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Preface 

Deliberating on mathematical reliability theory, it is generally taken as set of 

ideas, mathematical models, and methods directed towards the solution of problems in 

predicting, estimating, or optimizing the probability of survival, mean life, or, more 

generally, life distribution of components or systems; other problems considered in 

reliability theory are those involving the probability of proper functioning of the 

system at either a specified or an arbitrary time, or the proportion of time the system 

is functioning properly. In a large class of reliability situations, maintenance, such as 

replacement, repair, or inspection, may be performed, so that the solution of the 

reliability problem may influence decisions concerning maintenance policies to be 

followed.  The present dissertation is divided into five chapters and a comprehensive 

bibliography at the end. 

Chapter I presents comprehensive survey and some basics of discrete lifetime 

probability distributions used in reliability for modeling discrete distributions. 

Distributions are classified into two families, the first class is constituted with discrete 

distributions derived from usual continuous lifetime distributions and the second class 

contains distributions based on a Pòlya urn scheme.   

Chapter II reveals characterizations of some discrete distributions; using 

properties of the reversed hazard rate and reversed mean residual life are established. 

It is known that in the case of absolutely continuous distributions on the positive real 

line, no model with constant reversed hazard rate is in vogue. In this chapter discrete 

models are identified for which the reversed hazard rate is constant; the product of the 

reversed hazard rate and the reversed mean residual life is constant.  

Chapter III deals with discrete versions of the additive Weibull distribution. 

The distribution has the twin virtues of mathematical tractability and the ability to 

produce bathtub-shaped hazard rate functions. Conditions on the parameters for the 

hazard rate function to be increasing, decreasing or bathtub shaped are derived. 

Results are illustrated using several real-life data sets.  

                                                            III 



 
 

Chapter IV presents Bayesian estimators for the reliability measures (the 

failure rate, reliability function and the mean time to failure) of the individual 

components in multi component systems. The life time of each component using 

masked system life test data is assumed to be geometric distribution. The problem is 

illustrated on a series system consisting of two components. At the end of this chapter 

numerical simulation study is given in order to explain masking level on the 

accuracy of point estimates. 

Chapter V presents Bayesian estimation of reliability functions of discrete 

distributions like Consul, Geeta and Size-biased Geeta distributions. The prior 

distribution of parameter is considered as two parameter Beta distribution. Also 

reliability functions of Geometric, Negative-binomial and Haight distributions are 

also obtained as special cases. 
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1.1 Introduction 

he mathematical theory of reliability has grown out of the demands of 

modern technology and particularly out of the experiences in World War II. 

With the increased complexity of component structure and the continuous 

requirements of the high quality reliable products, the importance of reliability has 

increased greatly. The high reliability is strictly required for the functionality of the 

system and safety of people using the products. It is believed that unreliable 

components and systems will cause inconvenience to the productivity in our daily 

lives. In even worse situations, any unstable component of a product can cause huge 

economic loss and serious damage to customers, producers, government and the 

society. The increased emphasis on reliability is also due to other factors worth 

considering, including the awareness of stability of high quality products, complexity 

and sophistication of systems, new industrial regulations concerning product liability, 

and product cost for testing, repairing and warranty. The theories and tools of 

reliability is applied in to widespread fields such as electronic and manufacturing 

products, aerospace equipment, earthquake and volcano forecasting, communication 

system, navigations and transportation control, medical treatments to the survival 

analysis of the human being or biological species and so on. Reliability has always 

T 
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been considered as one of the most important characteristics for industrial products 

and systems. Reliability engineering studies the life data analysis which deals with the 

specific issues to study and predict the lifetime of the products using statistical 

parametric distributions or non-parametric methods, and subsequently these 

methodologies and results can be applied to product testing and prediction, 

optimization of warranty policy and quality and reliability enhancement. The 

introduction of every new device must be accompanied by provision for maintenance, 

repair parts, and protection against failures. This is certainly apparent to the military, 

where the life-cycle maintenance costs of systems far exceeds the original purchase 

costs. Maintenance of units after failure may be costly, and sometimes requires a long 

time corrective maintenance of the failed units. The most important problem is to 

determine the maintenance of system before failure. However, it is not wise to 

maintain units with unnecessary frequency. From this viewpoint, the commonly 

considered maintenance policies are preventive replacement for units without repair 

and preventive maintenance for units with repair on a specific schedule. 

Consequently, the object of maintenance optimization problems is to determine the 

frequency and timing of corrective maintenance, preventive replacement or preventive 

maintenance according to cost and effect. Units under age replacement and preventive 

maintenance are replaced or repaired at failure, or at a planned time after installation. 

Units under periodic and block replacements are replaced at periodic times, and 

undergo repair or replacement between planned replacements.  

Lots of research and applications have been carried out in order to explore and 

understand the methodologies and applications of reliability analysis for the product 

enhancements and many researchers have investigated statistically and stochastically 

complex phenomena of real systems to improve their reliability. In the early 1950's 

certain areas of reliability, especially life testing and electronic and missile reliability 

problems, started to receive a great deal of attention both from mathematical 

statisticians and from the engineers in the military-industrial complex. Among the 

first groups to face up seriously to the problem of tube reliability were the commercial 

airlines. Accordingly, the airlines set up an organization called Aeronautical Radio, 

Inc. (ARINC) which, among other functions, collected and analyzed defective tubes 

and returned them to the tube manufacturer. In its years of operation with the airlines, 
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ARINC achieved notable success in improving the reliability of a number of tube 

types. The ARINC program since 1950 has been focused on military reliability 

problems. In December 1950 the Air Force formed an adhoc Group on Reliability of 

Electronic Equipment to study the whole reliability situation and recommend 

measures that would increase the reliability of equipment and reduce maintenance. 

 In 1951 Epstein and Sobel initiated this work in the field of life testing which 

was to result in a long stream of important and extremely influential papers. This 

work marked the beginning of the widespread assumption of the exponential 

distribution in life-testing research. At that time in the missile industry Robert Lusser, 

Richard R. Carhart, and others were also active in promoting interest in reliability and 

stating the problems of most interest to their technology. According to one source, the 

basic definition of reliability (as used by engineers) was first presented by Robert 

Lusser. 

Davis [1952] published a paper presenting failure data and the results of 

several goodness-of-fit tests for various competing failure distributions. This data 

seemed to give a distinct edge to the exponential distribution, and for this reason the 

Davis paper has been widely referred to in support of the assumption of an 

exponential failure distribution. With the publication of this paper and the Epstein-

Sobel paper [1953], the exponential distribution acquired a unique position in life 

testing. This position became even more secure in 1957 with the AGREE report. A 

fundamental reason for the popularity of the exponential distribution and its 

widespread exploitation in reliability work is that it leads to simple addition of failure 

rates and makes possible the compilation of design data in a simple form. However, in 

1955 serious consideration began to be given to other life distributions. Kao [1956, 

1958], among others, was influential in bringing attention to the Weibull distribution. 

This interest in the Weibull was to grow ever stronger until it gained major 

importance with the publication of the Zelen Dannemiller [1961] paper pointing out 

that many life test procedures based on the exponential are not robust. 

If one takes a look at the first works on reliability of the end of 50s and of the 

beginning of 60s, he could see pure pragmatic nature of those works. Even “pure 

mathematicians” wrote for users rather than for themselves: their results were 
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transparent and their applicability was evident.  However, in the middle of 70s there 

appeared papers considering unrealistic models, math results began to be non-

understandable with no commonsense interpretation. That situation led to definite 

discredit of reliability theory as a whole. This situation was expressed by one of 

leading specialist in reliability engineering:”The reliability theory is for those who 

understand nothing in reliability.  Those who understand reliability, they design and 

produce reliable equipment!”  

The somewhat classical statistical treatment of reliability based only on the 

reliability function is not, at all, sufficient to handle the reliability assessment 

processes of complex and multiphase 21st century problems. These complexities 

rarely lead to the rise of a static coherent system. Therefore, one must develop a 

methodology that can integrate other related information and be able to propagate 

information up and down throughout the system representation.  

1.2 Some Definitions 

Reliability is the probability of performing without failure, a specific 

function under given condition for a specified period of time. 

This definition includes five elements: 

1) Probability:  Reliability is a probability, a probability of performing without 

failure; thus, reliability is a number between zero and one.                       

2) Failure: What constitutes a failure must be agreed upon in advance of the 

testing and use of the component or system under study. For example if the function 

of a pump is to deliver at least 200 gallons of fluid per minute and it is now 

delivering 150 gallons/per minute, the pump has failed, by this definition.  

3) Function:  The device whose reliability is in question must perform a 

specific function. For example, if I use my gasoline-powered lawn mower to trim 

my hedges and a blade breaks, this should not be charged as a failure.  

4) Conditions: The device must perform its function under given conditions. 

For example, if my company builds and sells small gasoline-powered electrical 

generators intended for use in ambient temperatures of 0-120 degrees Fahrenheit and 
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several are brought to Nome, Alaska and fail to operate in the winter, we should not 

charge failures to these units.  

5) Time: The device must perform for a period of time. One should never cite a 

reliability figure without specifying the time in question. The exception to this rule is 

for one-shot devices such as munitions, rockets, automobile air-bags, and the like. In 

this case one think of the reliability as the probability that the device will operate 

properly when deployed or used. Or equivalently one-shot reliability may be thought 

of as the proportion of all identical devices which will operate properly (once) when 

deployed or used. In reliability, unless otherwise specified, time begins at zero. 

The elements 2, 3 and 4 are important to the reliability of a device, but they 

differ in different situations; elements 1 and 5 are more basic. Since reliability is a 

probability, thus the probability element of reliability allows one to calculate 

reliabilities in a quantitative way, that is, the assessment of reliability can be done 

probabilistically so that the quantity given to the reliability has the meaning and 

structure of probability for its manipulation and interpretation. 

The time element is also basic in reliability. In fact, the basic distinction 

between reliability and quality control is related to this element. In this way of 

comparing reliability and quality control, quality control studies failure at a given 

time whereas reliability studies failure over time. 

In a sense, this comparison introduces a new definition of reliability, that is, a 

study of failure over time. Also the term failure is introduced and to be consistent, it 

is important to define failure. Thus, a failure is defined as any functioning of the 

device or component which is not considered within the prescribed limits of 

satisfactory functioning. 

Since the element time is so basic to reliability, it is quite natural then, that the 

primary random variable in reliability studies is time and that the purpose of such 

studies is often life length. When this emphasis on life length is the focus of a 

reliability study, the study is often referred to as a life test and this terminology is 

often used to describe the reliability study.  
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1.3 Reliability Function and Failure Rate 

Let variable T be the lifetime or time to failure of a component having 

probability density function (p.d.f)  ( ) and distribution function  ( ). The probability 

that the component survives beyond sometime t is called the reliability  ( ) of the 

component. Thus,  

                             ( )     ( )   (   )                                                    (     ) 

Although the term “reliability” has many technical meanings, the above used 

is becoming more commonly accepted. The definition given here simply says that the 

reliability of a component equals the probability that the component does not fail 

during the interval [0,t] (or equivalently, reliability equals the probability that the 

component is still functioning at time t). 

 In other words, the component is assumed to be working properly at time 

    means  ( )    and no component can work forever without failure 

means  ( )         ( )   .  ( ) is a monotone non-increasing function of t and 

has no meaning for    .  ( ) is called unreliability. 

The probability that a component will fail in the interval (      )given that the 

component is working at time t is: 

    (           ⁄ )  
 (        )

 (   )
                                                     

                                                          
 (    )   ( )

 ( )
                                             (     ) 

By dividing this probability by the length of the length of the time interval    and 

letting     , the failure rate (hazard) function  ( ) at time t is 

 

    ( )     
    

 (        )

  
 

                                                                    
 (    )  ( )

  
 

 

 ( )
                           (     ) 
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A failure rate can be classified as increasing failure rate (IFR) or decreasing failure 

rate (DFR). 

Since,  

                                             ( )  
 

  
 ( )     ( )                                                     (     )  

then 

                                             ( )   
  ( )

 ( )
  

 

  
    ( )                                          (     )  

using  ( )   , we have, 

                                           ( )     ( ∫  ( )  
 

 

)                                                (     ) 

For some purposes it is also useful to define the cumulative hazard function 

                               ( )  ∫  ( )  
 

 

                                                                    

which by (     ), is related to the survivor function by  

                            ( )     [  ( )]                                                              

It can be observed that since  ( )   , then 

 ( )     
   

 ( )                                   

Finally, in addition to (     ), it follows immediately from (1.3.4) and (1.3.5) that 

                                              ( )   ( )   ( ∫  ( )  
 

 
)                                         (     )                          

From the above concepts and formulae, the reliability function  ( ) and the 

distribution function  ( )     ( )  are uniquely determined by the failure rate 

function  ( ). Also the relationship between the functions  ( )  ( )  ( ) and  ( ) as 

given below: 
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Expressed 

by 

 

 ( ) 

 

 ( ) 

 

 ( ) 

 

 ( ) 

 

 ( )   

 

  

 

∫  ( )  

 

 

 

 

   ( ) 

 

    ( ∫ ( )  

 

 

) 

 

 ( )   

 

 

  
 ( ) 

 

  

 

 
 

  
 ( ) 

 ( )   ( ∫ ( )  

 

 

) 

 

 

 ( )   

 

 

   ( ) 

 

∫  ( )  

 

 

 

 

 

  

 

   ( ∫ ( )  

 

 

) 

 

 ( )   

 

  ( )   ⁄

   ( )
 

 

 ( )

∫  ( )  
 

 

 

 

 
 

  
    ( ) 

 

  

 

1.4 Shapes of Hazard Functions 

The pdf (or pf), the distribution and survivor functions are common 

representations of a probability distribution, but hazard functions function is 

particularly useful with lifetime distributions, since it describes the way in which the 

instantaneous probability of death for an individual changes with time.  Often, in 

applications, there may be qualitative information about the hazard function, which 

can help in selecting a life distribution model. For example, there may be reasons to 

restrict consideration to models with non-decreasing hazard functions or with hazard 

functions having some other well-defined characteristic.  

The failure rate function is an important concept in reliability. Failure rate 

functions often falling into one of three categories are considered: (a) monotonic 

failure rates, where the failure rate curve is either increasing or decreasing; (b) bathtub 

failure rates, where the curve has a bathtub or a U shape; and (c) generalized bathtub 

failure rates, where the failure rate curve is a polynomial, or has roller-coaster shape 
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or some other generalization. Many lifetime distributions may be categorized with 

respect to the shape of their failure rate functions: 

Let  ( ) be the failure rate function of a lifetime distribution. It is 

(i) an IFR (increasing failure rate) distribution if  ( ) is nondecreasing in  ; 

(ii) a DFR (decreasing failure rate) distribution if  ( ) is nonincreasing in  ; 

(iii) a BT (bathtub-shaped) distribution if there exists a      such that  ( ) is 

non-increasing for         and non-decreasing for     ; 

(iv) an UBT (upside-down bathtub-shaped) distribution if there exists a      

such that  ( ) is non-decreasing for          and non-increasing for 

    . 

Fig. 1.1 shows hazards functions and pdf’s for three continuous distributions.  The 

shapes of the hazard functions are qualitatively quite different; distribution (a) has a 

monotone increasing hazard function, distribution (b) has a monotone decreasing 

function, and (c) has a so-called “bathtub –shaped”, or U-shaped hazard function. 

Model with these and other shaped of hazard function are all useful in practice. If, for 

example, individuals in a population are followed right from actual birth to death, a 

bathtub shaped hazard function is often appropriate. We are, for example, familiar 

with this pattern in human populations: after an initial period in which deaths result 

primarily from birth defects or infant diseases, the death rate drops and is relatively 

constant until the age of 30 or so, after which is increased with age. This pattern also 

manifests itself in many other populations, including ones consisting of manufactured 

items.  
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             Fig.1.1        Some Hazard and probability functions    

Models with increasing hazard functions are used the most. One reason for 

this is that interest often centers on a period in the life of an individual over which 

some kind of gradual ageing takes place, yielding an increasing hazard functions. 

Also, populations that display a bath tub-shaped hazard function are sometimes 

purged of weak individuals, leaving a reduced population with an increasing hazard 

function. For example, manufacturers often use “burn-in” process in which items are 

subjected to a brief period of operation before being sent to customers. In this way 

defective items that would fail very early are removed from the population; this 
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frequently leaves a residual population in which individuals exhibit gradual ageing, 

with an increasing hazard function. 

 Models with a constant hazard function are important and have particularly 

simple structure and models with decreasing hazard functions are less common, but 

are sometimes used. For example, certain types of electronic devices appear to have 

decreasing failure rate, at least over some fairly long initial period of use. Non-

monotone hazard functions other than bathtub-shaped once are even less common, but 

possible. All in all, the main point to be remembered is that the hazard function 

represents an aspect of a distribution that has direct physical meaning and that 

information about the nature of the hazard function is helpful in selecting a model. 

1.5 Life Testing 

Life testing is concerned with measuring the pertinent characteristics of the 

life of the unit under study. Often this is accomplished by making statistical 

inferences about probability distributions or their parameters. 

In general, units are put on test, observed and the times of failure recorded as 

they occur. For example, a group of similar components are placed on test and the 

failure times observed. Obviously, the times at which individual units fail will vary. 

Sometimes, assignable causes can be found that contribute to that variation. Suppose 

some components have been subjected to testing at a high temperature environment 

and it is possible that such components will fail sooner than those tested at an ambient 

temperature environment. However, the components at the high temperature will still 

have different failure times; and, if there are no assignable causes in operation, these 

components will still have different failure times, that is, it is always assumed that the 

failure times of the components have some random elements and will be assumed to 

be a random variable with a probability distribution. 

To make statistical inferences about the probability distribution of the failure 

time random variable, one uses the failure times that have been observed from a life 

test, ideally a test that has been statistically designed for the purpose of the study. If 

the failure times of a particular component under a given set of conditions, can be 

adequately described by a probability distribution, there are considerable practical 
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benefits. The failure times can then be used to estimate the parameters of the 

distribution and to perhaps study the relationship of these parameters to associated 

explanatory variables. The estimates can be used to make predictions, determine 

component configurations in systems, determine replacement procedures, specify 

guarantee periods and make other decisions about the use of the component. 

1.6  Failure Times 

Before a study of the effects of a group of failure times is begun, it must be 

determined precisely what these data values involve. There must be agreement among 

participating parties about certain characteristics of the failure data. That is, the start 

of the time measurement, the scale of the time measurement and the definition of a 

failure are not always consistent in life test situations and must be precisely specified 

in a given study. 

The time origin in some studies is obvious. In some other studies, however, 

there is enough confusion about the origin of time measurements that some agreement 

as to the origin must be reached before the study begins. For example, in some studies 

the unit under test may have under gone earlier testing in development studies and 

some agreement must be reached as to whether to include the earlier times on test as 

running times for the present study. The same is true of the time scale. Usually the 

scale is clock time but other measures may also be used, such as the number of cycles, 

the mileage to the first puncture of a tire, etc. 

There may also be differing definitions of what constitutes a failure. It is 

important that one definition be specified or that different modes of failure be 

recognized and allowed as failures. It is usually informative in the data analysis if the 

differing modes of failure are distinguished and recorded in the test results. For many 

components, failure is catastrophic and the definition of a failure is obvious. But for 

some components, the performance slowly degrades and the amount of degradation to 

be judged a failure must be defined. 

1.7 Censoring of Data 

One of the circumstances that has traditionally caused concern and some 

difficulty in statistical studies has been the occurrence of missing observations. 
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Although techniques have been proposed for accommodating missing observations in 

most types of statistical analyses, the problem of missing or incomplete observations 

in general does not seem to occur as often as in modern reliability studies. With 

highly reliable components, it is unusual if all the components have failed by the end 

of the time allotted for the test. In human survival studies and in some engineering 

studies, some of the units on test may be withdrawn from the test for various reasons. 

Such incomplete data observations in reliability studies are called censored items. 

Although the failure time information on such an item is incomplete, there is usually 

still some information in the time data that is available in the item and so the 

censoring time should always be recorded in a study. 

Censoring is often distinguished according to type and order. The type of 

censoring reflects the rule for censoring and influences which variables in the study 

that are random. A consideration of which variables are random affects the 

distributional assumptions of estimates and will be discussed later. 

Type I censoring is the rule that specifies that the testing is terminated at a 

specific, fixed time   . In this case, the time    is a fixed value and the number of units 

which are censored in a study is a random variable. Type I censoring is the most 

common type of censoring used in practice because it is the easiest to implement since 

the duration of the study is determined and fixed beforehand. However, it is not the 

most convenient in terms of the distributional considerations. 

Type II censoring is the rule that specifies that the testing is terminated when a 

preset number of units, say r, have failed. In the case of Type II censoring the time at 

which the test is stopped is a random variable, that is, the time at which the rth failure 

occurred. This type of censoring is less practical because it does not allow an upper 

bound on the total time duration. It does, however, result in a more convenient theory. 

The order of censoring indicates whether there is a single or there are multiple 

rules for censoring in a test. Multiply censored data are made up of failure times and a 

mixture of censored times. 

More generally, for the     unit from a sample of n on life test, one could 

record the observation (     ), where    is the failure time if the indicator variable 
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     and    is the censored time if     . In Type I censoring, all the    values are 

equal to     when      and when     , the    values have the values    which are 

observations of the random failure variable T. in type II censoring, the censoring time 

is a random variable, the     order statistics  ( ), if the test is stopped at the time of rth 

failure. The(     ) notation can handle multiple censoring also, and will be 

particularly useful in maximum likelihood derivations of estimators. 

It is important that the censoring mechanism remains independent of the 

failure mechanism. It would be impossible to obtain meaningful data if units were 

censored when they appeared to have high probability of failure at the time of 

censoring. Any unit censored at the time    should be representative of all the units 

under the same test conditions at time   .  

1.8 A Survey on Discrete Lifetime Distributions 

The literature on the reliability theory mainly deals with the non-negative 

absolutely continuous random variables. However, quite often we come across with 

situations where product life can be described through non-negative integer valued 

random variable. In these situations, system lifetime is discrete random variable. 

Therefore one needs to develop tools, analogous to the continuous case, for studying 

the discrete failure data. In particular, discrete analogous of usual distributions for 

continuous lifetimes, such as, the exponential or Weibull distributions, have to be 

defined. It is well known that the geometric distribution is the discrete counterpart of 

the exponential distribution, but it is not so easy for Weibull, since at least three 

distributions are known as “discrete Weibull distributions”. Moreover, discrete 

lifetime distributions can be defined without any continuous counterpart.   

So far little work has been done in discrete reliability. Several discrete lifetime 

distributions have been proposed, but the links between them have not been studied. 

In this chapter a brief survey of discrete lifetime distributions given by Cyril 

Bracquenmond and Olivier Gaudion [2003] is presented, which can also be 

understood as discrete non repairable system reliability models. 
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1.9 Basic Discrete Reliability Concepts 

It is assumed that a discrete lifetime is the number K of system demands until 

the first failure. Then, K is a random variable defined over the set   of positive 

integers.  

 The probability function and cumulative distribution function (CDF) of K are 

respectively defined as  ( )    (   )  and  ( )   (   ) ∑  ( ) 
            . 

The basic discrete reliability concepts are defined hereafter. 

(i) The reliability is: 

                          ( )   (   )     ( )    ∑  ( ) 
    

(ii) The mean residual life is: 

                         ( )   (      ⁄ )   

(iii) The Mean Time To Failure is(if the series converges): 

      ( )   ( )  ∑  ( )

 

   

                      

(iv) The failure rate is: 

          ( )   (   )    )⁄  
 (   )

 (   )
 

 ( )

 (   )
 

Barlow, Marshall and Proschan [1963] defined failure rate (or hazard rate) as 

the conditional probability of failure of the system at times k, given that it did not fail 

before. In discrete time,  ( )     while the usual failure rate in continuous time is 

not bounded. Since a failure rate determines completely a lifetime distribution, 

Shaked, Shanthikumar and Valdez-Torres [1995] gave necessary and sufficient 

conditions for a sequence { ( )}    to be a failure rate: 

(i)              ( )          ( )    

                                        or 

(ii)         ( )  [   [      ∑  ( )     
    

The distribution is defined over {     } in case (i), and over    in case (ii). 
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 The sense of variation of the failure rate is of major concern since it indicates 

system wear-out (IFR: Increasing Failure Rate) or burn-in (DFR: Decreasing Failure 

Rate). According to Barlow and Proschan [1975], determining the failure rate 

monotonicity is often easy when its expression is given and when the expression is 

not given in that case it is usual in continuous time to look at the log-concavity or log- 

convexity of the distribution. Analogous statements for discrete distributions with 

unbounded support  (       ( )   ) were proposed by Gupta, Gupta and 

Tripathi [1997]:  

(i) The distribution is log-concave if and only if {
 (   )

 ( )
}
   

 is decreasing. Then 

the failure rate is increasing (IFR). 

(ii) The distribution is log-concave if and only if  {
 (   )

 ( )
}
   

is increasing. Then 

the failure rate is decreasing (DFR). 

(iii) If the sequence {
 (   )

 ( )
}
   

 is constant, the failure rate is constant and the 

distribution is geometric. 

Distributions can be classified into two families. The first class is constituted 

with discrete distributions derived from usual continuous lifetime distributions and the 

second class contains distributions based on a Pòlya urn scheme.  

1.10 Discrete Lifetime Distribution Derived from Continuous ones 

There are several ways to derive discrete lifetime distributions from 

continuous ones. The first possibility is to consider characteristic property of a 

continuous distribution and to build the similar property in discrete time. The second 

one is to consider discrete lifetime as the integer part of continuous lifetime. 

1.10.1 Geometric Distribution  

The geometric distribution is the analogous in discrete time of exponential 

distribution, since it has the lack of memory property (no ageing, no burn-in): the 

system failure probabilities on each demand are independent and all equal to   

]   [. Equivalently, the failure rate is constant. This property can also be reformulated 

as:  
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 (   )       (     )    )⁄   (   ) 

The geometric distribution  ( ) is defined by: 

(i)  ( )   (   )    

(ii)  ( )  (   )  

(iii)  ( )    

The Mean Time To Failure is MTTF 
 

 
 . 

1.10.2 Shifted Negative Binomial Distribution 

Assume that            are independent random variables from a geometric 

distribution with parameter  . Then ∑   
 
    has a negative binomial distribution with 

parameters r and  ,   (   ). So the negative binomial distribution is the analogous in 

discrete time of the Gamma distribution. In order to obtain a random variable defined 

over   , we have to shift the   (   ) distribution by setting         where,   

has the   (   ) distribution.  

The shifted negative binomial distribution   (   ) is defined by: 

(i)  ( )  (    
     

)  (   )    

(ii)  ( )    ∑ (    
     

)  (   )      
    

(iii)  ( )  
(    
     ) 

 (   )   

 (   )
 

 (   )

 ( )
 (  

   

 
) (   ) is a decreasing function of k, so that the distribution is 

log-concave and the failure rate is increasing. For      the distribution reduces to 

geometric distribution. 

The Mean Time To Failure is 
 (   )

 
  . Due to the shifting, parameter r and p have 

no practical interpretation. 
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1.10.3 Type I Discrete Weibull Distribution 

 Nakagawa and Osaki [1975] were the first to propose a specific discrete 

lifetime distribution which is defined to correspond with the Weibull distribution in 

continuous time. It was the first time a probability distribution was specifically 

defined to be a discrete lifetime distribution. The model is based on the similarity of 

expression of the reliability between discrete and continuous time. It T has a 

continuous Weibull distribution  (   ), then  ( )   
 (

 

 
)
 

. A similar expression 

for the reliability in discrete time is  ( )   
 (

 

 
)
 

or equivalently  ( )     
, 

where             ]   [. 

Thus, the type first Weibull distribution   (   ) is defined by: 

(i)  ( )   (   )     
 

(ii)  ( )     
 

(iii)  ( )     (   )  

   q is the probability of surviving the first demand. As for the continuous 

distribution,   is shape parameter: the distribution is IFR for     , DFR for     

   and for    , it reduce to geometric distribution. 

1.10.4 Type II Discrete Weibull Distribution 

Stein and Dattero [1984] introduced another Weibull (II) distribution in which 

they showed a connection to the famous birthday problem and to the lifetime of a 

series system of components. It T has a continuous Weibull distribution  (   ), then 

 ( )  (
 

 
)
   

 . A similar expression for discrete time is    ( )  (
 

 
)
   

with   

             . 

 But in discrete time  ( )   , then k has to be less than    So this distribution 

has the bounded support. In order to check the conditions present in section 2 for     to 

be failure rate    has to be an integer. It is more usually denoted by m. 
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 Then, the type II discrete Weibull distribution    (   ) with support in 

{       } can be redefined as: 

(i)  ( )  (
 

 
)
   

∏ [  (
 

 
)
   

]   
          {       }  

(ii)  ( )  ∏ [  (
 

 
)
   

]
    (   )
    

(iii)  ( )  (
 

 
)
   

      {       }  

m is the maximum lifetime of the system and    is shape parameter. 

1.10.5 Type III Discrete Weibull Distribution 

Padgett and Spurrier [1985] provided three families of discrete parametric 

distributions which are versatile in fitting increasing, decreasing and constant failure 

rate models to either uncensored or right-censored discrete life-test data with respect 

to the choice of a shape parameter, analogous to the Weibull distribution in the 

continuous case. The type III discrete Weibull distribution    (   ) is defined 

for               by:  

(i)  ( )  (       
)   ∑      

     

(ii)  ( )     ∑    
    

(iii)  ( )         
 

The monotonicity of the failure rate depends on the value of the shape parameter  : 

(i) For    , the distribution reduces to geometric distribution. 

(ii) For    , the distribution is IFR. 

(iii) For    , the distribution is DFR. 

c is linked with the probability of failure at the first demand since   ( )       . 

1.10.6     Distribution  

     distribution was introduced by Soler [1996] to describe the continuous 

lifetimes of systems subjected to random stress. Cyril Bracquenmond and Olivier 
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Gaudion propose the analogous in discrete time. Consider a system such that, on each 

demand, a shock can occur with probability p and not occur with probability    . It 

is natural to assume that the failure rate at the     demand, conditionally to the shock 

sequence, is an increasing function of the number    of shocks occurred at that time. 

One way of taking this assumption into account is to set: 

         ( )   (   )     {  }   
)⁄               ]   [. 

Conditionally to the shock sequence, the reliability is: 

 ( )   (   )   [ (   ) {  }   
⁄ ]                                             

             [∏(   [       {  }   
⁄ ])

 

   

] 

  [∏   

 

   

]                                        

  [∏ ∑   
    

 

   

]                                

The random variables    are not independent.                    . 

The   ’s are independent and have the Bernoulli distribution  ( ), describing the 

occurrence of the shock at each demand. Then, 

∑  

 

   

 ∑(     )  

 

   

                            

So, the reliability becomes: 

                 ( )   [∏ ∑   
    

 

   

]    [∏ ∑ (     )  
 
   

 

   

] 

                         ∏  [∏  (     )   
   ] 

    ∏  (      ) 
    

where is the probability generating function of the  ( ) distribution:  ( )     

   . 
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Finally, the  (   ) distribution is defined by: 

(i)  ( )   (    )∏ (       ) 
    

(ii)  ( )  ∏ (       ) 
    

(iii)  ( )   (    ) 

p is the probability that the shock occurs on demand and    is the                                                                                                                 

probability of surviving the first demand given that a shock has occurred. 

If the shock occurs at each demand, then      and a very simple expression 

of the failure rate is obtained 

                      ( )                               

This is a particular case of type III discrete Weibull distribution with           

    . 

1.11 Discrete Distributions Derived from Continuous ones by Time 

Discretization 

Let T be a real positive random variable describing a system lifetime in 

continuous time. Let   ⌊ ⌋    (where, ⌊  ⌋ is the integer part). K is the random 

variable defined over   . Let                          denote the failure rate, 

CDF and reliability related respectively to the random variables K and T.  

The relation between the probability function of K and the CDF of T: 

       ( )   (   )   (       )    ( )    (   ) 

Furthermore: 

               ( )   (   )   (⌊ ⌋     )   (   )    ( ) 

Hence: 

  ( )    ( )                                                                   

The failure rate of K can be written as: 
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        ( )    
  ( )

  (   )
     ∫   ( )  

 
                               

   and    have the same monotonicity property. 

1.11.1 Exponential Distribution 

Let T have the exponential distribution, with CDF   ( )        . Using the 

above equations, we obtain: 

  ( )       (  (     )                                 

This is the reliability function of the geometric distribution with parameter      , 

whose (constant) failure rate is equal to      . Consequently, the failure rate of 

geometric distribution is not equal to geometric rate of the corresponding exponential 

distribution. 

1.11.2 Weibull Distribution 

Let T have the Weibull distribution  (   ), then 

   ( )   
 (

 
 
)
     

with    
 

 

  . This is the type I discrete Weibull distribution.  

1.11.3 Truncated Logistic Distribution 

Let T have the logistic distribution    (   ), truncated on    (  

           , with CDF: 

  ( )  
    

 
 

    
   
 

   

Then, the discrete truncated logistic distribution is defined by: 

(i)  ( )  
 
 
   
 (   

 
 
 )(   

 
 ) 

(   
 
   
 )(   

 
     

 )
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(ii)  ( )  
 
 
   
    

 
 
 

   
 
   
 

 

(iii)  ( )  
   

 
 
 

   
 
   
 

 

The failure rate is increasing. Parameters c and d have no practical interpretation.  

1.11.4 Geometric-Weibull Distribution 

Experts believe that systems have three steps in their life. In the first step, the 

system has decreasing failure rate called early life, in the second step, the system has 

a constant failure rate until time  , then, in the third step, the failure rate is larger than 

in step I and is increasing. The step II is the stable phase of the system and is called 

useful life while the step III is its wear-out phase, and   is the change point.  

 In continuous time, if we consider that after time  , the failure rate is 

increasing like one of a Weibull distribution, one obtain the exponential-Weibull 

distribution introduced by Zacks [1984], with CDF given by: 

  ( )         [ (   ) ]  

            (   )        is a scale parameter,      is a shape parameter 

and       is the change point. 

 For the construction of the analogous of this distribution in discrete time, 

which will of course be called the geometric-Weibull distribution,   takes values 

in   . 

Then, geometric-Weibull distribution is defined by: 

(i)   ( )     (   ) [ (     ) ]       [ (   ) ]   

(ii)   ( )       [ (   ) ]  

(iii)   ( )         
 [[(     ) ]  [(   ) ] ] 
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1.12 Pòlya Urn Distribution 

Numerous discrete distributions can be built from urn representations, 

Jhonson, Kotz and Kemp [1992]. The urn scheme considered by Eggenberger and 

Pòlya [1923] is the following. An urn contains “W” white balls “R” red balls. After 

each drawing of a ball, a replacement policy is chosen. Pòlya distributions are the 

distributions of the number of times a red ball is drawn in N drawings. Inverse Pòlya 

distributions are the distributions of the number of drawings to obtain a specified 

number r of red balls. There are as many different distributions as possible 

replacement policies. For example, if after each drawing, only the chosen ball is 

returned in the urn, the Pòlya distribution reduces to binomial distribution, and the 

corresponding inverse Pòlya distribution is the negative binomial distribution 

(geometric distribution for r=1). 

 In the discrete reliability context, the drawing of a white ball corresponds to a 

demand successfully completed and drawing of a red ball to a failure on demand. 

Thus, system lifetime is described by an inverse Pòlya distribution with r=1.  

 In this case, the failure rate at     drawing can be understood as the probability 

of drawing for the first time a red ball at     drawing, given that no red ball has been 

drawn during the first     drawings. 

 If the replacement policy consists in returning the draw (white) ball, together 

with red balls, this scheme increases failure probability. So the corresponding lifetime 

will have an increasing failure rate. Conversely, if the draw (white) ball is returned 

together with other white balls, the lifetime distribution has a decreasing failure rate. 

 Inverse Pòlya distributions can be very useful in reliability studies since they 

have practical interpretations and a simple expression of the failure rate. Moreover, 

most of these distributions have closed form expressions for the MTTF and variance, 

which provide a simple way to estimate parameters.  

1.12.1 IFR Inverse Pòlya Distribution 

If the drawn white ball is returned in the urn with   red balls, the 

corresponding failure rate is increasing and given by: 
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 ( )  
  (   ) 

    (   ) 
 

 Let   
 

   
 ]   [       

 

   
   . From the lifetime point of view,   is 

the probability of failure on the first demand and   qualifies the importance of ageing. 

For    , the distribution is geometric. 

The IFR inverse Pòlya distribution is defined by: 

(i)  ( )  
(   ) [  (   ) ]

∏ [  (   ) ] 
   

 
(   ) [  (   ) ]

 
 (

 

 
)
( )

  

                ( )  is the Pochhammer symbol: 

( )  { ∏(     )

 

   

                

                                               

 

(ii)  ( )  
(   ) 

 
 (

 

 
)
( )

 

(iii)  ( )  
  (   ) 

  (   ) 
   

   

  (   ) 
  

The Mean Time To Failure is      
(   ) 

 
 
  

 
   
 

 
   

   (
   

 
 
   

 
 ),  

where,  (   )  ∫           
 

 
 is the incomplete Gamma function.  

1.12.2 DFR Inverse Pòlya Distribution 

If the white ball drawn is replaced in the urn together with   white balls,  

the failure rate is decreasing and given by:   

 ( )  
 

    (   ) 
 

With the same notations as before, the DFR inverse Pòlya distribution is defined by: 

(i)  ( )  
 ∏ [    (   ) ]   

   

∏ [  (   ) ] 
   

 
 

     

(
     

 
)
( )

(
 

 
)
( )
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(ii)  ( )  
∏ [    (   ) ] 

   

∏ [  (   ) ] 
   

 
(
   

 
)
( )

(
 

 
)
( )

 

(iii)  ( )  
 

  (   ) 
 

The MTTF is only defined for     and is equal to: 

     ∑

(
   
 

)
( )

(
 
 
)
( )

  

   

                                

              
 (

   

 
   

 

 
  )  

   

   
 

                          
  (       )  ∑

( )( )( )( )
( )( )

  

   

  

  
                          

                     
 ( )

 ( ) ( )
∑

 (   ) (   )

 (   )

  

   

  

  
 

 is a Gaussian hyper geometric series.  

 The distribution variance, only defined for      , is: 

   ( )  
(   ) (   )

(   ) (    )
                             

The DFR inverse Pòlya distribution is also called the Waring distribution, 

Irwin [1975]. Its failure rate is inversely proportional to a linear functional of 

time:  ( )  
 

    
. The studied case here corresponds to    . Xekalaki [1983] also 

considered the case     . In this case the random variable is defined on {       } 

and its failure rate is:  

 ( )  
 

   (   )
                        

 For the particular case where  
 

 
  is an integer, the probability function is given by: 

26 



 
 

 ( )  

(
 
 
  

  
 
 
    

)

(
 
 

  
 
 
  

)

                                     

 and K has shifted hyper geometric distribution. 

For DFR inverse Pòlya distribution, if     

 ( )  
 (   )   

   
                                 

As a particular case, MTTF   ( )  
   

   
. 

Gupta, Gupta and Tripathi [1997] showed that the Waring distribution is a 

particular case of extended Katz family, defined by the ratio of two consecutive 

probabilities given by: 

 (   )

 ( )
 

    

   
       

     

 
           

 

 
 

In the same way, the IFR inverse Pòlya distribution can be defined by: 

 (   )

 ( )
 

   

 

 
 
  

(
 
 
    ) (

 
 
  )

                               

which is a particular case of Kemp family. 

1.13  Salvia and Bollinger Distributions 

Salvia and Bollinger [1982] introduced two distributions with only one 

parameter   (   ) which are based on very simple expression of the hazard rate. 

For     , in fact, they are inverse Pòlya distributions. 

1.13.1 IFR SB Distribution 

The IFR SB distribution is such that 

(i)  ( )  (   )
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(ii)  ( )  
  

  
 

(iii)  ( )    
 

 
 

        . The distribution variance is     ( )           .This 

distribution has few particular interests because its mean is between 1 and e, so the 

values taken by K are mainly equal to 1.   

1.13.2 DFR SB Distribution 

The DFR SB distribution is such that: 

(i)  ( )  
 

  
(   )(   ) 

(ii)  ( )  
(   )( )

  
 

(iii)  ( )  
 

 
 

The MTTF does not exist because the assumption    , here    , is not verified.  

1.14 Generalized Saliva and Bollinger Distributions 

Saliva and Bollinger distributions are not flexible enough to fit a wide variety 

of situations. Padgett and Spurrier [1985] proposed to generalize these distributions 

by adding a second parameter     . When,     the distribution reduces to Salvia 

and Bollinger distribution. When,     the distribution is geometric. 

 The IFR generalized SB distribution is defined by its failure rate: 

 ( )    
 

(   )   
                                          

And the DFR generalized SB distribution by: 

 ( )  
 

(   )   
                                                 

It appears that these distributions are exactly inverse Pòlya distributions.  

1.15 Eggenberger - Pòlya Distribution 

Eggenberger-Pòlya distribution can be understood as a limit point of Pòlya 

distribution when the number of drawings goes to infinity. 
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 The probability of system failure at demand k is:  

 ( )  
 

(   )
 

 ⁄

(  ⁄ )
(   )

(   ) 
(

 

   
)
   

  

 The failure rate is given by: 

 

 ( )
 ∑

(  ⁄     )
( )

( )( )

  

   

(
 

   
)
 

        

    
 (

 

 
         

 

   
)    

The expression of the failure rate is very complex and the result on the ratios of the 

successive probabilities is required to study its monotonicity: 

 (   )

 ( )
 

 

   
 

   

   

 

 
                                     

(i) If     , then failure rate is constant and the model reduces to geometric 

distribution with parameter 
 

   
 , 

(ii) If    , the distribution is log-convex and then DFR , 

(iii)  If    , the distribution is log-concave and then IFR. 

In the three cases,  

   
   

 ( )  
 

   
                                                       

 Using the probability generating function of this distribution, the mean and variance 

can be derived: 

(i)          

(ii)    ( )   (   ) 

h represents the mean number of demands until the first failure minus one. There is no 

interpretation for parameter d. 
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2.1 Introduction 

n lifetime data analysis, the concepts of reversed hazard rate has potential 

application when the time elapsed since failure is a quantity of interest in order 

to predict the actual time of failure. The reversed hazard rate is more useful in 

estimating reliability function when the data are left censored or right truncated. The 

reversed hazard rate is defined as the ratio of the density to the distribution function, 

had attracted the attention of researchers. Being in a certain sense a dual function to 

an ordinary hazard rate, it still bears some interesting features useful in reliability 

analysis. Ordinary hazard rate functions are most useful for lifetimes, and reverse 

hazard rates are natural if the time scale is reversed. Mixing up these concepts can 

often, although not always, lead to anomalies. For example, one result gives that if the 

reversed hazard rate function is increasing, its interval of support must be (     ) 

where b is finite. Consequently non negative random variables cannot have increasing 

reversed hazard rates. Reversed hazard rates are also important in the study of 

systems. Hazard rates have an affinity to series systems; reversed hazard rates seem 

more appropriate for studying parallel systems. Several results are given that 

I 
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demonstrate this. In studying systems, one problem is to relate derivatives of hazard 

rate functions and reversed hazard rate functions of systems to similar quantities for 

components; one can also find applications of these concepts in different topics of 

investigation. Some analogous results and characterizations in the case of the reversed 

hazard rate and mean residual life for discrete distributions are discussed by Gupta, 

Nair and Asha [2006] and Goliforushani and Asadi [2008]. 

There has been growing interest in recent times in the study of reliability 

functions in reversed time and their applications. The functions of primary interest 

discussed in the continuous case in the literature are the reversed hazard rate, Block, 

Savits and Singh [1998] and Finkelstein [2002]. The reversed mean (variance) 

residual life or mean (variance) inactivity time (Nanda et al., [2003]; Li and Lu, 

[2003]; Kundu and Nanda, [2010]), and the reversed percentile residual life (Nair and 

Vineshkumar, [2010]). In this chapter characterizations of some discrete distributions 

established by Unnikrishnan Nair and Sankaran [2013], using properties of the 

reversed hazard rate and reversed mean residual life are discussed and discrete 

distributions having a constant reversed hazard rate, the reversed lack of memory 

property, and the product of the reversed hazard rate and the mean residual life a 

constant are identified.  

2.2 Reversed Hazard Rate 

Let   be a discrete random variable defined on the set    {           }  

where b is a positive integer and can be  . If the probability mass function and 

distribution function of   is denoted by   ( ) and   ( ) respectively. Then the reversed 

hazard rate of X is defined as  

                                   ( )     (           )    
  ( )

  ( )
                                       (     ) 

The distribution of   is determined uniquely by  ( ) through the formula 

                                     ( )  ∏ (  –   ( )) 
                                                                (     ) 
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Further, the random variable   is said to satisfy the reversed lack of memory 

property if and only if 

                 (               )     (           )                                         (     ) 

for all     in  . The property (2.2.3) can be interpreted in the following way in the 

context of maintenance problems. When   represents the lifetime of a device, its 

inactivity time (time since failure) is independent of the age of the device. 

With these definitions, we have the following characterizations, in which we assume 

that        

Theorem 2.2.1 :  The random variable X is distributed as 

                  ( )  {
(     )                                    
                                                                             

                   (     ) 

if and only if any one of the following conditions is satisfied: 

(a)  ( )     , a constant for all      , where            

(b)   has the reversed lack of memory property. 

Proof:  Let  

  ( )  {
(     )                            

 (     )                  
                                                   

The terms in the above probability mass function for               are in increasing 

geometric progression with common ratio(   ), as opposed to the usual geometric 

distribution where the terms are decreasing, therefore; 

         ( )   (   )  {
(     )                                    
                                                                             

  

In view of the reversal of the monotonicity of successive probabilities  ( ) is called 

reversed geometric distribution. 

also, from equation (2.2.1), we get 
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 (     )   
 

     
                 –                                                 

and  ( )      for all discrete distributions with zero as the left end point for their 

supports. Thus,  (  )  is constant. 

Conversely, suppose 

 (     )   
 

     
                 –                                                  

then by using equation (2.2.2), we get 

  ( )  {
(     )                                    
                                                                             

 

thus,   ( ) is constant if and only if    has a reversed geometric law. 

Also, the distribution (2.2.4) satisfies (b) can be easily verified from (2.2.3).  

Conversely, when the reversed lack of memory property holds, we have 

  (     )  ( )     ( )  ( )                                                     

         (     )  
  (  )

  (  )
   ( )                                               

            
  (   )

  (  )
 

  (  )

  (  )
 
  (  )

  (  )
                                               

                           (     )    ( ) ( )        ( )   
  ( )

  ( )
                     

To solve the functional equation, set      , so we have 

  (     )    ( ) ( )                                           

      
(   )   

(   )  
 

(   )   

(   )  
 

 (   )                     
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         [ ( )]                       

for all                  .  

and, 

[  ( )]   

[  ( )] 
 (   )        (     ) 

                                           (     )   
[  ( )]   

[  ( )] 
                                                        (     ) 

with 

  ( )   
  

[  ( )]   
              

                           ( )    
 

                           ( )                  

substituting for   ( ) in (2.2.5) and setting     (     )  , we have (2.2.4). 

Thus X has a reversed geometric law if and only if    has the reverse lack of memory 

property. 

2.3 Reversed Mean Residual Life 

The reversed mean residual lifetime is defined as 

            ( )    (           )   
 

  (  –   )
∑  (     )

 

   

                                 (     ) 

with  ( ) defined as zero. Goliforushani and Asadi [2008] have shown that 

          ( )    
  –   (     )    ( )

 ( )
                                                           (     ) 

and 
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            ( )  [∏
 ( )

 (     )   

  

   

] [∏
 ( )

  (     )–    

 

   

   ]⁄                      (     ) 

In the case of the usual reliability functions,   having constant hazard rate, 

having constant mean residual life and having a geometric distribution are all 

equivalent. Further the geometric law is characterized by the property that the product 

of the hazard rate and the mean residual life is unity. A different scenario arises when 

the functions in reversed time are considered. 

While  ( ) is constant for all   for the reversed geometric law, its reversed 

mean residual life is 

 ( )   
     

  
[     

 

(     ) 
]                                                                

a non constant function.  

Theorem 2.3.1 :  The random variable   has reversed mean residual life function 

 ( )   
     

 
                                                      

if and only if 

                  ( )  {
   (     )                                    

(     )                             
                                    (     ) 

Proof: The probability mass function corresponding to (2.3.4) is  

  ( )  

{
 

 
   (     )                        
   

 
(     )                    

 (     )                     

                                   

and from equation (2.2.1), we get 

                  ( )    
 

    
  for the assumed values of  . 
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Since, the property  ( ) ( )      for all             characterizes the model (2.3.4), 

thus  

 ( )   
     

 
                                                

Conversely from (2.3.2), if  ( ) ( )     , then 

 (     )     ( )      

so  ( ) is a constant. 

Thus,   has reversed mean residual life function  ( )   
     

 
  if and only if   ( ) is 

given by (2.3.4). 

2.4 Reversed Variance Residual Life 

The reversed variance residual life is defined as  

                                ( )    ((     )       )     ( )                                          (     ) 

It can also be computed as 

 ( )    (        )     (       )                       

Another useful representation of  ( ) is given below; using (2.4.1), we have 

 ((  –   )       )   
 

  (  –   )
∑(  –   )   ( )

   

   

                                              

                                       
 

  (     )
∑(     ) [  ( )      (     )]

 

   

          

                                 
 

  (     )
∑(     )  (     )

 

   

  ( )            

              
 

  (     )
∑ ∑   (    ) 

   
 
     ( ) 
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giving 

                       ( )   
 

  (  –   )
∑∑  (    )

 

   

 

   

  ( )( ( )    )                   (     ) 

Example 2.4.1: Let X follows the uniform distribution 

  ( )   
 

 
                                                                              

Now,    

             ( )   
 

 
                                                                                           

  ( )   
  –   (     )    ( )

 ( )
                                                     

 
  

   
  

 
 

 
 

                                                          

   
       

 
 

 

 
                                                     

and  

  ( )   
 

  (  –   )
∑∑   (    )

 

   

 

   

  ( )( ( )    )       

  
 

(   )
∑∑(   )

 

   

 

   

 
 

 
(
 

 
   )                

  
 

(   )
∑[

 (   )

 
]

 

   

 
 (   )

 
                   

  
 

(   )
∑[    ]

 

   

 
 (   )
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(   )
[
 (   )(    )

 
 

 (   )

 
]  

 (   )

 
 

 
 (   )

 
  

 (   )

 
 

 (   )

  
                   

Thus, the functions calculated are 

 ( )   
 

 
  ( )   

 

 
           ( )    

 (  –   )

  
          

Example 2.4.2: The arithmetic distribution is defined by the distribution function 

  ( )  
  (     )

 (     )
                                                        

Its probability mass function 

  ( )  
  

 (     )
                                                                        

is the length-biased version of the uniform distribution in Example 2.4.1. 

Now,  

 ( )   
     

 
                                                                            

 ( )   
  – 

   
   

     
 

     
 

                                                  

  
         

   
 

 

   
                              

also,  

 ( )   
 

  (  –  )
∑ ∑   (    ) 

   
 
     ( )( ( )    ) 

38

8 



 
 

    
 

  (  –   )
∑∑  (     )

 

   

 

   

 
     

 
(
     

 
   )      

                    
 

  (  –   )
∑[

 (   )(    )

 
 

 (   )

 
]

 

   

 
(   )(   )

 
    

    
 

  (  –   )
∑

    

 

 

   

 
(   )(   )

 
                                

            
 

   (  –   )
[(

 (   )

 
)

 

 
 (   )

 
]  

(   )(   )

 
       

    
(   )(   )

 
 

(   )(   )

 
                                         

    
(   )(   )

  
                                                                             

Thus,  

 ( )   
 

     
        ( )   

     

 
             ( )   

(     )(  –   )

  
               

Theorem 2.4.1: For a random variable   in the support of (         )        the 

relationship 

      ( ) ( )                                                                                                (     ) 

holds for                  if and only if the distribution of   is specified by 

                ( )   
(  –   ) 

(  –   ) 

( ) 
( ) 

                                                                     (     ) 

    where          
 

   
   is a positive integer and 

 ( )     (     )       (      –   )                                                          

is the Pochhammer symbol. 
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Proof:    Let    ( ) ( )              , then using (2.3.2) to obtain the first-order 

difference equation 

 (     )    ( )     –                                                                                       

To solve for  ( )  we iterate for   values and use the boundary condition  ( )     , 

to obtain 

 (     )       (     )                                                   

and hence 

 (     )–   

 ( )
 

    (     )   

    (     )(   )
                                              

   
   

 
   

    
                                   

     
  –   

         
                                          

where,          
 

   
 

using the value of  ( ) in (2.3.3), we get 

  ( )   
(  –   ) 

(  –   ) 

( ) 
( ) 

                                              

Conversely, suppose   is specified by (2.4.4), then the probability mass function 

is 

  ( )   
(  –   ) 

(  –   ) 
 
 ( )   

( ) 
                                        

and by using (2.2.1), we get 

 ( )    
 

      –    
   

  

    (     )(     )
 

Thus,                 ( ) ( )     .  
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Particular cases:       and       correspond to the uniform and arithmetic 

distributions respectively. 

There are some identities satisfied by  ( )  ( ) and  ( ) that could be of use in 

characterization problems for determining one from another.  

From (2.4.2), 

               [ ( )    ( )( ( )    )]  (     )    ∑∑   (  –   )

 

   

 

   

                 (     ) 

changing   to       and then subtracting (2.4.5), we obtain 

[ (   )   (   )( (   )   )]  ( )  [ ( )   ( )( ( )   )]  (   )  

                                                   (   )  ( ) 

dividing by   ( ) and noting that 

  (     )

  ( ) 
        ( )   

  (     ) –    

 ( )
 

we have, 

 (   )    (   )   (   )  [ ( )   ( )( ( )   )][   –   ( )]           

                                         (   ) 

       (   )   ( )    (   )   (   )   ( )( ( )   ) (
  (     )–    

 ( )
)       

                                                                 (   )   ( ) ( )  

 (   )   ( )    (   )    (   )     ( )( ( )   )                      

                                            ( ) ( ) 

 (   )   ( )  ( (   )   )   ( )( ( )   )                                           

                                                 ( ) ( )        

 (   )   ( )  ( ( )   (   )   )( ( )   )   ( ) ( )                      
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                        ( ) (  
  (     ) –    

 ( )
) ( ( )   )   ( ) ( )           

                        ( ) ( )[ ( )   ]   ( ) ( )                                              

                                     ( )( ( )( (     )    )    ( ))                                   (     ) 

            (     )   ( ) ( )( (     )    )   ( )  ( )    ( )                          

                (     )  (  
  (     ) –    

 ( )
)  ( )( (     )    )    ( )(   ( )) 

 (     )                                                                                                           

                           ( )( (     )    )  ( (     ) –   )    ( ) (
  (     ) –    

 ( )
 ) 

 (     )  ( (     ) –   )                                                                        

    ( )( (     )    )   
 ( )

 ( )
( (     ) –   ) 

 (     ) 

 (     ) –    
   (     )                                                                    

                                   
 ( )

 ( )
    ( )                                                                              (     ) 

Kundu and Nanda [2010] have identified the class of distributions in the continuous 

case for which the square of the coefficient of variation of the residual life is a 

constant. In the discrete case, the result is slightly modified. 

Theorem 2.4.2: A random variable   in the support of {(         )} satisfies the 

property 

                                
 ( )

 ( )( ( )     )
                                                                       (     ) 

a constant if and only if its distribution is 

                        ( )   
(  –  ) 

(  –  ) 

( ) 

( ) 
                                                               (     ) 
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for            

and 

               ( )  {
   (     )                                     

(     )                                            
                    (      ) 

 

  for      . 

Proof:  We know that 

  ( )    [ (  –   )       ]    
 

  (  –   )
  ∑(  –   )   ( )

   

   

                 

                                                             
 

  (     )
∑(     )  ( )

   

   

     ( ) 

[  ( )    ( )]  (     )    ∑    ( )

   

   

                                       

Working as in the case of (2.4.6) and (2.4.7), we obtain 

  (     ) ( )–   ( )( (     )    )    ( )( (     )    )         

                                                                      ( ) (     )                                    (      ) 

Now, assume that      . Then 

 ( )    ( )( ( )    )    ( )     ( )                                

giving 

   ( )     ( )( ( )     )      ( )                                                 

using this in (2.4.9) and simplifying, we obtain 

 (     )    ( )                                                                                                       

and hence  ( ) is a constant, so by Theorem 2.3.1 the distribution is  
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     ( )   {
   (     )                                

(     )                        
  

For this distribution   ( )    
   

 
 

and so, 

 ( )( ( )    )   
     

  
                                                                          

also, 

        ( )    
 (     )

 (     )   
[∑(     )       

(     )   

 

 

   

]   
(     ) 

  
  

     

 
 

  
     

  
                                            

For any distribution,  ( )      and  ( )     , therefore; 

 ( )    ( )( ( )    )                                   

is trivially satisfied for       and this completes the proof for      .When 

          and the distribution is 

  ( )   
(  –   ) 

(  –   ) 

( ) 
( ) 

                          

                               ( )       (     )(     )   
         

     
                      

 

  (     )
∑∑  (     )

 

   

 

 

   

  
 

  (     )
∑ ( )  (     )

 

   

                                       

                                                          
 (     ) 

(     )( )   (     )
∑

( ) 
(     ) 

 

   

         (      ) 

from the identity 

∑ (         
     

) 
     (     

 
) 
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∑
( ) 

(     ) 

 

   

   
(     ) 

(     ) (     ) 
                

substituting for   (     ) from (2.4.9) and simplifying (2.4.12), we obtain 

 

  (     )
∑∑  (     )

 

   

 

   

     
 (         )(     )

(     )(     )
                                       

the last expression together with  

 ( )( ( )    )   
(      )(      –   )

(     ) 
             

yields 

           ( )   
  (         )(     )

(     ) (     )
 

and 

  
 ( )

 ( )( ( )     )
  

 

     
                       

Conversely, suppose  

 ( )

 ( )( ( )     )
                                        

and by using identity (2.4.7), we get the difference equation 

 (     )    ( )  
      

     
                                            

which on solution using the boundary condition  ( )      leads to 

              ( )       
     

     
(  –   )       

          (     )(  –   )                                     

where, 
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therefore by theorem 2.2.1, the distribution is (2.4.9). 
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3.1 Introduction 

n important concept in reliability is the bathtub shaped hazard rate function 

which consists of an initially decreasing hazard (the ‘wear-in’ phase) 

followed by an approximately constant hazard (the ‘useful’ phase) and 

finally an increasing hazard (the ‘wear-out’ phase). The point of minimum hazard is 

termed the ‘turning point’. This obviously provides an opportunity to improve the 

expected operating time by means of ‘burn-in (using up the initial wear-in phase). 

Bebbington, Lia and Zitikis [2007a] proposes computationally tractable formal 

mathematical definitions for the 'useful period' of lifetime distributions with bathtub 

shaped hazard rate functions and detailed analysis of the reduced additive Weibull 

hazard rate function. Bebbington et al. [2007b] also focused on bathtub-type 

distributions and provide a view of certain problems, methods and solutions that can 

be encountered in reliability engineering, survival analysis, demography and actuarial 

science. Again, Bebbington et al. [2007c] estimated the optimal burn-in time, for 

bathtub shaped failure-rate lifetime distributions the optimal burn-in time is frequently 

defined as the point where the corresponding mean residual life function achieves its 

maximum. For this point, they construct an empirical estimator and develop the 

A 
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corresponding statistical inferential theory for the difference between the minimum 

point of the corresponding failure rate function and the aforementioned maximum 

point of the mean residual life function. The difference measures the length of the 

time interval after the optimal burn-in time during which the failure rate function 

continues to decrease and thus the burn-in process can be stopped.  

  The turning point of a hazard rate function is useful in assessing the hazard in 

the useful life phase and helps to determine and plan appropriate burn-in, 

maintenance, and repair policies and strategies. For many bathtub-shaped 

distributions, the turning point is unique, and the hazard varies little in the useful life 

phase. Bebbington et al.  [2008] investigate the performance of an empirical estimator 

for the turning point in the case of the modified Weibull distribution, a bathtub-shaped 

generalization of the Weibull distribution, that has been found to be useful in 

reliability engineering and other areas concerned with life-time data.  

Several discrete lifetime distributions have been introduced in the literature, 

many derived by discretizing their continuous counterparts. For example, Nakagawa 

and Osaki [1975] defined the discrete Weibull distribution to correspond with the 

Weibull distribution in continuous time. Roy [2003] proposes a discrete version of the 

continuous normal distribution and ensured Increasing Failure Rate property in 

the discrete setup. Roy [2004] used a general approach for discretization of 

continuous life distributions in the univariate & bivariate situations and proposed a 

discrete Rayleigh distribution; he examined this distribution in detail with respect to 

two measures of failure rate. He also characterization results to establish a direct link 

between the discrete distributions (Normal and Rayleigh) and their continuous 

counterpart. This discretization approach not only expands the scope of reliability 

modeling, but also provides a method for approximating probability integrals arising 

out of a continuous setting. As an example, he approximated the reliability value of a 

complex system. Krishna and Pundir [2009] obtained discrete Burr and Pareto 

distributions using the general approach of discretizing a continuous distribution and 

proposed them as suitable lifetime models. A discrete analogue of the standard 

continuous Weibull distribution was proposed in the literature to meet the need of 

fitting discrete-time reliability and survival data sets. Its properties were studied and 

the methods of estimation of its parameters were also investigated by various authors. 

48 

http://academic.research.microsoft.com/Keyword/43156/turning-point


 
 

Analogous to its continuous counterpart, the discrete Weibull does not provide a good 

fit to data sets that exhibit non-monotonic hazard rate shapes. Aghababaei, Lai and 

Alamatsaz [2010] proposed a discrete inverse Weibull distribution, which is a discrete 

version of the continuous inverse Weibull variable, defined as X
−1

 where X denotes 

the continuous Weibull random variable.  

For discrete distribution with reliability function  ( )           [ (   

  )     ( )]  (     ) has been used as the definition of the failure rate function in 

the literature. However, this is different from that of the continuous case. This discrete 

version has the interpretation of a probability while it is known that a failure rate is 

not a probability in the continuous case. This discrete failure rate is bounded, and 

hence cannot be convex, e.g., it cannot grow linearly. It is not an additive for series 

system while the additivity for series system is a common understanding in practice. 

Xie, Gaudoin and Bracquemond [2002] introduced another definition of discrete 

failure rate function as In[R(k - 1)/R(k)]  and showed that the two failure rate 

definitions have the same monotonicity property. That is, if one is increasing / 

decreasing, the other is also increasing / decreasing. Gupta et. al in 1997 developed 

techniques for the determination of increasing failure rate (IFR) and decreasing failure 

rate (DFR) property for a wide class of discrete distributions. Instead of using the 

failure rate, they make use of the ratio of two consecutive probabilities. The method 

developed is applied to various well known families of discrete distributions which 

include the binomial, negative binomial and Poisson distributions as special cases. 

These formulas are explicit but complicated and cannot normally be used to determine 

the monotonicity of the failure rates. In this chapter discrete versions of the additive 

Weibull distribution is presented, explored by Bebbington , Lai , Wellington and 

Zitikis [2012]. The distribution has the twin virtues of mathematical tractability and 

the ability to produce bathtub-shaped hazard rate functions. Conditions are defined on 

the parameters for the hazard rate function to be increasing, decreasing, or bathtub 

shaped. 

3.2 Continuous Additive Weibull Distribution 

The continuous additive Weibull distribution is defined by its reliability 

function 
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                      ( )     (    
     

 )  for all   [   )                                     (     ) 

               (   ) are parameters. Intuitively,  ( ) is the reliability function of 

      {     } where          are independent Weibull random variables with 

parameters (    ) and (    ) respectively. 

The hazard rate function  

                                     ( )  
   ( )

 ( )
     

        
                                       (     ) 

of the additive Weibull distribution has a bathtub shape, meaning that it is initially 

decreasing but ultimately increasing. Specifically, it has been shown by Xie and Lai 

[1995] that  ( ) is bathtub shaped when        or,   by symmetry, when     

 . The ‘scale’ parameters    and    have no influence on the shape. The turning point 

of the hazard rate function  ( ), that is, the point   where the bathtub-shaped hazard 

rate function achieves its minimum, is given by  

                                         (
 (   )   

 (   )  
)

 
(   )

                                                     (     ) 

when,         as well as by symmetry when      . 

Throughout this chapter, whenever a  function,  say   ,  is  defined on   

{     }, its  argument is denote by   , thus writing  ( )  If, however, the function   is 

defined on a continuous scale such as [   )    [   ), then its  argument  is denote 

by   ,  thus writing  ( )  

3.3 Definitions, Shapes and Turning Points 

The discrete version of the continuous hazard rate function  ( ) at the 

points    , called the ‘naive’ discrete hazard rate function is defined as; 

                                     ( )      
        

                                                              (     ) 

And the ‘classical’   discrete hazard rate function      [   ) is defined by 

                                      ( )  
 ( )

 (   )
                                                                            (     ) 
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where,    ( )    (   )    ( ) is a probability mass function. However, this 

definition implies that the function h maps the natural numbers N into the interval    

[0, 1].  This means that the hazard is not scalable relative to any time unit, making 

comparisons between situations difficult. This shortcoming of the hazard rate function 

 ( )  when it comes to cost analysis has inspired the search for other definitions. A 

method for converting the naive discrete hazard function into a classical formulation 

has been proposed by Stein and Dattero [1984] for the discrete Weibull, but as it 

requires truncating the support of the distribution. Nevertheless, continuing with the 

‘classical’ discrete hazard rate function  ( )  defined by (3.3.2) in the case of the 

additive Weibull model (3.2.1), we have that 

                                   ( )      
   (   )   

   (   )                                                  (     ) 

where,         {   }            {   }. 

For,         this is the geometric distribution. We see that the discrete hazard 

function  ( ) is quite different from   ( ). The degree of similarity between the shape 

and other properties of the two depends heavily on the (discrete) time scaling.  For 

example, if the domain of (time) interest is large, so that the increments between 

possible discrete failures are a relatively insignificant part of the lifetimes, then the 

discrete failures will occur in a process resembling the continuous model. However, if 

the increments are a noticeable fraction of the lifetimes, this may not be so, 

particularly for more complicated properties. For  this reason,  there is  no  general 

theory relating the  properties  of  the  discrete and continuous hazard functions,  and  

hence  the  shape  of   the  former needs  to   be established in  a  rigorous fashion 

despite the fact  that the shape of  the continuous version might  already be  well 

known. In the following theorem the possible shapes of the hazard rate function 

 ( ) are discussed. 

Theorem 3.3.1: 

i) If either ( )                (  )              then     [   ] is 

strictly increasing on [   )  

ii) If               then     [   ] is constant on [   )     
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iii) If either ( )                (  )              then     [   ] is 

strictly decreasing on [   )  

iv) If          then     [   ] is bathtub shaped with minimum achieved at one 

of the three points ⌊    ⌋   ⌊    ⌋       ⌊    ⌋  where,       (
 (   )   

 (   )  
)

 

(   )
   

and ⌊  ⌋ is the floor function, that is, ⌊ ⌋ is the largest integer k such that    . By 

symmetry, the same conclusion holds in the case      . 

 Proof: In the continuous case we need to investigate the sign of the derivative of the 

function 

                                    ( )      
        

                                                         (     ) 

where as in the discrete case we need to investigate the sign of the derivative of the 

function 

                                     ( )      
   (   )   

   (   )                                              (     ) 

this function is a continuous version of the hazard rate function 

                                    ( )      
   (   )   

   (   )                                               (     ) 

we explore the shape of the hazard rate function     [   ] by exploring the shape 

of its continuous version  ( ) defined by (3.3.5). For this, we investigate the sign of 

the derivative   ( ), which is same as the sign of the function   ( ) [   ( ) ]⁄ .  

Now,  

  ( )

   ( )
  

 

  
   (   ( ))                                         

  
 

  
   (  

   (   )   
   (   ) )  

                                              
 

  
(  ( 

  (   ) )    ( 
  (   ) ))           (     ) 

where,        (
 

  
)             (

 

  
). 
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Thus, the sign of derivative   ( ), is same as the sign of the function  

        ( )     ( 
    (   )   )     ( 

    (   )   )                  

                            (   )  ∫      

 

   

  (   )  ∫      

 

   

                    (     ) 

Clearly.  

1. If either ( )                (  )            , then  ( ) is strictly 

positive for all    , and thus  ( ) is strictly increasing on (   ). 

2. If            , then  ( )   , and  ( ) is constant on (   ). 

3. If either ( )                (  )            , then  ( ) is strictly 

positive for all    , and thus  ( ) is strictly decreasing on (   ). 

and, the only two cases that remain to look at are, first, 

       and        

By symmetry we analyze one of the two cases, and hence we concentrate on     

    We next determine the number of zeros of the function  ( ) which are the solution 

of the equations 

           (   )  ∫      

 

   

  (   )  ∫      

 

   

                                      (     ) 

Now,    . Let  

                                             ( )   (   )  ∫      

 

   

                                      (      ) 

                                              ( )   (   )  ∫      

 

   

                                      (      ) 

Hence,   ( )    ( )    ( ). 

Clearly   ( )   ( ) are both positive for all     and since      Therefore 

the function   ( ) is strictly decreasing on (   ) with the limiting value    
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when     and 0 when     and the function   ( ) is strictly increasing on (   ) 

when    , is equal to the constant      when    , and is strictly decreasing 

when    (   ). 

Now to show minimum is achieved at one of the three points ⌊    ⌋   

⌊    ⌋      ⌊    ⌋, we first define bonds 

   (   )   ∫      

 

   

 ∫      

 

   

     ∫      

 

   

 

which imply the existence of    (     ) such that  

∫      

 

   

     ∫      

 

   

 

applying the later equation on the right-hand side of (3.3.8), we have that 

                        ( )  (
 (   )   

 (   )  
      ) (  )  ∫      

 

   

             (      ) 

Hence, for all     such that  

                                      
 (   )   

 (   )  
                                                                (      ) 

The function  ( ) is negative and thus the function  ( ) is decreasing. The condition 

(3.3.13) is equivalent to       . Furthermore, for all     such that 

                           
 (   )   

 (   )  
(   )                                                                (      ) 

The function  ( ) is positive and thus the function  ( ) is increasing. Condition 

(3.3.14) is equivalent to         . Therefore, the points      such that  ( )    

must be in the interval  (           ), and so the minimum of the function   ( ) must 

be in the same interval. This in turn implies that the minimum of the discrete hazard 

rate function  ( ) must be at one of the three integral points ⌊    ⌋   ⌊    ⌋       

⌊    ⌋.                                                                                                
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It has been argued by Xie et al.  [2002] that a different definition of the 

discrete hazard rate function would be more appropriate for a number of reasons and 

the ‘non-classical’ hazard rate function      [   ) is given by the formula  

                                 ( )     (
 (   )

 ( )
)                                                             (      ) 

According to Lai and Xie [2006], unlike the classical hazard rate function 

(3.2.2), this has the intuitively attractive property of being additive for a system 

consisting of a series of independent components. The function      [   ) has 

also been termed the second-rate of failure by Roy and Gupta [1992], which was 

actually defined, given a ‘classical’ discrete hazard rate function     [   ], by the 

equation 

                                  ( )     (
 

   ( )
)                                                                (      ) 

Clearly, (3.3.16) is an obvious consequence of (3.3.2) and (3.3.15). In the case of the 

additive Weibull survival function,     has the expression 

                                  ( )    ( 
  (   ) )    ( 

  (   ) )                    (      ) 

Theorem 3.3.2: The statements of Theorem 1 hold with     [   ], replaced 

by      [   )   

Proof: Since, the notation   ( ), (3.3.7) becomes   ( ) [   ( ) ]⁄    
 ( ). Thus the 

sign of the derivatives   ( ) and   
 ( ) are same. And in the proof of theorem 1 the 

sign of   ( ) has already been determined, this establishes the sign of   
 ( ) and also 

the turning point of   ( ).                  

The reason for the shapes–but not the functions themselves– being identical in 

both formulations of the hazard rate function can be explained by first extending 

(3.3.16) to the continuous scale (with t), then differentiating the result with respect to 

t, and in this way arriving at the equation    
 ( )    ( ) [   ( )]. Obviously, the 

sign of derivatives   
 ( ) and   ( ) coincides, and hence so do the monotonicity 

property of   ( ) and  ( ) including their turning points. However, the values of the 

two functions   ( ) and  ( ) differ since the magnitudes of the derivatives   
 ( ) 
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and   ( ) differ, unless of course the hazard rate function  ( ) is identically equal to 

zero which is the case of no interest do the monotonicity property of   ( ) and  ( ) 

including their turning points. However, the values of the two functions   ( ) 

and  ( ) differ since the magnitudes of the derivatives   
 ( ) and   ( ) differ, unless of 

course the hazard rate function  ( ) is identically equal to zero which is the case of no 

interest. 

The factors     (   )  and    (   )  on the right hand side of (3.3.17) 

are discrete analogous of the derivatives (   ⁄ )   and(   ⁄ )  , which are equal 

to      and      , respectively. In turn, discrete analogues of the later functions 

are      and      , respectively. Substituting these on the right hand side of (3.3.17) 

in place of    (   )  and    (   )  respectively. We arrive at ‘naive’ discrete 

version   ( )  given by (3.2.1). Thus via the classical and ‘non-classical’ discrete 

hazard rate functions  ( )  and   ( ) we have arrived at the discretized version of the 

original continuous additive Weibull hazard rate function  ( ). 

 Also, when applied on the right-hand side of (3.3.3), lead to the following 

definition of a discrete hazard rate function: 

                                                ( )      
     

  
     

                                              (      ) 

Furthermore, the interpretation of the continuous additive Weibull   model in 

terms of        {     }  leads to yet another natural definition of the discrete 

hazard rate function: 

                                               ( )      
    (   )   

    (   )                                 (      ) 

which is  the sum of two discrete Weibull hazard  rate functions. These two 

definitions alongside the earlier introduced ones has been explored on several data 

sets later in this chapter. 

Conclude by highlighting an issue with the ‘hazard rate function’ (3.3.1).  

Namely, since the set    ( )     has not been defined in terms of the set { ( )   

 }, restoring the latter set from the former is problematic. In the case of the ‘classical’ 
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and ‘non-classical’ discrete hazard rate functions this problem does not manifest 

itself.  Indeed, in both cases   

                                  ( )  ∏(   ( ))

 

   

 ∏    ( )

 

   

                                    (      ) 

for all    . Adopting the usual convention ∏ ( )    
   , we have  ( )   . One 

may use the discrete hazard rate function of (3.2.1) and define the following discrete 

version of additive Weibull survival function:  

                                 ( )  ∏    ( )

 

   

                                                                    (      ) 

which differs from (3.3.20). Naturally, the set {  ( )    } differs from the 

set { ( )    }, where,  ( )     (    
     

 ) since the two sets have been 

generated by two different discrete hazard rate functions have using the same 

generating procedure.   

3.4 Empirical Illustrations 

Authors (Mark Bebbington , Chin-Diew Lai , Morgan Wellington and 

Ricardas Zitikis) [2012] have examined how the various discrete versions of the 

additive Weibull distribution differ in their fit to data. In all cases they estimate the 

parameters         and   by maximizing the log-likelihood 

                 ∑     (  )

      

 ∑     (    )

      

 ∑     (  )

      

                        (     ) 

where,         
 denote the observed (uncensored) failure times, and         

 the 

observed censored failure times. In the case of the continuous model,  ( ) and  ( ) 

are given by (3.2.2) and (3.2.1), respectively. As the classical model (3.3.3) and non 

classical model (3.3.17) are tied together by (3.3.16), they have the same parameters, 

which are obtained by maximizing (3.4.1) with  ( ) and  ( ) given by (3.3.3)  and  

(3.3.20),  respectively. Substituting the hazard rate (3.3.18) and reliability function 

(3.3.21) into (3.4.1) leads to another set of estimates, which can be interpreted as 

either the hazard rate (3.3.18), or as the non-classical version (3.3.1). Finally, the 
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competing risks model (3.3.19) can be fitted using the reliability function  ( )  

  ( )  ( )    
  
  
  

, the product of two discrete Weibull distributions (3.3.3), and 

hazard rate    ( )  [ (   )   ( ) ]  (   )⁄  in (3.4.1). 

 In all the figures, the discrete survival and hazard functions are drawn as 

continuous curves rather than step functions to improve readability. In the figures, 

showing the fitted survival function, the Kaplan–Meier (‘‘Empirical’’) PL estimate 

will be shown by a grey step function. 

The data sets are: 

a) Time to failure of 18 electronic devices. 

b) Failure times of 50 devices. The first two failure times are rounded up to 1 

c) Lifetimes of 20 batteries. 

d) Unit testing failure data.  (311 observations). 

e) BT-Serum reversal times (148 observations, 64 of them censored). 

The   estimated parameters and turning points are given in table 1 

 The case for data set A is shown in Fig 3.1, the model fits are almost 

indistinguishable, and all produce a bathtub shape, as is suggested by the parameter 

estimates in Table 1 and the theory developed above. The turning points in Table 3.1 

are almost indistinguishable given the resolution of the data, although even here the 

various discrete versions differ slightly. In short a ‘nice’ example. 

 The slightly more complicated case of data set B is shown in Fig. 3.2.  Here 

there are   multiple failures at many integers, and hence a higher degree of resolution 

in the data. This is picked up by the models, with noticeable differences in the fit. 

Although all the fitted models are of bathtub shape, there are considerably differences 

in the estimated turning points, with important consequences for any burn-in-plan. 

 Case C, as shown in Fig 3.3 is a case where the data do not appear to support a 

bathtub shape.  Instead, with its sigmoid curvature, the hazard rate functions appear to 

be reminiscent of that produced by the flexible Weibull, Bebbington, Lai and Zitikis 

[2007a].   The shapes of the various hazard rate functions are quite variable 
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 In case D, as shown in Fig. 3.4, things become even more interesting. Notably, 

using a Weibull plot, as producing a bathtub shape, the MLE estimates are not 

compatible with a bathtub shape. Instead, with its sigmoid curvature, the continuous 

hazard rate function again appears to be reminiscent of that produced by the flexible 

Weibull, Bebbington et al. [2007a]. Most interestingly, this property is shared by the 

competing risks version of the discrete hazard rate   ( ).  However, the remaining 

discrete versions are bathtub shaped. 

Table 3.1: 

Parameter estimation and turning points    

Data 

set 

 ( ) 

‘Continuous’ 

 ( )       ( ) 

‘Classical’ 

  ( )       ( ) 

‘Native’ 

  ( )‘Competing 

Risk’ 

A  ̂           

 ̂            

 ̂       

 ̂       

         

 ̂           

 ̂            

 ̂       

 ̂       

       

 ̂           

 ̂            

 ̂       

 ̂       

       

 ̂           

 ̂            

 ̂       

 ̂       

       

B  ̂        

 ̂            

 ̂       

 ̂       

        

 ̂        

 ̂            

 ̂       

 ̂       

      

 ̂          

 ̂            

 ̂           

 ̂       

      

 ̂        

 ̂            

 ̂       

 ̂       

      

C  ̂           

 ̂            

 ̂       

 ̂       

      

 ̂           

 ̂            

 ̂       

 ̂       

      

 ̂           

 ̂            

 ̂       

 ̂       

      

 ̂           

 ̂            

 ̂       

 ̂       

      

D  ̂        

 ̂           

 ̂       

 ̂       

      

 ̂        

 ̂           

 ̂       

 ̂       

     

 ̂        

 ̂           

 ̂       

 ̂       

     

 ̂        

 ̂            

 ̂       

 ̂       

      

E  ̂        

 ̂            

 ̂       

 ̂       

         

 ̂        

 ̂            

 ̂       

 ̂       

       

 ̂        

 ̂            

 ̂       

 ̂       

       

 ̂        

 ̂            

 ̂       

 ̂       
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The final example of data set E is illustrated in Fig. 3.5.  The distinctive aspect 

of this data set is the large number of censored observations (64 of 148, 

predominantly the large values). All the fitted models are of bathtub shape, and very 

similar in shape, although the estimated turning points differ considerably.  

 

 

 

 

Fig 3.1: Estimated survival (left) and hazard (right) functions for data set A. 
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Fig 3.2: Estimated survival (left) and hazard (right) functions for data set B. 

 

Fig 3.3: Estimated survival (left) and hazard (right) functions for data set C. 

61 



 
 

 

Fig 3.4: Estimated survival (left) and hazard (right) functions for data set D. 

 

Fig 3.5: Estimated survival (left) and hazard (right) functions for data set E. 
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4.1 Introduction 

nalysis of system life data is often used to derive estimation of the 

reliability of individual components in multi-component systems. Under 

ideal circumstances, this system life data contains the system time to 

failure along with information on the exact component that causes the system to fail. 

In many cases the exact component that causes the system to fail is unknown. Instead, 

it may only be known that the failing component is one of a subset of components that 

are considered potentially responsible for the failure. When this occurs, the cause of 

the system fail is masked, Usher and Hodgson [1988]. Masking may occur due to 

variety of reasons. Some of these reasons, for example, are: the cost, time constraints 

associated with failure analysis, recording errors, lack of proper diagnostic 

components, and the destructive nature of certain component failures that makes exact 

diagnosis impossible. However, in many situations the exact cause of the system 

failure, while still unknown, can be isolated to some subset of system components. 

That is, many components might be isolated as potential causes based on such things 

as the mode of system failure or some brief diagnostic routine. For example, consider 

that large computer system has failed. A repairman may immediately be able to find 

the cause of system failure down to a single circuit card (that may contain many 

components). In order to minimize the system downtime he may replace the entire 

A 
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circuit card with a new one and hence he never knew exactly which component 

caused the system failure. While the exact cause of the system failure is still 

unknown, the isolation to a smaller subset of possible causes provides additional 

information that can help in the estimation process. This motivates the need for using 

masked system life data in estimation process. Under a simplifying assumption that 

components have constant failure rates, Miyakawa [1984] considered a 2-component 

series system and he derived closed form expressions for the maximum likelihood 

estimate when some of the sample observations are masked. Under the same 

exponential assumption, Usher and Hodgson [1988] extended Miyakawas’s results to 

a three component system. 

These previously developed models are based upon the assumption that 

masking occurs independently of the true cause of system failure. That is, the 

probability of observing a particular masked set does not depend upon which 

component failed in the system. However, in some cases, this assumption may not 

hold. For instance, consider the case of a circuit card with two components where, 

under certain environmental conditions, the failure of either component can result in 

fire and complete destruction of circuit card. If the card is destroyed, then cause of 

failure cannot be identified. Dependence occurs when the probability of card’s 

destruction differs based upon which component fails. Moreover this probability of 

destruction given that a particular component failed may depend on time but it seems 

reasonable to assume that the ratio of these masking probabilities will not be a 

function of time. The relevance of the independence assumption and its effect on the 

development of the likelihood function were first described by Guess, Usher and 

Hodgson [1991]. The effect of the dependency between the masking and the true 

cause of the system failure was investigated by Lin, Usher, and Guess [1993]. They 

suggested a simple means of checking for the independence via sub-sampling for the 

case when the system’s components have constant failure rates (exponentially 

distributed).         

  Tan [2007] estimated reliability of components in series and parallel systems 

from masking system testing data. He takes into account a second type of uncertainty: 

censored lifetime, when system components have constant failure rates. To efficiently 

estimate failure rates of system components in presence of combined uncertainty, he 
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proposes a useful concept for components: equivalent failure and equivalent lifetime. 

For a component in a system with known status and lifetime, its equivalent failure is 

defined as its conditional failure probability and its equivalent lifetime is its 

expectation of lifetime. For various uncertainty scenarios, he derives equivalent 

failures and test times for individual components in both series and parallel systems 

In this chapter, the problem on a series system consisting of two components, 

illustrate by Ammar M. Sarhana and Debasis Kundu [2008] is presented. Bayesian 

estimators of the reliability measures (the failure rate, reliability function and the 

mean time to failure) of the individual components in a multi-component series system 

are obtained when the life time of each component has a geometric distribution, using 

masked system life test data. 

4.2 The Model Assumptions 

Throughout this chapter the following assumptions are considered.  

Assumptions  

1.1. The system is series with         , independent components.  

1.2. N identical systems are put on the life test. The test is terminated when n 

systems 

failed. That is the data are censored. 

1.3. The random variables                                 are independent 

with  

                  being identical and having geometric distribution with 

parameter   . 

1.4. The observable quantities for the system i, which failed, on the test are: (i) the 

random variable     represents the number of success trials of using system i to 

get its first failure, and (ii) a set    of system’s components that may cause the 

system I failed. But for the censored observation, we only observe             

   . The data collected from this process are 
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(     ) (     )     (     ) (      )     (    )  Here (   ) means the 

observation is censored.  

1.5. Masking is s-independent of the true cause of system failure. That is, for 

all               (                 )   (                 )   

         denotes the index of the component causes the system i to fail.  

1.6. The system may fail due to component 1 or component 2 or both components 1 

and 2.  

Based on the assumption (1.3), for               , the random variables                    

can be written as a random variable    ,             , having geometric distribution 

with probability of success    . That is,             denotes to the failure 

probability of component j ’per time-unit’ or ’at each time’           

           . That is, the probability mass function of     ,               , is given by  

                                          ( )     
                                                                   (     ) 

The reliability function of     ,               , is  

                                           ( )                                                                          (     ) 

The mathematical expectation of     , say                    , is 

                                                         [  ]  
 

  
                                                           (     ) 

There are two different definitions of the failure rate function of the discrete 

distributions. In that follows we present the two different forms of the failure rate 

functions denoted respectively by   ( )        ( )              .     

1. According to Barlow, Marshall and Proschan [1963], the hazard rate function 

of    ,               is 

                                ( )   (        ⁄ )    
 ̅ ( )

 ̅ (   )
                         (     ) 

2. According to Roy and Gupta [1999] and Xie, Gaudoin and Bracquemond 

[2002], the hazard rate function of     ,               is 
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                      ( )    
 ̅ (   )

 ̅ ( )
    (    )                                          (     ) 

There is a simple relation between   ( )        ( )  Xie et al. [2002],  

  ( )        ( ) 

In this chapter the aim is to estimate the reliability measures of the individual 

components    ( )       ( )  ̅ ( ) and     based on masked system life test data.  

4.3 The Likelihood Function 

Based on the random sample (     ) (     )     (     ) (      )    

 (    ), the likelihood function is Gauss et al. [1991]  

        (            )  ∏[∑(  (  ) ∏  ̅ (  ) 

 

       

)

    

] ∏  ̅(  ) 

 

     

 

   

             (     ) 

                    ̅( )  ∏  ̅ ( ) 
 
    is the survival function of the system. Then for the 

geometric distribution model, we have   

 (            )

 ∏[∑(  (    )
    

∏ (    )
  
 

 

       

)

    

] ∏ ∏( 

 

   

 

     

 

   

   )
  
           (     ) 

From now and henceforth, assume that      .  That is the system consists of 

two components. In this case we need the following notations. Let    be number 

observations when the component 1 causes the system failure. That is n1 is the number of the 

observation when     { }. Let    be the observed value of X when      { }   

          . Let    be number observations when the component 2 causes the system 

failure. That is n2 is the number of the observation when      { }. Let    be the 

observed value of X when     { }               . Let n0 be number observations 

when both components1 and 2 cause the system failure. That is    denotes the number of 

the observation when    { }  Here we mean by      { } that the cause of system i 

failure is due to both components1 and 2. Let    be the ob served value of X when    

67 



 
 

 { }              . Also, let     be the number of observation when the cause of 

system failure is masked (either component 1 or component 2 or both components 1 and 

2). That is     is the number of observation when      {   }  Let    be the observed 

value of X when      {   }                Thus, the likelihood function (2.7), in this 

case, reduces to 

 (          )

 (∏    
    

  
  

  

   

∏    

    
  

  

  

   

∏    (    )
    

  

   

) ∏ (    )
  

 

     

 

           ∏(    
    

  
       

    
  
       (    )

    )

   

   

 

                          

 (          )    
   (    )

∑ (    )
  
   (    )

∑   
  
                       

                    
   (    )

∑ (    )
  
   (    )

∑   
  
         

                          
    

   (    )
∑ (    )

  
     (    )

∑ (    )
  
    

     (    )
∑   

 
     (    )

∑   
 
      

               ∏[  
    

  
    (              )]

   

 

 

 (          )    
       

                                                                              

             (    )
∑   

  
   

 ∑   
  
    ∑   

  
    ∑   

 
            

             (    )
∑   

  
   

 ∑   
  
    ∑   

  
    ∑   

 
            

   (    )
∑   

   
     (    )

∑   
   
       

 (                    )
     

 (          )    
       

     (    )
        (    )
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 (          )
                                 

                        ∑  

 

   

                                                                                     (     ) 

By using binomial expansion of (          )
    ,the likelihood function (4.3.3) 

can be written as  

 (          )  ∑∑(
   

 
) (

 

 
) (  )       

             (    )
        

 

   

   

   

 

                                 
           (    )

                                                 (     ) 

4.4 Bayesian Analysis 

Bayesian estimators for the reliability measures of the individual components in the 

system have been obtained, for that the following additional assumptions are assumed:  

Assumptions  

2.1. The parameters p1 and p2 behave as independent random variables.  

2.2. The random variable     has Beta prior distribution with known shape and scale 

parameters    and           . That is, the prior probability density function 

(pdf) of            , takes the following form 

              (  )  
 

 (      )
 
 

    
(    )

                                       (     ) 

2.3. The loss incurred when    and      are estimated, respectively, by  ̂  and  ̂  is 

a  quadratic  

                ((     ) ( ̂   ̂ ))    ( ̂    )
    ( ̂    )

                  (     ) 

The Beta prior distribution is assumed not only to give nicely results but also 

permits closed forms of the required estimators in terms of Beta functions. 

Theorem 4.4.1:   Based on the assumptions 2.1 to 2.3, the joint posterior pdf of       

is 
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 (     )  
 

  
∑∑(

   

 
) (

 

 
) (  )     ∏  

    (    )
    

 

   

 

 

   

   

   

 

                                                   

                (  )   (   )   

                                  

   ∑∑(
   

 
) (

 

 
) (  )     ∏ (     )

 

   

 

 

   

   

   

  

Proof: Based on the assumptions 2.1 and 2.2, the joint prior pdf of           be come 

        (     )  
  
    (    )

      
    (    )

    

 (     ) (     )
                        (     ) 

But the joint posterior pdf of       is related with their joint prior pdf and the 

likelihood function according to the following relation, see Martz and Waller [1982], 

           (         ⁄ )  
 (     ) (          )

∫ ∫  (     ) (          )      
 

 

 

 

                              (     ) 

Substituting from equations (2.9) and (3.3) into (4.4.4) we get 

 (         ⁄ )  
 

  
∑∑(

   

 
) (

 

 
) (  )     ∏  

    (    )
    

 

  

 

 

   

   

   

 

                                                   

              ∑∑(
   

 
) (

 

 
) (  )     ∏∫  

    (    )
    

 

 

         

 

   

 

   

   

   

(     ) 

but 

                                  ∫   
    (    )

    

 

 

       (     )                          (     ) 
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using (     ) in (     ), one get     as given by  

        ∑∑(
   

 
) (

 

 
) (  )     ∏ (     )

 

   

 

 

   

   

   

                                            

 

Corollary 1: The marginal posterior pdf’s of           are give, respectively, by 

  (      ⁄ )  
 

  
∑∑(

   

 
) (

 

 
) (  )       (     )

 

   

   

   

  
    (    )

     

                                                                                                                               (     ) 

    

  (      ⁄ )  
 

  
∑∑(

   

 
) (

 

 
) (  )       (     )

 

   

   

   

  
    (    )

     

                                                                                                                                (     ) 

Proof: The relation between the joint and marginal pdf’s given by 

  (      ⁄ )  ∫  (         ⁄ )
 

 

[      
       

]                                                  

                                          One can deduce   (      ⁄ ) and 

  (      ⁄ ). 

Now, 

  (      ⁄ )  ∫  (         ⁄ )
 

 

[      
       

]                                                  

  (      ⁄ )  ∫  (         ⁄ )
 

 

    
                                                                             

  (      ⁄ )  ∫
 

  
∑ ∑ (   

 
) ( 

 
) (  )     ∏   

    (    )
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    (    )
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    (    )

                                         

  (      ⁄ )  
 

  
∑∑(

   

 
) (

 

 
) (  )       (     )

 

   

   

   

  
    (    )

     

Similarly,  

  (      ⁄ )  
 

  
∑∑(

   

 
) (

 

 
) (  )       (     )

 

   

   

   

  
    (    )

            

Corollary 2:  The following statements are fulfilled for all            . 

                                                 
( )

 
  
( )

  
                                                                   (     ) 

       

          
( )

 ∑∑(
   

 
) (

 

 
) (  )     ∏ (          )

 

   

 

 

   

   

   

                     (      ) 

Proof: The marginal posterior     moment of     is related with the marginal 

posterior pdf of   ,      , according to the following relation 

        
( )

 ∫  
   (      ⁄ )

 

 

                                                                            (      ) 

    for       , substituting from (4.4.7) into (4.4.11) we have 

       
( )

 
 

  
∑∑(

   

 
) (

 

 
) (  )       (     )

 

   

   

   

∫  
      (    )

    

 

 

    

 
 

  
∑ ∑ (   
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) (  )       (     )

 
   

   
    (       ) 
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∏ (          )
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Similarly for     , we can derive 

  
( )

 
 

  
∑∑(

   

 
) (

 

 
) (  )      

 

   

   

   

∏ (          )

 

   

                            

 

Theorem 4.4.2: Under the group of assumptions 1 and 2: 

1. The Bayesian estimator for          , is 

                                                  ̂  
  
( )

  
                                                                         (      ) 

2. The minimum posterior risk associated with  ̂ , say   ̂ 
 , is 

                                          ̂ 
 

  
( )

  
 (

  
( )

  
)

 

                                                       (      ) 

Proof: Under the squared error loss, the Bayesian estimators for an unknown 

parameter are defined as its posterior expectation and the associated minimum 

posterior risk is the posterior variance, Martz and Waller [1982]). That is, the 

Bayesian estimator for     is 

                ̂   [      ⁄ ]    
( )                                                              (      ) 

for    and m     

 ̂    
( )

 
 

  
∑∑(

   

 
) (

 

 
) (  )      

 

   

   

   

∏ (         )

 

   

   

        
  
( )

  
                                                                                  

for    and m    

 ̂    
( )  

 

  
∑ ∑ (   

 
) ( 

 
) (  )       

   
   
   ∏  (         )
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 and the minimum posterior risk associated with  ̂  is  

             ̂ 
    [      ⁄ ]    

( )  [  
( )]
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for     
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( )  [  
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Similarly, for     

  ̂ 
   

( )  [  
( )]

 

                                                                                     

      
  
( )

  
 (

  
( )

  
)

 

                                                                                   

 

Theorem 4.4.3: Under the group of assumptions 1 and 2: 

1. The Bayes estimator for the reliability function   ̅ (  )       is 

                                  ̂̅ (  )  
  
( )

  
                                                                                  (      ) 

2.  The minimum posterior risk associated with  ̂̅ (  )  say   ̂̅ 
, is 
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Proof: The Bayesian estimator for a function of      and the associated minimum 

posterior risk are defined respectively as the posterior expectation and variance of that 

function, Martz and Waller [1982]. That is, the Bayesian estimator for  ̅ (  )        

is  

           ̂̅ (  )   [ ̅ (  )     ⁄ ]  ∫(     )
  

 

 

  (       ⁄ )                  (      ) 

Put     , we get 
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where, 
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Similarly, put     , we get 

 ̂̅ (  )  
  
( )

  
                                                                                                                 

where,  
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) (

 

 
) (  )      

 

   

   

   

 (     )   (        )                     

and the associated minimum posterior risk is 
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  [ ̅ (  )     ⁄ ]                                                                                           
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Similarly, put     , we get 
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where,  
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and, 
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) (  )       (     )  (         )

 

   

   

   

               

Theorem 4.4.4:  Under the previous assumptions: 

1. The Bayesian estimator for   (  )       is 

 ̂ (  )  
 

  
∑∑(

   

 
) (

 

 
) (  )     [ (     )   (  )]∏ (     )

 

   

 

 

   

   

   

 

                                                                                                                                             (      ) 

2. The minimum posterior risk associated with   ̂ (  ) is 
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                     ( )       ( ) are digamma and poly-gamma functions defined, 

respectively, as 

 ( )  
    ( )

  
 

  ( )

 ( )
       ( )  

  ( )

  
  

Proof: As before, the Bayes estimator for   (  ) is given by 

 ̂ (  )  ∫   (  )

 

 

  (       ⁄ )               

substituting from (4.4.5) into the above relation, we get 

    ̂ (  )  ∫   [     ]

 

 

  (       ⁄ )    

                                                    [  (     )     ⁄ )]                                  (      ) 

       

         [  (     )     ⁄ )]  ∫   [     ]

 

 

  (       ⁄ )                       (      ) 

for     , using the form of the function   (       ⁄ ) together with (4.4.24), one 

can derive that 

 [  (     )     ⁄ )]  
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let       , then 

 (     )  ∫     (   )    

 

 

                   

also,  

                               (     )   (     )[ (  )   (     )]                   (      ) 

substituting from (4.4.26) into (4.4.25), one can get 
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                                                    [ (  )   (     )]∏ (     )

 

   

              (      ) 

substituting from (4.4.27) into (4.4.23) we get   (  ) as given by (4.4.21) when    . 

Similarly we can prove that the relation (4.4.21) is correct for    . Let us now 

prove that the relation (4.4.22) is fulfilled. As it was stated before, the minimum 

posterior risk associated with   (  )  is the posterior variance of   (  ) that is  

  ̂    [  
 (  )     ⁄ ]  { [  (  )     ⁄ ]}                                                      

                [(   (     ))
 

    ⁄ ]  { [   (     )     ⁄ ]}  

                [{  (     )}
     ⁄ ]  { [  (     )     ⁄ ]}                      (      ) 

for       [  (     )     ⁄ ] is given by (4.4.27) and 

 [{  (     )}
     ⁄ ] can be derived as follows 

         [{  (     )}
     ⁄ ]  ∫{  (     )}

 

 

 

  (       ⁄ )               (      ) 
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substituting from (4.4.7) into (4.4.28), one can get 
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also,  
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substituting from (4.4.31) into (4.4.30) 
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similarly for      
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Also, under the groups of assumptions 1, 2:  

1. The Bayes estimator for           is 
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2. The minimum posterior risk associated with  ̂          is 
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4.5 Simulation Study 

 Authors illustrated the result with simulation study. It is assumed in this 

example that there exists a series system with two independent components, where 

  ( )     (  –   )
   

                                    For each system a 

pair of random variables    and    from    and   , respectively is generate. Then  

       (     ) is calculate and record the index of the minimum if it is available. 

81 



 
 

This step is repeated n times to simulate a random sample (     ) (     )     (     ) 

with size n from the underlying system. Note that    and    represent random 

successive trails of system   before the first failure and the set contains the index of 

component causes its failure, respectively. In the case of masking data about 50% of the 

observations are randomly mask. The parameters           behave as random variables 

with beta prior distributions with parameters (7.22, 48.33) and (2.85, 25.89), 

respectively. The values of the parameters of the prior distributions are determined by 

following the technique given in Martz and Waller [1982]. 

Example:  In this example, a random sample has been generated with size        

    from the underlying model. Table 4.1 shows the data generated.  Then this data is 

used to calculate: 

(i) the point estimates of          , (ii) the percentage errors associated with the point 

estimates obtained, (iii) 95% TBPI for each parameter, when the parameters have beta 

and non-informative prior distributions.  Also, the prior and posterior probability 

density functions of the parameters          are plotted when the prior density functions 

are beta. Figures 4.1 and 4.2 show these functions for          , respectively. 

The percentage error associated with the point estimate of  , say     ̂  , is 

given by the following formula: 

 

             ̂  
                                        

                
                        (     ) 

 

Table 4.2 gives the point estimates of      ,    
     

  
and

 
95%TBPI 

for           
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Table 4.1: The simulated data  

 

  

 

   

   No  

masking 

General 

masking 

 

  

 

   

     No 

masking 

General 

Masking 

            

  

  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

{   } 

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

      

   

   

   

   

   

   

  

  

  

  

  

   

   

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

{ } 

 

{   } 

{   } 

{   } 

{   } 

{ } 

{ } 

{   } 

 

 

In table 4.1 that    denotes to the system number,    denotes to the number of 

successive trails of system   before its first failure, and    denotes the set of 

components that may cause the system   to fail. Further,      { } means that the 

system   fails due to both components 1 and 2. 

             Based on the results shown in table 2, one can conclude that follows, for the 

current example 

(i) The percentage error when the there is no masking in the observations is smaller 

than its value when there is no masking. 

(ii) The percentage error associated with the point estimate when the prior distribution is 

beta is smaller than one associated with the point estimate when the prior 

distribution is non-informative. 
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Table 4.2: Point estimates, PE and 95% TBPI for            

 

Paramet

er 

Beta Non informative 

 

Estimate 

 

PE 

95% TBPI  

Estimate 

 

PE 

95% TBPI 

 

   

   

No masking 

      

      

      

     

(           ) 

(           ) 

      

      

 

      

     

(           ) 

(           ) 

 

   

   

General masking 

      

      

      

      

(          ) 

(           ) 

      

      

      

      

(          ) 

(           ) 

 

 

Therefore, one may say that: (i) beta prior distributions performs better than the non-

informative ones in the sense of giving point estimates with smaller percentage errors, 

(ii) a sample with known cause of system failure gives better estimates, in the same sense, 

than that obtained when the masking takes place. 
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CHAPTER 5 
======================== 

 

Estimation of 

Reliability Function  

of 

 Consul and Geeta 

Distributions 
 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

ince the beginning of seventies, attention of research workers in discrete 

distribution appears to be shifted towards ‘Lagrangian probability 

distributions’. The Lagrangian probability distributions provide 

generalization of classic discrete distributions that have been found more general in 

nature and wide in scope. The discovery of Lagrangian distribution has relaxed the 

research workers who were previously vexed in a large number of generalized 

mixture and compound discrete distributions as they have been found to have 

tremendous capability to fit well into observed distributions of any type. Consul and 

Shenton [1972] gave a method for generating new families of generalized discrete 

distributions with the help of Lagrangian expansion. Gupta [1974] defined Modified 

Power Series Distributions (MPSD) which is a sub class of Lagrangian probability 

distribution. The discrete Lagrangian probability distribution have been systematically 

studied in a number of papers by Consul and Shenton [1972, 1973a, 1973b, 1975].  

S 
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In the present chapter we have obtained Bayesian Reliability of parametric 

function of  , of Consul, Geeta and Size-biased Geeta distributions assuming   as 

known, and the prior distribution of parameter  , is considered as two parameter Beta 

distribution. In addition reliability functions of Geometric, Negative-binomial and 

Haight distributions are also obtained. This research paper is to appear in the Journal 

of JRSS and is presently under minor revision  

5.2 Consul Distribution 

Famoye in 1997 introduced the Consul distribution with parameters   and m, 

where the probability mass function is given by 

     (   )  
 

 
(

  

   
)     (   )                                                  (     ) 

              Where,                                             

the mean and variance of the model exists when      . The mean and variance of 

(5.2.1) are given by the expressions 

  (    )      and        (   )(    )   

using these values the Consul distribution can be expressed as a location-parameter 

discrete probability distribution in the form 

      (   )

 { 
 

    
(
    

 
) (

   

  
)
   

(  
   

  
)
      

                

                                                                                                

 (     ) 

all the moments of the Consul distribution exist for                        . 

Famoye [1997] showed that the Consul distribution is the limit of zero-truncated 

Generalized Negative Binomial Distribution (GNBD) 

  (     )  
 

    
(    

 
)  (   )      [  (   ) ]⁄               (     ) 

as  the  parameter       and  is  unimodal   but  not  strongly  unimodal  for all values  

of                 and the mode is at a point    . He also obtained moment 
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estimates, the estimates based upon the sample mean and first frequency, and the 

maximum likelihood estimates. The model (5.2.1) is a member Lagrangian probability 

distribution. We now obtain the Bayesian estimators of a number of parameters 

functions of the parameter   and the Bayesian Reliability function. Since, 0    , it 

is assumed that the prior information on   may be summarized by a beta distribution, 

 (   ) where the parameters ‘a’ and ‘b’ are not known. 

5.2.1 Bayesian Estimator (  Known) of Reliability Function 

The likelihood function of Consul distribution is given by 

       (
 

 
  )     

   (   )                                                           

                 ∏(
 

 
(

  

   
))

  

   

                          ∑  

 

   

                   

since      , it is assumed that prior information on   is given by a beta 

distribution with density function 

                  (     )   
    (   )   

 (   )
                                      

thus, the joint p.d.f of (X1, X2…Xn,  ) is given by 

 (
          

 
)    (     )  (     )                                                                   

then using Bayes theorem, the posterior distribution of   becomes 

             (
 

 ⁄ )  
        (   )(   )       

 (      (   )     )
                                         

Bayesian estimator of any function   ( )      (   )       with respect to 

squard error loss function is 

                              ̂( )  
∫  ( )        (   )(   )        
     

 (      (   )     )
               (       ) 
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 (          (   )(   )       )

 (      (   )     )
            

Bayesian estimator of Reliability function   (  ) for Consul distribution at a 

sepecified value   (  )  is 

        ̂ (  )    ∑
 

 
(

  

   
)

 

    

 
 (          (   )(   )       )

 (      (   )     )
    

Let                   are i.i.d Consul random variables as defined in (5.2.1), then the 

sample sum Y ∑    has Delta-binomial distribution given by 

      (   )  {

 

 
(

  

   
)     (   )                         

                                                                 
    (       ) 

using (5.2.2.1) we have Bayesian estimate for      (   )      is 

         
 (          (   )(   )       )

 (      (   )     )
                   

Bayesian estimator of Reliability,    (  ) at a sepecified value   (  )  is 

      ̂  (  )    ∑
 

 
(

  

   
)

 

    

 
 (          (   )(   )       )

 (      (   )     )
   

Particular cases 

1. When       (5.2.1) reduces to Geometric distribution with probability of 

success   . Then, the reliability function  ̂(  ) for Geometric distribution at 

time    (  ) is 

   ̂ (  )   ∑
 (               )

 (         )
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2. When       (5.2.2.2) reduces to negative binomial distribution with probability 

of success   . Then, the reliability function    (  ) for negative binomial 

distribution at time    (  ) is 

    ̂  (  )   ∑ (
   

   
)

 

    

 
 (               )

 (         )
                                 

 

5.3 Geeta Distribution 

Consul [1990a] introduced the Geeta distribution, with parameters   and  , 

where the probability mass function is defined 

      (   )  {

 

    
(
    

 
)     (   )                       

                                                                 

             (     ) 

                                                      
 

 
                        

 the upper limit on   has been imposed for the existence of the mean of the 

distribution. When    , the Geeta distribution degenerates and its probability mass 

gets concentrates at point x = 1. Consul [1990a] studied  the estimation of the model 

(5.3.1), using moments, sample mean and frequency, maximum likelihood estimation 

(MLE) and minimum variance unbiased estimation (MVUE) methods, and gave the 

MVUE estimates for some functions of parameter  , which are similar to the results 

obtained by Gupta [1974] for modified power series distribution. Consul [1990b] gave 

two stochastic models for Geeta distribution and showed that the distribution can be 

obtained as an urn model and that it is also generated as a model based on a difference 

differential equation. The model (5.3.1) is a member of Consul and Shentons’s 

[1972], Lagrangian probability distribution and also Gupta’s [1974] modified power 

series distribution. 

the mean and variance of (5.3.1) are given by the expressions 

  
(   )

(    )     and       (   )(   )(    )                       
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 The family of Geeta probability models belongs to the classes of the modified power 

series distribution and the Lagrangian series distribution. Consul [1990b] also 

expressed it as a location–parameter probability distribution given below:  

   (   )  {
 

    
(
    

 
) (

   

    
)
   

(
 (   )

    
)
    

           

                                                                                                 

   (     ) 

a numerical approach indicates that Geeta distribution has maximum at x = 1, and can 

have a either short or long or heavy tail, depending upon the values of   and  . 

Estimation using (1) moments (2) sample mean and first frequency, (3) M.L and (4) 

M.V.U.E are studied by Consul [1990a], two models of genesis (a two-urn model and 

a regenerative stochastic process) are given in Consul [1990b]. Generating function 

and recurrence relations for central moments are given by Consul [1990a]. We now 

obtain the Bayesian estimators of a number of parameters functions of the parameter   

and the Bayesian Reliability function. Since,      , it is assumed that the prior 

information on   may be summarized by a beta distribution,  (   ) where the 

parameter ‘a’ and ‘b’ are not known.  

5.3.1 Bayesian Estimator (  Known) f Reliability Function  

The likelihood function of Geeta distribution is given by 

      (     )      
   (   )                                                              

  where,    

                  ∏
 

     
(
     

  
) 

 

   

                     ∑  

 

   

      

the part of the likelihood function which is relevant to Bayesian inference on 

unknown parameter   is 

                                     (   )                                                                          

90 



 
 

we assume that before the observations were made, our knowledge about   was only 

vague, since      , it is assumed that prior information on   is given by a beta 

distribution with density function 

              (     )   
    (   )   

 (   )
                                      

thus the joint p.d.f of (            ) is given by 

       (
          

 
)    (     )  (     )                                                                        

and the posterior distribution of   becomes 

    (
 

 ⁄ )  
        (   )(   )     

 (       (   )   )
                                                                           

Bayesian estimator of any function   ( )      (   )     with respect to squard 

error loss function is 

            ̂( )  
∫  ( )        (   )(   )      

 
    

 (       (   )   )
                                    (       ) 

                
 (          (   )(   )   )

 (       (   )   )
                                              

Table: 5.1 Bayesian estimators of some parametric functions in Geeta distribution 

            ( )                  ̂( ) 

 

  (   )  , l & k are 

non-negative integers 

 

 (         (   )      )

 (       (   )    )
 

 

[ (      )]
 
, k is 

positive integer 

 

 (                      )

 (       (   )    )
 

 

 (   ) 

                

 

 

    
(
    

 
)
 (                      )

 (       (   )    )
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 Bayesian estimator of Reliability,    (  ) at a sepecified value   (  )  is 

 ̂  (  )   ∑
 

    
(
    

 
)

 

    

 (          (   )(   )   )

 (       (   )   )
               

 Let                   are i.i.d Geeta random variables as defined in (5.3.1), then the 

sample sum Y ∑    has Geeta-n distribution given by 

       (   )  
 

 
(
      

   
)     (   )                          (       ) 

using (5.3.1.1) we have Bayesian estimate for      (   )      is 

   
 (          (   )(   )   )

 (      (   )   
                                 

therefore, Bayesian estimate of Reliability,    (  ) at time    (  ) is 

           ̂  (  )   ∑
 

 
(
      

   
)

 

    

 (          (   )(   )   )

 (      (   )   )
      

Particular case 

When     , (5.3.1.2) reduces to Haight distribution, therefore reliability 

function  ̂ (  ) for Haight distribution at time    (  ) is 

   ̂ (  )  ∑
 

 
(
      

   
)

 

    

 (          (   )   )

 (         )
                  

5.4  Size-Biased Geeta Distribution (SBGET) 

The weighted distributions arise when the observations generated from a 

stochastic process are not given equal chance of being recorded; instead they are 

recorded according to some weight function. When the weight function depends on 

the lengths of the units of interest, the resulting distribution is called length biased. 

More generally, when the sampling mechanism selects units with probability 

proportional to some measure of the unit size, resulting   distribution is called size-

biased. Size-biased distributions are a special case of the more general form known 
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as weighted distributions. The concept of weighted distribution can be traced to Fisher 

[1934] in his paper “The effects of methods of ascertainment upon the estimation of 

frequencies”; while this of length-biased sampling was introduced by Cox 1962 

[Patill 2002]  

              If  (   ) is the distribution of a random variable X with unknown parameter 

 , then the corresponding size-biased distribution is of the form  

  (   )  
   (   )

  
                       

  ∑   (   )                                       

for          , we get the simple size-biased and area-biased distributions 

respectively. A Size-biased Geeta Distribution (SBGET) is obtained by applying the 

weight   , where     to the Geeta distribution (5.3.1). This gives the size-biased 

Geeta distribution as                                                                                    

             (   )  (    ) (
    

   
)     (   )(   )                  (     ) 

           where,             
 

 
     and          

5.4.1 Bayesian Estimator (  Known) of Reliability Function 

The likelihood function of SBGET (5.4.1) is 

  (     )  (∏(
     

    
)

 

   

) (    )  ∑   (   )(   )∑                 

   (     )    (    )     (   )(   )                                                    

where, 

   ∏(
     

    
)

 

   

                          ∑  

 

   

                                            

since,         therefore we assume that the prior information about   when   is 

know from Beta distribution,  (   ) where the parameter a and b are not known. 

  (     )  
    (   )   

 (   )
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and the posterior distribution of   from becomes 

  (
 

 ⁄ )  
(    )         (   )(   )       

∫ (    )         (   )(   )          
 

 

                                          

                     
(    )         (   )(   )       

 (      (   )     )   [                    ] 
 

 

Bayesian estimator of any function   ( )  (    )    (   )(   )     with 

respect to squard error loss function is 

          ̂( )  
∫ (    )    

 
          (   )(   )(   )        

 (      (   )     )   [                    ] 
 

  

 ̂( )  
 (          (   )(   )       )

 (      (   )     )
                                     

     
  [ (   )            (   )       (   )  ] 

 

  [                    ] 
 

  

Therefore, Bayesian estimator of Reliability function    (  ) for Size-biased Geeta 

distribution at a specified value     (  ) is   

 ̂  (  )   ∑ (
    

   
)

 

    

 (          (   )(   )       )

 (      (   )     )
               

     
  [ (   )            (   )       (   )  ] 

 

  [                    ] 
 

  

 

 

 

 

 

 

 

94 



 
 

 

 

 

 

 

 

 

 

 

 

Bibliography 

 

 

 

 

 



 
 

Aghababaei, J.M., Lai, C.D., and Alamatsaz, M.H. (2010). A discrete inverse Weibull 

distribution and estimation of its parameters. Statistical Methodology, 

7,121–32. 

Ammar, M. Sarhan., and Debasis Kundu. (2008). Bayes estimators for reliability 

measures in geometric distribution model using masked system life test 

data. Computational Statistics & Data Analysis, 52(4), 1821-1836. 

Barlow, R.E., and Proschan, F. (1975). Statistical theory of reliability and life testing: 

Probability Models. Second edition, Silver Spring. 

Barlow, R.E., Marshall, A.W., and Proschan, F. (1963). Properties of probability 

distributions monotone hazard rate. Annals of Statistics, 34, 375-389. 

Bebbington, M., Lai, CD., and Zitikis, R. (2007a). A flexible Weibull extension. 

Reliability Engineering and System Safety, 92, 719–26. 

Bebbington, M., Lai, CD., and Zitikis, R. (2007b). Bathtub curves in reliability and 

beyond. Australian and New Zealand Journal of Statistics, 49, 251–65. 

Bebbington, M., Lai, CD., and Zitikis, R. (2007c). Optimum burn-in time for a 

bathtub shaped failure distribution. Methodology and in Applied 

Probability, 9, 1–20. 

Bebbington, M., Lai CD., and Zitikis, R. (2008). Estimating the turning point of a 

bathtub shaped   failure distribution.  Journal of Statistical Planning and 

Inference, 138, 1157–66. 

Bebbington, M., Lai, CD., Wellington, M., and Zitikis, M. (2012). The discrete 

additive Weibull distribution: A bathtub-shaped hazard for discontinuous 

failure data. Reliability Engineering & System Safety, 106, 37-44. 

Block, H.W., Savits, T.H., and Singh, H. (1998). The reversed hazard rate function. 

Probability in the Engineering and Informational Sciences, 12, 69–90. 

 

95 



 
 

Consul, P.C. (1990a). Geeta distribution and its properties . Communications in 

Statistics- Theory and Methods, 19, 3051-3068. 

Consul, P.C. (1990b). Two stochastic models for the Geeta distribution. . 

Communications in Statistics- Theory and Methods, 19, 3699-3706. 

Consul, P.C., and Shenton. (1972). Use of Lagrangian expansion for generating 

generalized probability distributions. SIAM Journal of Applied 

Mathematics, 23, 239-248. 

Consul, P.C., and Shenton. (1973a). Some interesting properties of Lagrangian 

distributions. Communications in Statistics, 2, 263-272. 

Consul, P.C., and Shenton. (1973b). On the multivariate generialization of the family 

of discrete Lagrangian distributions. In D.G. Kaba and R.P.Gupta, editors, 

Multivariate Statistical Inference, North-Holland,New York, 13-23. 

Consul, P.C., and Shenton. (1975). On the probabilistic structure and properties of 

discrete Lagrangian distributions. In G.P. Patil, S. Kotz, and J.K. Ord, 

editors, Statistical Distributions in Scientific work, 1: Models and 

Structures, D. Reidel Publishing Company, Boston, MA., 41-57. 

Cyril Bracquemond., and Olivier Gaudoin. (2003). A survey on discrete lifetime 

distributions. Int. J. Rel. Qual. Saf. Eng., 10(1), 69-98. 

Davis, D.J. (1952). An Analysis of Some Failure Data. Journal of the American 

Statistical Association. 47( 258), 113-150. 

Eggenberger, F., and Pòlya, G. (1923). Über die Statistik verketter Vorgänge. 

Zeitschrift für angewandte Mathematik und Mechanik, 3, 279-289. 

Epstein, B., and Sobel, M. (1953). Life Testing. Journal of the American Statistical 

Association, 48( 263), 486-502. 

Famoye, F. (1997). Generalised Geometric distribution and some of its applications. 

Journal of Mathematical Sciences, 8, 1-13. 

96 

http://www.worldscientific.com/doi/abs/10.1142/S0218539303001007
http://www.worldscientific.com/doi/abs/10.1142/S0218539303001007


 
 

Finkelstein, M.S. (2002). On the reversed hazard rate. Reliability Engineering and 

System Safety, 78, 71–75. 

Fisher, R.A. (1934). The effects of methods of ascertainment upon the estimation of 

frequencies. Ann. Eugenics, 6, 13-25. 

Goliforushani, S., and Asadi, M. (2008). On the discrete mean past time. Metrika, 68, 

209–217. 

Guess, F.M., Usher, J. S., and Hodgson, T.J. (1991). Estimating system and 

component reliabilities under partial information on cause of failure. J. 

Statistical Planning & Inference, 29, 75-85. 

Gupta, P.L., Gupta R.C., and Tripathi R.C. (1997). On monotonic property of discrete 

failure rate. Journal of Statistical Planning and Inference, 65, 255-268. 

Gupta, R.C. (1974). Modified power series distribution and some of its properties. 

Sankhy , Series B, 36, 288-298. 

Gupta, R.P., Nair, N.U., and Asha, G. (2006). Characterizing discrete life distributions 

by relations between reversed failure rates and conditional expectations. 

Far East Journal of Theoretical Statistics, 20, 113–122. 

Irwin, J.O. (1975). The generalized waring distribution. Journal of the Royal 

Statistical Society, Series B, 138, 18-31(part I), 204-227(part II), 374-

384(part III). 

Johnson, N.L., Kotz, S., and Kemp, A.W. (1992). Univariate discrete distributions 

(second edition), John Wiley and Sons, New York. 

Kao, J. H. K. (1956). A new life-quality measure for electron tubes, IRE Transactions 

on Reliability and Quality Control, 7,1. 

Kao, J. H. K. (1958). Computer methods for estimating Weibull parameters in 

reliability studies. IRE Transactions on Reliability and Quality Control, 13, 

15-22. 

97 



 
 

Krishna, H., and Pundir P.S. (2009). Discrete Burr and discrete Pareto distributions. 

Statistical Methodology, 6, 177–88. 

Kundu, D., and Nanda, A.K. (2010). Some reliability properties of the inactivity time. 

Communications in Statistics—Theory and Methods, 39, 899–911. 

Lai, CD., and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. New 

York: Springer. 

Li, X., and Lu, J. (2003). Stochastic comparison of residual life and inactivity time of 

series and parallel systems. Probability in the Engineering and 

Informational Sciences, 17, 267–272. 

Lin, D.K., Usher, J.S., and Guess, F.M. (1993). Exact maximum likelihood estimation 

using masked system data. IEEE Trans. Reliability, 42, 631-635. 

Martz, H. F., and Waller, R. A. (1982). Bayesian Reliability Analysis, New York: 

Wiley. 

Miyakawa, M. (1984). Analysis of incomplete data in competing risks model. IEEE 

Trans. Reliability, 33, 293-296. 

Nair, N.U., and Vineshkumar, B. (2010). Reversed percentile residual life and related 

concepts.  Jurnal of the Korean Statistical Society, 40, 85–92. 

Nakagawa, T., and Osaki, S. (1975). The discrete Weibull distribution. IEEE 

Transactions on Reliability, 24(5), 300-301. 

Nanda, A.K., Singh, H., Misra, N., and Paul, P. (2003). Reliability properties of 

reversed residual life time. Communications in Statistics—Theory and 

Methods, 32, 2031–2042. 

Padgett, W.J., and Suprrier, J.D. (1985). Discrete failure model. IEEE transactions on 

Reliability, 34(3), 253-256. 

Patill, G.P. (2002). Weighted distributions. Encyclopedia of Environmetics. Johon 

Wiley  & Sons, 4, 2369-2377. 

98 



 
 

Roy, D. (2003). The discrete normal distribution. Communications in Statistics—

Theory and Methods, 32, 1871–83. 

Roy, D. (2004). Discrete Rayleigh distribution. IEEE Transactions on Reliability, 53, 

255–60. 

Roy, D., and Gupta, R.P. (1992). Classifications of discrete lives. Microelectronics 

Reliability 32, 1459–73. 

Roy, D., and Gupta, R.P. (1999). Characterizations and model selections through 

reliability measures in the discrete case. Statistics And Probability Letters, 

43, 197-206. 

Salvia, A.A., and Bollinger, R.C. (1982). On discrete hazards functions. IEEE 

Transactions on Reliability, (5), 458-459. 

Shaked, M., Shanthikumar, J.G., and Valdez-Torres, J.B. (1995). Discrete hazards 

functions. Computers and Operations Research, 22(4), 391-402. 

Soler, J.L. (1996). Croissance de fiabilité des versions d’un logiciel (in French). 

Revue de Statistique Appliquée,  44(1), 5-20. 

Stein, W.E., and Dattero, R. (1984). A new discrete Weibull distribution. IEEE 

Transactions on Reliability, 33(2), 196-197. 

Tan, Z. (2007). Estimation of exponential component reliability from uncertain life 

data in series and parallel systems. Reliability Engineering & System Safety, 

92,  223-230. 

Unnikrishnan Nair, N., and Sankaran P.G. (2013). Characterizations of discrete 

distributions using reliability concepts in reversed time. Statistics & 

Probability Letters, 83(9), 1939-1945. 

Usher, J.S., and Hodgson, T.J. (1988). Maximum likelihood analysis of component 

reliability using masked system life-test data. IEEE Trans. Reliability,  37, 

550-555. 

99 



 
 

Xie, M., and Lai, C.D. (1995). Reliability analysis using an additive Weibull model 

with bathtub-shaped failure rate function. Reliability Engineering and 

System Safety, 52, 87–93. 

Xie, M., Gaudoin, O., and Bracquemond, C. (2002). Redefining failure rate function 

for discrete distributions, International Journal of Relaibility, Quality and 

Safety Engineering, 9(3), 275-285. 

Xkalaki, E. (1983). Hazard functions and life distributions in discrete time. 

Communications in Statistics, Theory and Methods, 12(21), 2503-2509. 

Zacks, S. (1984). Estimating the shift to wear-out of systems having exponential-

Weibull life. Operations Research, 32, 741-749. 

Zelen, M., and Dannemiller, C. (1961).  The robustness of life testing procedures 

derived from the exponential distribution, Technometrics 3, 29-49. 

100 


	CONTENTS
	5.2.1 Bayesian Estimator (( Known) of Reliability Function
	The likelihood function of Geeta distribution is given by

