Author(S):	Feroz A. Mir ^a
Title:	Studies of some physical properties of $PrFe_{0.7}Ni_{0.3}O_3$ thin films after 200 MeV Ag ¹⁵⁺ irradiation
Keywords: Year: Name of journal: Volume & Issue Page No:	Conductivity; deposition; electron irradiation 2014 <i>Philosophical Magazine</i> 94(3) 331-344
Institute:	^a University Science Instrumentation Centre, University of Kashmir, Srinagar 190006, India

Abstract

Jammu and Kashmir 190 006, India; $PrFe_{0.7}Ni_{0.3}O_3$ thin films (thickness ~ 200 nm) were prepared by pulsed laser ablation technique on LaAlO₃ substrate. These films were irradiated with 200 MeV Ag¹⁵⁺ ions at various fluencies, ranging from 1×10^{11} to 1×10^{12} ions/cm². These irradiated thin films were characterized by using X-ray diffraction, dc conductivity, dc magnetization and atomic force microscopy. These films exhibit orthorhombic structure and retain it even after irradiations. The crystallite size (110–137 nm), micro strain (1.48 × 10⁻²– $1.75 \times 10^{-2} line^{-2} m^{-4}$) and dislocation density (79.7 × 10¹⁴–53.2 × 10¹⁴ line/m²) vary with ion fluencies. An enhancement in resistivity at certain fluence and then a decrease in its value (0.22175–0.21813 Ω cm) are seen. A drastic change in observed magnetism after ion irradiation is seen. With ion irradiation, an increase in surface roughness, due to the formation of hillocks and other factors, is observed. Destruction of magnetic domains after irradiation can also be visualized with magnetic force microscopy and is in close agreement with magnetization data. The impact on various physical properties in these thin films after irradiation indicates a distortion in the lattice structure and consequently on single-particle band width caused by stress-induced defects.

DOI:10.1080/14786435.2013.853139