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Preface 

The Bayesian method of reasoning is currently riding a high tide of popularity in 

virtually all areas of statistical application. A distinctive feature of Bayesian inferences is 

that it takes explicit account of prior information in the analysis. Classical statistical 

inference, based on sampling theory, usually does not consider information beyond the 

sample data. The Bayesian use of relevant past experience, which is quantified by a prior 

distribution, produces more informative inferences in those cases where the prior 

distribution accurately reflects the variation in the unknown parameter. In addition, the 

Bayesian method usually requires less sample data to achieve the same quality of 

inferences than the method based on sampling theory. In many cases this is the practical 

motivation for using a Bayesian approach and represents the practical advantage in the 

use of prior information. In Bayesian Statistics, the posterior distribution summarizes the 

current state of knowledge about all the uncertain quantities including unobservable 

parameters. The dissertation is organized in the form of five chapters and bibliography.  

Chapter I is introductory in nature and presents introduction to classical & Bayesian 

statistics. Bayes theorem, sequential nature of Bayes theorem, marginal and conditional 

inferences, prior and different types of priors, loss function and various types of loss 

functions have been discussed. 

 Chapter II of this dissertation gives the brief introduction and the structural properties 

of Weibull distribution. 

Chapter III deals with the different estimation techniques for estimating parameters of 

Weibull distribution. The objective of this chapter is to compare maximum likelihood 

estimation, method of moments and least square estimation methods.  

Chapter IV deals with the Bayesian estimation of Scale parameter of Weibull distribution 

under various priors by using different loss functions. This chapter also includes 

Bayesian credible intervals for the parameters of Weibull distribution. The methods are 

illustrated with the help of examples.  

Chapter V considers an application of Weibull distribution in Survival analysis. The 

objective of this chapter is to compare the two therapies based on survival functions of 

the patients assuming Weibull model for each therapy.  
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1.1 Introduction  

Statistics is the science that relates data to specific questions of interest. This 

includes devising method to gather data relevant to the question, methods to 

summarize and display the data to shed light on the question, and methods that 

enables us to draw answers to the question that are supported by the data. Data 

almost always contain uncertainty. This uncertainty may arise from selection of the 

items to be measured, or it may arise from variability of the measurement process. 

Drawing conclusions from data is the basis for increasing knowledge about the 

world, and is the basis for all rational scientific inquiry. Statistical inference gives us 

methods and tools for doing this despite the uncertainty in the data. The methods 

used for analysis depend on the way the data were gathered. It is vitally important 

that there is a probability model explaining how the uncertainty gets into the data.  

There are two main philosophical approaches to statistics. The first is often 

referred to as the frequentist approach. Sometimes it is called the classical approach. 

The alternative approach is the Bayesian approach. It applies the laws of probability 

directly to the problem. This offers many fundamental advantages over the more 

commonly used frequents approach. 

a) Frequentist Approach To Statistics: It is based on the following ideas: 

 Parameters, the numerical characteristics of the population, are fixed but un-

known constants. 

 Probabilities are always interpreted as long run relative frequency. 

 Statistical procedures are judged by how well they perform in the long run 

over an infinite number of hypothetical repetitions of the experiment. 

Probability statements are only allowed for random quantities. The unknown 

parameters are fixed, not random, so probability statements cannot be made about 

their value. Instead, a sample is drawn from the population, and a sample statistic is 

calculated. The probability distribution of the statistic over all possible random 

samples from the population is determined, and is known as the sampling distribution 

of the statistic. The parameter of the population will also be a parameter of the 

sampling distribution. The probability statement that can be made about the statistic 

based on its sampling distribution is converted to a confidence statement about the 

parameter. The confidence is based on the average behavior of the procedure under all 

possible samples. 
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b) Bayesian Approach to Statistics: (The Reverend Thomas Bayes first discovered 

the theorem that now bears his name/. It was written up in a paper An Essay 

Towards Solving a Problem in the Doctrine of Chances. This paper was found 

after his death by his friend Richard Price, who had it published posthumously in 

the Philosophical Transactions of the Royal Society in 1763). Bayes showed how 

inverse probability could be used to calculate probability of antecedent events 

from the occurrence of the consequent event. His methods were adopted by 

Laplace and other scientists in the 19
th

 century, but had largely fallen from favor 

by the early 20
th

 century. By mid 20
th

 century interest in Bayesian methods was 

renewed by De Finetti, Jeffreys, Savage, and Lindley, among others. They 

developed a complete method of statistical inference based on Bayes' theorem. 

The ideas that form the basis of Bayesian approach are: 

 Since we are uncertain about the true value of the parameters we will consider 

them a random variable. 

 The rules of probability are used directly to make inferences about the parameters. 

 Probability statements about parameters must be interpreted as "degree of belief." 

The prior distribution must be subjective. Each person can have his/her own prior, 

which contains the relative weights that person gives to every possible parameter 

value. It measures how "plausible" the person considers each parameter value to 

be before observing the data. 

 We revise our beliefs about parameters after getting the data by using Bayes' 

theorem. This gives our posterior distribution which gives the relative weights we 

give to each parameter value after analyzing the data. The posterior distribution 

comes from two sources: the prior distribution and the observed data. 

This has a number of advantages over the conventional frequentist approach. 

Bayes’ theorem is the only consistent way to modify our beliefs about the parameters 

given the data that actually occurred. This means that the inference is based on the 

actual occurring data, not all possible data sets that might have occurred, but didn't! 

Allowing the parameter to be a random variable lets us make probability statements 

about it, posterior to the data. This contrasts with the conventional approach where 

inference probabilities are based on all possible data sets that could have occurred for 

the fixed parameter value. Given the actual data there is nothing random left with a 

fixed parameter value, so one can only make confidence statements, based on what 

could have occurred. Bayesian statistics also has a general way of dealing with a 
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nuisance parameter. A nuisance parameter is one which we don't want to make 

inference about, but we don't want them to interfere with the inferences we are 

making about the main parameters. Frequentist statistics does not have a general 

procedure for dealing with them. Bayesian statistics is predictive, unlike conventional 

frequentist statistics. This means that we can easily find the conditional probability 

distribution of the next observation given the sample data. 

1.2 Bayes’ Theorem 

The foundation of Bayesian statistics is Bayes’ theorem. Bayesian probability or 

Bayesian theory is named after Thomas Bayes, who proved a special case of what is 

called Bayes’ theorem. Consider an unobservable vector  and observable vector x of 

length k and n, respectively with their density p( , x). From standard probability 

theory, we have     

)()|(),( xpxpxp                                                                   )1.2.1(  

  )()|(),(  pxpxp                                                                  )2.2.1(  

From (1.2.1) and (1.2.2), we get 

  
)(

)()|(
)|(

xp

pxp
xp


                                                                  )3.2.1(  

Note that 

   dxpxp ),()(  

          dpxp )()|(  

         = ])|([ xpE                                                                     )4.2.1(  

where E indicates averaging with respect to distribution of  (e.g., Box and Tiao, 

1973; Gelman, Carlin, Stern and Rubin, 1995; Lee, 1997 and Carlin and Louis, 2000). 

It is clear that )(yp  is not a function of . As a result, (1.2.3) can be rewritten as 

  )()|()|(  pxpxp                                                         )5.2.1(  

This is well known Bayes’ theorem. In the Bayesian terminology, )(p is a prior 

density of , which tells us what is known about  without knowledge of data. The 

density )|( xp is likelihood function of , which represents the contribution of )(datax

to knowledge about  (e.g., Berger, 1985 and Zellener, 1971). Finally, )|( xp   is the 

posterior density, which tells us what is known about  given knowledge of data .x
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Inferences about  are made from the posterior density and solutions to the statistical 

problem is completed with 

   dxpxRpr
R )|()|(                   )6.2.1(  

where R is the region of the space of . Fixing the probability in (1.2.6) at, say 1-, 

for a given , it is possible to obtain an interval for  such that its probability content 

is 1-. Note that R in (1.2.6) is conceptually different from the usual confidence 

interval when repeated sampling of y is envisaged (e.g., Gianola and Fernando, 1986).  

Posterior estimates of  can also be obtained from the posterior density )|( xp  . 

For example, posterior mean and posterior mode defined in equations (1.2.7) and 

(1.2.8) can serve as point estimates of , i.e. 

   dxpxE  )|()|(                                                        )7.2.1(  

and  )|(sup xp
R






                             )8.2.1(  

where R is the space of . 

It may be noted that contrary to sampling theory approach to statistical 

analysis, point and interval estimations (or hypothesis testing) are not two different 

issues in Bayesian scenario. That is, we can say that Bayesian statistical analysis 

problem is regarded as solved as soon as we supply a posterior distribution )|( xp   

which shows what can be inferred about the vector parameter  from the data y given 

a relevant prior state of knowledge represented by )(p (e.g., Khan, 1997). 

The origin of Bayes’ theorem has a fascinating history. It is named after the 

Rev. Thomas Bayes, a priest who never published a mathematical paper in his 

lifetime. The paper in which the theorem appears was posthumously read before the 

Royal Society by his friend Richard Price in 1764. Stigler suggests it was first 

discovered by Nicolas Saunderson, a blind mathematician / optician who, at age 29, 

became Lucasian Professor of Mathematics at Cambridge (the position earlier held by 

Isaac Newton). More details are discussed in Stigler, 1983. The term Bayesian, 

however, came into use only around 1950, and in fact it is not clear that Bayes would 

have endorsed the very broad interpretation of probability now called "Bayesian". 

Laplace independently proved a more general version of Bayes' theorem and put it to 
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good use in solving problems in celestial mechanics, medical statistics and, by some 

accounts, even jurisprudence.  

1.3 Sequential Nature of Bayes’ Theorem 

The theorem in (1.2.5) is appealing because it provides a mathematical 

formulation of how previous knowledge may be combined with new knowledge. 

Indeed, the theorem allows us to continually update information about a set of 

parameters  as more observations are taken. Thus, suppose we have an initial sample 

of observations 1x , then Bayes’ formula gives 

  )()|()|( 11  pxpxp           )1.3.1(  

Now, suppose we have a second sample of observations 
2x  distributed independently 

of the first sample, then 

)|()|()(),|( 2112  xpxppxxp     

)|()|(),|( 2112  xpxpxxp                     )2.3.1(  

The expression (1.3.2) is precisely of the same form as (1.3.1), except that )|( 1xp  , the 

posterior distribution for  given 1x , plays the role of the prior distribution for the 

second sample. Similarly, if we have n independent observations, then posterior can 

be recalculated after each new observation i.e. 

)|(),,,|(),,,|( 12121  nnn xpxxxpxxxp            )3.3.1(  

Thus, Bayes’ theorem describes, in a fundamental way, the process of learning from 

experience, and shows how knowledge about the state of nature represented by  is 

continually modified as new data becomes available (e.g., Box and Tiao, 1973). 

1.4 Marginal and Conditional Inferences 

Often, only a subset of the unknown parameters is really of concern to us, the 

rest being nuisance parameters that are really of no concern to us. A very strong 

feature of Bayesian analysis is that we can remove the effects of the nuisance 

parameters by simply integrating them out of the posterior distribution to generate a 
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marginal posterior distribution for the parameters of interest. For example, if  is 

partitioned as ),( 21  , with 1 a p dimensional vector and 2 as (k-p) dimensional 

vector, then the marginal posterior density for 1 is given by   






R

R

dpxp

dpxp

xp







)()|(

)()|(

)|( 2

2

1              )1.4.1(  

Similarly, the marginal posterior density for 
2  is given by 

  






R

R

dpxp

dpxp

xp







)()|(

)()|(

)|( 1

1

2           )2.4.1(  

The requirement of orthogonality between nuisance parameter and the parameter of 

interest is not required in this framework (e.g., Cox and Reid, 1987). Moreover, 

marginal posterior densities are better substitutes of conditional profile likelihoods of 

Cox and Reid (1987). 

Conditional inferences for 
1  given 

2 ; and 
2 given 

1  can also be made 

using the posteriors 

  




1

12121

2121
21

)|(),|(

)|(),|(
),|(

R

dpxp

pxp
xp




          )3.4.1(  

and  




2
21221

1221
12

)|(),|(

)|(),|(
),|(

R
dpxp

pxp
xp




                   )4.4.1(  

Marginal and conditional inference procedures are two entirely different things. In the 

former, we ignore one of the components of  by integrating it out from the joint 

posterior )|( yp  , while in the later we control (or adjust) one of the components of  

(e.g., Khan, 1997 and Ahmad, 2006). 

1.5 Prior Distribution: 

The fundamental part of any Bayesian analysis is the prior distribution. The prior 

distribution )(P   represents all that is known or assumed about the parameter 

usually the prior information is subjective and is based on a person’s own experience 

and judgment, a statement of one’s degree of belief regarding the parameter, design 

information and personal opinions. The other critical feature of the Bayesian analysis 

is the choice of a prior. The key here is that when the data have sufficient signal, even 
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a bad prior will still not greatly influence the posterior. In a sense, this is an 

asymptotic property of Bayesian analysis in that all but pathological priors will be 

overcome by sufficient amounts of data. We can check the impact of the prior by 

seeing how stable to posterior distribution is to different choices of priors. If the 

posterior is highly dependent on the prior, then the data (the likelihood function) may 

not contain sufficient information. However, if the posterior is relatively stable over a 

choice of priors, then the data indeed contains significant information.  

Prior distribution may be categorical in different ways. One common 

classification is a dichotomy that separated “proper” and “improper” priors. A prior 

distribution is proper if it does not depend on the data and the value of integral 






 dP )(  or summation  )(P  is one. If the prior does not depend on the data and 

the distribution does not integrate or sum to one then we say that the prior is 

improper. Other classification of prior is either based on properties or on 

distributional forms as under: 

a)  Uniform prior  

In a state of ignorance the prior distribution is accepted as being uniform. It 

appears that great minds like Gauss, Bernoulli and Laplace used the principle in some 

form or other in their work. It is claimed that Bayes himself used uniform prior in his 

revolutionary work. 

The apparent success with uniform prior subscribed to the senore’s idea that 

perhaps the uniform prior is the final answer. Jeffery’s (1961) makes an interesting 

comment that there is no more need for such an idea than to suggest that an oven 

which cooked roast beef once cannot cook anything other than roast beef. One should 

be cautious before invoking the uniform prior theory, for a careless and mechanical 

use of this principal may lead to contradiction and confusion. 

b)  Non- informative prior (NIP) 

One class of prior distribution is called non-informative prior and as the name 

suggests, it is prior that contains no information about  . Non informative priors are 

also called priors of ignorance Box and Tiao (1973) provides a thorough discussion of 

non informative priors for one or more parameters. 

Rather than a state of a complete ignorance, the non informative prior refers to 

the case when relatively little (or very limited) information is available a priori. In 
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other words, a priori information about the parameter is not substantial relative to the 

information expected to be provided by the sample of empirical data. A prior 

probability distribution that represents perfect ignorance or indifference would 

produce a posterior probability distribution that represents what one should need 

about the parameter  on the basis of the evidence (data) Y alone. Such a prior is 

called “neutral” or non informative priors by Royall (1997). According to Jeffery’s 

(1983), non -informative priors provide a formal way of expressing ignorance of the 

value of the parameter over the permitted range. 

If the prior is non informative, we should assign the same density to each 

  , which of course implies that prior )(P   is uniform given by ),k(P  . 

The non informative prior often leads to a class of improper prior, improper in 

the sense that .1)( 


dP The derivation of non informative prior is 

mathematically very closely associated with variance stabilizing transformations 

(Bartlett, 1937) and Fishers information (Fisher, 1922). 

c)  Natural conjugate prior (NCP) 

Raiffa and Schlaifer (1961) presented a formal development of conjugate prior 

distribution, intuitively, a conjugate prior distribution; say )(P   for given sampling 

distribution, say )|( xf  is such that the posterior distribution )|( xP   and the prior 

)(P   are members of the same family of distributions.  

Let ),...,,( 21 nxxxx   be a data from some family of distribution )|( xf  

which combines basic information. Such a function is known as sufficient statistic. 

Sufficient statistic exists for a number of standard distributions.  

As in frequencies frame work, sufficient statistic plays an important role in 

Bayesian interference in constructing a family of prior distribution known as natural 

conjugate prior (NCP) .The family of prior distribution )(P ,   is called a 

natural conjugate family if the corresponding posterior distribution belongs to the 

same family as )(P  . 

The below given table has shown the conjugate priors for several common 

likelihood functions. 

Table 1.1: Conjugate prior for common likelihood functions 
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d)  Jeffrey’s Invariant Prior (1946, 1961)    

In situations where we only have limited data available and we have no expert 

knowledge available. We should be able in such situations to choose a suitable prior 

which should obey the invariant property under parameter transformation. The Jeffery 

prior was designed to solve the invariance under the parameter transformation 

problem. According to the Jeffery principal the following equation should hold: 

1
)()()()(


 



 hP

d

d
PP  

where )(h   is a one to one parameter transformation. This states that a rule for 

determining a prior should yield an equivalent transformed. From the above 

formulation we can derive the general formula of the Jeffery prior, which is given as  

2/1

2

2 )|(log
)()( 



























xL
EIP  

where )(I  is the Fisher information for the parameter  . When there are multiple 

parameters I is the Fisher information matrix, the matrix of the expected second 

partials 


















ji

xL
EI



 )|(log
)(

2

θ  

In this case, the Jeffery prior becomes 

 )](det[)( θθ IP 
 

 

Table 1.2: Jeffery prior for the common probability distribution 

Likelihood Conjugate priors 

Binomial Beta 

Multinomial Dirichlet 

Poisson Gamma   

Normal𝝁Unknown, 𝝈𝟐  known Normal 

Normal𝝁 Known,  𝝈𝟐 unknown Inverse chi-square 

Multivariate normalunknown, v known Multivariate normal 

Multivariate normalknown, v unknown Inverse Wishart 
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Probability 

Distribution 

 

 

Jeffery’s prior 

Normal Unknown, 2  known )(P  = constant 

Normal Known, 2  unknown 




1
)(P  

Normal  , 2 Both unknown     PP)|(P)(P),(P  

Exponential Distribution 




1
)(P  

Binomial Distribution with n independent 

draws 

2/12/1 )1()(P    

Weibull ( , )    1 2( , ) ( ) |P P p P   

1
( , )P


 


  

Negative Binomial Distribution 2/11 )1()(P    

Uniform Distribution i.e. ),0(U~X   




1
)(P  

 

e)  Maximal information prior (MIP) 

Zellner (1977) used the information theoretic approach to define maximal 

information prior. Let   dxfxfI x )|(log)|()(  be a measure of information 

in the pdf )|( xf . The prior average information is defined as 

   dPII xx )()()(
 

where )(P  is a prior density of   and      dPP log measures the information in 

prior )(P  . 












dPPdPIG

dPPIG

x

x

)(log)()()(

)(log)()(

 

is defined as a measure of gain in information, the maximal information prior is the 

one that maximizes G for varying )(P   subject to the condition 1)(  dP  

f)  Asymptotically locally invariant prior (ALIP) 
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Hartigan (1964) derived a family of prior densities to represent our ignorance 

about  using invariance techniques similar to those suggested by Jeffery’s (1946). 

He named this asymptotically locally invariant (ALI) prior. The ALI priors are easy to 

derive for exponential family of distributions. 

Hartigan (1964) point out that in some instances, the posterior distribution 

based on the ALI prior may lead to a chi-square having a degree of freedom contrary 

to the usual rule of assigning the degree of freedom to chi-square. 

g)  Dirichlets prior (DP) 

Dirichlets prior distribution is  

11

2

1

1

21

21 .......
.......

),.......,,( 21 




 k

k

k

k ppppppP





 

where 




k

i

i

1

  , 0;10;,1

1




ii

k

i

i pp  is a generalization of the beta –

prior. 

0,;10,)1(
),(

1
)( 11   ba

baB
P ba   

h)  Haldane’s prior (1931): 

Halden’s prior is given as  

11 )1()(   P ,   ]1,0[  

which is an improper density. We get if we put 0   in Beta prior. 

1.6 Loss Function (Lf):  

The word “loss” is used in place of “error” and the loss function is used as a 

measure of the error or loss. Let   be an unknown parameter of some distribution 

)|( xf  and suppose that   is estimated by some statistics TxT )( . Let ),( TL 

represents the loss incurred when the true value of the parameter is   where   is 

estimated by the statistics T. 

Loss function is a measure of the error and presumably would be greater for 

large error than for small error. We would want the loss to be small or we want the 

estimate to be close to what it is estimating. Our objective is to select an estimator T= 

L( x1, x2,…,xn) that makes this error or loss small. Loss depends on sample and we 

cannot hope to make the loss small for every possible sample but can try to make the 
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loss small on the average. Our objective is to select an estimator that makes the 

average loss (risk) small and ideally select an estimator that has the small risk. 

Some Important Loss Functions are as under: 

a) Squared-Error Loss Function: 

The squared error loss function (SELF) was proposed by Legendre and Gauss 

(1805) to develop least squares theory. Later, it was used in estimation problems 

when unbiased estimators of   were evaluated in terms of the risk function )T,(R   

which becomes nothing but the variance of the estimator. It was also observed that 

SELF is a convex loss function and therefore, restricts the class of estimators by 

excluding randomized estimator. The SELF is given as 

2)(),( TTL   .  

b) Weighted SELF : 

A generalization of squared-error loss, which is of interest, is  

2))((),( TWTL    

This loss is called weighted squared-error loss and has the attractive feature of 

allowing the squared error, 
2)( T to be weighted by a function of – . 

c) Quadratic SELF: 

Other variant of square error loss is quadratic SELF. If ),......,,( 21
 pθ  

is a vector to be estimated by ),.....,,( 21
 ptttT , and Q is pxp positive definite 

matrix, and then )()(),( TQTTL  θθθ  is called quadratic loss. When Q is 

diagonal, this reduces to  

 2

1

),( ii

k

i

i tQTL 


θ  

and is natural extension of squared-error loss to themultiparametricsituation. 

d) Linear Loss: 

 When utility function is approximately linear (as is often the case over a 

reasonable segment of the reward space), the loss function will tend to be linear. Thus 

of interest is the linear loss 

TTCTL   ),(),( 1
 

and TTCTL   );(),( 2
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The constants C1 and C2 reflect the effect of over and over estimating  . By 

suitably choosing C1, C2 any fractile of the posterior distribution will be a Bayes 

estimator (Box and Tiao, 1973).  

If  C1 and C2are functions of  , the above loss function is called weighted linear loss 

function. 

e) Absolute Loss:  

TTL   ),(  

is called the absolute loss function. As per De Groot (1970) for such a loss function, 

Bayesian estimator is the posterior median. 

f) Zero –One loss: 

0),( TL   iff CT   

and 

1),(  TL  iff CT   

where c is the small positive constant. 

As per Raiffa and Schlaifer (1961), Bayes estimator for such a loss function is 

mode of posterior distribution. The risk function )T,(R  , associated with the 

estimator T is defined as the expected value of the loss function. The loss is Zero if 

the decision is made correct about T and the loss is one if the decision about T is 

made incorrect. 

 dyxfTLTLETR x )|(),()],([),(   

 CTP    

            =P[incorrect decision about T] 

1.7 Risk Function: 

The risk function ),( TR   associated with an estimator T is defined as the expected 

value of the loss function and is given by 

   dxxfTLTLETR x )|(),(),(),( 
 

Bayes risk associated with an estimator T is defined as the expected value of 

the risk function )T,(R   with respect to the prior distribution )(p  of   and is 

given by 
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 ),(),( TRETR  
 

  dPTR )(),(  

   dPTLEx )(),(
 

  




  dPxfTL )()|(),(  

Bayesian risk of an estimator is an average risk, which is a real number. Risk can be 

used as a guide. A good decision would be that minimizes the risk for all values of     

𝜃 in  .For two estimators ),.......,,( 2111 nxxxtT   and ),,.........,( 2122 nxxxtT 

estimator T1 is defined to be better estimator than T2 if 

  ),()( 21 RtRt  

Thus, risk and loss functions are used to assess the goodness of estimators. 
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2.1 Introduction 

The Weibull distribution was introduced by the Swedish Physicist Waloddi 

Weibull in 1939. This distribution has been extensively used in life time and 

reliability problem. The Weibull distribution is perhaps the most widely used life time 

distribution model. Its application in connection with lifetimes of many types of 

manufactured items has been widely advocated (e.g., Weibull, 1951; Berrentoni, 

1964), and it has been used as a model with diverse types of items such as vacuum 

tubes (Kao, 1959), ball bearings (Lieblein and Zelen, 1956), and electrical insulation. 

It is also widely used in biomedical applications, for example, in studies of the time to 

the occurrence of tumors in human population (Whittemore and Altschuler, 1976) or 

in laboratory animals (Pike, 1966 and Peto et al., 1972) and in many other situations. 

A comprehensive review of this model is available in Johnson, Kotz and Balakrishnan 

(1995). Mudholkar et al. (1996) described a certain generalization of the Weibull 

distribution and applied it to survival data. Hirose and Lai (1997) constructed 

confidence internals for the parameters, including a location parameter, for the case of 

grouped data. Marshall and Olkin (1997) introduced a method for adding new 

parameters to an existing two parameters Weibull distribution. Their distribution is 

known as the Marshall-Olkin extended distribution. Nordman and Meeker (2002) 

evaluated exact coverage probabilities of approximate prediction intervals for the 

number of failures to be observed in a future inspection of a sample. Xie et al. (2002) 

developed a model named modified Weibull extension with three parameters. This 

model allows for increasing, bathtub-shaped or decreasing failure rate function and 

the resulting Weibull probability plot is concave. Lai et al.(2003) proposed a modified 

Weibull distribution involving three parameters. This distribution has increasing or 

bathtub-shaped failure rate function and its probability plot is concave. Further, Tang 

et al. (2003) have carried out the statistical analysis of the extension. Ghitany et al. 

(2005) showed that the Marshall–Olkin extended Weibull distribution could be 

obtained as compound distribution with mixing exponential distribution Nadarajah 

and Kotz (2007) discussed products and ratios of Weibull random variables.                  
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The Weibull distribution has pdf of the form  

 0,exp),;( 1 







  x

x
xxf









               )1.2(  

where 00   and are shape and scale parameters respectively.  

The mean and variance of this distribution are 

   























































211

1
1

1
2

1
1





  and  

respectively, and pth quantitile is   
1

1log pxp  . The Weibull distribution is 

monotone increasing if 1 , decreasing if 1  and constant for 1 . The model is 

fairly flexible and has been found to provide a good description of many types of 

lifetime data. The Weibull distribution arises as an asymptotic extreme value 

distribution, and in some instances can be used to provide motivation for it as model 

(Weibull, 1951; Peto et al., 1972). A plot of Weibull distribution with different shape 

parameters is shown below in figure 2.1. 

 

The shape of the Weibull pdf depends upon the value of  , in fact   is 

sometimes called the shape parameter for the distribution. “Typical”   values vary 
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from application to application, but in many situations distributions with   in the 

range from 1 to 3 seem appropriate.    

2.2 Different methods of Derivation of Weibull distribution  

 The Weibull distribution arises from the exponential distribution in the 

following way.  

a) I –method: Suppose that instead of assuming that the failure time is distribution 

exponentially, we assume some power (say, pth) of the failure time is distributed 

exponentially. Thus if X is a random variable representing the failure time, then 

we assume that Y = 𝑋𝑃  has the p.d.f. given by  

 𝑓  𝑦 =
1

𝛼
exp  

−𝑦

𝛼
         𝑦 ≥ 0, 𝛼 > 0                                  (2.2.1)    

 Since Y = 𝑋𝑝  

           𝑑𝑦 =  𝑃𝑋 𝑝−1 𝑑𝑥 

                
𝑑𝑦

𝑑𝑥
= 𝑃𝑋 𝑝−1  

Now make a Jacobian transformation  

 𝑓 𝑥 = 𝑓 𝑦   𝐽                  (2.2.2)  

 Where    𝐽 =  
𝑑𝑦

𝑑𝑥
  

                𝐽 =  𝑃𝑋 𝑝−1 

In our case P =  

                   𝐽 = 𝛽𝑋𝛽−1                                                                        (2.2.3)  

Thus using eq. (2.2.1) and eq. (2.2.3) in eq. (2.2.2), we get 

                𝑓 𝑥 =
1

𝛼
 exp  −

𝑥𝛽

𝛼
 𝛽𝑥𝛽−1 

⇒             𝑓 𝑥 =
𝛽

𝛼
𝑥𝛽−1 exp  −

𝑥𝛽

𝛼
   x ≥ 0, α, β > 0                        (2.2.4) 

Which is the pdf of two parameter Weibull distribution. 
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b) II Method: For the two parameter Weibull distribution, the distribution function 

is given by  

                    𝐹 𝑥 =   𝑓 𝑥 𝑑𝑥 
𝑥

𝑜

 

               𝐹 𝑥 =   
𝛽

𝛼
𝑥𝛽−1 

𝑥

𝑜
exp  

−𝑥𝛽

𝛼
 𝑑𝑥                                   (2.2.5) 

      Put     
𝑥𝛽

𝛼
= 𝑧                                                  (2.2.6) 

                
𝛽

𝛼
𝑥𝛽−1𝑑𝑥 = 𝑑𝑧             (2.2.7) 

Thus by using eq. (2.2.6) and eq. (2.2.7) in eq. (2.2.5), we have 

                 𝐹 𝑥 =   𝑒−𝑧𝑑𝑧 
𝑧

𝑜
 

            F(x) =  
𝑒−𝑧

−1
 

0

𝑧

=  −  𝑒−𝑧 − 𝑒𝑜   

     F(x) =  𝑒−𝑧 − 1 = 1 − exp −z  

              𝐹 𝑥 = 1 − exp  −
𝑥𝛽

𝛼
  

Also we know that the reliability function is given 𝑏𝑦 

                𝑅 𝑥 =  1 –  𝐹 𝑥  

             𝑅(𝑥) =  1 −  1 − exp  −
𝑥𝛽

𝛼
   

               𝑅 𝑥 =  exp  −
𝑥𝛽

𝛼
                                                          (2.2.8) 

and the instantaneous failure rate or hazard rate is given by  

                  𝜇 𝑥 =  
𝑓 (𝑥)

𝑅(𝑥)
                                (2.2.9) 

Now by using eq. (2.2.4) and eq. (2.2.8) in eq.(2.2.9),we have 

                   𝜇(𝑥)  = 

𝛽

𝛼
 𝑥

𝛽−1 exp   −
𝑥𝛽

𝛼
 

exp  −
𝑥𝛽

𝛼
 

 

                   𝜇 𝑥 =
𝛽

𝛼
𝑥𝛽−1           (2.2.10) 
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If >1, then 𝜇 (x) is increasing function.  

If   <1, then 𝜇 (x) is decreasing function.  

and If  = 1, then 𝜇(x) is constant and leads to exponential distribution. 

This observation lends another way of deriving Weibull distribution; namely 

assuming that the hazard rate 𝜇(x) is proportional to power of x. Thus, if we assume 

that             µ(x) = C𝑥𝑘 , then   

Since         𝑓(𝑥)  =  𝜇(𝑥) 𝑒𝑥𝑝  −  𝜇 𝑤 𝑑𝑤
𝑥

𝑜
  

then            𝑓  𝑥 = 𝐶𝑥𝑘  exp  −  𝐶𝑥𝑘𝑑𝑥
𝑥

0
  

      𝑓  𝑥|𝑐, 𝑘 = 𝐶𝑥𝑘 exp  − 
𝐶𝑥𝑘+1

𝐾+1
                                           (2.2.11) 

If we take    𝐶 =  



  and 𝑘 = 𝛽 − 1 in eq. (2.2.12), we have 

      𝑓 𝑥; 𝛼, 𝛽 =



𝑥β−1 exp  − 

xβ

α
  𝑥  0, 𝛼, 𝛽 > 0                              (2.2.12) 

This is the required pdf of two parameter Weibull distribution.  

If  = 1, then (2.2.12) becomes 











x

xf exp
1

),( , which is the pdf for an 

exponential distribution.  

If  =  = 1, then pdf of (2.2.12) becomes  xxf  exp),(  , which is the pdf 

of standard exponential distribution. Thus, we see that the exponential distribution is a 

special case of Weibull distribution.  

2.3 Moments of two parameter Weibull distribution  

Moments are the expected values of certain functions of a random variable. 

They serve to numerically describe the variable with respect to given characteristics 

for e.g. location, variation, skewness and kurtosis.  

The expected value of 𝑋𝑟  is termed as rth moment about origin of the random 

variable X:  

              𝜇𝑟 ' = E(X)𝑟  
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Since    ),(~ WX  

                𝑓 𝑥,,  =
𝛽

𝛼
 xβ−1 exp  – 

xβ

α
    x ≥ 0 , α, β > 0                   (2.3.1) 

            𝜇𝑟
′  = 𝐸(𝑋)𝑟 =   𝑥𝑟  𝑓(𝑥,

∞

𝑜
 α. β) dx 

⇒           𝜇𝑟
′   =  𝑥𝑟  

𝛽

𝛼
 xβ−1   ∞

𝑜
 exp  − 

xβ

α
 d𝑥                                     (2.3.2) 

Put     
xβ

α
=z 

 ⇒            
𝛽

𝛼
 𝑥β−1dx = dz    

Thus after substituting these values in eq. (2.3.2), we get 

  




0

)exp( dzzz
r

r
  

   





0

11
)exp( dzzz

rr

r
  

  







 1


 

rr

r           (2.3.3) 

Put  r = 1 in eq. (2.3.3) then we get 

  







 1

11

1


                  (2.3.4)      

Which is the mean of two parameter Weibull distribution.              

Put  r = 2 in eq.(2.3.3 ) then  we get 

  







 1

22

2


           

Then variance 
2 is given by 

 𝜎2 = 𝜇2 =  𝜇2
′  − 𝜇′

′  2  
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               𝜎2 =      







 1

22


  −     








 1

11


   

2

 

 

































2
2

2 1
1

1
2


                                                            (2.3.5) 

If r = 3 in eq. (2.3.3) then we have  

  







 1

33

3


   

Also,  𝜇3 =  𝜇3
′  −  3𝜇2

′  𝜇1
′  +  2𝜇1

′  3                                     
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If r = 4 in eq. (2.3.3), then we have  

  



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


 1
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4


   

Also,   𝜇4 =  𝜇4
′  −  4𝜇3

′  𝜇1
′  +  6𝜇2

′  𝜇1
′  2 − 3𝜇1

′  4 
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2.4 Standard Deviation  

The positive square root of the variance is called standard deviation. The idea of 

standard deviation was first given by Karl Pearson in 1983. 

Symbolically                   𝜎 =   𝜎2 

Since from equation (2.3.5), we have the variance of two parameter Weibull 

distribution given as 
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Where    𝜎𝑘 =  Γ  
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2.5 Coefficient of variation  

It is the ratio of standard deviation and mean. Usually it is denoted by C.V. and is 

given by  
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
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Now by using eq. (2.4.1) and eq.(2.3.4) in eq.(2.5.1),we have
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2.6 Skewness and Kurtosis  

The most popular way to measure the Skewness and kurtosis of a distribution 

function rests upon ratios of moments. Lack of symmetry of tails (about mean) of 

frequency distribution curve is known as skewness. The formula for measure of 

skewness given by Karl Pearson in term of moments of frequency distribution is 

given by  

                𝛽1 =  
𝜇4

3 

𝜇2
3                                                                     (2.6.1)  

Now by using eq. (2.3.4) and (2.3.5) in eq. (2.6.1), we have 
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3

𝛽  
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+ 1  Γ  Γ
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             𝛽1 =   Γ  
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β
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And     

                   𝛽1  =  
 𝜎3−3𝜎2𝜎1+2𝜎1

3 

 𝜎2−2𝜎1
2 

2

2

 

Where     𝜎𝑘 =  Γ  
𝑘

𝛽
+ 1  

and              𝛾1 =   𝛽1 

                 𝛾1  = 
 𝜎3−3𝜎2𝜎1+2𝜎1

3 

 𝜎2−2𝜎1
2 

3 2  

 If 𝛾1 < 0, 𝑡𝑕𝑒𝑛 𝑡𝑕𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑠𝑘𝑒𝑤𝑒𝑑  

If 𝛾1 ≥ 0 𝑡𝑕𝑒𝑛 𝑡𝑕𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑐𝑢𝑟𝑣𝑒 𝑖𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑙𝑦 𝑆𝑘𝑤𝑤𝑒𝑑   

Kurtosis  

Kurtosis meaning bulginess. The formula for measure of Kurtosis is given by  

                                 𝛽2= 
𝜇4

𝜇2
2                    (2.6.2)  

Thus by using eq. (2.3.4) and eq.(2.3.6) in eq.(2.6.2),we have 
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                             𝛽2 = 𝛼
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                                    𝛽2 =  
𝜎4 −  4𝜎3 𝜎1 +  6𝜎2𝜎12 − 3𝜎14

(𝜎2 − 𝜎12 )2
 

When                         𝜎𝑘 =  Γ  
𝑘

𝛽
+ 1  

                                 𝛶2 = 𝛽2 − 3 

                             𝛶2=

𝜎4− 4𝜎3  𝜎1+ 6𝜎2𝜎
12−3𝜎

14

(𝜎2−𝜎12 )2
− 3 

If 𝛾2 > 0, then the curve is leptokurtic  

If 𝛾2 < 0, then the curve is platykurtic  

And is 𝛾2 = 0, then the curve is mesokurtic or we can say, there is no kurtosis.  
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3.1 Introduction  

 There are a few occasions when population is studied as a whole. As a matter 

of fact, generally a sample is drawn from the population and population constants are 

determined on the basis of sample values. Population parameters are usually those 

constant which occur in probability density or mass function or the moments or some 

other constants of the population like median.  

 We know that various sampling procedures do exist and also there are many 

techniques to determine the value of population constants through sample values. The 

constant determined through sample observations which stands for population 

parameter θ or a function f(θ) though   f(θ) in many cases is equal to θ.  

The choice of a technique depends on the type of the estimator vis-a-vis 

estimate and the purpose of study. The goodness of an estimator is governed by 

certain properties. An estimator possessing the maximum properties will be 

considered as a good estimator.  

 So in estimation theory we are concerned with the properties of estimators and 

methods of estimation. The merits of an estimator are judged by the properties of the 

distribution of estimates obtained through estimators i.e. by the properties of the 

sampling distribution. Further, it is emphasized that estimation is possible only if 

there is a random sample.  

 The theory of estimation was founded by Prof. R. A. Fisher in a series of 

fundamental papers round about 1930 and is divided into two groups (i) point 

estimation and (ii) Internal estimation. In point estimation, a sample statistic 

(numerical values) is used to provide an estimate of the population parameter whereas 

in Interval Estimation, probable range is specified within which the true value of the 

parameter might be expected to lie.   

 The word estimator stands for the function, and the word, estimate means a 

value of that function. In estimator we take a random sample (x1,x2, …, x𝑛 ) from the 

distribution to draw out some information about unknown parameter θ. That is, we 

repeat the experiment n independent times, observe the sample, and we try to estimate 

the value of θ. The function of (x1, x2,…, x𝑛) used to estimate θ, say the statistic T(x1, 

x2,…,xn) called an estimator of 𝜃 . we want it to be such that the computed 

estimate(x1, x2,…,xn) is usually close to θ.  
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 Thus any statistic those values are used to estimate s(θ) where S(.) is some 

function of the parameter θ, is defined to be an estimator r(θ). An estimator is always 

a statistic which is both a random variable and a function.  

3.2 Methods of estimation: 

A variety of methods to estimate the unknown parameters have been proposed. 

The common used methods are: 

a) Method of maximum likelihood estimation, 

b) Method of moment 

c) Method of least square estimation 

d) Method of minimum variance, 

e) Method of least square estimation,  

f) Method of minimum chi-square, and  

g) Bayesian estimation.      

The various methods used in this chapter are as follows: 

a) Method of maximum likelihood estimation (MLE): 

The most general method of estimation known is the method of maximum 

likelihood estimators (MLE) which was initially formulated by C.F. Gauss but as a 

general method of estimation was first introduced by Professor. R. A. Fisher in the 

early (1920) and later on developed by him in a series of papers. He demonstrated the 

advantages of this method by showing that it yields sufficient estimators, which are 

asymptotically MVUES. Thus the essential feature of this method is that we look at 

the value of the random sample and then choose our estimate of the unknown 

population parameter, the value of which the probability of obtaining the observed 

data is maximum. If the observed data sample values are ),,,( 21 nxxx   , we can 

write in the discrete case 

),,,(),,,( 212211 nnn xxxfxXxXxXP    

which is just the value of joint probability distribution of the random values 

),,,( 21 nxxx   at the sample point ),,,( 21 nxxx   since the sample values has been 

observed and are therefore fixed numbers, we regard );,,,( ,21 nxxxf   as the 

value of a function of the parameter  , referred to as the likelihood function. A 

similar definition applies when the random sample comes from a continuous 
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population but in that case );,,,( ,21 nxxxf   is the value of joint pdf at the sample 

point ),,,( 21 nxxx   i.e.; the likelihood function at the sample value ),,,( 21 nxxx  . 





n

i

ixfxL
1

),()|(                                                                  (3.2.1)                                                                                                                                    

Since the principle of maximum likelihood consists in finding an estimator of 

the parameter which maximizes L for variation in the parameter. Thus if there exists a 

function ),,,(ˆˆ
21 nxxx    of the sample values which maximizes )|( xL  for 

variation in  , then ̂  is to be taken as the estimator of  . ̂  is usually called ML 

estimators. Thus ̂  is the solution if and only if 

0
)|(

0
)|(

2

2

















 xL
and

xL
                                           (3.2.2) 

Since )|( xL  >0, so )|(log xL  which shows that )|( xL  and )|(log xL attains 

their extreme values at the ̂  . Therefore, the equation becomes 

0
)|(log

0
)|(

)|(

1





















xLxL

xL                         
(3.2.3)                                                  

a form which is more convenient from practical point of view. 

b)  Method of moments (substitution principle) (MM): 

One of the simplest and oldest methods of estimation is the substitution principle. 

The method of moments was discovered and studied in detail by Karl Pearson. The 

method of moments is special case when we need to estimate some known function of 

finite number of unknown moments. 

     Let ),......,,;( 21 kxf   be density function of the parent population with k 

parameters k ,......,, 21 . If 'r denotes the rth moment about origin, then 









krxfx k

r

r ,....,2,1),,....,,;( 21                                          (3.2.4) 

In general ',....,',' 21 k will be functions of the parameters k ,,, 21  . Let 

nixi ,,2,1,   n be a random sample of size n from the given population. The 

method of moments consists in solving the k-equation (i) for k ,......,, 21  in 

terms of ',....,',' 21 k  and then replacing these moments. 

krr ,....,3,2,1;'    by the sample moments 

e.g.  kimmm kiki ,....,2,1);',.....,','()ˆ,.....,ˆ,ˆ(ˆˆ
2121               (3.2.5) 
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where im  is the ith moment about origin in the sample. 

Then by the method of moments k ˆ,......,ˆ,ˆ
21  are the estimators of                               

respectively. 

c)  Method of least square estimation (LSE): 

The idea of least square estimation emerges from the method of maximum 

likelihood itself. Consider the ML estimation of µ on the basis of a sample of size n 

from a normal population N (µ,
2 ) 

2

2

1
( )

2 2
1

( , , ) 0, 0
2

y

f y e Y


  
 

 

    

The likelihood function is given by  

 
2
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2 2
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1
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 
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LogL Y 

 
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Maximizing logL implies that  
2

1

n

i

y 


 must be minimized. i.e., sum of squares 

 
2

1

n

i

i

y 


 must be least square. 

The method of least square estimation is mostly used in estimating the 

parameters of linear function. This very idea can be translated by considering µitself a 

linear function of certain parameters βj (j=1, 2… k) 

i.e. µ=
1

k

j j

i

x 



 

Where xj’s are some unknown coefficient of βj’s forming a linear function of 

βj. In this situation estimation of βj’s is in the offing. For estimating βj’s, we have to 

minimize  

2

1 1

k k

i j j

j j

E Y x 
 

 
  

 
 

 

with respect to βj.
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i.e. We have to differentiate the above equation with respect to βj’s and equating to 

zero.  

i.e. 0
j

E







;  j=1,2,…,k.  

3.3 Estimation of Parameters of Weibull Distribution using different methods 

a) MLE Method: 

 Let 
nxxx ,,, 21  be independent and identically distributed random variable from 

two parameter Weibull distribution with the probability density function given by   

)1.1.3(0,,0,exp),;( 1 







  






 x

x
xxf

 

The likelihood function of equation (3.3.1) is given by  

 

 

 

The log likelihood function is given by  
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loglog,log                       (3.3.2)  

For determining the MLE of  we differentiate eq. (3.3.2) with respect to  and 

equating to zero, we get  

0
2
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
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i
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x
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i
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

           (3.3.3) 

b) Method of moments:  

Although in many cases the method of moments estimator (MME) is superseded 

by Fisher's MLE concerning asymptotic unbiasedness and minimal variance, the 

method of moments estimators can, in many cases and quite accurately, be derived by 

hand.  

  1 1
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If the numbers ),,,( 21 nxxx   represents a set of data, then an unbiased estimator 

for the kth moment about origin is  

 

                                                     (3.3.4)  

where km̂ stands for the estimate of mk. In two parameter Weibull distribution, the kth 

moment about origin is given by  
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Where Γ. represents the gamma function and 


 
0

1 0, sdxexs xs
 (Casella and 

Berger 2002). 

If k = 1, then equation (3.3.5) becomes  
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Thus the variance is given by 
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When we divide 2 by 
2

1 (e.g., Murthy, Xie, and Jiang (2004)), we get an expression 

which is a function of  only  
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














 22

22

2

1

2

1
1

1
1

1
2















 

2

2

2

1

2

1
1

1
1

1
2




































































     (3.3.6) 

On taking the square roots of (3.3.6), we have the coefficient of variation  









































































1
1

1
1

1
2

2

1








                 (3.3.7)  

Now, we can form a table for various CV by using (3.3.7) for different  values. In 

order to estimate  and , we need to calculate the coefficient of variation (CV)d of 

the data on hand. Having done this, we compare (CV)d with CV using the table. The 

corresponding  is the estimated one ̂ . The scale parameter () can then be 

estimated using the following equation. 

i.e. 11 'm  
 

If k= 1, in equation (3.3.4), then x1 . 

and if  k = 1 in eq. (3.3.5), then  







 1

1
1

1


 

 

Thus, 11 'm    









 1

1
1


 x  
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Where 𝑥  is the mean of the data. 







































1
1

ˆ
x

 

c) Least square Estimation:  

 The last estimator is computed by least square estimation. This method is the 

simplest of the three in this chapter. Although it has neither the asymptotic properties 

of the MLE nor the accuracy of the MME estimator, it is quick, simple, and fairly 

accurate. This method was specifically used in the past as a method that could be done 

by hand. Thus, it is safe to assume that this method's accuracy will be mediocre in 

comparison to the previous methods. Let ),,,( 21 nxxx  be a random sample of size n 

from the Weibull distribution with probability density function  

  1, , exp , 0, 0
x

f x x x



   

 

  
    

 
 

Its distribution function is given by 

 𝐹 𝑥 =  𝑓 𝑥 𝑑𝑥                                                                
𝑥

𝑜
 

 ⇒       𝐹 𝑥 =  
𝛽

𝛼
 𝑥𝛽−1𝑥

𝑜
exp  −

𝑥𝛽

𝛼
 𝑑𝑥                                                        (3.3.8) 

      Put         
𝑥𝛽

𝛼
= Ζ                           (3.3.9) 

 ⇒             𝛽
𝑥𝛽−1

𝛼
𝑑𝑥 = 𝑑Ζ                                                                            (3.3.10) 

Now using equation (3.3.9) and (3.3.10) in equation (3.3.8), we get 

              𝐹 𝑥 =   𝑒−𝑧𝑧

𝑜
𝑑Ζ                                                                                      

 ⇒         𝐹 𝑥 =  
𝑒−𝑧

−1
 
𝑧
𝑜

=  −  𝑒−𝑧 − 𝑒−0  

  ⇒         𝐹 𝑥 = 1 – exp (-Z)  

 ⇒          𝐹 𝑥 = 1 − exp  −
𝑥β

α
  

Apply natural logarithm by on b/s we have  
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
























x
xF expln))(1ln(  












x
xF ))(1ln(  



x

xF













)(1

1
ln  

Consequently  
























x

xF
ln

)(1

1
lnln  

)ln()ln(
)(1

1
lnln  










 x

xF
     (3.3.11) 

Now let X (1) < X (2) <…<X (n) represent the order statistics of X1, X2…, Xn.  

That is  X(i)= the i
th

 smallest of X1, X2,…Xn for i = 1, 2, ….,n and the data results in 

X(i) = x(i). If we were able to approximate the quantities 








 )(1

1
lnln

xF
, we could 

establish the values of 

n,…1,2,=i ,ln-ln xy (i)i   

Subsequently, we could choose α and β to minimize the sum of squares due to 

error.  

That is α and β are chosen to minimize  

 
2

( )

1

ln ln
n

i i

i

E y x 


                                                           (3.3.12) 

In order to estimate parameters α and β we differentiate eq. (3.3.12) w.r.t to α and β 

respectively and equate to zero.  

i.e.  0)lnln(0

2

1

)( 











n

i

ii xy
E




  

  0)ln)(lnln(2
1

)(  


n

i

iii xxy   
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Since -2 ≠0 

  0)ln)(lnln(
1

)(  


n

i

iii xxy   

      0lnln)(ln)ln(
1 111

2   
 

n

i

n

i

n

i

iii xxxy   

   

 

 



 




n

i

i

n

i

n

iii

x

xxy

1

2

1 11

)(ln

lnln)ln( 

                 (3.3.13)  

Also, 0)lnln(0

2

1

)( 











n

i

ii xy
E




            





n

i

ii xy
1

)( 0)
1

)(lnln(2


  

 Since 2≠0 





n

i

ii xy
1

)( 0)
1

)(lnln(


  





n

i

ii xy
1

)( 0)lnln(   

 ln)ln(
1

)( nxy
n

i

ii  


 

ynnyxn
n

i

ii  
1

)( nl)ln(ln x  

where 



n

i

i

n

i

i y
n

yandx
n

x
11

)(

1
ln

1
nl  

y xnlln 
                         

      (3.3.14) 

)nlexp(ˆ yx                                                       (3.3.15)  

Also for ̂ we use eq. (3.3.14) in eq. (3.3.13) we get  
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    



 



 





n

i

i

n

i

ii

n

i

i

n

i

ii

n

i

n

i

ii

xyxxxy

xyxxyx

1

)(

1

)()(

1

1

)()(

1 1

2

lnlnnlln

lnnllnlnˆ





 

   yxnxyxnx i

n

i

n

i

ii nlln)n(lln )(

1 1

22
  

 


 

Where   



n

i

i

n

i

i y
n

yandx
n

x
11

)(

1
ln

1
nl  

 
   2

)(

1

2

1

nlln

nlln
ˆ

i

n

i

i

i

n

i

i

xnx

yxnxy















                                               

(3.3.16) 

We conclude that the preceding minimum (equation (3.3.12) is attained when (α ,β) =

  ˆ,ˆ  

To apply the foregoing, we need to determine the values of yi that approximate  

   nixF
xF

i

i

,,2,1,)(1lnln
)(1

1
lnln )(

)(



















 

We now present one approach for doing this. Using the fact that 

                    E 𝐹(𝑥𝑖) =  
𝑖

(𝑛+1)
 

And then approximate  𝐹 𝑥(𝑖) 𝑏𝑦 𝐸 𝐹 𝑥(𝑖)  . 

Therefore, this approach calls for using  

   
































1
1lnln))((1lnln )(

n

i
xFEy ii  




































1

1
lnln

n

in
yi  

Substituting these yi (i=1,2,…., n) into equations (3.3.15) and (3.3.16).we easily 

obtain   ˆˆ and . The   ˆˆ and is called the least square estimates of (𝛼, 𝛽). 

 

3.4 Numerical Illustrations 
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 In order to illustrate and compare the methods described earlier, we have 

coded the three analytical methods MLE, MOM and LSM in R Software. For 

quantative comparisons of different estimators, mean square error (MSE) was used to 

test the estimators of three methods. MSE is a measure of accuracy of the estimator. 

MSE can be calculated as below 

 



n

i

ii xFxFMSE
1

2

)()(ˆ  

Where 
4.0

3.0
)(

ˆ
exp1)(ˆ

ˆ
























i

xf
x

xF i

i

i  

Example: Consider the following example where xi represents the i
th 

failure time 

Table5.1 

i xi i xi 

1 0.438 9 4.508 

2 2.413 10 4.981 

3 3.073 11 5.115 

4 3.079 12 5.592 

5 3.137 13 5.848 

6 3.198 14 5.958 

7 3.918 15 6.013 

8 4.287   

 

Table 5.2 below shows the complete results of the estimates of the shape and 

scale parameters and the mean squared error (MSE) for each method. 
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Table 5.2 

Method Β α MSE 

MLE 2.923 4.552 3. 5710
3 

MOM 2.941 4.587 3. 1710
3 

LSM 1.8515 4.756 8. 4 10
 

Since MOM has the minimum MSE, then 𝛽 =2.941 and 𝛼 =4.587. 

The objective of our experiments is to compare the three methods namely, 

LSM, MLE and MOM. We have generated random samples with known parameters. 

For each sample, we have varied the size from 20 to 100. To be able to compare, we 

calculated the total deviation (TD) for each method as follows:  

𝑇𝐷 =   
𝛽 − 𝛽

𝛽
 +   

𝛼 − 𝛼

𝛼
  

Where β and α are the known parameters, and ̂  and ̂  are the estimated parameters 

by any method. 

Table 5.3 shows the complete results. The last column of the table shows the 

best method which yields the minimum total deviation. Notice that the maximum TD 

is 0.55 for all methods. This means that at the worst case the estimated parameters are 

within 50% of their actual values.  

Table 5.4 shows a summary of the results of Table 5.3. As it is obviously seen, 

MOM is the best method. MOM achieves the best estimate 12 times out of 25 which 

is approximately 50% of the time. Its average deviation from the actual values is 17% 

with a standard deviation of 14% which is quite good. MOM achieves good results 

because it involves more calculations and requires more computation time than LSM 

or MLE. However, for a sample of size 100, MOM takes only few seconds. 
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Table 5.3 Comparison between LSM, MLE and MOM 

β α Sizes 
LSM MLE MOM 

Best 
β Α TD Β α TD β α TD 

1 10 

20 1.34 7.08 0.63 1.22 7.3 0.5 1.1 7.09 0.4 MOM 

40 0.85 10.96 0.24 0.94 10.74 0.13 0.98 10.8 0.1 MOM 

60 0.84 12.17 0.37 0.926 11.87 0.26 0.94 11.9 0.25 MOM 

80 1.07 10.83 0.16 1.11 10.8 0.21 1.15 10.9 0.24 LSM 

100 0.87 11.18 0.24 0.93 10.97 0.16 0.93 10.8 0.15 MOM 

2.3 145 

20 2.36 180.3 0.27 2.7 178.4 0.41 2.7 178.1 0.4 LSM 

40 3.4 155.1 0.55 3.3 155.8 0.51 3.33 155.2 0.52 MLE 

60 2.19 132.5 0.13 2.38 131.8 0.13 2.35 131.6 0.11 MOM 

80 2.43 139.06 0.09 2.25 140.5 0.05 2.25 140.1 0.05 MLE 

100 2.44 156.9 0.14 2.62 155.6 0.21 2.6 155.6 0.2 MOM 

2.9 357 

20 2.91 358.7 0.01 3.35 354.9 0.16 3.33 354.1 0.15 LSM 

40 3.32 365.7 0.14 3.6 364.1 0.25 3.4 363.6 0.19 LSM 

60 2.63 373.8 0.13 2.95 370.5 0.05 2.9 370.4 0.04 MOM 

80 2.62 373.04 0.14 3.03 367.8 0.07 3.0 367.8 0.06 MOM 

100 2.7 367.6 0.1 3.02 363.7 0.06 3.0 367.4 0.05 MOM 

3.5 1270 

20 3.77 1276.4 0.08 4.4 1270.3 0.27 4.1 1264.6 0.19 LSM 

40 3.12 1200 0.16 3.57 1192.4 0.08 3.4 1189.6 0.09 MLE 

60 3.07 1250.7 0.13 3.3 1248.5 0.06 3.2 1245.3 0.1 MLE 

80 3.09 1304.5 0.14 3.8 1282.8 0.1 3.6 1284.2 0.04 MOM 

100 3.46 1230.9 0.04 3.52 1228.2 0.03 3.57 1223.5 0.05 MLE 

1.9 872 

20 1.5 888.8 0.22 1.83 867.7 0.03 1.9 870.6 0.01 MOM 

40 2.1 949.6 0.19 2.6 920.9 0.47 2.8 926.7 0.53 LSM 

60 2.3 957.3 0.32 2.25 962.3 0.3 2.25 959.9 0.28 MOM 

80 1.64 907.8 0.17 1.95 884.7 0.04 2.0 890.2 0.08 MLE 

100 1.91 827.3 0.06 1.96 824.8 0.08 1.98 824.8 0.1 LSM 
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Table 5.4 Summary of Results 

Method No. of times the 

method gives the best 

estimate 

Average percentage of 

deviation from actual 

value (µ) 

Standard deviation 

of the deviations 

(σ) 

LSM 7 21 % 15 % 

MLE 6 18 % 15 % 

MOM 12 17 % 14 % 

In this chapter, we have used three methods for estimating the Weibull 

distribution parameters. It has been shown from the computational results that the 

method which gives the best estimates is the method of moments. 
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4.1. Introduction 

The Weibull distribution is one of the most widely used distributions for 

analyzing lifetime data. It is found to be useful in diverse fields ranging from 

engineering to medical sciences (see Lawless (2002), Martz and Waller (1982)). The 

Weibull family is a generalization of the exponential family and can model data 

exhibiting monotone hazard rate behavior, i.e. it can accommodate three types of 

failure rates, namely increasing, decreasing and constant. The probability density 

function of the Weibull distribution is given by: 

0,exp),;( 1 







  x

x
xxf







         (4.1.1) 

where 𝛼 > 0 and 𝛽 > 0 are the scale and shape parameters of the distribution. In 

Weibull lifetime analysis it is frequent case that the value of shape parameter is 

known. For example, the exponential and Rayleigh distributions are obtained when 

β=1 and β=2 respectively. Soland (1968) gives a justification for this situation. The 

Weibull distribution was studied by Weibull (1951) in connection with the strength of 

materials; Lieblein and Zelen (1956); Kao (1959) considerd application in reliability 

and Pike (1966) applications in medicine. Malik (1975) and Frank (1988) have 

assigned meaning and interpretations for the Weibull distribution. Hallinan (1993) has 

recently provided an excellent review of the Weibull distribution by presenting 

historical facts, and the many different forms of this distribution as used by 

practitioners and possible confusions, errors that arise due to this non-uniqueness.    

Maximum Likelihood Estimation has been the most widely used method for 

estimating the parameters of the Weibull distribution. Recently Bayesian estimation 

approach has received great attention by most researchers among them are, Ahmed et 

al. (2011). They considered Bayesian Survival Estimator for Weibull distribution with 

censored data while Al-Aboud (2009) studied Bayesian estimation for the extreme 

value distribution using progressive censored data and asymmetric loss. Bayes 

estimator for exponential distribution with extension of Jeffreys’ prior information 

was considered by Al-Kutubi (2009). Others including, Pandey et a. (2011), Al-Atari 

(2011), and Hossain and Zimmer (2003) did some comparative studies on the 

estimation of Weibull parameters using complete and censored samples and Lye et al. 

(1993) determined Bayes estimation of the Extreme-Value Reliability Function. 
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4.2 Bayesian estimation of Weibull distribution under Jeffrey’s prior by using 

different Loss Functions 

Let ),,,( 21 nxxx   be a random sample of size n having the probability density 

function as  

0,exp),;( 1 







  x

x
xxf









          (4.2.1) 

The likelihood function is given by  

 






















 














n

i

in

i

in

n
x

xxL 1

1

1
exp|  

Prior Distribution:  

 Quite often, the derivation of the prior distribution based on information other 

than the current data is impossible or rather difficult. Moreover, the statistician may 

be required to employ as little subjective inputs as possible, so that the conclusion 

may appear solely based on sampling model and the current data.  

Jeffrey’s (1946) proposed a formal rule for obtaining a non-informative prior as 

))(det()(  Ig  

Where 𝜃 is k-vector valued parameter and I(𝜃) is the Fisher’s information 

matrix of order 𝑘 × 𝑘. In particular if 𝜃 is a scalar parameter, Jeffrey’s non- 

informative prior for θ is ))(det( I Thus, in our problem we consider the prior 

distribution of  𝛼  to be  

))(det()(  Ig  




1
)( kg       

where k is a constant. 

The posterior distribution of α is given by  

 )()|()|(  gxLxp  
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After using the value of k in (4.2.2) we get the posterior distribution as  
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a)Estimation under Linex Loss 

 For determining the Bayes estimate of scale parameter 𝛼 we will introduce a 

very useful asymmetric linex loss function given by  

 1)exp()(   aaL  

Where 0,1
ˆ

 a



  

To obtain the Bayes estimator, we minimize the posterior expected loss given by  

 (4.2.2) 
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Now solving 0
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 in eq.  4.2.4 , we obtain the Bayes estimator as  
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b) Estimation under squared error loss function  

The squared error loss function (SELF) was proposed by legendere (1805) and 

Gauss to develop least square theory. Later, it was used in estimation problems when 

unbiased estimations of 𝜃 were evaluated in terms of the risk function R(𝜃, 𝑎) which 

becomes nothing but the variance of the estimator.  

In our problem SELF is given by  

2)ˆ()ˆ(   cl                                                                                    (4.2.6) 

By using the squared error loss function 𝑙 𝛼 − 𝛼 = 𝑐 𝛼 − 𝛼2 , The Risk function is 

given by 

               𝜌 =  𝑅 𝛼 − 𝛼 = 𝐸𝑙 𝛼 − 𝛼 2  
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Now solving 0
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4.3 Bayesian estimation of Weibull distribution under Extension of Jeffrey’s prior 

by using different Loss Functions 

Let ),,,( 21 nxxx   be a random sample of size n having the probability density 

function as  
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The likelihood function is given by  
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Thus, in our problem we consider the prior distribution of  𝛼  to be  
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where k is a constant. 

The posterior distribution of α is given by  
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After using the value of k in (4.3.2) we get the posterior distribution as  
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a) Estimation under Linex Loss 

 For determining the Bayes estimate of scale parameter 𝛼 we will introduce a 

very useful asymmetric linex loss function given by  

 (4.3.2) 
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Which is the required bayes estimate of scale parameter α under extension of 

Jeffrey’s prior. 

b) Estimation under squared error loss function  

In our problem SELF is given by  
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Which is required Bayes estimator of α under extension of Jeffrey’s prior. 

4.4 Bayesian Credible Regions for Parameters of Weibull Distribution 

 Consider the likelihood of Weibull distribution 
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 Credible region  : Integrating out  in (3.3.2), we have the marginal posterior 

of  given out by  
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Using the squared-error loss function, we can compute Bayes posterior mean 
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At this point we resort to numerical integration of (4.4.4) and (4.4.5) since the 

integrals involved do not exist in closed forms. We may also use (4.3.3) to tabulate 

the posterior p1 and hence find its mode as well as various intervals for  using a 

numerical integration computer routine. 

 We may find 100(1-)% equal-tail credible interval ],[ )(

2

)(

1

 cc such that 

  



)(

2

)(
1

2
)|()|( 21 

 


c

c

o
dypdyp   

We may further find 100(1-)% shortest credible interval ],[ )(

2

)(

1

 hh  where 

)(

2

)(

1

 handh  satisfy 

  )|()|(
)(

21

)(

11 yhpyhp


  



12 
 

as well as 
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 Credible region for : We can obtain marginal posterior of  by integrating 

(4.3.1) with respect to  
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Numerical integration allows us to tabulate )|(2 yp  and )|( yE  so that we may 

also numerically determine the mode, compute ],[ )(
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and the shortest credible (or HPD, if the posterior of  is unimodal) interval 
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4.5 Simulation Study 

In our simulation study, we chose a sample size of n=25, 50 and 100 to 

represent small, medium and large data set. The scale parameter is estimated for 

Weibull distribution with Maximum Likelihood and Bayesian using Jeffrey’s & 

extension of Jeffrey’s prior methods. For the scale parameter we have considered = 

0.5 and 1.5. The Shape parameter  has been fixed at 0.8 and 1.2. The values of 

Jeffrey’s extension were c = 0.4 and 1.4. The value for the loss parameter a =  0.6 

and 1.6. This was iterated 1000 times and the scale parameter for each method was 

calculated. The results are presented in tables for different selections of the 

parameters and c extension of Jeffrey’s prior. 

Table 4.1: Mean Squared Error for ( ) under Jeffrey’s Prior. 

n α Β 
ML̂  BL̂  

6.0a  

BL̂  

6.0a  

BL̂  

6.1a  

BL̂  

6.1a  

BS̂  

 

25 0.5 0.8 0.06714 0.06382 0.06531 0.06261 0.06658 0.06994 

0.5 1.2 0.05943 0.05649 0.05781 0.05542 0.05894 0.06191 

1.5 0.8 0.08946 0.08503 0.08702 0.08343 0.08872 0.09319 

1.5 1.2 0.05943 0.05649 0.05781 0.05781 0.05542 0.06191 

50 0.5 0.8 0.04461 0.04347 0.04399 0.04305 0.04442 0.04551 

0.5 1.2 0.03797 0.03701 0.03746 0.03665 0.03782 0.03875 

1.5 0.8 0.10740 0.10467 0.10591 0.10369 0.10696 0.10959 

1.5 1.2 0.18145 0.17685 0.17895 0.17513 0.18072 0.18516 

100 0.5 0.8 0.05302 0.05234 0.05266 0.05209 0.05292 0.05356 

0.5 1.2 0.04451 0.04393 0.04419 0.04371 0.04441 0.04495 

1.5 0.8 0.13590 0.13415 0.13495 0.13349 0.13562 0.13727 

1.5 1.2 0.14073 0.13893 0.13975 0.13824 0.14045 0.14215 

 

ML= Maximum Likelihood, BL= LINEX Loss Function, BS=Squared Error Loss Function 
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Table 5.2: Mean Squared Error for ( ) under extension of Jeffrey’s prior. 

n  c  
ML̂  BL̂  

6.0a  

BL̂  

6.0a  

BL̂  

6.1a  

BL̂  

6.1a  

BS̂  

 

25 0.5 0.4 0.8 0.06714 0.06431 0.06582 0.06308 0.06712 0.07052 

0.5 0.4 1.2 0.05943 0.05693 0.05827 0.05584 0.05941 0.06243 

0.5 1.4 0.8 0.06714 0.05973 0.06103 0.05867 0.06215 0.06506 

0.5 1.4 1.2 0.05943 0.05287 0.54033 0.05194 0.05502 0.05759 

1.5 0.4 0.8 0.08946 0.08569 0.08770 0.08405 0.08943 0.09397 

1.5 0.4 1.2 0.13369 0.12805 0.13106 0.12561 0.13364 0.14043 

1.5 1.4 0.8 0.08946 0.07959 0.08132 0.07818 0.08281 0.08669 

1.5 1.4 1.2 0.13369 0.11893 0.12153 0.11683 0.12375 0.12954 

50 0.5 0.4 0.8 0.04461 0.04364 0.04416 0.04322 0.04461 0.04571 

0.5 0.4 1.2 0.03797 0.037161 0.03761 0.03679 0.03797 0.03891 

0.5 1.4 0.8 0.04461 0.042003 0.04248 0.04161 0.04288 0.04391 

0.5 1.4 1.2 0.03797 0.03576 0.03616 0.03542 0.03651 0.03737 

1.5 0.4 0.8 0.10741 0.10508 0.10633 0.10406 0.10739 0.11004 

1.5 0.4 1.2 0.18145 0.17755 0.17966 0.17581 0.18144 0.18592 

1.5 1.4 0.8 0.10741 0.101131 0.10228 0.10018 0.10326 0.10571 

1.5 1.4 1.2 0.18145 0.17086 0.17861 0.16925 0.17446 0.17861 

100 0.5 0.4 0.8 0.05302 0.05245 0.05276 0.05219 0.05302 0.05367 

0.5 0.4 1.2 0.04451 0.04401 0.04428 0.04379 0.04450 0.04504 

0.5 1.4 0.8 0.05302 0.05143 0.05173 0.05118 0.05198 0.05261 

0.5 1.4 1.2 0.04451 0.04316 0.04341 0.04295 0.04362 0.04414 

1.5 0.4 0.8 0.13590 0.13442 0.13522 0.13376 0.13590 0.13755 

1.5 0.4 1.2 0.14073 0.13920 0.14244 0.13851 0.14073 0.14244 

1.5 1.4 0.8 0.13590 0.13181 0.13258 0.131178 0.13323 0.13482 

1.5 1.4 1.2 0.14073 0.13650 0.13730 0.13584 0.13797 0.13962 

ML= Maximum Likelihood,  BL= LINEX Loss Function, BS= Squared Error Loss Function 

In table 4.1, Bayes estimation with LINEX Loss function under Jeffrey’s prior 

provides the smallest values in most cases especially when loss parameter a is1.6. 

Similarly, in table 4.2, Bayes estimation with LINEX Loss function under extension 

of Jeffrey’s prior provides the smallest values in most cases especially when loss 

parameter a is1.6 whether the extension of Jeffrey’s prior is 0.4 or 1.4.  

In this chapter, we have addressed the problem of Bayesian estimation for the 

Weibull distribution, under asymmetric and symmetric loss functions and that of 

Maximum Likelihood Estimation. A simulation study was conducted R-software to 

examine and compare the performance of the estimates for different sample sizes with 

different values for the Extension of Jeffreys’ prior and the loss functions. 
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From the results, we observe that in most cases, Bayesian Estimator under 

Linear Exponential Loss function (LINEX) has the smallest Mean Squared Error 

values for both prior’s i.e, Jeffrey’s and an extension of Jeffrey’s prior information.  
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5.1 Introduction 

Carcinoma is an important disease that causes large number of deaths around the 

world. The biggest problem with the disease is that it is often not diagnosed at an early 

stage precluding the chances of cure of the patients. At advanced stages of the disease, 

the medical practitioners often have limited scope to relieve the patient. Earlier the 

patients were used to be treated with radiotherapy but later on they were given 

chemotherapy followed by radiotherapy. The interest therefore centres among the 

medical practitioners that which of the two therapies provide better results in terms of 

the survival of the patients. Such studies have been considered earlier by a number of 

researchers when patient is suffering from advanced stages of carcinoma in different 

organs. The studies were mainly carried out by medical practitioners or statisticians 

working with the medical data and often focused on randomized, prospective, 

retrospective, multi centre clinical trials. Broadly speaking the analyses used both 

classical and Bayesian methodologies although the former dominate the latter 

paradigm. Since the studies are numerous covering a variety of cancerous forms, it is 

not possible to provide an exhaustive list of references and, therefore, we shall be 

focusing primarily on the studies based on survival data. It is to be noted that the data 

for such comparisons often come in the form of survival times and, among the various 

approaches, a better therapy can be suggested to practitioners on the basis of 

comparison between the corresponding survival functions. 

Among the earlier classical developments, one can refer to Kaplan and Meier 

(1958), Mantel (1966), etc. for estimating and comparing survival functions based on 

Kaplan-Meier estimate or log rank test. Cox (1972) proposed the concept of 

proportional hazards model for quantifying the effects of covariates on the survival 

times. A systematic review of literature can be had from Qian (1994), Lawless (2002), 

Kalbfleisch and Prentice (2002) among others. On the Bayesian front Sinha and Dey 

(1997) is an important review article that provides a number of practical problems and 

correspondingly provides an updated list of related developments. The other important 

references include Ibrahim et al. (2001), Gelman (2004), etc. Most of these references 

are intended towards comparing survival functions obtained on the basis of various 

modelling assumptions for the data. 

The present Chapter considers a comparison of survival functions obtained 

from two therapies assuming Weibull models for the corresponding survival times so 
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that one can be in a position to say that which therapy is better. The Weibull distribution 

has a wide range of applicability especially in lifetime data analysis perhaps because of 

its virtue of versatility or flexibility. The p.d.f. of two-parameter Weibull distribution 

can be written as 

            𝑓(𝑥, 𝛼, 𝛽) =  
𝛽

𝛼
𝑥𝛽−1exp ⁡ 

−𝑥𝛽

𝛼
       (5.1.1) 

Where   and  determines the scale and shape parameter of the distribution. The 

corresponding survival function can be given by 

                𝑆(𝑥, 𝛼, 𝛽) = 𝑒𝑥𝑝  
−𝑥𝛽

𝛼
       (5.1.2) 

The Weibull distribution encompasses monotonically increasing (for β >1), 

decreasing (for β <1), and constant (for β =1) failure rate and, as such, the model has 

been successfully used to describe both initial failures as well as the failures due to 

remission or aging (see Lawless (2002)). One of the biggest advantages with the 

Weibull model is the availability of closed form survival function, which makes the 

inferences related to the model quite easy although the non-availability of sufficient 

statistics poses some problem in comparison to those situations where the existence of 

the same is guaranteed. 

The Weibull model is perhaps the richest one as far as the inferential 

developments are concerned both with regard to classical and Bayesian paradigms. 

Lawless (2002) is an important text which systematically describes the classical 

developments based on the model both in the context of engineering and medical 

applications. A few other important references include Kalbfleisch and Prentice (2002), 

Lee and Wang (2003), etc. On the Bayesian front, a systematic accountability can be 

seen in Martz and Waller (1982) and, more recently, in Singpurwalla (2006). The other 

important references include Gelman et al. (2003), Ibrahim et al. (2004), Arora et al. 

(2008) etc. although a number of research papers on Weibull distribution appeared 

regularly in various journals. 

The distribution is, in general, not too straightforward to deal with. The classical 

developments on the model mostly relied on large sample approximations or empirical 

results. The problem with the Bayesian inference lies in the involvement of integrals in 

the posterior based inferences, which are difficult to solve analytically and, as such, 

require specialized techniques of Bayesian computation (see, for example, Upadhyay et 

al. (2001), and, more recently. Gamerman and Lopes (2006)). This last reference 



3 

 

advocated the use of sample based approaches in Bayesian computation because of 

their several inherent advantages. A few such advantages may include the 

straightforwardness of the procedures to deal with censored data problems and routine 

inferential development for some nonlinear functions of the model parameters.  

The Weibull distribution becomes straightforward if one is confronted with a 

situation where shape parameter β can be taken to be unity. The resulting distribution 

becomes one-parameter exponential and inferential developments based on it are 

routine. This is equivalent to say that an experimenter tests β against unity for the given 

data set and goes for the exponential model if the hypothesis is accepted. Such 

problems have been considered earlier by a number of authors in both classical and 

Bayesian paradigms. The most frequently used classical tool for testing β against unity 

is based on the likelihood ratio test. The earlier cited references do provide enough 

material on testing β against unity for the Weibull model.  

For Bayesians, the obvious technique can be based on the evaluation of Bayes 

factor which is a bit difficult when the priors are non-informative and the data are 

compounded with censoring mechanism (see, for example, Upadhyay and Mukherjee 

(2008)). The problem of testing β =l can also be visualized as that of model comparison 

where one can use, for example, the Bayes information criterion (BIC) (see, for 

example, Schwarz (1978)) for drawing the necessary conclusion. No doubt, this 

measure is comparatively easy and provides answers parallel to that based on Bayes 

factor. 

A model comparison is justified among the compatible models only where 

compatibility is referred to mean that all the models under consideration do provide an 

adequate representation to the given data. Therefore, we first propose a compatibility 

study of the exponential and Weibull models and then provide a model comparison 

study to pick up an appropriate model. For studying the compatibility, we have used the 

posterior Bayes factor based on Bayesian version of chi-square discrepancy measure. 

5.2 Model Formulation 

TO begin with let us consider a group of n patients who have undergone 

treatments for certain disease. These n patients can also be considered prospectively 

especially when one is indulged with experiments involving clinical trials. It is to be 

noted that here we primarily considers a group of advanced stage cancer patients treated 

with either radiotherapy (RT) or chemotherapy followed by radiotherapy (CT+RT). We 

further assume that out of n patients receiving a particular therapy, survival times
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),...,2,1( riX i  for r patients are observed completely whereas for remaining n-r 

patients, we simply have the information that j
th

 patient left the study at the censoring 

time, say Cj (j=r+l,...,n). If we consider x's to follow Weibull model with parameters

),(  , the corresponding likelihood function (LF) can be written as 

𝑙(𝑥|𝛼, 𝛽) ∝
𝛽𝑟

𝛼𝑟
 𝑥𝑖

𝛽−1𝑟
𝑖=1 𝑒𝑥𝑝  − 

𝑥𝑖𝛽

𝛼

𝑟
𝑖=1   Pr 𝑥𝑗 > 𝑐𝑗  ,      𝛼, 𝛽 > 0𝑛

𝑗=𝑟+1    (5.2.1) 

where x is used to denoted the available information on survival times. The term     

Pr(xj >cj) is the survival function at Cj corresponding to the Weibull model and it is 

available in a nice closed form. This last term occurs in (5.2.1) because of the censored 

data and it can be completely removed if there had been no censoring and survival times 

for all the n patients are observed completely, that is, r itself becomes n. 

The Bayesian formulation next requires appropriate priors for the parameters. If 

we have enough information that can help us to go for informative prior, it may 

certainly be preferred over all other choices. Otherwise it is better to stick to 

non-informative or vague priors. Here, we prefer taking a vague choice on the lines of 

Upadhyay et al. (2001) (see also Singpurwalla (2006)). The priors considered by the 

authors are 

                    𝑔 𝛼, 𝛽 ∝ (𝛼. 𝛽)−1     (5.2.2) 

Combining the LF with the prior via Bayes theorem yields the posterior that can be 

written upto proportionality as 

 𝑝(𝛼, 𝛽|𝑥) ∝
𝛽𝑟−1

𝛼𝑟+1
 (𝑥𝑖)

𝛽−1𝑟
𝑖=1 𝑒𝑥𝑝  − 

𝑥𝑖
𝛽

𝛼

𝑟
𝑖=1   𝑒𝑥𝑝  

−(𝑐𝑗 )𝛽

𝛼
 𝑛

𝑗=𝑟+1   (5.2.3) 

The posterior given in (5.2.3) can be analyzed by any of the various available 

techniques (see, for example, Upadhyay et al. (2001)). The solution is not that difficult, 

as we often require solving only one-dimensional integral whether the interest focuses 

on joint posterior or the marginal posterior. There are several other approximate 

techniques (see, for example, Gamerman and Lopes (2006)) which can equally well be 

applied to obtain the desired inferences from the posterior given in (5.2.3). We, 

however, advocate the use of sample based approaches, in particular the Gibbs sampler, 

simply because of its inherent ease. 

The Gibbs sampler algorithm is a Markovian updating scheme that proceeds by 

generating from various full conditionals specified upto proportionality from the joint 
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posterior, the latter also needs to be specified upto proportionality only. In order to run 

the algorithm some initial values are assigned at the beginning to the generating 

variates and then the chain proceeds in a cyclic order using the most recent values of all 

other variates. The details about the algorithm, its necessary implementation, and the 

convergence diagnostic issues can be found in Smith and Roberts (1993) and Upadhyay 

et al. (2001) among others. The algorithm can be implemented either by means of a 

single long run of the chain or by means of multiple chains of long run and then 

outcomes can be picked up once the convergence is assured in the generating chain. In 

a single long run of the chain the outcomes can be picked up from equidistant positions 

to avoid serial correlation among the generating variates. Similarly, for parallel chains 

the outcomes can be taken from the same relative positions after the convergence is 

assured (see, for example, Smith and Roberts (1993)). The final selected outcomes can 

be regarded as random samples from the joint posterior with components as the random 

samples from the corresponding marginal posteriors. 

The Gibbs sampler algorithm has an apparent advantage when one is interested 

in the posterior of some non-linear function of the original variates. The analytical 

derivation of this posterior is often difficult. The Gibbs sampler algorithm suggests that 

samples from such a posterior can be easily obtained by replacing each parameter in the 

nonlinear function with the corresponding sample. Thus sample-based estimates can be 

easily derived once the final samples are made available from the corresponding 

posteriors. In case of censoring Gibbs sampler can be routinely extended without any 

extra burden. We apply the scheme on the concerned posterior in a usual way, treating 

the censored observations as further unknowns. The rest of the developments are same 

except that new full conditionals are introduced corresponding to the unknown 

censored data. That is, the full conditionals corresponding to unknown parameters will 

be same as would have been obtained had there been no censoring. The full 

conditionals corresponding to independent censored data are, however, the parent 

sampling distributions truncated in the appropriate regions (see, for example, 

Upadhyay et al. (2001)). Thus the unknown censored data can be generated as 

independent draws from the truncated parent sampling distribution. 

The implementation of the algorithm for the posterior (5.2.3) is, therefore, quite 

straightforward. We simply need to think for the full conditionals of α and β. We also 

need to think for the full conditionals corresponding to unknown censored data. It can 

be shown that the full conditional of α reduces to gamma distribution after a simple 
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transformation whereas that of β can be shown to be log-concave. The full conditional 

corresponding to censored data, say Xj(>cj), is truncated Weibull distribution in the 

region (CJ ,∞). An apparent advantage of this scheme is that it can be used to assess the 

unknown censored data exactly the way it does provide information on unknown α and 

β. That is, once the convergence monitoring is done on all the unknowns, the samples 

from the generated chains can be used to study the desired features of interest.  

As already mentioned, the Weibull distribution reduces to one-parameter 

exponential distribution when the shape parameter β becomes unity. In this case if we 

consider the prior for α proportional to α
-1

, the corresponding posterior can be easily 

reduced from (5.2.3) by putting β =1. The posterior after a simple reciprocal 

transformation can be written as 

            𝑝𝑒 𝜆|𝑥 ∝ (𝜆)𝑟−1𝑒𝑥𝑝 −𝜆   𝑥𝑖 +  (𝑐𝑗 )𝑛
𝑗=𝑟+1

𝑟
𝑖=1        (5.2.4) 

where 𝜆 = 𝛼−1. Obviously, (5.2.4) is gamma density with shape parameter r and scale 

parameter  𝑥𝑖 +  (𝑐𝑗 )𝑛
𝑗=𝑟+1

𝑟
𝑖=1  

−1
. Therefore, the posterior (5.2.4) corresponding to 

exponential model can be easily managed for any desired inferences.  

5.3 Model Compatibility and Comparison 

Model compatibility study is meant to see if a model under consideration does 

provide a good fit to the data in hand and, therefore, provides a valid reason for 

considering a model. A number of tools have been suggested for studying compatibility 

of a model in both classical and Bayesian frameworks. An important approach in 

classical paradigm is to use tail area probability or better known as the p-value based on 

a goodness of fit test and to replace the unknown parameter(s), if any, involved in the 

process by some good estimates usually the maximum likelihood (see, for example, 

Lawless (2002)). Bayesian paradigm offers a number of possibilities for checking 

model compatibility, the most important being the one based on predictive simulation 

ideas. The idea suggests that if the observed data and the data predicted from the model 

exhibit some kind of similarities, the model under consideration can be considered 

compatible with the observed data (see, for example, Gelman et al. (1996)). Bayesians 

have also defined a number of versions of p-values analogously to the classical 

approach but they have suggested integrating out the unknown parameter(s) by some of 

its possible distributions. These versions are referred to as the prior, posterior, 

conditional, or partial posterior predictive p-values. Each of these measures has their 

own merits or demerits but we do not go it to the details of these various aspects due to 
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space restriction. Gelman et al. (1996), Bayarri and Berger (1998), and Upadhyay and 

Mukherjee (2008), etc. are some important references for a detailed discussion of these 

ideas. For the purpose of our illustration, Arora et. Al (2008) considered the use of 

posterior predictive p-value based on an important classical discrepancy measure in 

spite of the fact that the measure has invited a few shortcomings too. They simply use it 

because of its ease and also because of the fact that our compatibility study requires 

only a tentative answer and the final answer will be based on the result of model 

comparison. Moreover, as pointed out by a number of authors, the posterior predictive 

p-value can be used at least for a preliminary check of model compatibility (see, for 

example, Upadhyay and Peshwani (2008)).  

Let the observed data be denoted by x and the predictive data by y, D is the 

measure of discrepancy between the samples and population values and f (.|θ) be 

assumed model for the data. Then the Bayesian posterior predictive p- value can be 

defined as 

 𝑝 =  𝑃𝑟 [(𝐷 2 ≥ 𝐷1|𝑓, 𝑥)]  =   𝑃𝑟⁡(𝐷2 ≥ 𝐷1  𝑓, 𝜃 𝑝(𝜃|𝑓, 𝑥)𝑑𝜃      (5.3.1) 

where p(𝜃| f, x)   is the posterior distribution of 𝜃 under the model f, D1 and D2 are 

the measures of discrepancy corresponding to the observed and the predictive data, 

respectively. Equation (5.3.1) can be regarded as the classical p-value averaged over 

the posterior distribution of θ under the model f. If we assume, for example, chi- square 

as a measure of discrepancy (Gelman et al. (1996)), we can write 

 𝐷 =  
(𝑑1−𝐸(𝑑𝑖|𝜃))2

𝑉(𝑑𝑖|𝜃)

𝑛
𝑖=1 ,                                  (5.3.2) 

where di (i=l,..., n) is the i
th

 observation in the considered data set and n is the 

corresponding sample size. It is to be noted that chi-square discrepancy measure is 

arbitrarily chosen for illustration only; one can similarly define p-values based on other 

discrepancy measures as well. Thus using (5.3.2) in (5.3.1), the posterior predictive 

p-values corresponding to chi-square discrepancy measure can be easily obtained. Our 

conclusion based on the evaluated p-value will simply be 'larger the p- value, better is 

the compatibility of the considered model with the observed data' (see also Upadyay 

and Peshwani (2008)). The integration in (5.3.1) can often be a major difficulty in 

evaluating the p-value and the situation worsens with the increasing dimensionality of 

θ. The situation can, however, be easily managed if one resorts to sample based 

approaches for simulating the posterior p(θ|f, x) and then evaluates the sample-based 
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estimate of the corresponding p-value. Upadhyay et al. (2001) have provided details of 

the various steps involved in the evaluation of (5.3.1) using sample based approaches. 

In performing compatibility study, it is often seen that a number of models are 

found compatible with the data in hand. The question, therefore, arises which model 

should be finally considered for the data. The question, although difficult, can only be 

answered if one performs some sort of comparison among the competitive models and 

then accordingly recommends a model. It is to be noted that the results of model 

compatibility study can never be used for comparing the models rather it can be used 

only to check if the assumed model is compatible with the data or not. Arora et al. 

(2008) make a simple comment on parsimony principle which recommends a model 

which is simplest. Undoubtedly, this principle is quite useful and advocated by a 

number of authors but sometimes, while recommending a model according to this 

principle, the experimenter may loose some of the important inferential aspects (see, for 

example, Upadhyay and Mukherjee (2008)). Here, we shall focus on BIC although a 

number of other sophisticated tools can also be used for the desired comparison. 

5.4 Bayes Information Criterion 

The BIC also known as Schwarz criterion is a well-known criterion for 

comparing the models. According to this criterion, a model is recommended if it 

minimizes the term given by 

        log( n )p + ))ˆ2(log(L(- = BIC   (5.4.1) 

where )ˆ(L  denotes the maximized likelihood function corresponding to a model 

indexed with the parameter θ, n denotes the total number of observations and p is the 

dimension of the concerned model. First term supports the more complex model and 

second term supports a simpler model having low dimensions. It is obvious from 

(5.4.1) that BIC is free from any prior information and it penalizes the complexity of the 

model according to its dimension. It is a consistent measure in the sense that the 

probability of selecting the correct model tends to unity as the number of observations 

approaches to infinity although it suffers from a disadvantage that it is a valid measure 

only for a well-behaved model. The quantity ̂  in (5.4.1) can be replaced by posterior 

mode if the prior is vague. Similarly, an extension of BIC to censored data problems is 

routine if one employs sample-based approaches, in particular the Gibbs sampler, and 

replaces the corresponding censored data with their estimates obtained through Gibbs 



9 

 

run. 

5.5 Numerical Illustration 

For numerical illustration, we considered a real data set on survival times of 

patients with stage III non-small cell lung cancer (NSCLC). The data were the results of 

phase III clinical trial conducted by Cancer and Leukemia group B (CALGB) in United 

States of America from May 1984 to May 1987 in the form of five interim analyses. 

The objective of the study included the comparison of two cancer therapies, that is, 

CT+RT on one hand and RT alone on the other. These clinical trials mostly used log 

rank tests and Kaplan-Meier plot (see, for example, Lawless (2002)) for the comparison 

of two therapies at each interim analysis. After the trial stopped enrolling the new 

patients, enrolled patients were followed up until the summer of 1992 and this data set 

was finally analyzed by Li (1994), Qian et al. (1996), among others. The complete 

description of the entire study is given in Li (1994) (see also Qian (1994)). The data set 

in an ordered form is summarized in Table 5.1 where asterisk with an observation 

denotes the censored value. 

Li (1994) and Qian et al. (1996) (see also Qian (1994)) assumed exponential 

and Weibull models, respectively, for analyzing the data corresponding to RT. For data 

corresponding to combined therapy CT+RT, they however assumed the same models 

but with a restrictive assumption on the scale parameters. The authors assumed that the 

logarithm of the ratio of the scale parameters for the models corresponding to CT+RT 

and those corresponding to RT is constant. This assumption makes sense with regard to 

the exponential model as the ratio becomes simply the hazard ratio but it is certainly not 

appealing with the assumption of Weibull model. The authors finally considered a 

comparison of two therapies in a Bayesian framework based on estimated survival 

functions and concluded that the combined therapy CT+RT does provide a significant 

improvement over RT in terms of the survival of the patients.  
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Table 5.1: Survival times of NSCLC patients receiving two different therapies 

Therapy Survival times in days 

RT 0.27, 0.37, 1.23, 1.27, 1.27, 2.27, 2.30, 2.40, 2.60, 2.73, 2.87, 2.93, 2.97, 3.37, 

3.57, 3.63, 4.23, 4.40, 4.50, 4.83, 5.33, 6.00, 6.10, 6.10, 6.77, 6.87, 6.90, 7.17, 

7.50, 7.57, 7.63, 7.67, 8.13, 8.30, 8.53, 8.57, 8.90, 9.50, 9.67, 10.13, 10.27, 

10.47, 10.53, 10.67, 10.67, 10.83, 12.63, 12.67, 12.77, 13.10, 13.23, 14.20, 

15.00, 15.20, 15.33, 15.83, 16.10, 16.23, 16.87, 17.50, 18.10, 19.73, 19.77, 

19.93, 21.43, 23.30, 23.40, 31.20*, 31.93, 32.90, 42.47*, 44.13, 45.40, 62.50*. 

64.87*, 73.43*, 83.77* (n=77, r=71) 

CT+RT 0.20, 1.83, 2.70, 3.13, 3.90, 3.97, 4.03, 4.50, 5.03, 5.20, 5.93, 6.07, 6.27, 6.33, 

6.47, 6.57, 6.70, 7.00, 7.00, 7.20, 7.47, 7.53, 7.97, 8.33, 8.73, 9.03, 9.43, 9.47, 

9.50, 9.80, 10.03, 10.10, 10.97, 11.40, 11.67, 12.03, 12.83, 13.30, 13.73, 14.07, 

14.57, 15.57, 16.40, 16.53, 16.53, 16.87, 17.23, 17.47, 18.13, 18.53, 18.93, 

19.03, 19.07, 20.47, 20.67, 21.20, 23.00, 23.43, 28.83, 39.47*, 40.27, 46.90, 

47.83, 48.07, 52.60*, 52.67*, 55.03*, 55.73*, 55.77*, 56.67*, 57.43*, 59.03*, 

62.37, 62.40, 66.07*, 66.33*, 69.13* 73.93* (n=78, r=65) 

 

 

 

In order to formalize the analysis, we first simulated the posterior (5.2.3) 

separately for RT and CT+RT data using the Gibbs sampler algorithm. The details of 

the implementation of the Gibbs sampler algorithm for censored data situations can be 

seen in Section 5.2. For the initial values of α and β, we considered maximum 

likelihood estimates using the corresponding data sets whereas for the initial values of 

unknown censored observations Xj, we used the corresponding truncation points Cj (j= 

r+1,..., n). We next considered a single chain of long run through Gibbs algorithm and 

the convergence monitoring was done for both (α, β) and unknown censored 

observations using the ergodic averages. Finally, samples of size 1000 corresponding to 

each variate were picked up from the generating chain using equidistant (every 10
th

) 

outcomes. The gaps were chosen to make serial correlation negligibly small. These 

samples can be regarded as random samples from the distributions of the corresponding 

unknowns. Thus the sample-based inferences can be easily drawn once the samples for 

the corresponding unknowns are made available. Sample based estimates in the form of 

posterior modes are shown in Table 5.2. The table also provides the estimated modal 

values of the corresponding unknown censored observations. All these estimates are 

based on samples of size 1000 from each of the unknowns and will be used for further 
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inferences. The estimated survival curve corresponding to each therapy is shown in 

Figure 5.1 when the underlying model is Weibull distribution. These estimated curves 

are based on the modal values of the corresponding estimates and have been drawn 

using R software. 

Table 5.2: Estimates based on sample of size 1000 corresponding to RT and CT+RT data when the 

underlying modeling assumption is Weibull 

Variate Estimates corresponding to 

 

 

RT CT+RT 

α 15.421 26.669 

β 0.968 0.926 

Censored observations   

(in an ordered form) 

38.554, 44.401, 69.817, 

70.358, 77.294, 106.001 

46.851, 64.093, 70.201, 71.579, 72.375, 

72.624, 72.807, 72.955, 74.980, 77.516,  

84.064, 84.382, 90.600 

 

A number of results can be reported likewise once the samples are made 

available but we shall concentrate on two important findings based on Table 5.2 and 

Figure 5.1. First, the estimated posterior mode of β is quite close to unity for both RT 

Figure 5.1: Estimated Survival functions when the underlying modelling assumption is Weibull
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and CT+RT which, in turn, provides an impression that exponential model is a strong 

candidate for both the data sets. Second, the survival curve corresponding to CT+RT is, 

in general, higher than the corresponding curve for RT which shows that the combined 

therapy provides a better survival to the patients suffering from NSCLC (see Figure 

5.1).  

Guided by our first conclusion above, we propose to consider the exponential 

modelling assumption (that is β=l in the previous formulation) as well for the proposed 

analysis and then intend to provide a comparison of the two models so that a better one 

can be recommended. The corresponding posterior is given in (5.2.4). We separately 

implemented our strategy for exponential distribution (see Section 5.2) on both RT and 

CT+RT data and generated a single chain of long run. It is to be noted that exponential 

distribution has a single parameter but several unknowns in the form of censored 

observations. We picked up samples of size 1000 from the corresponding distributions 

of each of the unknowns in a way similar to what has been discussed for Weibull 

modelling assumption. Sample based estimates of X in the form of posterior modes are 

shown in Table 5.3 for both the data sets. The table also provides the estimated modal 

values of the corresponding unknown censored observations. 

Table 5.3: Estimates based on sample of size 1000 corresponding to RT and CT+RT 

data when the underlying modelling assumption is exponential  

Variate Estimates corresponding to 

 

 

RT CT+RT 

α 14.703 26.371 

Censored observations  

(in an ordered form) 

37.974, 44.312, 69.438, 

70.155, 76.840,85.800 

51.221, 62.705, 66.262, 68.203, 

68.514, 69.725, 69.771, 70.025, 

73.482, 76.764, 77.194, 77.668, 

85.597 

Figure 5.2 presents the estimated survival curves for the two therapies using the 

estimated modal values given in Table 5.2. These curves are more or less similar to 

those shown in Figure 5.1 and provide exactly the same conclusion that was drawn 

using the Weibull model for the two data sets. That is, combined therapy CT+RT 

provides significant improvement in the survival of patients in comparison to those 

who are treated with RT alone. Another important finding is based on the estimates 
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reported for censored observations. It is to be noted that these observations correspond 

to the patients who failed to report during follow up and, as such, their actual survival 

times could not be recorded. Based on the estimated modal values of these censored 

observations, one can at least get an idea of actual survival times for these patients. It is 

to be noted that exponential model, in general, provides smaller estimated values for the 

highest ordered censored observations than those based on Weibull modelling 

assumption. This may not be a striking finding but an underestimated value is certainly 

a good indicative for deciding improved therapy. Moreover, we should not expect 

enough survival for such category of patients who left the study (or treatment) after 

surviving for a longer duration of time (see Tables 5.1-5.3). 

 

The conclusion in favour of combined therapy CT+RT was noted by earlier 

authors as well who considered the two data sets and the above two modelling 

assumptions though their approaches were slightly different (see, for example, Li 

(1994) and Qian et al. (1996)).Moreover, none of the authors tried comparing the 

models or testing β against unity. They simply considered either exponential or Weibull 

model without giving any justification of the fact that why they are using these models. 

Besides, they took some unrealistic assumptions especially when they used Weibull 

Figure 5.2: Estimated Survival functions when the underlying modelling assumption is exponential
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model for the reported data. 

Arora et al. (2008) advocated in favour of the exponential model simply 

because the estimated β, when Weibull model was considered to be a true model, was 

found to be close to unity. This was obviously a vague criterion and, therefore, we 

propose to consider a comparison of the two models based on BIC. Before we begin, we 

shall however study compatibility of the models using posterior predictive p-value 

obtained by considering the Bayesian version of chi-square discrepancy measure. In 

order to obtain the same, we first considered the sample-based output, each of size 

1000, of the unknown parameters involved in both exponential and Weibull models 

separately for the two data sets. We replaced the censored observations with the 

corresponding estimated modal values as mentioned before. Using each observation of 

the sample-based output in the first step; we then generated 1000 predictive samples 

with sizes equal to those of observed data and correspondingly obtained D2 and D1 

based on predictive and observed data sets, respectively. Posterior predictive p-values 

based on chi-square discrepancy measure were then obtained using (5.3.1) as 

proportion of times D2 exceeds D1 (see also Section 5.3). The values were found to be 

0.458(0.711) and 0.248(0.649), respectively, when Weibull and exponential models 

were considered to be the true models. The bracketed values correspond to CT+RT 

data.  

It is obvious from the results that both the models are compatible for the two 

data sets and none can be rejected. It is, however, important to mention here a few 

things before we close our discussion. First, we are aware with the fact that model 

compatibility study based on posterior predictive p-values has invited a few criticisms 

(see, for example, Bayarri and Berger (1998)) especially the fact that it incorporates 

double use of data, once in simulating posteriors  and second, in obtaining the p-value. 

This can be an important demerit but in either case it can be used as a preliminary tool 

as mentioned earlier (see also Upadhyay and Mukherjee (2008)). Second, once 

exponential model is justified for the data in hand, the Weibull model being a more 

complex generalization is certainly justified. Therefore, we do not need to consider the 

compatibility of latter but we have done simply for the sake of completeness of our 

study. A word of remark: the model compatibility study or the p-values should not be 

taken as model selection tool so we are not recommending any particular model at this 

stage. The parsimony principle, however, suggests that since both the models are 

compatible, we should go with the simple exponential model. 
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To complete the study for recommending a model, we evaluated BIC for the 

two models. These values were found to be 576.36(658.53) and 583.57(668.38), 

respectively, for exponential and Weibull models where the bracketed values 

correspond to those based on CT+RT data. Since the values corresponding to 

exponential model are, in general, smaller to those corresponding to Weibull model, we 

may safely recommend exponential model for both RT and CT+RT data although the 

values corresponding to the two models are not wide apart from each other. The same 

conclusion was drawn by parsimony principle as well, which we advocated earlier 

when both the models were found compatible with the data but making a conclusion 

after comparing the two models provides an added safety. 

Conclusion :Advanced stage cancer patients are usually treated with RT or combined 

CT+RT. It has been a long and continuous debate among the medical practitioners that 

which therapy actually provides a better survival. A number of studies are performed 

earlier but most of these studies do not provide any convincing way for dealing with 

censored data although the studies have shown that CT+RT does provide better 

survival. The present study provides a similar conclusion based on Weibull modelling 

assumption, deals systematically with censored data, and successfully obtains the 

estimated survival times for such censored data situations.  

Weibull distribution is quite flexible and perhaps because of the same reason it 

was used earlier by Qian et al. (1996) for the data in hand although he did not provide 

any convincing argument for considering this model. Our proposed study not only 

examines the compatibility of the Weibull model with the data but also examines the 

suitability of exponential model so that the resulting inferences become easy to draw if 

the same is recommended. It has been successfully shown after comparing the two 

models that unnecessary complication by assuming Weibull model can be avoided. 

This is what parsimony principle also suggests after getting compatibility of the two 

models. 
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