the imbalance sequences of an oriented bipartite graph.

Theorem 5.3.2. Let A = [a1, a2, · · · , ap] and B = [b1, b2, · · · , bq] be the se-

quences of integers in non-decreasing order with ap > 0, ap ≤ q and bq ≤ p.

Let A′ be obtained from A by deleting one entry ap, and B′ be obtained from

B by increasing ap smallest entries of B by 1 each. Then A and B are the

imbalance sequences of some oriented bipartite graph if and only if A′ and B′

are the imbalance sequences.

Proof. Let A′ and B′ be the imbalance sequences of some oriented bipartite

graph D′ with parts U ′ and V ′. Then an oriented bipartite graph D with
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imbalance sequences A and B can be obtained by adding a transmitter up

in U ′ such that up(1 − 0)vi for those vertices vi in V ′ whose imbalances are

increased by 1 in going from A and B to A′ and B′.

Conversely, suppose A and B be the imbalance sequences of an oriented

bipartite graph D with parts U and V . Without loss of generality, we chose

D to be of β-type. Then there is a vertex up in U with imbalance ap(or a

vertex vq in V with imbalance bq, or both up and vq) which is a transmitter.

Let the vertex up in U with imbalance ap be a transmitter. Clearly, d+up ≥ 0

and d−up = 0 so that ap = d+up − d
−
up ≥ 0. Also, d+vq ≤ p and d−vq ≥ 0 so that

bq = d+vq − d
−
vq ≤ p.

Let V1 be the set of ap vertices of smallest imbalances in V , and let

W = V − V1. Construct D such that up(1 − 0)vi for all vi ∈ Vi. Clearly,

D − {up} realizes A′ and B′. �

Theorem 5.3.2 provides an algorithm for determining whether the two

sequences of integers in non-decreasing order are the imbalance sequences,

and for constructing a corresponding oriented bipartite graph. Suppose A =

[a1, a2, · · · , ap] and B = [b1, b2, · · · , bq] are imbalance sequences of an oriented

bipartite graph with parts U = {u1, u2, · · · , up} and V = {v1, v2, · · · , vq},
where ap > 0, ap ≤ q and bq ≤ p. Deleting ap, and increasing ap smallest

entries of B by 1 each to form B′ = [b′1, b
′
2, · · · , b′q]. Then arcs are defined by

up(1 − 0)vj for which b′vj = bvj + 1. Now, if the condition ap > 0 does not

hold, then we delete bq(obviously bq > 0), and increase bq smallest entries of

A by 1 each to form A′ = [a′1, a
′
2, · · · , a′p]. In this case, arcs are defined by

vq(1 − 0)ui for which a′ui = aui + 1. If this method is applied successively,

then (i) it tests whether A and B are the imbalance sequences and, if A and

B are the imbalance sequences (ii) an oriented bipartite graph D(U, V ) with

imbalance sequences A and B is constructed.

Example 5.3.3.We illustrate this reduction and the resulting construction

as follows, beginning with sequences A1 and B1

A1 = [−3, 1, 2, 2] B1 = [−3,−1, 0, 1, 1]

A2 = [−3, 1, 2] B2 = [−2, 0, 0, 1, 1] u4(1− 0)v1, u4(1− 0)v2

A3 = [−3, 1] B3 = [−1, 1, 0, 1, 1] u3(1− 0)v1, u3(1− 0)v2
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or A3 = [−3, 1] B3 = [−1, 0, 1, 1, 1]

A4 = [−3] B4 = [0, 0, 1, 1, 1] u2(1− 0)v1

A5 = [−2] B5 = [0, 0, 1, 1] v5(1− 0)u1

A6 = [−1] B6 = [0, 0, 1] v4(1− 0)u1

A7 = [0] B7 = [0, 0] v2(1− 0)u1

Obviously, an oriented bipartite graph D with parts U = {u1, u2, u3, u4}
and V = {v1, v2, v3, v4, v5} in which u4(1−0)v1, u4(1−0)v2, u3(1−0)v1, u3(1−
0)v2, u2(1−0)v1, v5(1−0)u1, v4(1−0)u1, v2(1−0)u1 are arcs has imbalance

sequences [−3, 1, 2, 2] and [−3,−1, 0, 1, 1].

The following result is a combinatorial criterion for determining whether

the sequences are realizable as imbalances.

Theorem 5.3.4. Two sequences A = [a1, a2, · · · , ap] and B = [b1, b2, · · · , bq]
of integers in non-decreasing order are the imbalance sequences of some ori-

ented bipartite graph if and only if

k∑
i=1

ai +
l∑

j=1

bj ≥ 2kl − kq − lp, (5.2)

for 1 ≤ k ≤ p, 1 ≤ l ≤ q with equality when k = p and l = q.

Proof. The necessity follows from the fact that an oriented sub-bipartite

graph induced by k vertices from the first part and l vertices from the second

part has a sum of imbalances 2kl − kq − lp.
For sufficiency, assume that A = [a1, a2, · · · , ap] and B = [b1, b2, · · · , bq]

are the sequences of integers in non-decreasing order satisfying conditions

(5.2) but are not the imbalance sequences of any oriented bipartite graph.

Let these sequences be chosen in such a way that p and q are the smallest

possible and a1 is the least with that choice of p and q. We consider the

following two cases.

Case(i). Suppose equality in (5.2) holds for some k ≤ p and l < q, so that

k∑
i=1

ai +
l∑

j=1

bj = 2kl − kq − lp.
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By the minimality of p and q, A = [a1, a2, · · · , ap] andB = [b1, b2, · · · , bq]
are the imbalance sequences of some oriented bipartite graph D1(U1, V1). Let

A2 = [ak+1, ak+2, · · · , ap] and B2 = [bl+1, bl+2, · · · , bq].
Now,

f∑
i=1

ak+i +

g∑
j=1

bl+j =

k+f∑
i=1

ai +

l+g∑
j=1

bj − (
k∑
i=1

ai +
l∑

j=1

bj)

≥ 2(k + f)(l + g)− (k + f)q − (l + g)p− 2kl + kq + lp

= 2kl + 2kg + 2fl + 2fg − kq − fq − lp− gp− 2kl + kq + lp

= 2fg − fq − gp+ 2kg + 2fl

≥ 2fg − fq − gp,
for 1 ≤ f ≤ p − k and 1 ≤ g ≤ q − l, with equality when f = p − k and

g = q − l. So, by the minimality for p and q, the sequences A2 and B2 form

the imbalance sequences of some oriented bipartite graph D2(U2, V2). Now

construct a new oriented bipartite graph D(U, V ) as follows.

Let U = U1∪U2, V = V1∪V2 with U1∩U2 = φ, V1∩V2 = φ and the arc

set containing those arcs which are between U1 and V1 and between U2 and

V2. Then we obtain an oriented bipartite graph D(U, V ) with the imbalance

sequences A and B, which is a contradiction.

Case (ii). Suppose that the strict inequality holds in (5.2) for some k 6= p

and l 6= q. Let A1 = [a1 − 1, a2, · · · , ap−1, ap] and B1 = [b1, b2, · · · , bq], so

that A1 and B1 satisfy the conditions (1). Thus by the minimality of a1, the

sequences A1 and B1 are the imbalances sequences of some oriented bipartite

graph D1(U1, V1). Let au1 = a1 − 1 and aup = ap + 1. Since aup > au1 + 1,

therefore there exists a vertex v1 ∈ V1 such that up(0−0)v1(1−0)u1, or up(1−
0)v1(0− 0)u1, or up(1− 0)v1(1− 0)u1, or up(0− 0)v1(0− 0)u1, in D1(U1, V1)

and if these are changed to up(0 − 1)v1(0 − 0)u1, or up(0 − 0)v1(0 − 1)u1,

or up(0 − 0)v1(0 − 0)u1, or up(0 − 1)v1(0 − 1)u1 respectively, the result is

an oriented bipartite graph with imbalances sequences A and B, which is a

contradiction. This proves the result. �

Definition 5.3.5.The set of distinct imbalances of the vertices in an oriented

bipartite graph is called its imbalance set.
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Finally, we give the existence of an oriented bipartite graph with a given

imbalance set.

Theorem 5.3.6. Let A = [a1, a2, · · · , an] and B = [−b1,−b2, · · · ,−bn],

where a1, a2, · · · , an, b1, b2, · · · , bn are positive integers with a1 < a2 < · · · <
an and b1 < b2 < · · · < bn. Then there exists an oriented bipartite graph with

imbalance set A ∪B.

Proof. Construct an oriented bipartite graph D(U, V ) as follows. Let

U = U1 ∪ U2 ∪ · · · ∪ Un, V = V1 ∪ V2 ∪ · · · ∪ Vn with Ui ∩ Uj = φ(i 6= j),

Vi ∩ Vj = φ(i 6= j), |Ui| = bi for all i, 1 ≤ i ≤ n and |Vj| = aj for all j,

1 ≤ j ≤ n. Let there be an arc from every vertex of Ui to each vertex of Vi

for all i, 1 ≤ i ≤ n, so that we obtain the oriented bipartite graph D(U, V )

with the imbalances of vertices as follows. For 1 ≤ i, j ≤ n, aui = |Vi|−0 = ai,

for all ui ∈ Ui and bvj = 0− |Uj| = −bj, for all vi ∈ Vi. Therefore the imbal-

ance set of D(U, V ) is A ∪B.

Obviously the oriented bipartite graph constructed above is not con-

nected. In order to see the existence of oriented bipartite graph, whose

underlying graph is connected, we proceed as under.

Taking Ui = {u1, u2, · · · , ubi} and Vj = {v1, v2, · · · , vaj}, and let there

be an arc from each vertex of Ui to every vertex of Vj except the arcs be-

tween ubi and vaj , that is ubi(0 − 0)vaj , 1 ≤ i ≤ n and 1 ≤ j ≤ n. We take

ub1(0 − 0)va2 , ub2(0 − 0)va3 , and so on ub(n−1)
(0 − 0)van , ubn(0 − 0)va1 . The

underlying graph of this oriented bipartite graph is connected. �
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