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Abstract 

Machine learning deals with designing systems that learn from data i.e. automatically improve 

with experience. Systems gain experience by detecting patterns or regularities and using them for 

making predictions. These predictions are based on the properties that the system learns from the 

data. Thus when we say a machine learns, it means it has changed in a way that allows it to 

perform more efficiently than before. Machine learning is emerging as an important technology 

for solving a number of applications involving natural language processing applications, medical 

diagnosis, game playing or financial applications. Wide variety of machine learning approaches 

have been developed and used for a number of applications. 

We first review the work done in the field of machine learning and analyze various concepts 

about machine learning that are applicable to the work presented in this thesis. Next we examine 

active machine learning for pipelining of an important natural language application i.e. 

information extraction, in which the task of prediction is carried out in different stages and the 

output of each stage serves as an input to the next stage. 

A number of machine learning algorithms have been developed for different applications. 

However no single machine learning algorithm can be used appropriately for all learning 

problems. It is not possible to create a general learner for all problems because there are varied 

types of real world datasets that cannot be handled by a single learner.  For this purpose an 

evaluation of the machine learning algorithms is needed. We present an experiment for the 

evaluation of various state-of-the-art machine learning algorithms using an interactive machine 

learning tool called WEKA (Waikato Environment for Knowledge Analysis). Evaluation is 

carried out with the purpose of finding an optimal solution for a real world learning problem- 

credit approval used in banks. It is a classification problem. 

Finally, we present an approach of combining various learners with the aim of increasing their 

efficiency. We present two experiments that evaluate the machine learning algorithms for 

efficiency and compare their performance with the new combined approach, for the same 

classification problem. Later we show the effects of feature selection on the efficiency of our 

combined approach as well as on other machine learning techniques. The aim of this work is to 

analyze the techniques that increase the efficiency of the learners. 
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1.1. Introduction 

Artificial Intelligence (AI) is the branch of computer science which deals with the study and 

creation of intelligent machines where an intelligent machine is a system which shows some 

form of intelligence i.e. a system which is capable of taking actions by observing its 

environment. These systems are capable of mimicking the human mind, understanding speech, 

and so on. In other words, an intelligent machine is a machine that can “think”. Natural 

Language Processing (NLP) is a field of artificial intelligence that is concerned with the 

interactions between the computers and the natural languages used by humans. NLP provides a 

method of human-computer interaction. It is concerned with interfacing computer 

representations of information with natural languages used by humans. It deals with examining 

the use of computers in understanding and manipulating the natural language text and speech. In 

the field of NLP, the aim of the researchers is to observe and collect the necessary information 

regarding how different natural languages are being used and understood by humans. This 

information is then used by the researchers for developing the tools for making the computers 

understand and manipulate the natural languages to perform desired tasks.  

Some of the important natural language processing tasks include parsing, machine translation, 

information extraction, automatic abstracting, information retrieval, part-of-speech tagging, and 

question answering and so on. These days machine learning has emerged as an important 

technology for solving all these NLP tasks. Before the use of machine learning approaches, NLP 

tasks were implemented directly by hand coded set of rules. The machine learning algorithms 

automatically learn such rules by analyzing a large set of corpora (singular, “corpus”). A corpus 

is a collection of individual sentences or documents that have been hand annotated with the 

correct values to be learned. These corpus-based techniques have emerged as the dominant 

paradigm for NLP tasks. 

The work in this thesis revolves around applying machine learning techniques for solving 

various issues. Mainly we have focused on an NLP problem and a real world financial 

application. A number of different types of machine learning algorithms have been used to solve 

these tasks. Some of the types include supervised learning, unsupervised learning, and semi-

supervised learning. 
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1.2. Approaches of machine learning 

Some of the types of machine learning approaches discussed briefly here include supervised 

learning, unsupervised learning, and semi-supervised learning. 

 

1.2.1. Supervised machine learning 

Supervised learning [Kotsiantis, 2007] is a type of machine learning in which the algorithms are 

provided with the data instances and they produce hypothesis from that data that helps in 

prediction. In supervised machine learning a function is deduced from the supervised data. 

Supervised learning is a process in which the task of the function is to predict the correct output 

from the inputs. This is done by deciding to which of the classes the new input belongs. The 

algorithm decides this by analyzing the data that is provided to it i.e. the training data. It consists 

of labeled instances i.e. inputs as well as their output classes. The task of supervised learning 

algorithms is to analyze the training data and produce a function. If the output of the function is 

discrete then it is called a classifier and if it is continuous then it is called a regression function. 

The inferred function should be capable of predicting the correct output value for any valid input. 

For doing this the learning algorithm must be able to generalize from the training data to unseen 

situations in a reasonable way. Supervised learning is the learning based on training data. 

Machine learning algorithms use the datasets that consist of a number of instances that are 

represented using the same set of features. Supervised learning differs from unsupervised 

learning in that it consists of the instances that have known labels (the corresponding correct 

outputs), whereas in unsupervised learning instances are unlabeled. Table 1.1[Kotsiantis, 2007] 

shows instances with known labels. 

Table 1.1: Instances with known labels 

Case Feature 1 Feature 2 … Feature n  Class 

1 xxx x  xx good 

2 xxx x  xx good 

3 xxx x  xx bad 

…     … 
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1.2.2. Unsupervised machine learning 

Unsupervised learning [Dudaet al., 2001; Hinton and Sejnowski, 1999; Ghahramani, 2004] is 

different from supervised learning. In unsupervised learning the dataset consists of instances that 

are not labeled. In this learner is given only unlabeled examples. As already discussed, in 

supervised learning algorithms mapping is carried out from the input to an output and the correct 

values of the output i.e. known label are provided by a supervisor. In contrast, the unsupervised 

learning algorithms do not have any supervisor but only have input data. The goal of 

unsupervised learning is finding out the regularities in the input [Alpaydin, 2010]. The aim of 

unsupervised learning is determining the organization of the data. Density estimation is one of 

the examples of unsupervised machine learning. An important method of density estimation is 

clustering whose task is to find the clusters or groupings of input.  

Consider a machine (or living organism) which receives some sequence of inputs. Let x1, x2, 

x3and so on, represent some sequence of inputs received by some machine. This input is often 

referred to as data. In supervised learning the machine is also provided with a sequence of 

desired outputs y1, y2, y3 and so on, and the aim of the machine is to learn to generate the correct 

output for a new input. In case of classification the output can be a class label and in case of 

regression the output can be a real number. However, in unsupervised learning the machine 

simply receives inputs x1, x2,.., but does not receive the supervised target outputs [Ghahramani, 

2004].  

1.2.3. Semi-supervised machine learning 

Semi-supervised learning algorithms use both labeled/annotated and unlabeled data in contrast to 

supervised learning where the data is all labeled and unsupervised learning in which the data is 

all unlabeled. Semi-supervised learning algorithm is provided with a small amount of labeled 

data and a large amount of unlabeled data. 

In supervised machine learning the algorithms use only labeled data or the supervised data (i.e. 

feature/label pairs). However, it is difficult to obtain the labeled data. Because obtaining labeled 

data is a time consuming and expensive process as it needs the work of many experienced human 

annotators. As opposed to it, it is easy to collect the unlabeled data, but there are only a few ways 

of using them. So in order to get rid of this problem, semi-supervised learning techniques are 

used. These techniques how a lot of improvement in learning accuracy by using large amount of 

unlabeled data, together with the labeled data, to build better classifiers. Semi-supervised 
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learning techniques are of great use as they provide high accuracy as well as reduce human labor 

[Zhu, 2008]. 

Semi-supervised learning can be either transductive or inductive. In transductive learning the 

algorithm works only on the labeled and unlabeled training data, and cannot handle unseen data. 

However, inductive learners in contrast to transductive learners can naturally handle unseen data. 

Moreover, in semi-supervised classification, the learner has additional unlabeled data and the 

aim is classification and in semi-supervised clustering, the learner has unlabeled data with some 

pair wise constraints and the aim is clustering. 

 

1.3. Costs involved in various machine learning strategies 

The use of machine learning techniques in solving a number of problems in various fields has 

increased rapidly. These techniques are being widely accepted and implemented. This has led the 

researchers and developers to show a considerable amount of interest in minimizing the costs 

involved in using these techniques and developing such systems. For the successful 

implementation of machine learning techniques, significant amount of effort and cost is involved 

because of obtaining large labeled data sets and feature engineering. These problems get more 

intensified when the systems are implemented over wide range of data. 

As discussed earlier, supervised machine learning techniques are quite expensive as they require 

obtaining large amounts of annotated data. Hence a lot of research work has been carried out 

regarding reducing labeled data requirements. On the other hand, unsupervised learning makes 

use of only unlabeled data, hence reducing the labeling costs involved. But unsupervised 

learning is often not directly applicable. Therefore another strategy that is used pre-clusters the 

data and only requires labels from representative points [Nguyen and Smeulders, 2004]. As 

discussed before, in between the two extremes i.e. supervised and unsupervised learning lies 

semi-supervised learning, where the learning algorithm is provided with a small amount of 

labeled data and a large amount of unlabeled data. Some of the commonly used approaches of 

semi-supervised learning are transductive learning [Joachims, 1999], bootstrapping [Abney, 

2002], co-training [Blum and Mitchell, 1998], expectation-maximization (EM) algorithm, and 

graph-based methods. Another learning technique that has been used that minimizes the 

annotation costs is domain adaptation [Blitzer, 2008; Jiang, 2008].  In this technique learners are 

trained on a source distribution and modified using a small amount of data from a target 
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distribution. Human computation [Ahn, 2005] is a learning technique in which the annotation 

task is framed in such a way that annotators label data unknowingly. 

The machine learning technique for reducing labeling costs studied in this thesis is active 

learning [Settles, 2010]. 

 

1.4. Active Learning 

Like semi-supervised learning, active learning algorithms also work with small set of labeled 

data and a large set of unlabeled data. However, in active learning the learning algorithm is 

capable of selecting additional instances to be labeled by maintaining access to the annotator. 

Thus active learning provides a way to reduce the labeling costs by labeling only the most useful 

instances for learning. Active learning reduces the amount of user effort required to learn a 

concept by reducing the number of labeled examples required [Arora and Agarwal, 2007]. 

In this learning technique, the learner is responsible for actively participating in the collection of 

the training examples i.e. obtaining the training set. The learner is capable of selecting a new 

input, observing the resulting output and including the new example based on the input and 

output into its training set. An important question that arises here is how to choose which input to 

try next [Cohn et al., 1996]. The learner uses some strategies for choosing the examples. The 

examples are chosen by making queries to the expert. The query strategy frameworks that have 

been used are uncertainty sampling [Lewis and Gale, 1994] and query-by-committee [Seunget 

al.,1992]. These strategies will be discussed in the later chapters.  

There are different circumstances in which the learner may be able to ask queries. The learner 

may construct its own examples (membership query synthesis), request certain types of examples 

(pool-based sampling), or determine which of the unlabeled examples to query and which to 

discard (selective sampling). These are shown in Figure 1.1 [Settles, 2010]. 

In active learning, the learner examines the unlabeled data and then queries only for the labels of 

instances which it considers to be informative. Therefore, an active learner learns only what it 

needs to in order to improve, thus reducing the overall cost of training an accurate system. 

 

1.5. Thesis Statement 

This thesis aims to explore various machine learning protocols. This work examines the 

applicability of various machine learning techniques to complex problems with respect to the 
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natural language processing applications. The chapters that follow review the research work 

carried out in the field of machine learning and discuss the developments and applications of 

NLP, describe various types of machine learning approaches and concepts relevant to the work 

presented in this thesis, examine active learning with respect to information extraction using 

pipelining, show the performance evaluation of various state-of-the-art machine learning 

algorithms using an interactive machine learning tool, WEKA, on a real world problem using a 

real world dataset, and finally present a combined approach for the design of a learner that shows 

an increase in the efficiency of classification tasks of machine learning. 

 

                    membership query synthesis 

 

 

                      stream-based selective sampling 

                                            Sample an instance                                                                                   query is labeled  
                                                                                                                                                                by annotator 
 

                                 pool-based sampling 

                       sample a large 
                      pool of instances 
 
 

Figure 1.1: Active Learning Scenarios 

 

The hypotheses supported in this thesis are: 

i. Machine learning strategies that take into consideration the informativeness or the 

relevance of instances can perform better with fewer labeled examples as compared to 

other learning approaches. 

ii. Active learning strategies reduce the costs of learning systems which actively 

participate in the collection of examples by maintaining access to the annotator. 

iii.  Machine learning algorithms perform more efficiently for a classification task when 

they are combined together. For the prediction of the correct output class, combined 

Model generates 

a query de novo 

Model decides to 

query or discard 

Model selects the 

best query U 

Instance 

space  
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learner selects the class to which highest probability has been assigned among all the 

learners. 

 

1.6. Thesis Outline 

The remainder of this thesis is organized as follows: 

• Chapter 2 presents a detailed study of the work done in the field of machine learning and 

NLP. It discusses the related literature along several dimensions. It presents the 

theoretical developments and applications of NLP. 

 

• Chapter 3 discusses the basic concepts about machine learning that are relevant to the 

work presented in this thesis. It discusses supervised and active machine learning, 

learning structured instances and pipeline models. 

 

• Chapter 4discusses the use of machine learning for an important natural language 

application i.e. information extraction. It examines a pipelined approach for information 

extraction with respect to machine learning. 

 
• Chapter 5 presents an evaluation of state-of-the-art machine learning algorithms on the 

basis of efficiency, for the task of classification. It begins by providing important 

concepts about WEKA- a tool for machine learning, and the process of preparing 

datasets. Later it presents the experiment and discusses the results. 

 
• Chapter 6 presents a combined approach for the design of a learner that aims at 

increasing the efficiency of the learning tasks. It begins by providing the procedure of the 

combined approach and later presents the experiment and the results. In the second part 

of the chapter, we show the effect of feature selection on our combined approach and 

present its experiment and compare the results. 

 
• Chapter 7 summarizes the primary contributions of this work and also presents the future 

directions of our work and in active learning. 



 

 

 

 

 

 

 

Chapter 2 

Review of Literature 
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This chapter describes the research literature relevant to the primary aspects of this thesis. The 

core aspects of this thesis are machine learning applications to natural language processing and 

classification techniques. Both these fields have received a lot of attention in the past years and 

there are a number of popular texts with relevant background material [Duda et al., 2001; Russell 

and Norvig, 2003; Manning and Schutze,1999; Jurafsky and Martin, 2008]. As there is an 

enormous amount of literature available on both these aspects, these works can be described 

along several dimensions. 

 

2.1. Review of Research Work in NLP 

Natural Language Processing (NLP) is that field of computer science which consists of 

interfacing computer representations of information with natural languages used by humans. It 

examines the use of computers in understanding and manipulating the natural language text and 

speech. Over the past years, a lot of research has been done in the field of NLP. Some of the 

recent works have been discussed here. Kumarana et al. (2011) have developed a multilingual 

content creation tool for Wikipedia. Optimal Search for Minimum Error Rate Training has been 

discussed by Michel and Chris (2011). Associating Web Queries with Strongly-Typed Entities 

[Patrick et al., 2011], Linguistic Style Accommodation in Social Media [Cristian et al., 2011], 

Predicting the Importance of Newsfeed Posts and Social Network Friends[Tim et al., 2010], 

Wiki BABEL: A System for Multilingual Wikipedia Content [Kumaran et al., 2010], The utility 

of article and preposition error correction systems for English language learners: Feedback and 

Assessment[Martin et al., 2010]. The work presented in this Section has been previously 

published [Khan, Dar and Quadri, 2012]. 

2.1.1. Theoretical developments in NLP 

Theoretical developments in NLP can be grouped into following classes: (i) statistical and 

corpus-based methods in NLP, (ii) use of WordNet for NLP research, (iii) use of finite-state 

methods in NLP. 

2.1.1.1. Statistical Methods 

The models and methods used in solving NLP problems are broadly classified into two types: 

deterministic and stochastic. A mathematical model is called deterministic if it does not involve 



2 REVIEW OF LITERATURE 

9 

 

the concept of probability; otherwise it is said to be stochastic. A stochastic model can be 

probabilistic or statistical, if its representation is from the theories of probability or statistics, 

respectively [Edmundson, 1968]. Statistical methods are used in NLP for a number of purposes, 

e.g., speech recognition, part-of-speech tagging, for generating grammars and parsing, word 

sense disambiguation, and so on. There has been a lot of research in these areas. Geoffrey Zweig 

and Patrick Nguyen (2009) have proposed a segmental conditional random field framework for 

large vocabulary continuous speech recognition [Geoffrey and Patrick 2009]. Gerasimos 

Potamianos, Chalapathy Neti, Ashutosh Garg, Guillaume Gravier and Andrew W. Senior (2003) 

have reviewed Advances in the Automatic Recognition of Audio-Visual Speech and have 

presented the algorithms demonstrating that the visual modality improves automatic speech 

recognition over all conditions and data considered [Gerasimos et al., 2003]. Raymond J. 

Mooney has developed a number of machine learning methods for introducing semantic parsers 

by training on a corpus of sentences paired with their meaning representations in a specified 

formal language [Raymond, 2007]. Marine CARPUAT and Dekai WU (2007) have shown that 

statistical machine translation can be improved by using word sense disambiguation. They have 

shown that if the predictions of the word sense disambiguation system are incorporated within a 

statistical machine translation model then the translation quality is consistently improved 

[Marine and Dekai, 2007]. 

2.1.1.2. Use of WordNet for NLP research 

Mihalcea & Moldovan (1999) have proposed the use of WordNet to make the outcome of 

statistical analysis of natural language texts better. WordNet or the electronic dictionary is 

developed at Princeton University. It is a large database that serves as an important NLP tool 

consisting of nouns, verbs, adjectives and adverbs. These are arranged in the form of synonym 

sets (synsets).Each set represents one underlying lexical concept. These sets are linked with each 

other by means of conceptual-semantic and lexical relations. There are different wordnets for 

about 50 different languages, but they are not complete like the original English WordNet 

[Gerard and Gerhard, 2009]. WordNet is now used in a number of NLP research and 

applications. One of the most important applications of WordNet in NLP is EuroWordNet 

developed in Europe. EuroWordNet is a multilingual database which consists of WordNets for 

the European languages. It has been structured in the same way as the WordNet for English. A 
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methodology for the automatic construction of a large-scale multilingual lexical database has 

been proposed where words of many languages are hierarchically organized in terms of their 

meanings and their semantic relations to other words. This database is capable of organizing over 

800,000 words from over 200 languages, providing over 1.5 million links from words to word 

meanings. This universal wordnet has been derived from the Princeton WordNet. Lars Borin and 

Markus Forsberg have given a comparison between WordNet and SALDO. SALDO is a Swedish 

lexical resource which has been developed for language technology applications [Lars and 

Markus, 2009]. Japanese WordNet currently has 51,000 synsets with Japanese entries. Methods 

for enhancing or extending the Japanese Wordnet have been discussed. These include: increasing 

the cover, linking it to examples in corpora and linking it to other resources. In addition various 

plans have been outlined to make it more useful by adding Japanese definition sentences to each 

synset [Franciset al., 2009]. The use of WordNet in multimedia information retrieval has also 

been discussed and the use of external knowledge in a corpus with minimal textual information 

has been investigated. The original collection has been expanded with WordNet terms in order to 

enrich the information included in the corpus and the experiments have been carried out with 

original as well as expanded topics[Manuel et al., 2011]. A Standardized Format for Wordnet 

Interoperability [Claudia et al., 2009] has been given i.e., WordNet- LMF. The main aim of this 

format is to provide the WordNet with a format representation that will allow easier integration 

among resources sharing the same structure (i.e. other wordnets) and, more importantly, across 

resources with different theoretical and implementation approaches. 

2.1.1.3. Use of finite state methods in NLP 

The finite-state automation is the mathematical tool used to implement regular expressions – the 

standard notation for characterizing text sequences. Different applications of the Finite State 

methods in NLP have been discussed [Jurafsky and Martin, 2000; Kornai, 1999; Rocheand 

Shabes, 1997]. From past many years the finite state methods have been used in presenting 

various research studies on NLP. The FSMNLP workshops are the main forum of the 

Association for Computational Linguistics’ (ACL) Special Interest Group on Finite-State 

Methods (SIGFSM)[Anssiet al., 2011]. 
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2.1.2. NLP Applications 

There are a number of applications of NLP e.g. machine translation, natural language text 

processing and summarization, user interfaces, multilingual and cross language information 

retrieval (CLIR), speech recognition, and expert systems, and so on. In this paper we discuss 

automatic abstracting and information retrieval. 

2.1.2.1. Automatic Abstracting  
 
Automatic abstracting or text summarization is a technique used to generate abstracts or 

summaries of texts. Due to the increase in the amount of online information, it becomes very 

important to develop the systems that can automatically summarize one or more 

documents[Dragomir et al., 2002]. The main aim of summarization is to differentiate between 

the more informative or important parts of the document and the less ones [Dipanjan and Andre, 

2007]. According to Radev et al. (2002) a summary can be defined as piece of text that can be 

produced from one or more texts in a way such that it conveys important information in the 

original text(s), and whose size is not more than half of the original text(s) and mostly 

significantly less than that". The summary can be of two types i.e. abstraction or extraction. 

Abstract summary is one in which the original documents‟ contents are paraphrased or 

generated, whereas in an extract summary, the content is preserved in its original form, i.e., 

sentences [Krystaet al, 2007]. Extracts are formed by using the same words, sentences of the 

input text, while abstracts are formed by regenerating the extracted content. Extraction is the 

process of identifying the important contents in the text while in abstraction the contents are 

regenerated in new terms. When the summaries are produced from a single document, it is called 

single document summarization. Multidocument summarization has been defined as a process of 

producing a single summary from a number of related documents. A lot of research has been 

done on automatic abstracting and text summarization. Zajicetal [David et al., 2008] have 

presented single-document and multi-document summarization techniques for email threads 

using sentence compression. They have shown two approaches to email thread summarization 

i.e. Collective Message Summarization (CMS) and Individual Message Summarization(IMS). 

NeATS[Chin and Eduard, 2002] is a multidocument summarization system in which relevant or 

interesting portions about some topic are extracted from a set of documents and presented in 

coherent order. NetSum [Krystaet al, 2007] is an approach to automatic summarization based on 
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neural networks. Its aim is to obtain those features from each sentence which helps to identify its 

importance in the document. A text summarization model has been developed which is based on 

maximum coverage problem and its variant [Hiroya and Manabu, 2009]. In this some decoding 

algorithms have been explored such as a greedy algorithm with performance guarantee, a 

randomized algorithm, and a branch-and-bound method. A number of studies have been carried 

out on text summarization. An efficient linear time algorithm for calculating lexical chains has 

been developed for preparing automatic summarization of documents [Silber and McCoy, 2000]. 

A method of automatic abstracting has been proposed that integrates the advantages of both 

linguistic and statistical analysis. Jin and Dong-Yan (2000) have proposed a methodology for 

generating automatic abstracts that provides an integration of the advantages of methods based 

on linguistic analysis and those based on statistics [Songand Zhao, 2000]. 

2.1.2.2. Information Retrieval  
 
Information retrieval (IR) is concerned with searching and retrieving documents, information 

within documents, and metadata about documents. It is also called document retrieval or text 

retrieval. IR concerns with retrieving documents that are necessary for the users’ information. 

This process is carried out in two stages [Jun and Jianhan, 2009]. The first stage involves the 

calculation of the relevance between given user information need and the documents in the 

collection. In this stage probabilistic retrieval models that have been proposed and tested over 

decades are used for calculating the relevance to produce a “best guess” at a document’s 

relevance. In the second stage the documents are ranked and presented to the user. In this stage 

the probability ranking principle (PRP) [Cooper, 1971] is used. According to this principle the 

system should rank documents in order of decreasing probability of relevance. By using this 

principle the overall effectiveness of an IR system maximizes.  

There has been a lot of research in the field of information retrieval. Some of the recent 

developments are included here. ChengXiangZhai (2008) has given a critical review of statistical 

language models for information retrieval. He has systematically and critically reviewed the 

work in applying statistical language models to information retrieval, summarized their 

contributions, and pointed out outstanding challenges [ChengXiang, 2008]. Nicholas J. Belkin 

has identified and discussed few challenges for information retrieval research which come under 

the range of association with users [Nicholas, 2008]. An efficient document ranking algorithm 
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has been proposed that generalizes the well-known probability ranking principle (PRP) by 

considering both the uncertainty of relevance predictions and correlations between retrieved 

documents [Jun and Jianhan, 2009]. Michael et al have discussed the various problems, 

directions and future challenges of content-based music information retrieval [Michael et al., 

2008]. A unified framework has been proposed that combines the modeling of social annotations 

with the language modeling-based methods for information retrieval [Ding et al., 2008]. 

2.1.3. NLP Interfaces 

A natural language interface accepts commands in natural language and sends data to the system 

which then provides the appropriate responses to the commands. A natural language interface 

translates the natural language statements into appropriate actions for the system. A large number 

of natural language interfaces have been developed [Stock, 2000]. A number of question 

answering systems are now being developed that aim to provide answers to natural language 

questions, as opposed to documents containing information related to the question. These 

systems use a variety of IE and IR operations to get the correct answer from the source texts. In 

information retrieval and NLP, question answering (QA) is the task of automatically answering a 

question posed in natural language. To find the answer to a question, a QA computer program 

may use either a pre-structured database or a collection of natural language documents. Unlike 

information retrieval systems(Internet search engines), QA systems do not retrieve documents, 

but instead provide short, relevant answers located in small fragments of text. That is why QA 

systems are significantly slower and require more hardware resources than information retrieval 

systems [Surdeanu et al., 2002]. QA track of TREC (Text Retrieval Conference) have shown 

some interesting results. Several steps were included in the technology used by the participants 

in the QA track. First, words like ‘who’, ‘when’ were identified to guess what was needed; and 

then a small portion of the document collection was retrieved using standard text retrieval 

technology. This was followed by a shallow parsing of the returned documents for identifying 

the entities required for an answer. If no appropriate answer type was found then best matching 

passage was retrieved. In TREC-8, the first QA track of TREC, the most accurate QA systems 

could answer more than 2/3 of the questions correctly [Voorhees, 1999]. In the second QA track 

(TREC-9), the best performing QA system, the Falcon system from Southern Methodist 

University, was able to answer 65% of the questions [Voorhees, 2000]. In the first two QA tracks 
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the questions were simple. In TREC 2001 QA track, which was the third running of a QA track 

in TREC, a number of conditions were included for increasing the practicality and complexity of 

the task [Ellen, 2001]. The TREC 2002 track repeated the main and list tasks from 2001, but with 

the major difference of requiring systems to return exact answers. The change to exact answers 

was motivated by the belief that a system’s ability to recognize the precise extent of the answer 

is crucial to improving question answering technology [Ellen, 2002]. These runnings of QA track 

have been carried out every year till date by adding different conditions to make the QA tracks 

more realistic. 

2.1.4. NLP Software 

A number of NLP software packages and tools have been developed, some of which are 

available for free, while others are available commercially. These tools have been broadly 

classified into different types some of which are mentioned here. General Information Tools( e.g. 

Sourcebank – a search engine for programming resources., The Natural Language Software 

Registry), Taggers and Morphological Analyzers( e.g. A Perl/Tk text tagger, AUTASYS – which 

is a completely automatic English Wordclass analysis system, TreeTagger – a language 

independent part-of-speech tagger, Morphy – which is a tool for German morphology and 

statistical part-of-speech tagging), Information Retrieval & Filtering Tools (e.g. Rubryx: Text 

Classification Program, seft – a Search Engine For Text, Isearch – software for indexing and 

searching text documents, ifile – A general mail filtering system, Bow: A Toolkit for Statistical 

Language Modeling, Text Retrieval, Classification and Clustering), Machine Learning Tools ( 

e.g. Machine Learning Toolbox (MLT), The Machine Learning Programs Repository), FSA 

Tools( e.g. FSA Utilities: A Toolbox to Manipulate Finite-state Automata), HMM Tools (e.g. 

Hidden Markov Model (HMM) Toolbox, Discrete HMM Toolkit, A HMM mini-toolkit), 

Language Modeling Tools( e.g. Maximum Entropy Modeling Toolkit, Trigger Toolkit, Language 

modeling tools), Corpus Tools ( e.g. WebCorp, Multext: i.e. Multilingual Text Tools and 

Corpora, TACT- i.e. Text Analysis Computing Tools, Textual Corpora and Tools for their 

Exploration). Some more tools include DR-LINK (Document Retrieval using LINguistic 

Knowledge) system demonstrating the capabilities of NLP for Information Retrieval [Liddy et 

al, 2000], NLPWin: an NLP system from Microsoft that accepts sentences and delivers detailed 

syntactic analysis, together with a logical form representing an abstraction of the meaning 
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[Elworthy, 2000]. Waldrop (2001) has described the features of three NLP software packages, 

viz. Jupiter: a product of the MIT research Lab that works in the field of weather forecast, 

Movieline: a product of Carnegie Mellon that talks about local movie schedules, and MindNet 

from Microsoft Research, a system for automatically extracting a massively hyperlinked web of 

concepts. 

2.2. Review of Research Work in Machine Learning 

Machine learning is a vast field and there has been a lot of research in this area. Here we discuss 

the literature relevant to our thesis. Machine learning studies algorithms capable of improving 

their performance automatically when provided with additional knowledge regarding the 

specified domain. As discussed earlier, successful use of machine learning techniques depends 

on availability of sufficient quantities of labeled data. However, obtaining a large labeled data set 

becomes very expensive, particularly for the complex real-world tasks where machine learning 

techniques are most useful. As stated, active learning provides a way to reduce the labeling costs 

by labeling only the most useful instances for learning. The learning algorithm selects only those 

instances for annotation that are required to learn an accurate classifier [Cohn et al., 1994]. 

Hence active learning algorithms provide much higher accuracy rates using small number of 

labeled examples and selecting the data from which it learns. An active learner can ask different 

queries in the form of unlabeled examples that are to be labeled by a human annotator. A lot of 

research has been carried out in this field, therefore we will describe these works along several 

dimensions. 

2.2.1. Active Learning Scenarios 

There are different circumstances in which the learner may ask queries. The learner may 

construct their own examples (membership query synthesis), request certain types of examples 

(pool-based sampling), or determine which of the unlabeled examples to query and which to 

discard (selective sampling). These different scenarios also determine the different sources from 

which the unlabeled instances are presented for annotation. 

 

 



2 REVIEW OF LITERATURE 

16 

 

2.2.1.1. Membership Query Synthesis 

In the membership query synthesis [Angluin, 1988], the learner may construct its own examples 

i.e. the learner may ask for labels for any unlabeled example in the input space. It also includes 

the queries that the learner generates anew, rather than the ones that are sampled from some 

underlying distribution. Query synthesis has been shown to be efficient for finite problem 

domains [Angluin, 2001]. It has also been extended to regression learning tasks, for example 

learning to predict the absolute coordinates of a robot hand [Cohn et al., 1996]. 

In many situations query synthesis has been used efficiently however it has some disadvantages 

too. One of the drawbacks is that the labeling of such random instances cannot be easy if human 

annotator does the annotations. For example, Baum and Lang (1992) used membership query 

learning along with human annotators oracles for training a neural network to classify 

handwritten characters. They had to face an unexpected problem: most of the query images that 

the learner generated contained no meaningful and recognizable symbols. They only consisted of 

artificial characters that were meaningless. Therefore, membership query synthesis for natural 

language processing tasks creates meaningless streams of text or speech that are nothing more 

than garbage. This method usually generates meaningless examples which are hard to label as 

the learner is able to request a label from any possible instance from the input space and ignores 

the underlying sample distribution. The stream-based and pool-based scenarios have been 

developed to solve the above mentioned limitations. Systems using membership query syntheses 

have been implemented practically [King et al., 2004].In these systems an application of the 

membership query synthesis has been described in which a robot scientist has been shown 

executing a series of experiments in order to discover pathways of metabolism in yeast. In this 

application, a mixture of chemical solutions can be regarded as an instance and a label can be 

whether or not the mutant thrived in the growth medium. All experiments have been carried out 

autonomously using active machine learning, and physically carried out using a robot. This 

method reduced the experimental costs by three-fold as compared to when the least expensive 

experiment is run, and resulted in a 100-fold decrease in cost compared to randomly generated 

experiments. 
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2.2.1.2. Stream-based Selection/ Selective sampling 

Selective sampling [Cohn et al., 1994] is another active learning scenario which can be regarded 

as an alternative to membership query synthesis. In this scenario the instances are presented to 

the learner from an infinite source of unlabeled data. The learner performs the sampling of an 

unlabeled instance from the actual distribution as its free (or inexpensive), and then decides 

whether it should pay the cost of labeling it or not. This scenario is also known as stream-based 

or sequential active learning, because of the fact that an unlabeled instance is drawn one at a time 

from the data stream, and the learner has to decide whether to query or discard it. The main point 

on which pool-based and stream-based active learning differ is that the whole stream cannot be 

observed during each round of active learning, and hence limiting the protocol as the learner is 

able to examine each example in a stream only once during the life span of the learner and it is 

suitable for many applications such as speech recognition. For uniform distribution of input, this 

technique behaves similar to membership query learning. However, for non-uniform distribution 

or unknown distribution, it is certain that queries will still be meaningful, as they come from a 

real underlying distribution. 

There are several ways by which the decision of whether to label an instance or not can be 

framed. One way of determining this is to evaluate the samples using some “informativeness 

measure” or “query strategy” and taking a random decision, so that more informative instances 

are more likely to be queried [Dagan and Engelson, 1995]. In another way a region of 

uncertainty is found [Cohn et al., 1994], i.e. finding that explicit part of the instance space which 

is ambiguous to the learner, and then only querying the instances which fall within this region. 

One way of doing this is determining a minimum threshold of an informativeness measure which 

defines the region and query those instances whose evaluation is above this threshold. Another 

more principled approach is to define the region that is still unknown to the overall model class, 

i.e., to the set of hypotheses consistent with the current labeled training set called the version 

space [Mitchell, 1982]. In other words, if any two models of the same model class (but different 

parameter settings) agree on all the labeled data, but disagree on some unlabeled sample, then 

that sample lies within the region of uncertainty. The complete and explicit calculation of this 

region is very expensive computationally and it must be maintained after each new query. This is 

the reason why approximations are used in practice [Cohn et al., 1994; Dasgupta et al., 2008]. 
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The stream-based scenario has been used in many practical problems, including part-of-speech 

tagging [Dagan and Engelson, 1995], sensor scheduling [Krishnamurthy, 2002], and learning 

ranking functions for information retrieval [Yu, 2005]. Fujii et al. (1998) employ selective 

sampling in active learning for word sense disambiguation, e.g., determining if the word “bank” 

means land alongside a river or a financial institution in a given context (only they study 

Japanese words in their work). The approach not only reduces annotation effort, but also limits 

the size of the database used in nearest-neighbor learning, which in turn expedites the 

classification algorithm. 

 

2.2.1.3. Pool-based Selection 

Pool-based scenario [Lewis and Gale, 1994] of active learning is based on the assumption that a 

small set of labeled data L and a large pool of unlabeled data U are available. During the process 

of active learning, an unlabeled instance is selected by the querying function Q from the 

unlabeled pool. The pool is assumed to be static i.e. non-changing also called closed. The 

querying of instances takes place according to informativeness measure in a greedy fashion. 

Then the annotation of the queried instance is done and the instance is then added to the set of 

labeled data for the purpose of training. In pool-based active learning techniques a querying 

function is used for scoring each instance x ϵ U according to their informativeness. These 

techniques then use this score for ranking the unlabeled elements, and finally selects the highest 

ranked instances. 

The real world problems of machine learning for which the pool-based active learning 

techniques have been studied include text classification [Lewis and Gale, 1994; McCallum and 

Nigam, 1998b; Tong and Koller, 2001; Hoi et al., 2006a], information extraction [Thompson et 

al., 1999; Settles and Craven, 2008], image classification and retrieval [Tong and Chang, 2001; 

Zhang and Chen, 2002], video classification and retrieval [Yan et al., 2003; Hauptmann et al., 

2006], speech recognition [Turet al., 2005], and cancer diagnosis [Liu, 2004] to name a few. 

There is a difference between stream-based and pool-based active learning. In the stream based 

learning the data is scanned sequentially and the query decisions are made individually. In pool 

based learning the entire collection is evaluated and ranked before selecting the best query.  
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2.2.2. Querying Strategies 

The main aspect of all active learning strategies is the design of an appropriate querying 

function, which uses the current state of the learner and properties of the available data to select 

unlabeled examples for annotation. The querying function evaluates the informativeness of 

unlabeled instances, which can either be generated de novo or sampled from a given distribution. 

There have been many proposed ways of designing a good querying function. Some of them are 

surveyed below. 

 

2.2.2.1. Uncertainty Sampling 

Uncertainty sampling [Lewis and Gale, 1994] is the simplest and most widely used query 

framework where the learner selects instances for which its prediction is most uncertain i.e. 

about which it is least confident how to label. This approach is often straightforward for 

probabilistic learning models. For example, when using a probabilistic model for binary 

classification, an uncertainty sampling strategy simply queries the instance whose posterior 

probability of being positive is nearest 0.5 [Lewis and Gale, 1994; Lewis and Catlett, 1994].For 

many learning algorithms, a widely used method of uncertainty sampling is to select instances 

for which their predicted label is least confident, either from a probabilistic viewpoint or through 

a margin-based analogue [Lewis and Gale, 1994; Tong and Koller, 2001; Schohn and Cohn, 

2000; Culotta and McCallum, 2005; Roth and Small, 2006b; Settles and Craven, 2008]. 

A more general uncertainty sampling strategy uses entropy [Shannon, 1948] as an uncertainty 

measure: 

                                         ΦENT(x) = -Σ P(yi|x) log P(yi|x), 

where Φ represents a query strategy, which is a function used to evaluate the informativeness of 

a query, x represents the best query instance which maximizes this function, and yi ranges over 

all possible labeling. The entropy-based approach can be generalized easily to probabilistic 

multi-label classifiers and probabilistic models for more complex structured instances, such as 

sequences [Settles and Craven, 2008] and trees [Hwa, 2004]. An alternative to entropy in these 

more complex settings involves querying the instance whose best labeling is the least confident: 

                                         ΦLC(x) = 1 – P(y* |x), 

where y*  = argmax P(y|x) is the most likely class labeling. This sort of strategy has been shown 

to work well, for example, with conditional random fields or CRFs [Lafferty et al., 2001] for 
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active learning in information extraction tasks [Culotta and McCallum, 2005; Settles and Craven, 

2008]. Uncertainty sampling strategies may also be employed with non-probabilistic models. 

One of the first works to explore uncertainty sampling used a decision tree classifier [Lewis and 

Catlett, 1994] by modifying it to have probabilistic output. Similar approaches have been applied 

to active learning with nearest-neighbor (“memory-based” or “instance-based”) classifiers [Fujii 

et al., 1998; Lindenbaum et al., 2004], by allowing each neighbor to vote on the class label of x, 

with the proportion of these votes representing the posterior label probability. Tong and Koller 

(2000) also experiment with an uncertainty sampling strategy for support vector machines, or 

SVMs [Cortes and Vapnik, 1995], that involves querying the instance closest to the linear 

decision boundary. This last approach is analogous to uncertainty sampling with a probabilistic 

binary linear classifier, such as logistic regression or naive Bayes [Kosmopoulos et al., 2008]. 

 

2.2.2.2. Query-By-Committee 

The query-by-committee (QBC) framework [Seung et al., 1992; Freund et al., 1997; Fine et al., 

2002] is similar to uncertainty sampling, but is distinguished by using an ensemble of experts to 

select instances for annotation. In QBC, a committee of learned models is trained using the 

labeled data and a querying function is derived through a voting mechanism. The QBC approach 

involves maintaining a committee C of models which are all trained on the current labeled set L, 

but represent competing hypotheses. Each committee member is then allowed to vote on the 

labelings of query candidates. The most informative query is considered to be the instance about 

which they most disagree. The basic principle of QBC approach is to minimize the version 

space. Version space is the set of hypotheses that are consistent with the current labeled training 

data L. If machine learning is considered as the search for the best model within the version 

space, then the aim of active learning is to limit the size of this space as much as possible with as 

few labeled instances as possible in order to make the search more precise. QBC does exactly 

this by querying in controversial regions of the version space. 

Two things are necessary in a QBC framework, one is to construct a committee of models that 

approximate different regions of the version space and the other is to have some measure of 

disagreement among them. Seung et al. (1992) accomplish the first task simply by sampling a 

committee of two random hypotheses that are consistent with L. For generative model classes, 

this can be done more generally by randomly sampling models from some posterior distribution 
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P(θ|L). For example, McCallum and Nigam (1998b) do this for naive Bayes by using the 

Dirichlet distribution over model parameters, whereas Dagan and Engelson (1995) sample 

HMMs by using the Normal distribution. For other model classes, such as discriminative or non-

probabilistic models, Abe and Mamitsuka (1998) have proposed query-by-boosting and query-

by-bagging, which employ the well-known ensemble learning methods boosting [Freund and 

Schapire, 1997] and bagging [Breiman, 1996] to construct committees. Melville and Mooney 

(2004) propose another ensemble-based method which encourages diversity among committee 

members. For measuring the degree of disagreement, two main approaches have been proposed: 

vote entropy [Dagan and Engelson, 1995] and average KL-divergence [McCallum and Nigam, 

1998b]. There is no consensus on the appropriate committee size to use, which may in fact vary 

by model class or application. However, even small committee sizes (e.g., two or three) have 

been shown to work well in practice [Seung et al., 1992; McCallum and Nigam, 1998b; Settles 

and Craven, 2008]. Aside from the QBC framework, several other query strategies attempt to 

minimize the version space as well. For example, Cohn et al. (1994) describe a related selective 

sampling algorithm for neural networks using a combination of the “most specific” and “most 

general” models, which lie at two extremes the version space given the current labeled examples 

in the training set L. Tong and Koller (2000) propose a pool-based query strategy that tries to 

minimize the version space for support vector machine classifiers directly. The membership 

query algorithms of Angluin (1988) and King et al. (2004) can also be interpreted as 

synthesizing de novo instances that limit the size of the version space. However, Haussler (1994) 

shows that the size of the version space can grow exponentially with the size of L. This means 

that, in general, the version space of an arbitrary model class cannot be explicitly represented in 

practice. The QBC framework, rather, uses a committee which is a subset-approximation of the 

full version space. 

 

2.2.2.3. Unreliability Sampling 

Another recently developed strategy for designing a querying function is unreliability sampling 

[Becker, 2008]. The basic premise of this framework is that instances should be selected which 

have parameters which have not observed sufficient data for confident estimation. An early 

instantiation of this method was active learning for syntactic parsing, where unlabeled instances 

which cause the current parsing model to fail are used to request labels from the expert 
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[Thompson et al., 1999]. Following the same basic principles, this paradigm has been extended 

for improvements in active learning for syntactic parsing [Becker and Osborne, 2005] and active 

learning for machine translation [Haffari et al., 2009]. Recent work on confidence-weighted 

active learning [Dredze and Crammer, 2008] applies a similar philosophy by selecting examples 

with parameters possessing high variance during estimation. As opposed to uncertainty 

sampling, which selects examples for which the prediction has low confidence, unreliability 

sampling selects those instance for which an accurate measure of certainty cannot be computed. 

 

2.2.2.4. Expected Model Change 

A much more recently formalized approach for designing a querying function is to select 

instances which exhibit the greatest expected model change [Settles and Craven, 2008] i.e. that 

would impart the greatest change to the current model if we knew its label. As opposed to 

selecting instances for which the learner is least confident, the expected model change selects 

instance for which there is an expectation of significant change in between the current hypothesis 

and the resulting induced hypothesis if the instance was labeled. This strategy was noted earlier 

in the context of selecting instances for learning an SVM [Bordes et al., 2005], but without an 

accurate estimate of model change, they relied on a margin-based uncertainty method. The 

intuition behind this framework is that those instances will be preferred that are likely to most 

influence the model (i.e., have greatest impact on its parameters), regardless of the resulting 

query label. This approach has been shown to work well in empirical studies, but can be 

computationally expensive if both the feature space and set of labelings are very large. 

 

2.2.2.5. Estimated Error Reduction 

A traditionally less popular strategy gaining increasing attention is the use of querying functions 

which attempt to directly minimize the generalization error. Under this framework, each instance 

is scored with respect to the expected reduction in future error if labeled and added to the 

training data. This method is theoretically appealing as it attempts to directly minimize error, the 

true task at hand. Although shown to be empirically effective, the drawback to querying by 

expected error reduction is the computation required to estimate expected error and compute an 

updated model for each possible labeling for each unlabeled instance. However, this approach 

has been shown very successful when methods such as sub sampling the unlabeled pool with a 



2 REVIEW OF LITERATURE 

23 

 

naive Bayes classifier [Roy and McCallum, 2001], exact incremental updates with Gaussian 

random fields [Zhu et al., 2003], and approximate training methods with logistic regression [Guo 

and Greiner, 2007]. 

Unfortunately, estimated error reduction may also be the most prohibitively expensive query 

selection framework. Not only does it require estimating the expected future error over U for 

each query, but a new model must be incrementally re-trained for each possible query labeling, 

which in turn iterates over the entire pool. This leads to a dramatic increase in computational 

cost. For some model classes such as Gaussian random fields [Zhu et al., 2003], the incremental 

training procedure is efficient and exact thus making this approach fairly practical. For a many 

other model classes, this is not the case. 

A statistically well motivated querying function strategy is selecting instances which minimize 

variance [Cohn et al., 1996]. Given the observation that expected generalization error can be 

decomposed into bias and variance components [Geman et al., 1992], the variance minimization 

strategy is to select instances for which once labeled and added to the training data will result in 

the greatest reduction in variance and thus generalization error. As this approach is only feasible 

for definitions of variance which are smooth and differentiable, it has only been applied to 

problems such as regression and neural networks [Cohn et al.,1996]. Related and more 

appropriate for the standard active learning settings is selection based upon the Fischer 

information associated with a prediction [Zhang and Oles, 2000; Hoi et al., 2006; Settles and 

Craven, 2008], which also require approximation techniques to calculate efficiently. 

 

2.2.2.6. Density-Weighting Methods 

One unfortunate property of many active learning querying functions is that they are relatively 

noise intolerant, motivating the study of techniques which weigh instances by how representative 

they are of the input distribution of the data, referred to as density-weighted querying functions. 

Pre-clustering the data and selecting examples which represent each cluster has been 

demonstrated a very successful for querying representative instances [Nguyen and Smeulders, 

2004; Donmezet al., 2007; Xuet al., 2007]. These methods are particularly beneficial when 

learning from only a few instances, which is done early in the active learning process. Density-

weighting formulations have also been studied for query-by-committee [McCallum and Nigam, 

1998b] and in the context of sequence prediction [Settles and Craven, 2008]. The main idea is 
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that informative instances should not only be those which are uncertain, but also those which are 

“representative” of the input distribution (i.e., inhabit dense regions of the input space).Fujiiet al. 

(1998) explored a query strategy for nearest-neighbor methods that selects queries that are unlike 

the labeled instances already in L, and most similar to the unlabeled instances in U. 

 

2.2.3. Structured Outputs 

Several important learning problems involve predicting structured outputs on instances, such as 

sequences and trees. In these problems multiple local predictions must be combined to form a 

coherent structure. These models have garnered significant interest in the NLP and other 

application communities as they can effectively incorporate information from multiple sources 

regarding many interdependent prediction tasks. As structured output labels are generally more 

expensive to obtain, there has been a corresponding interest in reducing labeling requirements in 

these settings. In the context of active learning, there has been some recent work regarding 

learning in structured output spaces including work on active learning for HMMs [Dagan and 

Engelson, 1995; Scheffer and Wrobel, 2001;Anderson and Moore, 2005], CRFs [Culotta and 

McCallum, 2005; Settles and Craven, 2008] and structured Perceptron [Roth and Small, 2006b]. 

More application targeted includes active learning for probabilistic context free grammars 

(PCFGs) [Baldridge and Osborne, 2004; Hwa, 2004]. Also, closely related works for settings 

more complex than binary classification include active learning for multiclass classification [Yan 

et al., 2003; Brinker, 2004] and active learning for ranking data [Brinker, 2004; Donmez and 

Carbonell,2008]. 

Active learning, most notably pool-based selection, has been applied to many NLP applications 

including text/spam classification [Lewis and Gale, 1994; Liere and Tadepalli, 1997; McCallum 

and Nigam,1998a; Schohn and Cohn, 2000; Tong and Koller, 2001; Hoi et al., 2006a; Schein 

and Ungar, 2007; Dredzeand Crammer, 2008; Zhu et al., 2008a], chunking [Ngai and Yarowsky, 

2000], part of speech tagging [Dagan and Engelson, 1995], named entity recognition [Scheffer 

and Wrobel, 2001; Shen et al., 2004; Becker et al., 2005; Jones,2005; Kim et al., 2006; Vlachos, 

2006; Tomanek et al., 2007; Laws and Schutze, 2008], information extraction [Thompson et al., 

1999; Scheffer et al., 2001; Finn and Kushmerick, 2003;Jones et al., 2003; Culotta and 

McCallum, 2005; Culotta et al., 2006; Roth and Small, 2008; Settles and Craven, 2008], 

prepositional phrase attachment [Hwa, 2004; Becker, 2008], syntactic parsing [Thompson et al., 
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1999; Tang et al., 2002; Hwa, 2004; Becker and Osborne, 2005], word sense disambiguation 

[Chen et al., 2006; Chan and Ng 2007; Zhu and Hovy, 2007], semantic role labeling (Roth and 

Small, 2006b) and machine translation [Haffari et al., 2009; Haffari and Sarkar, 2009]. 

A framework and objective functions have been introduced for active learning in three 

fundamental HMM problems: model learning, state estimation, and path estimation. In addition, 

a new set of algorithms has been described for efficiently finding optimal greedy queries using 

these objective functions. The algorithms are fast, i.e., linear in the number of time steps to select 

the optimal query and we present empirical results showing that these algorithms can 

significantly reduce the need for labelled training data [Anderson and Moore, 2005]. 

Many classification problems with structured outputs can be regarded as a set of interrelated sub-

problems where constraints dictate valid variable assignments. The standard approaches to these 

problems include either independent learning of individual classifiers for each of the sub-

problems or joint learning of the entire set of classifiers with the constraints enforced during 

learning. An intermediate approach has been proposed where these classifiers are learnt in a 

sequence using previously learned classifiers to guide learning of the next classifier by enforcing 

constraints between their outputs. A theoretical motivation has been provided to explain why this 

learning protocol is expected to outperform both alternatives when individual problems have 

different `complexity'. This analysis motivates an algorithm for choosing a preferred order of 

classifier learning. This technique has been evaluated on artificial experiments and on the entity 

and relation identification problem where the proposed method outperforms both joint and 

independent learning. [Bunescu, 2008]. 

The success of interactive machine learning systems depends both on the machine and on the 

human performance. An understanding of machine capabilities and limitations should inform 

interaction design, while the abilities, preferences, and limitations of human operators should 

inform the choice of inputs, outputs, and performance requirements of machine learning 

algorithms. A relevant example from the past work is Arnauld system [Krzysztof and Daniel, 

2005] for active preference elicitation. A lot of previous work in that area solicited user feedback 

in the form numerical ratings over possible outcomes. However, unless the rating scale is well 

grounded, people tend to be inconsistent and unreliable providing this type of feedback. What 

works much more robustly is pairwise comparison queries, where the person only has to state 

which of two possible outcomes he or she prefers [Krzysztof and Daniel, 2005]. Adopting this 
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input interaction, however, requires developing a new learning algorithm. In turn, to account for 

the limitations of the algorithm, the example critiquing interaction [Pearl and Chen, 2009] has 

been implemented to allow people to manually direct the learning once the active learning 

process no longer resulted in rapid improvements in the model quality. Work has been done on 

incorporating richer user feedback into interactive machine learning systems. Typically, machine 

learning algorithms only solicit labels from the users but several projects e.g. [Gregoryet al., 

2007] have shown that incorporating richer feedback-that captures the user's rationale-leads to 

faster and more generalizable learning. So far, this feedback has been limited to feature 

relevance. Is this the best or the only type of rich feedback that can be elicited from users? A 

preliminary study has been conducted in the context of preference elicitation for an e-commerce 

application to understand what types of feedback people naturally provide, and what the value of 

these different types of feedback might have for the speed and quality of learning. Specifically, 

users were asked to answer a set of pair wise comparison questions regarding digital cameras and 

their choices has been recorded as well as free form explanations of their choices. 

End-user interactive concept learning is a technique for interacting with large unstructured 

datasets, requiring insights from both human-computer interaction and machine learning. This 

note re-examines an assumption implicit in prior interactive machine learning research i.e. 

interaction should focus on the question “what class is this object?”.Amershi, S.et al (2010) have 

broadened interaction to include examination of multiple potential models while training a 

machine learning system. They evaluated this approach and found that people naturally adopted 

revision in the interactive machine learning process and that this improved the quality of their 

resulting models for difficult concepts. 

M. Kristan et al (2009) have proposed a Gaussian-kernel-based online kernel density estimation 

which can be used for applications of online probability density estimation and online learning. 

This approach generates a Gaussian mixture model of the observed data and allows online 

adaptation from positive examples as well as from the negative examples. The adaptation from 

the negative examples is realized by a novel concept of unlearning in mixture models. Low 

complexity of the mixtures is maintained through a novel compression algorithm. In contrast to 

other approaches, this approach does not require fine-tuning parameters for a specific 

application, they have not assumed specific forms of the target distributions and temporal 

constraints have not been assumed on the observed data. The strength of the proposed approach 



2 REVIEW OF LITERATURE 

27 

 

has been demonstrated with examples of online estimation of complex distributions, an example 

of unlearning, and with an interactive learning of basic visual concepts. 

Very recently there has been work on actively selecting examples with the intention of labeling 

properties regarding features. The earliest example of this work is the tandem learning algorithm 

where the expert iteratively queries the expert for instance labels and then feature labels. This 

idea of labeling both instances and features simultaneously has been further pursued in the active 

dual supervision model [Sindhwani et al., 2009]. Even more recently, the generalized 

expectation criteria has been incorporated into the active learning framework to present instances 

to the domain expert for the explicit purpose of incorporating domain knowledge by labeling 

features [Druck et al., 2009]. The learning from measurements model [Liang et al., 2009] also 

works along this vein by deriving a framework based on Bayesian experimental design to select 

instances for which the largest expected information gain will be achieved if the feature is 

labeled. 

In most of the active learning research, queries are selected in serial, i.e., one at a time. However, 

sometimes the training time required to induce a model is slow or expensive, as with large 

ensemble methods and many structured prediction tasks. Consider also that sometimes a 

distributed, parallel labeling environment may be available, e.g., multiple annotators working on 

different machines at the same time on a network. In both of these cases, selecting queries in 

serial may be inefficient. By contrast, batch-mode active learning allows the learner to query 

instances in groups, which is better suited to parallel labeling environments or models with slow 

training procedures. 

Myopically querying the “N-best” queries according to a given instance-level query strategy 

often does not work well, since it fails to consider the overlap in information content among the 

“best” instances. To address this, a few batch-mode active learning algorithms have been 

proposed. Brinker (2003) considers an approach for SVMs that explicitly incorporates diversity 

among instances in the batch. Xu et al. (2007) propose a similar approach for SVM active 

learning, which also incorporates a density measure. Specifically, they query cluster centroids for 

instances that lie close to the decision boundary. Hoi et al. (2006a,b) extend the Fisher 

information framework to the batch-mode setting for binary logistic regression. Most of these 

approaches use greedy heuristics to ensure that instances in the batch are both diverse and 

informative, although Hoi et al. (2006b) exploit the properties of submodular functions to find 
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near-optimal batches. Alternatively, Guo and Schuurmans (2008) treat batch construction for 

logistic regression as a discriminative optimization problem, and attempt to construct the most 

informative batch directly. For the most part, these approaches show improvements over random 

batch sampling, which in turn is generally better than simple “N-best” batch construction. 

In some learning problems, the cost of acquiring labeled data can vary from one instance to the 

next. If our goal in active learning is to minimize the overall cost of training an accurate model, 

then reducing the number of labeled instances does not necessarily guarantee a reduction in 

overall labeling cost. One proposed approach for reducing annotation effort in active learning 

involves using the current trained model to assist in the labeling of query instances by pre-

labeling them in structured learning tasks like parsing [Baldridge and Osborne, 2004] or 

information extraction [Culotta and McCallum, 2005]. However, such methods do not actually 

represent or reason about labeling costs. Instead, they attempt to reduce cost indirectly by 

minimizing the number of annotation actions required for a query that has already been selected. 

Another group of cost-sensitive active learning approaches explicitly accounts for varying label 

costs in active learning. Kapoor et al. (2007) propose one approach that takes into account both 

labeling costs and estimated misclassification costs. In this setting, each candidate query is 

evaluated by summing the labeling cost for the instance and the expected future misclassification 

costs that would be incurred if the instance were added to the training set. Instead of using real 

costs, however, their experiments make the simplifying assumption that the cost of labeling a 

voice mail message is a linear function of its length (e.g., ten cents per second). King et al. 

(2004) use a similar active learning approach in an attempt to reduce actual labeling costs. They 

describe a “robot scientist” which can execute a series of autonomous biological experiments to 

discover metabolic pathways, with the objective of minimizing the cost of materials used (i.e., 

the cost of an experiment plus the expected total cost of future experiments until the correct 

hypothesis is found). 

As previously stated, the primary research issue for active learning is the design of an 

appropriate querying function. However, it is possible that different querying functions work 

better for different regions of the active learning cycle. For example, a querying function using 

density-weighted selection is very helpful for initial queries, but uncertainty sampling is more 

effective once the classifier is relatively stable [Donmez et al., 2007]. Baram et al. (2004) 

examine scenarios where several querying functions are employed by being cast in the multi-



2 REVIEW OF LITERATURE 

29 

 

armed bandit framework, where querying functions are selected which explicitly follow an 

exploration and exploitation cycles. In addition to selecting appropriate querying functions for 

different operating regions, as the overall goal of active learning is to reduce total annotation, it 

is also useful to know when maximal performance is achieved such that unnecessary actions will 

be avoided, referred to as a stopping criterion [Schohn and Cohn, 2000; Campbell et al., 2000; 

Tomanek et al., 2007; Vlachos, 2008; Dimitrakakis and Savu-Krohn, 2008; Laws and Schutze, 

2008; Zhu et al., 2008a,b]. The critical aspect of deriving a stopping criterion is a method for 

autonomously determining the performance of the current learner hypothesis (i.e. without 

development or testing data). Other works have used a self-estimated measure of active learning 

performance to determine different operating regions which require different querying functions 

to be most effective [Baram et al., 2004; Donmez et al., 2007; Roth and Small, 2008]. 
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This chapter discusses concepts that are relevant to the work presented in this thesis. The 

sections that follow discuss basic concepts about supervised machine learning and active 

learning. Section 3.1 discusses basics of supervised learning as well as the terminology and the 

procedure used in supervised learning algorithms. It provides an idea about version space and 

feature space and explains two important examples of supervised learning: classification and 

regression. Section 3.2 discusses machine learning for complex problems i.e. learning structured 

instances and learning pipeline models. Section 3.3 discusses pool-based active learning. 

3.1. Supervised Learning 

Supervised learning [Kotsiantis, 2007] is the machine learning task in which the algorithms 

reason from externally supplied instances to produce general hypothesis, which then make 

predictions about future instances. It is the task of deriving a function from labeled training data. 

In the supervised machine learning problem a function maps the inputs to the desired outputs by 

determining to which class among a set of classes a new input belongs to. This is done with the 

help of the training data which consists of the instances with labelled output i.e. known class. 

The training data is a collection of training examples. The training examples are in the form of 

pairs that consist of input x and a desired output value y. The job of supervised learning 

algorithms is analyzing the training data and producing a function. This function can take two 

forms i.e. is can be a classifier if the output is discrete or it can be called as a  regression function 

in case the output is continuous. The system is provided with labelled instances represented as 

(x, y) and the objective of supervised learning systems is to determine the label y for each new 

input x that it sees in future. When y is a real number, the task is called regression, when it is a 

set of discrete values, the task is called classification. For any valid input, the derived function 

should be able to predict the correct output value. In order to be able to predict the correct output, 

the learning algorithm should have to generalize from the labelled training data to unseen 

situations in a reasonable way. Supervised learning is the learning based on training data. The 

datasets used by machine learning algorithms consists of a number of instances that are 

represented using the same set of features. In supervised learning the instances are given with 

known labels (the corresponding correct outputs) in contrast to unsupervised learning, where 

instances are unlabeled. 
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As stated earlier, in supervised machine learning a function maps the inputs to the desired 

outputs by determining which of a set of classes a new input belongs to.  The mapping function 

can be represented by f. h denotes the hypothesis about the function to be learned. Inputs are 

represented as X = (x1, x2,…, xn) and outputs as Y=(y1, y2,…., yn) [Nilsson, 2005]. Therefore, 

hypothesis or the prediction function can be written as 

                                     h : X        Y 

h is the function of vector-valued input and is selected on the basis of training set of m input 

vector examples i.e. 

X =(x1,x2,…, xn)                                   h(X) 

Training set = { X1, X2,…., Xm} 

Therefore, the predicted value can be given as 

y = h(x) = argmaxy’ϵYf(x, y’) 

3.1.1. Terminology 

The variables used in supervised machine learning are: 

• x1, x2, and so on represent the input values, and X represents the input domain, such that 

x ϵ X. 

 

• y1, y2, and so on represent the output values, and Y represents the output space, such that 

y ϵ Y.  

 

• There are a number of different types of machine learning problems which can be defined 

by the output space i.e., binary classification in which case Y = {-1, 1}, regression in 

which case Y = R, multiclass classification in which case Y = {w1, w2,..., wk}. 

 

• The probability distribution from which the supervised data is drawn is represented by 

DX*Y  

 

h 
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• Φ represents the feature vector generating procedure. Input to this function is the 

members of the input space X and returns a d-dimensional feature vector x ϵ Rd. This 

vector is then used as the input by the learning algorithm. 

                     Φ : X        Φ (X) 

where, Φ (X) represents the input domain after Φ is applied to all the members x ϵ X. 

• H represents the hypothesis space used by a machine learning system which is defined as 

the set of all possible hypotheses that the machine learning system can return. It is 

denoted as 

                   H :Φ (X)           Y 

and the learned hypothesis h is selected from H,  

                 h ϵ H 

 

• L represents the loss function which can be defined as a function which measures the 

difference between estimated and the true values for some data element and in case of 

machine learning it can be defined as the measure of divergence between two output 

elements. The frequently used loss function in learning problems is the 0-1(zero-one) loss 

function L(y’,y) = 1 if y’ is not equal to y and 0 otherwise. 

 

• S represents the training sample drawn from the probability distribution DΦ(X)*Y  

 
                S = {(xi, yi)} where i = 1 to m. 

 

After defining all the variables, we can now easily provide a proper definition of a machine 

learning algorithm or a learner. A machine learning algorithm can be defined as an algorithm 

which when provided with a hypothesis space H, a loss function L, and a training set S of m 

training examples drawn from a probability distribution DΦ(X)xY, returns a hypothesis function ĥϵ 

H that minimizes the expected loss L on a randomly drawn example from DΦ(X)*Y , 

ĥ= argminh’ϵH E(x,y)~DΦ(X)*Y (L(h’(x),y)). 

 

In theoretical terms, we would wish to design the above mentioned algorithm however in 

practical situations it becomes infeasible to develop such algorithms. In practical situations the 
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algorithms actually minimize the empirical loss since only a finite set of training examples are 

given and DΦ(X)*Y is unknown. In such cases the learning algorithm returns the hypothesis h as, 

ĥ = argminh’ ϵ H Σ L(h’(xi),y) where i = 1 to m 

Zero-one loss function L0/1 forms the basis of classification therefore minimizing this function 

makes much sense however it becomes intractable for the linear classifiers. Therefore, instead of 

minimizing the ideal loss function a number of learning algorithms minimize a differentiable 

function as a substitute for the ideal loss function. Margin-based algorithms [Allwein et al., 

2000; Pelossof et al., 2010] are an example of such algorithms. The terms used in such learning 

algorithms are discussed as under: 

• F represents a set of hypothesis scoring functions i.e. 

                    F : Φ(X) * Y     R  such that ŷ= h(x) = argmaxy’ϵYfy’  (x). 

 

• ρ represents the margin of an instance. It is a non-negative real-valued function 

which is equal to 0 if and only if ŷ = y and its magnitude is related to the 

confidence of a prediction ŷ for the given input x relative to a specific hypothesis 

h. 

         ρ :Φ(X) * Y* F        R+ 

• L :ρ     R+ represents the margin-based loss function which measures the 

difference between the predicted output and the true output based upon its margin 

relative to a specified hypothesis. 

Thus the margin-based algorithms return a hypothesis scoring function ḟ ϵ F which minimize the 

empirical loss over the training examples to select a hypothesis scoring function  

ḟ = argminf’ ϵ F Σ L (ρ(x,y,f’)) 

3.1.2. Version Space and Feature Space 

In this section we provide some idea about the version space and the feature space. A version 

space [Mitchell, 1977; Herbrich et al., 2004]can be defined as the set of hypotheses within a 

given hypothesis space H that are consistent with the observed training examples. It can also be 

defined as the subset of all hypotheses which can label every instance from a given sample 

correctly. Version space provides an important framework for active learning. 
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Version space can be represented by two sets of hypotheses. The first one is called most specific 

consistent hypotheses, and the other one is called the most general consistent hypotheses. In both 

these types the term "consistent" means that the hypotheses are consistent with the observed 

data. The most specific hypotheses include all the positive training instances, and as small area 

of the remaining feature space as possible. If these hypotheses are further reduced, then a 

positive training instance will be excluded and the hypotheses will become inconsistent. The 

most general hypotheses include the positive instances and as much of the remaining feature 

space as possible without including any negative instance. If these hypotheses are enlarged any 

further, then a negative instance will be included making the hypotheses inconsistent. Figure 3.1 

[Dubois et al., 2002] shows the two hypotheses sets in version space. GB stands for general 

boundary and SB stands for specific boundary. 

 

Figure 3.1: Version Space 

Further we can call a hypothesis h as being consistent with a training sample S if and only if h(x) 

= y for each (x,y) ϵ S. Also, if we have a hypothesis space H and a training sample S then the 

version space V with respect to H is the set of all hypotheses h ϵ H which are consistent with S. 
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As stated earlier in this chapter, Φ represents the feature vector generating procedure. Input to 

this function is the members of the input space X and returns a d-dimensional feature vector x ϵ 

Rd , i.e.  

                      Φ(x)       x 

In machine learning, a feature can be defined as a measurable property of an item or a 

phenomenon under observation and a feature vector can be defined as an n-dimensional vector of 

numerical features representing some item or the set of features of a given data instance. 

Machine learning problems require a lot of processing and statistical analysis. Therefore in order 

to facilitate such analysis machine learning algorithms need numerical features or numerical 

representation of items. For example, in case of representing an image, the feature values 

correspond to the pixels and in case of text they correspond to the term occurrence frequencies. 

Thus we can define feature space as the space associated with these feature vectors. 

3.1.3. Supervised Machine Learning Procedure 

For solving any problem the supervised machine learning algorithm follows a number of steps. 

This section discusses each of these steps. 

� The first and foremost step is the collection of the data required for solving a particular 

problem. It consists of identifying all the important features or attributes that are most 

relevant to the problem under study. 

� The second step is the pre-processing [Zhang et al., 2002] of data. The data collected in 

the first step is not directly suitable for training and therefore requires some processing 

before it can be used for example it may have missing feature values or noise. A number 

of pre-processing methods have been developed and the decision of deciding which one 

to use varies according to the situations. If the collected data contains some missing 

features then a method for handling missing data [Batista & Monard, 2003] is used. 

Similarly, there are methods for detecting and handling noise [Hodge &Austin, 2004].   

� The third step is feature subset selection. It consists of recognizing and eliminating the 

features that are redundant or that are not relevant for the problem under study [Yu & 

Liu, 2004]. It increases the efficiency of the learning algorithms by decreasing the 
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dimensionality of the data. In order to develop more accurate and efficient classifiers a 

process called feature construction is used. In this process new features are constructed 

from the existing basic features [Markovitch & Rosenstein, 2002] in situations where 

many features depend on one another. 

� The fourth step is evaluating the accuracy of the classifier. This step decided whether the 

classifier is fit to be used or some modifications are required. The evaluation of the 

classifier depends on the prediction accuracy (Number of correct predictions / Total 

number of predictions). The classifier’s accuracy can be estimated in three ways: 

i. First one is the splitting of the training set and using two-thirds for training and 

the other third for estimating performance.  

ii. Second one is called cross-validation. In this technique mutually exclusive and 

same-sized subsets are created by dividing the training set. For each subset the 

classifier is trained on the union of all the other subsets. Using this technique the 

error rate of the classifier is calculated by the average of the error rate of each 

subset. 

iii.  Third one is called leave-one-out validation. It is a type of cross validation in 

which all the test sets contain single instance. 

If the error rate evaluation shows that the classifier is not efficient enough or is unacceptable then 

the algorithm returns to previous stage and some factors are examined again for example features 

are checked again to eliminate irrelevant features, or the size of training set is checked again. 

Some other problems that might occur include too high dimensionality of the problem or 

imbalanced dataset [Japkowicz & Stephen, 2002]. However, if the evaluation shows satisfactory 

results then the classifier is available for use. 

3.1.4. Examples of Supervised Machine Learning: Classification and Regression 

Among many other learning examples, classification and regression are two important 

supervised learning problems. This section discusses each of these techniques with examples. As 

discussed earlier, the training data in supervised learning is a collection of training examples. 

The training examples are in the form of pairs that consist of input x and a desired output value 
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y. The job of supervised learning algorithms is analyzing the training data and producing a 

function. This function can take two forms i.e. is can be a classifier if the output is discrete or it 

can be called as a  regression function in case the output is continuous. The system is provided 

with labelled instances represented as (x, y) and the objective of supervised learning systems is 

to determine the label y for each new input x that it sees in future. When y is a real number, the 

task is called regression, when it is a set of discrete values, the task is called classification. 

Classification 

In machine learning, we can define classification [Michie et al., 1994] as the task of determining 

to which class among a set of classes a new input belongs. This is done with the help of the 

training data which contains the instances whose class is known. In classification, there are a 

number of classes and the goal is to develop a rule that classifies a new input into one of the 

existing classes. Classification is an example of supervised learning and its corresponding 

unsupervised method is called clustering in which there are a set of observations and the goal is 

to establish the existence of clusters or classes in the data i.e. the data is grouped into categories 

based on some measure of similarity. The algorithm that is used for classification is called a 

classifier. The word "classifier" can be also used to represent the function implemented by a 

classification algorithm that maps input data to a given class. There are certain issues which must 

be taken care of while developing a classifier such as accuracy, speed, comprehensibility, and 

time to learn a classification rule. 

Classification can be either binary classification or multiclass classification. Binary classification 

consists of only two classes. In multiclass classification an object can be assigned to any one of a 

number of classes. An example of binary classification is the classification of customers in the 

bank loan application. In this example, the input to the classifier is the information about the 

customer and the goal of the classifier is to assign the input to one of the two classes i.e. low-risk 

and high-risk customers. The information about the customer may include his income, savings, 

age, profession, past financial history and so on. In this example, a classification rule learned is 

of if-then type i.e., if the customer income is greater than some particular amount and his savings 

are greater than some particular amount than the customer can be classified into low-risk class 

else the customer will be classified into high-risk class. Such an example is called a discriminant 
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function which separates the examples of different classes. This function involves prediction i.e. 

when a rule fits the past data then correct predictions can be made for new examples. In some 

cases, instead of making a 0/1 (low-risk/high-risk) type decision, we may want to calculate a 

probability, namely, P(Y|X), where X are the customer attributes and Y is 0 or 1 respectively for 

low-risk and high-risk. From this perspective, we can see classification as learning an association 

from X to Y. Then for a given X = x, if we have P(Y = 1|X = x) = 0.8, we say that the customer 

has an 80 percent probability of being high-risk, or equivalently a 20 percent probability of being 

low-risk. We then decide whether to accept or refuse the loan depending on the possible gain and 

loss. 

There are a number of classification algorithms that have been developed. These include Fisher's 

linear discriminant, Logistic regression, Naive Bayes classifier, Perceptron, Support vector 

machines, Least squares support vector machines, k-nearest neighbour, Decision trees, Random 

forests, Neural networks, Bayesian networks, and Hidden Markov models.  

Regression 

Regression can be defined as a technique that is used for calculating the relationships between 

variables i.e. the relationship between a dependent variable and one or more independent 

variables. In other words we can say that the process of regression depicts the changes in the 

values of a dependent variable by varying the value of one of the independent variables while the 

other independent variables are kept fixed. In machine learning, regression can be defined as a 

technique that is used to fit an equation to a dataset. The simplest type of regression technique is 

linear regression. In this form of regression the formula of straight line is used i.e. y = mx + b 

and the suitable values for m and b are estimated in order to predict the value of y on the basis of 

a given value of x. Another form of regression is called multiple regression. In this technique 

more than one input variable is used that fits more complex models, such as a quadratic equation. 

Applications of regression are prediction and forecasting. There are a number of techniques for 

using regression. Least squares regression and linear regression are parametric methods. It means 

the function is described in terms of a finite number of unknown parameters that are estimated 

from the data. Another form of regression is nonparametric regression in which the regression 

function is allowed to lie in a specified set of functions, which may be infinite-dimensional. In 
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order to explain the regression technique we can take the example of a system that should be able 

to predict the price of a car. Inputs to the system are the car attributes such as engine capacity, 

mileage, brand and so on which show the worth of the car. The output is the price of the car. 

Such problems where the output is a number are regression problems. Let X denote the car 

attributes and Y be the price of the car. Again surveying the past transactions, we can collect a 

training data and the machine learning program fits a function to this data to learn Y as a function 

of X. The function is of the form y = wx+ w0 for suitable values of w and w0. 

Regression and classification are both problems of supervised learning. In these problems, there 

is an input X and an output Y and the goal is to learn a mapping from input to the output. 

Machine learning uses an approach that assumes a model defined up to a set of parameters, i.e. y 

= g(x|θ)where g(·) is the model and θ are its parameters. Y is a number in regression and is a 

class code (e.g., 0/1) in the case of classification. g(·)is the regression function or in 

classification, it is the discriminant function separating the instances of different classes. The 

machine learning program optimizes the parameters, θ, such that the approximation error is 

minimized, that is, our estimates are as close as possible to the correct values given in the 

training set. 

 

3.2. Machine Learning for Complex Problems 

In the beginning of this chapter in Section 3.1, we have described the general framework of 

supervised machine learning. However, in practical environments when we want to apply 

machine learning to various complex problems like information extraction, a single function 

cannot be used to carry out the task efficiently. For example, in case of relation extraction, it is 

not possible for a single function to accurately identify all of the named entities and relations 

within a sentence. Consider the sentence given in Figure 3.2 in which we need to extract all the 

entities and label the relations between the entities. 
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Jake works in Calgary, Alberta with his brother Micheal. 

 

Entity detection 

{Jake, Calgary}        works_in 

{Jake, Micheal}        brother_of 

{Calgary, Alberta}       located_in 

{Jake, Alberta}         works_in 

Relation detection 

Figure 3.2: Entity and Relation detection from text 

In such cases, a more practical approach is to learn a complex model which divides the learning 

problem into a number of sub problems and then reassembles them to return a predicted global 

annotation. 

 

3.2.1. Learning Structured Instances 

One of the important methods for solving complex problems is learning in structured output 

spaces. In this method, a number of local learners trained which then return a predicted global 

structure. Examples of such a classifier include structured support vector machines 

[Tsochantaridis et al., 2004], hidden markov model [Rabiner, 1989], that illustrates a generative 

model for learning sequential structures, conditional random fields [Lafferty et al., 2001], 

structured perceptron [Collins, 2002], and max-margin markov networks [Taskaret al., 2003], 

and constrained conditional model. A number of machine learning problems involve learning 

from structured instances. One of the most important problem among them is sequence labeling. 

A lot of learning applications involve labeling and segmenting sequences. For example, if we 

have to do information extraction on some piece of text or identify genes in DNA. Figure 3.3(a) 

shows an example of information extraction problem as a sequence labeling task. Let x = 

(x1,….,xT) represent the sequence on which information extraction is to be applied and y = 

(y1,…., yT) be the sequence of labels that are given to each observation in the sequence. The 

labels specify whether a given word belongs to a particular entity class of interest (person, 

  Jake             PERSON Calgary           LOCATION Alberta           LOCATION Micheal           PERSON 
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organization and location) or not (null).For sequence-labeling problems like information 

extraction, labels are typically predicted by a sequence model based on a probabilistic finite state 

machine, such as the one shown in Figure 3.3(b) 

 

x = Jake works in Calgary, Alberta with his brother Micheal. 

y = person   null     null   location    location   null    null    person    person 

                                                     (a) 

 

 

 

                                         Jake 

                              works 

                                      brother                                  Micheal 

his 

                                      Calgary                                                  Alberta 

                                         with 

in 

                                                     (b)   

 

Figure 3.3: (a) Information Extraction as Sequence Labeling (b) sequence model 

representing a finite state machine 

The two important examples of structured output spaces classifiers are hidden markov models 

and structured support vector machines. 

 

Hidden Markov Model (HMM) 

The language models have been developed in the beginning of 20th Century when Andrei 

Markov used language models (Markov Models) to model letter sequences in works of Russian 

literature. Language models assign probabilities to strings of symbols. It assigns a probability to 

a piece of unseen text, based on some training data. These models are used for word prediction 

i.e. predicting the next word from the previous words by computing probability of the words. A 

language model assigns the probability to a sequence of m words P(w1, w2,…., wm) by means 

Start 
person 

null 
location 
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of a probability distribution. It is used in many natural language processing applications such as 

speech recognition, machine translation, part-of-speech tagging, parsing and information 

retrieval, optical character recognition and data compression. 

A Markov Model is a stochastic model that assumes the Markov Property. Markov Property 

refers to the memory less property of a stochastic/random process. A stochastic process has the 

Markov Property if the conditional probability distribution of future states of that process 

depends only upon the present state, not on the sequence of events that preceded it. Markov 

models are the class of probabilistic models that assume that we can predict the probability of 

some future unit without looking too far into the past i.e. the probability of the word depends 

only on the previous word [Jurafsky and Martin, 2008]. The simplest Markov model is the 

Markov Chain. It is a mathematical system that undergoes transitions from one state to another, 

between a finite or countable number of possible states. It is a random process characterized as 

memory less: the next state depends only on the current state and not on the sequence of events 

that preceded it. 

Hidden Markov Model [Rabiner, 1989] is a Markov Chain for which the state is only partially 

observable. In other words, observations are related to the state of the system but they are 

typically insufficient to precisely determine the state. HMM is a statistical Markov Model in 

which the system being modeled is assumed to be a Markov process with unobserved (hidden) 

states. An HMM can be considered as the simplest Bayesian network. In a regular Markov 

Model, the state is directly visible to the observer, and therefore the state transition probabilities 

are the only parameters. In an HMM the state is not directly visible, but output, dependent on the 

state, is visible. Each state has a probability distribution over the possible output tokens. 

Therefore, the sequence of tokens generated by an HMM gives some information about the 

sequence of states. In a Hidden Markov Model the word “hidden” refers to the state sequence 

through which the model passes, not to the parameters of the model. Even if the model 

parameters are known exactly the model is still hidden. 

 

Structured Support Vector Machines (Structured SVM) 

In machine learning, support vector machines are supervised learning models with associated 

learning algorithms that analyze data and recognize patterns, used for classification and 

regression analysis. SVM’s are considered among the best supervised learning algorithms. In the 
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basic SVM the algorithm takes the inputs and makes the prediction about each input example 

and classifies it into one of the two possible classes. SVMs have been developed by Vapnik 

(1995) and are gaining popularity due to many attractive features, and promising empirical 

performance. Support Vector Machines for Classification and regression have been developed 

[Gunn, 1998]. SVM’s have been shown as the maximum likelihood estimate of a class of 

probabilistic models [Franc et al., 2011]. SVM's are intuitive, theoretically well- founded, and 

have shown to be practically successful. SVM's have also been extended to solve regression 

tasks (where the system is trained to output a numerical value, rather than yes/no classification) 

[Boswell, 2002]. 

The structured support vector machine [Nawozin and Lampert, 2011] is a machine learning 

algorithm that generalizes the SVM classifier. SVM classifier is used for binary classification, 

multiclass classification and regression, and the structured SVM is used for allowing training of 

a classifier for general structured output labels. Generalization of multiclass Support Vector 

Machine learning has been proposed that involves features extracted jointly from inputs and 

outputs. The resulting optimization problem has been solved efficiently by a cutting plane 

algorithm that exploits the sparseness and structural decomposition of the problem. The 

versatility and effectiveness of the method have been demonstrated on problems ranging from 

supervised grammar learning and named-entity recognition, to taxonomic text classification and 

sequence alignment [Tsochantaridis et al., 2004]. Structured SVM’s have also been used for 

other natural language processing applications like speech recognition [Zhang and Gales, 2011]. 

Structured support vector machines (SVMs) have been examined for noise robust speech 

recognition and the features based on generative models have been used, which allows model-

based compensation schemes to be applied to yield robust joint features. The performance of the 

approach has been evaluated on a noise corrupted continuous digit task: AURORA 2. 

 

3.2.2. Learning Pipeline Models 

Another example of a complex model is a pipeline model. It has been applied to a number of 

applications successfully. In pipelining, the overall process is divided into a sequence of 

classifiers in such a way that each stage of the pipeline uses the output of the previous stage as its 

input and determines the prediction. Pipelining is a process in which a complex task is divided 

into many stages that are solved sequentially. A pipeline is composed of a number of elements 
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(processes, threads, co routines, etc.), arranged in such a way so that the output of each element 

is fed as input to the next in the sequence. Many machine learning problems are also solved 

using a pipeline model. Pipelining plays a very important role in applying the machine learning 

solutions efficiently to various natural language processing problems. The use of pipelining 

results in the better performance of these systems. A number of natural language processing 

applications have been carried out using pipeline models e.g. information extraction [Yu and 

Lam, 2010], dependency parsing and named entity recognition [Bunescu, 2008], and so on.  

For explaining the process of pipelining we will again take an example of entity extraction as in 

Section 3.2. We will consider a sentence as shown in Figure 3.4. In this case, instead of making 

several local predictions regarding both segmentation and classification for each word and 

assembling them into a global prediction, a pipeline model would first learn an entity 

identification (segmentation) classifier and use this as input into an entity labeling classifier, 

which is then assembled into a two stage pipeline system. 

 

                                     Jake works in Calgary, Alberta     

 

 

 

 

 

                                   [Jake]works in [Calgary] [Alberta]    

 

 

 

 

 

                             [Jake]person  works in [Calgary]location [Alberta]location 

Figure 3.4: Pipelined Named Entity Recognition 

 

The primary requirement of a pipeline model is that the feature vector generating procedure for 

each stage is able to use the output from previous stages of the pipeline, Φ(j)(x, y(0),…, y(j-1)).To 

            Segmentation     

Named Entity Classification 
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train a pipeline model, each stage of a pipelined learning process takes m training instances S(j) = 

{( x1
(j),y1

(j)),…, (xm
(j),ym

(j))} as input to a learning algorithm A(j) and returns a classifier, h(j), which 

minimizes the respective loss function of the jth stage. Once each stage of the pipeline model 

classifier is learned, global predictions are made sequentially with the expressed goal of 

maximizing performance on the overall task, resulting in the prediction vector ŷ = h(x) = 

[argmax fy’
(j)(x(j)) ] where j=1 to J and y’ ϵ Y(j). 

 

3.3. Pool-Based Active Learning 

Until now we have been discussing supervised machine learning models. These models have 

been traditionally trained on whatever labeled data is made available to them. However, 

supervised methods have a number of disadvantages. One of the main disadvantages of using 

supervised methods is the high cost associated with them as they require large amounts of 

annotated data. Active learning [Settles, 2010] provides a way to reduce these labeled data 

requirements. These algorithms are capable of collecting new labeled examples for annotation by 

making queries to the expert. Active learning can reduce labeling effort required to train such 

models by allowing the learner to choose the instances from which it learns. There are different 

circumstances in which the learner may be able to ask queries. The learner may construct its own 

examples (membership query synthesis), request certain types of examples (pool-based 

sampling), or determine which of the unlabeled examples to query and which to discard 

(selective sampling).In active learning, the learner examines the unlabeled data and then queries 

only for the labels of instances which it considers to be informative. Therefore, an active learner 

learns only what it needs to in order to improve, thus reducing the overall cost of training an 

accurate system. Figure 3.6 [Settles, 2010] shows pool-based active learning. 

In active learning the algorithm starts with a small number of labeled instances in the labeled 

training set L. It then requests the labels for a few carefully selected instances from the unlabeled 

pool U, learns from the query results, and then leverages its newly-found knowledge to choose 

which instances to query next. In this way, the active learner aims to achieve high accuracy using 

as few labeled instances as possible. There are many ways to select query instances, most of 

which stem from the uncertainty principle in experimental design and statistics [Federov, 1972]. 

One strategy for pool-based active learning is uncertainty sampling [Lewis and Gale, 1994]. It 

queries the instance that the model is least certain how to label. For probabilistic binary 
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classifiers, this means querying the instance x ϵ U with the posterior probability P(y = 1 | x; θ) 

that is closest to 0.5 (i.e., the most ambiguous instance). 

labeled training set 

                                     induce a model 

 L 

                                                                Inspect unlabeled      

                 Label new instances                           data 

 

     HUMAN ANNOTATOR 

                           Select queries                                

                          Unlabeled pool U 

Figure 3.5: Pool-Based Active Learning 

Machine learning 

model 



 

 

 

 

 

 

Chapter 4 

Information Extraction and Machine 
Learning- A Pipelined Approach 
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In Section 3.2 of previous chapter we briefly discussed machine learning for complex models i.e. 

learning for structured instances and learning pipeline models. In this chapter, we discuss 

pipeline models in detail. As stated earlier, the main interest of this work is the use of machine 

learning techniques for natural language processing applications. Here we discuss the use of 

machine learning for an important natural language application i.e. information extraction. In 

Section 4.1 we provide an introduction about pipelining. In Section 4.2 we give a general 

overview of the information extraction process along with an example to show how the process 

will work. Section 4.3 discusses pipelining and machine learning and shows the steps of 

pipelining using active learning. In Section 4.4 we discuss stages of information extraction used 

in pipelining. In Section 4.5 we discuss various evaluation measures that are used to check the 

efficiency of machine learning models. 

4.1. Introduction 
 

Pipelining is a process in which a complex task is divided into many stages that are solved 

sequentially. A pipeline is composed of a number of elements (processes, threads, co routines, 

etc.), arranged in such a way so that the output of each element is fed as input to the next in the 

sequence. Many machine learning problems are also solved using a pipeline model. Pipelining 

plays a very important role in applying the machine learning solutions efficiently to various 

natural language processing problems. The use of pipelining results in better performance of 

these systems. However, these systems usually result in considerable computational complexity. 

A distinguishing feature of applications requiring pipeline models is that they often require 

significant quantities of labeled data to learn accurately, motivating the study of active learning 

in such scenarios. For this reason researchers were motivated for using active learning for these 

systems. Reason of using active learning is that these algorithms perform better than the 

traditional learning algorithms keeping the training data same. In this chapter we discuss an 

active learning strategy for pipelining of an important natural language processing task i.e. 

information extraction. The work described in this chapter has been previously published [Khan 

and Quadri, 2012a]. 

 A number of natural language processing applications use machine learning algorithms. These 

applications include parsing, semantic role labeling, information extraction, etc. Using a machine 

learning algorithm for one natural language processing task often requires the output from 
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another task. Thus we can say these tasks are dependent on one another and therefore must be 

pipelined together. Therefore, a pipeline organization is used to model such situations. The 

benefit of using such an organization includes its ease of implementation and the main drawback 

is accumulation of errors between the stages of the pipeline that considerably affects the value of 

the results [Bunescu, 2008]. Pipelining has been used for a number of natural language 

applications e.g. bottom-up dependency parsing [Chang et al., 2006], semantic role labeling 

[Finkel et al., 2006]. A bidirectional integration of pipeline models has been developed as a 

solution to the problem of error accumulation in traditional pipelines [Yu and Lam, 2010]. In this 

chapter we show pipelining of information extraction. Although work has been done earlier in 

this regard which show pipelining of entity detection and relation extraction stages of 

information extraction. Here we theoretically discuss about including part-of-speech tagging 

stage of information extraction into the pipeline. 

 

4.1.1. An Example of Pipelining 
 

The primary motivation for modeling complex tasks as a pipelined process is the difficulty of 

solving such applications with a single classifier. For explaining the process of pipelining we 

will take an example of entity extraction as in Section 3.2. We will consider a sentence as shown 

in Figure 4.1. In this case, a pipeline model would first learn an entity identification 

(segmentation) classifier and use this as input into an entity labeling classifier, which is then 

assembled into a two stage pipeline system. 

The primary requirement of a pipeline model is that the feature vector generating procedure for 

each stage is able to use the output from previous stages of the pipeline, Φ(j)(x, y(0),…, y(j-1)). To 

train a pipeline model, each stage of a pipelined learning process takes m training instances S(j) = 

{(x 1
(j),y1

(j)),…, (xm
(j),ym

(j))} as input to a learning algorithm A(j) and returns a classifier, h(j), which 

minimizes the respective loss function of the jth stage. Once each stage of the pipeline model 

classifier is learned, global predictions are made sequentially with the expressed goal of 

maximizing performance on the overall task, resulting in the prediction vector ŷ = h(x) = 

[argmaxfy’(j)(x(j)) ] where j=1 to J and y’ ϵ Y(j). 
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                                      Jake works in Calgary, Alberta     

 
 

 

 [Jake] works in [Calgary] [Alberta] 

 

 

 

 [Jake]person  works in [Calgary]location [Alberta]location 

Figure 4.1: Pipelined Segmentation and Entity Detection 

 

4.1.2. Why Active Learning 

An important aspect of pipelined approaches is the corresponding high cost associated with 

obtaining sufficient labeled data for good learning performance. The active learning protocol 

minimizes this problem by allowing the learning algorithm to incrementally select unlabeled 

examples for labeling by the domain expert with the goal of maximizing performance while 

minimizing the labeling effort [Cohn et al., 1996]. While receiving significant recent attention, 

most active learning research focuses on new algorithms as they relate to a single classification 

task. This work instead assumes that an active learning algorithm exists for each stage of a 

pipelined learning model and develops a strategy that jointly minimizes the annotation 

requirements for the pipelined process. In active learning the learning algorithm is capable of 

selecting additional instances to be labeled by maintaining access to the annotator. Thus active 

learning provides a way to reduce the labeling costs by labeling only the most useful instances 

for learning. Active learning reduces the amount of user effort required to learn a concept by 

reducing the number of labeled examples required [Arora and Agarwal, 2007].In this learning 

technique, the learner is responsible for actively participating in the collection of the training 

examples i.e. obtaining the training set. The learner is capable of selecting a new input, 

observing the resulting output and including the new example based on the input and output into 

its training set. An important question that arises here is how to choose which input to try next 

            Segmentation     

Named Entity Classification 
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[Cohn et al., 1996]. The learner uses some strategies for choosing the examples. The examples 

are chosen by making queries to the expert. The query strategy frameworks that have been used 

are uncertainty sampling [Lewis and Gale, 1994] and query-by- committee [Seung et al.,1992]. 

 

4.2. Simple Architecture of Information Extraction 

Information extraction (IE) can be defined as a process which involves automatic extraction of 

structured information such as entities, relationships between entities, and attributes describing 

entities from unstructured and/or semi-structured machine-readable documents [Sarawagi, 

2008].It can also be defined as a process of retrieving relevant information from documents. 

Applications of IE include news tracking [Turmo et al., 2006], customer care [Bhide et al., 

2007], data cleaning [Sarawagi and Bhamidipaty, 2002], and classified ads [Michelson and 

Knoblock, 2005]. Figure 4.2 shows a simple architecture of information extraction system [Bird 

et al., 2006]. The overall process of information extraction is composed of a number of subtasks 

such as segmentation, tokenization, part of speech tagging, named entity recognition, relation 

extraction, terminology extraction, opinion extraction, etc. 

 

         Raw text 

 

 

     sentences 

                                            tokenized sentences                                    

 

 

                                            pos-tagged sentences 

                                              chunked sentences 

 

            Relations 

 

Figure 4.2: Simple Architecture of Information Extraction System 

These subtasks of information extraction can be implemented using a number of different 

algorithms e.g. list-based algorithms for extracting person names or locations [Watanabe et al., 

SENTENCE 

SEGMENTATION 

TOKENIZATION PART OF SPEECH 

TAGGING 

ENTITY DETECTION RELATION 

DETECTION 
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2009], rule-based algorithms for extracting phone numbers or mail addresses, and advanced 

machine learning and statistical approaches for extracting more complex concepts. Sentence 

segmentation is the process of breaking the text into component sentences. It is the process of 

determining the longer processing units consisting of one or more words. It consists of 

recognizing sentence boundaries between words in different sentences. Since most written 

languages have punctuation marks which occur at sentence boundaries, sentence segmentation is 

frequently referred to as sentence boundary detection, sentence boundary disambiguation, or 

sentence boundary recognition. All these terms refer to the same task: determining how a text 

should be divided into sentences for further processing. Tokenization breaks the text into 

meaningful elements such as words, symbols. It is the process of breaking up the sequence of 

characters in a text by locating the word boundaries, the points where one word ends and another 

begins. For computational linguistics purposes, the words thus identified are frequently referred 

to as tokens. In written languages where no word boundaries are explicitly marked in the writing 

system, tokenization is also known as word segmentation, and this term is frequently used 

synonymously with tokenization. This is followed by part-of-speech tagging which labels these 

tokens with their POS categories. An example of applying these steps to a piece of text is shown 

below in Figure 4.3 

 

Jake works in Calgary, Alberta with his brother Micheal. 

 

 

 

 

 

Figure 4.3: Tokenization and Labeling 

This is followed by entity detection. It is the process of identifying the entities having relations 

between one another, e.g. considering the above sentence, entities are detected as follows: 

 

 

 

Figure 4.4: Entity Detection 

 Jake  
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works 
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in 

 P 

Calgary  
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P 

his 
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brother 
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 Jake              PERSON Calgary           LOCATION Alberta           LOCATION Micheal            PERSON 
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Finally, after entities have been identified, the relations that exist between them are extracted in 

the relation detection step as follows: 

{Jake, Calgary}       works_in 

{Jake, Micheal}       brother_of 

{Calgary, Alberta}     located_in 

{Jake, Alberta}       works_in 

Using pipelining in modeling the process of information extraction has resulted in an increase in 

efficiency. A lot of work has been done in this regard. Efficient information extraction pipelines 

have been developed that have resulted in the efficiency gains of up to one order of magnitude 

[Henning et al., 2011]. A pipeline-based system has been developed for automated annotation of 

Surgical Pathology Reports [Kevin et al., 2004]. There has been a lot of research in the field of 

information extraction using supervised machine learning. A number of supervised approaches 

have been proposed for the task of relation extraction which consists of some feature based 

methods [Kambhatla, 2004; Zhao and Grishman, 2005] and kernel methods [Lodhi et al., 2002; 

Bunescu and Mooney, 2005]. However, supervised methods have a number of disadvantages. 

First of all, we cannot extend these methods to define new relations between the entities due to 

lack of new labeled data as supervised methods have a predefined set of labeled data. Same 

problem occurs if we wish to extend the entity relations to higher order. Also for large input data 

these methods are computationally infeasible [Bach and Badaskar, 2007]. One of the main 

disadvantages of using supervised methods is the high cost associated with them as they require 

large amounts of annotated data. Active learning [Settles, 2010] provides a way to reduce these 

labeled data requirements. These algorithms are capable of collecting new labeled examples for 

annotation by making queries to the expert. The main advantage of using pipelining is that when 

the pipelining process starts the examples that are selected first are those that are needed at the 

beginning phases of pipeline followed by those that are needed later. 
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4.3. Pipelining and Machine Learning 

In the supervised machine learning problem a function maps the inputs to the desired outputs by 

determining which of a set of classes a new input belongs to. This is determined on the basis of 

the training data which contains the instances whose class is known e.g. classification problem. 

The mapping function can be represented by f,h denotes the hypothesis about the function to be 

learned. Inputs are represented as X = (x1, x2,…,xn) and outputs as Y=(y1, y2,…., yn) [Nilsson, 

2005].Therefore, hypothesis or the prediction function can be written as 

   h : X     Y 

h is the function of vector-valued input and is selected on the basis of training set of m input 

vector examples i.e. 

X =(x1,x2,…, xn)                              h(X) 

Training set = { X1, X2,…., Xm} 

Therefore, the predicted value can be given as 

y = h(x) = argmaxy’ϵYf(x, y’) 

In case of pipelining, we have different stages. Let there be N stages. Therefore, each stage n 

depends on the previous (n-1) stages i.e. 

x, y(0),…., y(n-1)                        x(n) 

Therefore, in case of pipelining the predicted value can be written as 

y = h(x) = [argmax f(n)(x(n), y’)] 

where n = 1,…, N. 

As discussed earlier in this chapter, active learning algorithms reduce the number of labeled 

examples needed to learn any concept by collecting new unlabelled examples for annotation 

[Thompson et al., 1999]. In active learning, the learner examines the unlabeled data and then 

queries only for the labels of instances which it considers to be informative. Therefore, an active 

learner learns only what it needs to in order to improve, thus reducing the overall cost of training 

h 
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an accurate system. In active learning the algorithm starts with a small number of labeled 

instances in the labeled training set L. It then requests the labels for a few carefully selected 

instances from the unlabeled pool U, learns from the query results, and then leverages its newly-

found knowledge to choose which instances to query next. In this way, the active learner aims to 

achieve high accuracy using as few labeled instances as possible. The examples are selected 

from the unlabelled data source U and are then labeled and added to the set of labeled data L 

[Settles, 2010]. Figure 4.5 shows the process of active learning [Settles, 2009]. The examples are 

selected by making queries to the expert. There are many ways to select query instances, most of 

which stem from the uncertainty principle in experimental design and statistics [Federov, 1972]. 

One strategy for pool-based active learning is uncertainty sampling [Lewis and Gale, 1994].It 

queries the instance that the model is least certain how to label. For probabilistic binary 

classifiers, this means querying the instance x ϵ U with the posterior probability P(y = 1 | x; θ) 

that is closest to 0.5 (i.e., the most ambiguous instance). Query strategies that have been used 

earlier are uncertainty sampling and query by committee [Seung et al., 1992]. In both these 

strategies the point is to evaluate the informativeness of the unlabeled examples. 

 

labeled training set 

                                     induce a model 

L                                                         Inspect unlabeled 

                                                                       data 

       Label new instances 

 

HUMAN ANNOTATOR Select queries 

                                                                     Unlabeled pool U 

 Figure 4.5: Process of Active Learning 

The most informative instance or best query is represented as x*
A, where A represents the query 

selection method used [Settles, 2010]. In uncertainty sampling, the algorithm selects that 

example about which it is least confident. In that case, 

Machine learning 

model 
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x*
LC = argmax 1- Pθ (y | x) [Culotta and McCallum, 2005] 

This approach is often straightforward for probabilistic learning models. For example, when 

using a probabilistic model for binary classification, an uncertainty sampling strategy simply 

queries the instance whose posterior probability of being positive is nearest 0.5 [Lewis and Gale, 

1994; Lewis and Catlett, 1994]. For many learning algorithms, a widely used method of 

uncertainty sampling is to select instances for which their predicted label is least confident, either 

from a probabilistic viewpoint or through a margin-based analogue [Lewis and Gale, 1994; Tong 

and Koller, 2000; Schohn and Cohn, 2000; Culotta and McCallum, 2005; Roth and Small, 

2006b; Settles and Craven, 2008]. 

In case of margin sampling, 

x*
M= argmin Pθ(y1 | x) - Pθ(y2 | x)             (1) 

where y1 and y2 are first and second most probable class labels [Scheffer et al., 2001]. 

Another uncertainty sampling strategy that uses entropy as uncertainty measure, 

x*
H = argmax - ΣiPθ(yi | x) log Pθ(yi | x)    (2) 

where yi represents all the class labels [Settles, 2010] 

The entropy-based approach can be generalized easily to probabilistic multi-label classifiers and 

probabilistic models for more complex structured instances, such as sequences [Settles and 

Craven, 2008] and trees [Hwa, 2004].An alternative to entropy in these more complex settings 

involves querying the instance whose best labeling is the least confident: 

                                         ΦLC(x) = 1 – P(y* |x), 

where y*  = argmax P(y|x) is the most likely class labeling. This sort of strategy has been shown 

to work well, for example, with conditional random fields or CRFs [Lafferty et al., 2001] for 

active learning in information extraction tasks [Culotta and McCallum, 2005; Settles and Craven, 

2008]. 

Scoring functions are also used for selecting the examples to be labeled or annotated. Scoring 

functions are used for mapping an abstract concept to a numeric value. Here, the idea is to 
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calculate the score values for each instance to be labeled and the one with the minimum value is 

selected i.e. 

x* = argmin q(x) 

where x is selected from the unlabeled data U. The key difference between active learning and 

standard supervised learning is a querying function, which when provided with the data U and 

the learned classifier h returns a set of unlabeled instance from U. These selected instances are 

labeled and added to the supervised training set L used to update the learned hypothesis 

Therefore, for each stage n of the pipeline, there is a separate querying function i.e. q(n) , and 

after combining all these functions we get, 

x*=argminΣq(n)(x) 

where n = 1,.., N and x belongs to U and N is the total number of stages of a pipeline. The 

pipelining process using active learning consists of the following steps: 

a. As discussed earlier, each stage n of the pipeline has its own querying function q(n) and 

learner l(n). First of all, for each stage n, the hypothesis function as well as the querying 

function is estimated. 

b. The unlabelled examples or instances are then selected by the learner from unlabeled data 

U and after labeling are added to labeled data L for each stage n of the pipeline. 

c. As L changes after annotation of new instances, hypothesis is modified accordingly for 

each stage n. 

d. The process is repeated until the final hypothesis is obtained after all the N stages of 

pipeline have been completed. 

 

4.4. Stages of Information Extraction used in Pipelining 

Pipelining has been applied to information extraction earlier where the focus has been on entity 

detection and relation extraction. But as far as part-of-speech tagging is involved, not much has 

been done towards including it in the pipelining process of information extraction. Each stage of 

a pipeline is dependent on the earlier stages. In pipelining of information extraction, entity 

detection and relation detection highly depend on part-of-speech tagging. As discussed earlier, 
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part-of-speech tagging labels each word or phrase of a sentence with its POS category. It helps in 

recognizing different usages of the same word and assigns a proper tag e.g. in the sentences 

below the word “protest” has different usages: 

The protest is going on. (Noun) 

They protest against the innocent killings. (Verb) 

Including part-of-speech tagging in the pipeline using active learning will result in the 

performance gain as the machine learning methods used for part-of-speech tagging have resulted 

in more than 95% accuracy. Moreover, in any natural language there are a number of words that 

are part-of-speech ambiguous (about more than 40%) and in such cases automatic POS tagging 

makes errors and hence require the use of machine learning techniques for tagging. 

As discussed earlier, part-of-speech tagging labels each word or phrase of a sentence with its 

POS category, entity detection identifies the entities having relationships between one another in 

the sentence and relation detection extracts those relationships. Hence, in all these processes 

sentences are selected and annotated for all stages of the pipeline. 

4.4.1. Including POS Tagging in Pipelining 

Part-of-speech tagging (POS tagging), also called grammatical tagging or word-category 

disambiguation, is the process of marking up a word in a text (corpus) as corresponding to a 

particular part of speech, based on both its definition, as well as its context i.e. relationship with 

adjacent and related words in a phrase, sentence, or paragraph. Once performed by hand, POS 

tagging is now done in the context of computational linguistics, using algorithms which associate 

discrete terms, as well as hidden parts of speech, in accordance with a set of descriptive tags. 

POS-tagging algorithms fall into two distinctive groups: rule-based and stochastic. E. Brill's 

tagger, one of the first and widely used English POS-taggers, employs rule-based algorithms. 

Different methods of POS tagging are Rule-Based POS tagging e.g., ENGTWOL [Voutilainen, 

1995], transformation-based tagging e.g. Brill’s tagger [Brill, 1995], and stochastic 

(probabilistic) tagging e.g. TNT [Brants, 2000]. POS tagging is used for a number of purposes 

e.g. it can help in determining authorship i.e. finding out are any two documents written by the 

same person (forensic linguistics) and it can help in speech synthesis and recognition. Labeling 
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natural language data with part-of-speech tags can be a complicated task, requiring much effort 

and expense, even for trained annotators. Several efforts, notably the Alembic workbench [Day 

et al., 1997] and similar tools, have provided interfaces to aid annotators in the process. 

Automatic POS tagging of text using probabilistic models is mostly a solved problem but 

requires supervised learning from substantial amounts of training data. Previous work 

demonstrates the suitability of Hidden Markov Models for POS tagging [Kupiec, 1992; Brants, 

2000]. More recent work has achieved state-of-the-art results with Maximum entropy conditional 

Markov models (MaxEnt CMMs, or MEMMs for short) [Ratnaparkhi, 1996; Toutanova& 

Manning, 2000; Toutanova et al., 2003]. Part of the success of MEMMs can be attributed to the 

absence of independence assumptions among predictive features and the resulting ease of feature 

engineering. 

In this section we theoretically show how active learning would be applied to POS tagging. As 

discussed earlier, first the informativeness of the unlabeled instances, sentences in our example, 

would be evaluated. Sentences would be selected from the unlabeled data and annotated/labeled 

by the annotator i.e. each word in the sentence would be tagged by its appropriate POS category. 

The annotated sentences will then be added to the labeled data. In Query By Uncertainty (QBU) 

approach, the informativeness of the unlabeled instances/examples is determined by evaluating 

the entropy- a measure of uncertainty associated with a random variable. In our example, these 

unlabeled instances are sentences. Therefore, we have to evaluate the entropy of sequence of 

words wi in a sentence of length n, i.e. 

H(w1,w2,…,wn) = -Σ p(w1,w2,..,wn) log p(w1,w2,…,wn) 

From equation (2) we get, 

x*
H = -Σ p(yi | x) log p(yi | x) 

for each word wi of the sentence, posi represents the part-of-speech tag for that word. Thus, the 

querying function for the part-of-speech tagging stage will be given as 

qpos = -Σ p(posi | wi, yi, posi-1, posi-2) log p(posi | wi, yi, posi-1, posi-2) 

where i = 1 to n and posi-1 and posi-2 represent the tags of previous two words. 
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4.4.2. Active learning for Entity and Relation Detection 

For this stage too QBU approach will be used which selects those unlabeled examples/instances 

about which the learner is least confident. According to equation (1), the best query in case of 

multi class uncertainty sampling is given by 

x*
M = argmin Pθ (y1 | x) - Pθ (y2 | x) 

where y1 and y2 are the first and second most probable class labels. Accordingly, the querying 

function for the entity and relation detection stage of information extraction can be given as 

qERD = argmin p(y | xi) – p(y’| xi)  

or 

qERD = argmin [f(xi, y) – f(xi, y’)]  

i = 1 to n and y and y’ are the first and second most probable class labels. 

For all the stages, the performance would be calculated using three metrics i.e. precision, recall 

and F-measure. For POS tagging, precision would be calculated as number of correctly retrieved 

tags divided by the total number of retrieved tags. Recall would be calculated as number of 

correctly retrieved tags divided by the actual number of tags. For entity detection, precision 

would be calculated as the number of correctly extracted entities divided by the total number of 

extracted entities and recall would be calculated as number of correctly extracted entities divided 

by the actual number of entities. For relation extraction, precision would be calculated as the 

number of correctly extracted relations divided by the total number of extracted relations and 

recall would be calculated as the number of the correctly extracted relations divided by the actual 

number of relations. F- Measure for all these stages is equal to 2*precision*recall / precision + 

recall. 

4.5. Evaluation Measures 

This section outlines various evaluation measures that are used for checking how well a model 

performs. For a particular label of interest, we are provided with a set of actual positives (e.g., 

objects that belong to that label) contained within the data set. The model then makes a set of 

predicted positives (e.g., the objects it assigns to that label) for the same data set. The actual and 

predicted label groupings can be thought of as indicator variables, and their cross product results 
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trade-off between precision P and recall R, a summary statisti
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is the area under the Receiver Operating Characteristic (ROC) curve. An ROC curve measures 
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regarded as a more appropriate measure than accuracy for some
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object higher than a randomly chosen negative.
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Figure 4.6: A Venn diagram illustrating the relationship between actual and predicted 

positives. 
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in four important values: tp (the number of true positives), fp (false positives), tn (true 

fn (false negatives). Figure 4.6 [Settles, 2008] illustrates the relationship between 

evaluation measure is accuracy = tp+tn / tp+fp+tn+fn. Basically, this 

measure represents the fraction of objects that the model labels correctly

however, the data may be highly skewed, e.g., there might be nine times as many negative 

In a case like this, accuracy is a poor evaluation measure because a model 

that labels everything negative will still have accuracy = 0.9. In these situations, it is common 

instead to use precision, P = tp/ tp+fp , the fraction of predictions that are correct, and recall, R = 

tp+fn, the fraction of actual positives that are correctly predicted. Because of the inherent 

off between precision P and recall R, a summary statistic called the F

ed when both are considered equally important. A final evaluation measure

is the area under the Receiver Operating Characteristic (ROC) curve. An ROC curve measures 

the rate of true positives vs. false positives as a threshold is varied across a measure of

confidence in its predictions (e.g., the model’s posterior probability of the target label). It is 

regarded as a more appropriate measure than accuracy for some machine learning applications 

. The area under the curve AUROC, also called the Wilcoxon signed

test, can be interpreted as the probability that the model will rank a randomly chosen positive 

han a randomly chosen negative. 
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The various overlaps define regions of tp (true positives), fp (false positives), tn (true negatives) 

and fn (false negatives). 

Since it is trivial for a model to do well on the labeled data L that was used to train it, the 

practice of randomly partitioning data into a training set and an evaluation set is used, which do 

not overlap. In this way, the model is properly evaluated on new instances it has never seen 

before. To account for the effects of randomized partitioning, it is common to repeat an 

experiment for several runs and average the results. One particular way of doing this is cross-

validation. In five-fold cross-validation, for example, the data is split into five partitions or folds. 

Then the five experiments are run for which each fold is held aside for evaluation, and the 

remaining four folds are used for training; then results are averaged across all folds. 
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Machine learning is a vast field and has a broad range of applications including natural language 

processing, medical diagnosis, search engines, speech recognition, game playing and a lot more. 

A number of machine learning algorithms have been developed for different applications. 

However no single machine learning algorithm can be used appropriately for all learning 

problems. It is not possible to create a general learner for all problems because there are varied 

types of real world datasets that cannot be handled by a single learner.  In this chapter we present 

an evaluation of various state-of-the-art machine learning algorithms using WEKA (Waikato 

Environment for Knowledge Analysis) for a real world learning problem- credit approval used in 

banks. Section 5.1 provides description about the components and working of WEKA. Section 

5.2 describes the learning problem and the dataset that we have used in our experiments. In 

Section 5.3 we have explained the machine learning methods that we have evaluated. Section 5.4 

provides description about our experimental setup and procedure and finally Section 5.5 shows 

the conclusion and the result. The work described in this chapter has been previously published 

[Khan and Quadri, 2012b]. 

 

5.1. Introduction  

WEKA (http://www.cs.waikato.ac.nz/ml/weka/) is an open source software which consists of a 

collection of state-of-the-art machine learning algorithms and data preprocessing tools. It has 

been developed at the University of Waikato in New Zealand. It is designed in such a way that 

allows users to try all machine learning algorithms on new datasets easily. The WEKA system is 

written in Java. It can be used for a variety of tasks. It provides an implementation of state-of-

the-art machine learning algorithms that we can apply to our datasets for extracting information 

about the data or we can apply several algorithms to our dataset for comparing their performance 

and choosing one for prediction. It also provides a number of tools for data preprocessing i.e. 

transforming datasets and analyzing the resulting classifier. Such tools are called filters. Thus the 

main focus of WEKA is on the learning methods and the filters. There are two ways in which we 

can invoke these methods: either by using command line options or by using the interactive 

graphical user interface. In our experiments we have used graphical user interface of WEKA 

because it is much more convenient. We have used WEKA 3.7.7. 
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5.1.1. WEKA- Interfaces 

There are several ways by which we can access the functionality of WEKA. These are various 

interfaces and the simple CLI. Interfaces of WEKA include the Explorer, Experimenter and the 

Knowledge Flow. 

5.1.1.1. Explorer 

It is the most important graphical user interface in WEKA. Figure 5.1 shows the explorer 

interface. It consists of various tabs that are used for different tasks. First tab is the “Preprocess” 

tab. It is used for loading the datasets and transforming the datasets using filters. As shown in the 

figure datasets can be loaded as a file, from a URL or from databases using queries. WEKA 

allows files with specific formats e.g. ARFF, CSV, LibSVM’s format, and C4.5’s format. 

 

Figure 5.1:  WEKA Explorer Interface showing Preprocess Tab 
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After data is loaded it can be transformed by using various data preprocessing tools i.e. filters. 

Various discretization methods can be used for transforming these datasets or for dividing a 

dataset into training and testing sets using the appropriate filters. 

Next is the “Classify” tab as shown in Figure 5.2. Through this tab we can use various 

classification and regression algorithms and applied to our preprocessed datasets. Classification 

algorithms typically produce decision trees or rules, while regression algorithms produce 

regression curves or regression trees. For a learning algorithm, the classify panel by default 

performs cross validation on the dataset that has been prepared in the Preprocess panel to 

estimate predictive performance. Other than cross-validation, test set can also be used. In that 

case we need to provide a test dataset separately. This panel also enables users to evaluate the 

resulting models, both numerically through statistical estimation and graphically through 

visualization of the data and examination of the model. This panel also allows us to visualize 

classifier errors, margin curve, threshold curve and so on. Moreover, it can visualize prediction 

errors in scatter plots, and also allows evaluation via ROC curves and other “threshold curves”. 

Models can also be saved and loaded in this panel. 

 

Figure 5.2:  WEKA Explorer Interface showing Classify Tab 
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Apart from supervised classification algorithms, WEKA also provides unsupervised algorithms 

such as clustering and association algorithms. The third tab “Cluster” provides access to the 

clustering algorithms and the fourth tab “Associate” enables users to access algorithms for 

learning association rules. In the “Cluster” tab we can run a clustering algorithm on the data that 

has been loaded in the “Preprocess” panel. 

The last two tabs are “Select attributes” and “Visualize”.  “Select attributes” tab is used for 

identifying the most predictive attributes in the data. This tab has a lot of algorithms and 

evaluation criteria used for identifying the most important attributes in a dataset. It allows the 

users to access various methods for measuring the utility of attributes, and for finding attribute 

subsets that are predictive of the data. Robustness of the selected attribute set can be validated 

via a cross-validation-based approach. 

Visualize tab is used for analyzing data visually. This presents a color-coded scatter plot matrix, 

and users can then select and enlarge individual plots. It is also possible to zoom in on portions 

of the data, to retrieve the exact record underlying a particular data point, and so on. 

5.1.1.2. Experimenter 

As shown in Figure 5.3, “Experimenter” is another interface of WEKA. As stated earlier, it is not 

possible to have a single machine learning method that works for all learning problems 

efficiently. Also there is no way to determine which learning method will work efficiently for a 

given problem at the beginning. For this purpose it is better to compare the performance of 

machine learning methods on various criteria. This interface is used for this purpose. Although it 

can also be done interactively in the “Explorer” interface, however “Experimenter” interface 

automates this process. This makes it easy to run the classification and regression algorithms 

with different parameter settings on a corpus of datasets, collect performance statistics, and 

perform significance tests on the results. Experiments can involve multiple algorithms that are 

run across multiple datasets; for example, using repeated cross-validation. Experiments can be 

saved in either XML or binary form. Saved experiments can also be run from the command-line. 

The Experimenter interface is not used much often by data mining practitioners as other 

WEKA’s interfaces. This interface makes identification of a suitable algorithm for a particular 
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dataset or collection of datasets easier once the initial experiments have been performed in the 

Explorer. 

 

Figure 5.3: WEKA Experimenter Interface 

5.1.1.3. Knowledge Flow 

When we load a dataset in the “Explorer” interface, the entire dataset is loaded into the main 

memory for processing. It means that problems involving large datasets are not suitable for this 

method. In other words, “Explorer” interface does not allow for incremental learning and is only 

used for small to medium sized problems. However, some incremental algorithms are 

implemented that can be used to process very large datasets. One way to apply these is through 

the command-line interface, which gives access to all features of the system. An alternative, 

more convenient, approach is to use the second major graphical user interface, called 

“Knowledge Flow” which enables users to specify a data stream by graphically connecting 

components representing data sources, preprocessing tools, learning algorithms, evaluation 
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methods, and visualization tools. Its data flow model enables incremental updates with 

processing nodes that can load and preprocess individual instances before feeding them into 

appropriate incremental learning algorithms. It also provides nodes for visualization and 

evaluation. 

5.1.2. Datasets 

As stated in Section 1 of Chapter 1, the datasets used by machine learning algorithms consists of 

a number of instances that are represented using the same set of features. In supervised learning 

the instances are given with known labels (the corresponding correct outputs) in contrast to 

unsupervised learning, where instances are unlabeled. Table 5.1[Kotsiantis, 2007] shows 

instances with known labels. 

Table 5.1: Example of a Dataset 

Case Feature 1 Feature 2 …. Feature n Class 

1 xxx x  xx Good 

2 xxx x  xx Good 

3 xxx x  xx Bad 

…     … 

 

WEKA applies its learning methods to a dataset and analyzes its output to extract information 

about the data. WEKA accepts the data in specific formats e.g. ARFF, CSV, LibSVM’s format, 

and C4.5’s format as stated earlier. 

5.1.2.1. Preparing Datasets 

The data that are has been collected for being used in the experiments can be stored anywhere 

e.g. in databases or spreadsheets. As we know WEKA supports some particular formats of data 

therefore we first need to convert the data into a suitable format before loading it in WEKA. The 

format we used for our experiments is ARFF format. The process of converting data into ARFF 

format is explained below. 

Suppose we have our data in a spreadsheet program say MS Excel as shown in Figure 5.4. In 

order to convert it to ARFF format we first save it as a comma-separated file i.e. in CSV format. 

Then we load this CSV file in a text processor say MS Word as shown in Figure 5.5.  
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Figure 5.4: Data in Excel spreadsheet 

 

 

Figure 5.5: Data after loading in MS Word 
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In this file the rows of the original spreadsheet have been converted into lines of text, and the 

elements are separated from each other by commas. After that we have to convert the first line in 

which there are names of attributes into the header structure that makes up the beginning of an 

ARFF file. This is done by specifying the name of the dataset using @relation tag, the names, 

types, and values of each attribute are defined by @attribute tags, and @data tag is added before 

the data section of the file. This is shown in Figure 5.6. 

 

Figure 5.6: Data after adding tags 

After this we have to save this file with “Text Only with Line Breaks” as the file type. In this 

way, our data in spreadsheet gets converted into a format compatible with WEKA. 

5.1.2.2. Training sets and Tests sets 

In order to test the efficiency of our learning models we use training and test sets. We split our 

data into these two sets. The data used to construct or discover a predictive relationship are 

called the training data set. A test set is a set of data that is independent of the training data, but 

that follows the same probability distribution as the training data. The training set or the seen 
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data is used to build the model i.e. determine its parameters and the test set or the unseen data is 

used to measure its performance (holding the parameters constant). In supervised learning, the 

training set or the “gold standard” consists of both the input data as well as the correct/expected 

output i.e. the class values, and the test set is the data that we are going to apply to our method to 

test its efficiency. This set doesn’t have the output class values. 

Sometimes another set called the validation set is also used in addition to training and test sets to 

tune the model. It is used to estimate how good your model has been trained. It cannot be used 

for testing. 

5.1.2.3. Using the training and test sets in WEKA 

WEKA allows us to use the dataset in a number of ways in our experiments. We can perform 

cross-validation, percentage split or we can use the supplied test set option. For using the 

“supplied test set” option we need to split our dataset into appropriate quantities of training and 

test sets. We first show how cross-validation works and then the process of splitting the dataset. 

 

Cross-Validation  

In cross-validation, mutually exclusive and same-sized subsets are created by dividing the 

training set. For each subset the classifier is trained on the union of all the other subsets. Using 

this technique the error rate of the classifier is calculated by the average of the error rate of each 

subset. WEKA allows us to specify how many folds we want to specify and usually we use 10 

folds. In k-fold cross-validation, the data is randomly divided into k folds (subsets) of equal size. 

Then train the model on k−1 folds, use one fold for testing. This process is repeated k times so 

that all folds are used for testing. Finally, average performance is computed on the k test sets. 

This process helps in effectively using all the data for both training and testing [Keller, 2002]. 

Splitting the datasets 

As stated earlier, for using supplied test set in WEKA we need to split our dataset into training 

and test sets. In the “Explorer” interface, we first load our dataset in the “Preprocess” panel. This 

is done either by loading an ARFF file or CSV file. We can also load our dataset directly from a 

URL or database. In our example, we have loaded the dataset using a URL as shown in Figure 

5.7. 
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Figure 5.7: Loading Dataset from URL 

 

Figure 5.8: Using the Randomize filter 
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Next we have to split our dataset into two sets, 30% testing and 70% training. To do this we first 

randomize the dataset by choosing Randomize filter as shown in Figure 5.8. This creates a 

random permutation. Next we apply RemovePercentage filter on our dataset keeping percentage 

as 30 and we save the dataset as a training set. This is shown in Figure 5.9. 

 

Figure 5.9: Using RemovePercentage filter. 

Next we undo the change and again apply the same filter but changing the invertSelection option 

to “True” as shown in Figure 5.10. This picks the rest of the dataset i.e. 30% and is saved as a 

testing set.  

This way our dataset gets divided into 30% testing and 70% training set. Next to use our sets in 

the experiments we choose the training set and move to the “Classify” panel and choose the 

procedure that we have to use and start the experiment. After that we apply the same procedure 

on our testing set to check what it predicts on the unseen data. For that, we select "supplied test 

set" and choose the testing dataset that we created. We run the algorithm again and we notice the 

differences in the confusion matrix and the accuracy. 
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Figure 5.10: Using RemovePercentage filter with invertSelection 

5.2. Learning problem and the Dataset used in our experiments 

In our experiments we used credit approval problem used in banks for evaluating the efficiency 

of the state-of-the-art machine learning algorithms.  

5.2.1. Understanding the problem 

A financial institution, e.g. a bank, gives its customers an amount of money and expects them to 

pay it back in installments along with interest. This amount of money is called credit. However, 

before approving any credit application, it is necessary for the bank to make sure that the 

customer will pay the whole amount back. The bank should be able to predict in advance the risk 

associated with a loan. It is done for making sure that the bank will make a profit and that the 

customers get a loan within his or her financial capacity. This calls for a need to find out efficient 
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methods for automatic credit approval that can help the authorities in assessing credit 

applications effectively. 

5.2.1.1. Risk involved in credit approval 

Here the risk involved refers to the risk of loss to the financial institution if they lend the money 

to the customers who fail to pay the amount back [K.H. Ng, 1996]. The reason for this default 

can be anything like inability, unwillingness, etc. The bank should be able to predict in advance 

the risk associated with a loan. It is necessary for the lenders to calculate the probability of risk 

involved so that they can make correct decisions regarding the approval of the credit. 

5.2.1.2. Credit evaluation method 

Credit evaluation or credit scoring [Hand, 1998] is an evaluation system that is used for 

improving or increasing the abilities of the credit lenders in deciding the probability of the credit 

risk of a customer. In this method, risk is calculated by the bank on the basis of the amount of 

credit and the information about the customer. The information about the customer includes data 

that the bank has access to and is relevant in calculating financial capacity of the customer. This 

data consists of income, savings, collaterals, profession, age, past financial history, and so forth. 

The bank has a record of past loans containing such customer data and whether the loan was paid 

back or not. From this data of particular applications, the aim is to infer a general rule coding the 

association between a customer’s attributes and his risk. That is, the machine learning system fits 

a model to the past data to be able to calculate the risk for a new application and then decides to 

accept or refuse it accordingly. 

This process can be carried out in two ways. The first is called deductive credit scoring in which 

points are assigned to relevant customer attributes. These points are then used to form a credit 

score. The experience of the credit professionals is used to select the relevant attributes, 

determine the points and calculate the credit scores. Another type of credit scoring is empirical 

credit scoring in which the past data about the customers is analyzed and used to construct the 

scoring models. This is done by using appropriate algorithms for identifying characteristics 

relating to the credit risk of customers. These scoring models are then used to calculate the credit 

risk of new customers [Liu, 2001]. 

Bank professionals then use these credit scores to indicate the level of the credit risk and then 

decide accordingly whether to approve the credit to the customers or not and at what interest rate 
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the credit should be approved. For the low risk customers, the chances of getting the credit at 

lower interest rates and on longer repayment terms are higher. However, if the risk of the 

customers is high but lower than the cut-off credit risk, the customer is not disqualified from 

getting the credit but in this case the bank professionals review the customer application more 

carefully before deciding whether to approve or deny the credit request. If the credit in approved 

in case of such customers, it is given on higher interest rates and shorter repayment terms as 

compared to the low-risk customers. 

5.2.1.3. Automating the process 

The above stated processes i.e. credit scoring and approval can be carried out more efficiently if 

they are done automatically using computers. Automatic scoring and approval helps in gathering 

the necessary information quickly and speeds up the process of evaluation and determining 

whether to approve or deny credit applications. Automating this process does not mean that it 

can take place of the credit professional but it can help in making rapid decisions. The credit 

applications that are identified as good credit risk and those as bad credit risk may be 

automatically approved, or denied, while those of intermediate risk may still be passed to credit 

analysts for more detailed review before deciding whether to approve or deny credit. This can 

reduce the number of credit applications that need more detailed review and reduce the wastage 

of time, thus allowing credit analysts to concentrate only on those credit applications that are 

difficult or important. 

5.2.2.Description of the Dataset used 

The dataset (http://www.hakank.org/weka/credit.arff) that we used for our experiments for 

evaluating the learning algorithms was provided originally by Quinlan in his studies of ID3 and 

C4.5 system in 1987 and 1992, to induce decision trees for assessing credit card applications. It 

is the Australian Credit Approval dataset from UCI Repository of Machine Learning Databases 

and Domain theories (http://archive.ics.uci.edu/ml/datasets.html). The dataset consists of 15 

attributes and a class label attribute. Before being made available to use, all the names and values 

of the attributes were changed to meaningless symbols to protect the confidentiality of the data. 

The values that the “class” attribute can take are + (positive) and – (negative). The attributes of 

the dataset are continuous, nominal with small numbers of values and nominal with larger 

numbers of values. The dataset consists of 490 instances with 44.5% being positive (credit 

approved), 55.5% being negative (credit denied) and 5% having missing values. Table 5.2 shows 
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the attribute names and attribute types of the dataset and Table 5.3 shows distributions of “+” 

and “-” values. 

Table 5.2: Australian Credit Approval Dataset 

Attribute Type 

A1 nominal 

A2 continuous 

A3 continuous 

A4 nominal 

A5 nominal 

A6 nominal 

A7 nominal 

A8 continuous 

A9 nominal 

A10 nominal 

A11 continuous 

A12 nominal 

A13 nominal 

A14 continuous 

A15 continuous 

Class nominal 

 

Table 5.3: Class Distribution 

 

 

 

 

The “class” attribute can take two values i.e. “+” and “-” as stated earlier. The two values 

represent the low-risk and high-risk customers here. For low-risk customers, “class” attribute 

takes “+” value meaning credit can be approved for such customers and vice-versa for high-risk 

customers. This makes our learning problem a classification problem.  

Class No. of instances 

+ 218 

- 272 
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WEKA provides a number of classification algorithms that are accessible from the “Classify” tab 

as stated earlier. Hence our experiments use this dataset for evaluation of various classification 

learning algorithms. For our experiments we divided our dataset into training and test sets by the 

same procedure as described in Section 5.1. 

 

5.3. Learning Methods Chosen For Evaluation 

As discussed above, the learning problem that we have used in our experiments is a classification 

problem. Therefore, we have used WEKA’s classification algorithms for evaluation of the 

chosen dataset. In our experiments, we have chosen 10 learning algorithms from 6 different 

types. These are given below: 

� Rule based 

• Zero R 

• One R 

� Bayes Rule 

• NaiveBayes 

• NaiveBayesUpdateable 

� Functions 

• Multilayer Perceptron 

� Lazy Learners 

• KStar (K*) 

� Tree Based 

• J48 

• RandomForest 

� Meta-Algorithm 

• AdaBoostM1 

• Bagging 

The sections that follow first explain each of these learners and then show their performance 

evaluation. 
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5.3.1. ZeroR and OneR 

Both of these algorithms are rule-based algorithms. A rule-based algorithm uses rules to make 

deductions or choices. The classification method uses an algorithm to generate rules from the 

sample data. These rules are then applied to new data. OneR (One Rule) is a simple classification 

algorithm that generates a one-level decision tree. OneR classifier infers simple and accurate, 

classification rules from a set of instances. Performance studies of OneR classifier have shown 

that it produces rules that are only slightly less accurate than state-of-the-art learning schemes. It 

produces rules that are easy to interpret. OneR is also capable of handling missing values and 

numeric attributes showing adaptability despite simplicity. The OneR algorithm creates one rule 

for each attribute in the training data. It then selects the rule with the smallest error rate as its 

‘one rule’. It determines the most frequent class for each attribute value for creating a rule for an 

attribute. The most frequent class is simply the class that appears most often for that attribute 

value. A rule is simply a set of attribute values bound to their majority class; one such binding 

for each attribute value of the attribute the rule is based on. The error rate of a rule is the number 

of training data instances in which the class of an attribute value does not agree with the binding 

for that attribute value in the rule. OneR selects the rule with the lowest error rate. In the event 

that two or more rules have the same error rate, the rule is chosen at random. In the 

implementation of WEKA, the OneR algorithm picks the rule with the highest number of correct 

instances, not lowest error rate, and does not randomly select a rule when error rates are 

identical. Zero Regression (ZeroR) is a pseudo-regression method that always builds models 

with cross-validation coefficient Q2=0. In the framework of this method the value of a 

property/activity is always predicted to be equal to its average value on the training set. This 

method is usually used as a reference point for comparing with other regression methods. ZeroR 

is the simplest classification method which relies on the target and ignores all predictors. ZeroR 

classifier simply predicts the majority category (class). Although there is no predictability power 

in ZeroR, it is useful for determining a baseline performance as a benchmark for other 

classification methods. The idea behind the ZeroR classifier is to identify the most common class 

value in the training set. It always returns that value when evaluating an instance. It is frequently 

used as a baseline for evaluating other machine learning algorithms. 
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5.3.2. NaiveBayes and NaiveBayesUpdateable 

The Naive Bayes [Murphy, 2006] algorithm is based on conditional probabilities. It uses Bayes' 

Theorem. It is a formula that calculates a probability by counting the frequency of values and 

combinations of values in the historical data. Bayes' Theorem finds the probability of an event 

occurring given the probability of another event that has already occurred. If B represents the 

dependent event and A represents the prior event, Bayes' theorem can be stated as follows. 

Prob(B given A) = Prob(A and B)/Prob(A) 

To calculate the probability of B given A, the algorithm counts the number of cases where A and 

B occur together and divides it by the number of cases where A occurs alone. A naive Bayes 

classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong 

(naive) independence assumptions. In simple terms, a naive Bayes classifier assumes that the 

presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of 

any other feature, given the class variable. An advantage of the naive Bayes classifier is that it 

only requires a small amount of training data to estimate the parameters (means and variances of 

the variables) necessary for classification. 

NaiveBayesUpdateable is a class for a Naive Bayes classifier using estimator classes. This is the 

updateable version of NaiveBayes. This classifier will use a default precision of 0.1 for numeric 

attributes when buildClassifier is called with zero training instances. 

5.3.3. MultiLayer Perceptron 

It is a classifier that uses back propagation to classify instances. This network can be built by 

hand, created by an algorithm or both. The network can also be monitored and modified during 

training time. The nodes in this network are all sigmoid (except for when the class is numeric in 

which case the output nodes become unthresholded linear units).A multilayer perceptron (MLP) 

is a feedforward artificial neural network model that maps sets of input data onto a set of 

appropriate output. An MLP consists of multiple layers of nodes in a directed graph, with each 

layer fully connected to the next one. Except for the input nodes, each node is a neuron (or 

processing element) with a nonlinear activation function. MLP utilizes a supervised learning 

technique called back propagation for training the network.MLP is a modification of the standard 
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linear perceptron and can distinguish data that is not linearly separable. It is an artificial neural 

network generally used for classification or approximation. The MLP consists of a feed-forward 

network of neurons which map input vectors to output vectors. Each artificial neuron consists of 

a linear combination of weighted inputs which is passed though a non-linear activation function 

to produce the neuron’s output. It is an extension of the perceptron in that it has at least one 

hidden layer of neurons. Layers are updated by starting at the inputs and ending with the outputs. 

Each neuron computes a weighted sum of the incoming signals, to yield a net input, and passes 

this value through its sigmoidal activation function to yield the neuron's activation value. Unlike 

the perceptron, an MLP can solve linearly inseparable problems [Steinwender and Bitzer, 2003]. 

5.3.4. J48 and Random Forest 

Both these algorithms are decision tree based algorithms. A decision tree is a predictive 

machine-learning model that decides the target value (dependent variable) of a new sample based 

on various attribute values of the available data. The internal nodes of a decision tree denote the 

different attributes, the branches between the nodes tell us the possible values that these 

attributes can have in the observed samples, while the terminal nodes tell us the final value 

(classification) of the dependent variable. 

The attribute that is to be predicted is known as the dependent variable, since its value depends 

upon, or is decided by, the values of all the other attributes. The other attributes, which help in 

predicting the value of the dependent variable, are known as the independent variables in the 

dataset. J4.8 algorithm is WEKA’s implementation of C4.5 decision tree learner.C4.5 is an 

algorithm used to generate a decision tree developed by Ross Quinlan [Quinlan, 1993]. C4.5 is 

an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be 

used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. The 

J48 Decision tree classifier follows the following simple algorithm. In order to classify a new 

item, it first needs to create a decision tree based on the attribute values of the available training 

data. So, whenever it encounters a set of items (training set) it identifies the attribute that 

discriminates the various instances most clearly. This feature that is able to tell us most about the 

data instances so that we can classify them the best is said to have the highest information gain. 

Now, among the possible values of this feature, if there is any value for which there is no 

ambiguity, that is, for which the data instances falling within its category have the same value for 



5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY 

81 

 

the target variable, then we terminate that branch and assign to it the target value that we have 

obtained. For the other cases, we then look for another attribute that gives us the highest 

information gain. Hence we continue in this manner until we either get a clear decision of what 

combination of attributes gives us a particular target value, or we run out of attributes. In the 

event that we run out of attributes, or if we cannot get an unambiguous result from the available 

information, we assign this branch a target value that the majority of the items under this branch 

possess. 

Random forest is a powerful new approach to data exploration, data analysis, and predictive 

modeling. RandomForest implements Breiman’s random forest algorithm (based on Breiman and 

Cutler’s original Fortran code) for classification and regression. It can also be used in 

unsupervised mode for assessing proximities among data points. Random forest (or random 

forests) is an ensemble classifier that consists of many decision trees and outputs the class that is 

the mode of the classes output by individual trees. The algorithm for inducing a random forest 

was developed by Leo Breiman [Breiman, 2001] and Adele Cutler, and "Random Forests" is 

their trademark. The term came “from random decision forests” that was first proposed by Tin 

Kam Ho of Bell Labs in 1995. A random forest is a collection of CART-like trees following 

specific rules for tree growing, tree combination, self-testing, and post-processing [Steinberg et 

al., 2004]. It is unexcelled in accuracy among current algorithms. It runs efficiently on large data 

bases. It can handle thousands of input variables without variable deletion. It gives estimates of 

what variables are important in the classification. It generates an internal unbiased estimate of 

the generalization error as the forest building progresses. It has an effective method for 

estimating missing data and maintains accuracy when a large proportion of the data are missing. 

It has methods for balancing error in class population unbalanced data sets. Generated forests can 

be saved for future use on other data. Prototypes are computed that give information about the 

relation between the variables and the classification. It computes proximities between pairs of 

cases that can be used in clustering, locating outliers or (by scaling) give interesting views of the 

data. The capabilities of the above can be extended to unlabeled data, leading to unsupervised 

clustering, data views and outlier detection. It offers an experimental method for detecting 

variable interactions. 
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5.3.5. KStar (K*) 

K* is one of the lazy learning methods. Lazy learning methods or memory-based methods learn 

the structure of a domain by storing learning examples with their classification [Van den Bosch 

et al. 1996].The domain model that results from a lazy learning process is able to generalize by 

using a predefined distance function. When the domain model is required to give the 

classification for an unseen domain element then it will use the distance function for finding the 

stored example that is closest to this unseen example. K* is an instance-based learner. Instance-

based learners classify an instance by comparing it to a database of pre-classified examples. The 

fundamental assumption is that similar instances will have similar classifications. The question 

lies in how to define “similar instance” and “similar classification”. The corresponding 

components of an instance-based learner are the distance function which determines how similar 

two instances are, and the classification function which specifies how instance similarities yield a 

final classification for the new instance. In addition to these two components, IBL algorithms 

have a concept description updater which determines whether new instances should be added to 

the instance database and which instances from the database should be used in classification. For 

simple IBL algorithms, after an instance has been classified it is always moved to the instance 

database along with the correct classification. More complex algorithms may filter which 

instances are added to the instance database to reduce storage requirements and improve 

tolerance to noisy data [Cleary and Trigg, 1995].K* is an instance-based classifier, that is the 

class of a test instance is based upon the class of those training instances similar to it, as 

determined by some similarity function. It differs from other instance-based learners in that it 

uses an entropy-based distance function. The use of entropy as a distance measure has several 

benefits. Amongst other things it provides a consistent approach to handling of symbolic 

attributes, real valued attributes and missing values. 

5.3.6. AdaBoostM1 and Bagging 

Bootstrap aggregating (bagging) and boosting are useful techniques to improve the predictive 

performance of tree models. Boosting may also be useful in connection with many other models, 

e.g. for additive models with high-dimensional predictors; whereas bagging is most prominent 

for improving tree algorithms. Boosting is a general method for improving the performance of 

any learning algorithm. In theory, boosting can be used to significantly reduce the error of any 
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“weak” learning algorithm that consistently generates classifiers which need only be a little bit 

better than random guessing. Despite the potential benefits of boosting promised by the 

theoretical results, the true practical value of boosting can only be assessed by testing the method 

on “real” learning problems. AdaBoost [Freund and Schapire, 1996] is a boosting algorithm 

developed by Freund and Schapire that can be used to significantly reduce the error of any 

learning algorithm that consistently generates classifiers whose performance is a little better than 

random guessing.. AdaBoostM1 is a version of AdaBoost algorithm. Bagging is based on an idea 

of making various samples of the training set. A classifier is generated for each of these training 

set samples by a selected machine learning algorithm. In this way, for k variations of the training 

set we get k particular classifiers. The result will be given as a combination of individual 

particular classifiers. 

5.4. Experimental Setup 

In this section we show the performance evaluation of all the learning algorithms discussed 

above. We show their evaluation on the dataset chosen i.e. Credit Dataset. As already stated, we 

carried our experiments using WEKA. It provides a number of measures of evaluation that can 

be used to check the performance of the algorithms. When an experiment is run, results are 

displayed on “Classifier Output” area. This area has several sections showing different results. 

First is run information. It is a list of information giving the learning scheme options, relation 

name, instances, attributes and test mode that were involved in the process. After that classifier 

model (full training set) is displayed. It is a textual representation of the classification model that 

was produced on the full training data. Then a summary is shown that shows a list of statistics 

summarizing how accurately the classifier was able to predict the true class of the instances 

under the chosen test mode. A detailed accuracy by class, which is a more detailed per-class 

break down of the classifier’s prediction accuracy, is shown. Lastly, confusion matrix shows how 

many instances have been assigned to each class. Elements show the number of test examples 

whose actual classis the row and whose predicted class is the column. The evaluation measures 

that we used to compare the learners are number of correctly classified instances, time taken to 

build the model, F-Measure. For a particular label of interest, we are provided with a set of actual 

positives (e.g., objects that belong to that label) contained within the data set. The model then 

makes a set of predicted positives (e.g., the objects it assigns to that label) for the same data set. 
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The actual and predicted label groupings can be thought of as indicator variables, and their cross 

product results in four important values: tp (the number of true positives), fp (false positives), tn 

(true negatives), and fn (false negatives).A basic evaluation measure is accuracy = tp+tn / 

tp+fp+tn+fn. Basically, this measure represents the fraction of objects that the model labels 

correctly. In some problems, however, the data may be highly skewed, e.g., there might be nine 

times as many negative objects as positives. In a case like this, accuracy is a poor evaluation 

measure because a model that labels everything negative will still have accuracy = 0.9. In these 

situations, it is common instead to use precision, P = tp/  tp+fp , the fraction of predictions that 

are correct, and recall, R = tp /  tp+fn, the fraction of actual positives that are correctly predicted. 

Because of the inherent trade-off between precision P and recall R, a summary statistic called the 

F-Measure = 2 * P * R / P+R is commonly used when both are considered equally important. 

Before using our dataset in the experiments, we used the method discussed in Section 5.1 for 

splitting it into 70% training set and 30% test set. First we loaded the actual dataset into the 

WEKA from URL (http://www.hakank.org/weka/credit.arff). Then after applying the splitting 

procedure, we saved both these sets as separate files, trainingcredit.arff and testingcredit.arff. 

For all experiments we used these two files. Figure 5.11 shows the actual dataset, Figure 5.12 

shows trainingcredit.arff file and Figure 5.13 shows testingcredit.arff file. 

 

Figure 5.11: Credit Dataset 
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Figure 5.12: trainingcredit.arff file loaded in WEK A 

 

Figure 5.13: testingcredit.arff file loaded in WEKA 
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5.4.1. Experimental Procedure 

� In our experiments, for each learner, we first load trainingcredit.arff file into WEKA 

through “Preprocess” panel.  

 

� Then in the “Classify” panel we choose the classification algorithm to be implemented 

and start the analysis using 10-fold cross validation. 

 
 

� After that we load the file testingcredit.arff using the “Supplied test set option” and then 

start the analysis again. 

 

� Finally, we analyze the results on the basis of the evaluation measures discussed above. 

 
 

� The same process is repeated for all the classification algorithms that are to be evaluated. 

 

5.4.2. Experimental Results 

 

Figure 5.14: Results of J48 on trainingcredit.arff 
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Figure 5.15: Results of J48 on testingcredit.arff 

 

 

 

 

Results of J48: 

 

Correctly Classified Instances (%)    = 85.7143 

Incorrectly Classified Instances (%) = 14.2857 

Kappa Statistic                                     = 0.71 

Mean Absolute Error                          = 0.1817 

F-Measure                                            = 0.837 

Time taken to build the Model           = 0.01 seconds 
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Figure 5.16: Results of RandomForest on testingcredit.arff 

 

 

 

Results of RandomForest: 

 

Correctly Classified Instances (%)    = 84.3537 

Incorrectly Classified Instances (%) = 15.6463 

Kappa Statistic                                     = 0.6835 

Mean Absolute Error                          = 0.2445 

              F-Measure                                           = 0.824 

            Time Taken to build the Model          = 0.05 seconds 

 



5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY 

89 

 

 

Figure 5.17: Results of ZeroR on testingcredit.arff 

 

 

 

Results of ZeroR: 

 

Correctly Classified Instances (%)    = 56.4626 

Incorrectly Classified Instances (%) = 43.5374 

Kappa Statistic                                     = 0 

Mean Absolute Error                          = 0.4931 

F-Measure                                          = 0 

            Time Taken to build the Model          = 0 seconds 
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Figure 5.18: Results of OneR on testingcredit.arff 

 

 

 

Results of OneR: 

 

Correctly Classified Instances (%)    = 85.034 

Incorrectly Classified Instances (%) = 14.966 

Kappa Statistic                                     = 0.703 

Mean Absolute Error                          = 0.1497 

 F-Measure                                           = 0.845 

            Time Taken to build the Model          = 0 seconds 
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Figure 5.19: Results of NaiveBayes on testingcredit.arff 

 

 

 

Results of NaiveBayes: 

 

Correctly Classified Instances (%)    = 79.5918 

Incorrectly Classified Instances (%) = 20.4082 

Kappa Statistic                                     = 0.5727 

Mean Absolute Error                          = 0.21 

 F-Measure                                           = 0.732 

Time Taken to build the Model          = 0.01 seconds 
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Figure 5.20: Results of NaiveBayesUpdateable on testingcredit.arff 

 

 

  Results of NaiveBayesUpdateable: 

 

Correctly Classified Instances (%)    = 79.5918 

Incorrectly Classified Instances (%) = 20.4082 

Kappa Statistic                                     = 0.5727 

Mean Absolute Error                          = 0.21 

 F-Measure                                           = 0.732 

           Time Taken to build the Model          = 0.01 seconds 
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Figure 5.21: Results of AdaBoostM1 on testingcredit.arff 

 

 

 

Results of AdaBoostM1: 

 

Correctly Classified Instances (%)    = 84.3537 

Incorrectly Classified Instances (%) = 15.6463 

Kappa Statistic                                     = 0.689 

Mean Absolute Error                          = 0.211 

 F-Measure                                           = 0.837 

 Time Taken to build the Model         = 0.04 seconds 
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Figure 5.22: Results of Bagging on testingcredit.arff 

 

 

Results of Bagging: 

 

Correctly Classified Instances (%)    = 84.3537 

Incorrectly Classified Instances (%) = 15.6463 

Kappa Statistic                                     = 0.6879 

Mean Absolute Error                          = 0.2196 

 F-Measure                                           = 0.835 

 Time Taken to build the Model         = 0.05 seconds 
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Figure 5.23: Results of MultiLayerPerceptron on testingcredit.arff 

 

 

 

 

Results of MultiLayerPerceptron: 

 

Correctly Classified Instances (%)    = 86.3946 

Incorrectly Classified Instances (%) = 13.6054 

Kappa Statistic                                     = 0.7252 

Mean Absolute Error                          = 0.1508 

 F-Measure                                           = 0.848 

 Time Taken to build the Model         = 0.01 seconds 
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Figure 5.24: Results of KStar on testingcredit.arff 

 

 

 

 

Results of KStar: 

 

Correctly Classified Instances (%)    = 71.4286 

Incorrectly Classified Instances (%) = 28.5714 

Kappa Statistic                                     = 0.4017 

Mean Absolute Error                          = 0.2896 

 F-Measure                                           = 0.625 

 Time Taken to build the Model         = 0 seconds 
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5.5.  Conclusion 

In this section we show the results in the form of charts and tables. Figure 5.25 shows the 

comparison of all the algorithms with respect to the time taken to build the model. 

 

 

Figure 5.25: Time chart of algorithms 

 

Figure 5.26 shows the comparison based about the number of correctly classified instances by 

each learning algorithm. 

 

Figure 5.26: Comparison of Algorithms By Percentage Of Correct Instances 
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In Table 5.4 we have summarized three main measures of evaluation for each algorithm i.e. time 

taken to build the model, number of correctly classified instances, and F-Measure. 

 

Table 5.4: Comparison of algorithms 

Algorithms Time taken to 

build model (sec) 

Correctly Classified 

Instances    (%) 

F-Measure 

J48 0.01 85.7143 0.837 

RandomForest 0.05 84.3537 0.824 

ZeroR 0 56.4626 0 

OneR 0 85.034 0.845 

NaiveBayes 0.01 79.5918 0.732 

NaiveBayesUpdateable 0.01 79.5918 0.732 

KStar 0 71.4286 0.625 

MultiLayerPerceptron 0.01 86.3946 0.848 

AdaBoostM1 0.04 84.3537 0.837 

Bagging 0.05 84.3537 0.835 

 

 

It shows that RandomForest and Bagging take maximum amount of time to build the model 

i.e.0.05 seconds. Next highest is 0.04 taken by AdaBoostM1. NaiveBayes, 

NaiveBayesUpdateable and MultiLayerPerceptron take 0.01 seconds and the remaining take 0 

seconds to build the model. In terms of second measure of evaluation, MultiLayerPerceptron has 

the highest percentage of correctly labeled instances and has the best F-Measure among all. 

Hence, we conclude that MultiLayerPerceptron has performed better than all the other classifiers 

in the analysis of our dataset. 

 

 

 

 



 

 

 

 

 

 

 

Chapter 6 

Combined Machine Learning and Feature 
Design 
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In the previous chapter, we presented an evaluation of the state-of-the-art machine learning 

algorithms for the task of classification using a real world problem and dataset. We calculated 

our results on the basis of accuracy of the algorithms in performing classification i.e. predicting 

the correct output class. In this chapter, we present an approach that shows an increase in the 

accuracy for solving the classification problems. It is a hybrid approach that combines various 

learners. We first present a technique of combining learners and also show its implementation 

using Python programming. Later we discuss feature space design and show its implementation 

on the combined learner. Section 6.1 provides an introduction for the new concepts used in this 

chapter that have not been described earlier in this thesis. It provides an idea about the language 

(Python) we have used for implementing our design, the machine learning tool (Orange) we used 

for accessing the learning algorithms. Section 6.2 provides an idea about the concept of 

combining learners, various types of combination techniques and the earlier work done in this 

regard. In Section 6.3 we discuss the new combined approach, its procedure, experiment and the 

results. Section 6.4 presents the feature space design, feature selection techniques, steps of 

feature selection method used, experiment and results.  

6.1.  Introduction 

We first describe some important concepts about Python programming and Orange that we have 

used in implementing our learning method. In later sections we introduce our new concept and 

its implementation. 

 

6.1.1. Why Python 

These days Python has become a very popular programming/scripting language for the 

implementation of machine learning concepts. Python is an extensible language. New concepts 

and functionality is being added continuously in it. Apart from regular programming concepts, it 

also supports tools for internet e.g. cgi-scripting and xml support. It has a variety of 

programming tools that makes programming exciting and easier. 

Python is a very powerful programming language and is used in a wide variety of application 

domains. In the area of machine learning it has proved to be very helpful and effective. One of 

the main reasons of using this language is its intuitive object orientation as OOP paradigm is the 

most commonly followed paradigm these days. It has full modularity and supports hierarchical 
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packages. Since our machine learning problems revolve around different types of datasets, we 

need to be careful about the data types supported by the programming language we use. Python 

has a very high level dynamic data types. It has a number of extensive standard libraries and 

third party modules for virtually every task. It can be easily embedded within applications as a 

scripting interface. More importantly, Python supports portability. We can run the same source 

code without changing across all implementations. It runs everywhere. It is available for 

Windows, Linux/Unix, OS/2, Mac, Amiga, and others. 

 

6.1.2. Python Machine Learning tool 

Previously we used a machine learning tool WEKA for evaluation which is based on Java. Since 

we implemented our method in Python, we needed a similar learning tool for Python. There are a 

number of machine learning tools for Python e.g. PyML (http://pyml.sourceforge.net/), MDP 

(http://mdp-toolkit.sourceforge.net/), Shogun (http://www.shogun-toolbox.org/), and Orange 

(http://orange.biolab.si/). We used Orange because it supports more classifiers than others and 

has an interactive graphical user interface. It can also be used for clustering. 

Orange is a machine learning tool consisting of functions and objects of C++. This learning tool 

has a number of machine learning and data mining algorithms and functions for manipulating the 

data. It is written in C++ and is created for Python. At the user level it is developed using the 

scripting language Python, which makes it possible for the users to create their algorithms and 

add them to the existing library. It provides an environment that helps the users to prototype their 

algorithms faster. It also provides various testing schemes and a number of graphical tools that 

use functions from library and provide a good user interface. These tools or widgets 

communicate with each other using signals. These tools can be assembled together to form an 

application using a graphical environment called Orange Canvas. Widgets can be placed on the 

canvas and can be connected together to form a schema. Each widget has its own basic function 

and signals that are passed between these widgets are of different types. Its objects include 

learners, classifiers, evaluation results, distance matrices, and so forth [Zupan and Demsar, 

2008]. 

Without the use of such machine learning tools, we would have to write the entire code ourselves 

for all the machine learning tasks e.g. for carrying out cross validation for comparing the 
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machine learning algorithms, or for loading data and so on. Machine learning toolkits ease the 

programming by providing in built routines for these tasks thus providing flexibility in 

experimenting. All we need to do is access these routines from our code. 

This machine learning toolkit supports a number of data mining and machine learning tasks 

ranging from data preprocessing to modeling and evaluation. Some of the techniques supported 

by this machine learning toolkit are listed below: 

• It supports a number of popular data formats e.g. C4.5, Assistant, Retis, and tab-delimited 

data formats. 

• It supports preprocessing and manipulation of data, like sampling of data, scaling and 

filtering of data, discretization and construction of new attributes, etc. 

• It provides support for development of classification models using functions that consist 

of regression, SVM, classification trees, naive Bayesian classifier. 

• It also supports various regression methods i.e. linear regression, regression trees, and 

instance-based approaches,  

• It has support for various wrappers used to calibrate probability predictions of 

classification models.  

• It also supports ensemble approaches. 

• It has various association rules and methods used for data clustering. 

• It provides various evaluation methods like hold-out schemes and range of scoring 

methods for prediction models including classification accuracy, AUC, and Brier score. It 

also supports various hypothesis testing approaches. 

The processes on which machine learning algorithms are based are conditional probability 

estimation, selection and filtering of data, attribute scoring, random sampling, and many others. 

Orange consists of all these processes in the form of its components that are embedded into 

algorithms for applying these methods. We can also create new components with the help of 

Python prototyping and we can use these new components in place of default components or we 

can use them together with an existing set of components to develop a completely new 

algorithm. The thing that makes Orange completely different from other machine learning 
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frameworks is that it supports signal mechanism between different widgets with the help of 

which they can communicate with each other by exchanging objects. 

6.2. Combined Learners 

The main reason for combining many learners together is reducing the probability of 

misclassification due to a single learner by increasing the system’s area of knowledge through 

combination. It is a process of creating a single learning system from a collection of learning 

algorithms. Learners are combined to achieve a better predictive performance as compared to the 

performance obtained from individual learners. There are two ways in which learners can be 

combined together. In the first method, the data is divided into a number of subsets and multiple 

copies of a single learning algorithm are applied to these different subsets. This method 

generates multiple hypotheses using the same base learner and follows variations in data.  In the 

second method, several learning algorithms are applied to the same application’s data. It is a 

broader concept and such systems are called multiple classifier systems and follow variation 

among learners. As discussed earlier in this work, we cannot have a single learner that suits to 

all learning problems. For each problem there exists an optimal learning algorithm. By 

combining the learners we can lessen the risk of choosing a suboptimal learning algorithm by 

replacing single model selection with model combination. 

Our technique of learner combination follows the second method in which several different 

learners are combined and applied to a single application’s data. 

6.2.1. Types of Combination Techniques 

This section briefly explains different types of techniques for combining the learners and the 

related literature of these techniques is provided in the next section. Some of the common types 

of combination techniques are: 

•  Bayes optimal classifier: It is an ideal technique that combines all hypotheses in a 

hypothesis space. In this technique the hypotheses are given votes based on if a particular 

hypothesis is true and the training set is sampled from the system. After that the vote 

given to the hypothesis is multiplied by the initial probability of that hypothesis. The 

Bayes Optimal Classifier is represented by the following formula: 

    y = argmax cj ϵ C Σ P(cj | hi) P(T | hi) P(hi), hi ϵ H 
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where y denotes the predicted class, C represents the set of all possible classes, H is the 

hypothesis space, P refers to a probability, and T is the training data. 

However, practical implementation of this method is difficult for complex problems. It 

can be applied only to simple tasks. The reasons for this issue are: the large hypothesis 

spaces, which are difficult for iteration and determine only a predicted class rather than 

the probability for each class as required by the term P(cj | hi), and its seldom possible to 

estimate the initial probability for each hypothesis P(hi). 

 

•  Bootstrap aggregating (bagging) and Boosting: Both of these methods are based on the 

variations in data method in which the data is divided into a number of subsets and 

multiple copies of a single learning algorithm are applied to these different subsets. Both 

these methods combine multiple models built from a single learning algorithm by 

systematically varying the training data. 

Bootstrap aggregating or bagging is a voting method in which each learner in the 

combined learners votes with equal weight. In this method different training datasets are 

used to train the base-learners and the training sets are drawn randomly. High accuracy is 

obtained in the random forest algorithm because random decision trees are combined 

with bagging in a random forest algorithm [Breiman, 1996]. Voting corresponds to linear 

combination of learners [Alpaydin, 2010] i.e. 

           yi = Σ wjdji where wj >= 0, Σ wj = 1               (1) 

If A is a learning algorithm and T is a set of training data, the process of bagging takes N 

samples S1,…, SN, from T. The algorithm is then applied to each sample independently to 

make N models h1,…, hN. When a new query q has to be classified, these models are 

combined by a simple voting scheme, and the query is assigned a class that has been 

predicted most often among the N models. Figure 6.1  

(http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf) shows the process of 

bagging diagrammatically. For generating training datasets, bagging uses bootstrap and 

the learners are trained using an unstable learning procedure, and an average is taken 

during testing [Breiman 1996]. This method works effectively if the base learner is 

unstable i.e. if it is highly sensitive to data i.e. small changes in the training set cause a 

large difference in the generated learner. This method can be used both for classification 
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and regression. In case of regression, instead average, median is taken at the time of 

testing. 

 

 

Figure 6.1: Bagging 

 

Boosting [Schapire, 1990] is a process which trains the new instances and combines the 

learners incrementally in a way such that the focus is laid on the training instances that 

were previously wrongly classified. In this method the learner is trained on the mistakes 

of the previous learners. Bagging is based on data variation through a learner’s instability 

and boosting is based on data variation through a learner’s weakness. A learner is said to 

be weak if it derives models that perform slightly better than random guessing. In a weak 

learner, the error probability is ½. It means for a two-class problem it is better than 

random guessing and a strong learner has small error probability. The most common 

example of boosting is adaptive boosting, AdaBoost [Freund and Schapire, 1996]. The 

process of boosting works by supposing that if a weak learner is run on different 

distributions repeatedly over the training data, and if the weak classifiers are combined 

into a single classifier, then it can be made stronger, as illustrated in Figure 6.2 

(http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf). The main 

disadvantage of the boosting method is its need for large training data. AdaBoost does 
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not suffer this problem as it uses the same training set over and over and thus the training 

data need not be large, but the classifiers should be simple so that they do not overfit. 

 

 

 

Figure 6.2: Boosting 

 

•    Stacking: This method exploits variation among learners in which several learning 

algorithms are applied to the same application’s data. This method is proposed by 

Wolpert in 1992. In this method a number of different learning algorithms are run against 

the dataset which creates a series of models. Then the actual dataset is modified by 

replacing its each instance by the values that each model predicts for that instance. This 

creates a new dataset which is given to a new learner that builds the model, as illustrated 

in Figure 6.3 (http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf). 

Whenever a new query instance q has to be classified it is first passed through all the 

learners which create a new query instance q’. Then the model takes it as an input and the 

final classification for q is produced. For better results it is important in stacked 

generalization that the learners should be as different as possible so that they will 

complement each other and these learners should be based on different learning 

algorithms.    
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Figure 6.3: Stacking 

• Cascading: This method also follows variation among learners approach like stacking 

but it differs from stacking because stacking uses the learners in parallel whereas 

cascading uses the learners in sequence. Cascading is a process having multiple stages in 

which learners are used in sequence i.e. the next learner is used only if the preceding ones 

are not confident [Alpaydin, 2010]. This method was proposed by Gama and Brazdil. 

Figure 6.4 (http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf ) shows  this 

process.  

 

Figure 6.4: Cascading 

In cascading the data from the base-level learners is not fed into a single meta-level 

learner. But each base-level learner also acts as a kind of meta-level learner for the 
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learner preceding it. The inputs that are fed to the learner consist of the inputs to learner 

preceding it together with the class probabilities produced by the model induced by the 

preceding learner. At each step only a single learner is used and the number of steps is 

unlimited. A new query instance q is converted into a query instance q’ by gathering data 

through the steps of the cascade. The last model of the cascade produces the final 

classification. 

 

6.2.2. Related Literature 

A lot of research work has been carried out in this field. This section presents the work done in 

the direction of combined learners. A technique called attribute bagging has been developed for 

improving accuracy and stability of classifier ensembles induced using random subsets of 

features. This method has been compared with bagging and other methods on a hand-pose 

recognition dataset and has shown better results than bagging and other methods both in terms of 

accuracy and stability [Bryll et al., 2002]. Bagging was first introduced by Leo Breiman. He 

created a method called Bagging Predictors for generating multiple versions of a predictor and 

used these to create an aggregated predictor [Breiman, 1996]. A Bayesian version of bagging 

based on the Bayesian bootstrap has been developed. The Bayesian bootstrap has shown to 

resolve a theoretical problem with ordinary bagging and resulted in more efficient estimators 

[Clyde and Lee, 2000]. An experimental comparison has been carried out between bagging, 

boosting and randomization for improving the performance of the decision-tree algorithm C4.5. 

The experiments have shown that randomization is slightly superior to bagging but not as 

accurate as boosting in situations with little or no classification noise [Dietterich, 1999]. 

However, it has been shown that in noisy settings bagging performs much more robustly than 

boosting. A method of ensemble technique has been developed in which voting methodology of 

bagging and boosting ensembles has been used with 10 subclassifiers in each one. It has been 

compared with simple bagging and boosting ensembles with 25 sub-classifiers, and also with 

other well known combining methods, on standard benchmark datasets and it has been shown 

that the new is the most accurate [Kotsiantis and Pintelas, 2004]. An algorithm called RankBoost 

has been developed for combining preferences based on the boosting approach to machine 

learning. Theoretical results have been shown describing the algorithm’s behavior both on the 

training data, and on new test data not seen during training. Two experiments have been carried 
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out to assess the performance of RankBoost. In the first experiment, the algorithm has been used 

to combine different web search strategies, each of which is a query expansion for a given 

domain. The second experiment has been a collaborative-filtering task for making movie 

recommendations [Freund et al., 2003]. A statistical perspective on boosting has been proposed 

with special emphasis on estimating potentially complex parametric or nonparametric models, 

including generalized linear and additive models as well as regression models for survival 

analysis. The practical aspects of boosting procedures for fitting statistical models have been 

illustrated by means of the dedicated open-source software package mboost [Buhlmann and 

Hothorn, 2007]. Theoretical and practical aspects of boosting and ensemble learning have been 

discussed and the helpful association that exists between boosting and the theory of optimization 

has been identified for easing the understanding of boosting [Meir and Ratsch, 2003]. Voting 

classification algorithms like bagging, boosting and variants have been compared in order to find 

which of these algorithms use perturbation, reweighting, and combination techniques, and which 

of the algorithms affect classification error. The authors have shown bias and variance 

decomposition of the error for showing bias and variance decomposition are influenced by 

different methods. This comparison has shown that bagging reduces variance of unstable 

methods, while boosting methods (AdaBoost and Arc-x4) reduce both the bias and variance of 

unstable methods but increase the variance for Naive-Bayes. It has been found that when 

probabilistic estimates are used along with no-pruning, then bagging shows an improvement. 

Mean-squared error of voting methods has been compared to non-voting methods and it has 

shown that the voting methods show reduction in the errors. They have also examined the 

problems that arise when boosting algorithms are practically implemented [Bauer and Kohavi, 

1998]. Simple online bagging and boosting algorithms have been developed that perform as well 

as their batch counterparts. Lossless online algorithms for decision trees and Naïve Bayes models 

have been used [Oza and Russell, 2005].  Cohen has developed stacked sequential learning 

which is a sequential learning scheme in which an arbitrary base learner is improved so that it 

becomes aware of the labels of nearby examples. This method has been assessed on various 

problems. It has been shown that on these problems, the performance of non-sequential base 

learners improves by sequential stacking; that the performance of learners specially designed for 

sequential tasks is improved by sequential stacking [Cohen, 2005]. A learning method using 

multiple stacking for named entity recognition has been proposed which employs stacked 
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learners using the tags predicted by the lower level learners. This approach has been applied to 

the CoNLL-2002 shared task to improve a base system [Tsukamoto et al., 2002]. Different 

methods for interpreting the results of multiple, cascading machine learners have been explored. 

Each of these methods perform a different task. A framework for modeling cascading learners as 

a directed acyclic graph has been developed, which has allowed a construction of three-way 

contingency tables on which various independence tests has been performed. These 

independence tests have provided insight into how the various learners’ performance depends on 

their predecessor in the chain and/or the inputs themselves [Michelson and Macskassy, 2010]. A 

technique of localized cascade generalization of weak classifiers has been developed. Using this 

technique some local regions have been pointed out that have like properties and the cascade 

generalization of local experts has been used for explaining the relationship between the data 

characteristics and the target class. This technique has been compared with other well known 

combining methods using weak classifiers as base-learners, on standard benchmark datasets and 

it has been shown that this technique is more accurate [Kotsiantis, 2008]. A method has been 

proposed based on the enrichment of a set of independent labeled datasets by the results of 

clustering, and a supervised method has been used to evaluate the interest of adding such new 

information to the datasets. The cascade generalization paradigm has been adapted in the case 

where an unsupervised and a supervised learner are combined [Candillier et al., 2006]. Bagging, 

stacking, boosting and error correcting output codes are the main four methods of combining 

multiple models. These have been discussed covering seven methods of combining multiple 

learners i.e., voting, bagging, cascading, error-correcting output codes, boosting, mixtures of 

experts, and stacked generalization [Witten and Frank, 2000]. A theoretical framework for 

combining classifiers in the two main fusion scenarios has been developed. These two main 

fusion scenarios are fusion of opinions based on identical and on distinct representations [Kittler, 

1998]. For the first scenario i.e. the shared representation they showed that here fusion has been 

performed with the aim of obtaining a better estimation of the appropriate a posteriori class 

probabilities. For the second scenario i.e. for the distinct representations it has been pointed out 

that the techniques based on the benevolent sum-rule fusion are more flexible to errors than those 

derived from the severe product rule. 
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6.3.  Our approach towards combining learners 

In our technique we have used uni-representation approach towards combining learners in which 

all the learners use the same representation of the input as opposed to multi-representation in 

which learners use different representations of input data [Alpaydin, 1998]. Combined learners 

are formed of a number of base learners. The performance of combined learners as a whole is 

usually much better than that of individual base learners. This process boosts the predicting 

ability of the learners. Base learners are generated from training data by a base learning 

algorithm which can be decision tree, neural network or other kinds of machine learning 

algorithms. As discussed earlier, some methods use a single base learning algorithm to produce 

homogeneous base learners, but the technique that we follow uses multiple learning algorithms 

to produce heterogeneous learners. 

This section discusses the technique that we use for combining learners. Our technique aims to 

increase the accuracy of prediction in the classification task. We have used an approach in which 

multiple learners are combined and class probabilities are computed. We have used our method 

on a classification task. In case of classification, the class with the highest probability is chosen. 

Consider we have to combine N learners (l1, l2,… lN). We represent each learner by lj and the 

prediction of each learner lj by dj(x). If y represents the final prediction, we can calculate y from 

the individual predictions of learners, i.e. 

  y = f (d1, d2, . . . , dN | Φ) 

f denotes the combining function and Φ represents its parameters [Alpaydin, 2010]. However, for 

multiple outputs we can get several y’s and we have to chose the class with maximum value for 

y. In that case, prediction of each learner is represented by dji(x), j = 1, . . . , N, i = 1, . . ., K for K 

outputs and  yi, i =1, . . .,K represent the final predictions. For example, in case of classification, 

we choose the class with the maximum yi value, i.e. 

    Choose Ci if yi= max yk where k = 1 to K 

From equation 1 we get, 

  yi = Σ wjdji where wj >= 0, Σ wj = 1 
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In case of classification, the weights approximate to the learner probabilities. Therefore, 

wj = P(lj) 

dji =  P(Ci | x, lj) 

The above equation can be rewritten as 

P(Ci | x) = Σ P(Ci | x, lj) P(lj) for all learners lj     

The class probabilities are calculated using this formula. 

6.3.1. Procedure of our approach 

In our technique, we take a number of learners and apply them on a single dataset. We designed 

a technique that takes a number of learners and produces a series of classifiers after applying the 

learners on the dataset. As far as the task of classification is concerned, it uses all the produced 

classifiers for calculating the class probabilities and chooses the class for which the classifiers 

predict the highest probability. Figure 6.5 shows the basic flow of our technique. The steps 

carried out in our procedure are listed below: 

The problem on which we have applied our procedure is a classification problem. In this 

problem, a function maps the inputs to the desired outputs by determining which of a set of 

classes a new input belongs to. This is determined on the basis of the training data which 

contains the instances whose class is known, i.e. h : X       Y, where X represents input and Y 

represents the output class. Let the dataset we use be represented as D = {xt, yt} t = 1 to T, where 

T is used to represent the number of instances in the dataset. Let there be N number of learners 

that we have to combine i.e. l1, l2,.. lN and let K number of output classes in our data i.e. yt can 

take values (C1, C2,… CK) 

� For each learner lj (j = 1 to N) in the combination 

create the classifier mj for lj by training on the dataset D 

            mj = lj(D) 

 

� For each class Ci (i = 1 to K) in the data 

     For each classifier mj (j = 1 to N) 
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Calculate P(Ci) = P(Ci | x, mj) that represents the probability that the classifier mj assigns 

to the class Ci. 

 

� Finally, we choose the class with the highest predicted probability, or the class with 

maximum value for P(Ci) i.e. 

Choose Ci if P(Ci) has the maximum value among all P(Ci)’s 

 

 

Figure 6.5: Flow of the combined technique 

 

6.3.2. Experimental Setup 

As mentioned earlier, for the implementation of the above discussed procedure, we used Python 

programming and for applying machine learning methods we used Python machine learning tool 

called Orange. We implemented this approach on the classification problem used in the previous 

chapter. The dataset (http://www.hakank.org/weka/credit.arff) that we used for our experiment 

for implementing our procedure is the Australian Credit Approval dataset from UCI Repository 

of Machine Learning Databases and Domain theories 

(http://archive.ics.uci.edu/ml/datasets.html). It is the same dataset that we used in previous 

chapter for the evaluation of various machine learning algorithms, and its description has already 

been provided so we skip it here. However, for using the dataset in Orange we had to change its 

format from ARFF (supported in WEKA) to tab delimited format supported in Orange. The 

dataset is split into the training and the test sets as done in the previous chapter i.e. 
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“trainingcredit” and “testingcredit”. The main reason for using the same dataset is to compare the 

accuracy of the individual learners used in the previous chapter with the accuracy of the 

combined approach. As discussed earlier, Orange provides a number of inbuilt routines for 

performing various machine learning tasks. Without its use, we would have to write the entire 

code ourselves for all the machine learning tasks e.g. for carrying out cross validation for 

comparing the machine learning algorithms, or for loading data and so on. We provide a list of 

routines that we used for our approach of combining various learners: 

� First of all, for accessing the learners to be combined we used  

   learner = Learner() 

where Learner() is a particular learning algorithm in Orange. 

 

� For loading our dataset in D, 

 D = orange.Exampletable(“trainingcredit”) 

 This loads the dataset that we have used i.e. Credit dataset in D. 

 

� For creating the classifiers by training the learner on the dataset, 

Classifier = learner(D) 

i.e. the learner is called with the data and returns a classifier. 

 

� For obtaining class probabilities, 

Probabilities = Classifier(D, orange.GetProbabilities) 

Probabilities are stored in a list and using the max() routine we find the maximum 

probability and return the class that has been predicted the highest probability using the 

modus() routine on the list. 

 

� Finally, for evaluation of our learners, we use cross validation method just as we used in 

the previous chapter. 

   Evaluationresult = orange.crossValidation(learners, D)  
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The experiment was carried out in Python machine learning tool. For our experiment we used 

three learners for combination, i.e. we kept N = 3. The algorithms that we used are 

RandomForest, Naivebayes, and kNN. Then we performed cross validation with 10 folds just 

like in previous chapter. We split our dataset into training and testing sets. 

We carried out our experiment in Python 2.7. It has various modules like IDLE (Python GUI), 

Python (Command Line), and PythonWin. We used the Script file of PythonWin to develop our 

application. The file is saved as a script file with “.py” extension. PythonWin has an Interactive 

Window which allows us to run the commands interactively as well as run our scripts and 

analyze the results. Figure 6.6 shows loading and running a script file in Interactive Window, and 

Figure 6.7 shows the results of our script file after it is run. 

 

 

 

Figure 6.6: Running a Script in Interactive Window in Python 
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Figure 6.7: Results of our script on “testingcredit” file 

 

6.3.3. Results 

For evaluating the results of performance comparison of the individual learners and the 

combined learner, we used F-Measure as used in WEKA in previous chapter. Also we used two 

additional measures: accuracy and Brier score. We have already discussed Accuracy and F-

Measure in Chapter 4. 

Accuracy =     tp + tn   

                tp + fp + tn + fn 

Precision(P) =      tp 

                          tp + fp 

Recall(R)     =    tp   

                        tp + fn 

F-Measure = 2 * P * R   

                         P+R 

tp (true positives), fp (false positives), tn (true negatives) and fn (false negatives). 
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Brier Score: It is a score function that is used to measure the accuracy of probabilistic 

predictions. It is used in situations where the predictions assign probabilities to a set of 

outcomes. The outcomes can be binary or categorical in nature. This evaluation measure is 

proposed by Glenn W. Brier in 1950. It measures the mean squared difference between the 

predicted probability assigned to the possible outcomes and the actual outcome. Therefore, lower 

the Brier score, the better the predictions. Table 6.1 shows the comparison of the learners on the 

basis of accuracy, brier score, and F-Measure. 

Table 6.1: Comparison of learners 
 

 

 

 

 

 

Figure 6.8: Comparison on the basis of Classification Accuracy 
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LEARNERS ACCURACY BRIER SCORE F-MEASURE 

RandomForest 0.845 0.217 0.861 

NaiveBayes 0.864 0.236 0.881 

kNN 0.831 0.247 0.848 

Combinedlearner 0.870 0.219 0.885 
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Figure 6.9: Comparison on the basis of F-Measure 

Figure 6.8 shows the graphical comparison of various learners on the basis of classification 

accuracy. It clearly shows that the combined learner has the highest classification accuracy (i.e. 

0.870) among all learners. Figure 6.9 shows the graphical comparison of various learners on the 

basis of F-Measure. It shows that the combined learner has the highest F-Measure (i.e. 0.885). It 

has highest F-Measure than MultilayerPerceptron (0.848) that was the highest in the evaluation 

of machine learning algorithms through WEKA in the previous chapter. Therefore, the combined 

learner outperforms all the learners for our problem of the classification of the credit dataset. 

Table 6.1 shows that the lowest value (best) for Brier Score is shown by RandomForest (0.217) 

and the next lowest by our combined approach (0.219). 

6.4. Feature Space Design 

As discussed in Subsection 3.1.3 of Chapter 3, data preprocessing [Zhang et al., 2002] is an 

important task of machine learning. Initially the data collected is not directly suitable for training 

and therefore requires some processing before it can be used for example it may have missing 

feature values or noise. A number of pre-processing methods have been developed and the 

decision of deciding which one to use varies according to the situations. If the collected data 

contains some missing features then a method for handling missing data [Batista & Monard, 

2003] is used. Similarly, there are methods for detecting and handling noise [Hodge & Austin, 

2004]. Some of the problems with the collected real world data are: data can be incomplete i.e. 
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some attribute values may be missing, or it may lack certain important attributes, or it may 

consist of only aggregate data; there can be presence of noise i.e. it may contain errors or 

outliers; the data may be inconsistent i.e. containing variations in codes or names. Data 

preprocessing is performed in order to prepare the data for input into machine learning and 

mining processes. This involves transforming the data for improving its quality and hence the 

performance of the machine learning algorithms, such as predictive accuracy and reducing the 

learning time. Once the data preprocessing is complete we get a final training set. A well-known 

algorithm has been presented for each step of data pre-processing [Kotsiantis et al., 2006]. 

There are a number of tasks that are carried out in data preprocessing. These are cleaning, 

normalization, integration, transformation, reduction, feature extraction and selection. Data 

cleaning involves filling the missing values, smoothing the noisy data, identifying or removing 

outliers, and resolving inconsistencies. Data integration consists of using multiple databases, data 

cubes, or files and data transformation involves normalization and aggregation. Data reduction 

means reducing the volume of the data but producing the same analytical results. Data 

discretization is part of data reduction which means replacing numerical attributes with nominal 

ones. Feature extraction and selection are tasks of feature space design. Restructuring the feature 

space or feature space design is very important and has resulted in a lot of research by the 

machine learning communities. Researchers have developed several techniques and methods to 

deal with this problem.  

As we have shown before, for our machine learning tasks, data is represented as a table of 

examples or instances. It is called the dataset. Every instance in the dataset has a fixed number of 

attributes, or features, along with a label that denotes its class. The features of a dataset contain 

the information about the problem that we are dealing with and help in the classification process. 

Usually we believe that if the number of features or attributes is increased in the dataset, it will 

increase the efficiency of classification. However, by increasing the features there are chances of 

degradation of the classifier performance [Bishop, 1995]. Usually in many real-world problems, 

there are a large number of features in the dataset, most of which are irrelevant or redundant. 

Therefore, an important task in machine learning is deciding and choosing which of the features 

are relevant and which are irrelevant. Before a classifier can move beyond the training data to 

make predictions about novel test cases, it must decide which features to use in these predictions 
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and which to ignore. Therefore it is necessary to find subsets of the feature population that are 

relevant to the target class and worthy of focused analysis [Blum and Langley, 1997]. This 

process in which some of the features of the training set are selected and used for classification is 

called feature selection. 

6.4.1. Feature Selection 

The most important purpose of feature selection is to make a classifier more efficient by 

decreasing the size of the dataset. This is necessary for the classifiers that are costly to train e.g. 

NaiveBayes. The processing time and the cost of the classification systems are increased while 

their accuracy is decreased if irrelevant and additional features are used in the datasets used for 

classification. Therefore, it is very important to develop the techniques for selecting smaller 

feature subsets. However, we have to make sure that the subset which is selected is not so small 

that the accuracy rates are reduced and the results lack understandability. So it is very important 

that techniques must be developed that help to find an optimal subset of features from the 

superset of original features [Witten and Frank, 2000]. There are two ways in which feature 

selection can be carried out. These are the filter and wrapper approach [Liu and Motoda, 1998]. 

The filter approach selects a subset of the features that preserves as much as possible the relevant 

information found in the entire set of features [Kohavi and John, 1997; Freitas, 2002]. Some of 

the methods that implement filter approach are discussed here. The FOCUS algorithm 

[Almuallim and Dietterich, 1991] has been designed for noise-free Boolean domains and it 

follows the MIN-FEATURES bias. It examines all feature subsets and selects the minimal subset 

of features that is sufficient to predict the class targets for all records in the training set. Another 

feature selection method that has been developed is called Relief [Kira and Rendell, 1992]. It is 

an instance-based feature selection method. Relief-F is an extended version of Relief that has 

been developed for multi-class datasets whereas Relief was designed for two-class problems. In 

this method an instance is randomly sampled from the data and its nearest neighbor is located 

from the same and opposite class. The sampled instance is compared to the values of the features 

of the nearest neighbors and relevance scores for each feature are updated. The process is then 

carried out repeatedly for many instances. The main idea is that an attribute should be able to 

differentiate between instances from different classes and should have the same value for 

instances from the same class. Information gain and gain ratio [Quinlan, 1993] are good 

examples of measuring the relevance of features for decision tree induction. They use the 
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entropy measure to rank the features based on the information gained; the higher the gain the 

better the feature. Moore and Lee [Moore and Lee, 1994] proposed another model using an 

instance-based algorithm, called RACE, as the induction engine, and leave-one-out cross-

validation (LOOCV) as the subset evaluation function. Searching for feature subsets is done 

using backward and forward hill-climbing techniques. John et al. [John et al., 1994] proposed a 

similar method and applied it to ID3 and C4.5 on real world domains. Langley et al. [Langley 

and Sage, 1994] also used LOOCV in a nearest-neighbor algorithm. Caruana et al. [Caruana and 

Freitag, 1994] test the forward and backward stepwise methods on the Calendar Apprentice 

domain, using the wrapper model and a variant of ID3 as the induction engine. Wrapper models 

are usually slower than filter models in the sense that inductive learning is carried out more than 

once. 

 

6.4.2. Basic Steps in Feature Selection 

This section discusses the steps that we followed in selecting the subset of features in our 

problem. We applied our combined technique on the problem dataset. In Section 6.3 we already 

evaluated its efficiency. Now we use this method in combination with the feature selection 

technique. We apply a filter approach on our method that results in a different (filtered) dataset 

and evaluate the results. The steps that we followed are: 

� Initialize the learner. 

learner = Learner() 

� Load the dataset in D, 

 D = orange.Exampletable(“trainingcredit”) 

 This loads the dataset that we have used i.e. Credit dataset in D. 

� For creating the classifiers by training the learner on the dataset, 

                Classifier = learner(D) 

� Compute the relevance (R) of the features/attributes. This is done by applying the 

attribute measure method on the dataset (i.e. attMeasure(D)). 

� Set some margin, say m, and remove all those features/attributes for which R < m, i.e. 

whose relevance is below the selected margin. This is done by applying a filter method 

on the dataset. Only the attributes having R > m are used for classification. 

� Finally, use the learner on both the datasets and compare the accuracy. 



6 COMBINED MACHINE LEARNING AND FEATURE DESIGN 

121 

 

6.4.3. Experiment and Results 

 

Again for implementing the above procedure we used Python programming and Python machine 

learning tool. We carried out the experiment on the same problem and dataset i.e. Credit dataset. 

Again we use our “testingcredit” file like in previous experiment. Figure 6.10 shows the results 

of feature subset selection method on “testingcredit” file taking margin 0.010. First it shows the 

list of all attributes (i.e. 15) in our dataset along with the computed relevance. Then it displays 

the list of attributes after feature selection process. It displays a reduced list of attributes (i.e. 11). 

Out of 15 attributes only 11 attributes of our dataset are relevant and the remaining 4 are 

discarded because their relevance is less than the specified margin (0.010). Finally, it shows the 

accuracy and the F-Measure of the learners on the dataset after the process of feature selection. 

Table 6.2 shows the comparison of the performances of the learners based on accuracy and F-

Measure with and without feature selection for margin 0.010. The table shows that for all the 

learners the accuracy and F-Measure either increases or remains same after feature selection. 

This shows that in our problem only 11 attributes are enough for performing efficiently. 

Remaining 4 attributes are irrelevant as long as efficiency is concerned. However, we have to 

take proper care in selecting the margin because the selected subset should not be so small that it 

reduces the accuracy rates and the understanding of the results. So we need to find an optimal 

subset of features from the superset of original features. 
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Figure 6.10: Results of feature subset selection on “testingcredit” with margin 0.010 

 

Table 6.2: Before and after feature selection comparison of learners with margin 0.010 

 

Figure 6.11 shows the results of feature subset selection taking margin 0.020. Table 6.3 shows 

the comparison of the performances of the learners based on accuracy and F-Measure with and 

without feature selection for margin 0.020. It shows a decrease in the accuracy and F-Measure of 

 
Learners 

Accuracy 
Before feature 

selection 

Accuracy 
After feature 

selection 

F-Measure 
Before feature 

selection 

F-Measure 
After feature 

selection 

RandomForest 0.845 0.852 0.861 0.867 

NaiveBayes 0.864 0.864 0.881 0.880 

kNN 0.831 0.825 0.848 0.845 

CombinedLearner 0.870 0.868 0.885 0.879 



6 COMBINED MACHINE LEARNING AND FEATURE DESIGN 

123 

 

all the learners. After subset selection, only 6 attributes are chosen for classification and 

remaining attributes are ignored as there relevance is below the margin. But this decreases the 

overall accuracy of the learners. Hence, for our problem the optimal subset of features is 

obtained by keeping margin equal to 0.010, which corresponds to 11 out of 15 attributes. 

 

Figure 6.11: Results of feature subset selection on “testingcredit” with margin 0.020 

 
In Table 6.4 we have shown the comparison of learners on the basis of their F-Measures without 

feature selection and with feature selection at two different margins. It is clear that feature 

selection is important but only as long as it does not decrease the efficiency of the learners by 

discarding too many attributes on the basis of their relevance. At margin 0.010, learners perform 

better than without any margin. They show increased or similar efficiency depicting the fact that 

rest of the attributes were irrelevant. However, at margin 0.020, learners show decrease in 

performance indicating that too many attributes are being discarded and hence the chosen subset 

is not an optimal subset. 
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Table 6.3: Before and after feature selection comparison of learners with margin 0.020 

 

Table 6.4: Comparing F-Measure at different margins 

 

   

 

 

              

 

 
Learners 

Accuracy 
Before feature 

selection 

Accuracy 
After feature 

selection 

F-Measure 
Before feature 

selection 

F-Measure 
After feature 

selection 

RandomForest 0.845 0.838 0.861 0.854 

NaiveBayes 0.864 0.858 0.881 0.874 

kNN 0.831 0.831 0.848 0.843 

CombinedLearner 0.870 0.852 0.885 0.869 

 
Learners 

F-Measure 
Before feature 

selection 

F-Measure 
After feature 

selection (margin 
0.010) 

F-Measure 
After feature 

selection (margin 
0.020) 

RandomForest 0.861 0.867 0.854 

NaiveBayes 0.881 0.880 0.874 

kNN 0.848 0.845 0.843 

CombinedLearner 0.885 0.879 0.869 



 

 

 

 

Chapter 7 

Conclusion and Future Work 
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7.1.  Conclusions 

These days, machine learning techniques are being widely used to solve real-world problems by 

storing, manipulating, extracting and retrieving data from large sources. Supervised machine 

learning techniques have been widely adopted however these techniques prove to be very 

expensive when the systems are implemented over wide range of data. This is due to the fact that 

significant amount of effort and cost is involved because of obtaining large labeled data sets. 

Thus active learning provides a way to reduce the labeling costs by labeling only the most useful 

instances for learning. 

Chapter 2 discusses current developments and applications in NLP and literature survey of 

various machine learning techniques. We identified the different circumstances in which the 

learner may ask queries and different querying strategies.  Chapter 3 discusses the basic concepts 

of supervised learning, active learning and learning for complex models. We presented an 

example of learning pipeline models. We concluded that machine learning strategies that take 

into consideration the informativeness or the relevance of instances can perform better with 

fewer labeled examples as compared to other learning approaches. Chapter 4 examines a 

pipelined approach for information extraction with respect to active machine learning. Machine 

learning problems solved using a pipeline model show better results. Chapter 5 presents an 

evaluation of state-of-the-art machine learning algorithms on the basis of efficiency, for the task 

of classification. Chapter 6 presents a combined approach for the design of a learner that aims at 

increasing the efficiency of the learning tasks. Machine learning algorithms perform more 

efficiently for a classification task when they are combined together. For the prediction of the 

correct output class, combined learner selects the class to which highest probability has been 

assigned among all the learners. Further we conclude that feature selection is important but only 

as long as it does not decrease the efficiency of the learners by discarding too many attributes on 

the basis of their relevance. 

7.2. Future Work 

The combined approach that we presented in this work has some limitations. Although we have 

used it on state-of-the-art machine learning algorithms, however, we have evaluated its results on 

only classification tasks. It can be extended to be used for other important problems e.g. 
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regression and clustering. Moreover, we theoretically showed how active learning can be applied 

to part-of-speech tagging and included into the pipeline. In future we intend to show its empirical 

implementation and performance evaluation using various evaluation metrics. In field of active 

learning future work involves combining active learning with a subfield of machine learning 

called transfer learning [Torrey and Shavlik, 2009]. It is applicable in situations when we have a 

training set available for one problem but not for another similar problem. It involves 

transferring knowledge from one domain to another to speed up learning. 
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