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Preface 

Symmetric duality in mathematical programming is defined as a 

mathematical programming problem in which the dual of the dual is the 

original problem. In this dissertation emphasis has given on the formulation 

and conceptualization of the concepts of symmetric duality. An attempt has 

been made to investigate the properties and relations for first and second order 

symmetric duality problems for differentiable mathematical programs.  

This dissertation is divided into four chapters. 

CHAPTER- 1 includes the genesis of the problem, pre-requisites and 

definitions, which are used in the subsequent chapters. Linear programming,  

basic assumptions of linear programming, the Simplex method, fundamental 

properties of the solutions, non-linear programming, classification of non-

linear programming, constrained algorithms, separable programming, 

quadratic programming, fractional  programming,  optimality conditions for 

non-Linear programming, necessary optimality conditions, Fritz-John 

necessary conditions and multi-objective optimization are discussed in brief. 

CHAPTER-2 consists of three sections. The first section deals with the 

duality in linear programming. In the subsection properties of duality and the 

various useful aspects of duality are presented. In the second Section, duality 

in non-linear programming has been studies and in the last Section duality in 

multi objective mathematical programming is investigated. The last Section is 

further subdivided into six subsections namely describing non-linear multi-

objective programming, Kuhn-Tucker type necessary conditions for 

efficiency, Fritz- John type necessary conditions for efficient, Kuhn-Tucker 

type sufficient conditions for properly efficient solution, Fritz-John type 

sufficient conditions for efficiency. An example for the illustration purpose is 

also presented. 
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CHAPTER-3 deals with the symmetric duality in mathematical 

programming, symmetric duality in differentiable programming, 

Symmetric duality in non-differentiable programming, Symmetric duality 

in multi-objective programming and Mond-Weir type second order multi-

objective Symmetric duality are also discussed. 

CHAPTER-4 consists of two sections, the first section is developed to 

the second order symmetric duality in mathematical programming. The 

second section deals with the formulation of the problems and weak 

duality, strong duality, converse duality and self duality relations are 

discussed.  
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Introduction 
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1.1 General Introduction 

The subject of mathematical Programming has its roots in the study 

of linear inequalities which paved the way for further work on the 

problem while the applied side of the subject started with the application 

of Mathematical programming to solve the problems in Economics. The 

subject really took off in 1947 when G.B. Dantzig invented the Simplex 

method for solving the linear programming problems that arose in U.S. 

Air Force planning problems. Mathematical programming is one of the 

best developed and most used branches of mathematical science which 

has got applications in almost every field of real life problems. 

Mathematical programming plays very important role in solving our real 

life problems. Mathematical programming consists of an objective 

function and a set of constraints and we try to optimize our objective 

function subject to the associated set of constraints. If a single objective is 

to be achieved while satisfying the set of constraints, we say that it is a 

problem of Single Objective mathematical programming problem 

otherwise a Multi-objective Mathematical programming problem. This is 

an indispensable tool of decision making for everyone whether an 

administrator, a Planner, an Educationist, Manager, Scientist, Health 

expert or even a common man. The concept of optimization is now well 

rooted as a principle of underlying the analysis of various complex 

decisions or allocation problems. It offers a certain degree of 

philosophical elegance that is hard to dispute and is often gives 

indispensable degree of operational simplicity. Using this optimization 

philosophy one approaches a complex decision problems involving the 

selection of values for a number of inter related variables, by focusing 

attention on a single objective or multiple objective, designed to quantify 

performance and measure the quality of decision. This one objective or 

several objectives is maximized (or minimized) depending on the 

formulation subject to certain constraint that may limit the selection of 

decisions variable values. If a single aspect of a problem can be isolated 
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and characterized by an objective, be it profit or loss in business setting, 

speed or distance in a physical problem, expected return in environment or 

social welfare in the context of a government and planning, the 

optimization provides a suitable framework for analysis. 

A general structure of the mathematical programming problem is as 

under: 

Optimize f(x)  

Subject to 

𝑔𝑖(x) ≥ 0    (i = 1, 2,... ,m), 

𝑗 (x) = 0    (j = 1, 2,... ,k), 

x ∈ X 

where 

x =  (𝑥1, 𝑥2 , … , 𝑥𝑛)𝑇is the vector of unknown decision variables 

and f(x), 𝑔𝑖  (i= 1, 2,...,m), 𝑗  (j = 1, 2,... ,k) are the real valued functions of 

n real variables (𝑥1, 𝑥2, … , 𝑥𝑛) and X ⊆ 𝑅𝑛 . In this formulation, the 

function f(x) is called the objective function, the constraints 𝑔𝑖(x)≥0,          

i = 1, 2,... ,m are referred to as an inequality constraints, the constraints 

𝑗 (x)=0, j = 1,2,... ,k are the equality constraints. The inclusion x ∈ X is 

known as abstract constraints. 

Mathematical programming is concerned with the determination of 

a maximum or minimum of a function of several variables, which are 

required to satisfy a number of constraints. Problem of this kind arise in 

quite diverse field including engineering, management science, economic 

planning, technological design etc. 

If all the functions in the mathematical programming problem are 

linear then it is called linear programming problem. If the objective 

function and at least one of the constraint or both are nonlinear functions 

in the mathematical programming problems, then the problem is termed 

as nonlinear programming problem. 
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1.2 Prerequisites and definitions 

Solution 

An n-tuple (𝑥1,𝑥2,... ,𝑥𝑛 ) of real numbers which satisfies the 

constraints of a general LPP is called a solution to the General LPP. 

Basic Solution 

Given a system of m simultaneous linear equations in n unknowns 

(m<n) 

Ax = b, 𝑥𝑇ϵ 𝑅𝑛  

Where A is an m × n matrix of rank m. Let B be any m × m sub 

matrix formed by m linearly independent columns of A. Then a solution 

obtained by setting (n-m) variables not associated with the columns of B, 

equal to zero, and solving the resulting system, is called a basic solution to 

the given system of equations. The m variables, which may be all different 

from zero, are called basic variables. The m × m non-singular sub-matrix 

B is called a basis matrix with the columns of B as basis vectors. If B is a 

basis sub matrix chosen, then the basic solution to the system is 

𝑥𝐵  =𝐵−1 b. 

Basic Feasible Solution 

A basic feasible solution is a basic solution which satisfies the non-

negativity restrictions, that is, all basic variables are non negative. Basic 

feasible solutions are of two types: 

(a) Non-degenerate BFS 

A non-degenerate basic feasible solution is a BFS which has 

exactly m positive 𝑥𝑖  (i=1,2,..., m). In other words, all m basic variables 

are positive and the remaining n variables will be all zero. 
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(b) Degenerate BFS 

A basic feasible solution is said to be degenerate, if one or more 

basic variables are zero valued. 

Slack Variable 

The non-negative variable which is added to the left hand side of 

the constraint to convert it into equation is known as slack variable. 

Surplus Variable 

The positive variable which is subtracted from the left hand side of 

the constraint to convert it into equation is called the surplus variable. 

Optimum Solution 

Any feasible solution which optimizes (minimizes or maximizes) 

the objective function of a General LPP is called an optimum solution to 

the General LPP. 

Alternative Optima 

When the objective function is in parallel to a binding constraint 

(i.e. a constraint that is satisfied as an equation by the optimal solution), 

the objective function will assume the same optimal value at more than 

one solution point and hence called alternative optima. 

Unbounded Solution 

In some LP models, the values of the variables may be increased 

indefinitely without violating any of the constraints, meaning that the 

solution space is unbounded in at least one direction. As a result, the 

objective value may increase (maximization case) or decrease 
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(minimization case) indefinitely. In this case, both the solution space and 

the optimum objective value are unbounded. 

Infeasible Solution 

If the constraints are not satisfied simultaneously, the model has no 

feasible solution. If this situation happens we use artificial variables. 

Convex Set, convex combination and affine combination 

 A subset S ⊂  𝑅𝑛 , is said to be convex, if for any two points 𝑥1 and 

𝑥2 in S the line segment joining the points 𝑥1 and 𝑥2 is also contained in S. 

 In other words, a subset S ⊂ 𝑅𝑛  is convex, if and only if   𝑥1 , 𝑥2  ϵ S 

⇒ λ 𝑥1 + (l−λ) 𝑥2  ϵ S; 0 ≤ λ ≤ 1. 

 Weighted averages of the form λ 𝑥1 + (l−λ) 𝑥2, where λ ϵ [0, 1], are 

referred to as convex combinations of  𝑥1 and 𝑥2.inductivity, Weighted 

averages of the form  𝜆𝑗
𝑘
𝑗 =1  𝑥𝑗  , where  𝜆𝑗

𝑘
𝑗=1  = 1, 𝜆𝑗  ≥ 0, j = 1,…, k, 

are also called convex combinations of 𝑥1 ,𝑥2,…,𝑥𝑘 . In this definition, if the 

non-negativity conditions on the multipliers 𝜆𝑗  is dropped, j = 1,…,k, then 

the combination is known as affine combination.  

Extreme point 

An extreme point (vertex) of a convex set which does not lie on any 

segment joining two other points of the set. Thus, a point x of a convex set 

S is an extreme point of the set, if there does not exist any pair of points 

𝑥1, 𝑥2  ϵ S, such that   

x = λ 𝑥1  + (l-λ) 𝑥2,                                0 < λ < 1 
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Convex Function 

A function f(x) defined on a set S ⊂ 𝐸𝑛  is said to be convex at a 

point 𝑥0 ϵ S if 

𝑥1 ϵ S, 0 ≤ λ ≤ 1 and 

λ 𝑥0 + (1− λ) 𝑥1 ϵ S ⇒ f(λ 𝑥0 + (1− λ) 𝑥1)≤ λ f(𝑥0) + (1− λ) f(𝑥1). 

The function f(x) is said to be convex on S if it is convex at every 

point of S. This does not assume S to be a convex set. However, if S is a 

convex, the f(x) is convex on S if 

𝑥1, 𝑥2 ϵ S, 0 ≤ λ ≤ 1⇒ f(λ 𝑥1 + (1− λ) 𝑥2)≤ λ f(𝑥1) +(1− λ)f(𝑥2). 

Strictly Convex Function 

A function f(x)is said to be strictly convex, defined on a set S⊂ En 

at 𝑥0 ϵ S if 

𝑥1 ϵ S, 0 < λ < 1, 𝑥1 ≠  𝑥0 and 

λ 𝑥0 + (1− λ) 𝑥1 ϵ S ⇒ f(λ 𝑥0 + (1− λ) 𝑥1)< λ f(𝑥0) +(1− λ)f(𝑥1). 

Concave Function 

A function f(x) defined on a set S ⊂ En is said to be concave at a 

point 𝑥0 ϵ S if 𝑥1 ϵ S, 0 ≤ λ ≤ 1 and λ 𝑥0 + (1− λ) 𝑥1 ϵ S 

⇒ f(λ 𝑥0 + (1− λ) 𝑥1) ≥ λ f(𝑥0) +(1− λ) f(𝑥1). 

Strictly Concave Function 

A function f(x) defined on set 𝑆 ⊂ 𝐸𝑛  is said to be strictly concave 

at point  𝑥0ϵ S if 

𝑥1 ϵ S, 0 < λ < 1, 𝑥1 ≠  𝑥0 and 



8 

 

λ 𝑥0 + (1− λ) 𝑥1 ϵ S ⇒ f(λ 𝑥0 + (1− λ) 𝑥1) > λ f(𝑥0) +(1− λ)f(𝑥1). 

Quasi-convex Function 

A function f(x) is said to be quasi-convex on a convex sets S ⊂ En if 

for each 𝑥1, 𝑥2 ϵ S such that f(𝑥2) > f(𝑥1),the function f(x) assumes a 

value no larger than f(x2) on each point in the intersection of closed line 

segment [𝑥1, 𝑥2 and S] 

𝑥1, 𝑥2 ϵ S, f(𝑥2) ≥ f(𝑥1), 0 < λ < 1 and 

λ 𝑥1 + (1− λ) 𝑥2 ϵ S ⇒ f(λ 𝑥1 + (1− λ) 𝑥2) ≤ max{f(𝑥1), f(𝑥2)}. 

Quasi-concave Function 

A function f(x) is said to be quasi-concave defined on a convex 

subset S ⊂ 𝐸𝑛  if and only if  

𝑥1, 𝑥2 ϵ S, 0 < λ < 1 and 

f(𝑥2) ≥ f(𝑥1) ⇒ f(λ 𝑥1 + (1− λ) 𝑥2) ≥ min{f(𝑥1), f(𝑥2)}≥ f(𝑥1). 

Strictly Quasi-convex Function 

Let f: S→  𝐸1, where S is a nonempty convex set in 𝐸𝑛 . The 

function f is said to be strictly quasi-convex if, for each 𝑥1, 𝑥2 ϵ S with 

f(𝑥1) ≠ f(𝑥2) we have 

f(λ 𝑥1 + (1− λ) 𝑥2) < max{f(𝑥1), f(𝑥2)} for each λ ϵ (0,1). 

The function f is strictly quasi-concave if (−f) is strictly quasi-

convex. 

Strongly Quasi-convex Function 

Let S be a nonempty convex set in 𝐸𝑛  and let f: S→ 𝐸1. The 



9 

 

function f is said to be strongly quasi-convex if for each 𝑥1, 𝑥2 ϵ S, with  

𝑥1 ≠  𝑥2 , we have 

f{λ 𝑥1 + ( 1− λ ) 𝑥2 } < maximum {f(𝑥1), f(𝑥2)},   for each λ ϵ (0, 1). 

The function f is strongly quasi-concave if (−f) is strongly quasi-convex. 

We can summarize 

(i) Every strictly convex function is strongly quasi-convex. 

(ii) Every strongly quasi-convex function is strictly quasi-convex. 

(iii) Every strongly quasi-convex function quasi-convex. 

 Differentiable convex functions 

           Let S be a nonempty set in En , and let f:S→ 𝐸1, then 𝑓 is said to be 

differentiable at 𝑥  𝜖 𝑖𝑛𝑡 𝑆 if there exists a vector 𝛻𝑓 𝑥  , called the 

gradient vector, and a function 𝛼: 𝐸𝑛 → 𝐸1such that 

f(x) = f ( 𝑥  ) + 𝛻f(𝑥 )𝑡( x−𝑥  ) + || x−𝑥   || 𝛼(𝑥  ; x−𝑥  )  for each x ϵ S 

Where  𝑙𝑖𝑚𝑥→𝑥 𝛼(𝑥  ;  𝑥 −  𝑥   ) = 0  

𝛻f(𝑥 ) is the n-dimensional gradient  vector of 𝑓 at 𝑥  , whose n 

components are the partial derivatives of f with respect to 𝑥1, 𝑥2, . . . , 𝑥𝑛  

evaluated at  𝑥  .     

𝛻f(𝑥 ) = ( 
𝜕𝑓 𝑥     

𝜕𝑥1    
. . .

𝜕𝑓 𝑥     

𝜕𝑥𝑛    
)𝑡   =(𝑓1  𝑥   …𝑓𝑛( 𝑥 ))𝑡  

Note: the gradient represents the steepness and direction of that slope. 

 Twice Differentiable Convex Functions 

Let S be a nonempty set in 𝐸𝑛  and let 𝑓: 𝑆 → 𝐸1 . Then f is said to 

twice differentiable at 𝑥  𝜖 int. S if there exists a vector 𝛻𝑓(𝑥 ), and an 
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𝑛 × 𝑛 symmetric matrix 𝐻 (𝑥 ), called the Hessian matrix, and a 

function α: 𝐸𝑛 → 𝐸1 such that 

f(x) = f (𝑥  ) + 𝛻f(𝑥 )𝑡( x−𝑥  ) + 
1

2
(𝑥 − 𝑥 )𝑡H (𝑥  )( x−𝑥   ) 

+ || 𝑥 − 𝑥 || 2𝛼(𝑥 ; x−𝑥 ) 

for each x ϵ S, Where 𝑙𝑖𝑚𝑥→𝑥 𝛼(𝑥  ;  𝑥 −  𝑥   ) = 0. The function f  is said 

to be twice differentiable at each open set 𝑆′  ⊆ S if it is twice 

differentiable at each point in 𝑆′ . 

For twice-differential functions the Hessian matrix H(𝑥  ) is 

comprised of second-order partial derivatives 
𝜕2𝑓(𝑥  )

𝜕𝑥𝑖  𝜕𝑥𝑗      
 = 𝑓𝑖𝑗 (𝑥  )  for  

i = 1,2,…,n, and is given as  follows: 

H(𝑥 ) =  

 
 
 
 
 
 
 
𝜕2𝑓(𝑥)   

𝜕𝑥1
2

  
𝜕2𝑓(𝑥)   

𝜕𝑥1𝑥2
    … 

𝜕2𝑓(𝑥)   

𝜕𝑥1𝑥𝑛

𝜕2𝑓(𝑥)   

𝜕𝑥2𝑥1
 
𝜕2𝑓(𝑥)   

𝜕𝑥2
2

    … 
𝜕2𝑓(𝑥)   

𝜕𝑥2𝑥𝑛.
..

𝜕2𝑓(𝑥)   

𝜕𝑥𝑛𝑥1

.

..
𝜕2𝑓(𝑥)   

𝜕𝑥𝑛𝑥2
  …

.

..
𝜕2𝑓(𝑥)   

𝜕𝑥𝑛
2

   
 
 
 
 
 
 

  =    

      

 
 
 
 
 
𝑓11 𝑥  𝑓12(𝑥 )      … 𝑓1𝑛(𝑥 )
𝑓21(𝑥 ) 𝑓22(𝑥 )       . . . 𝑓2𝑛(𝑥 )

.

..
𝑓𝑛1(𝑥 )

.

..
𝑓𝑛2 𝑥        … 

.

..
 𝑓𝑛𝑛 (𝑥 )  

 
 
 
 

 

 

Let f be a twice differentiable real valued function of 𝑥 and 𝑦, 

where 𝑥𝜖 𝑅𝑛 . Then 𝛻𝑥𝑓 and 𝛻𝑦 f denote gradient vectors with respect to x 

and y, respectively. 𝛻𝑥𝑥 f and 𝛻𝑦𝑦 f are, respectively, the n×n and m×m 

symmetric Hessian matrices. (∂/ ∂yi) ( 𝛻𝑦𝑦 f) is the m×m matrix obtained 

by differentiating, the elements of 𝛻𝑦𝑦 f with respect to 𝑦𝑖  

and (𝛻𝑥𝑥  𝑓 (𝑥, 𝑦)𝑞)𝑦  denotes the matrix whose (i,j)
th 

element is            

 (∂/ ∂yi) (𝛻𝑥𝑥  𝑓 (𝑥, 𝑦)𝑞)𝑗 , where q ϵ  𝑅𝑛 . 
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 𝜼𝟏-Bonvex Function 

The second order convex function is known as bonvex function. A 

real twice differentiable function f defined on X × Y, are open sets in 𝑅𝑛  

and 𝑅𝑚 , respectively, is said to be η1-Bonvex in the first variable at uϵ X, 

if there exists a function 𝜂1: X ×X →  𝑅𝑛  such that for v ϵ Y, q ϵ  𝑅𝑛 , x ϵX, 

f (x ,v) – f(u ,v) ≥ 𝜂1
𝑇(x, u)[ 𝛻𝑥  f(u ,v) + 𝛻𝑥𝑥  f(u, v) q ] − 

1

2
 𝑞𝑇  𝛻𝑥𝑥  f(u, v) q 

and f(x, y) is said to be η2-Bonvex   in the first variable at v ϵ Y,  if there 

exists a function  𝜂2: y × y →  𝑅𝑚  such that for  u ϵ X, p ϵ  𝑅𝑚 , y ϵ Y,   

f (u , y) – f(u ,v) ≥ 𝜂2
𝑇(y, v)[ 𝛻𝑦  f(u ,v) + 𝛻𝑦𝑦  f(u, v) p ] − 

1

2
 𝑝𝑇   𝛻𝑦𝑦  f(u, v)p. 

 𝛈𝟏- Pseudobonvex Function 

A real twice differentiable function f defined on X × Y is said to be 

η1- Pseudobonvex in the first variable at u ϵ X, if there exists a function 

𝜂1: X × X →  𝑅𝑛  such that for v ϵ Y, q ϵ  𝑅𝑛 , x ϵ X ,   

𝜂1
𝑇(x,u)[ 𝛻𝑥  f(u,v) + 𝛻𝑥𝑥  f(u,v)q ] ≥ 0 ⇒ f (x,u) – f(u,v) + 

1

2
 𝑞𝑇 𝛻𝑥𝑥  f(u,v) q ≥ 0 

and f(x, y) is said to be η2-Bonvex in the second variable at v ϵ Y, if there 

exists a function  𝜂2: y × y →  𝑅𝑚   such that for  u ϵ X, p ϵ  𝑅𝑚 , y ϵ Y,   

𝜂2
𝑇  (y,v)[𝛻𝑦  f(u,v) + 𝛻𝑦𝑦  f(u, v) p ] ≥ 0  

⇒  f (u,y) – f(u,v) + 
1

2
 𝑝𝑇  𝛻𝑦𝑦  f(u,v)p ≥ 0. 

Convex cones 

           A nonempty set C in 𝐸𝑛  is called a cone with vertex zero if x ϵ C 

implies that  𝜆x 𝜖 C for all  λ ≥ 0. If, in addition, C is convex, then C is 

called a convex cone. 

  Polar cone 

  Let S be a nonempty set in 𝐸𝑛 . Then the polar cone of S, denoted by 

𝑆∗, is given by { p: 𝑝𝑡x ≤ 0 for all x ϵ S}.     
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 Efficient Solution 

A point 𝑥0 ϵ X is said to be an efficient solution of the vector 

minimum problem (VP) if there exists no other feasible point x ϵ X, such 

that f(x) ≤ f(𝑥0). 

  Weak Efficient solution 

A point 𝑥0ϵ X is said to be weak efficient solution for VP, if there 

exists no other point x ϵ X with f(x) ≤ f(𝑥0). 

It readily follows that if 𝑥0 ϵ X is efficient, then it is also weak efficient.  

 Properly Efficient Solution 

An efficient solution 𝑥0 of the vector minimum problem (VP) is 

said to be properly efficient solution, if there exists a scalar M > 0 such 

that for each i ϵ {1,2, … ,p} and x ϵ X satisfying  

𝑓𝑖  (x) < 𝑓𝑖  (𝑥0), we have 

(𝑓𝑖  (𝑥0)  −  𝑓𝑖  (𝑥)) 

(𝑓𝑗  (𝑥)  −  𝑓𝑗  (𝑥0)) 
≤  𝑀 

for some j such that (𝑓𝑗  (x) > 𝑓𝑗  (𝑥0). 

Improperly Efficient Solution 

An efficient solution 𝑥0 ϵ X is said to be improperly efficient if for 

each scalar M > 0 (no matter how large) there is a point x ϵ X and an i 

such that  

𝑓𝑖  (x) < 𝑓𝑖  (𝑥0) and 

𝑓𝑖  (𝑥0) − 𝑓 𝑖  (𝑥)

 𝑓𝑗  (𝑥) − 𝑓𝑗  (𝑥0)
> M 

For some j such that (𝑓𝑗  (x) > 𝑓𝑗  (𝑥0).  
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Attainable solutions 

When we solve a multi-objective optimization problem for the case 

of single objective ignoring the remaining objective, then the solution 

that we obtain is called an attainable solution. A problem with K 

objectives will have at the most K attainable solutions. We may say x is an 

attainable solution of multi-objective problem if 

(i) x is a feasible solution. 

(ii) 𝑓𝑗 (x) is minimum (optimum) for at least one j = 1, 2,..., k. 

 Ideal Solution 

If all the objective functions of a multi-objective problem reach 

their minima (maxima) at a unique point of the feasible region, then this 

point is called the perfect or ideal optimal solution of the problem. In 

other words, a point x is said to be ideal solution of a multi-objective 

problem if  

(i) x is feasible. 

(ii) 𝑓𝑗 (x) is optimal for all j, j = 1, 2,..., K. 

1.3  Linear programming 

Linear programming deals with the optimization (maximization or 

minimization) of a function of variables known as objective function, 

subject to a set of linear equations and/or inequalities known as 

constraints. The objective function may be profit, cost, production 

capacity or any other measure of effectiveness, which is to be obtained in 

the best possible or optimal manner. The constraints may be imposed by 

different resources such as market demand, production process and 

equipment, storage capacity, raw material availability, etc. By linearity is 
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meant a mathematical expression among the variables are linear e.g., the 

expression 𝑎1 𝑥1 +𝑎2𝑥2 +𝑎3 𝑥3+…+ 𝑎𝑛  𝑥𝑛  is linear. 

It was in 1947 that George Dantzig and his associates found out a 

technique for solving military planning problems while they were working 

on a project for U.S. Air Force. This technique consisted of representing 

the various activities of an organization as a linear programming model 

and arriving at the optimal programme by minimizing a linear objective 

function. Afterwards, Dantzig suggested this approach for solving 

business and industrial problems. He also developed the most powerful 

mathematical tool known as “simplex method” to solve linear 

programming problems. 

1.3.1 The Mathematical Description of Linear Programming 

The following problem is known as the Linear Programming 

Problem or simply as the Linear Program: 

Optimize  Z = f(x) = 𝑐1  𝑥1+ 𝑐2𝑥2+…+𝑐𝑛  𝑥𝑛  

Subject to 

𝑎𝑖1𝑥1 + 𝑎𝑖2 𝑥2 +…+ 𝑎𝑖𝑛  𝑥𝑛  (≤, =, ≥) 𝑏𝑖 , i= 1,…,m. 

𝑥𝑗  (≥, unrestricted, ≤), j= 1,…,n. 

𝑥𝑗  are the variables of the problem and are allowed to take on any 

set of real values that satisfy the constraints. 

𝑐𝑗 , 𝑏𝑖  and 𝑎𝑖𝑗  are parameters of the problem and (along with 

dimensions n, m and objective/row/variable types) provide the precise 

description of a particular instance of the LP model we wish to solve. 
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𝑐𝑗  are the profit coefficients. 

𝑏𝑖  are the demand coefficients. 

𝑎𝑖𝑗  are the activity coefficients or coefficients of variation. 

1.3.2 Basic assumptions of linear programming problem 

The following four basic assumptions are necessary for all linear 

programming problems: 

i) Certainty: In all LPP‟S it is assumed that all the parameters; such 

as availability of resources by a unit decision variable must be 

known and fixed. In other words, this assumption means that all 

the coefficients in the objective function as well as in the 

constraints are completely known with certainty and do not 

change during the period of study. 

ii) Additivity: The variables in the objective and each constraint 

contribute the sum of the contributions of each variable. 

iii)  Divisibility: The variables can take on continuous values subject 

to the constraints. 

iv) Proportionality: This requires the contribution of each decision 

variable in both the objective function and the constraints to be 

directly proportional to the value of the variable. 

1.3.3 The Simplex Method 

Linear programming problems involving two decision variables can 

easily be solved by graphical method. The method also provides an insight 

into the concepts of Simplex Method- a powerful technique to solve the 

linear programming problems involving three or more decision variables. 
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The Simplex Method, also called the „Simplex Algorithm‟ is an 

iterative procedure for solving a linear programming problem in a finite 

number of steps. The method provides an algorithm which consists in 

moving from one vertex of the region of feasible solutions to another in 

such manner that the value of the objective function at the succeeding 

vertex is less (or more, as the case may be) than at the preceding vertex. 

This procedure of jumping from one vertex to another is then repeated. 

Since the number of vertices is finite, method leads to an optimal vertex in 

a finite number of steps or indicates the existence of an unbounded 

solution. If at any stage, the procedure leads us to a vertex which has an 

edge leading to infinity and if the objective function value can be further 

improved by moving along that edge, the simplex method tells us that 

there is an unbounded solution. 

Any linear programming problem (LPP) given in the standard 

form can be solved by using the well known Simplex Procedure 

Dantzig,G.B. [19]. If the problem is not in the standard form and lacks full 

basis, then the problem can be solved by using Artificial Variable 

Technique which utilizes Big M and Two Phase Methods. The LPP which 

are large scale problems can be solved by using the Revised Simplex 

Method (Dantzig, Orden, Wolfe [19] and Dantzig [14]). The revised 

simplex method uses the same basic principles or technique of improving 

the given basic feasible solution as used in regular simplex method except 

the difference that the whole tableau is not calculated. The relevant 

information it needs to move from one basic feasible solution to another is 

directly generated from the original equations. The revised simplex method 

considerably reduces the computational work involved in the large LPP. 
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1.3.4 Fundamental properties of the solutions 

The fundamental properties of the solutions to the L.P.P. are as 

under: 

i) Reduction of a Feasible Solution to a Basic Feasible Solution. If 

an L.P.P. has a feasible solution, then it also has a basic feasible 

solution. 

Note: There exists only finite number of basic feasible solutions to an 

L.P.P. 

ii) Extreme Point Correspondence. A basic feasible solution to an 

L.P.P. must correspond to an extreme point of the set of all 

feasible solutions and conversely. 

Note: 

(a) The number of extreme points of convex set of feasible 

solutions is finite. It follows from the preceding property 

that there is only one extreme point for a given basic 

feasible solution and conversely. So there is one-to-one 

correspondence between the extreme points and the basic 

feasible solutions. But basic feasible solutions are finite in 

number, therefore, the extreme points of the convex set of 

feasible solutions are also finite in number. 

(b) An extreme point can have at most m positive 𝑥𝑗 ‟s where m is 

the number of constraints. 

iii) Fundamental Property of Linear Programming. If the feasible 

region of an L.P.P. is a convex polyhedron, then there exists an 

optimal solution to the L.P.P. and at least one basic feasible 
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solution must be optimal. 

Note: If the optimal value of Z is attained at more than one extreme points 

of S, then every convex combination of such extreme points also provides 

an optimal solution to the L.P.P.is either unique or infinite in number. 

iv) Replacement of a Basis Vector. Let an L.P.P. have a basic feasible 

solution. If we drop of the basis vectors and introduce a non-

basis vector in the basis set, then the new solution obtained is 

also a basic feasible solution. 

v) Improved Basic Feasible Solution. Let 𝑋𝐵  be a basic feasible 

solution to the L.P.P.  

Maximum  Z= CX  

subject to  

AX= b, X ≥ 0. 

Let 𝑋  
B be another basic feasible solution obtained by admitting a 

non–basis column vector 𝑎𝑗  in the basis, for which the net evaluation 

𝑧𝑗 − 𝑐𝑗  is negative. Then 𝑋  
B is an improved basis feasible solution to the 

problem, that is  

𝑐  B 𝑋 B > 𝑐𝐵  𝑋𝐵 . 

Note: If 𝑧𝑗  − 𝑐𝑗  = 0 for at least one j for which 𝑦𝑖𝑗  > 0, i = 1, 2,…, m; then 

another basic feasible solution is obtained which gives an unchanged value 

of the objective function. 

vi) Unbounded Solution. Let there exists a basic feasible solution to a 

given L.P.P. if for at least one j, negative, then there does not exit 
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any optimum solution to this L.P.P. 

vii) Conditions of optimality. A sufficient condition for a basic 

feasible solution to an L.P.P. to an optimum (maximum) is that 

𝑧𝑗 − 𝑐𝑗  ≥ 0 for all j for which the column vector 𝑎𝑗  ϵ A is not in 

the basis B. 

Note: A necessary and sufficient condition for a basic feasible solution to 

an L.P.P. to be an optimum (maximum) is that 𝑧𝑗 − 𝑐𝑗  ≥ 0 for all j for 

which 𝑎𝑗  does not belong  B. 

1.4 Nonlinear programming 

If the objective function and at least one of the constraint or both 

are nonlinear functions in the mathematical programming problems, then 

the problem is termed as nonlinear programming problem, which was 

first introduced by R. Courant in 1943. It is the most general 

programming problem and other problems can be treated as special cases 

of the nonlinear programming problem. Some methods for solving 

nonlinear programming problem were discussed by Avriel [2] and 

Zangwill [57]. 

The pioneer work by Kuhn Tucker in 1951 on necessary and 

sufficient conditions for the optimal solution laid the foundation for the 

researchers to work on the nonlinear system. In 1957, the emergence of 

dynamic programming by Bellman brought a revolution in the subject and 

consequently, linear and non-linear systems have been studied 

simultaneously. It is disappointing to note that possibly no universal 

technique has been established for nonlinear system as yet. 

Optimality conditions and duality have played a vital role in the 

progress of mathematical programming. Fritz John [25] was the first to 
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derive necessary optimality conditions for constrained optimization 

problem using a Lagrange multiplier rule. Later, Kuhn and Tucker 

established necessary optimality conditions for the existence of an 

optimal solution under certain constraint qualification in 195I. It was 

revealed afterwards that Karush. W [35] had presented way back in 

1939 without imposing any constraint qualification; thus the Kuhn-

Tucker conditions are now known as Karush-Kuhn-Tucker optimality 

conditions. Abadie [1] established a regularity condition that enabled 

him to derive Karush-Kuhn-Tucker conditions and Fritz John 

optimality conditions. Subsequently, Mangasarian and Formovitz.  [40] 

generalized Fritz John optimality conditions which have not only laid 

down the foundation for many computational techniques in 

mathematical programming, but also are responsible for development 

of duality theory to a great deal. The inception of the duality theory in 

linear programming may be traced to the classical minimax theorem of 

Neumann [48] and was explicitly incorporated by Gale, Kuhn and 

Tucker [26]. Since then, it has become one of the most widely used and 

investigated area of mathematical programming. An extensive use of 

duality in mathematical programming has been made for many 

theoretical and computational developments in mathematical 

programming itself and in other fields which include engineering, 

operations research, economics and mathematical science.  

A linear programming problem is expressed as  

Maximize or minimize  Z= f(𝑥1, 𝑥2, …, 𝑥𝑛 ), 

Subject to    

𝑔1 (𝑥1, 𝑥2, …, 𝑥𝑛 ) ≤, =, ≥ 𝑏1, 
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𝑔2 (𝑥1, 𝑥2, …, 𝑥𝑛 ) ≤, =, ≥ 𝑏2, 

.                                         . 

.                                         . 

𝑔𝑚  (𝑥1, 𝑥2, …, 𝑥𝑛 ) ≤, =, ≥ 𝑏𝑚 , 

𝑥𝑗  ≥ 0, j= 1, 2,…, n. 

If either the objective function and/ or one or more of the 

constraints are nonlinear in x(𝑥1, 𝑥2,…,𝑥𝑛 ), the problem is called a 

nonlinear programming problem. 

In other words, the general nonlinear programming problem 

(NLPP) is to determine the n–tuple x = (𝑥1, 𝑥2, …, 𝑥𝑛 ), so as to  

Maximize or minimize  Z = f (x), 

Subject to    

𝑔𝑖  (x) ≤, =, ≥ 𝑏𝑖 , i= 1, 2, …, m, 

x ≥ 0, 

Where f(x) or some 𝑔𝑖(x) or both are nonlinear. 

The method of solving an L.P.P.is based on the property that the 

optimal solution lies at one or more extreme points of the feasible region. 

This limits our search to corner points only and the optimal solution is 

obtained after a finite number of iterations as in simplex method. 

Unfortunately, the same is not true for nonlinear programming problems. 

In such problems the optimal solution can be located at any point along 

the boundaries of the feasible region or even within the region. 

Secondly, due to nonlinearity of the objective function and 

constraints, it becomes difficult to distinguish between the local and 
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global solution. 

Thirdly, it is sometimes difficult to test the optimality of the 

nonlinear programming problems, especially when the feasible region is 

not convex. 

Therefore, the nonlinearity of the functions makes the solution of 

the problem much more involved as compared to linear programming 

problems and there is no single algorithm like the simplex method, which 

can be employed to solve efficiently all nonlinear programming 

problems.  

1.4.1 Classification of Nonlinear Programming problems   

Nonlinear Programming problems can be classified as 

i) Convex Programming Problem. 

ii) Non Convex Programming Problem 

i) Convex Programming Problem 

Convex programming is an important and richly studied subclass of 

nonlinear programming. The problem of minimizing a convex function or 

maximizing a concave function over a feasible convex set is known as 

convex programming problem or convex program. 

A convex programming problem has following two forms: 

Minimize f(x) (convex)    Maximize f(x) (concave) 

Subject to x ϵ C (convex)    subject to x ϵ C (convex) 
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The general convex program is of the type. 

Optimize f(x) 

  Subject to   

𝑔𝑖(x) ≥ 𝑏𝑖  , iϵP 

𝑔𝑖(x) = 𝑏𝑖  , iϵQ 

𝑔𝑖(x) ≤𝑏𝑖  , iϵR 

is a convex program if, 

i) f is concave for maximization, and convex for minimization. 

ii) For every i ϵ R, the constraint 𝑔𝑖  is convex and for each i ϵ P, the 

constraint 𝑔𝑖  is concave. 

iii) For every i ϵ Q, the constraint 𝑔𝑖  is linear. 

ii) Non Convex Programming Problem 

The mathematical programming which is not convex is called a Non-

convex programming problem. A Non-convex Program encompasses all 

nonlinear programming problems that do not satisfy the convexity 

assumptions. However, even if we are successful at finding a local minimum, 

there is no assurance that it will also be a global minimum. Therefore, there is 

no algorithm that will guarantee finding an optimal solution for all such 

problems. 

1.4.2 Constrained Algorithms 

The general constrained nonlinear programming problem is defined 

as 

Maximize (or minimize) z = f(x) 

Subject to    

g(x) ≤ 0 

x ≥ 0 
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The non-negatively conditions x ≥ 0 are part of the given 

constraints. Also, at least one of the functions f(x) and g(x) is nonlinear 

and all the functions are continuously differentiable. 

No general algorithm exists for handling nonlinear models, 

because of the irregular behavior of the nonlinear functions. The most 

general result applicable to the problem is the Kuhn-Tucker [37] 

conditions. Unless f(x) and g(x) are well behaved functions (convexity 

and concavity conditions), the K-T theory yields only necessary 

conditions for optimum. 

The algorithms may be classified generally as indirect and direct 

methods. Indirect methods solve the nonlinear problem by dealing with 

one or more linear problems that are based on the original program. 

Direct methods deals with the nonlinear problem itself. 

The indirect method includes separable, quadratic, geometric and 

stochastic programming. 

1.4.3 Separable Programming 

Separable programming deals with such nonlinear programming 

problems in which the objective function as well as the constraints are 

separable. Separable programming uses the simplex method to obtain 

solutions to nonlinear programs where the objective function and the 

constraints functions can be expressed as the sum of functions, each 

involving, only one variable. 

Separable nonlinear program (P) can be expressed as problem P 

  Minimize    𝑓𝑖
𝑛
𝑗 =1 (𝑥𝑗 ) 

  Subject to   

 𝑔𝑖𝑗
𝑛
𝑗 =1 (𝑥𝑗 ) ≤ 𝑃𝑖  for i = 1, 2,..., m 

 𝑥𝑗  ≥ 0 for j = 1, 2,..., n.  
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Problems of these types arise in numerous applications, including 

econometric data fitting, electrical network analysis, design and 

management of water supply systems, logistics and statistics. 

1.4.4 Quadratic Programming 

Quadratic programming represents a special class of nonlinear 

programming in which the objective function is quadratic and the 

constraints are linear. The quadratic programming problems are 

computationally the least difficult to handle. For this reason, quadratic 

functions and program are as widely used as the linear functions and 

programs in modeling the optimization problems. 

A quadratic program model is defined as follows: 

Maximize (or minimize) Z = c x + 𝑥𝑇 D x 

Subject to 

A x ≤ b 

x ≥ 0 

where 

x =  (𝑥1, 𝑥2 , … , 𝑥𝑛)𝑇 

c = (𝑐1 , 𝑐2 , … , 𝑐𝑛 ) 

b =  (𝑏1, 𝑏2 , … , 𝑏𝑛)𝑇  

A =   

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

  

D =  
𝑑11 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 𝑑𝑛𝑛
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The function x
T
Dx defines a quadratic form, where D is 

symmetric matrix. The matrix D is negative definite if the problem is 

maximization, and positive definite if the problem is minimization. This 

means that Z is strictly convex in x for minimization and strictly concave 

for maximization. The constraints are assumed to be linear in the case, 

which guarantees a convex solution space. 

1.4.5 Fractional Programming 

Fractional programming is an important technique of 

mathematical programming. This technique is used to solve the problem 

of maximizing the fraction of two linear functions subject to a set of 

linear equalities and the non-negatively constraints. This problem can be 

directly solved by starting with a basic feasible solution and showing the 

condition for improving the current basic feasible solution. In order to test 

optimality of the solution we establish the optimality criterion first and 

ultimately, the problem can be easily solved by the method which is 

similar to 'Simplex Method' of linear programming. 

The linear fractional programming problem plays an important 

role in non-linear programming. In military, programming games have 

this form when troops are in the field and the decision to be taken is how 

to distribute the fire among several possible types of targets. The 

fractional programming method is useful in solving the problem in 

economics whenever the different economic activities utilize the fixed 

resources in proportion to the level of their values. In financial analysis of 

a firm, the purpose of optimization is to find the optimum of the specific 

index number, usually the most favorable rates of revenues and allocation 

and hence playing an important role in finance. 
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Mathematical Formulation of Linear Fractional Programming Problem 

A linear fractional program is an optimization problem of the form 

Minimize   
(𝑐𝑇𝑥  +  𝑐0)

(𝑑𝑇𝑥  + 𝑑0)
 

Subject to   

A x ≥ b 

x ≥ 0 

A problem of type LFP is also known as hyperbolic optimization 

problem. Here the objective function is the quotient of the two linear 

functions. The set 

T = {x: x ϵ 𝑅𝑛 , A x ≥ b, x ≥ 0} 

is the constraint set of LFP assume that 

𝑑𝑇x + 𝑑0 > 0 for all x ϵ T 

Using a simple technique due to Charnes and Cooper [9], we can 

reduce LFP to an equivalent linear program. Under transformation 

y=𝑦0x. 

Let u = 𝑑𝑇x + 𝑑0 , 𝑦0= 
1

𝑢
 > 0, y=𝑦0x  

Then, 

(𝑐𝑇𝑥  +  𝑐0)

(𝑑𝑇𝑥  + 𝑑0)
  = 𝑦0 (𝑐𝑇x + 𝑐0) = 𝑐𝑇y + 𝑐𝑜  𝑦0 

hence the program LFP becomes: 

Minimize  (𝑐𝑇 y + 𝑐𝑜  𝑦0) 

Subject to  

Ay ≥ 𝑦0b, 

𝑑𝑇x + 𝑑0 𝑦0 =1, 

y ≥ 0, 𝑦0 > 0. 
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1.4.6 Optimality conditions for nonlinear programming 

A number of algorithms have been developed by the researchers, 

each applicable to a specific type of NLPP only. Some methods for 

solving nonlinear programming problem were discussed by Avriel and 

Zangwill. The pioneer work by Kuhn Tucker in 1951 on necessary and 

sufficient conditions for the optimal solution laid the foundation for the 

researchers to work on the nonlinear system. In 1957, the emergence of 

dynamic programming by Bellman brought a revolution in the subject and 

consequently, linear and non-linear systems have been studied 

simultaneously. It is disappointing to note that possibly no universal 

technique has been established for nonlinear system as yet. 

1.4.7 Necessary Optimality Conditions 

Given a point x in 𝐸𝑛 , we wish to determine, if possible, whether or 

not the point is a local or a global minimum. For this purpose we need 

to characterize the minimum point. Fortunately the differentiability 

assumption of f provides a means of obtaining this characterization. 

Necessary conditions for scalar convex programming were first 

investigated by Fritz John in 1948. He gave the characterization of 

optimality for scalar nonlinear program.  

1.4.8 Fritz John Necessary Conditions 

Let X be a nonempty open set in 𝐸𝑛  and let f: 𝐸𝑛 → 𝐸1 and   

𝑔𝑖: 𝐸𝑛 → 𝐸1 for i= 1,2,...,m. We consider the nonlinear problem to 

Minimize  f(x) 

Subject to   

x ϵ X and 

𝑔𝑖  ≤ 0 for i=1,2,...,m. 

Let 𝑥  be the feasible solution, and denote I = {I : 𝑔𝑖(𝑥 ) = 0}. 
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Furthermore, suppose that f and 𝑔𝑖  for i ϵ I are differentiable at 𝑥  and that 

𝑔𝑖  for i ∉ I are continuous at 𝑥 . If 𝑥  locally solves problem, then there 

exists scalars 𝑢0 and 𝑢𝑖  for iϵ I such that 

𝑢0 𝛻 f(𝑥 ) + 𝑢𝑖𝑖=𝐼 𝛻𝑔𝑖(𝑥 ) = 0 

𝑢0, 𝑢𝑖  ≥ 0 for i ϵ I 

(𝑢0, 𝑢𝑖) ≠ (0, 0) 

Where 𝑢𝐼 is a vector whose components are 𝑢𝑖  for i ϵ I. 

furthermore, if 𝑔𝑖  for i ∉ I are also differentiable at 𝑥 , then the foregoing 

conditions can be written in the following equivalent form: 

𝑢0 𝛻 f(𝑥 ) + 𝑢𝑖𝑖=𝐼 𝛻𝑔𝑖(𝑥 ) = 0 

𝑢𝑖  𝑔𝑖(𝑥 ) = 0 for i=1,2,...,m 

𝑢0, 𝑢𝑖  ≥ 0 for i=1,2,...,m 

(𝑢0,u) ≠ (0,= 0) 

where u is a vector whose components are 𝑢𝑖  for i = 1,2,…,m. In 

the above conditions, the scalars 𝑢0 and 𝑢𝑖 , i = 1,2,...,m are called the 

Lagrangian multipliers. If the Lagrangian multiplier u0 is equal to zero, the 

F - J  conditions do not make use of any information pertaining to the 

gradient of the objective function. In this case, any function can replace f 

and there will be no change in the above necessary condition. So the F-J 

conditions are of no practical value in locating an optimal point when 

u0=0. In order to exclude such cases, some restrictions are imposed on the 

constraints. These restrictions are termed as constraint qualifications. 

Some of these constraint qualifications make use mostly of the 

differentiability of the functions defining the feasible region X. 
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Some of the constraint qualifications are 

i) The Kuhn-Tucker Constraint Qualification. 

ii) The Weak Arrow-Hurwitz-Uzawa - constraint Qualification. 

iii) Abadie Constraint Qualification. 

iv) Slaters Constraint Qualification. 

i) The Kuhn-Tucker Constraint Qualification 

The vector function g is said to satisfy the Kuhn-Tucker constraint 

qualification at 𝑥  ϵ X if g is differentiable at 𝑥  and if 

  
𝑦 𝜖 𝐸𝑛

∇ 𝑔𝑖 𝑥   ≦  0 
  ⇒  

                

 
  
 

  
 
𝑡𝑒𝑟𝑒 𝑒𝑥𝑖𝑥𝑡𝑠 𝑎𝑛 𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒

𝑜𝑛 𝑡𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  0,1 𝑠𝑢𝑐 𝑡𝑎𝑡
𝑎) 𝑒 0 =  𝑥                                     

𝑏) 𝑒 𝑡 𝜖 𝑋 𝑓𝑜𝑟 0 ≦ 𝑡 ≦ 1          
𝑐) 𝑒 𝑖𝑠 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡 = 0

𝑎𝑛𝑑 
𝑑

𝑑𝑡
 𝑒 0 = 𝜆 𝑦 , 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 > 0

  

Where I ={ i ϵ M: 𝑔𝑖 𝑥    = 0 } . 

ii) Kuhn-Tucker Type Necessary Conditions 

Let X be a nonempty open set in 𝐸𝑛  and let f : 𝐸𝑛 → 𝐸1, and 

𝑔𝑖: 𝐸𝑛 → 𝐸1 for i=1,2,...,m.  

We consider the Nonlinear Problem (NLP) to 

Minimize  f(x) 

subject to   

x ϵ X and  

𝑔𝑖(x) ≤ 0 for i = 1,2,...,m. 
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Let 𝑥  be the feasible solution, and denote I = {i = 𝑔𝑖(𝑥 ) = 0}. 

Furthermore, suppose that f and 𝑔𝑖  for i ϵ I are differentiable at 𝑥  and that 

𝑔𝑖  for i L I are continuous at 𝑥 . Furthermost, suppose that ∇𝑔𝑖(𝑥 ) for i ϵ l 

are linearly independent. If 𝑥  locally solves Problem (NLP), then there 

exists scalars and 𝑢𝑖  for i ϵ I such that 

𝛻 f(𝑥 ) + 𝑢𝑖𝑖=𝐼 𝛻𝑔𝑖(𝑥 ) = 0 

𝑢𝑖  ≥ 0 for i = I 

In addition to the above assumption, if 𝑔𝑖  for each i L I is also 

differentiable at 𝑥 , then the foregoing conditions can be written in the 

following equivalent form: 

∇ f(𝑥  ) + 𝑢𝑖𝑖=𝐼 ∇𝑔𝑖(𝑥 ) = 0 

𝑢𝑖𝑔𝑖(𝑥 ) = 0 for i= 1,2,...,m  

𝑢𝑖  ≥ 0 for i =1,2,...,m 

where 𝑢𝑖  is the Lagrangian multiplier 

The above necessary conditions hold under any constraint qualification. 

Kuhn-Tucker also proved that the above necessary conditions are 

sufficient for optimality under suitable convexity assumptions.  

1.5 Multi-objective Optimization 

Multi-objective optimization (also known as multi-objective 

programming, vector optimization, multi-criteria optimization, multi-

attribute optimization or pareto optimization) is an area of multiple 

criteria decision making, that is concerned with mathematical 

optimization problems involving more than one objective function to be 

optimized simultaneously. It is an art of detecting and making good 
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compromises. It is based upon the fact that most real-world decisions are 

compromises between partially conflicting objectives that cannot easily be 

offset against each other. Thus, one is forced to look for possible 

compromises and finally decide which one to implement. So, the final 

decision in multi-objective optimization is always with a person-the 

decision maker. 

The multi-objective problems on the vector minimum problems seek 

to obtain compromise solutions called efficient solutions by Koopmans [36]. 

An efficient solution is also referred to as non-inferior or non-dominated 

or Pareto optimal solution. The concept of efficiency has proved to be of 

great significance in the discussion of multi-objective programming 

problems. Pareto [49] began the study of efficient solutions by reducing 

multi-objective programming problems to the single objective one. 

However, the problem was first explicitly defined and studied by Kuhn and 

Tucker to eliminate certain anomalous efficient solutions: they also 

proposed a slightly restricted definition of efficiency, called proper 

efficiency. Later, Geoffrion [28] modified this concept and called an 

efficient solution to be properly efficient if the ratio of gain to loss is 

always finite. His work motivated many workers in this field. Iserman [34] 

proved that in a linear multi-objective programming problem every 

efficient solution is properly efficient. This result was extended by Chew 

& Choo [10] for pseudo linear vector maximum problems under certain 

boundedness assumption. Gulati & Islam [30] observed that every 

efficient solution of a linear vector maximum problem with non-linear 

constraints qualification is properly efficient. 

The first notion of optimally in this setting is popularly known as 

Pareto-optimality and is still the most widely used. In Pareto optimality 

every feasible alternative that is not dominated by any other in terms of 
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the component wise partial order is considered to be optimal. Hence 

each solution is considered optimal that is not definitely worse than 

another. Thus, multi-objective optimization does not yield a single or a set 

of equally good answers, but rather suggests a range of potentially very 

different answers. 

A general multi-objective programming problem (MOPP) can be 

expressed as: 

(MP):  Optimize  f(x) = {𝑓1(x), 𝑓2(x), …,𝑓𝑝 (x)}  

Subject to  

𝑔𝑖(x) ≥ 0 (i = 1,2,…, m), 

𝑗 (x) =0 (j = 1,2,…, k), 

x ϵ X. 

where 

x= (𝑥1 , 𝑥2 , … , 𝑥𝑛)𝑇 is the vector of unknown decision variables and 

f(x), 𝑔𝑖(i=1,2,…,m), 𝑗 (j=1,2,…,k) are the real valued functions of n real 

variables 𝑥1, 𝑥2, … , 𝑥𝑛  and X ⊆ 𝑅𝑛 . In this formulation , the function f(x) 

is called the objective function, the constraints 𝑔𝑖(x)≥0 , i=1,2,…,m are 

referred to as an inequality constraints, the constraints 𝑗 (x)=0, j=1,2,…,k 

are the equality constraints. The inclusion x ϵ X is called the abstract 

constraints.  

Isermann [34] proved that every efficient solution of a linear multi-

objective programming problem is properly efficient. It is not so in 

nonlinear multi-objective programming. Gulati and Talaat [31] observed 

that under a certain constraint qualification every efficient solution of a 
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convex multi-objective programming problem is properly efficient. We 

shall show efficient solution to linear multi-objective problems. 

Consider the following linear multi-objective mathematical 

programming problem (LMOMP). 

(LMOMP)  Minimize  f(x) = {𝑓1(x), 𝑓2(x), …,𝑓𝑝 (x)}  

Subject to 

x ϵ X = {x ϵ S: g(x) ≦ 0}, 

where S is an open subset of 𝑅𝑛 , and f:𝑅𝑛 → 𝑅𝑝  and g:𝑅𝑛 → 𝑅𝑚  

are differentiable functions on S.  

The corresponding scalar programming problem (EP) is 

(EP)  Minimize     d f(x) 

Subject to   

                      
𝑔 𝑥 ≦  0

𝑓(𝑥)  ≦  𝑓(𝑥 )
        . . . (A) 

x ϵ S 

where d > 0 is a constant vector in 𝑅𝑝 . 

Theorem1.9.1: Let 𝑥  be an efficient solution of linear multi-objective 

mathematical programming problem and at 𝑥  ϵ X, 

i) f is convex,  

ii)  𝑔𝑖  is quasi-convex, and 

iii) The system (A) satisfies the Kuhn-Tucker constraint qualification 
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at 𝑥 , Then 𝑥  is a properly efficient solution of linear multi-objective 

mathematical programming problem LMOMP. 

Proof: Since 𝑥  is an efficient solution of LMOMP and the system (A) 

satisfies the Kuhn-Tucker constraint qualification at 𝑥 , hence, there 

exists 𝑢  ϵ 𝑅𝑘  and 𝑣  ϵ 𝑅𝑚  such that 

𝑢  𝛻 f (𝑥 ) + 𝑣  𝛻 g (𝑥 ) = 0, 

𝑣  g (𝑥 ) = 0, 

𝑢  > 0, 𝑣  ≧ 0 

Now since f is convex and 𝑔𝐼 is quasi-convex at 𝑥  ϵ X, implies that 

𝑥  is a properly efficient solution of LMOMP.  
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Chapter 2 
 

 Duality in Mathematical 
Programming 
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2.1 Duality in linear programming 

One of the most important discoveries in the early development of 

linear programming was the concept of duality and its division into 

important branches. The discovery disclosed the fact that every linear 

programming problem has associated with it another linear programming 

problem. The original problem is called the “primal” while the other is 

called its “dual”. The relationship between the „primal‟ and the „dual‟ 

problems is actually a very intimate and useful one. The optimal solution 

of either problem reveals information concerning the optimal solution of 

the other. If the optimal solution to one is known, then the optimal solution 

of the other is readily available. This fact is important because the situation 

can arise where the dual is easier to solve than the primal.  

Since any LP can be written in the standard form, it has its dual. 

Since the dual of a LP is itself a LP, it has its dual. So we could keep on 

taking duals forever. The changes that occur from primal to dual is that 

the objective function changes from minimum to maximum and the 

inequalities reverse in the constraints. 

In both of the primal and dual problems, the variables are non-

negative and the constraints are inequalities. Such problems are called 

symmetric dual linear problems. In maximization problems the 

inequalities must be in "less than or equal to" form; while in the 

minimization problems they must be "greater than or equal to" form. 

The general form of the primal problem with its associated dual is: 

Primal (P): 

Maximize           z =  𝑐𝑗
𝑛
𝑗=1  𝑥𝑗   

Subject to   

                                      𝑎𝑖𝑗
𝑛
𝑗=1  𝑥𝑗  ≤ 𝑏𝑖  (i = 1, 2,...,m) 

                                    𝑥𝑗  ≥ 0 (j=1, 2,...,n)  
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Dual (D): 

Minimize  w=  𝑏𝑖
𝑚
𝑖=1 𝑦𝑖  

Subject to    

 𝑎𝑖𝑗
𝑚
𝑖=1 𝑦𝑖  ≥ 𝑐𝑗  (j=1,2, … ,n)  

𝑦𝑖  ≥ 0 (i=l,2,…, m) 

In matrix form: 

Primal (P): 

Maximize   z = c x 

Subject to    

A x ≤ b 

x ≥ 0 

Where A is (m × n) matrix, b is (m × 1) column vector, c is (1 × n) 

row vector, x is (n × 1) column vector. 

Dual (D): 

Minimize   w = y b 

Subject to   

y A ≥ c 

y ≥ 0, 

where y is (1 × m) row vector. 

The number of constraints in the dual changes from m to n. The 
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number of variables changes from n to m.  

2.1.1  Properties of duality in linear programming 

i) The dual of dual is the primal. 

ii) Let  𝑥0 be a feasible solution to the primal problem  

Maximize f(x) = c x subject to A x ≤ b, x ≥ 0 

Where 𝑥𝑇 and c ϵ 𝑅𝑛  , 𝑏𝑇 ϵ 𝑅𝑚  and A is an m × n real matrix. If 𝑊0 

be a feasible solution to the dual of the primal, namely  

Minimize g(w) =𝑏𝑇w subject to 𝐴𝑇 w ≥ 𝑐𝑇, w≥ 0 

Where 𝑤𝑇ϵ 𝑅𝑚 , then c𝑥0 ≤ 𝑏𝑇𝑤0. 

iii) Let  𝑥0 be a feasible solution to the primal problem  

Maximize f(x) = c x subject to A x ≤ b, x≥ 0 

And 𝑊0 be a feasible solution to its dual:  

  Minimize g(w) =𝑏𝑇w subject to 𝐴𝑇 w ≥ 𝑐𝑇, w≥ 0  

Where 𝑥𝑇 and c ϵ 𝑅𝑛  , 𝑤𝑇  and 𝑏𝑇 ϵ 𝑅𝑚  and is m × n real matrix. 

If c𝑥0 = 𝑏𝑇 𝑤0, then both  𝑥0  and 𝑊0 are optimum solutions to the 

primal and dual respectively. 

iv) Let a primal problem be  

Maximize f(x) = cx subject to Ax ≤ b, x≥ 0 𝑥𝑇 and c ϵ 𝑅𝑛   

And the associated dual be  

Minimize g(w) =𝑏𝑇w subject to 𝐴𝑇w ≥ 𝑐𝑇, w≥ 0 𝑤𝑇  and 𝑏𝑇ϵ 𝑅𝑚 . 
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If  𝑥0 (𝑊0) is an optimum solution to the primal(dual), then there 

exists a feasible solution 𝑊0( 𝑥0 ) to the dual (primal) such that  

c 𝑥0 = 𝑏𝑇 𝑤0. 

v) If the primal or the dual has a finite optimum solution, then the other 

problem also possesses a finite optimum solution and the optimum 

values of the objective functions of the two problems are equal. 

vi) If either the primal or the dual problem has an unbounded objective 

function value, then the other problem has no feasible solution. 

vii) Let 𝑥0 and 𝑤0 be the feasible solutions to the primal             

{max. 𝑐𝑇x: Ax ≤ b, x ≥ 0} and its dual {min. 𝑏𝑇w: 𝐴𝑇w ≥ 𝑐𝑇, w ≥ 0} 

respectively. Then, a necessary and sufficient condition for 𝑥0 and 

𝑤0 to be optimal to their respective problems is that  

𝑤0
𝑇(b - A𝑥0) = 0 and 𝑥0

𝑇 (𝐴𝑇𝑤0- 𝑐𝑇) = 0. 

The above property is known as Complementary Slackness 

Property. If, in an optimal solution of a linear program, the value of the 

dual variable associated with a constraint is non zero, then that constraint 

must be satisfied with equality. Further, if a constraint is satisfied with 

strict inequality, then its corresponding dual variable must be zero. 

For the primal linear program posed as a maximization problem 

with less than or equal to constraints, this means: 

If 𝑦𝑖  > 0, then  𝑎𝑖𝑗
𝑛
𝑗=1  𝑥𝑗  = 𝑏𝑖  , 

If  𝑎𝑖𝑗
𝑛
𝑗 =1  𝑥𝑗  < 𝑏𝑖  , then 𝑦𝑖  = 0 

The property identifies a relationship between variables in one 

problem and associated constraints in the other problem. It says that if a 
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variable is positive, then the associated dual constraints must be binding. 

It also says that if a constraint fails to bind, then the associated variable is 

zero. The statement really is about 'complementary slackness' in the sense 

that it asserts that there cannot be slack in both a constraint and the 

associated dual variable. The complementary slackness property is useful 

because of certain applications. 

a) Used in finding an optimal primal solution for the given optimal dual 

solution and vice versa. 

b) Used in verifying whether a feasible solution is optimal for the primal 

problem. 

c) Used in investigating the general properties of the optimal 

solutions to primal and dual by testing the different hypothesis. 

2.1.2 The various useful aspects of duality  

(i) If the primal problem contains a large number of constraints and a 

small number of variables, the computational procedure can be 

reduced by converting it into dual and solve it. 

(ii) Many times, the LPP requires the use of artificial variable because 

the LPP does not have full basis. This problem can be avoided just 

by writing the dual of the primal problem and as such the phase 

first the two phase method can be avoided. 

(iii) In case, when the LPP does not provide the initial basic feasible 

solution, the dual may provide the basic feasible solution as of 

infeasible but the solution is optimal and the infeasibility solution 

can be forced to be feasible, keeping the solution optimal. 

(iv) Calculation of the dual checks the accuracy of the primal solution. 
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2.2 Duality for Nonlinear Programming 

The existence of duality theory in nonlinear programming problem 

helps to develop numerical algorithm as it provides suitable stopping 

rules for primal and dual problems. Duality in non-linear programming or 

for any mathematical programming is, generally speaking, the statement of 

a relationship of a certain kind between two mathematical programming 

problems. The relationship commonly has three aspects:  

(i) One problem - the ''primal" - is a constrained maximization problem, 

(ii)  The existence of a solution to one of these problem ensures the 

existence of a solution to the other, in which case their respective 

extreme values are equal, and 

(iii) If the constraints of one problem are consistent while those of the 

other are not, there is a sequence of points satisfying the constraints 

of the first on which its objective function tends to infinity. 

In non-linear duality results or in non-linear case the function f of 

the primal problem appears not only in the constraints of the dual, as 

expected, but remains involved in its objective function as well. 

Consider the nonlinear programming problem. 

(P):  Minimize  f(x) 

Subject to   

𝑗 (x) ≤ 0, j = 1,2,...,m 

Where f : 𝑅𝑛  → R and 𝑗 : 𝑅𝑛  → R , j = 1,2,...,m are differentiable.  
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(WD):  Maximize  f(x) + 𝑦𝑇  h(x)  

Subject to  

𝛻(f(x) + 𝑦𝑇  h(x)) = 0, 

y ≥ 0, y ϵ 𝑅𝑚  

is known as the Wolfe [56] type dual for the problem (P). Mangasarian 

[39] explained by means of an example that certain duality theorems may 

not be valid if the objective or the constraint function is a generalized 

convex function. This motivated Mond and Weir [46] to introduce a 

different dual for (P) as 

(MWD):  Maximize  f(x) 

Subject to  

𝛻 f(x) + 𝛻𝑦𝑇(x) = 0. 

𝑦𝑇  h(x) ≥ 0 

y ≥ 0, y ϵ 𝑅𝑚  

and they proved various duality theorems under pseudo-convexity of f and 

quasi-convexity of 𝑦𝑇h(.) for all feasible solution of (P) and (MWD). 

Later Weir and Mond [55] derived sufficiency of Fritz John 

optimality criteria under pseudo-convexity of the objective and qasi-

convexity or semi-strict convexity of constraint functions. They 

formulated the following dual using Fritz John optimality conditions 

instead of Karush-Kuhn-Tucker optimality conditions and proved various 

duality theorems-thus the requirement of constraint qualification is 

eliminated. 
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(FrD):  Maximize  f(x) 

Subject to 

𝑦0 𝛻 f(x) + 𝛻𝑦𝑇(x) = 0. 

𝑦𝑇  h(x) ≥ 0 

(𝑦0, y) ≥ 0 

2.3  Duality in Multi-objective mathematical Programming 

The theory of duality in multi-objective mathematical programming 

has experienced a very distinct development. Depending upon the type of 

the objective functions and especially, on the type of efficiency used, 

different concepts of duality have been studied. 

The first results concerning duality in multi-objective mathematical 

programming was obtained by Gale, Kuhn and Tucker [26] in 1951. They 

established some theorems of duality in multiple objective linear 

programming.  

Another very important approach in the theory of duality for convex 

optimization problems has been introduced in the beginning of the 

eighties. Weir [52] first introduced the duals for multi-objective 

mathematical programming problem in the differentiable case and then 

Weir and Mond [53] have weakened the initial assumptions by 

formulating and proving the duality also in the non-differentiable case, 

under generalized convexity assumptions and without requiring any 

constraint qualifications. 

For multi-objective programming problem, we shall follow the 

following conventions for vectors in 𝑅𝑛  
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x < y ⟺  𝑥𝑖  <  𝑦𝑖 , i = 1,2,...,n. 

x ≦ y ⟺  𝑥𝑖  ≦ 𝑦𝑖 , i = 1,2,...,n. 

x ≤ y ⟺  𝑥𝑖  ≤  𝑦𝑖 , i = 1,2,...,n, but x ≠ y 

x ≰ y is the negative of x ≤ y. 

Consider the multi-objective programming problem:  

(VP):   Minimize  f(x) = (𝑓1(x),𝑓2(x),...,𝑓𝑝 (x)) 

Subject to   

𝑗 (𝑥 ) ≦ 0, (j =1, 2,...,m) 

Here X ⊆ 𝑅𝑛  is an open and convex set and 𝑓𝑖  and 𝑗  are 

differentiable functions where 𝑓𝑖 : X → R, i = 1, 2,...,p and 𝑗 : X → R,         

j = 1,2,...m. Here the symbol „VP‟ stands for vector minimization and 

minimality is taken in terms of either "efficient points" or "properly 

efficient points" given by Koopman [36] and Geoffrion [28] respectively. 

Geoffrion [28] considered the following single objective 

minimization problems for fixed λ ϵ 𝑅𝑝  

(VP)λ:  Minimize   𝜆𝑖
𝑝
𝑖=1  𝑓𝑖(x)  

   Subject to 𝑗 (𝑥 ) ≦ 0, (j =1, 2,...,m) 

and prove the following lemma connecting (VP) and (VP)λ. 

Lemma 2.5.1: Let 𝜆 𝑖  > 0, (i = 1,2,...,p),   𝜆𝑖
𝑝
𝑖=1 = 1 be fixed. If 𝑥  is 

optimal for (VP)λ, then 𝑥  is properly efficient for (VP). 
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(i)  Let𝑓𝑖  and 𝑗  be convex functions Then 𝑥  is properly efficient for 

(VP) iff 𝑥  is optimal for all differentiable functions (VP)λ for some 

𝜆 𝑖  > 0,   𝜆𝑖
𝑝
𝑖=1 = 1, (i = 1, 2,...,p).  

If 𝑓𝑖  and 𝑗  are differentiable convex functions then (VP)λ is a convex 

programming problem. Therefore in relation to (VP)λ consider the scalar 

maximization problem: 

(VD)λ:  Maximize  𝜆 𝑇f(x) + 𝑦𝑇(x) =  𝜆 𝑇(f(x) + 𝑦𝑇(x)) 

Subject to 

𝛻( 𝜆 𝑇f(x) + 𝑦𝑇(x)) = 0 

λ ϵ ∧+, y ≧ 0, 

where e = (1, 1,... ,1) ϵ 𝑅𝑝  and ∧+ = { λ ϵ 𝑅𝑝  : λ > 0,  𝜆 𝑇e =1}.  

Now as (VD)λ is a dual program of (VP)λ, Weir [52] considered 

the following vector optimization problem in relation to (VP) as 

(DV):  Maximize  (f(x) + y 
T
h(x))e 

   Subject to  

𝛻(𝑤 𝑇f(x) + 𝑦𝑇(x)) = 0 

w ϵ ∧+, y ≧ 0, 

where e = (1, 1,... ,1) ϵ 𝑅𝑝   

They termed (DV) as the dual of (VP) and proved various duality 

theorems between (VP) and (DV) under the assumption that f and g are 

convex functions. 
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Further for the purpose of weakening the convexity requirements on 

objective and constraint functions, Weir [52] introduced another dual 

program (DV1) 

(DV1):  Maximize  f(x) 

Subject to  

∇(w 𝑇f(x) + 𝑦𝑇(x)) = 0 

𝑦𝑇(x) ≥ 0 

w ϵ ∧+, y ≧ 0, 

And various duality theorems are proved by assuming the function f 

to be pseudo convex and y
T 

h to be quasi-convex for all feasible solutions 

of (VP) and (DV1). 

2.3.1 Non linear multi-objective mathematical programming 

We consider the following nonlinear multi-objective mathematical 

programming problem (NMMP): 

(NMMP):  Minimize  f(x) = { 𝑓1(x), 𝑓2(x), …,𝑓𝑝 (x)}  

Subject to  

x ϵ X = {x ϵ 𝑅𝑛  : g(x) ≦ 0}, 

where f: 𝑅𝑛  → 𝑅𝑝  and g: 𝑅𝑛  → 𝑅𝑚  are differentiable  

Proper efficiency in nonlinear multi-objective mathematical 

programming  

We also state the nonlinear programming problem which is in 

subsequent relation with multi-objective mathematical problem. 
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(NLP):  Minimize 𝑑𝑇f(x), (d > 0) 

Subject to 

 
𝑔 𝑥 ≦  0 

𝑓 𝑥 ≦  𝑓(𝑥0)
 

             . . .(AB) 

 where d ϵ 𝑅𝑘  is a constant vector. 

Lemma 2.6.1: 𝑥0ϵ X is an efficient solution of NMMP if and only if 𝑥0 

is an optimal solution of nonlinear programme.  

Proof: Let 𝑥0 ϵ X be an efficient solution of NMMP and suppose to be 

the contrary, that 𝑥0 be not an optimal solution of NLP. Then there 

exists 𝑥∗ such that  

g (𝑥∗) ≦ 0, − f( 𝑥∗) + f(𝑥0) ≦ 0 

d f( 𝑥∗) > d f(𝑥0).  

Since d > 0, the above conditions are equivalent to 

g (𝑥∗) ≦ 0, f( 𝑥∗) ≧ f(𝑥0) 

which contradicts the fact that 𝑥0 is an efficient solution NMMP. 

Conversely, let 𝑥0 be an optimal solution of NLP and suppose to the 

contrary, that  𝑥0 is not an efficient solution of NMMP. Then there 

exists an 𝑥1 ϵ X such that 

f(𝑥1) ≥ f(𝑥0) and g(𝑥1) ≦ 0 

that is, 𝑥1 is a feasible point of NLP and d f(𝑥1) > d f(𝑥0) which 

contradicts that 𝑥0 is an optimal solution of NLP. Hence the Lemma. 
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2.3.2  Kuhn-Tucker Type Necessary Conditions for Efficiency  

Theorem 2.6.2: Let 𝑥0 ϵ X be an efficient solution of NMMP and let the 

system (AB) satisfy the Kuhn-Tucker constraint qualification at 𝑥0. 

Then, there exist u0 ϵ Rk  and v0 ϵ Rm  such that, 

𝑢0𝑇
 𝛻 f (𝑥0) + 𝑣0𝑇

 𝛻 g (𝑥0) = 0, 

𝑣0𝑇
 g (𝑥0) = 0, 

𝑢0 > 0, 𝑣0 > 0. 

Proof: Since 𝑥0 is an efficient solution of NMMP by Lemma 2.6.1, 𝑥0 

is an optimal solution of NLP. Hence by (Kuhn-Tucker stationary point 

necessary optimality theorem) in Mangasarian [40] there exist 𝑣0 ϵ 𝑅𝑚 , 

𝑤0 ϵ 𝑅𝑘  such that 

𝑑𝑇 𝛻 f (𝑥0) + 𝑣0𝑇
 𝛻 g (𝑥0) +𝑤0𝑇

𝛻 f (𝑥0) = 0, 

 𝑣0𝑇
 g (𝑥0) = 0, 

 𝑣0,  𝑤0 ≧ 0. 

Since d > 0,  𝑤0 ≧ 0, the above conditions imply that 

𝑢0𝑇
 𝛻 f (𝑥0) + 𝑣0𝑇

 𝛻 g (𝑥0) = 0, 

𝑣0𝑇
 g (𝑥0) = 0, 

𝑢0 = (d + 𝑤0) > 0, 𝑣0 ≧ 0. 

2.3.3 Fritz-John Type Necessary Conditions For Efficiency  

Theorem2.6.3: Let 𝑥0 ϵ X be an efficient solution of NMMP. Then there 

exists 𝑢0ϵ 𝑅𝑘  and  𝑤0  ϵ 𝑅𝑚  such that 

𝑢0𝑇
 𝛻 f (𝑥0) + 𝑣0𝑇

 𝛻 g (𝑥0) = 0, 
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𝑣0𝑇
 g (𝑥0) = 0, 

𝑢0 ≧ 0, 𝑣0 ≧ 0, (𝑢0 ,𝑣0
𝑝) ≥ 0 

Where P = {i : 𝑔𝑖(𝑥
0) = 0 and gi is not concave at 𝑥0} 

Proof: Since 𝑥0 is an efficient solution of NMMP by Lemma1, 𝑥0  is an 

optimal solution of NLP. Hence by (Fritz John stationary point necessary 

optimality theorem) in Mangasarian [40], there exist 𝑟0 ϵ R, 𝑤0 ϵ 𝑅𝑘 , 𝑣0  

ϵ 𝑅𝑚  such that 

𝑟0 (𝑑𝑇 𝛻f (𝑥0)) + 𝑣0𝑇
 𝛻g (𝑥0) + 𝑤0𝑇

𝛻 f (𝑥0) = 0, 

𝑣0𝑇
 g (𝑥0) = 0, 

(𝑟0 ,𝑣0 ,  𝑤0) ≧ 0. 

Setting 𝑢0 = 𝑟0 d +𝑤0, we get  

𝑢0𝑇
 𝛻f (𝑥0) + 𝑣0𝑇

 𝛻g (𝑥0) = 0, 

𝑣0𝑇
 g(𝑥0) = 0, 

𝑢0 ≧ 0, 𝑣0 ≧ 0, (𝑢0,𝑣0
𝑝) ≥ 0  

2.3.4 Kuhn-Tucker Type Sufficient Conditions For Properly 

Efficient Solution 

Theorem 2.6.4: Let f be convex and 𝑔𝑰 be quasi-convex at 𝑥0 ϵ X. If 

there exist 𝑢0ϵ 𝑅𝑘  and  𝑣0  ϵ 𝑅𝑚  and 𝑣0  ϵ 𝑅𝑚  satisfying 

𝑢0𝑇
 𝛻 f (𝑥0) + 𝑣0𝑇

 𝛻 g (𝑥0) = 0, … (2.6.41) 

𝑣0𝑇
 g (𝑥0) = 0, … (2.6.42) 

𝑢0 ≧ 0, 𝑣0 ≧ 0, … (2.6.43) 

then 𝑥0 is a properly efficient solution of NMMP.  
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Proof: Let J = { i : 𝑔𝑖(𝑥
0) < 0}. Therefore I ∪ J ={1, 2,...,m }. 

Also 𝑣0 ≧ 0, g (𝑥0) ≦ 0 and 𝑣0𝑇
 g (𝑥0) = 0 ⇒ 𝑣0

𝑗  = 0. 

Now let 𝑥0 ϵ X. Then 𝑔𝐼(x) ≦ 0 = 𝑔𝐼(𝑥0). Since gI is quasi-convex at 𝑥0, 

we have 

𝛻𝑔𝐼(𝑥0) (x − 𝑥0) ≦ 0. 

Therefore, from (2.6.41)   

𝑢0𝑇
 𝛻 f (𝑥0) (x −𝑥0) =  −𝑣0𝑇

 𝛻 g (𝑥0) (x − 𝑥0) ≧ 0. 

Using convexity of f, we get  

𝑢0𝑇
 {f(x) − f(𝑥0)} ≧ 0 

𝑢0𝑇
 f(𝑥0) ≤ 𝑢0𝑇

 f(x) for all 𝑥 ϵ X 

Hence by theorem 1 in Geoffrion [28], 𝑥0 is a properly efficient solution 

of NMMP. 

2.3.5  Fritz-John Type Sufficient Conditions for Efficiency  

Theorem 2.6.5: Let f be convex and 𝑔𝑰 quasi-convex at 𝑥0ϵ X. If there 

exists 𝑢0ϵ𝑅𝑘  and 𝑣0ϵ 𝑅𝑚  satisfying  

𝑢0𝑇
 𝛻 f (𝑥0) + 𝑣0𝑇

 𝛻 g (𝑥0) = 0, …(2.6.51) 

𝑣0𝑇
 g (𝑥0) = 0, …(2.6.52) 

𝑢0 ≧ 0, 𝑣0 ≧ 0, (𝑢𝑗
0, 𝑣𝑄

0) ≥ 0 for all j ϵ K   … (2.6.53) 

Where Q = {i ϵ I: 𝑔𝑖  is strictly convex at 𝑥0}, then 𝑥0 is an efficient 

solution of NMMP. 
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Proof: Suppose to the contrary that 𝑥0 is not an efficient solution of 

NMMP. Then there exists 𝑥1 ϵ X and r ϵ K such that 

 𝑓𝑟  (𝑥1) < 𝑓𝑟  (𝑥0) and 

𝑓𝑗  (𝑥1) ≦ 𝑓𝑗  (𝑥0) for j ϵ K, j≠ r. 

Since for each j ϵ K, f is convex at 𝑥0, we get 

∇ 𝑓𝑟  (𝑥0) (𝑥1−𝑥0) < 0 … (2.6.54)  

and  

𝛻 𝑓𝑗  (𝑥0) (𝑥1 − 𝑥0) ≦ 0 for j ϵ K, j≠ r …(2.6.55) 

Let 𝑄′  = I − Q = {i : i ϵ I, ∉ Q}. Since 𝑥0 ϵ X, 

𝑔𝑄  (𝑥1) ≦ 0 = 𝑔𝑄  (𝑥0). 

The strict convexity of 𝑔𝑄  at 𝑥0 gives  

𝛻𝑔𝑄  (𝑥0) (𝑥1 − 𝑥0) < 0.    … (2.6.56)              

Similarly the quasi-convexity of 𝑔𝑄, at x0 gives  

∇ 𝑔𝑄′ (𝑥0) (𝑥1 − 𝑥0) ≤ 0.   … (2.6.57) 

Also,  

vj
0 = 0  

Where J = {i: 𝑔𝑖(𝑥
0) < 0}, therefore 

𝑣0𝑇
 𝛻g (𝑥0) (𝑥1 − 𝑥0) = [𝑣𝑄

0𝑇
 𝛻𝑔𝑄(𝑥0) + 𝑣𝑄′

0𝑇
 𝛻𝑔𝑄′ (𝑥0)] (𝑥1 − 𝑥0).                                                  

 …(2.6.58) 

Now relations (2.6.53) to (2.6.58) imply that 

[𝑢0𝑇
 𝛻 f (𝑥0) + 𝑣0𝑇

 𝛻 g (𝑥0)] (𝑥1 − 𝑥0) < 0 

a contradiction to (2.6.51). Hence 𝑥0 is an efficient solution of NMMP. 
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Remark: If Q = ∅, i.e., none of the components of 𝑔𝑰 is strictly convex, 

then (2.6.53) implies that 𝑢0 > 0. Thus in this case the assumptions of 

theorem (2.6.51) are reduced to that of theorem (2.6.4), which gives a 

stronger conclusion that 𝑥0 is a properly efficient solution. 

Theorem 2.6.6: Let 𝑥0 ϵ X be an efficient solution of NMMP. If the 

system (AB) satisfies the Kuhn-Tucker constraint qualification at 𝑥0, f is 

convex and 𝑔𝑰 be quasi-convex at 𝑥0, then 𝑥0 is a properly efficient 

solution of NMMP. 

EXAMPLE WITH ILLUSTRATION 

Example 2.3.6: consider the problem 

(NMMP) Minimize f(x) = [𝑓1 𝑥 = 𝑥1
2 + 𝑥2

2, 𝑓2  𝑥 = 𝑥1]𝑇  

Subject to  

𝑔1(x) = 𝑥1
2 + 𝑥2

2 − 4 ≦ 0, 

𝑔2(x) = 2 − 𝑥1 − 𝑥2 ≦ 0,  

 

The feasible region X is the set of all points enclosed by the 

circle 𝑥1
2 + 𝑥2

2 = 4 and the line 𝑥1 + 𝑥2 = 2 (the shaded area in above 
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Figure). All the points on the line AC are efficient solutions. No other 

point is efficient. The constraint functions 𝑔𝑖(x) are either linear or 

convex. 

For an efficient point 𝑥0  = (𝑥1
0, 𝑥2

0), the non-linear program (NLP) is 

Minimize    Z = 𝑑1 (𝑥1
2 + 𝑥2

2) + 𝑑2 𝑥1  

Subject to                        

𝑥1
2 + 𝑥2

2 − 4 ≦ 0, 

2 − 𝑥1 − 𝑥2 ≦ 0, 

𝑥1
2 + 𝑥2

2 ≤ 𝑥1
02

 + 𝑥2
02

, 

𝑥1 ≦ 𝑥1
0 

The above problem satisfies the Kuhn-Tucker constraints 

qualification at every point B (𝑥1, 𝑥2) on the line AC except the point C. 

Hence by Theorem 2.6.6, all the points on the line AC except the point C 

are properly efficient. Let 𝑥0 = (1,1). Therefore 𝑓1( 𝑥0) = 2 and 𝑓2(𝑥0) = l. 

If x approaches to 𝑥0 along the line AC, then 𝑓2  𝑥  < 𝑓2( 𝑥0), 𝑓1(𝑥0) < 

𝑓1 𝑥   and the ratio. 

𝑓2  𝑥0 − 𝑓2  𝑥 

𝑓1 𝑥 − 𝑓1( 𝑥0)  
  = 

1− 𝑥1  

 𝑥1
2+𝑥2

2  − 2
         

= 
1− 𝑥1  

 𝑥1
2+  (2 − 𝑥1  )2− 2

 

= 
 1 − 𝑥1

2(   𝑥1
2− 2𝑥1+1 )

 

= 
1

 2 (  1 − 𝑥1  ) 
→ ∞   

as 𝑥1 → 1 Hence C is not properly  efficient 
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2.4 Second-Order Duality in Mathematical Programming 

We consider the following nonlinear programming problem: 

(NP):  Minimum f(x) 

Subject to  

g(x) ≤ 0 

where x ϵ 𝑅𝑛 , f and g are twice differentiable functions from 𝑅𝑛  and R
m
, 

respectively. 

Mangasarian [41] formulated the Wolfe [56] type second-order dual of(NP). 

(ND-1):  Maximum [f(u) + 𝑔𝑇g(u)]−  1

2
𝑝𝑇∇2[ f(u) + 𝑔𝑇g(u)]  

Subject to 

∇[f(u) + 𝑔𝑇g(u)]+ ∇2  [f(u) + 𝑔𝑇g(u)]p = 0, 

y ≥ 0 

where pϵ 𝑅𝑛  and for any function ɸ: 𝑅𝑛 → R,the symbol  𝛻2  ɸ(x) 

designates n×n symmetric matrix of second-order partial derivatives. 

Mangasarian [41] established usual duality theorems between (NP) and 

(ND-1) under the assumptions that are involved and rather difficult to 

verify. 

 

 

 

 

 

 

(0.0) 
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Symmetric Duality 
In Mathematical 

Programming 
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3.1 Symmetric Duality In Mathematical Programming 
 

Symmetric duality in mathematical programming in which the dual 

of the dual is the primal was first introduced by Dorn [23]. Subsequently, 

Dantzig, Eisenberg, and Cottle [17], Chandra and Husain [7], Mond and 

Weir [47] and others cited in these references developed significantly the 

notion of symmetric duality. Weir and Mond [54] discussed symmetric 

duality in multi-objective programming by using the concept of efficiency. 

Chandra and Prasad [8] presented a pair of multi-objective programming 

problems by associating a vector valued infinite game to this pair. Kumar 

and Bhatia [38] discussed multi-objective symmetric duality by using a 

nonlinear vector valued function of two variables corresponding to various 

objectives. Gulati, Husain and Ahmed [33] also established duality for 

multi-objective symmetric dual problems without non-negativity 

constraints.  

A nonlinear programming problem and its dual are said to be 

symmetric if the dual is recast in the form of primal, its dual is the primal 

problem. First order symmetric and self-duality for differentiable 

mathematical programs have been studied by many authors. Dantzig. 

Eisenberg and Cottle [17] first formulated a pair of the symmetric dual 

nonlinear programs and established the weak and strong duality under 

convexity and concavity assumptions. Mond [43] presented a slightly 

different pair of symmetric dual nonlinear programs and obtained more 

generalized duality results than that of Dantzig, Eisenberg and Cottle [17]. 

Later Mond and Weir [47] gave another different pair of symmetric dual 

nonlinear programs in which the convexity and concavity assumptions 

were reduced to the pseudo-convexity and pseudo-concavity ones. Mond 

[44] was the first to study Wolfe type second-order symmetric duality 

bonvexity-boncavity. Subsequently Bector and Chandra [5] established 
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second-order symmetric and self duality results for a pair of non-linear 

programs under pseudobonvexity-pseudoboncavity condition. Devi [22] 

formulated a pair of second-order symmetric dual programs and 

established corresponding duality results involving 𝜂-bonvex functions and 

Mishra [42] extended the results of to multiobjective nonlinear 

programming. Recently, Suneja et al [50] presented a pair of Mond-Weir 

type multiobjective second-order symmetric and self dual program without 

nonnegativity constraint and proved various duality results under 

bonvexity and pseudobonvexity. 

3.2 Symmetric Duality in Differentiable Mathematical 

Programming 

Consider a function f(x,y) which is differentiable in x ϵ 𝑅𝑚  and y 

ϵ 𝑅𝑚 . Dantzig et al [17] introduced the following pair of problems: 

(SP):   Minimize   f(x, y) − 𝑦𝑇  𝛻𝑦  f(x, y)  

Subject to 

𝛻𝑦  f(x, y) ≤ 0 

(x, y) ≥ 0. 

 (SD):  Maximize   f(x, y) −  𝑥𝑇 𝛻𝑥  f(x, y)           

Subject to 

𝛻𝑥  f(x, y) ≥ 0 

(x, y) ≥ 0.  

and proved the existence of a common optimal solution to the primal (SP) 

and (SD), when  

(i) an optimal solution of (𝑥0,𝑦0) to the primal (SP) exists 

(ii) f is convex in x for each y, concave in y for each x and 
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(iii) f, twice differentiable, has the property that at (𝑥0,𝑦0) its matrix of 

second partials with respect to y is negative definite. 

Mond [43] further gave the following formulation of symmetric dual 

programming problems: 

(MSP): Maximize  f(x, y) − 𝑦𝑇  𝛻𝑦  f(x, y)  

Subject to 

𝛻𝑦  f(x, y)  ≤ 0 

x ≥ 0.  

(MSD): Maximize f(x, y) − 𝑥𝑇 𝛻𝑥  f(x, y)   

Subject to 

𝛻𝑥  f(x, y) ≥ 0 

y ≥ 0.   

It may be remarked here that in [17], the constraints of both 

(SP) and (SD) include x ≥ 0, y ≥ 0, but in only x ≥ 0 is required in the 

primal and only y ≥ 0 in the dual. 

Later Mond and Weir [47] gave the following pair of symmetric 

dual nonlinear programming problems which allows the weakening of 

the convexity-concavity assumptions to pseudo-convexity–pseudo-

concavity. 

(M-WSP): Minimize  f(x, y)   

Subject to  

𝛻𝑦  f(x, y)  ≤ 0 

𝑦𝑇𝛻𝑦  f(x, y) ≥ 0, 

x ≥ 0. 
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(M-WSD): Maximize f(x, y) 

Subject to 

𝛻𝑥  f(x, y) ≤ 0 

𝑥𝑇𝛻𝑥  f(x, y) ≤ 0, 

y ≥ 0 

3.3 Symmetric Duality in Non-differentiable Mathematical 

Programming 

Let f(x, y) be a real valued continuously differentiable in x ϵ 𝑅𝑚and 

y ϵ 𝑅𝑚 . Chandra and Husain [7] introduced pair of symmetric dual non-

differentiable programs and proved duality results assuming convexity-

concavity conditions on the kernel function f(x,y): 

(NP):  Minimize  f(x, y) − 𝑦𝑇𝛻𝑦 f(x, y) +(𝑥𝑇  𝐵 𝑥)
1
2  

Subject to 

−𝛻𝑦  f(x, y) + Cw ≥ 0, 

𝑤𝑇Cw ≤ 1, 

(x, y) ≥ 0. 

(ND):  Maximize  f(x, y) − 𝑥𝑇𝛻𝑥 f(x, y)−(𝑦𝑇  𝐶 𝑦)
1
2                    

Subject to 

−𝛻𝑥 f(x, y) − Bz ≤ 0 

𝑧𝑇𝐶𝑧 ≤ 1, 

(x, y) ≥ 0. 

where B and C are n × m and m × m positive semi-definite matrices. 

Further on the lines of Mond and Weir [46], Chandra, Craven and 
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Mond [6] presented another pair of symmetric dual non-differentiable 

programs by weakening the convexity conditions on the kernel function 

f(x,y) to the pseudo-convexity and pseudo-concavity. The problems 

considered in [6] are: 

(PS):  Minimum f(x, y) +(𝑥𝑇𝐵𝑥)
1
2  − 𝑦𝑇𝐶𝑧 

Subject to 

𝛻𝑦  f(x, y) − Cz  ≤ 0, 

𝑦𝑇 [𝛻𝑦  f(x, y) − Cz ] ≥ 0, 

𝑧𝑇𝐶𝑧 ≤ 1, 

x ≥ 0. 

(DS):    Maximum   f(x, y) +(𝑦𝑇𝐶𝑦)
1
2 − 𝑥𝑇𝐵𝑤    

Subject to  

𝛻𝑥 f(x, y) + Bw ≥ 0, 

𝑥𝑇 [𝛻𝑥  f(x, y) +Bw] ≤ 0, 

𝑤𝑇𝐵𝑤 ≤ 1, 

y ≥ 0. 

Subsequently Mond and Schechter [45] introduced the following pair 

of symmetric dual programs one of which is Wolfe [56] type and another is 

Mond and Weir [47] type. 

(P):  Minimum  f(x, y) − 𝑦𝑇𝛻2f(x, y) + S (x| 𝐶1)  

Subject to 

𝛻2f(x, y) − z ≤ 0, 

z ϵ  𝐶2,   x ≥ 0. 
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(D):  Maximum f(u,v) − 𝑢𝑇𝛻1f(u,v) + S ( v|𝐶2) 

Subject to 

𝛻1f(u, v) + w ≥ 0, 

w ϵ  𝐶1,  v ≥ 0.       and  

(P1):  Minimum  f(x, y)  − 𝑦𝑇z + S ( x| 𝐶1) 

Subject to 

𝛻2  f(x, y) − z ≤ 0, 

𝑦𝑇(𝛻2 f(x, y)  − z) ≥ 0, 

z ϵ 𝐶2,    x ≥ 0. 

(Dl):  Maximum  f(u, v) − 𝑢𝑇w + S (v | 𝐶2) 

Subject to 

𝛻1f(u, v) + w ≥ 0, 

𝑢𝑇(𝛻1f(u, v) + w) ≤ 0, 

w ϵ 𝐶1,  v ≥ 0. 

3.4 Symmetric Duality in Multi-objective Mathematical 

Programming 

Weir and Mond [54] discussed symmetric duality in multi-

objective programming by considering the following pair of programs 

(PS):   Minimum f(x, y) − (𝑦𝑇𝛻2𝜆
𝑇f(x, y)) e  

Subject to 

𝛻2𝜆
𝑇f(x, y) ≦ 0, 

x ≥ 0,  λ ϵ ∧+ 

(DS):  Maximum f(x, y) − (𝑥𝑇𝛻1𝜆
𝑇f(x, y)) e  

Subject to 

𝛻1𝜆
𝑇f(x, y) ≧ 0, 

y ≥ 0,  λ ϵ ∧+ 
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where f:𝑅𝑛 × 𝑅𝑚 → 𝑅𝑝 , e=(1,1,…,1)ϵ𝑅𝑝  and ∧+={λ ϵ 𝑅𝑝: λ>0,𝜆𝑇e= 1} 

and proved the symmetric duality theorem under the convexity-

concavity assumptions on f(x,y). Here the minimization/ maximization 

is taken in the sense of proper efficiency as given by Geoffrion [28]. 

Further on the lines of scalar case (Mond and Weir [46]) also 

considered another pair of symmetric dual programs and proved 

symmetric duality results under weaker conditions of pseudo-convexity-

pseudo-concavity: 

(PS1): Minimum  f(x, y)   

Subject to            

𝛻2𝜆
𝑇f(x, y) ≦ 0, 

𝑦𝑇𝛻2𝜆
𝑇f(x, y) ≧ 0, 

x ≧ 0,  λ ϵ ∧+ 

(DS1):  Maximum f(x, y) −(𝑥𝑇𝛻1𝜆
𝑇f(x, y)) e 

Subject to 

𝛻1𝜆
𝑇f(x, y)  ≧  0, 

𝑥𝑇𝛻1𝜆
𝑇f(x, y) ≦  0, 

y ≧ 0,  λ ϵ ∧+ 

Later Chandra and D. Prasad [8] introduced following pair of 

multi-objective programs by associating a vector valued infinite game. 

(PS*): Minimum  f(x, y)−(𝑦𝑇𝛻2𝜇
𝑇f(x, y)) e  

Subject to 

𝛻2𝜇
𝑇f(x, y) ≦  0, 

x ≧  0,  𝜇 ϵ ∧+. 
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(DS*):  Maximum  f(x, y) −(𝑥𝑇𝛻1𝜇
𝑇f(x, y)) e  

Subject to 

𝛻1𝜆
𝑇f(x, y) ≦ 0, 

y ≧ 0,  𝜆 ϵ ∧+. 

Here it may be noted that not the same λ is appearing in (PS*) and 

(DS*) and this creates certain difficulties which are also discussed in [8]. 

3.5 Mond-Weir type Second-Order Multi-Objective 

Symmetric Duality 

We consider the following pair of Mond-Weir type second-order 

multi-objective symmetric dual nonlinear programming problems over 

arbitrary cones: 

Primal (MP): 

Minimize F(x, y, p) = {𝐹1(x, y, p),  𝐹2(x, y, p), …, 𝐹𝑘 (x, y, p)} 

Subject to  

 𝜆𝑖
𝑘
𝑖=1 [𝛻𝑦𝑓𝑖(x, y) + 𝛻𝑦𝑦 𝑓𝑖(x, y) 𝑝𝑖] ϵ 𝐶2

∗ …(3.51) 

𝑦𝑇   𝜆𝑖
𝑘
𝑖=1 [𝛻𝑦𝑓𝑖(x, y) + 𝛻𝑦𝑦 𝑓𝑖(x, y) 𝑝𝑖] ≧ 0 …(3.52)  

λ > 0, 

Dual (MD): 

Maximize G(u, v, r) = {𝐺1(u, v, r), 𝐺2(u, v, r), . . . , 𝐺𝑘(u, v, r)} 

Subject to  

 𝜆𝑖
𝑘
𝑖=1 [ −∇𝑥𝑓𝑖(u, v) − ∇𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖] ϵ 𝐶1

∗, …(3.53) 

𝑢𝑇  𝜆𝑖
𝑘
𝑖=1 [∇𝑥𝑓𝑖(u, v) + ∇𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖] ≦ 0,  …(3.54) 

λ > 0, 
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where  𝐹𝑖(x, y, p) = 𝑓𝑖(x, y) − 
1

2
 𝑝𝑖

𝑇  𝛻𝑦𝑦 𝑓𝑖(x, y)𝑝𝑖 , 

𝐺𝑖(u, v, r) = 𝑓𝑖(u, v) − 
1

2
 𝑟𝑖

𝑇 𝛻𝑥𝑥𝑓𝑖(u, v)𝑟𝑖 , 

λi  ϵ R, pi  ϵ Rm , 𝑟𝑖  ϵ  𝑅𝑛 , i = 1, 2,…,k. 

Also, p = (𝑝1, 𝑝2, . . . , 𝑝𝑘 ), q = (𝑞1, 𝑞2, . . . , 𝑞𝑘), λ = (𝜆1, 𝜆2, . . . , 𝜆𝑘)𝑇. 

In the following theorems we take 𝜂1: X × X → 𝑅𝑛 , 𝜂2: Y × Y → 𝑅𝑚 , 

Where X and Y are open sets in 𝑅𝑛  and 𝑅𝑚 , respectively. 

Theorem 3.5.1 (Weak Duality). Let (x, y, λ, p) and (u, v, λ, r) be 

feasible solutions of (MP) and (MD) respectively. Let either of the 

following conditions hold: 

(i) For i = 1, 2,…,k, 𝑓𝑖   be 𝜂1- bonvex in the first variable at u and  

−𝑓𝑖   be 𝜂2- bonvex in the second variable at y, or 

(ii)   𝜆𝑖
𝑘
𝑖=1  𝑓𝑖  be 𝜂1-pseudo-bonvex in the first variable at u and  

− λ𝑖
𝑘
𝑖=1 𝑓𝑖  be  𝜂2-pseudo-bonvex in the second variable at y. 

Also, let 

𝜂1(x, u) + u ϵ 𝐶1, …(3.55) 

𝜂2(v, y) + y ϵ 𝐶2. …(3.56) 

Then  

F (x, y, p) ≰  G (u, v, r).  

Proof: Since (u, v, λ, r) is feasible for (MD), from (3.53) and (3.55), it 

follows that [𝜂1(𝑥, 𝑢) + 𝑢]𝑇  𝜆𝑖
𝑘
𝑖=1  [𝛻𝑥𝑓𝑖(u, v) + 𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖] ≥ 0. 

Using (3.54), we get 

𝜂1
𝑇(x, u)  𝜆𝑖

𝑘
𝑖=1 [ 𝛻𝑥𝑓𝑖(u, v) + 𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖] ≥ 0 …(3.57) 

Since (x,y,λ,p) is feasible for (MP), from (3.51) and (3.56), it follows 

that [𝜂2(𝑣, 𝑦)  +  𝑦]𝑇  𝜆𝑖
𝑘
𝑖=1 [𝛻𝑦𝑓𝑖(x, y) + 𝛻𝑦𝑦 𝑓𝑖(x, y) 𝑝𝑖] ≤ 0. 
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Using (3.52), we get) 

𝜂2
𝑇(v, y)   𝜆𝑖

𝑘
𝑖=1 [𝛻𝑦𝑓𝑖(x, y) + 𝛻𝑦𝑦 𝑓𝑖(x, y) 𝑝𝑖] ≤ 0  …(3.58) 

(i) Since 𝑓𝑖  be 𝜂1- bonvex in the first variable at u, we have for          

i=1, 2,…, k, 

𝑓𝑖(x,v) − 𝑓𝑖(u,v) + 
1

2
𝑟𝑖

𝑇 𝛻𝑥𝑥𝑓𝑖(u,v)𝑟𝑖  ≥ 𝜂1
𝑇(x,u)[𝛻𝑥𝑓𝑖(u,v) + 𝛻𝑥𝑥𝑓𝑖(u,v) 𝑟𝑖]. 

As λi  > 0, i = 1, 2,…,k, on using (3.57) we get 

 𝜆𝑖
𝑘
𝑖=1 [𝑓𝑖(x, v) − 𝑓𝑖(u, v) + 

1

2
𝑟𝑖

𝑇  𝛻𝑥𝑥𝑓𝑖 (u, v) 𝑟𝑖] ≥ 0  …(3.59) 

Since −𝑓𝑖  be 𝜂2-bonvex in the second variable at y, we have for 

i=1,2,…,k, 

−𝑓𝑖(x, v)+𝑓𝑖(x,y)−
1

2
𝑝𝑖

𝑇𝛻𝑦𝑦 𝑓𝑖(x,y)𝑝𝑖  ≥ −𝜂2
𝑇(v,y)[𝛻𝑦𝑓𝑖(x y)+𝛻𝑦𝑦 𝑓𝑖(x,y)𝑝𝑖]. 

As 𝜆𝑖  > 0, i = 1, 2,…,k, on using (3.58) we get 

− 𝜆𝑖
𝑘
𝑖=1 [𝑓𝑖(x,v) − 𝑓𝑖(x y) + 

1

2
𝑝𝑖

𝑇𝛻𝑦𝑦  𝑓𝑖(x,y) 𝑝𝑖]  ≥ 0 …(3.60) 

Adding (3.59) and (3.60), we get 

 𝜆𝑖
𝑘
𝑖=1 [𝑓𝑖(x,y) −

1

2
𝑝𝑖

𝑇𝛻𝑦𝑦  𝑓𝑖(x,y) 𝑝𝑖] ≥  𝜆𝑖
𝑘
𝑖=1 [𝑓𝑖(u,v) −  

1

2
𝑟𝑖

𝑇𝛻𝑥𝑥𝑓𝑖(u, v)𝑟𝑖] 

Hence  F(x,y,p) ≰ G(u, v, r). 

(ii) As  𝜆𝑖
𝑘
𝑖=1 𝑓𝑖  is 𝜂1-pseudo-bonvex in the first variable, from (3.57), 

we get (3.59). 

More over as − 𝜆𝑖
𝑘
𝑖=1 𝑓𝑖  is 𝜂2-pseudo-bonvex in the second 

variable, from (3.58), we get (3.60).  

On adding (3.59) and (3.60), we get the same results as in part (i). 
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Theorem 3.5.2 (Strong Duality). Let f: 𝑅𝑛 × 𝑅𝑚  → 𝑅𝑘  be thrice 

differentiable. Let (𝑥 ,𝑦 ,𝜆 ,𝑝 ) be a weakly efficient solution of (MP);    

fix λ = 𝜆  in (MD) and suppose that  

(i) Either the Hessian matrix  𝛻𝑦𝑦  𝑓𝑖  is positive definite for each 

i=1,2,…,k, and  𝜆𝑖
 𝑘

𝑖=1  𝑝𝑖 
𝑇𝛻𝑖  𝑓𝑖  ≧ 0 or  the Hessian matrix ∇𝑦𝑦  𝑓𝑖  

is negative definite for each i=1,2,…,k, and  𝜆𝑖
 𝑘

𝑖=1  𝑝𝑖 
𝑇𝛻𝑖  𝑓𝑖  ≦ 0, 

and  

(ii) The vectors {𝛻𝑦𝑓1+𝛻𝑦𝑦 𝑓1  𝑝 1, 𝛻𝑦𝑓2+𝛻𝑦𝑦 𝑓2  𝑝 2,…, 𝛻𝑦𝑓𝑘  + 𝛻𝑦𝑦 𝑓𝑘   𝑝 𝑘} 

are linearly independent, 

where 𝑓𝑖  =  𝑓𝑖  (𝑥 , 𝑦 ), i=1,2,…,k. then (𝑥 , 𝑦 , 𝜆 , 𝑟  = 0) is feasible for 

(MD) and objective function values of (MP) and (MD) are equal. 

Furthermore, if the hypotheses of theorem (3.5.1) are satisfied for 

all feasible solutions of (MP) and (MD), then (𝑥 , 𝑦 , 𝜆 , 𝑟  = 0) is a 

properly efficient solution for (MD). 

Proof: Since (𝑥 , 𝑦 , 𝜆 , 𝑝 ) is a weak minimum of (MP), by Fritz John 

optimality  conditions, there exist 𝛼 ϵ 𝑅𝑘 , 𝛽 ϵ 𝑅𝑚 ,  𝛾 ϵ R, 𝛿 ϵ 𝑅𝑘  such 

that 

 𝛼𝑖
𝑘
𝑖=1 [∇𝑥𝑓𝑖  − 

1

2
(∇𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑥𝑝 𝑖]  

+  𝜆𝑖
 𝑘

𝑖=1 [∇𝑦𝑥 𝑓𝑖+(∇𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑥](𝛽 − 𝛾𝑦 ) = 0,  …(3.61) 

 𝛼𝑖
𝑘
𝑖=1 [∇𝑦𝑓𝑖 −

1

2
(∇𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑦𝑝 𝑖] +  𝜆𝑖

 𝑘
𝑖=1 [∇𝑦𝑦 𝑓𝑖+ 

(∇𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑦 ] (𝛽 − 𝛾𝑦 ) −𝛾  𝜆𝑖
 𝑘

𝑖=1 [∇𝑦𝑓𝑖+∇𝑦𝑦 𝑓𝑖𝑝 𝑖] = 0 …(3.62) 

(𝛽 −  𝛾𝑦 ) 𝑇 [𝛻𝑦𝑓𝑖  +𝛻𝑦𝑦 𝑓𝑖𝑝 𝑖]  − 𝛿𝑖  = 0,  i=1,2,…,k, …(3.63) 

[(𝛽 −  𝛾𝑦  ) 𝜆𝑖
  −  𝛼𝑖𝑝 𝑖]

𝑇 𝛻𝑦𝑦 𝑓𝑖  = 0,  i=1,2,…,k, …(3.64)  

𝛽𝑇  𝜆𝑖
 𝑘

𝑖=1  (𝛻𝑦𝑓𝑖  +𝛻𝑦𝑦 𝑓𝑖𝑝 𝑖) = 0,  i=1,2,…,k,      …(3.65)  
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𝛾𝑦   𝜆𝑖
 𝑘

𝑖=1 (𝛻𝑦𝑓𝑖  +𝛻𝑦𝑦 𝑓𝑖𝑝 𝑖) = 0, …(3.66)  

𝛿𝑇 𝜆  = 0,    …(3.67) 

(𝛼, 𝛽, 𝛾, 𝛿) ≧ 0,    (𝛼, 𝛽, 𝛾, 𝛿) ≠ 0    …(3.68) 

As 𝜆  > 0, it follows from (3.67), that 𝛿 = 0. Therefore from (3.63), we 

get 

(𝛽 −  𝛾𝑦 ) 𝑇 [𝛻𝑦𝑓𝑖  +𝛻𝑦𝑦 𝑓𝑖𝑝 𝑖] = 0   i = 1, 2,. . .,k,   …(3.69) 

As ∇𝑦𝑦 𝑓𝑖  is non-singular for i=1,2,…,k, from (3.64), it follows that  

(𝛽 −  𝛾𝑦  ) 𝜆𝑖
   = 𝛼𝑖𝑝 𝑖 ,      i=1,2,…,k,    …(3.70) 

From (3.62), we get 

 (𝛼𝑖 −𝑘
𝑖=1  𝛾𝜆𝑖

 )∇𝑦𝑓𝑖+ 𝜆𝑖
 𝑘

𝑖=1 ∇𝑦𝑦 𝑓𝑖(𝛽 − 𝛾𝑦 − 𝛾𝑝 𝑖) 

+ (∇𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑦
𝑘
𝑖=1 [(𝛽 − 𝛾𝑦 )𝜆𝑖

  − 
1

2
𝛼𝑖𝑝 𝑖] = 0 

Using (3.70), it follows that 

 (𝛼𝑖 −𝑘
𝑖=1  𝛾𝜆𝑖

 )(∇𝑦𝑓𝑖  + ∇𝑦𝑦 𝑓𝑖𝑝 𝑖)  

+
1

2
   λi

 (∇yy fip i)y
k
i=1 (β −  γy ) = 0 …(3.71) 

Pre-multiplying by   (𝛽 −  𝛾𝑦 ) 𝑇 and using (3.69), we get 

(𝛽 −  𝛾𝑦 ) 𝑇   𝜆𝑖
 (𝛻𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑦

𝑘
𝑖=1  (𝛽 −  𝛾𝑦 ) = 0 

Using the fact that   𝜆𝑖
 (∇𝑦𝑦 𝑓𝑖𝑝 𝑖)𝑦

𝑘
𝑖=1  is positive or negative definite, 

we get  

𝛽 =  𝛾𝑦 . …(3.72) 

Using (3.72) in (3.71), we get 

 (𝛼𝑖 −𝑘
𝑖=1  𝛾𝜆𝑖

 )(𝛻𝑦𝑓𝑖  + 𝛻𝑦𝑦 𝑓𝑖𝑝 𝑖) = 0 

By condition (ii), we get 

𝛼𝑖  =  𝛾𝜆𝑖
  ,  i=1,2,…,k, …(3.73) 
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If  𝛾 = 0, from (3.72) and (3.73), it follows that 𝛽 = 0, 𝛼 = 0 

which contradicts (3.68). Hence 𝛾 > 0. Since 𝜆𝑖
  > 0, i=1,2,…,k, from 

(3.73) we have 𝛼𝑖>0, i=1,2,…,k, using (3.72) in (3.70), we have  𝛼𝑖𝑝 𝑖  = 

0, i=1,2,…,k, and hence  𝑝 𝑖  = 0, i=1,2,…,k, in (3.61), it follows that 

 𝛼𝑖
𝑘
𝑖=1 𝛻𝑥𝑓𝑖  = 0, 

Which by (3.73) gives 

 𝜆𝑖
 𝑘

𝑖=1 𝛻𝑥𝑓𝑖  = 0, 

And hence we have  

𝑥 𝑇   𝜆𝑖
 𝑘

𝑖=1 𝛻𝑥𝑓𝑖  = 0. 

Thus we follows that   (𝑥 , 𝑦 , 𝜆 , 𝑝 = 0) is feasible solution of (MD) and   

F(𝑥 , 𝑦 , 𝑝 ) =  G(𝑥 , 𝑦 , 𝑟 ). …(3.74) 

If (𝑥 , 𝑦 , 𝜆 , 𝑟 )  is not efficient for (MD), then there exists a feasible 

solution (u, v, 𝜆 , r) of (MD) such that 

G(𝑥 , 𝑦 , 𝑝 ) ≤ G(u, v, r) …(3.75) 

Which by (3.74) gives 

F(𝑥 , 𝑦 , 𝑝 ) ≤ G(u, v, r) 

Which is a contradiction to theorem (3.5.1). 

If (𝑥 ,𝑦 ,𝜆 ,𝑟 )  is not efficient for (MD), then for some feasible (u,v,𝜆 ,r) of 

(MD) and some i, 

𝑓𝑖(u, v) − 
1

2
 𝑟𝑖

𝑇 𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖  > 𝑓𝑖  (𝑥 , 𝑦 )  and 

𝑓𝑖(u, v) − 
1

2
 𝑟𝑖

𝑇 𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖  − 𝑓𝑖  (𝑥 , 𝑦 )  

> M [𝑓𝑗  (𝑥 , 𝑦 ) − 𝑓𝑗 (u, v) + 
1

2
 𝑟𝑖

𝑇 𝛻𝑥𝑥𝑓𝑗 (u, v) 𝑟𝑗 ] 

For all M > 0 and all j satisfying 𝑓𝑗  (𝑥 ,𝑦 ) > 𝑓𝑗 (u,v) −  
1

2
 𝑟𝑗

𝑇 𝛻𝑥𝑥𝑓𝑗 (u v) 𝑟𝑗 . 
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This means that 𝑓𝑖(u,v) −  
1

2
 𝑟𝑖

𝑇 𝛻𝑥𝑥𝑓𝑖(u,v) 𝑟𝑖  − 𝑓𝑖  (𝑥 ,𝑦 ) can be arbitrarily 

large. Thus for any  𝜆  > 0, 

 𝜆𝑖
  𝑘

𝑖=1 [𝑓𝑖(u, v) − 
1

2
 𝑟𝑖

𝑇𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖]  

>  𝜆𝑖
  𝑘

𝑖=1 [𝑓𝑗  (𝑥 , 𝑦 ) − 
1

2
 𝑟𝑗 

𝑇𝛻𝑥𝑥𝑓𝑗 (𝑥 , 𝑦 ) 𝑟𝑗 ] 

Which again contradictions to theorem (3.5.1). 

Theorem 3.5.3 (Converse Duality). Let f:𝑅𝑛 × 𝑅𝑚 → 𝑅𝑘  be thrice 

differentiable. Let (𝑢 , 𝑣 , 𝜆 , 𝑟 ) be a weakly efficient solution of (MD). 

fix λ =𝜆  in (MP) and suppose that  

(i) Either the Hessian matrix  ∇𝑥𝑥𝑓𝑖  is positive definite for each 

i=1,2,…,k, and  𝜆𝑖
 𝑘

𝑖=1 𝑟𝑗 
𝑇  𝛻𝑥𝑓𝑖   ≧ 0 or  the Hessian matrix ∇𝑥𝑥  𝑓𝑖  

is negative definite for each i=1,2,…,k, and  𝜆𝑖
 𝑘

𝑖=1  𝑟𝑖 
𝑇𝛻𝑥  𝑓𝑖  ≦ 0, 

and  

(ii) The vectors {𝛻𝑥𝑓1 +𝛻𝑥𝑥𝑓1  𝑟 1, 𝛻𝑥𝑓2 +𝛻𝑥𝑥𝑓2  𝑟 2,…, 𝛻𝑥𝑓𝑘  + 𝛻𝑥𝑥𝑓𝑘   𝑟 𝑘} 

are linearly independent, 

where 𝑓𝑖  =  𝑓𝑖  (𝑢 , 𝑣 ), i=1,2,…,k. then (𝑢 , 𝑣 , 𝜆 , 𝑝  = 0) is feasible for 

(MP) and objective function values of (MP) and (MD) are equal. 

Furthermore, if the hypotheses of theorem (3.5.1) are satisfied for all 

feasible solutions of (MP) and (MD), then (𝑢 , 𝑣 , 𝜆 , 𝑝  = 0) is a properly 

efficient solution for (MP). 

Proof: Proof of which is analogous to that of the strong duality 

theorem.   

Self duality: A mathematical programming problem is said to be self 

dual if it is formally identical with its dual, that is, the dual can be 

recast in the form of the primal. If we assume the functions  𝑓𝑖  to be 

skew-symmetric, that is                                                       

𝑓𝑖(x, y) = − 𝑓𝑖(y, x) for each i=1,2,…,k, 
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Theorem 3.5.4 (Self Duality): Let 𝑓𝑖 , i=1,2,…,k, be skew-symmetric. 

Then (MP) is self-dual. If (MP) and (MD) are dual problems and (𝑥 , 𝑦 , 

𝜆 , 𝑝 )   is a joint  optimal solution, then so is  (𝑦 , 𝑥 , 𝜆 , 𝑝 )  and 

F(𝑥 , 𝑦 , 𝑝 ) = G(𝑦 , 𝑥 , 𝑝 ) = 0. 

Proof: The dual problem (MD) can be restated as; 

Minimize  − G (u,v,r) = {−𝐺1(u,v,r),− 𝐺2(u,v,r),…,− 𝐺𝑘(u,v,r)} 

  Subject to 

 𝜆𝑖
𝑘
𝑖=1 [ −𝛻𝑥𝑓𝑖(u, v) − 𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖] ≦ 0,  

−𝑢𝑇   𝜆𝑖
𝑘
𝑖=1 [𝛻𝑥𝑓𝑖(u, v) + 𝛻𝑥𝑥𝑓𝑖(u, v) 𝑟𝑖] ≧ 0, 

λ > 0, 

Where  

− 𝐺𝑖(u, v, r) = − 𝑓𝑖(u, v) +
1

2
 𝑟𝑖

𝑇𝛻𝑥𝑥  𝑓𝑖(u, v)𝑟𝑖 , i=1,2,…,k, 

Since 𝑓𝑖  is skew symmetric, 

𝑓𝑖(u, v) = − 𝑓𝑖(v, u), 𝛻𝑥𝑓𝑖(u, v) = − 𝛻𝑦𝑓𝑖(v, u), and 

𝛻𝑥𝑥𝑓𝑖(u, v) = − 𝛻𝑦𝑦 𝑓𝑖(v, u). 

Consequently,  − 𝐺𝑖(u,v r) =  𝑓𝑖(v,u) −
1

2
 𝑟𝑖

𝑇𝛻𝑦𝑦 𝑓𝑖(v,u)𝑟𝑖  =  G (v,u,r)   

Hence   − G (u, v, r)  = G (v, u, r)  

Thus the problem (MD) becomes 

Minimize  G (v, u, r) = {𝐺1(v, u, r), 𝐺2(v, u, r), . . . , 𝐺𝑘(v, u, r)} 

Subject to  

 𝜆𝑖
𝑘
𝑖=1 [ 𝛻𝑦𝑓𝑖(v, u) − 𝛻𝑦𝑦 𝑓𝑖(v, u) 𝑟𝑖] ≦ 0,  

𝑢𝑇  𝜆𝑖
𝑘
𝑖=1 [𝛻𝑦𝑓𝑖(v, u) + 𝛻𝑦𝑦 𝑓𝑖(v, u)𝑟𝑖] ≧ 0,  

λ > 0, 
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Which is identical to (MP)     

Thus (𝑥 , 𝑦 , 𝜆 , 𝑝 ) is optimal for (MD), implies (𝑦 ,  𝑥 , 𝜆 , 𝑝 ) is optimal for 

(MP), and by symmetric duality, also for (MD). Hence, 

F(𝑦 ,  𝑥 , 𝑝 ) = G(𝑥 , 𝑦 , 𝑝 ) = −F(𝑥 , 𝑦 , 𝑝 )  = 0.  
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Second-Order 
Symmetric Duality 
 in Mathematical 

Programming 
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4.1 Second-Order Symmetric Duality in Mathematical 

Programming 

Mangasarian [41] introduced the concept of second-order duality for 

nonlinear problems. Its study is significant due to computational advantage 

over first-order duality as it provides tighter bounds for the value of the 

objective function when approximations are used Mangasarian et al [41].   

Later Mond [44] constructed the following pair of second-order symmetric 

dual problems: 

(PP): Minimum  f(x,y) − 𝑦𝑇[𝛻𝑦 f(x,y) +𝛻𝑦
2 f(x,y) p]−

1

2
 𝑝𝑇𝛻𝑦

2f(x,y)p  

Subject to  

𝛻𝑦 f(x, y) +𝛻𝑦
2 f(x, y) p ≤ 0, 

x ≥ 0. 

(DD): Maximum   f(x,y) − 𝑥𝑇[𝛻𝑥 f(x,y) +𝛻𝑥
2 f(x,y)q]−

1

2
 𝑞𝑇𝛻𝑥

2 f(x,y)q  

Subject to 

𝛻𝑥 f(x, y) +𝛻𝑥
2 f(x, y)q ≥ 0, 

y ≥ 0. 

In this chapter, we formulate Wolfe type second-order dual programs 

with cone constraints and prove weak, strong, converse and self duality 

theorems under bonvexity - boncavity condition. 

Proposition 4.11: Let X be a convex set with nonempty interior in 𝑅𝑛  

and C be a closed convex cone in 𝑅𝑚 . Let F be real valued function and 

G be a vector valued function, both defined on X. 

Consider the problem: 

(P0): Minimize F(z) 

Subject to 

G(z) ϵ C and z ϵ X  
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If z solves the problem (P0), then there exist 𝛼0 ϵ R and 𝛿 ϵ 𝐶∗such that 

[𝛼0 𝛻 𝐹 𝑧0 +  𝛻 𝛿𝑇  𝐺 (𝑧0)]𝑇 (z − 𝑧0) ≥ 0 for all z ϵ X, 

𝛿𝑇  𝐺 (𝑧0) = 0, 

(𝛼0 , 𝛿   ≥ 0, 

(𝛼0 , 𝛿 ) ≠ 0. 

4.2 Formulation of the Problems 

In this section, we formulate a pair of second-order symmetric dual 

nonlinear programs with cone constraints and establish appropriate duality 

theorems. 

Consider the following two programs:  

Primal Problem 

(SP): Minimize F(x,y,p) = f(x,y)−𝑦𝑇[𝛻𝑦 f(x,y)+𝛻𝑦
2f(x,y)p] 

−
1

2
 𝑝𝑇𝛻𝑦

2f(x,y)p  

Subject to  

−𝛻𝑦 f(x, y) −𝛻𝑦
2 f(x, y) p ϵ𝐶2

∗   …(4.31) 

(x, y) ϵ 𝐶1 × 𝐶2       …(4.32) 

and 

Dual problem  

(SD): Maximum H(x,y,q) = f(x,y)−𝑥𝑇[𝛻𝑥 f(x,y)+𝛻𝑥
2f(x,y)q]  

−
1

2
𝑞𝑇𝛻𝑥

2f(x,y)q  

Subject to              

𝛻𝑥 f(x, y) +𝛻𝑥
2f(x, y)q ϵ  𝐶1

∗   …(4.33) 

(x, y) ϵ 𝐶1 × 𝐶2     …(4.34) 
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where 

(i) f: 𝐶1 × 𝐶2 → R is a twice differentiable function, 

(ii) 𝐶1 and 𝐶2  are closed convex cones with nonempty interior in 𝑅𝑛  

and 𝑅𝑚 , respectively; 

(iii) 𝐶1
∗ and 𝐶2

∗are positive polar cones of   𝐶1  and 𝐶2 respectively. 

4.2.1 Weak Duality  

Theorem (4.2.1): Let (x, y, p) and (u, v, q) be feasible solutions of (SP) 

and (SD) respectively. Assume that f(.,y) is bonvex with respect to x for 

fixed y and f(x,.) is boncave with respect to y for fixed x for all feasible 

(x,y,p,u,v,q). 

Then 

inf.(SP) ≥ sup.(SD). 

Proof: By bonvexity of f(., y), we have, 

f(x,v)−f(u,v)≥(𝑥 − 𝑢)𝑇[𝛻𝑥 f(u,v)+𝛻𝑥
2f(u,v)q]−

1

2
𝑞𝑇𝛻𝑥

2f(u,v)q  

...(4.35)  

f(x,v)− f(x,y) ≤ (𝑣−𝑦)𝑇[𝛻𝑦 f(x,y) +𝛻𝑦
2f(x,y p]−

1

2
 𝑝𝑇𝛻𝑦

2f(x,y)p 

…(4.36) 

multiplying (4.36) by (−1) and adding the resulting inequality to 

(4.35), we obtain, 

{f(x,y) − 𝑦𝑇[𝛻𝑦 f(x,y) +𝛻𝑦
2f(x,y) p]−

1

2
 𝑝𝑇𝛻𝑦

2f(x,y) p} 

 −{f(u,v) +𝛻𝑥
2f(u,v)q]−

1

2
𝑞𝑇𝛻𝑥

2f(u,v)q} 

≥ 𝑥𝑇[𝛻𝑥 f(u,v) +𝛻𝑥
2f(u,v)q] −𝑣𝑇[𝛻𝑦 f(x,y) +𝛻𝑦

2f(x,y p] …(4.37) 

Now since xϵ 𝐶1  and   𝛻𝑥  f(u, v) +𝛻𝑥
2f(u, v)q  ϵ 𝐶1

∗, we have 
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𝑥𝑇[𝛻𝑥 f(u, v) +𝛻𝑥
2f(u, v)q ] ≥ 0.    …(4.38) 

Now since v ϵ  𝐶2 and   −[𝛻𝑦 f(x, y) +𝛻𝑦
2f(x, y) p] ϵ 𝐶2

∗, we have, 

−𝑣𝑇[𝛻𝑦 f(x, y) +𝛻𝑦
2f(x, y) p] ≥ 0.   …(4.39) 

The inequality (4.37) together with (4.38) and (4.39), yields, 

 f(x, y) − 𝑦𝑇[𝛻𝑦 f(x, y) +𝛻𝑦
2f(x, y) p]−

1

2
 𝑝𝑇𝛻𝑦

2f(x, y) p  

≥  f(u,v) − 𝑢𝑇[𝛻𝑥 f(u,v) +𝛻𝑥
2f(u,v)q]−

1

2
𝑞𝑇𝛻𝑥

2f(u,v)q   

This implies, 

inf.(SP) ≥ sup.(SD). 

4.2.2 Strong Duality 

Theorem 4.2.2: Let (𝑥 ,𝑦 ,𝑝 ) be an optimal solution of (SP). Also let 

(i) the matrix 𝛻𝑦
2f(𝑥 ,𝑦 ) is non singular, and  

(ii) 𝛻𝑦 (𝛻𝑦
2𝑓(𝑥 , 𝑦 )𝑝 ) be negative definite. 

Then (𝑥 , 𝑦 , 𝑞 =0) is feasible for (SD) and the objective values of the 

programs (SP) and (SD) are equal. Moreover, if the requirements of 

Theorem (4.4) are fulfilled, then (𝑥 , 𝑦 , 𝑞 ) is an optimal solution of (SD). 

Proof: We use Proposition (4.11) to prove this theorem. 

Here   z = (x, y, p),    𝑧  = (𝑥 ,𝑦 ,𝑝 ),   xϵ 𝐶1,   p ϵ 𝑅𝑚     and    y ϵ 𝐶2 

F(𝑧 ) = f(𝑥 , 𝑦 ) − 𝑦 𝑇[𝛻𝑦 f(𝑥 , 𝑦  ) +𝛻𝑦
2f(𝑥 , 𝑦  ) 𝑝  ]−

1

2
 𝑝 𝑇𝛻𝑦

2f (𝑥 , 𝑦 )𝑝  

G(𝑧 ) = − 𝛻𝑦 f(𝑥 , 𝑦  ) +𝛻𝑦
2f(𝑥 , 𝑦  ) 𝑝    and  C = 𝐶∗ 

Since (𝑥 ,𝑦 ,𝑝 ) is an optimal solution of (SP), by proposition (4.11), 

there exist 𝛼ϵR and 𝛽 ϵ 𝐶2
∗ such that 

[𝛼𝛻𝑥 f(𝑥 ,𝑦 ) − (𝛼𝑦  + 𝛽)𝛻𝑥𝛻𝑦 f(𝑥 ,𝑦 ) – (𝛼𝑦  + 
𝛼𝑝 

2
 +𝛽)𝛻𝑥𝛻𝑦

2f(𝑥 , 𝑦 ) 𝑝 ] (x−𝑥 ) 
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−[(𝛼𝑦 +𝛽 + 𝛼𝑝 )𝛻𝑦
2f(𝑥 , 𝑦 )+(𝛼𝑦 +

𝛼𝑝 

2
+𝛽)𝛻𝑥𝛻𝑦

2f(𝑥 ,𝑦 ) 𝑝  ](y−𝑦 )≥0  …(4.40)  

(𝛼y+ 𝛼p+𝛽) 𝛻𝑦
2f(𝑥 , 𝑦  ) = 0 . …(4.41) 

𝛽𝑇[𝛻𝑦 f(𝑥 , 𝑦 ) + 𝛻𝑦
2f(𝑥 , 𝑦  ) 𝑝  ] = 0 …(4.42) 

(𝛼, 𝛽) ≥ 0,             …(4.43) 

(𝛼,𝛽)≠ 0. …(4.44) 

the relation (4.41), in view of the hypothesis (i), gives, 

𝛽 = −(𝑦  + 𝑝  ).         …(4.45) 

It follows that 𝛼 ≠ 0, for if 𝛼 = 0, (4.45) implies 𝛽 = 0. Hence (𝛼,𝛽) = 0 

contradicts (4.44). Thus  𝛼 > 0. 

Now putting 𝑥  = x and using (4.45) in (4.40), we obtain, 

(
𝛼𝑝 

2
 )𝑇[𝛻𝑦(𝛻𝑦

2f(𝑥 , 𝑦  ) 𝑝  )](y − 𝑦 ) ≥ 0, for all y ϵ 𝐶2.  

Putting y = 𝑦  + 𝑝   and using 𝛼 > 0, from the above inequality 

𝑝𝑇[𝛻𝑦(𝛻𝑦
2f(𝑥 , 𝑦  ) 𝑝  )] 𝑝   ≥ 0 

Which, because of (ii), yields, 

𝑝  = 0 …(4.46) 

Using (4.45) and (4.46) along with  𝛼 > 0 in (4.40), we have, 

𝛻𝑥 f(𝑥 , 𝑦 ) (x − 𝑥 ) ≥ 0, for all x ϵ 𝐶1     …(4.47) 

Since  𝐶1 is closed convex cone, therefore, for each x ϵ 𝐶1 and 𝑥  ϵ 

 𝐶1, it implies (x +𝑥 ) ϵ 𝐶1. Now, replacing x by (x +𝑥 ) in (4.47), we 

have, 

𝑥𝑇[𝛻𝑥 f(𝑥 , 𝑦  )+ 𝛻𝑥
2f(𝑥 , 𝑦  ).0] ≥ 0    …(4.48) 

This implies,  

𝑥𝑇[𝛻𝑥 f(𝑥 , 𝑦  )+ 𝛻𝑥
2f(𝑥 , 𝑦  ).0] ϵ 𝐶1

∗. 
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Thus (𝑥 , 𝑦 , 𝑞  = 0) is feasible for (SD). 

Putting x = 0 in (4.47) and x =𝑥   in (4.48), we have respectively, 

𝑥 𝑇[𝛻𝑥 f(𝑥 , 𝑦  )+𝛻𝑥
2f(𝑥 , 𝑦  ).0] ≤ 0   and 

𝑥 𝑇[𝛻𝑥 f(𝑥 , 𝑦  )+𝛻𝑥
2f(𝑥 , 𝑦  ).0] ≥ 0.  

These together implies, 

𝑥 𝑇[𝛻𝑥 f(𝑥 , 𝑦  )+ 𝛻𝑥
2f(𝑥 , 𝑦  ).0] = 0      …(4.49) 

  Using 𝛽 = 𝛼𝑦   and  𝑝  = 0  along with 𝛼 > 0 in (4.42), we have, 

𝑦 𝑇[𝛻𝑦 f(𝑥 , 𝑦  )+ 𝛻𝑦
2f(𝑥 , 𝑦  ).0] =0 …(4.50) 

Consequently, we obviously have, 

G(𝑥 ,𝑦 ,𝑝 ) = f(𝑥 , 𝑦 ) – 𝑦 𝑇[𝛻𝑦 f(𝑥 , 𝑦  ) +𝛻𝑦
2f(𝑥 , 𝑦  ) 𝑝  ]−

1

2
 𝑝 𝑇𝛻𝑦

2f (𝑥 , 𝑦  ) 𝑝  

= f(𝑥 ,𝑦 ) − 𝑥 𝑇[𝛻𝑥 f(𝑥 , 𝑦 )+𝛻𝑥
2f(𝑥 , 𝑦 ) 𝑞 ]−

1

2
 𝑞 𝑇𝛻𝑥

2f (𝑥 , 𝑦 )𝑞  

= H(𝑥 ,𝑦 ,𝑞 ). 

That is, the objective values of (SP) and (SD) are equal. By 

Theorem (4.2.1), the optimality of (𝑥 ,𝑦 ,𝑧 ) for (SD) follows. 

We will only state a converse duality theorem (Theorem 4.2.3) as the 

proof of this theorem would follow analogously to that of Theorem 4.2.2. 

4.2.3 Converse Duality 

Theorem 4.2.3: Let (𝑥 , 𝑦 , 𝑞 ) be an optimal solution of (SD). Also let 

(i) the matrix ∇𝑥
2f(𝑥 , 𝑦  ) is nonsingular, and  

(ii) 𝛻𝑥(𝛻𝑥
2f(𝑥 , 𝑦  ) 𝑞 )  be a positive definite. 

Then (𝑥 ,𝑦 ,𝑝  = 0) is feasible for (SP) and the objective values of 

(SP) and (SD) are equal. Furthermore, if the hypothesis of Theorem (4.2.1) 

are met, then (𝑥 ,𝑦 ,𝑝 ) is an optimal solution of (SP). 
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4.2.4 Self Duality  

Theorem 4.2.4: Let f : 𝑅𝑛 × 𝑅𝑚 → R be skew symmetric and 𝐶1 = 𝐶2, 

then (SP) is self dual. Furthermore, if (SP) and (SD) are dual programs and 

(𝑥 , 𝑦 , 𝑠 ) is an optimal solution for (SP), then (𝑥 ,𝑦 ,𝑝  = 0) and (𝑦 , 𝑥 , 𝑞  = 

0) are optimal solutions for (SP) and (SD), and 

G(𝑥 ,𝑦 ,𝑝 ) =  H(𝑥 ,𝑦 ,𝑞 ). 

Proof: Recasting the problem (SD) as a minimization problem, we have 

(𝐒𝐃)𝟏:

 Minimize −{f(x,y)−𝑥𝑇[𝛻𝑥 f(x,y)+𝛻𝑥
2f(x,y)q]−

1

2
𝑞𝑇𝛻𝑥

2f(x,y)q} 

Subject to 

𝛻𝑥 f(x, y) +𝛻𝑥
2f(x, y)q ϵ 𝐶1

∗ 

(x, y) ϵ 𝐶1 × 𝐶2 

Since f is skew symmetric, 

𝛻𝑥 f(x,y) = − 𝛻𝑦 f(y,x) and 𝛻𝑥
2f(x,y) =− 𝛻𝑦

2f(y,x); 

and  𝐶1= 𝐶2 , the problem (𝐒𝐃)𝟏 becomes, 

Minimize f(x, y) − 𝑥𝑇[𝛻𝑥 f(x, y) +𝛻𝑥
2f(x, y)q]−

1

2
𝑞𝑇𝛻𝑥

2f(x, y)q}  

Subject to 

− 𝛻𝑦 f(y, x) − 𝛻𝑦
2f(y, x) ϵ  𝐶2

∗ 

(x, y) ϵ 𝐶1 × 𝐶2 

which is just the primal problem (SP).Thus (SP) is self dual. Hence if 

(𝑥 , 𝑦 , 𝑞 ) is an optimal solution for (SP), then and conversely. 

Also,    G(𝑥 ,𝑦 ,𝑝 )  =  H(𝑥 ,𝑦 ,𝑞 ). 

Now we shall show that, G(𝑥 ,𝑦 ,𝑝 )= 0. 
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G(𝑥 ,𝑦 ,𝑝 ) = f(𝑥 ,𝑦 ) – 𝑦 𝑇[𝛻𝑦 f(𝑥 ,𝑦 )+𝛻𝑦
2f(𝑥 , 𝑦 ) 𝑝 ]−

1

2
 𝑝 𝑇𝛻𝑦

2f (𝑥 ,𝑦 )𝑝  …(4.51)   

Since 𝑦  ϵ 𝐶2  and –𝑦 𝑇𝛻𝑦 f(𝑥 , 𝑦  ) −  𝛻𝑦
2f(𝑥 , 𝑦  ) 𝑝  ϵ 𝐶2

∗≥ 0, therefore, we 

have                                      

– [𝑦 𝑇𝛻𝑦  f(𝑥 , 𝑦 ) +  𝛻𝑦
2f(𝑥 , 𝑦 ) 𝑝 ] ≥ 0.   … (4.52) 

Using (4.52) in (4.51), we have, 

G(𝑥 ,𝑦 ,𝑝 ) ≥ f(𝑥 , 𝑦 ) −  
1

2
 𝑝 𝑇𝛻𝑦

2f (𝑥 , 𝑦  )𝑝 . 

Using the conclusion 𝑝  = 0 of Theorem (4.2.2), we get 

G(𝑥 ,𝑦 ,𝑝 ) ≥ f(𝑥 , 𝑦 )   …(4.53) 

Similarly, in view of 

         𝑥  ϵ 𝐶1 together with ∇𝑥f(𝑥 , 𝑦  ) +∇𝑥
2f(𝑥 , 𝑦  ) 𝑞   ϵ𝐶1

∗, and  𝑞 = 0,  

we have, 

H(𝑥 ,𝑦 ,𝑞 ) ≤  f(𝑥 , 𝑦 )        …(4.54) 

By Theorem (4.2.2), we have, 

f(𝑥 , 𝑦 )   ≤  G(𝑥 ,𝑦 ,𝑝 ) = H(𝑥 ,𝑦 ,𝑞 ) ≤  f(𝑥 , 𝑦 ). 

This implies 

G(𝑥 ,𝑦 ,𝑝 ) = H(𝑥 ,𝑦 ,𝑞 ) =  f(𝑥 , 𝑦 )= f(y, x) =−f(x, y). 

Consequently, we have, 

G(𝑥 ,𝑦 ,𝑝 ) = 0. 
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