
Design of Interactive Feature Space
Construction Protocol

A thesis submitted in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy (Ph.D)

By

Mehnaz Khan
P.G Department of Computer Sciences

Faculty of Applied Sciences and Technology

University of Kashmir

Under the Supervision of

Dr. S.M.K Quadri

in

Computer Science
May 2013

 Department of

This is to certify that the

Construction Protocol

Computer Sciences, University of Kashmir, Srinagar

of Doctor of Philosophy

work carried out by her under my supervision and guidance

fulfilled all the requirements as per the regulations of the University

opinion has reached the standards required for the submission. The results

embodied in this thesis have not been submitted to any other University or

Institute for the award of any degree or diploma.

Supervisor and Head
(Dr. S.M.K. Quadri)

Department of Computer Sciences
University of Kashmir
Srinagar, 190 006

Dated: 20th May’ 2013

Department of Computer Sciences

 University of Kashmir
 Hazratbal, Srinagar-190006

DECLARATION

This is to certify that the thesis entitled “ Design of Interactive Feature Space

Construction Protocol” submitted by Mehnaz Khan in the

Computer Sciences, University of Kashmir, Srinagar, for the award of the degree

Doctor of Philosophy in Computer Science, is a record of an original research

work carried out by her under my supervision and guidance

fulfilled all the requirements as per the regulations of the University

opinion has reached the standards required for the submission. The results

embodied in this thesis have not been submitted to any other University or

the award of any degree or diploma.

Supervisor and Head
(Dr. S.M.K. Quadri)

Department of Computer Sciences
University of Kashmir

2013

Computer Sciences

Design of Interactive Feature Space

by Mehnaz Khan in the Department of

, for the award of the degree

, is a record of an original research

work carried out by her under my supervision and guidance. The thesis has

fulfilled all the requirements as per the regulations of the University and in my

opinion has reached the standards required for the submission. The results

embodied in this thesis have not been submitted to any other University or

DEDICATED DEDICATED DEDICATED DEDICATED To The Only Power……Power……Power……Power……

The Gracious Gracious Gracious Gracious and the most MercifulMercifulMercifulMerciful

ACKNOWLEDGEMENTS

At the top, all the praises and thanks be to Allah, the Almighty Creator, the Master of the life and the day of

recompense. It is He who has been always actually guiding me and showing me the straight and right path

towards the success.

I am heartily thankful to my supervisor, Dr. S.M.K. Quadri, whose encouragement, guidance and support from

the initial to the final level enabled me to develop an understanding of the subject. It is his belief that kept my

nerves on the move right till the end. If he hadn’t encouraged me all the way, I would have given this up a long

time ago.

I would like to acknowledge and extend my heartfelt gratitude to other faculty members of our department,

especially Dr. Manzoor Ahmad Chachoo, for their kind assistance and valuable advice.

I am indebted to all my friends especially Shabia who supported me, gave honest comments to make my work

better. They also stayed with me in the process and handled me and my, sometimes out of control emotions, so

well in a manner that kept me going through the thick and thin of this study.

I express my special thanks to the technical staff of the Department of Computer Sciences for providing me the

necessary facilities.

This thesis would not have been completed without the love and support of my family. I would like to thank

my parents, Mr. Mohd Ashraf Khan and Mrs. Firdous Mahajan, for their unconditional love, emotional

support and encouragement. I thank them for giving me the opportunity of education from the best institutions

and for their support throughout my life. I would also like to thank my sister and brother in-law, Rakhshanda

and Zahoor Khan for their love and emotional support through these times and for giving me my nephew,

Amaan, whose photo in my laptop made me smile in toughest times. How will I forget to thank my darling

sister Misbah for her persistent love, encouragement and prayers?

I offer my regards and blessings to all who supported me in every respect during the successful realization of

thesis, as well as expressing my apology that I could not mention them personally one by one.

 Mehnaz Mehnaz Mehnaz Mehnaz KhanKhanKhanKhan

Abstract

Machine learning deals with designing systems that learn from data i.e. automatically improve

with experience. Systems gain experience by detecting patterns or regularities and using them for

making predictions. These predictions are based on the properties that the system learns from the

data. Thus when we say a machine learns, it means it has changed in a way that allows it to

perform more efficiently than before. Machine learning is emerging as an important technology

for solving a number of applications involving natural language processing applications, medical

diagnosis, game playing or financial applications. Wide variety of machine learning approaches

have been developed and used for a number of applications.

We first review the work done in the field of machine learning and analyze various concepts

about machine learning that are applicable to the work presented in this thesis. Next we examine

active machine learning for pipelining of an important natural language application i.e.

information extraction, in which the task of prediction is carried out in different stages and the

output of each stage serves as an input to the next stage.

A number of machine learning algorithms have been developed for different applications.

However no single machine learning algorithm can be used appropriately for all learning

problems. It is not possible to create a general learner for all problems because there are varied

types of real world datasets that cannot be handled by a single learner. For this purpose an

evaluation of the machine learning algorithms is needed. We present an experiment for the

evaluation of various state-of-the-art machine learning algorithms using an interactive machine

learning tool called WEKA (Waikato Environment for Knowledge Analysis). Evaluation is

carried out with the purpose of finding an optimal solution for a real world learning problem-

credit approval used in banks. It is a classification problem.

Finally, we present an approach of combining various learners with the aim of increasing their

efficiency. We present two experiments that evaluate the machine learning algorithms for

efficiency and compare their performance with the new combined approach, for the same

classification problem. Later we show the effects of feature selection on the efficiency of our

combined approach as well as on other machine learning techniques. The aim of this work is to

analyze the techniques that increase the efficiency of the learners.

v

Contents

Page No.

List of Figures viii-ix

List of Tables x

List of Symbols xi

1. Introduction 1-7
1.1.Introduction 1
1.2.Approaches of machine learning 2

1.2.1. Supervised Machine Learning 2
1.2.2. Unsupervised Machine Learning 3
1.2.3. Semi-supervised Machine Learning 3

1.3. Costs involved in various machine learning strategies 4
1.4. Active Learning 5
1.5.Thesis Statement 5
1.6.Thesis Outline 7

2. Review of Literature 8-29

2.1.Review of Research Work in NLP 8
2.1.1. Theoretical developments in NLP 8

2.1.1.1. Statistical Methods 8
2.1.1.2. Use of WordNet for NLP research 9
2.1.1.3. Use of finite state methods in NLP 10

2.1.2. NLP Applications 11
2.1.2.1. Automatic Abstracting 11
2.1.2.2. Information Retrieval 12

2.1.3. NLP Interfaces 13
2.1.4. NLP Software 14

2.2.Review of Research Work in Machine Learning 15
2.2.1. Active Learning Scenarios 15

2.2.1.1. Membership Query Synthesis 16
2.2.1.2. Stream-based Selection/ Selective sampling 17
2.2.1.3. Pool-based Selection 18

2.2.2. Querying Strategies 19
2.2.2.1. Uncertainty Sampling 19
2.2.2.2. Query-By-Committee 20
2.2.2.3. Unreliability Sampling 21
2.2.2.4. Expected Model Change 22

vi

2.2.2.5. Estimated Error Reduction 22
2.2.2.6. Density-Weighting Methods 23

2.2.3. Structured Outputs 24

3. Background 30-46
3.1.Supervised Learning 30

3.1.1. Terminology 31
3.1.2. Version Space and Feature Space 33
3.1.3. Supervised Machine Learning Procedure 35
3.1.4. Examples of Supervised Machine Learning: Classification and Regression 36

3.2.Machine Learning for Complex Problems 39
3.2.1. Learning Structured Instances 40
3.2.2. Learning Pipeline Models 43

3.3.Pool-Based Active Learning 45

4. Information Extraction and Machine Learning-A Pipel ined Approach 47-61
4.1. Introduction 47

4.1.1. An Example of Pipelining 48
4.1.2. Why Active Learning 49

4.2.Simple Architecture of Information Extraction 50
4.3.Pipelining and Machine Learning 53
4.4.Stages of Information Extraction used in Pipelining 56

4.4.1. Including POS Tagging in Pipelining 57
4.4.2. Active learning for Entity and Relation Detection 59

4.5.Evaluation Measures 59

5. Evaluating Machine Learning Techniques for Efficiency 62-98
5.1. Introduction 62

5.1.1. WEKA- Interfaces 63
5.1.1.1. Explorer 63
5.1.1.2. Experimenter 65
5.1.1.3. Knowledge Flow 66

5.1.2. Datasets 67
5.1.2.1. Preparing Datasets 67
5.1.2.2. Training sets and Tests sets 69
5.1.2.3. Using the training and test sets in WEKA 70

5.2.Learning problem and the Dataset used in our experiments 73
5.2.1. Understanding the problem 73

5.2.1.1. Risk involved in credit approval 74
5.2.1.2. Credit evaluation method 74

vii

5.2.1.3. Automating the process 75
5.2.2. Description of the Dataset used 75

5.3.Learning Methods Chosen For Evaluation 77
5.3.1. ZeroR and OneR 78
5.3.2. NaiveBayes and NaiveBayesUpdateable 79
5.3.3. MultiLayer Perceptron 79
5.3.4. J48 and Random Forest 80
5.3.5. KStar (K*) 82
5.3.6. AdaBoostM1 and Bagging 82

5.4.Experimental Setup 83
5.4.1. Experimental Procedure 86
5.4.2. Experimental Results 86

5.5. Conclusion 97

6. A Combined Approach Towards Learning And Feature Design 99-124
6.1. Introduction 99

6.1.1. Why Python 99
6.1.2. Python Machine Learning tool 100

6.2.Combined Learners 102
6.2.1. Types of Combination Techniques 102
6.2.2. Related Literature 107

6.3.Our approach towards combining learners 110
6.3.1. Procedure of our approach 111
6.3.2. Experimental Setup 112
6.3.3. Results 115

6.4.Feature Space Design 117
6.4.1. Feature Selection 119
6.4.2. Basic Steps in Feature Selection 120
6.4.3. Experiment and Results 121

7. Conclusion and Future Work 125-126
7.1. Conclusions 125
7.2. Future Work 125

Publications 127

References 128-149

viii

List of Figures Page No.

1.1. Active Learning Scenarios 6

3.1. Version Space 34

3.2. Entity and Relation detection from text 40

3.3. Information Extraction (a) as Sequence Labeling

 (b) assequence model representing a finite state machine 41

3.4. Pipelined Named Entity Recognition 44

3.5. Pool-Based Active Learning 46

4.1. Pipelined Segmentation and Entity Detection 49

4.2. Simple Architecture of Information Extraction System 50

4.3. Tokenization and Labeling 51

4.4. Entity Detection 51

4.5. Process of Active Learning 54

4.6. A Venn diagram illustrating the relationship between actual and predicted positives60

5.1. WEKA Explorer Interface showing Preprocess Tab 63

5.2. WEKA Explorer Interface showing Classify Tab 64

5.3. WEKA Experimenter Interface 66

5.4. Data in Excel spreadsheet 68

5.5. Data after loading in MS Word 68

5.6. Data after adding tags 69

5.7. Loading Dataset from URL 71

5.8. Using the Randomize filter 71

5.9. Using RemovePercentage filter 72

5.10. Using RemovePercentage filter with invertSelection 73

5.11. Credit Dataset 84

5.12. trainingcredit.arff file loaded in WEKA 85

5.13. testingcredit.arff file loaded in WEKA 85

5.14. Results of J48 on trainingcredit.arff 86

5.15. Results of J48 on testingcredit.arff 87

5.16. Results of RandomForest on testingcredit.arff 88

5.17. Results of ZeroR on testingcredit.arff 89

ix

5.18. Results of OneR on testingcredit.arff 90

5.19. Results of NaiveBayes on testingcredit.arff 91

5.20. Results of NaiveBayesUpdateable on testingcredit.arff 92

5.21. Results of AdaBoostM1 on testingcredit.arff 93

5.22. Results of Bagging on testingcredit.arff 94

5.23. Results of MultiLayerPerceptron on testingcredit.arff 95

5.24. Results of KStar on testingcredit.arff 96

5.25. Time chart of algorithms 97

5.26. Comparison of Algorithms By Percentage Of Correct Instances 97

6.1. Bagging 104

6.2. Boosting 105

6.3. Stacking 106

6.4. Cascading 106

6.5. Flow of the Combined Technique 112

6.6. Running a Script in Interactive Window in Python 114

6.7. Results of our script on “testingcredit” file 115

6.8. Comparison on the basis of Classification Accuracy 116

6.9. Comparison on the basis of F-Measure 117

6.10. Results of feature subset selection on “testingcredit” with margin 0.010 122

6.11. Results of feature subset selection on “testingcredit” with margin 0.020 123

x

List of Tables Page No.

1.1. Instances with known labels 2

5.1. Example of a Dataset 67

5.2. Australian Credit Approval Dataset 76

5.3. Class Distribution 76

5.4. Comparison of algorithms 98

6.1. Comparison of learners 116

6.2. Before and after feature selection comparison of learners with margin 0.010 122

6.3. Before and after feature selection comparison of learners with margin 0.020 124

6.4. Comparing F-Measure at different margins 124

xi

List of Symbols

x Input item

y Output label

f Mapping function

h Hypothesis

X Input Space

X Input Feature Vector Space

Y Output Space

ŷ Predicted Output

w Output Label Value

D Probability Distribution

Φ Feature Vector Generating Procedure

R Real Number

x Input Feature Vector

H Hypothesis Space

S Data Sample

ĥ Learned Hypothesis

F Hypothesis Scoring Function Space

ρ Margin of an Instance

L Loss Function

ḟ Learned Mapping Function

A Learning Algorithm

U Unlabeled Data Source

L Labeled Data Source

q Querying function

Chapter 1

Introduction

1 INTRODUCTION

1

1.1. Introduction

Artificial Intelligence (AI) is the branch of computer science which deals with the study and

creation of intelligent machines where an intelligent machine is a system which shows some

form of intelligence i.e. a system which is capable of taking actions by observing its

environment. These systems are capable of mimicking the human mind, understanding speech,

and so on. In other words, an intelligent machine is a machine that can “think”. Natural

Language Processing (NLP) is a field of artificial intelligence that is concerned with the

interactions between the computers and the natural languages used by humans. NLP provides a

method of human-computer interaction. It is concerned with interfacing computer

representations of information with natural languages used by humans. It deals with examining

the use of computers in understanding and manipulating the natural language text and speech. In

the field of NLP, the aim of the researchers is to observe and collect the necessary information

regarding how different natural languages are being used and understood by humans. This

information is then used by the researchers for developing the tools for making the computers

understand and manipulate the natural languages to perform desired tasks.

Some of the important natural language processing tasks include parsing, machine translation,

information extraction, automatic abstracting, information retrieval, part-of-speech tagging, and

question answering and so on. These days machine learning has emerged as an important

technology for solving all these NLP tasks. Before the use of machine learning approaches, NLP

tasks were implemented directly by hand coded set of rules. The machine learning algorithms

automatically learn such rules by analyzing a large set of corpora (singular, “corpus”). A corpus

is a collection of individual sentences or documents that have been hand annotated with the

correct values to be learned. These corpus-based techniques have emerged as the dominant

paradigm for NLP tasks.

The work in this thesis revolves around applying machine learning techniques for solving

various issues. Mainly we have focused on an NLP problem and a real world financial

application. A number of different types of machine learning algorithms have been used to solve

these tasks. Some of the types include supervised learning, unsupervised learning, and semi-

supervised learning.

1 INTRODUCTION

2

1.2. Approaches of machine learning

Some of the types of machine learning approaches discussed briefly here include supervised

learning, unsupervised learning, and semi-supervised learning.

1.2.1. Supervised machine learning

Supervised learning [Kotsiantis, 2007] is a type of machine learning in which the algorithms are

provided with the data instances and they produce hypothesis from that data that helps in

prediction. In supervised machine learning a function is deduced from the supervised data.

Supervised learning is a process in which the task of the function is to predict the correct output

from the inputs. This is done by deciding to which of the classes the new input belongs. The

algorithm decides this by analyzing the data that is provided to it i.e. the training data. It consists

of labeled instances i.e. inputs as well as their output classes. The task of supervised learning

algorithms is to analyze the training data and produce a function. If the output of the function is

discrete then it is called a classifier and if it is continuous then it is called a regression function.

The inferred function should be capable of predicting the correct output value for any valid input.

For doing this the learning algorithm must be able to generalize from the training data to unseen

situations in a reasonable way. Supervised learning is the learning based on training data.

Machine learning algorithms use the datasets that consist of a number of instances that are

represented using the same set of features. Supervised learning differs from unsupervised

learning in that it consists of the instances that have known labels (the corresponding correct

outputs), whereas in unsupervised learning instances are unlabeled. Table 1.1[Kotsiantis, 2007]

shows instances with known labels.

Table 1.1: Instances with known labels

Case Feature 1 Feature 2 … Feature n Class

1 xxx x xx good

2 xxx x xx good

3 xxx x xx bad

… …

1 INTRODUCTION

3

1.2.2. Unsupervised machine learning

Unsupervised learning [Dudaet al., 2001; Hinton and Sejnowski, 1999; Ghahramani, 2004] is

different from supervised learning. In unsupervised learning the dataset consists of instances that

are not labeled. In this learner is given only unlabeled examples. As already discussed, in

supervised learning algorithms mapping is carried out from the input to an output and the correct

values of the output i.e. known label are provided by a supervisor. In contrast, the unsupervised

learning algorithms do not have any supervisor but only have input data. The goal of

unsupervised learning is finding out the regularities in the input [Alpaydin, 2010]. The aim of

unsupervised learning is determining the organization of the data. Density estimation is one of

the examples of unsupervised machine learning. An important method of density estimation is

clustering whose task is to find the clusters or groupings of input.

Consider a machine (or living organism) which receives some sequence of inputs. Let x1, x2,

x3and so on, represent some sequence of inputs received by some machine. This input is often

referred to as data. In supervised learning the machine is also provided with a sequence of

desired outputs y1, y2, y3 and so on, and the aim of the machine is to learn to generate the correct

output for a new input. In case of classification the output can be a class label and in case of

regression the output can be a real number. However, in unsupervised learning the machine

simply receives inputs x1, x2,.., but does not receive the supervised target outputs [Ghahramani,

2004].

1.2.3. Semi-supervised machine learning

Semi-supervised learning algorithms use both labeled/annotated and unlabeled data in contrast to

supervised learning where the data is all labeled and unsupervised learning in which the data is

all unlabeled. Semi-supervised learning algorithm is provided with a small amount of labeled

data and a large amount of unlabeled data.

In supervised machine learning the algorithms use only labeled data or the supervised data (i.e.

feature/label pairs). However, it is difficult to obtain the labeled data. Because obtaining labeled

data is a time consuming and expensive process as it needs the work of many experienced human

annotators. As opposed to it, it is easy to collect the unlabeled data, but there are only a few ways

of using them. So in order to get rid of this problem, semi-supervised learning techniques are

used. These techniques how a lot of improvement in learning accuracy by using large amount of

unlabeled data, together with the labeled data, to build better classifiers. Semi-supervised

1 INTRODUCTION

4

learning techniques are of great use as they provide high accuracy as well as reduce human labor

[Zhu, 2008].

Semi-supervised learning can be either transductive or inductive. In transductive learning the

algorithm works only on the labeled and unlabeled training data, and cannot handle unseen data.

However, inductive learners in contrast to transductive learners can naturally handle unseen data.

Moreover, in semi-supervised classification, the learner has additional unlabeled data and the

aim is classification and in semi-supervised clustering, the learner has unlabeled data with some

pair wise constraints and the aim is clustering.

1.3. Costs involved in various machine learning strategies

The use of machine learning techniques in solving a number of problems in various fields has

increased rapidly. These techniques are being widely accepted and implemented. This has led the

researchers and developers to show a considerable amount of interest in minimizing the costs

involved in using these techniques and developing such systems. For the successful

implementation of machine learning techniques, significant amount of effort and cost is involved

because of obtaining large labeled data sets and feature engineering. These problems get more

intensified when the systems are implemented over wide range of data.

As discussed earlier, supervised machine learning techniques are quite expensive as they require

obtaining large amounts of annotated data. Hence a lot of research work has been carried out

regarding reducing labeled data requirements. On the other hand, unsupervised learning makes

use of only unlabeled data, hence reducing the labeling costs involved. But unsupervised

learning is often not directly applicable. Therefore another strategy that is used pre-clusters the

data and only requires labels from representative points [Nguyen and Smeulders, 2004]. As

discussed before, in between the two extremes i.e. supervised and unsupervised learning lies

semi-supervised learning, where the learning algorithm is provided with a small amount of

labeled data and a large amount of unlabeled data. Some of the commonly used approaches of

semi-supervised learning are transductive learning [Joachims, 1999], bootstrapping [Abney,

2002], co-training [Blum and Mitchell, 1998], expectation-maximization (EM) algorithm, and

graph-based methods. Another learning technique that has been used that minimizes the

annotation costs is domain adaptation [Blitzer, 2008; Jiang, 2008]. In this technique learners are

trained on a source distribution and modified using a small amount of data from a target

1 INTRODUCTION

5

distribution. Human computation [Ahn, 2005] is a learning technique in which the annotation

task is framed in such a way that annotators label data unknowingly.

The machine learning technique for reducing labeling costs studied in this thesis is active

learning [Settles, 2010].

1.4. Active Learning

Like semi-supervised learning, active learning algorithms also work with small set of labeled

data and a large set of unlabeled data. However, in active learning the learning algorithm is

capable of selecting additional instances to be labeled by maintaining access to the annotator.

Thus active learning provides a way to reduce the labeling costs by labeling only the most useful

instances for learning. Active learning reduces the amount of user effort required to learn a

concept by reducing the number of labeled examples required [Arora and Agarwal, 2007].

In this learning technique, the learner is responsible for actively participating in the collection of

the training examples i.e. obtaining the training set. The learner is capable of selecting a new

input, observing the resulting output and including the new example based on the input and

output into its training set. An important question that arises here is how to choose which input to

try next [Cohn et al., 1996]. The learner uses some strategies for choosing the examples. The

examples are chosen by making queries to the expert. The query strategy frameworks that have

been used are uncertainty sampling [Lewis and Gale, 1994] and query-by-committee [Seunget

al.,1992]. These strategies will be discussed in the later chapters.

There are different circumstances in which the learner may be able to ask queries. The learner

may construct its own examples (membership query synthesis), request certain types of examples

(pool-based sampling), or determine which of the unlabeled examples to query and which to

discard (selective sampling). These are shown in Figure 1.1 [Settles, 2010].

In active learning, the learner examines the unlabeled data and then queries only for the labels of

instances which it considers to be informative. Therefore, an active learner learns only what it

needs to in order to improve, thus reducing the overall cost of training an accurate system.

1.5. Thesis Statement

This thesis aims to explore various machine learning protocols. This work examines the

applicability of various machine learning techniques to complex problems with respect to the

1 INTRODUCTION

6

natural language processing applications. The chapters that follow review the research work

carried out in the field of machine learning and discuss the developments and applications of

NLP, describe various types of machine learning approaches and concepts relevant to the work

presented in this thesis, examine active learning with respect to information extraction using

pipelining, show the performance evaluation of various state-of-the-art machine learning

algorithms using an interactive machine learning tool, WEKA, on a real world problem using a

real world dataset, and finally present a combined approach for the design of a learner that shows

an increase in the efficiency of classification tasks of machine learning.

 membership query synthesis

 stream-based selective sampling

 Sample an instance query is labeled
 by annotator

 pool-based sampling

 sample a large
 pool of instances

Figure 1.1: Active Learning Scenarios

The hypotheses supported in this thesis are:

i. Machine learning strategies that take into consideration the informativeness or the

relevance of instances can perform better with fewer labeled examples as compared to

other learning approaches.

ii. Active learning strategies reduce the costs of learning systems which actively

participate in the collection of examples by maintaining access to the annotator.

iii. Machine learning algorithms perform more efficiently for a classification task when

they are combined together. For the prediction of the correct output class, combined

Model generates

a query de novo

Model decides to

query or discard

Model selects the

best query U

Instance

space

1 INTRODUCTION

7

learner selects the class to which highest probability has been assigned among all the

learners.

1.6. Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents a detailed study of the work done in the field of machine learning and

NLP. It discusses the related literature along several dimensions. It presents the

theoretical developments and applications of NLP.

• Chapter 3 discusses the basic concepts about machine learning that are relevant to the

work presented in this thesis. It discusses supervised and active machine learning,

learning structured instances and pipeline models.

• Chapter 4discusses the use of machine learning for an important natural language

application i.e. information extraction. It examines a pipelined approach for information

extraction with respect to machine learning.

• Chapter 5 presents an evaluation of state-of-the-art machine learning algorithms on the

basis of efficiency, for the task of classification. It begins by providing important

concepts about WEKA- a tool for machine learning, and the process of preparing

datasets. Later it presents the experiment and discusses the results.

• Chapter 6 presents a combined approach for the design of a learner that aims at

increasing the efficiency of the learning tasks. It begins by providing the procedure of the

combined approach and later presents the experiment and the results. In the second part

of the chapter, we show the effect of feature selection on our combined approach and

present its experiment and compare the results.

• Chapter 7 summarizes the primary contributions of this work and also presents the future

directions of our work and in active learning.

Chapter 2

Review of Literature

2 REVIEW OF LITERATURE

8

This chapter describes the research literature relevant to the primary aspects of this thesis. The

core aspects of this thesis are machine learning applications to natural language processing and

classification techniques. Both these fields have received a lot of attention in the past years and

there are a number of popular texts with relevant background material [Duda et al., 2001; Russell

and Norvig, 2003; Manning and Schutze,1999; Jurafsky and Martin, 2008]. As there is an

enormous amount of literature available on both these aspects, these works can be described

along several dimensions.

2.1. Review of Research Work in NLP

Natural Language Processing (NLP) is that field of computer science which consists of

interfacing computer representations of information with natural languages used by humans. It

examines the use of computers in understanding and manipulating the natural language text and

speech. Over the past years, a lot of research has been done in the field of NLP. Some of the

recent works have been discussed here. Kumarana et al. (2011) have developed a multilingual

content creation tool for Wikipedia. Optimal Search for Minimum Error Rate Training has been

discussed by Michel and Chris (2011). Associating Web Queries with Strongly-Typed Entities

[Patrick et al., 2011], Linguistic Style Accommodation in Social Media [Cristian et al., 2011],

Predicting the Importance of Newsfeed Posts and Social Network Friends[Tim et al., 2010],

Wiki BABEL: A System for Multilingual Wikipedia Content [Kumaran et al., 2010], The utility

of article and preposition error correction systems for English language learners: Feedback and

Assessment[Martin et al., 2010]. The work presented in this Section has been previously

published [Khan, Dar and Quadri, 2012].

2.1.1. Theoretical developments in NLP

Theoretical developments in NLP can be grouped into following classes: (i) statistical and

corpus-based methods in NLP, (ii) use of WordNet for NLP research, (iii) use of finite-state

methods in NLP.

2.1.1.1. Statistical Methods

The models and methods used in solving NLP problems are broadly classified into two types:

deterministic and stochastic. A mathematical model is called deterministic if it does not involve

2 REVIEW OF LITERATURE

9

the concept of probability; otherwise it is said to be stochastic. A stochastic model can be

probabilistic or statistical, if its representation is from the theories of probability or statistics,

respectively [Edmundson, 1968]. Statistical methods are used in NLP for a number of purposes,

e.g., speech recognition, part-of-speech tagging, for generating grammars and parsing, word

sense disambiguation, and so on. There has been a lot of research in these areas. Geoffrey Zweig

and Patrick Nguyen (2009) have proposed a segmental conditional random field framework for

large vocabulary continuous speech recognition [Geoffrey and Patrick 2009]. Gerasimos

Potamianos, Chalapathy Neti, Ashutosh Garg, Guillaume Gravier and Andrew W. Senior (2003)

have reviewed Advances in the Automatic Recognition of Audio-Visual Speech and have

presented the algorithms demonstrating that the visual modality improves automatic speech

recognition over all conditions and data considered [Gerasimos et al., 2003]. Raymond J.

Mooney has developed a number of machine learning methods for introducing semantic parsers

by training on a corpus of sentences paired with their meaning representations in a specified

formal language [Raymond, 2007]. Marine CARPUAT and Dekai WU (2007) have shown that

statistical machine translation can be improved by using word sense disambiguation. They have

shown that if the predictions of the word sense disambiguation system are incorporated within a

statistical machine translation model then the translation quality is consistently improved

[Marine and Dekai, 2007].

2.1.1.2. Use of WordNet for NLP research

Mihalcea & Moldovan (1999) have proposed the use of WordNet to make the outcome of

statistical analysis of natural language texts better. WordNet or the electronic dictionary is

developed at Princeton University. It is a large database that serves as an important NLP tool

consisting of nouns, verbs, adjectives and adverbs. These are arranged in the form of synonym

sets (synsets).Each set represents one underlying lexical concept. These sets are linked with each

other by means of conceptual-semantic and lexical relations. There are different wordnets for

about 50 different languages, but they are not complete like the original English WordNet

[Gerard and Gerhard, 2009]. WordNet is now used in a number of NLP research and

applications. One of the most important applications of WordNet in NLP is EuroWordNet

developed in Europe. EuroWordNet is a multilingual database which consists of WordNets for

the European languages. It has been structured in the same way as the WordNet for English. A

2 REVIEW OF LITERATURE

10

methodology for the automatic construction of a large-scale multilingual lexical database has

been proposed where words of many languages are hierarchically organized in terms of their

meanings and their semantic relations to other words. This database is capable of organizing over

800,000 words from over 200 languages, providing over 1.5 million links from words to word

meanings. This universal wordnet has been derived from the Princeton WordNet. Lars Borin and

Markus Forsberg have given a comparison between WordNet and SALDO. SALDO is a Swedish

lexical resource which has been developed for language technology applications [Lars and

Markus, 2009]. Japanese WordNet currently has 51,000 synsets with Japanese entries. Methods

for enhancing or extending the Japanese Wordnet have been discussed. These include: increasing

the cover, linking it to examples in corpora and linking it to other resources. In addition various

plans have been outlined to make it more useful by adding Japanese definition sentences to each

synset [Franciset al., 2009]. The use of WordNet in multimedia information retrieval has also

been discussed and the use of external knowledge in a corpus with minimal textual information

has been investigated. The original collection has been expanded with WordNet terms in order to

enrich the information included in the corpus and the experiments have been carried out with

original as well as expanded topics[Manuel et al., 2011]. A Standardized Format for Wordnet

Interoperability [Claudia et al., 2009] has been given i.e., WordNet- LMF. The main aim of this

format is to provide the WordNet with a format representation that will allow easier integration

among resources sharing the same structure (i.e. other wordnets) and, more importantly, across

resources with different theoretical and implementation approaches.

2.1.1.3. Use of finite state methods in NLP

The finite-state automation is the mathematical tool used to implement regular expressions – the

standard notation for characterizing text sequences. Different applications of the Finite State

methods in NLP have been discussed [Jurafsky and Martin, 2000; Kornai, 1999; Rocheand

Shabes, 1997]. From past many years the finite state methods have been used in presenting

various research studies on NLP. The FSMNLP workshops are the main forum of the

Association for Computational Linguistics’ (ACL) Special Interest Group on Finite-State

Methods (SIGFSM)[Anssiet al., 2011].

2 REVIEW OF LITERATURE

11

2.1.2. NLP Applications

There are a number of applications of NLP e.g. machine translation, natural language text

processing and summarization, user interfaces, multilingual and cross language information

retrieval (CLIR), speech recognition, and expert systems, and so on. In this paper we discuss

automatic abstracting and information retrieval.

2.1.2.1. Automatic Abstracting

Automatic abstracting or text summarization is a technique used to generate abstracts or

summaries of texts. Due to the increase in the amount of online information, it becomes very

important to develop the systems that can automatically summarize one or more

documents[Dragomir et al., 2002]. The main aim of summarization is to differentiate between

the more informative or important parts of the document and the less ones [Dipanjan and Andre,

2007]. According to Radev et al. (2002) a summary can be defined as piece of text that can be

produced from one or more texts in a way such that it conveys important information in the

original text(s), and whose size is not more than half of the original text(s) and mostly

significantly less than that". The summary can be of two types i.e. abstraction or extraction.

Abstract summary is one in which the original documents‟ contents are paraphrased or

generated, whereas in an extract summary, the content is preserved in its original form, i.e.,

sentences [Krystaet al, 2007]. Extracts are formed by using the same words, sentences of the

input text, while abstracts are formed by regenerating the extracted content. Extraction is the

process of identifying the important contents in the text while in abstraction the contents are

regenerated in new terms. When the summaries are produced from a single document, it is called

single document summarization. Multidocument summarization has been defined as a process of

producing a single summary from a number of related documents. A lot of research has been

done on automatic abstracting and text summarization. Zajicetal [David et al., 2008] have

presented single-document and multi-document summarization techniques for email threads

using sentence compression. They have shown two approaches to email thread summarization

i.e. Collective Message Summarization (CMS) and Individual Message Summarization(IMS).

NeATS[Chin and Eduard, 2002] is a multidocument summarization system in which relevant or

interesting portions about some topic are extracted from a set of documents and presented in

coherent order. NetSum [Krystaet al, 2007] is an approach to automatic summarization based on

2 REVIEW OF LITERATURE

12

neural networks. Its aim is to obtain those features from each sentence which helps to identify its

importance in the document. A text summarization model has been developed which is based on

maximum coverage problem and its variant [Hiroya and Manabu, 2009]. In this some decoding

algorithms have been explored such as a greedy algorithm with performance guarantee, a

randomized algorithm, and a branch-and-bound method. A number of studies have been carried

out on text summarization. An efficient linear time algorithm for calculating lexical chains has

been developed for preparing automatic summarization of documents [Silber and McCoy, 2000].

A method of automatic abstracting has been proposed that integrates the advantages of both

linguistic and statistical analysis. Jin and Dong-Yan (2000) have proposed a methodology for

generating automatic abstracts that provides an integration of the advantages of methods based

on linguistic analysis and those based on statistics [Songand Zhao, 2000].

2.1.2.2. Information Retrieval

Information retrieval (IR) is concerned with searching and retrieving documents, information

within documents, and metadata about documents. It is also called document retrieval or text

retrieval. IR concerns with retrieving documents that are necessary for the users’ information.

This process is carried out in two stages [Jun and Jianhan, 2009]. The first stage involves the

calculation of the relevance between given user information need and the documents in the

collection. In this stage probabilistic retrieval models that have been proposed and tested over

decades are used for calculating the relevance to produce a “best guess” at a document’s

relevance. In the second stage the documents are ranked and presented to the user. In this stage

the probability ranking principle (PRP) [Cooper, 1971] is used. According to this principle the

system should rank documents in order of decreasing probability of relevance. By using this

principle the overall effectiveness of an IR system maximizes.

There has been a lot of research in the field of information retrieval. Some of the recent

developments are included here. ChengXiangZhai (2008) has given a critical review of statistical

language models for information retrieval. He has systematically and critically reviewed the

work in applying statistical language models to information retrieval, summarized their

contributions, and pointed out outstanding challenges [ChengXiang, 2008]. Nicholas J. Belkin

has identified and discussed few challenges for information retrieval research which come under

the range of association with users [Nicholas, 2008]. An efficient document ranking algorithm

2 REVIEW OF LITERATURE

13

has been proposed that generalizes the well-known probability ranking principle (PRP) by

considering both the uncertainty of relevance predictions and correlations between retrieved

documents [Jun and Jianhan, 2009]. Michael et al have discussed the various problems,

directions and future challenges of content-based music information retrieval [Michael et al.,

2008]. A unified framework has been proposed that combines the modeling of social annotations

with the language modeling-based methods for information retrieval [Ding et al., 2008].

2.1.3. NLP Interfaces

A natural language interface accepts commands in natural language and sends data to the system

which then provides the appropriate responses to the commands. A natural language interface

translates the natural language statements into appropriate actions for the system. A large number

of natural language interfaces have been developed [Stock, 2000]. A number of question

answering systems are now being developed that aim to provide answers to natural language

questions, as opposed to documents containing information related to the question. These

systems use a variety of IE and IR operations to get the correct answer from the source texts. In

information retrieval and NLP, question answering (QA) is the task of automatically answering a

question posed in natural language. To find the answer to a question, a QA computer program

may use either a pre-structured database or a collection of natural language documents. Unlike

information retrieval systems(Internet search engines), QA systems do not retrieve documents,

but instead provide short, relevant answers located in small fragments of text. That is why QA

systems are significantly slower and require more hardware resources than information retrieval

systems [Surdeanu et al., 2002]. QA track of TREC (Text Retrieval Conference) have shown

some interesting results. Several steps were included in the technology used by the participants

in the QA track. First, words like ‘who’, ‘when’ were identified to guess what was needed; and

then a small portion of the document collection was retrieved using standard text retrieval

technology. This was followed by a shallow parsing of the returned documents for identifying

the entities required for an answer. If no appropriate answer type was found then best matching

passage was retrieved. In TREC-8, the first QA track of TREC, the most accurate QA systems

could answer more than 2/3 of the questions correctly [Voorhees, 1999]. In the second QA track

(TREC-9), the best performing QA system, the Falcon system from Southern Methodist

University, was able to answer 65% of the questions [Voorhees, 2000]. In the first two QA tracks

2 REVIEW OF LITERATURE

14

the questions were simple. In TREC 2001 QA track, which was the third running of a QA track

in TREC, a number of conditions were included for increasing the practicality and complexity of

the task [Ellen, 2001]. The TREC 2002 track repeated the main and list tasks from 2001, but with

the major difference of requiring systems to return exact answers. The change to exact answers

was motivated by the belief that a system’s ability to recognize the precise extent of the answer

is crucial to improving question answering technology [Ellen, 2002]. These runnings of QA track

have been carried out every year till date by adding different conditions to make the QA tracks

more realistic.

2.1.4. NLP Software

A number of NLP software packages and tools have been developed, some of which are

available for free, while others are available commercially. These tools have been broadly

classified into different types some of which are mentioned here. General Information Tools(e.g.

Sourcebank – a search engine for programming resources., The Natural Language Software

Registry), Taggers and Morphological Analyzers(e.g. A Perl/Tk text tagger, AUTASYS – which

is a completely automatic English Wordclass analysis system, TreeTagger – a language

independent part-of-speech tagger, Morphy – which is a tool for German morphology and

statistical part-of-speech tagging), Information Retrieval & Filtering Tools (e.g. Rubryx: Text

Classification Program, seft – a Search Engine For Text, Isearch – software for indexing and

searching text documents, ifile – A general mail filtering system, Bow: A Toolkit for Statistical

Language Modeling, Text Retrieval, Classification and Clustering), Machine Learning Tools (

e.g. Machine Learning Toolbox (MLT), The Machine Learning Programs Repository), FSA

Tools(e.g. FSA Utilities: A Toolbox to Manipulate Finite-state Automata), HMM Tools (e.g.

Hidden Markov Model (HMM) Toolbox, Discrete HMM Toolkit, A HMM mini-toolkit),

Language Modeling Tools(e.g. Maximum Entropy Modeling Toolkit, Trigger Toolkit, Language

modeling tools), Corpus Tools (e.g. WebCorp, Multext: i.e. Multilingual Text Tools and

Corpora, TACT- i.e. Text Analysis Computing Tools, Textual Corpora and Tools for their

Exploration). Some more tools include DR-LINK (Document Retrieval using LINguistic

Knowledge) system demonstrating the capabilities of NLP for Information Retrieval [Liddy et

al, 2000], NLPWin: an NLP system from Microsoft that accepts sentences and delivers detailed

syntactic analysis, together with a logical form representing an abstraction of the meaning

2 REVIEW OF LITERATURE

15

[Elworthy, 2000]. Waldrop (2001) has described the features of three NLP software packages,

viz. Jupiter: a product of the MIT research Lab that works in the field of weather forecast,

Movieline: a product of Carnegie Mellon that talks about local movie schedules, and MindNet

from Microsoft Research, a system for automatically extracting a massively hyperlinked web of

concepts.

2.2. Review of Research Work in Machine Learning

Machine learning is a vast field and there has been a lot of research in this area. Here we discuss

the literature relevant to our thesis. Machine learning studies algorithms capable of improving

their performance automatically when provided with additional knowledge regarding the

specified domain. As discussed earlier, successful use of machine learning techniques depends

on availability of sufficient quantities of labeled data. However, obtaining a large labeled data set

becomes very expensive, particularly for the complex real-world tasks where machine learning

techniques are most useful. As stated, active learning provides a way to reduce the labeling costs

by labeling only the most useful instances for learning. The learning algorithm selects only those

instances for annotation that are required to learn an accurate classifier [Cohn et al., 1994].

Hence active learning algorithms provide much higher accuracy rates using small number of

labeled examples and selecting the data from which it learns. An active learner can ask different

queries in the form of unlabeled examples that are to be labeled by a human annotator. A lot of

research has been carried out in this field, therefore we will describe these works along several

dimensions.

2.2.1. Active Learning Scenarios

There are different circumstances in which the learner may ask queries. The learner may

construct their own examples (membership query synthesis), request certain types of examples

(pool-based sampling), or determine which of the unlabeled examples to query and which to

discard (selective sampling). These different scenarios also determine the different sources from

which the unlabeled instances are presented for annotation.

2 REVIEW OF LITERATURE

16

2.2.1.1. Membership Query Synthesis

In the membership query synthesis [Angluin, 1988], the learner may construct its own examples

i.e. the learner may ask for labels for any unlabeled example in the input space. It also includes

the queries that the learner generates anew, rather than the ones that are sampled from some

underlying distribution. Query synthesis has been shown to be efficient for finite problem

domains [Angluin, 2001]. It has also been extended to regression learning tasks, for example

learning to predict the absolute coordinates of a robot hand [Cohn et al., 1996].

In many situations query synthesis has been used efficiently however it has some disadvantages

too. One of the drawbacks is that the labeling of such random instances cannot be easy if human

annotator does the annotations. For example, Baum and Lang (1992) used membership query

learning along with human annotators oracles for training a neural network to classify

handwritten characters. They had to face an unexpected problem: most of the query images that

the learner generated contained no meaningful and recognizable symbols. They only consisted of

artificial characters that were meaningless. Therefore, membership query synthesis for natural

language processing tasks creates meaningless streams of text or speech that are nothing more

than garbage. This method usually generates meaningless examples which are hard to label as

the learner is able to request a label from any possible instance from the input space and ignores

the underlying sample distribution. The stream-based and pool-based scenarios have been

developed to solve the above mentioned limitations. Systems using membership query syntheses

have been implemented practically [King et al., 2004].In these systems an application of the

membership query synthesis has been described in which a robot scientist has been shown

executing a series of experiments in order to discover pathways of metabolism in yeast. In this

application, a mixture of chemical solutions can be regarded as an instance and a label can be

whether or not the mutant thrived in the growth medium. All experiments have been carried out

autonomously using active machine learning, and physically carried out using a robot. This

method reduced the experimental costs by three-fold as compared to when the least expensive

experiment is run, and resulted in a 100-fold decrease in cost compared to randomly generated

experiments.

2 REVIEW OF LITERATURE

17

2.2.1.2. Stream-based Selection/ Selective sampling

Selective sampling [Cohn et al., 1994] is another active learning scenario which can be regarded

as an alternative to membership query synthesis. In this scenario the instances are presented to

the learner from an infinite source of unlabeled data. The learner performs the sampling of an

unlabeled instance from the actual distribution as its free (or inexpensive), and then decides

whether it should pay the cost of labeling it or not. This scenario is also known as stream-based

or sequential active learning, because of the fact that an unlabeled instance is drawn one at a time

from the data stream, and the learner has to decide whether to query or discard it. The main point

on which pool-based and stream-based active learning differ is that the whole stream cannot be

observed during each round of active learning, and hence limiting the protocol as the learner is

able to examine each example in a stream only once during the life span of the learner and it is

suitable for many applications such as speech recognition. For uniform distribution of input, this

technique behaves similar to membership query learning. However, for non-uniform distribution

or unknown distribution, it is certain that queries will still be meaningful, as they come from a

real underlying distribution.

There are several ways by which the decision of whether to label an instance or not can be

framed. One way of determining this is to evaluate the samples using some “informativeness

measure” or “query strategy” and taking a random decision, so that more informative instances

are more likely to be queried [Dagan and Engelson, 1995]. In another way a region of

uncertainty is found [Cohn et al., 1994], i.e. finding that explicit part of the instance space which

is ambiguous to the learner, and then only querying the instances which fall within this region.

One way of doing this is determining a minimum threshold of an informativeness measure which

defines the region and query those instances whose evaluation is above this threshold. Another

more principled approach is to define the region that is still unknown to the overall model class,

i.e., to the set of hypotheses consistent with the current labeled training set called the version

space [Mitchell, 1982]. In other words, if any two models of the same model class (but different

parameter settings) agree on all the labeled data, but disagree on some unlabeled sample, then

that sample lies within the region of uncertainty. The complete and explicit calculation of this

region is very expensive computationally and it must be maintained after each new query. This is

the reason why approximations are used in practice [Cohn et al., 1994; Dasgupta et al., 2008].

2 REVIEW OF LITERATURE

18

The stream-based scenario has been used in many practical problems, including part-of-speech

tagging [Dagan and Engelson, 1995], sensor scheduling [Krishnamurthy, 2002], and learning

ranking functions for information retrieval [Yu, 2005]. Fujii et al. (1998) employ selective

sampling in active learning for word sense disambiguation, e.g., determining if the word “bank”

means land alongside a river or a financial institution in a given context (only they study

Japanese words in their work). The approach not only reduces annotation effort, but also limits

the size of the database used in nearest-neighbor learning, which in turn expedites the

classification algorithm.

2.2.1.3. Pool-based Selection

Pool-based scenario [Lewis and Gale, 1994] of active learning is based on the assumption that a

small set of labeled data L and a large pool of unlabeled data U are available. During the process

of active learning, an unlabeled instance is selected by the querying function Q from the

unlabeled pool. The pool is assumed to be static i.e. non-changing also called closed. The

querying of instances takes place according to informativeness measure in a greedy fashion.

Then the annotation of the queried instance is done and the instance is then added to the set of

labeled data for the purpose of training. In pool-based active learning techniques a querying

function is used for scoring each instance x ϵ U according to their informativeness. These

techniques then use this score for ranking the unlabeled elements, and finally selects the highest

ranked instances.

The real world problems of machine learning for which the pool-based active learning

techniques have been studied include text classification [Lewis and Gale, 1994; McCallum and

Nigam, 1998b; Tong and Koller, 2001; Hoi et al., 2006a], information extraction [Thompson et

al., 1999; Settles and Craven, 2008], image classification and retrieval [Tong and Chang, 2001;

Zhang and Chen, 2002], video classification and retrieval [Yan et al., 2003; Hauptmann et al.,

2006], speech recognition [Turet al., 2005], and cancer diagnosis [Liu, 2004] to name a few.

There is a difference between stream-based and pool-based active learning. In the stream based

learning the data is scanned sequentially and the query decisions are made individually. In pool

based learning the entire collection is evaluated and ranked before selecting the best query.

2 REVIEW OF LITERATURE

19

2.2.2. Querying Strategies

The main aspect of all active learning strategies is the design of an appropriate querying

function, which uses the current state of the learner and properties of the available data to select

unlabeled examples for annotation. The querying function evaluates the informativeness of

unlabeled instances, which can either be generated de novo or sampled from a given distribution.

There have been many proposed ways of designing a good querying function. Some of them are

surveyed below.

2.2.2.1. Uncertainty Sampling

Uncertainty sampling [Lewis and Gale, 1994] is the simplest and most widely used query

framework where the learner selects instances for which its prediction is most uncertain i.e.

about which it is least confident how to label. This approach is often straightforward for

probabilistic learning models. For example, when using a probabilistic model for binary

classification, an uncertainty sampling strategy simply queries the instance whose posterior

probability of being positive is nearest 0.5 [Lewis and Gale, 1994; Lewis and Catlett, 1994].For

many learning algorithms, a widely used method of uncertainty sampling is to select instances

for which their predicted label is least confident, either from a probabilistic viewpoint or through

a margin-based analogue [Lewis and Gale, 1994; Tong and Koller, 2001; Schohn and Cohn,

2000; Culotta and McCallum, 2005; Roth and Small, 2006b; Settles and Craven, 2008].

A more general uncertainty sampling strategy uses entropy [Shannon, 1948] as an uncertainty

measure:

 ΦENT(x) = -Σ P(yi|x) log P(yi|x),

where Φ represents a query strategy, which is a function used to evaluate the informativeness of

a query, x represents the best query instance which maximizes this function, and yi ranges over

all possible labeling. The entropy-based approach can be generalized easily to probabilistic

multi-label classifiers and probabilistic models for more complex structured instances, such as

sequences [Settles and Craven, 2008] and trees [Hwa, 2004]. An alternative to entropy in these

more complex settings involves querying the instance whose best labeling is the least confident:

 ΦLC(x) = 1 – P(y* |x),

where y* = argmax P(y|x) is the most likely class labeling. This sort of strategy has been shown

to work well, for example, with conditional random fields or CRFs [Lafferty et al., 2001] for

2 REVIEW OF LITERATURE

20

active learning in information extraction tasks [Culotta and McCallum, 2005; Settles and Craven,

2008]. Uncertainty sampling strategies may also be employed with non-probabilistic models.

One of the first works to explore uncertainty sampling used a decision tree classifier [Lewis and

Catlett, 1994] by modifying it to have probabilistic output. Similar approaches have been applied

to active learning with nearest-neighbor (“memory-based” or “instance-based”) classifiers [Fujii

et al., 1998; Lindenbaum et al., 2004], by allowing each neighbor to vote on the class label of x,

with the proportion of these votes representing the posterior label probability. Tong and Koller

(2000) also experiment with an uncertainty sampling strategy for support vector machines, or

SVMs [Cortes and Vapnik, 1995], that involves querying the instance closest to the linear

decision boundary. This last approach is analogous to uncertainty sampling with a probabilistic

binary linear classifier, such as logistic regression or naive Bayes [Kosmopoulos et al., 2008].

2.2.2.2. Query-By-Committee

The query-by-committee (QBC) framework [Seung et al., 1992; Freund et al., 1997; Fine et al.,

2002] is similar to uncertainty sampling, but is distinguished by using an ensemble of experts to

select instances for annotation. In QBC, a committee of learned models is trained using the

labeled data and a querying function is derived through a voting mechanism. The QBC approach

involves maintaining a committee C of models which are all trained on the current labeled set L,

but represent competing hypotheses. Each committee member is then allowed to vote on the

labelings of query candidates. The most informative query is considered to be the instance about

which they most disagree. The basic principle of QBC approach is to minimize the version

space. Version space is the set of hypotheses that are consistent with the current labeled training

data L. If machine learning is considered as the search for the best model within the version

space, then the aim of active learning is to limit the size of this space as much as possible with as

few labeled instances as possible in order to make the search more precise. QBC does exactly

this by querying in controversial regions of the version space.

Two things are necessary in a QBC framework, one is to construct a committee of models that

approximate different regions of the version space and the other is to have some measure of

disagreement among them. Seung et al. (1992) accomplish the first task simply by sampling a

committee of two random hypotheses that are consistent with L. For generative model classes,

this can be done more generally by randomly sampling models from some posterior distribution

2 REVIEW OF LITERATURE

21

P(θ|L). For example, McCallum and Nigam (1998b) do this for naive Bayes by using the

Dirichlet distribution over model parameters, whereas Dagan and Engelson (1995) sample

HMMs by using the Normal distribution. For other model classes, such as discriminative or non-

probabilistic models, Abe and Mamitsuka (1998) have proposed query-by-boosting and query-

by-bagging, which employ the well-known ensemble learning methods boosting [Freund and

Schapire, 1997] and bagging [Breiman, 1996] to construct committees. Melville and Mooney

(2004) propose another ensemble-based method which encourages diversity among committee

members. For measuring the degree of disagreement, two main approaches have been proposed:

vote entropy [Dagan and Engelson, 1995] and average KL-divergence [McCallum and Nigam,

1998b]. There is no consensus on the appropriate committee size to use, which may in fact vary

by model class or application. However, even small committee sizes (e.g., two or three) have

been shown to work well in practice [Seung et al., 1992; McCallum and Nigam, 1998b; Settles

and Craven, 2008]. Aside from the QBC framework, several other query strategies attempt to

minimize the version space as well. For example, Cohn et al. (1994) describe a related selective

sampling algorithm for neural networks using a combination of the “most specific” and “most

general” models, which lie at two extremes the version space given the current labeled examples

in the training set L. Tong and Koller (2000) propose a pool-based query strategy that tries to

minimize the version space for support vector machine classifiers directly. The membership

query algorithms of Angluin (1988) and King et al. (2004) can also be interpreted as

synthesizing de novo instances that limit the size of the version space. However, Haussler (1994)

shows that the size of the version space can grow exponentially with the size of L. This means

that, in general, the version space of an arbitrary model class cannot be explicitly represented in

practice. The QBC framework, rather, uses a committee which is a subset-approximation of the

full version space.

2.2.2.3. Unreliability Sampling

Another recently developed strategy for designing a querying function is unreliability sampling

[Becker, 2008]. The basic premise of this framework is that instances should be selected which

have parameters which have not observed sufficient data for confident estimation. An early

instantiation of this method was active learning for syntactic parsing, where unlabeled instances

which cause the current parsing model to fail are used to request labels from the expert

2 REVIEW OF LITERATURE

22

[Thompson et al., 1999]. Following the same basic principles, this paradigm has been extended

for improvements in active learning for syntactic parsing [Becker and Osborne, 2005] and active

learning for machine translation [Haffari et al., 2009]. Recent work on confidence-weighted

active learning [Dredze and Crammer, 2008] applies a similar philosophy by selecting examples

with parameters possessing high variance during estimation. As opposed to uncertainty

sampling, which selects examples for which the prediction has low confidence, unreliability

sampling selects those instance for which an accurate measure of certainty cannot be computed.

2.2.2.4. Expected Model Change

A much more recently formalized approach for designing a querying function is to select

instances which exhibit the greatest expected model change [Settles and Craven, 2008] i.e. that

would impart the greatest change to the current model if we knew its label. As opposed to

selecting instances for which the learner is least confident, the expected model change selects

instance for which there is an expectation of significant change in between the current hypothesis

and the resulting induced hypothesis if the instance was labeled. This strategy was noted earlier

in the context of selecting instances for learning an SVM [Bordes et al., 2005], but without an

accurate estimate of model change, they relied on a margin-based uncertainty method. The

intuition behind this framework is that those instances will be preferred that are likely to most

influence the model (i.e., have greatest impact on its parameters), regardless of the resulting

query label. This approach has been shown to work well in empirical studies, but can be

computationally expensive if both the feature space and set of labelings are very large.

2.2.2.5. Estimated Error Reduction

A traditionally less popular strategy gaining increasing attention is the use of querying functions

which attempt to directly minimize the generalization error. Under this framework, each instance

is scored with respect to the expected reduction in future error if labeled and added to the

training data. This method is theoretically appealing as it attempts to directly minimize error, the

true task at hand. Although shown to be empirically effective, the drawback to querying by

expected error reduction is the computation required to estimate expected error and compute an

updated model for each possible labeling for each unlabeled instance. However, this approach

has been shown very successful when methods such as sub sampling the unlabeled pool with a

2 REVIEW OF LITERATURE

23

naive Bayes classifier [Roy and McCallum, 2001], exact incremental updates with Gaussian

random fields [Zhu et al., 2003], and approximate training methods with logistic regression [Guo

and Greiner, 2007].

Unfortunately, estimated error reduction may also be the most prohibitively expensive query

selection framework. Not only does it require estimating the expected future error over U for

each query, but a new model must be incrementally re-trained for each possible query labeling,

which in turn iterates over the entire pool. This leads to a dramatic increase in computational

cost. For some model classes such as Gaussian random fields [Zhu et al., 2003], the incremental

training procedure is efficient and exact thus making this approach fairly practical. For a many

other model classes, this is not the case.

A statistically well motivated querying function strategy is selecting instances which minimize

variance [Cohn et al., 1996]. Given the observation that expected generalization error can be

decomposed into bias and variance components [Geman et al., 1992], the variance minimization

strategy is to select instances for which once labeled and added to the training data will result in

the greatest reduction in variance and thus generalization error. As this approach is only feasible

for definitions of variance which are smooth and differentiable, it has only been applied to

problems such as regression and neural networks [Cohn et al.,1996]. Related and more

appropriate for the standard active learning settings is selection based upon the Fischer

information associated with a prediction [Zhang and Oles, 2000; Hoi et al., 2006; Settles and

Craven, 2008], which also require approximation techniques to calculate efficiently.

2.2.2.6. Density-Weighting Methods

One unfortunate property of many active learning querying functions is that they are relatively

noise intolerant, motivating the study of techniques which weigh instances by how representative

they are of the input distribution of the data, referred to as density-weighted querying functions.

Pre-clustering the data and selecting examples which represent each cluster has been

demonstrated a very successful for querying representative instances [Nguyen and Smeulders,

2004; Donmezet al., 2007; Xuet al., 2007]. These methods are particularly beneficial when

learning from only a few instances, which is done early in the active learning process. Density-

weighting formulations have also been studied for query-by-committee [McCallum and Nigam,

1998b] and in the context of sequence prediction [Settles and Craven, 2008]. The main idea is

2 REVIEW OF LITERATURE

24

that informative instances should not only be those which are uncertain, but also those which are

“representative” of the input distribution (i.e., inhabit dense regions of the input space).Fujiiet al.

(1998) explored a query strategy for nearest-neighbor methods that selects queries that are unlike

the labeled instances already in L, and most similar to the unlabeled instances in U.

2.2.3. Structured Outputs

Several important learning problems involve predicting structured outputs on instances, such as

sequences and trees. In these problems multiple local predictions must be combined to form a

coherent structure. These models have garnered significant interest in the NLP and other

application communities as they can effectively incorporate information from multiple sources

regarding many interdependent prediction tasks. As structured output labels are generally more

expensive to obtain, there has been a corresponding interest in reducing labeling requirements in

these settings. In the context of active learning, there has been some recent work regarding

learning in structured output spaces including work on active learning for HMMs [Dagan and

Engelson, 1995; Scheffer and Wrobel, 2001;Anderson and Moore, 2005], CRFs [Culotta and

McCallum, 2005; Settles and Craven, 2008] and structured Perceptron [Roth and Small, 2006b].

More application targeted includes active learning for probabilistic context free grammars

(PCFGs) [Baldridge and Osborne, 2004; Hwa, 2004]. Also, closely related works for settings

more complex than binary classification include active learning for multiclass classification [Yan

et al., 2003; Brinker, 2004] and active learning for ranking data [Brinker, 2004; Donmez and

Carbonell,2008].

Active learning, most notably pool-based selection, has been applied to many NLP applications

including text/spam classification [Lewis and Gale, 1994; Liere and Tadepalli, 1997; McCallum

and Nigam,1998a; Schohn and Cohn, 2000; Tong and Koller, 2001; Hoi et al., 2006a; Schein

and Ungar, 2007; Dredzeand Crammer, 2008; Zhu et al., 2008a], chunking [Ngai and Yarowsky,

2000], part of speech tagging [Dagan and Engelson, 1995], named entity recognition [Scheffer

and Wrobel, 2001; Shen et al., 2004; Becker et al., 2005; Jones,2005; Kim et al., 2006; Vlachos,

2006; Tomanek et al., 2007; Laws and Schutze, 2008], information extraction [Thompson et al.,

1999; Scheffer et al., 2001; Finn and Kushmerick, 2003;Jones et al., 2003; Culotta and

McCallum, 2005; Culotta et al., 2006; Roth and Small, 2008; Settles and Craven, 2008],

prepositional phrase attachment [Hwa, 2004; Becker, 2008], syntactic parsing [Thompson et al.,

2 REVIEW OF LITERATURE

25

1999; Tang et al., 2002; Hwa, 2004; Becker and Osborne, 2005], word sense disambiguation

[Chen et al., 2006; Chan and Ng 2007; Zhu and Hovy, 2007], semantic role labeling (Roth and

Small, 2006b) and machine translation [Haffari et al., 2009; Haffari and Sarkar, 2009].

A framework and objective functions have been introduced for active learning in three

fundamental HMM problems: model learning, state estimation, and path estimation. In addition,

a new set of algorithms has been described for efficiently finding optimal greedy queries using

these objective functions. The algorithms are fast, i.e., linear in the number of time steps to select

the optimal query and we present empirical results showing that these algorithms can

significantly reduce the need for labelled training data [Anderson and Moore, 2005].

Many classification problems with structured outputs can be regarded as a set of interrelated sub-

problems where constraints dictate valid variable assignments. The standard approaches to these

problems include either independent learning of individual classifiers for each of the sub-

problems or joint learning of the entire set of classifiers with the constraints enforced during

learning. An intermediate approach has been proposed where these classifiers are learnt in a

sequence using previously learned classifiers to guide learning of the next classifier by enforcing

constraints between their outputs. A theoretical motivation has been provided to explain why this

learning protocol is expected to outperform both alternatives when individual problems have

different `complexity'. This analysis motivates an algorithm for choosing a preferred order of

classifier learning. This technique has been evaluated on artificial experiments and on the entity

and relation identification problem where the proposed method outperforms both joint and

independent learning. [Bunescu, 2008].

The success of interactive machine learning systems depends both on the machine and on the

human performance. An understanding of machine capabilities and limitations should inform

interaction design, while the abilities, preferences, and limitations of human operators should

inform the choice of inputs, outputs, and performance requirements of machine learning

algorithms. A relevant example from the past work is Arnauld system [Krzysztof and Daniel,

2005] for active preference elicitation. A lot of previous work in that area solicited user feedback

in the form numerical ratings over possible outcomes. However, unless the rating scale is well

grounded, people tend to be inconsistent and unreliable providing this type of feedback. What

works much more robustly is pairwise comparison queries, where the person only has to state

which of two possible outcomes he or she prefers [Krzysztof and Daniel, 2005]. Adopting this

2 REVIEW OF LITERATURE

26

input interaction, however, requires developing a new learning algorithm. In turn, to account for

the limitations of the algorithm, the example critiquing interaction [Pearl and Chen, 2009] has

been implemented to allow people to manually direct the learning once the active learning

process no longer resulted in rapid improvements in the model quality. Work has been done on

incorporating richer user feedback into interactive machine learning systems. Typically, machine

learning algorithms only solicit labels from the users but several projects e.g. [Gregoryet al.,

2007] have shown that incorporating richer feedback-that captures the user's rationale-leads to

faster and more generalizable learning. So far, this feedback has been limited to feature

relevance. Is this the best or the only type of rich feedback that can be elicited from users? A

preliminary study has been conducted in the context of preference elicitation for an e-commerce

application to understand what types of feedback people naturally provide, and what the value of

these different types of feedback might have for the speed and quality of learning. Specifically,

users were asked to answer a set of pair wise comparison questions regarding digital cameras and

their choices has been recorded as well as free form explanations of their choices.

End-user interactive concept learning is a technique for interacting with large unstructured

datasets, requiring insights from both human-computer interaction and machine learning. This

note re-examines an assumption implicit in prior interactive machine learning research i.e.

interaction should focus on the question “what class is this object?”.Amershi, S.et al (2010) have

broadened interaction to include examination of multiple potential models while training a

machine learning system. They evaluated this approach and found that people naturally adopted

revision in the interactive machine learning process and that this improved the quality of their

resulting models for difficult concepts.

M. Kristan et al (2009) have proposed a Gaussian-kernel-based online kernel density estimation

which can be used for applications of online probability density estimation and online learning.

This approach generates a Gaussian mixture model of the observed data and allows online

adaptation from positive examples as well as from the negative examples. The adaptation from

the negative examples is realized by a novel concept of unlearning in mixture models. Low

complexity of the mixtures is maintained through a novel compression algorithm. In contrast to

other approaches, this approach does not require fine-tuning parameters for a specific

application, they have not assumed specific forms of the target distributions and temporal

constraints have not been assumed on the observed data. The strength of the proposed approach

2 REVIEW OF LITERATURE

27

has been demonstrated with examples of online estimation of complex distributions, an example

of unlearning, and with an interactive learning of basic visual concepts.

Very recently there has been work on actively selecting examples with the intention of labeling

properties regarding features. The earliest example of this work is the tandem learning algorithm

where the expert iteratively queries the expert for instance labels and then feature labels. This

idea of labeling both instances and features simultaneously has been further pursued in the active

dual supervision model [Sindhwani et al., 2009]. Even more recently, the generalized

expectation criteria has been incorporated into the active learning framework to present instances

to the domain expert for the explicit purpose of incorporating domain knowledge by labeling

features [Druck et al., 2009]. The learning from measurements model [Liang et al., 2009] also

works along this vein by deriving a framework based on Bayesian experimental design to select

instances for which the largest expected information gain will be achieved if the feature is

labeled.

In most of the active learning research, queries are selected in serial, i.e., one at a time. However,

sometimes the training time required to induce a model is slow or expensive, as with large

ensemble methods and many structured prediction tasks. Consider also that sometimes a

distributed, parallel labeling environment may be available, e.g., multiple annotators working on

different machines at the same time on a network. In both of these cases, selecting queries in

serial may be inefficient. By contrast, batch-mode active learning allows the learner to query

instances in groups, which is better suited to parallel labeling environments or models with slow

training procedures.

Myopically querying the “N-best” queries according to a given instance-level query strategy

often does not work well, since it fails to consider the overlap in information content among the

“best” instances. To address this, a few batch-mode active learning algorithms have been

proposed. Brinker (2003) considers an approach for SVMs that explicitly incorporates diversity

among instances in the batch. Xu et al. (2007) propose a similar approach for SVM active

learning, which also incorporates a density measure. Specifically, they query cluster centroids for

instances that lie close to the decision boundary. Hoi et al. (2006a,b) extend the Fisher

information framework to the batch-mode setting for binary logistic regression. Most of these

approaches use greedy heuristics to ensure that instances in the batch are both diverse and

informative, although Hoi et al. (2006b) exploit the properties of submodular functions to find

2 REVIEW OF LITERATURE

28

near-optimal batches. Alternatively, Guo and Schuurmans (2008) treat batch construction for

logistic regression as a discriminative optimization problem, and attempt to construct the most

informative batch directly. For the most part, these approaches show improvements over random

batch sampling, which in turn is generally better than simple “N-best” batch construction.

In some learning problems, the cost of acquiring labeled data can vary from one instance to the

next. If our goal in active learning is to minimize the overall cost of training an accurate model,

then reducing the number of labeled instances does not necessarily guarantee a reduction in

overall labeling cost. One proposed approach for reducing annotation effort in active learning

involves using the current trained model to assist in the labeling of query instances by pre-

labeling them in structured learning tasks like parsing [Baldridge and Osborne, 2004] or

information extraction [Culotta and McCallum, 2005]. However, such methods do not actually

represent or reason about labeling costs. Instead, they attempt to reduce cost indirectly by

minimizing the number of annotation actions required for a query that has already been selected.

Another group of cost-sensitive active learning approaches explicitly accounts for varying label

costs in active learning. Kapoor et al. (2007) propose one approach that takes into account both

labeling costs and estimated misclassification costs. In this setting, each candidate query is

evaluated by summing the labeling cost for the instance and the expected future misclassification

costs that would be incurred if the instance were added to the training set. Instead of using real

costs, however, their experiments make the simplifying assumption that the cost of labeling a

voice mail message is a linear function of its length (e.g., ten cents per second). King et al.

(2004) use a similar active learning approach in an attempt to reduce actual labeling costs. They

describe a “robot scientist” which can execute a series of autonomous biological experiments to

discover metabolic pathways, with the objective of minimizing the cost of materials used (i.e.,

the cost of an experiment plus the expected total cost of future experiments until the correct

hypothesis is found).

As previously stated, the primary research issue for active learning is the design of an

appropriate querying function. However, it is possible that different querying functions work

better for different regions of the active learning cycle. For example, a querying function using

density-weighted selection is very helpful for initial queries, but uncertainty sampling is more

effective once the classifier is relatively stable [Donmez et al., 2007]. Baram et al. (2004)

examine scenarios where several querying functions are employed by being cast in the multi-

2 REVIEW OF LITERATURE

29

armed bandit framework, where querying functions are selected which explicitly follow an

exploration and exploitation cycles. In addition to selecting appropriate querying functions for

different operating regions, as the overall goal of active learning is to reduce total annotation, it

is also useful to know when maximal performance is achieved such that unnecessary actions will

be avoided, referred to as a stopping criterion [Schohn and Cohn, 2000; Campbell et al., 2000;

Tomanek et al., 2007; Vlachos, 2008; Dimitrakakis and Savu-Krohn, 2008; Laws and Schutze,

2008; Zhu et al., 2008a,b]. The critical aspect of deriving a stopping criterion is a method for

autonomously determining the performance of the current learner hypothesis (i.e. without

development or testing data). Other works have used a self-estimated measure of active learning

performance to determine different operating regions which require different querying functions

to be most effective [Baram et al., 2004; Donmez et al., 2007; Roth and Small, 2008].

Chapter 3

Background

3 BACKGROUND

30

This chapter discusses concepts that are relevant to the work presented in this thesis. The

sections that follow discuss basic concepts about supervised machine learning and active

learning. Section 3.1 discusses basics of supervised learning as well as the terminology and the

procedure used in supervised learning algorithms. It provides an idea about version space and

feature space and explains two important examples of supervised learning: classification and

regression. Section 3.2 discusses machine learning for complex problems i.e. learning structured

instances and learning pipeline models. Section 3.3 discusses pool-based active learning.

3.1. Supervised Learning

Supervised learning [Kotsiantis, 2007] is the machine learning task in which the algorithms

reason from externally supplied instances to produce general hypothesis, which then make

predictions about future instances. It is the task of deriving a function from labeled training data.

In the supervised machine learning problem a function maps the inputs to the desired outputs by

determining to which class among a set of classes a new input belongs to. This is done with the

help of the training data which consists of the instances with labelled output i.e. known class.

The training data is a collection of training examples. The training examples are in the form of

pairs that consist of input x and a desired output value y. The job of supervised learning

algorithms is analyzing the training data and producing a function. This function can take two

forms i.e. is can be a classifier if the output is discrete or it can be called as a regression function

in case the output is continuous. The system is provided with labelled instances represented as

(x, y) and the objective of supervised learning systems is to determine the label y for each new

input x that it sees in future. When y is a real number, the task is called regression, when it is a

set of discrete values, the task is called classification. For any valid input, the derived function

should be able to predict the correct output value. In order to be able to predict the correct output,

the learning algorithm should have to generalize from the labelled training data to unseen

situations in a reasonable way. Supervised learning is the learning based on training data. The

datasets used by machine learning algorithms consists of a number of instances that are

represented using the same set of features. In supervised learning the instances are given with

known labels (the corresponding correct outputs) in contrast to unsupervised learning, where

instances are unlabeled.

3 BACKGROUND

31

As stated earlier, in supervised machine learning a function maps the inputs to the desired

outputs by determining which of a set of classes a new input belongs to. The mapping function

can be represented by f. h denotes the hypothesis about the function to be learned. Inputs are

represented as X = (x1, x2,…, xn) and outputs as Y=(y1, y2,…., yn) [Nilsson, 2005]. Therefore,

hypothesis or the prediction function can be written as

 h : X Y

h is the function of vector-valued input and is selected on the basis of training set of m input

vector examples i.e.

X =(x1,x2,…, xn) h(X)

Training set = { X1, X2,…., Xm}

Therefore, the predicted value can be given as

y = h(x) = argmaxy’ϵYf(x, y’)

3.1.1. Terminology

The variables used in supervised machine learning are:

• x1, x2, and so on represent the input values, and X represents the input domain, such that

x ϵ X.

• y1, y2, and so on represent the output values, and Y represents the output space, such that

y ϵ Y.

• There are a number of different types of machine learning problems which can be defined

by the output space i.e., binary classification in which case Y = {-1, 1}, regression in

which case Y = R, multiclass classification in which case Y = {w1, w2,..., wk}.

• The probability distribution from which the supervised data is drawn is represented by

DX*Y

h

3 BACKGROUND

32

• Φ represents the feature vector generating procedure. Input to this function is the

members of the input space X and returns a d-dimensional feature vector x ϵ Rd. This

vector is then used as the input by the learning algorithm.

 Φ : X Φ (X)

where, Φ (X) represents the input domain after Φ is applied to all the members x ϵ X.

• H represents the hypothesis space used by a machine learning system which is defined as

the set of all possible hypotheses that the machine learning system can return. It is

denoted as

 H :Φ (X) Y

and the learned hypothesis h is selected from H,

 h ϵ H

• L represents the loss function which can be defined as a function which measures the

difference between estimated and the true values for some data element and in case of

machine learning it can be defined as the measure of divergence between two output

elements. The frequently used loss function in learning problems is the 0-1(zero-one) loss

function L(y’,y) = 1 if y’ is not equal to y and 0 otherwise.

• S represents the training sample drawn from the probability distribution DΦ(X)*Y

 S = {(xi, yi)} where i = 1 to m.

After defining all the variables, we can now easily provide a proper definition of a machine

learning algorithm or a learner. A machine learning algorithm can be defined as an algorithm

which when provided with a hypothesis space H, a loss function L, and a training set S of m

training examples drawn from a probability distribution DΦ(X)xY, returns a hypothesis function ĥϵ

H that minimizes the expected loss L on a randomly drawn example from DΦ(X)*Y ,

ĥ= argminh’ϵH E(x,y)~DΦ(X)*Y (L(h’(x),y)).

In theoretical terms, we would wish to design the above mentioned algorithm however in

practical situations it becomes infeasible to develop such algorithms. In practical situations the

3 BACKGROUND

33

algorithms actually minimize the empirical loss since only a finite set of training examples are

given and DΦ(X)*Y is unknown. In such cases the learning algorithm returns the hypothesis h as,

ĥ = argminh’ ϵ H Σ L(h’(xi),y) where i = 1 to m

Zero-one loss function L0/1 forms the basis of classification therefore minimizing this function

makes much sense however it becomes intractable for the linear classifiers. Therefore, instead of

minimizing the ideal loss function a number of learning algorithms minimize a differentiable

function as a substitute for the ideal loss function. Margin-based algorithms [Allwein et al.,

2000; Pelossof et al., 2010] are an example of such algorithms. The terms used in such learning

algorithms are discussed as under:

• F represents a set of hypothesis scoring functions i.e.

 F : Φ(X) * Y R such that ŷ= h(x) = argmaxy’ϵYfy’ (x).

• ρ represents the margin of an instance. It is a non-negative real-valued function

which is equal to 0 if and only if ŷ = y and its magnitude is related to the

confidence of a prediction ŷ for the given input x relative to a specific hypothesis

h.

 ρ :Φ(X) * Y* F R+

• L :ρ R+ represents the margin-based loss function which measures the

difference between the predicted output and the true output based upon its margin

relative to a specified hypothesis.

Thus the margin-based algorithms return a hypothesis scoring function ḟ ϵ F which minimize the

empirical loss over the training examples to select a hypothesis scoring function

ḟ = argminf’ ϵ F Σ L (ρ(x,y,f’))

3.1.2. Version Space and Feature Space

In this section we provide some idea about the version space and the feature space. A version

space [Mitchell, 1977; Herbrich et al., 2004]can be defined as the set of hypotheses within a

given hypothesis space H that are consistent with the observed training examples. It can also be

defined as the subset of all hypotheses which can label every instance from a given sample

correctly. Version space provides an important framework for active learning.

3 BACKGROUND

34

Version space can be represented by two sets of hypotheses. The first one is called most specific

consistent hypotheses, and the other one is called the most general consistent hypotheses. In both

these types the term "consistent" means that the hypotheses are consistent with the observed

data. The most specific hypotheses include all the positive training instances, and as small area

of the remaining feature space as possible. If these hypotheses are further reduced, then a

positive training instance will be excluded and the hypotheses will become inconsistent. The

most general hypotheses include the positive instances and as much of the remaining feature

space as possible without including any negative instance. If these hypotheses are enlarged any

further, then a negative instance will be included making the hypotheses inconsistent. Figure 3.1

[Dubois et al., 2002] shows the two hypotheses sets in version space. GB stands for general

boundary and SB stands for specific boundary.

Figure 3.1: Version Space

Further we can call a hypothesis h as being consistent with a training sample S if and only if h(x)

= y for each (x,y) ϵ S. Also, if we have a hypothesis space H and a training sample S then the

version space V with respect to H is the set of all hypotheses h ϵ H which are consistent with S.

3 BACKGROUND

35

As stated earlier in this chapter, Φ represents the feature vector generating procedure. Input to

this function is the members of the input space X and returns a d-dimensional feature vector x ϵ

Rd , i.e.

 Φ(x) x

In machine learning, a feature can be defined as a measurable property of an item or a

phenomenon under observation and a feature vector can be defined as an n-dimensional vector of

numerical features representing some item or the set of features of a given data instance.

Machine learning problems require a lot of processing and statistical analysis. Therefore in order

to facilitate such analysis machine learning algorithms need numerical features or numerical

representation of items. For example, in case of representing an image, the feature values

correspond to the pixels and in case of text they correspond to the term occurrence frequencies.

Thus we can define feature space as the space associated with these feature vectors.

3.1.3. Supervised Machine Learning Procedure

For solving any problem the supervised machine learning algorithm follows a number of steps.

This section discusses each of these steps.

� The first and foremost step is the collection of the data required for solving a particular

problem. It consists of identifying all the important features or attributes that are most

relevant to the problem under study.

� The second step is the pre-processing [Zhang et al., 2002] of data. The data collected in

the first step is not directly suitable for training and therefore requires some processing

before it can be used for example it may have missing feature values or noise. A number

of pre-processing methods have been developed and the decision of deciding which one

to use varies according to the situations. If the collected data contains some missing

features then a method for handling missing data [Batista & Monard, 2003] is used.

Similarly, there are methods for detecting and handling noise [Hodge &Austin, 2004].

� The third step is feature subset selection. It consists of recognizing and eliminating the

features that are redundant or that are not relevant for the problem under study [Yu &

Liu, 2004]. It increases the efficiency of the learning algorithms by decreasing the

3 BACKGROUND

36

dimensionality of the data. In order to develop more accurate and efficient classifiers a

process called feature construction is used. In this process new features are constructed

from the existing basic features [Markovitch & Rosenstein, 2002] in situations where

many features depend on one another.

� The fourth step is evaluating the accuracy of the classifier. This step decided whether the

classifier is fit to be used or some modifications are required. The evaluation of the

classifier depends on the prediction accuracy (Number of correct predictions / Total

number of predictions). The classifier’s accuracy can be estimated in three ways:

i. First one is the splitting of the training set and using two-thirds for training and

the other third for estimating performance.

ii. Second one is called cross-validation. In this technique mutually exclusive and

same-sized subsets are created by dividing the training set. For each subset the

classifier is trained on the union of all the other subsets. Using this technique the

error rate of the classifier is calculated by the average of the error rate of each

subset.

iii. Third one is called leave-one-out validation. It is a type of cross validation in

which all the test sets contain single instance.

If the error rate evaluation shows that the classifier is not efficient enough or is unacceptable then

the algorithm returns to previous stage and some factors are examined again for example features

are checked again to eliminate irrelevant features, or the size of training set is checked again.

Some other problems that might occur include too high dimensionality of the problem or

imbalanced dataset [Japkowicz & Stephen, 2002]. However, if the evaluation shows satisfactory

results then the classifier is available for use.

3.1.4. Examples of Supervised Machine Learning: Classification and Regression

Among many other learning examples, classification and regression are two important

supervised learning problems. This section discusses each of these techniques with examples. As

discussed earlier, the training data in supervised learning is a collection of training examples.

The training examples are in the form of pairs that consist of input x and a desired output value

3 BACKGROUND

37

y. The job of supervised learning algorithms is analyzing the training data and producing a

function. This function can take two forms i.e. is can be a classifier if the output is discrete or it

can be called as a regression function in case the output is continuous. The system is provided

with labelled instances represented as (x, y) and the objective of supervised learning systems is

to determine the label y for each new input x that it sees in future. When y is a real number, the

task is called regression, when it is a set of discrete values, the task is called classification.

Classification

In machine learning, we can define classification [Michie et al., 1994] as the task of determining

to which class among a set of classes a new input belongs. This is done with the help of the

training data which contains the instances whose class is known. In classification, there are a

number of classes and the goal is to develop a rule that classifies a new input into one of the

existing classes. Classification is an example of supervised learning and its corresponding

unsupervised method is called clustering in which there are a set of observations and the goal is

to establish the existence of clusters or classes in the data i.e. the data is grouped into categories

based on some measure of similarity. The algorithm that is used for classification is called a

classifier. The word "classifier" can be also used to represent the function implemented by a

classification algorithm that maps input data to a given class. There are certain issues which must

be taken care of while developing a classifier such as accuracy, speed, comprehensibility, and

time to learn a classification rule.

Classification can be either binary classification or multiclass classification. Binary classification

consists of only two classes. In multiclass classification an object can be assigned to any one of a

number of classes. An example of binary classification is the classification of customers in the

bank loan application. In this example, the input to the classifier is the information about the

customer and the goal of the classifier is to assign the input to one of the two classes i.e. low-risk

and high-risk customers. The information about the customer may include his income, savings,

age, profession, past financial history and so on. In this example, a classification rule learned is

of if-then type i.e., if the customer income is greater than some particular amount and his savings

are greater than some particular amount than the customer can be classified into low-risk class

else the customer will be classified into high-risk class. Such an example is called a discriminant

3 BACKGROUND

38

function which separates the examples of different classes. This function involves prediction i.e.

when a rule fits the past data then correct predictions can be made for new examples. In some

cases, instead of making a 0/1 (low-risk/high-risk) type decision, we may want to calculate a

probability, namely, P(Y|X), where X are the customer attributes and Y is 0 or 1 respectively for

low-risk and high-risk. From this perspective, we can see classification as learning an association

from X to Y. Then for a given X = x, if we have P(Y = 1|X = x) = 0.8, we say that the customer

has an 80 percent probability of being high-risk, or equivalently a 20 percent probability of being

low-risk. We then decide whether to accept or refuse the loan depending on the possible gain and

loss.

There are a number of classification algorithms that have been developed. These include Fisher's

linear discriminant, Logistic regression, Naive Bayes classifier, Perceptron, Support vector

machines, Least squares support vector machines, k-nearest neighbour, Decision trees, Random

forests, Neural networks, Bayesian networks, and Hidden Markov models.

Regression

Regression can be defined as a technique that is used for calculating the relationships between

variables i.e. the relationship between a dependent variable and one or more independent

variables. In other words we can say that the process of regression depicts the changes in the

values of a dependent variable by varying the value of one of the independent variables while the

other independent variables are kept fixed. In machine learning, regression can be defined as a

technique that is used to fit an equation to a dataset. The simplest type of regression technique is

linear regression. In this form of regression the formula of straight line is used i.e. y = mx + b

and the suitable values for m and b are estimated in order to predict the value of y on the basis of

a given value of x. Another form of regression is called multiple regression. In this technique

more than one input variable is used that fits more complex models, such as a quadratic equation.

Applications of regression are prediction and forecasting. There are a number of techniques for

using regression. Least squares regression and linear regression are parametric methods. It means

the function is described in terms of a finite number of unknown parameters that are estimated

from the data. Another form of regression is nonparametric regression in which the regression

function is allowed to lie in a specified set of functions, which may be infinite-dimensional. In

3 BACKGROUND

39

order to explain the regression technique we can take the example of a system that should be able

to predict the price of a car. Inputs to the system are the car attributes such as engine capacity,

mileage, brand and so on which show the worth of the car. The output is the price of the car.

Such problems where the output is a number are regression problems. Let X denote the car

attributes and Y be the price of the car. Again surveying the past transactions, we can collect a

training data and the machine learning program fits a function to this data to learn Y as a function

of X. The function is of the form y = wx+ w0 for suitable values of w and w0.

Regression and classification are both problems of supervised learning. In these problems, there

is an input X and an output Y and the goal is to learn a mapping from input to the output.

Machine learning uses an approach that assumes a model defined up to a set of parameters, i.e. y

= g(x|θ)where g(·) is the model and θ are its parameters. Y is a number in regression and is a

class code (e.g., 0/1) in the case of classification. g(·)is the regression function or in

classification, it is the discriminant function separating the instances of different classes. The

machine learning program optimizes the parameters, θ, such that the approximation error is

minimized, that is, our estimates are as close as possible to the correct values given in the

training set.

3.2. Machine Learning for Complex Problems

In the beginning of this chapter in Section 3.1, we have described the general framework of

supervised machine learning. However, in practical environments when we want to apply

machine learning to various complex problems like information extraction, a single function

cannot be used to carry out the task efficiently. For example, in case of relation extraction, it is

not possible for a single function to accurately identify all of the named entities and relations

within a sentence. Consider the sentence given in Figure 3.2 in which we need to extract all the

entities and label the relations between the entities.

3 BACKGROUND

40

Jake works in Calgary, Alberta with his brother Micheal.

Entity detection

{Jake, Calgary} works_in

{Jake, Micheal} brother_of

{Calgary, Alberta} located_in

{Jake, Alberta} works_in

Relation detection

Figure 3.2: Entity and Relation detection from text

In such cases, a more practical approach is to learn a complex model which divides the learning

problem into a number of sub problems and then reassembles them to return a predicted global

annotation.

3.2.1. Learning Structured Instances

One of the important methods for solving complex problems is learning in structured output

spaces. In this method, a number of local learners trained which then return a predicted global

structure. Examples of such a classifier include structured support vector machines

[Tsochantaridis et al., 2004], hidden markov model [Rabiner, 1989], that illustrates a generative

model for learning sequential structures, conditional random fields [Lafferty et al., 2001],

structured perceptron [Collins, 2002], and max-margin markov networks [Taskaret al., 2003],

and constrained conditional model. A number of machine learning problems involve learning

from structured instances. One of the most important problem among them is sequence labeling.

A lot of learning applications involve labeling and segmenting sequences. For example, if we

have to do information extraction on some piece of text or identify genes in DNA. Figure 3.3(a)

shows an example of information extraction problem as a sequence labeling task. Let x =

(x1,….,xT) represent the sequence on which information extraction is to be applied and y =

(y1,…., yT) be the sequence of labels that are given to each observation in the sequence. The

labels specify whether a given word belongs to a particular entity class of interest (person,

 Jake PERSON Calgary LOCATION Alberta LOCATION Micheal PERSON

3 BACKGROUND

41

organization and location) or not (null).For sequence-labeling problems like information

extraction, labels are typically predicted by a sequence model based on a probabilistic finite state

machine, such as the one shown in Figure 3.3(b)

x = Jake works in Calgary, Alberta with his brother Micheal.

y = person null null location location null null person person

 (a)

 Jake

 works

 brother Micheal

his

 Calgary Alberta

 with

in

 (b)

Figure 3.3: (a) Information Extraction as Sequence Labeling (b) sequence model

representing a finite state machine

The two important examples of structured output spaces classifiers are hidden markov models

and structured support vector machines.

Hidden Markov Model (HMM)

The language models have been developed in the beginning of 20th Century when Andrei

Markov used language models (Markov Models) to model letter sequences in works of Russian

literature. Language models assign probabilities to strings of symbols. It assigns a probability to

a piece of unseen text, based on some training data. These models are used for word prediction

i.e. predicting the next word from the previous words by computing probability of the words. A

language model assigns the probability to a sequence of m words P(w1, w2,…., wm) by means

Start
person

null
location

3 BACKGROUND

42

of a probability distribution. It is used in many natural language processing applications such as

speech recognition, machine translation, part-of-speech tagging, parsing and information

retrieval, optical character recognition and data compression.

A Markov Model is a stochastic model that assumes the Markov Property. Markov Property

refers to the memory less property of a stochastic/random process. A stochastic process has the

Markov Property if the conditional probability distribution of future states of that process

depends only upon the present state, not on the sequence of events that preceded it. Markov

models are the class of probabilistic models that assume that we can predict the probability of

some future unit without looking too far into the past i.e. the probability of the word depends

only on the previous word [Jurafsky and Martin, 2008]. The simplest Markov model is the

Markov Chain. It is a mathematical system that undergoes transitions from one state to another,

between a finite or countable number of possible states. It is a random process characterized as

memory less: the next state depends only on the current state and not on the sequence of events

that preceded it.

Hidden Markov Model [Rabiner, 1989] is a Markov Chain for which the state is only partially

observable. In other words, observations are related to the state of the system but they are

typically insufficient to precisely determine the state. HMM is a statistical Markov Model in

which the system being modeled is assumed to be a Markov process with unobserved (hidden)

states. An HMM can be considered as the simplest Bayesian network. In a regular Markov

Model, the state is directly visible to the observer, and therefore the state transition probabilities

are the only parameters. In an HMM the state is not directly visible, but output, dependent on the

state, is visible. Each state has a probability distribution over the possible output tokens.

Therefore, the sequence of tokens generated by an HMM gives some information about the

sequence of states. In a Hidden Markov Model the word “hidden” refers to the state sequence

through which the model passes, not to the parameters of the model. Even if the model

parameters are known exactly the model is still hidden.

Structured Support Vector Machines (Structured SVM)

In machine learning, support vector machines are supervised learning models with associated

learning algorithms that analyze data and recognize patterns, used for classification and

regression analysis. SVM’s are considered among the best supervised learning algorithms. In the

3 BACKGROUND

43

basic SVM the algorithm takes the inputs and makes the prediction about each input example

and classifies it into one of the two possible classes. SVMs have been developed by Vapnik

(1995) and are gaining popularity due to many attractive features, and promising empirical

performance. Support Vector Machines for Classification and regression have been developed

[Gunn, 1998]. SVM’s have been shown as the maximum likelihood estimate of a class of

probabilistic models [Franc et al., 2011]. SVM's are intuitive, theoretically well- founded, and

have shown to be practically successful. SVM's have also been extended to solve regression

tasks (where the system is trained to output a numerical value, rather than yes/no classification)

[Boswell, 2002].

The structured support vector machine [Nawozin and Lampert, 2011] is a machine learning

algorithm that generalizes the SVM classifier. SVM classifier is used for binary classification,

multiclass classification and regression, and the structured SVM is used for allowing training of

a classifier for general structured output labels. Generalization of multiclass Support Vector

Machine learning has been proposed that involves features extracted jointly from inputs and

outputs. The resulting optimization problem has been solved efficiently by a cutting plane

algorithm that exploits the sparseness and structural decomposition of the problem. The

versatility and effectiveness of the method have been demonstrated on problems ranging from

supervised grammar learning and named-entity recognition, to taxonomic text classification and

sequence alignment [Tsochantaridis et al., 2004]. Structured SVM’s have also been used for

other natural language processing applications like speech recognition [Zhang and Gales, 2011].

Structured support vector machines (SVMs) have been examined for noise robust speech

recognition and the features based on generative models have been used, which allows model-

based compensation schemes to be applied to yield robust joint features. The performance of the

approach has been evaluated on a noise corrupted continuous digit task: AURORA 2.

3.2.2. Learning Pipeline Models

Another example of a complex model is a pipeline model. It has been applied to a number of

applications successfully. In pipelining, the overall process is divided into a sequence of

classifiers in such a way that each stage of the pipeline uses the output of the previous stage as its

input and determines the prediction. Pipelining is a process in which a complex task is divided

into many stages that are solved sequentially. A pipeline is composed of a number of elements

3 BACKGROUND

44

(processes, threads, co routines, etc.), arranged in such a way so that the output of each element

is fed as input to the next in the sequence. Many machine learning problems are also solved

using a pipeline model. Pipelining plays a very important role in applying the machine learning

solutions efficiently to various natural language processing problems. The use of pipelining

results in the better performance of these systems. A number of natural language processing

applications have been carried out using pipeline models e.g. information extraction [Yu and

Lam, 2010], dependency parsing and named entity recognition [Bunescu, 2008], and so on.

For explaining the process of pipelining we will again take an example of entity extraction as in

Section 3.2. We will consider a sentence as shown in Figure 3.4. In this case, instead of making

several local predictions regarding both segmentation and classification for each word and

assembling them into a global prediction, a pipeline model would first learn an entity

identification (segmentation) classifier and use this as input into an entity labeling classifier,

which is then assembled into a two stage pipeline system.

 Jake works in Calgary, Alberta

 [Jake]works in [Calgary] [Alberta]

 [Jake]person works in [Calgary]location [Alberta]location

Figure 3.4: Pipelined Named Entity Recognition

The primary requirement of a pipeline model is that the feature vector generating procedure for

each stage is able to use the output from previous stages of the pipeline, Φ(j)(x, y(0),…, y(j-1)).To

 Segmentation

Named Entity Classification

3 BACKGROUND

45

train a pipeline model, each stage of a pipelined learning process takes m training instances S(j) =

{(x1
(j),y1

(j)),…, (xm
(j),ym

(j))} as input to a learning algorithm A(j) and returns a classifier, h(j), which

minimizes the respective loss function of the jth stage. Once each stage of the pipeline model

classifier is learned, global predictions are made sequentially with the expressed goal of

maximizing performance on the overall task, resulting in the prediction vector ŷ = h(x) =

[argmax fy’
(j)(x(j))] where j=1 to J and y’ ϵ Y(j).

3.3. Pool-Based Active Learning

Until now we have been discussing supervised machine learning models. These models have

been traditionally trained on whatever labeled data is made available to them. However,

supervised methods have a number of disadvantages. One of the main disadvantages of using

supervised methods is the high cost associated with them as they require large amounts of

annotated data. Active learning [Settles, 2010] provides a way to reduce these labeled data

requirements. These algorithms are capable of collecting new labeled examples for annotation by

making queries to the expert. Active learning can reduce labeling effort required to train such

models by allowing the learner to choose the instances from which it learns. There are different

circumstances in which the learner may be able to ask queries. The learner may construct its own

examples (membership query synthesis), request certain types of examples (pool-based

sampling), or determine which of the unlabeled examples to query and which to discard

(selective sampling).In active learning, the learner examines the unlabeled data and then queries

only for the labels of instances which it considers to be informative. Therefore, an active learner

learns only what it needs to in order to improve, thus reducing the overall cost of training an

accurate system. Figure 3.6 [Settles, 2010] shows pool-based active learning.

In active learning the algorithm starts with a small number of labeled instances in the labeled

training set L. It then requests the labels for a few carefully selected instances from the unlabeled

pool U, learns from the query results, and then leverages its newly-found knowledge to choose

which instances to query next. In this way, the active learner aims to achieve high accuracy using

as few labeled instances as possible. There are many ways to select query instances, most of

which stem from the uncertainty principle in experimental design and statistics [Federov, 1972].

One strategy for pool-based active learning is uncertainty sampling [Lewis and Gale, 1994]. It

queries the instance that the model is least certain how to label. For probabilistic binary

3 BACKGROUND

46

classifiers, this means querying the instance x ϵ U with the posterior probability P(y = 1 | x; θ)

that is closest to 0.5 (i.e., the most ambiguous instance).

labeled training set

 induce a model

 L

 Inspect unlabeled

 Label new instances data

 HUMAN ANNOTATOR

 Select queries

 Unlabeled pool U

Figure 3.5: Pool-Based Active Learning

Machine learning

model

Chapter 4

Information Extraction and Machine
Learning- A Pipelined Approach

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

47

In Section 3.2 of previous chapter we briefly discussed machine learning for complex models i.e.

learning for structured instances and learning pipeline models. In this chapter, we discuss

pipeline models in detail. As stated earlier, the main interest of this work is the use of machine

learning techniques for natural language processing applications. Here we discuss the use of

machine learning for an important natural language application i.e. information extraction. In

Section 4.1 we provide an introduction about pipelining. In Section 4.2 we give a general

overview of the information extraction process along with an example to show how the process

will work. Section 4.3 discusses pipelining and machine learning and shows the steps of

pipelining using active learning. In Section 4.4 we discuss stages of information extraction used

in pipelining. In Section 4.5 we discuss various evaluation measures that are used to check the

efficiency of machine learning models.

4.1. Introduction

Pipelining is a process in which a complex task is divided into many stages that are solved

sequentially. A pipeline is composed of a number of elements (processes, threads, co routines,

etc.), arranged in such a way so that the output of each element is fed as input to the next in the

sequence. Many machine learning problems are also solved using a pipeline model. Pipelining

plays a very important role in applying the machine learning solutions efficiently to various

natural language processing problems. The use of pipelining results in better performance of

these systems. However, these systems usually result in considerable computational complexity.

A distinguishing feature of applications requiring pipeline models is that they often require

significant quantities of labeled data to learn accurately, motivating the study of active learning

in such scenarios. For this reason researchers were motivated for using active learning for these

systems. Reason of using active learning is that these algorithms perform better than the

traditional learning algorithms keeping the training data same. In this chapter we discuss an

active learning strategy for pipelining of an important natural language processing task i.e.

information extraction. The work described in this chapter has been previously published [Khan

and Quadri, 2012a].

 A number of natural language processing applications use machine learning algorithms. These

applications include parsing, semantic role labeling, information extraction, etc. Using a machine

learning algorithm for one natural language processing task often requires the output from

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

48

another task. Thus we can say these tasks are dependent on one another and therefore must be

pipelined together. Therefore, a pipeline organization is used to model such situations. The

benefit of using such an organization includes its ease of implementation and the main drawback

is accumulation of errors between the stages of the pipeline that considerably affects the value of

the results [Bunescu, 2008]. Pipelining has been used for a number of natural language

applications e.g. bottom-up dependency parsing [Chang et al., 2006], semantic role labeling

[Finkel et al., 2006]. A bidirectional integration of pipeline models has been developed as a

solution to the problem of error accumulation in traditional pipelines [Yu and Lam, 2010]. In this

chapter we show pipelining of information extraction. Although work has been done earlier in

this regard which show pipelining of entity detection and relation extraction stages of

information extraction. Here we theoretically discuss about including part-of-speech tagging

stage of information extraction into the pipeline.

4.1.1. An Example of Pipelining

The primary motivation for modeling complex tasks as a pipelined process is the difficulty of

solving such applications with a single classifier. For explaining the process of pipelining we

will take an example of entity extraction as in Section 3.2. We will consider a sentence as shown

in Figure 4.1. In this case, a pipeline model would first learn an entity identification

(segmentation) classifier and use this as input into an entity labeling classifier, which is then

assembled into a two stage pipeline system.

The primary requirement of a pipeline model is that the feature vector generating procedure for

each stage is able to use the output from previous stages of the pipeline, Φ(j)(x, y(0),…, y(j-1)). To

train a pipeline model, each stage of a pipelined learning process takes m training instances S(j) =

{(x 1
(j),y1

(j)),…, (xm
(j),ym

(j))} as input to a learning algorithm A(j) and returns a classifier, h(j), which

minimizes the respective loss function of the jth stage. Once each stage of the pipeline model

classifier is learned, global predictions are made sequentially with the expressed goal of

maximizing performance on the overall task, resulting in the prediction vector ŷ = h(x) =

[argmaxfy’(j)(x(j))] where j=1 to J and y’ ϵ Y(j).

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

49

 Jake works in Calgary, Alberta

 [Jake] works in [Calgary] [Alberta]

 [Jake]person works in [Calgary]location [Alberta]location

Figure 4.1: Pipelined Segmentation and Entity Detection

4.1.2. Why Active Learning

An important aspect of pipelined approaches is the corresponding high cost associated with

obtaining sufficient labeled data for good learning performance. The active learning protocol

minimizes this problem by allowing the learning algorithm to incrementally select unlabeled

examples for labeling by the domain expert with the goal of maximizing performance while

minimizing the labeling effort [Cohn et al., 1996]. While receiving significant recent attention,

most active learning research focuses on new algorithms as they relate to a single classification

task. This work instead assumes that an active learning algorithm exists for each stage of a

pipelined learning model and develops a strategy that jointly minimizes the annotation

requirements for the pipelined process. In active learning the learning algorithm is capable of

selecting additional instances to be labeled by maintaining access to the annotator. Thus active

learning provides a way to reduce the labeling costs by labeling only the most useful instances

for learning. Active learning reduces the amount of user effort required to learn a concept by

reducing the number of labeled examples required [Arora and Agarwal, 2007].In this learning

technique, the learner is responsible for actively participating in the collection of the training

examples i.e. obtaining the training set. The learner is capable of selecting a new input,

observing the resulting output and including the new example based on the input and output into

its training set. An important question that arises here is how to choose which input to try next

 Segmentation

Named Entity Classification

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

50

[Cohn et al., 1996]. The learner uses some strategies for choosing the examples. The examples

are chosen by making queries to the expert. The query strategy frameworks that have been used

are uncertainty sampling [Lewis and Gale, 1994] and query-by- committee [Seung et al.,1992].

4.2. Simple Architecture of Information Extraction

Information extraction (IE) can be defined as a process which involves automatic extraction of

structured information such as entities, relationships between entities, and attributes describing

entities from unstructured and/or semi-structured machine-readable documents [Sarawagi,

2008].It can also be defined as a process of retrieving relevant information from documents.

Applications of IE include news tracking [Turmo et al., 2006], customer care [Bhide et al.,

2007], data cleaning [Sarawagi and Bhamidipaty, 2002], and classified ads [Michelson and

Knoblock, 2005]. Figure 4.2 shows a simple architecture of information extraction system [Bird

et al., 2006]. The overall process of information extraction is composed of a number of subtasks

such as segmentation, tokenization, part of speech tagging, named entity recognition, relation

extraction, terminology extraction, opinion extraction, etc.

 Raw text

 sentences

 tokenized sentences

 pos-tagged sentences

 chunked sentences

 Relations

Figure 4.2: Simple Architecture of Information Extraction System

These subtasks of information extraction can be implemented using a number of different

algorithms e.g. list-based algorithms for extracting person names or locations [Watanabe et al.,

SENTENCE

SEGMENTATION

TOKENIZATION PART OF SPEECH

TAGGING

ENTITY DETECTION RELATION

DETECTION

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

51

2009], rule-based algorithms for extracting phone numbers or mail addresses, and advanced

machine learning and statistical approaches for extracting more complex concepts. Sentence

segmentation is the process of breaking the text into component sentences. It is the process of

determining the longer processing units consisting of one or more words. It consists of

recognizing sentence boundaries between words in different sentences. Since most written

languages have punctuation marks which occur at sentence boundaries, sentence segmentation is

frequently referred to as sentence boundary detection, sentence boundary disambiguation, or

sentence boundary recognition. All these terms refer to the same task: determining how a text

should be divided into sentences for further processing. Tokenization breaks the text into

meaningful elements such as words, symbols. It is the process of breaking up the sequence of

characters in a text by locating the word boundaries, the points where one word ends and another

begins. For computational linguistics purposes, the words thus identified are frequently referred

to as tokens. In written languages where no word boundaries are explicitly marked in the writing

system, tokenization is also known as word segmentation, and this term is frequently used

synonymously with tokenization. This is followed by part-of-speech tagging which labels these

tokens with their POS categories. An example of applying these steps to a piece of text is shown

below in Figure 4.3

Jake works in Calgary, Alberta with his brother Micheal.

Figure 4.3: Tokenization and Labeling

This is followed by entity detection. It is the process of identifying the entities having relations

between one another, e.g. considering the above sentence, entities are detected as follows:

Figure 4.4: Entity Detection

 Jake

NP

works

VB

in

 P

Calgary

NP

Alberta

NP

with

P

his

DET

brother

NP

Micheal

 NP

 Jake PERSON Calgary LOCATION Alberta LOCATION Micheal PERSON

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

52

Finally, after entities have been identified, the relations that exist between them are extracted in

the relation detection step as follows:

{Jake, Calgary} works_in

{Jake, Micheal} brother_of

{Calgary, Alberta} located_in

{Jake, Alberta} works_in

Using pipelining in modeling the process of information extraction has resulted in an increase in

efficiency. A lot of work has been done in this regard. Efficient information extraction pipelines

have been developed that have resulted in the efficiency gains of up to one order of magnitude

[Henning et al., 2011]. A pipeline-based system has been developed for automated annotation of

Surgical Pathology Reports [Kevin et al., 2004]. There has been a lot of research in the field of

information extraction using supervised machine learning. A number of supervised approaches

have been proposed for the task of relation extraction which consists of some feature based

methods [Kambhatla, 2004; Zhao and Grishman, 2005] and kernel methods [Lodhi et al., 2002;

Bunescu and Mooney, 2005]. However, supervised methods have a number of disadvantages.

First of all, we cannot extend these methods to define new relations between the entities due to

lack of new labeled data as supervised methods have a predefined set of labeled data. Same

problem occurs if we wish to extend the entity relations to higher order. Also for large input data

these methods are computationally infeasible [Bach and Badaskar, 2007]. One of the main

disadvantages of using supervised methods is the high cost associated with them as they require

large amounts of annotated data. Active learning [Settles, 2010] provides a way to reduce these

labeled data requirements. These algorithms are capable of collecting new labeled examples for

annotation by making queries to the expert. The main advantage of using pipelining is that when

the pipelining process starts the examples that are selected first are those that are needed at the

beginning phases of pipeline followed by those that are needed later.

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

53

4.3. Pipelining and Machine Learning

In the supervised machine learning problem a function maps the inputs to the desired outputs by

determining which of a set of classes a new input belongs to. This is determined on the basis of

the training data which contains the instances whose class is known e.g. classification problem.

The mapping function can be represented by f,h denotes the hypothesis about the function to be

learned. Inputs are represented as X = (x1, x2,…,xn) and outputs as Y=(y1, y2,…., yn) [Nilsson,

2005].Therefore, hypothesis or the prediction function can be written as

 h : X Y

h is the function of vector-valued input and is selected on the basis of training set of m input

vector examples i.e.

X =(x1,x2,…, xn) h(X)

Training set = { X1, X2,…., Xm}

Therefore, the predicted value can be given as

y = h(x) = argmaxy’ϵYf(x, y’)

In case of pipelining, we have different stages. Let there be N stages. Therefore, each stage n

depends on the previous (n-1) stages i.e.

x, y(0),…., y(n-1) x(n)

Therefore, in case of pipelining the predicted value can be written as

y = h(x) = [argmax f(n)(x(n), y’)]

where n = 1,…, N.

As discussed earlier in this chapter, active learning algorithms reduce the number of labeled

examples needed to learn any concept by collecting new unlabelled examples for annotation

[Thompson et al., 1999]. In active learning, the learner examines the unlabeled data and then

queries only for the labels of instances which it considers to be informative. Therefore, an active

learner learns only what it needs to in order to improve, thus reducing the overall cost of training

h

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

54

an accurate system. In active learning the algorithm starts with a small number of labeled

instances in the labeled training set L. It then requests the labels for a few carefully selected

instances from the unlabeled pool U, learns from the query results, and then leverages its newly-

found knowledge to choose which instances to query next. In this way, the active learner aims to

achieve high accuracy using as few labeled instances as possible. The examples are selected

from the unlabelled data source U and are then labeled and added to the set of labeled data L

[Settles, 2010]. Figure 4.5 shows the process of active learning [Settles, 2009]. The examples are

selected by making queries to the expert. There are many ways to select query instances, most of

which stem from the uncertainty principle in experimental design and statistics [Federov, 1972].

One strategy for pool-based active learning is uncertainty sampling [Lewis and Gale, 1994].It

queries the instance that the model is least certain how to label. For probabilistic binary

classifiers, this means querying the instance x ϵ U with the posterior probability P(y = 1 | x; θ)

that is closest to 0.5 (i.e., the most ambiguous instance). Query strategies that have been used

earlier are uncertainty sampling and query by committee [Seung et al., 1992]. In both these

strategies the point is to evaluate the informativeness of the unlabeled examples.

labeled training set

 induce a model

L Inspect unlabeled

 data

 Label new instances

HUMAN ANNOTATOR Select queries

 Unlabeled pool U

 Figure 4.5: Process of Active Learning

The most informative instance or best query is represented as x*
A, where A represents the query

selection method used [Settles, 2010]. In uncertainty sampling, the algorithm selects that

example about which it is least confident. In that case,

Machine learning

model

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

55

x*
LC = argmax 1- Pθ (y | x) [Culotta and McCallum, 2005]

This approach is often straightforward for probabilistic learning models. For example, when

using a probabilistic model for binary classification, an uncertainty sampling strategy simply

queries the instance whose posterior probability of being positive is nearest 0.5 [Lewis and Gale,

1994; Lewis and Catlett, 1994]. For many learning algorithms, a widely used method of

uncertainty sampling is to select instances for which their predicted label is least confident, either

from a probabilistic viewpoint or through a margin-based analogue [Lewis and Gale, 1994; Tong

and Koller, 2000; Schohn and Cohn, 2000; Culotta and McCallum, 2005; Roth and Small,

2006b; Settles and Craven, 2008].

In case of margin sampling,

x*
M= argmin Pθ(y1 | x) - Pθ(y2 | x) (1)

where y1 and y2 are first and second most probable class labels [Scheffer et al., 2001].

Another uncertainty sampling strategy that uses entropy as uncertainty measure,

x*
H = argmax - ΣiPθ(yi | x) log Pθ(yi | x) (2)

where yi represents all the class labels [Settles, 2010]

The entropy-based approach can be generalized easily to probabilistic multi-label classifiers and

probabilistic models for more complex structured instances, such as sequences [Settles and

Craven, 2008] and trees [Hwa, 2004].An alternative to entropy in these more complex settings

involves querying the instance whose best labeling is the least confident:

 ΦLC(x) = 1 – P(y* |x),

where y* = argmax P(y|x) is the most likely class labeling. This sort of strategy has been shown

to work well, for example, with conditional random fields or CRFs [Lafferty et al., 2001] for

active learning in information extraction tasks [Culotta and McCallum, 2005; Settles and Craven,

2008].

Scoring functions are also used for selecting the examples to be labeled or annotated. Scoring

functions are used for mapping an abstract concept to a numeric value. Here, the idea is to

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

56

calculate the score values for each instance to be labeled and the one with the minimum value is

selected i.e.

x* = argmin q(x)

where x is selected from the unlabeled data U. The key difference between active learning and

standard supervised learning is a querying function, which when provided with the data U and

the learned classifier h returns a set of unlabeled instance from U. These selected instances are

labeled and added to the supervised training set L used to update the learned hypothesis

Therefore, for each stage n of the pipeline, there is a separate querying function i.e. q(n) , and

after combining all these functions we get,

x*=argminΣq(n)(x)

where n = 1,.., N and x belongs to U and N is the total number of stages of a pipeline. The

pipelining process using active learning consists of the following steps:

a. As discussed earlier, each stage n of the pipeline has its own querying function q(n) and

learner l(n). First of all, for each stage n, the hypothesis function as well as the querying

function is estimated.

b. The unlabelled examples or instances are then selected by the learner from unlabeled data

U and after labeling are added to labeled data L for each stage n of the pipeline.

c. As L changes after annotation of new instances, hypothesis is modified accordingly for

each stage n.

d. The process is repeated until the final hypothesis is obtained after all the N stages of

pipeline have been completed.

4.4. Stages of Information Extraction used in Pipelining

Pipelining has been applied to information extraction earlier where the focus has been on entity

detection and relation extraction. But as far as part-of-speech tagging is involved, not much has

been done towards including it in the pipelining process of information extraction. Each stage of

a pipeline is dependent on the earlier stages. In pipelining of information extraction, entity

detection and relation detection highly depend on part-of-speech tagging. As discussed earlier,

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

57

part-of-speech tagging labels each word or phrase of a sentence with its POS category. It helps in

recognizing different usages of the same word and assigns a proper tag e.g. in the sentences

below the word “protest” has different usages:

The protest is going on. (Noun)

They protest against the innocent killings. (Verb)

Including part-of-speech tagging in the pipeline using active learning will result in the

performance gain as the machine learning methods used for part-of-speech tagging have resulted

in more than 95% accuracy. Moreover, in any natural language there are a number of words that

are part-of-speech ambiguous (about more than 40%) and in such cases automatic POS tagging

makes errors and hence require the use of machine learning techniques for tagging.

As discussed earlier, part-of-speech tagging labels each word or phrase of a sentence with its

POS category, entity detection identifies the entities having relationships between one another in

the sentence and relation detection extracts those relationships. Hence, in all these processes

sentences are selected and annotated for all stages of the pipeline.

4.4.1. Including POS Tagging in Pipelining

Part-of-speech tagging (POS tagging), also called grammatical tagging or word-category

disambiguation, is the process of marking up a word in a text (corpus) as corresponding to a

particular part of speech, based on both its definition, as well as its context i.e. relationship with

adjacent and related words in a phrase, sentence, or paragraph. Once performed by hand, POS

tagging is now done in the context of computational linguistics, using algorithms which associate

discrete terms, as well as hidden parts of speech, in accordance with a set of descriptive tags.

POS-tagging algorithms fall into two distinctive groups: rule-based and stochastic. E. Brill's

tagger, one of the first and widely used English POS-taggers, employs rule-based algorithms.

Different methods of POS tagging are Rule-Based POS tagging e.g., ENGTWOL [Voutilainen,

1995], transformation-based tagging e.g. Brill’s tagger [Brill, 1995], and stochastic

(probabilistic) tagging e.g. TNT [Brants, 2000]. POS tagging is used for a number of purposes

e.g. it can help in determining authorship i.e. finding out are any two documents written by the

same person (forensic linguistics) and it can help in speech synthesis and recognition. Labeling

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

58

natural language data with part-of-speech tags can be a complicated task, requiring much effort

and expense, even for trained annotators. Several efforts, notably the Alembic workbench [Day

et al., 1997] and similar tools, have provided interfaces to aid annotators in the process.

Automatic POS tagging of text using probabilistic models is mostly a solved problem but

requires supervised learning from substantial amounts of training data. Previous work

demonstrates the suitability of Hidden Markov Models for POS tagging [Kupiec, 1992; Brants,

2000]. More recent work has achieved state-of-the-art results with Maximum entropy conditional

Markov models (MaxEnt CMMs, or MEMMs for short) [Ratnaparkhi, 1996; Toutanova&

Manning, 2000; Toutanova et al., 2003]. Part of the success of MEMMs can be attributed to the

absence of independence assumptions among predictive features and the resulting ease of feature

engineering.

In this section we theoretically show how active learning would be applied to POS tagging. As

discussed earlier, first the informativeness of the unlabeled instances, sentences in our example,

would be evaluated. Sentences would be selected from the unlabeled data and annotated/labeled

by the annotator i.e. each word in the sentence would be tagged by its appropriate POS category.

The annotated sentences will then be added to the labeled data. In Query By Uncertainty (QBU)

approach, the informativeness of the unlabeled instances/examples is determined by evaluating

the entropy- a measure of uncertainty associated with a random variable. In our example, these

unlabeled instances are sentences. Therefore, we have to evaluate the entropy of sequence of

words wi in a sentence of length n, i.e.

H(w1,w2,…,wn) = -Σ p(w1,w2,..,wn) log p(w1,w2,…,wn)

From equation (2) we get,

x*
H = -Σ p(yi | x) log p(yi | x)

for each word wi of the sentence, posi represents the part-of-speech tag for that word. Thus, the

querying function for the part-of-speech tagging stage will be given as

qpos = -Σ p(posi | wi, yi, posi-1, posi-2) log p(posi | wi, yi, posi-1, posi-2)

where i = 1 to n and posi-1 and posi-2 represent the tags of previous two words.

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

59

4.4.2. Active learning for Entity and Relation Detection

For this stage too QBU approach will be used which selects those unlabeled examples/instances

about which the learner is least confident. According to equation (1), the best query in case of

multi class uncertainty sampling is given by

x*
M = argmin Pθ (y1 | x) - Pθ (y2 | x)

where y1 and y2 are the first and second most probable class labels. Accordingly, the querying

function for the entity and relation detection stage of information extraction can be given as

qERD = argmin p(y | xi) – p(y’| xi)

or

qERD = argmin [f(xi, y) – f(xi, y’)]

i = 1 to n and y and y’ are the first and second most probable class labels.

For all the stages, the performance would be calculated using three metrics i.e. precision, recall

and F-measure. For POS tagging, precision would be calculated as number of correctly retrieved

tags divided by the total number of retrieved tags. Recall would be calculated as number of

correctly retrieved tags divided by the actual number of tags. For entity detection, precision

would be calculated as the number of correctly extracted entities divided by the total number of

extracted entities and recall would be calculated as number of correctly extracted entities divided

by the actual number of entities. For relation extraction, precision would be calculated as the

number of correctly extracted relations divided by the total number of extracted relations and

recall would be calculated as the number of the correctly extracted relations divided by the actual

number of relations. F- Measure for all these stages is equal to 2*precision*recall / precision +

recall.

4.5. Evaluation Measures

This section outlines various evaluation measures that are used for checking how well a model

performs. For a particular label of interest, we are provided with a set of actual positives (e.g.,

objects that belong to that label) contained within the data set. The model then makes a set of

predicted positives (e.g., the objects it assigns to that label) for the same data set. The actual and

predicted label groupings can be thought of as indicator variables, and their cross product results

4 INFORMATION EXTRACTION AND MACHINE

in four important values: tp (the number

negatives), and fn (false negatives). Figure

these numbers. A basic evaluati

measure represents the fraction of objects tha

however, the data may be highly skewed, e.g., there might be nine times as many negative

objects as positives. In a case

that labels everything negative will still have accuracy = 0.9. In these situations, it is common

instead to use precision, P = tp

tp / tp+fn, the fraction of actual positives that are correctly predicted. Because of the inherent

trade-off between precision P and recall R, a summary statisti

/ P+R is commonly used when both are considered equally import

is the area under the Receiver Operating Characteristic (ROC) curve. An ROC curve measures

the rate of true positives vs. false positives as a threshold is varied across a measure of

confidence in its predictions (e.g., the model’s posterior probability of the target label). It is

regarded as a more appropriate measure than accuracy for some

[Provost et al., 1998]. The area under the curve AUROC, also cal

test, can be interpreted as the probability that the model will rank a randomly chosen positive

object higher than a randomly chosen negative.

Actual positives

 tn

Figure 4.6: A Venn diagram illustrating the relationship between actual and predicted

positives.

4 INFORMATION EXTRACTION AND MACHINE LEARNING- A PIPELINED APPROACH

60

in four important values: tp (the number of true positives), fp (false positives), tn (true

fn (false negatives). Figure 4.6 [Settles, 2008] illustrates the relationship between

evaluation measure is accuracy = tp+tn / tp+fp+tn+fn. Basically, this

measure represents the fraction of objects that the model labels correctly

however, the data may be highly skewed, e.g., there might be nine times as many negative

In a case like this, accuracy is a poor evaluation measure because a model

that labels everything negative will still have accuracy = 0.9. In these situations, it is common

instead to use precision, P = tp/ tp+fp , the fraction of predictions that are correct, and recall, R =

tp+fn, the fraction of actual positives that are correctly predicted. Because of the inherent

off between precision P and recall R, a summary statistic called the F

ed when both are considered equally important. A final evaluation measure

is the area under the Receiver Operating Characteristic (ROC) curve. An ROC curve measures

the rate of true positives vs. false positives as a threshold is varied across a measure of

confidence in its predictions (e.g., the model’s posterior probability of the target label). It is

regarded as a more appropriate measure than accuracy for some machine learning applications

. The area under the curve AUROC, also called the Wilcoxon signed

test, can be interpreted as the probability that the model will rank a randomly chosen positive

han a randomly chosen negative.

diagram illustrating the relationship between actual and predicted

fn tp fp

A PIPELINED APPROACH

of true positives), fp (false positives), tn (true

illustrates the relationship between

tp+fp+tn+fn. Basically, this

labels correctly. In some problems,

however, the data may be highly skewed, e.g., there might be nine times as many negative

like this, accuracy is a poor evaluation measure because a model

that labels everything negative will still have accuracy = 0.9. In these situations, it is common

tions that are correct, and recall, R =

tp+fn, the fraction of actual positives that are correctly predicted. Because of the inherent

c called the F-Measure = 2 * P * R

ant. A final evaluation measure

is the area under the Receiver Operating Characteristic (ROC) curve. An ROC curve measures

the rate of true positives vs. false positives as a threshold is varied across a measure of

confidence in its predictions (e.g., the model’s posterior probability of the target label). It is

machine learning applications

led the Wilcoxon signed-rank

test, can be interpreted as the probability that the model will rank a randomly chosen positive

Predicted positives

diagram illustrating the relationship between actual and predicted

4 INFORMATION EXTRACTION AND MACHINE LEARNING-A PIP ELINED APPROACH

61

The various overlaps define regions of tp (true positives), fp (false positives), tn (true negatives)

and fn (false negatives).

Since it is trivial for a model to do well on the labeled data L that was used to train it, the

practice of randomly partitioning data into a training set and an evaluation set is used, which do

not overlap. In this way, the model is properly evaluated on new instances it has never seen

before. To account for the effects of randomized partitioning, it is common to repeat an

experiment for several runs and average the results. One particular way of doing this is cross-

validation. In five-fold cross-validation, for example, the data is split into five partitions or folds.

Then the five experiments are run for which each fold is held aside for evaluation, and the

remaining four folds are used for training; then results are averaged across all folds.

Chapter 5

Evaluating Machine Learning
Techniques for Efficiency

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

62

Machine learning is a vast field and has a broad range of applications including natural language

processing, medical diagnosis, search engines, speech recognition, game playing and a lot more.

A number of machine learning algorithms have been developed for different applications.

However no single machine learning algorithm can be used appropriately for all learning

problems. It is not possible to create a general learner for all problems because there are varied

types of real world datasets that cannot be handled by a single learner. In this chapter we present

an evaluation of various state-of-the-art machine learning algorithms using WEKA (Waikato

Environment for Knowledge Analysis) for a real world learning problem- credit approval used in

banks. Section 5.1 provides description about the components and working of WEKA. Section

5.2 describes the learning problem and the dataset that we have used in our experiments. In

Section 5.3 we have explained the machine learning methods that we have evaluated. Section 5.4

provides description about our experimental setup and procedure and finally Section 5.5 shows

the conclusion and the result. The work described in this chapter has been previously published

[Khan and Quadri, 2012b].

5.1. Introduction

WEKA (http://www.cs.waikato.ac.nz/ml/weka/) is an open source software which consists of a

collection of state-of-the-art machine learning algorithms and data preprocessing tools. It has

been developed at the University of Waikato in New Zealand. It is designed in such a way that

allows users to try all machine learning algorithms on new datasets easily. The WEKA system is

written in Java. It can be used for a variety of tasks. It provides an implementation of state-of-

the-art machine learning algorithms that we can apply to our datasets for extracting information

about the data or we can apply several algorithms to our dataset for comparing their performance

and choosing one for prediction. It also provides a number of tools for data preprocessing i.e.

transforming datasets and analyzing the resulting classifier. Such tools are called filters. Thus the

main focus of WEKA is on the learning methods and the filters. There are two ways in which we

can invoke these methods: either by using command line options or by using the interactive

graphical user interface. In our experiments we have used graphical user interface of WEKA

because it is much more convenient. We have used WEKA 3.7.7.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

63

5.1.1. WEKA- Interfaces

There are several ways by which we can access the functionality of WEKA. These are various

interfaces and the simple CLI. Interfaces of WEKA include the Explorer, Experimenter and the

Knowledge Flow.

5.1.1.1. Explorer

It is the most important graphical user interface in WEKA. Figure 5.1 shows the explorer

interface. It consists of various tabs that are used for different tasks. First tab is the “Preprocess”

tab. It is used for loading the datasets and transforming the datasets using filters. As shown in the

figure datasets can be loaded as a file, from a URL or from databases using queries. WEKA

allows files with specific formats e.g. ARFF, CSV, LibSVM’s format, and C4.5’s format.

Figure 5.1: WEKA Explorer Interface showing Preprocess Tab

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

64

After data is loaded it can be transformed by using various data preprocessing tools i.e. filters.

Various discretization methods can be used for transforming these datasets or for dividing a

dataset into training and testing sets using the appropriate filters.

Next is the “Classify” tab as shown in Figure 5.2. Through this tab we can use various

classification and regression algorithms and applied to our preprocessed datasets. Classification

algorithms typically produce decision trees or rules, while regression algorithms produce

regression curves or regression trees. For a learning algorithm, the classify panel by default

performs cross validation on the dataset that has been prepared in the Preprocess panel to

estimate predictive performance. Other than cross-validation, test set can also be used. In that

case we need to provide a test dataset separately. This panel also enables users to evaluate the

resulting models, both numerically through statistical estimation and graphically through

visualization of the data and examination of the model. This panel also allows us to visualize

classifier errors, margin curve, threshold curve and so on. Moreover, it can visualize prediction

errors in scatter plots, and also allows evaluation via ROC curves and other “threshold curves”.

Models can also be saved and loaded in this panel.

Figure 5.2: WEKA Explorer Interface showing Classify Tab

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

65

Apart from supervised classification algorithms, WEKA also provides unsupervised algorithms

such as clustering and association algorithms. The third tab “Cluster” provides access to the

clustering algorithms and the fourth tab “Associate” enables users to access algorithms for

learning association rules. In the “Cluster” tab we can run a clustering algorithm on the data that

has been loaded in the “Preprocess” panel.

The last two tabs are “Select attributes” and “Visualize”. “Select attributes” tab is used for

identifying the most predictive attributes in the data. This tab has a lot of algorithms and

evaluation criteria used for identifying the most important attributes in a dataset. It allows the

users to access various methods for measuring the utility of attributes, and for finding attribute

subsets that are predictive of the data. Robustness of the selected attribute set can be validated

via a cross-validation-based approach.

Visualize tab is used for analyzing data visually. This presents a color-coded scatter plot matrix,

and users can then select and enlarge individual plots. It is also possible to zoom in on portions

of the data, to retrieve the exact record underlying a particular data point, and so on.

5.1.1.2. Experimenter

As shown in Figure 5.3, “Experimenter” is another interface of WEKA. As stated earlier, it is not

possible to have a single machine learning method that works for all learning problems

efficiently. Also there is no way to determine which learning method will work efficiently for a

given problem at the beginning. For this purpose it is better to compare the performance of

machine learning methods on various criteria. This interface is used for this purpose. Although it

can also be done interactively in the “Explorer” interface, however “Experimenter” interface

automates this process. This makes it easy to run the classification and regression algorithms

with different parameter settings on a corpus of datasets, collect performance statistics, and

perform significance tests on the results. Experiments can involve multiple algorithms that are

run across multiple datasets; for example, using repeated cross-validation. Experiments can be

saved in either XML or binary form. Saved experiments can also be run from the command-line.

The Experimenter interface is not used much often by data mining practitioners as other

WEKA’s interfaces. This interface makes identification of a suitable algorithm for a particular

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

66

dataset or collection of datasets easier once the initial experiments have been performed in the

Explorer.

Figure 5.3: WEKA Experimenter Interface

5.1.1.3. Knowledge Flow

When we load a dataset in the “Explorer” interface, the entire dataset is loaded into the main

memory for processing. It means that problems involving large datasets are not suitable for this

method. In other words, “Explorer” interface does not allow for incremental learning and is only

used for small to medium sized problems. However, some incremental algorithms are

implemented that can be used to process very large datasets. One way to apply these is through

the command-line interface, which gives access to all features of the system. An alternative,

more convenient, approach is to use the second major graphical user interface, called

“Knowledge Flow” which enables users to specify a data stream by graphically connecting

components representing data sources, preprocessing tools, learning algorithms, evaluation

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

67

methods, and visualization tools. Its data flow model enables incremental updates with

processing nodes that can load and preprocess individual instances before feeding them into

appropriate incremental learning algorithms. It also provides nodes for visualization and

evaluation.

5.1.2. Datasets

As stated in Section 1 of Chapter 1, the datasets used by machine learning algorithms consists of

a number of instances that are represented using the same set of features. In supervised learning

the instances are given with known labels (the corresponding correct outputs) in contrast to

unsupervised learning, where instances are unlabeled. Table 5.1[Kotsiantis, 2007] shows

instances with known labels.

Table 5.1: Example of a Dataset

Case Feature 1 Feature 2 …. Feature n Class

1 xxx x xx Good

2 xxx x xx Good

3 xxx x xx Bad

… …

WEKA applies its learning methods to a dataset and analyzes its output to extract information

about the data. WEKA accepts the data in specific formats e.g. ARFF, CSV, LibSVM’s format,

and C4.5’s format as stated earlier.

5.1.2.1. Preparing Datasets

The data that are has been collected for being used in the experiments can be stored anywhere

e.g. in databases or spreadsheets. As we know WEKA supports some particular formats of data

therefore we first need to convert the data into a suitable format before loading it in WEKA. The

format we used for our experiments is ARFF format. The process of converting data into ARFF

format is explained below.

Suppose we have our data in a spreadsheet program say MS Excel as shown in Figure 5.4. In

order to convert it to ARFF format we first save it as a comma-separated file i.e. in CSV format.

Then we load this CSV file in a text processor say MS Word as shown in Figure 5.5.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

68

Figure 5.4: Data in Excel spreadsheet

Figure 5.5: Data after loading in MS Word

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

69

In this file the rows of the original spreadsheet have been converted into lines of text, and the

elements are separated from each other by commas. After that we have to convert the first line in

which there are names of attributes into the header structure that makes up the beginning of an

ARFF file. This is done by specifying the name of the dataset using @relation tag, the names,

types, and values of each attribute are defined by @attribute tags, and @data tag is added before

the data section of the file. This is shown in Figure 5.6.

Figure 5.6: Data after adding tags

After this we have to save this file with “Text Only with Line Breaks” as the file type. In this

way, our data in spreadsheet gets converted into a format compatible with WEKA.

5.1.2.2. Training sets and Tests sets

In order to test the efficiency of our learning models we use training and test sets. We split our

data into these two sets. The data used to construct or discover a predictive relationship are

called the training data set. A test set is a set of data that is independent of the training data, but

that follows the same probability distribution as the training data. The training set or the seen

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

70

data is used to build the model i.e. determine its parameters and the test set or the unseen data is

used to measure its performance (holding the parameters constant). In supervised learning, the

training set or the “gold standard” consists of both the input data as well as the correct/expected

output i.e. the class values, and the test set is the data that we are going to apply to our method to

test its efficiency. This set doesn’t have the output class values.

Sometimes another set called the validation set is also used in addition to training and test sets to

tune the model. It is used to estimate how good your model has been trained. It cannot be used

for testing.

5.1.2.3. Using the training and test sets in WEKA

WEKA allows us to use the dataset in a number of ways in our experiments. We can perform

cross-validation, percentage split or we can use the supplied test set option. For using the

“supplied test set” option we need to split our dataset into appropriate quantities of training and

test sets. We first show how cross-validation works and then the process of splitting the dataset.

Cross-Validation

In cross-validation, mutually exclusive and same-sized subsets are created by dividing the

training set. For each subset the classifier is trained on the union of all the other subsets. Using

this technique the error rate of the classifier is calculated by the average of the error rate of each

subset. WEKA allows us to specify how many folds we want to specify and usually we use 10

folds. In k-fold cross-validation, the data is randomly divided into k folds (subsets) of equal size.

Then train the model on k−1 folds, use one fold for testing. This process is repeated k times so

that all folds are used for testing. Finally, average performance is computed on the k test sets.

This process helps in effectively using all the data for both training and testing [Keller, 2002].

Splitting the datasets

As stated earlier, for using supplied test set in WEKA we need to split our dataset into training

and test sets. In the “Explorer” interface, we first load our dataset in the “Preprocess” panel. This

is done either by loading an ARFF file or CSV file. We can also load our dataset directly from a

URL or database. In our example, we have loaded the dataset using a URL as shown in Figure

5.7.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

71

Figure 5.7: Loading Dataset from URL

Figure 5.8: Using the Randomize filter

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

72

Next we have to split our dataset into two sets, 30% testing and 70% training. To do this we first

randomize the dataset by choosing Randomize filter as shown in Figure 5.8. This creates a

random permutation. Next we apply RemovePercentage filter on our dataset keeping percentage

as 30 and we save the dataset as a training set. This is shown in Figure 5.9.

Figure 5.9: Using RemovePercentage filter.

Next we undo the change and again apply the same filter but changing the invertSelection option

to “True” as shown in Figure 5.10. This picks the rest of the dataset i.e. 30% and is saved as a

testing set.

This way our dataset gets divided into 30% testing and 70% training set. Next to use our sets in

the experiments we choose the training set and move to the “Classify” panel and choose the

procedure that we have to use and start the experiment. After that we apply the same procedure

on our testing set to check what it predicts on the unseen data. For that, we select "supplied test

set" and choose the testing dataset that we created. We run the algorithm again and we notice the

differences in the confusion matrix and the accuracy.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

73

Figure 5.10: Using RemovePercentage filter with invertSelection

5.2. Learning problem and the Dataset used in our experiments

In our experiments we used credit approval problem used in banks for evaluating the efficiency

of the state-of-the-art machine learning algorithms.

5.2.1. Understanding the problem

A financial institution, e.g. a bank, gives its customers an amount of money and expects them to

pay it back in installments along with interest. This amount of money is called credit. However,

before approving any credit application, it is necessary for the bank to make sure that the

customer will pay the whole amount back. The bank should be able to predict in advance the risk

associated with a loan. It is done for making sure that the bank will make a profit and that the

customers get a loan within his or her financial capacity. This calls for a need to find out efficient

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

74

methods for automatic credit approval that can help the authorities in assessing credit

applications effectively.

5.2.1.1. Risk involved in credit approval

Here the risk involved refers to the risk of loss to the financial institution if they lend the money

to the customers who fail to pay the amount back [K.H. Ng, 1996]. The reason for this default

can be anything like inability, unwillingness, etc. The bank should be able to predict in advance

the risk associated with a loan. It is necessary for the lenders to calculate the probability of risk

involved so that they can make correct decisions regarding the approval of the credit.

5.2.1.2. Credit evaluation method

Credit evaluation or credit scoring [Hand, 1998] is an evaluation system that is used for

improving or increasing the abilities of the credit lenders in deciding the probability of the credit

risk of a customer. In this method, risk is calculated by the bank on the basis of the amount of

credit and the information about the customer. The information about the customer includes data

that the bank has access to and is relevant in calculating financial capacity of the customer. This

data consists of income, savings, collaterals, profession, age, past financial history, and so forth.

The bank has a record of past loans containing such customer data and whether the loan was paid

back or not. From this data of particular applications, the aim is to infer a general rule coding the

association between a customer’s attributes and his risk. That is, the machine learning system fits

a model to the past data to be able to calculate the risk for a new application and then decides to

accept or refuse it accordingly.

This process can be carried out in two ways. The first is called deductive credit scoring in which

points are assigned to relevant customer attributes. These points are then used to form a credit

score. The experience of the credit professionals is used to select the relevant attributes,

determine the points and calculate the credit scores. Another type of credit scoring is empirical

credit scoring in which the past data about the customers is analyzed and used to construct the

scoring models. This is done by using appropriate algorithms for identifying characteristics

relating to the credit risk of customers. These scoring models are then used to calculate the credit

risk of new customers [Liu, 2001].

Bank professionals then use these credit scores to indicate the level of the credit risk and then

decide accordingly whether to approve the credit to the customers or not and at what interest rate

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

75

the credit should be approved. For the low risk customers, the chances of getting the credit at

lower interest rates and on longer repayment terms are higher. However, if the risk of the

customers is high but lower than the cut-off credit risk, the customer is not disqualified from

getting the credit but in this case the bank professionals review the customer application more

carefully before deciding whether to approve or deny the credit request. If the credit in approved

in case of such customers, it is given on higher interest rates and shorter repayment terms as

compared to the low-risk customers.

5.2.1.3. Automating the process

The above stated processes i.e. credit scoring and approval can be carried out more efficiently if

they are done automatically using computers. Automatic scoring and approval helps in gathering

the necessary information quickly and speeds up the process of evaluation and determining

whether to approve or deny credit applications. Automating this process does not mean that it

can take place of the credit professional but it can help in making rapid decisions. The credit

applications that are identified as good credit risk and those as bad credit risk may be

automatically approved, or denied, while those of intermediate risk may still be passed to credit

analysts for more detailed review before deciding whether to approve or deny credit. This can

reduce the number of credit applications that need more detailed review and reduce the wastage

of time, thus allowing credit analysts to concentrate only on those credit applications that are

difficult or important.

5.2.2.Description of the Dataset used

The dataset (http://www.hakank.org/weka/credit.arff) that we used for our experiments for

evaluating the learning algorithms was provided originally by Quinlan in his studies of ID3 and

C4.5 system in 1987 and 1992, to induce decision trees for assessing credit card applications. It

is the Australian Credit Approval dataset from UCI Repository of Machine Learning Databases

and Domain theories (http://archive.ics.uci.edu/ml/datasets.html). The dataset consists of 15

attributes and a class label attribute. Before being made available to use, all the names and values

of the attributes were changed to meaningless symbols to protect the confidentiality of the data.

The values that the “class” attribute can take are + (positive) and – (negative). The attributes of

the dataset are continuous, nominal with small numbers of values and nominal with larger

numbers of values. The dataset consists of 490 instances with 44.5% being positive (credit

approved), 55.5% being negative (credit denied) and 5% having missing values. Table 5.2 shows

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

76

the attribute names and attribute types of the dataset and Table 5.3 shows distributions of “+”

and “-” values.

Table 5.2: Australian Credit Approval Dataset

Attribute Type

A1 nominal

A2 continuous

A3 continuous

A4 nominal

A5 nominal

A6 nominal

A7 nominal

A8 continuous

A9 nominal

A10 nominal

A11 continuous

A12 nominal

A13 nominal

A14 continuous

A15 continuous

Class nominal

Table 5.3: Class Distribution

The “class” attribute can take two values i.e. “+” and “-” as stated earlier. The two values

represent the low-risk and high-risk customers here. For low-risk customers, “class” attribute

takes “+” value meaning credit can be approved for such customers and vice-versa for high-risk

customers. This makes our learning problem a classification problem.

Class No. of instances

+ 218

- 272

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

77

WEKA provides a number of classification algorithms that are accessible from the “Classify” tab

as stated earlier. Hence our experiments use this dataset for evaluation of various classification

learning algorithms. For our experiments we divided our dataset into training and test sets by the

same procedure as described in Section 5.1.

5.3. Learning Methods Chosen For Evaluation

As discussed above, the learning problem that we have used in our experiments is a classification

problem. Therefore, we have used WEKA’s classification algorithms for evaluation of the

chosen dataset. In our experiments, we have chosen 10 learning algorithms from 6 different

types. These are given below:

� Rule based

• Zero R

• One R

� Bayes Rule

• NaiveBayes

• NaiveBayesUpdateable

� Functions

• Multilayer Perceptron

� Lazy Learners

• KStar (K*)

� Tree Based

• J48

• RandomForest

� Meta-Algorithm

• AdaBoostM1

• Bagging

The sections that follow first explain each of these learners and then show their performance

evaluation.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

78

5.3.1. ZeroR and OneR

Both of these algorithms are rule-based algorithms. A rule-based algorithm uses rules to make

deductions or choices. The classification method uses an algorithm to generate rules from the

sample data. These rules are then applied to new data. OneR (One Rule) is a simple classification

algorithm that generates a one-level decision tree. OneR classifier infers simple and accurate,

classification rules from a set of instances. Performance studies of OneR classifier have shown

that it produces rules that are only slightly less accurate than state-of-the-art learning schemes. It

produces rules that are easy to interpret. OneR is also capable of handling missing values and

numeric attributes showing adaptability despite simplicity. The OneR algorithm creates one rule

for each attribute in the training data. It then selects the rule with the smallest error rate as its

‘one rule’. It determines the most frequent class for each attribute value for creating a rule for an

attribute. The most frequent class is simply the class that appears most often for that attribute

value. A rule is simply a set of attribute values bound to their majority class; one such binding

for each attribute value of the attribute the rule is based on. The error rate of a rule is the number

of training data instances in which the class of an attribute value does not agree with the binding

for that attribute value in the rule. OneR selects the rule with the lowest error rate. In the event

that two or more rules have the same error rate, the rule is chosen at random. In the

implementation of WEKA, the OneR algorithm picks the rule with the highest number of correct

instances, not lowest error rate, and does not randomly select a rule when error rates are

identical. Zero Regression (ZeroR) is a pseudo-regression method that always builds models

with cross-validation coefficient Q2=0. In the framework of this method the value of a

property/activity is always predicted to be equal to its average value on the training set. This

method is usually used as a reference point for comparing with other regression methods. ZeroR

is the simplest classification method which relies on the target and ignores all predictors. ZeroR

classifier simply predicts the majority category (class). Although there is no predictability power

in ZeroR, it is useful for determining a baseline performance as a benchmark for other

classification methods. The idea behind the ZeroR classifier is to identify the most common class

value in the training set. It always returns that value when evaluating an instance. It is frequently

used as a baseline for evaluating other machine learning algorithms.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

79

5.3.2. NaiveBayes and NaiveBayesUpdateable

The Naive Bayes [Murphy, 2006] algorithm is based on conditional probabilities. It uses Bayes'

Theorem. It is a formula that calculates a probability by counting the frequency of values and

combinations of values in the historical data. Bayes' Theorem finds the probability of an event

occurring given the probability of another event that has already occurred. If B represents the

dependent event and A represents the prior event, Bayes' theorem can be stated as follows.

Prob(B given A) = Prob(A and B)/Prob(A)

To calculate the probability of B given A, the algorithm counts the number of cases where A and

B occur together and divides it by the number of cases where A occurs alone. A naive Bayes

classifier is a simple probabilistic classifier based on applying Bayes' theorem with strong

(naive) independence assumptions. In simple terms, a naive Bayes classifier assumes that the

presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of

any other feature, given the class variable. An advantage of the naive Bayes classifier is that it

only requires a small amount of training data to estimate the parameters (means and variances of

the variables) necessary for classification.

NaiveBayesUpdateable is a class for a Naive Bayes classifier using estimator classes. This is the

updateable version of NaiveBayes. This classifier will use a default precision of 0.1 for numeric

attributes when buildClassifier is called with zero training instances.

5.3.3. MultiLayer Perceptron

It is a classifier that uses back propagation to classify instances. This network can be built by

hand, created by an algorithm or both. The network can also be monitored and modified during

training time. The nodes in this network are all sigmoid (except for when the class is numeric in

which case the output nodes become unthresholded linear units).A multilayer perceptron (MLP)

is a feedforward artificial neural network model that maps sets of input data onto a set of

appropriate output. An MLP consists of multiple layers of nodes in a directed graph, with each

layer fully connected to the next one. Except for the input nodes, each node is a neuron (or

processing element) with a nonlinear activation function. MLP utilizes a supervised learning

technique called back propagation for training the network.MLP is a modification of the standard

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

80

linear perceptron and can distinguish data that is not linearly separable. It is an artificial neural

network generally used for classification or approximation. The MLP consists of a feed-forward

network of neurons which map input vectors to output vectors. Each artificial neuron consists of

a linear combination of weighted inputs which is passed though a non-linear activation function

to produce the neuron’s output. It is an extension of the perceptron in that it has at least one

hidden layer of neurons. Layers are updated by starting at the inputs and ending with the outputs.

Each neuron computes a weighted sum of the incoming signals, to yield a net input, and passes

this value through its sigmoidal activation function to yield the neuron's activation value. Unlike

the perceptron, an MLP can solve linearly inseparable problems [Steinwender and Bitzer, 2003].

5.3.4. J48 and Random Forest

Both these algorithms are decision tree based algorithms. A decision tree is a predictive

machine-learning model that decides the target value (dependent variable) of a new sample based

on various attribute values of the available data. The internal nodes of a decision tree denote the

different attributes, the branches between the nodes tell us the possible values that these

attributes can have in the observed samples, while the terminal nodes tell us the final value

(classification) of the dependent variable.

The attribute that is to be predicted is known as the dependent variable, since its value depends

upon, or is decided by, the values of all the other attributes. The other attributes, which help in

predicting the value of the dependent variable, are known as the independent variables in the

dataset. J4.8 algorithm is WEKA’s implementation of C4.5 decision tree learner.C4.5 is an

algorithm used to generate a decision tree developed by Ross Quinlan [Quinlan, 1993]. C4.5 is

an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be

used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. The

J48 Decision tree classifier follows the following simple algorithm. In order to classify a new

item, it first needs to create a decision tree based on the attribute values of the available training

data. So, whenever it encounters a set of items (training set) it identifies the attribute that

discriminates the various instances most clearly. This feature that is able to tell us most about the

data instances so that we can classify them the best is said to have the highest information gain.

Now, among the possible values of this feature, if there is any value for which there is no

ambiguity, that is, for which the data instances falling within its category have the same value for

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

81

the target variable, then we terminate that branch and assign to it the target value that we have

obtained. For the other cases, we then look for another attribute that gives us the highest

information gain. Hence we continue in this manner until we either get a clear decision of what

combination of attributes gives us a particular target value, or we run out of attributes. In the

event that we run out of attributes, or if we cannot get an unambiguous result from the available

information, we assign this branch a target value that the majority of the items under this branch

possess.

Random forest is a powerful new approach to data exploration, data analysis, and predictive

modeling. RandomForest implements Breiman’s random forest algorithm (based on Breiman and

Cutler’s original Fortran code) for classification and regression. It can also be used in

unsupervised mode for assessing proximities among data points. Random forest (or random

forests) is an ensemble classifier that consists of many decision trees and outputs the class that is

the mode of the classes output by individual trees. The algorithm for inducing a random forest

was developed by Leo Breiman [Breiman, 2001] and Adele Cutler, and "Random Forests" is

their trademark. The term came “from random decision forests” that was first proposed by Tin

Kam Ho of Bell Labs in 1995. A random forest is a collection of CART-like trees following

specific rules for tree growing, tree combination, self-testing, and post-processing [Steinberg et

al., 2004]. It is unexcelled in accuracy among current algorithms. It runs efficiently on large data

bases. It can handle thousands of input variables without variable deletion. It gives estimates of

what variables are important in the classification. It generates an internal unbiased estimate of

the generalization error as the forest building progresses. It has an effective method for

estimating missing data and maintains accuracy when a large proportion of the data are missing.

It has methods for balancing error in class population unbalanced data sets. Generated forests can

be saved for future use on other data. Prototypes are computed that give information about the

relation between the variables and the classification. It computes proximities between pairs of

cases that can be used in clustering, locating outliers or (by scaling) give interesting views of the

data. The capabilities of the above can be extended to unlabeled data, leading to unsupervised

clustering, data views and outlier detection. It offers an experimental method for detecting

variable interactions.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

82

5.3.5. KStar (K*)

K* is one of the lazy learning methods. Lazy learning methods or memory-based methods learn

the structure of a domain by storing learning examples with their classification [Van den Bosch

et al. 1996].The domain model that results from a lazy learning process is able to generalize by

using a predefined distance function. When the domain model is required to give the

classification for an unseen domain element then it will use the distance function for finding the

stored example that is closest to this unseen example. K* is an instance-based learner. Instance-

based learners classify an instance by comparing it to a database of pre-classified examples. The

fundamental assumption is that similar instances will have similar classifications. The question

lies in how to define “similar instance” and “similar classification”. The corresponding

components of an instance-based learner are the distance function which determines how similar

two instances are, and the classification function which specifies how instance similarities yield a

final classification for the new instance. In addition to these two components, IBL algorithms

have a concept description updater which determines whether new instances should be added to

the instance database and which instances from the database should be used in classification. For

simple IBL algorithms, after an instance has been classified it is always moved to the instance

database along with the correct classification. More complex algorithms may filter which

instances are added to the instance database to reduce storage requirements and improve

tolerance to noisy data [Cleary and Trigg, 1995].K* is an instance-based classifier, that is the

class of a test instance is based upon the class of those training instances similar to it, as

determined by some similarity function. It differs from other instance-based learners in that it

uses an entropy-based distance function. The use of entropy as a distance measure has several

benefits. Amongst other things it provides a consistent approach to handling of symbolic

attributes, real valued attributes and missing values.

5.3.6. AdaBoostM1 and Bagging

Bootstrap aggregating (bagging) and boosting are useful techniques to improve the predictive

performance of tree models. Boosting may also be useful in connection with many other models,

e.g. for additive models with high-dimensional predictors; whereas bagging is most prominent

for improving tree algorithms. Boosting is a general method for improving the performance of

any learning algorithm. In theory, boosting can be used to significantly reduce the error of any

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

83

“weak” learning algorithm that consistently generates classifiers which need only be a little bit

better than random guessing. Despite the potential benefits of boosting promised by the

theoretical results, the true practical value of boosting can only be assessed by testing the method

on “real” learning problems. AdaBoost [Freund and Schapire, 1996] is a boosting algorithm

developed by Freund and Schapire that can be used to significantly reduce the error of any

learning algorithm that consistently generates classifiers whose performance is a little better than

random guessing.. AdaBoostM1 is a version of AdaBoost algorithm. Bagging is based on an idea

of making various samples of the training set. A classifier is generated for each of these training

set samples by a selected machine learning algorithm. In this way, for k variations of the training

set we get k particular classifiers. The result will be given as a combination of individual

particular classifiers.

5.4. Experimental Setup

In this section we show the performance evaluation of all the learning algorithms discussed

above. We show their evaluation on the dataset chosen i.e. Credit Dataset. As already stated, we

carried our experiments using WEKA. It provides a number of measures of evaluation that can

be used to check the performance of the algorithms. When an experiment is run, results are

displayed on “Classifier Output” area. This area has several sections showing different results.

First is run information. It is a list of information giving the learning scheme options, relation

name, instances, attributes and test mode that were involved in the process. After that classifier

model (full training set) is displayed. It is a textual representation of the classification model that

was produced on the full training data. Then a summary is shown that shows a list of statistics

summarizing how accurately the classifier was able to predict the true class of the instances

under the chosen test mode. A detailed accuracy by class, which is a more detailed per-class

break down of the classifier’s prediction accuracy, is shown. Lastly, confusion matrix shows how

many instances have been assigned to each class. Elements show the number of test examples

whose actual classis the row and whose predicted class is the column. The evaluation measures

that we used to compare the learners are number of correctly classified instances, time taken to

build the model, F-Measure. For a particular label of interest, we are provided with a set of actual

positives (e.g., objects that belong to that label) contained within the data set. The model then

makes a set of predicted positives (e.g., the objects it assigns to that label) for the same data set.

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

84

The actual and predicted label groupings can be thought of as indicator variables, and their cross

product results in four important values: tp (the number of true positives), fp (false positives), tn

(true negatives), and fn (false negatives).A basic evaluation measure is accuracy = tp+tn /

tp+fp+tn+fn. Basically, this measure represents the fraction of objects that the model labels

correctly. In some problems, however, the data may be highly skewed, e.g., there might be nine

times as many negative objects as positives. In a case like this, accuracy is a poor evaluation

measure because a model that labels everything negative will still have accuracy = 0.9. In these

situations, it is common instead to use precision, P = tp/ tp+fp , the fraction of predictions that

are correct, and recall, R = tp / tp+fn, the fraction of actual positives that are correctly predicted.

Because of the inherent trade-off between precision P and recall R, a summary statistic called the

F-Measure = 2 * P * R / P+R is commonly used when both are considered equally important.

Before using our dataset in the experiments, we used the method discussed in Section 5.1 for

splitting it into 70% training set and 30% test set. First we loaded the actual dataset into the

WEKA from URL (http://www.hakank.org/weka/credit.arff). Then after applying the splitting

procedure, we saved both these sets as separate files, trainingcredit.arff and testingcredit.arff.

For all experiments we used these two files. Figure 5.11 shows the actual dataset, Figure 5.12

shows trainingcredit.arff file and Figure 5.13 shows testingcredit.arff file.

Figure 5.11: Credit Dataset

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

85

Figure 5.12: trainingcredit.arff file loaded in WEK A

Figure 5.13: testingcredit.arff file loaded in WEKA

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

86

5.4.1. Experimental Procedure

� In our experiments, for each learner, we first load trainingcredit.arff file into WEKA

through “Preprocess” panel.

� Then in the “Classify” panel we choose the classification algorithm to be implemented

and start the analysis using 10-fold cross validation.

� After that we load the file testingcredit.arff using the “Supplied test set option” and then

start the analysis again.

� Finally, we analyze the results on the basis of the evaluation measures discussed above.

� The same process is repeated for all the classification algorithms that are to be evaluated.

5.4.2. Experimental Results

Figure 5.14: Results of J48 on trainingcredit.arff

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

87

Figure 5.15: Results of J48 on testingcredit.arff

Results of J48:

Correctly Classified Instances (%) = 85.7143

Incorrectly Classified Instances (%) = 14.2857

Kappa Statistic = 0.71

Mean Absolute Error = 0.1817

F-Measure = 0.837

Time taken to build the Model = 0.01 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

88

Figure 5.16: Results of RandomForest on testingcredit.arff

Results of RandomForest:

Correctly Classified Instances (%) = 84.3537

Incorrectly Classified Instances (%) = 15.6463

Kappa Statistic = 0.6835

Mean Absolute Error = 0.2445

 F-Measure = 0.824

 Time Taken to build the Model = 0.05 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

89

Figure 5.17: Results of ZeroR on testingcredit.arff

Results of ZeroR:

Correctly Classified Instances (%) = 56.4626

Incorrectly Classified Instances (%) = 43.5374

Kappa Statistic = 0

Mean Absolute Error = 0.4931

F-Measure = 0

 Time Taken to build the Model = 0 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

90

Figure 5.18: Results of OneR on testingcredit.arff

Results of OneR:

Correctly Classified Instances (%) = 85.034

Incorrectly Classified Instances (%) = 14.966

Kappa Statistic = 0.703

Mean Absolute Error = 0.1497

 F-Measure = 0.845

 Time Taken to build the Model = 0 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

91

Figure 5.19: Results of NaiveBayes on testingcredit.arff

Results of NaiveBayes:

Correctly Classified Instances (%) = 79.5918

Incorrectly Classified Instances (%) = 20.4082

Kappa Statistic = 0.5727

Mean Absolute Error = 0.21

 F-Measure = 0.732

Time Taken to build the Model = 0.01 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

92

Figure 5.20: Results of NaiveBayesUpdateable on testingcredit.arff

 Results of NaiveBayesUpdateable:

Correctly Classified Instances (%) = 79.5918

Incorrectly Classified Instances (%) = 20.4082

Kappa Statistic = 0.5727

Mean Absolute Error = 0.21

 F-Measure = 0.732

 Time Taken to build the Model = 0.01 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

93

Figure 5.21: Results of AdaBoostM1 on testingcredit.arff

Results of AdaBoostM1:

Correctly Classified Instances (%) = 84.3537

Incorrectly Classified Instances (%) = 15.6463

Kappa Statistic = 0.689

Mean Absolute Error = 0.211

 F-Measure = 0.837

 Time Taken to build the Model = 0.04 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

94

Figure 5.22: Results of Bagging on testingcredit.arff

Results of Bagging:

Correctly Classified Instances (%) = 84.3537

Incorrectly Classified Instances (%) = 15.6463

Kappa Statistic = 0.6879

Mean Absolute Error = 0.2196

 F-Measure = 0.835

 Time Taken to build the Model = 0.05 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

95

Figure 5.23: Results of MultiLayerPerceptron on testingcredit.arff

Results of MultiLayerPerceptron:

Correctly Classified Instances (%) = 86.3946

Incorrectly Classified Instances (%) = 13.6054

Kappa Statistic = 0.7252

Mean Absolute Error = 0.1508

 F-Measure = 0.848

 Time Taken to build the Model = 0.01 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

96

Figure 5.24: Results of KStar on testingcredit.arff

Results of KStar:

Correctly Classified Instances (%) = 71.4286

Incorrectly Classified Instances (%) = 28.5714

Kappa Statistic = 0.4017

Mean Absolute Error = 0.2896

 F-Measure = 0.625

 Time Taken to build the Model = 0 seconds

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

97

5.5. Conclusion

In this section we show the results in the form of charts and tables. Figure 5.25 shows the

comparison of all the algorithms with respect to the time taken to build the model.

Figure 5.25: Time chart of algorithms

Figure 5.26 shows the comparison based about the number of correctly classified instances by

each learning algorithm.

Figure 5.26: Comparison of Algorithms By Percentage Of Correct Instances

0

0.01

0.02

0.03

0.04

0.05

0.06

Time Taken By Each Algorithm In

Seconds

Time Taken By Each

Algorithm In Seconds

0
10
20
30
40
50
60
70
80
90

100

Correctly Classified Instances(%)

Correctly Classified

Instances(%)

5 EVALUATING MACHINE LEARNING TECHNIQUES FOR EFFICI ENCY

98

In Table 5.4 we have summarized three main measures of evaluation for each algorithm i.e. time

taken to build the model, number of correctly classified instances, and F-Measure.

Table 5.4: Comparison of algorithms

Algorithms Time taken to

build model (sec)

Correctly Classified

Instances (%)

F-Measure

J48 0.01 85.7143 0.837

RandomForest 0.05 84.3537 0.824

ZeroR 0 56.4626 0

OneR 0 85.034 0.845

NaiveBayes 0.01 79.5918 0.732

NaiveBayesUpdateable 0.01 79.5918 0.732

KStar 0 71.4286 0.625

MultiLayerPerceptron 0.01 86.3946 0.848

AdaBoostM1 0.04 84.3537 0.837

Bagging 0.05 84.3537 0.835

It shows that RandomForest and Bagging take maximum amount of time to build the model

i.e.0.05 seconds. Next highest is 0.04 taken by AdaBoostM1. NaiveBayes,

NaiveBayesUpdateable and MultiLayerPerceptron take 0.01 seconds and the remaining take 0

seconds to build the model. In terms of second measure of evaluation, MultiLayerPerceptron has

the highest percentage of correctly labeled instances and has the best F-Measure among all.

Hence, we conclude that MultiLayerPerceptron has performed better than all the other classifiers

in the analysis of our dataset.

Chapter 6

Combined Machine Learning and Feature
Design

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

99

In the previous chapter, we presented an evaluation of the state-of-the-art machine learning

algorithms for the task of classification using a real world problem and dataset. We calculated

our results on the basis of accuracy of the algorithms in performing classification i.e. predicting

the correct output class. In this chapter, we present an approach that shows an increase in the

accuracy for solving the classification problems. It is a hybrid approach that combines various

learners. We first present a technique of combining learners and also show its implementation

using Python programming. Later we discuss feature space design and show its implementation

on the combined learner. Section 6.1 provides an introduction for the new concepts used in this

chapter that have not been described earlier in this thesis. It provides an idea about the language

(Python) we have used for implementing our design, the machine learning tool (Orange) we used

for accessing the learning algorithms. Section 6.2 provides an idea about the concept of

combining learners, various types of combination techniques and the earlier work done in this

regard. In Section 6.3 we discuss the new combined approach, its procedure, experiment and the

results. Section 6.4 presents the feature space design, feature selection techniques, steps of

feature selection method used, experiment and results.

6.1. Introduction

We first describe some important concepts about Python programming and Orange that we have

used in implementing our learning method. In later sections we introduce our new concept and

its implementation.

6.1.1. Why Python

These days Python has become a very popular programming/scripting language for the

implementation of machine learning concepts. Python is an extensible language. New concepts

and functionality is being added continuously in it. Apart from regular programming concepts, it

also supports tools for internet e.g. cgi-scripting and xml support. It has a variety of

programming tools that makes programming exciting and easier.

Python is a very powerful programming language and is used in a wide variety of application

domains. In the area of machine learning it has proved to be very helpful and effective. One of

the main reasons of using this language is its intuitive object orientation as OOP paradigm is the

most commonly followed paradigm these days. It has full modularity and supports hierarchical

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

100

packages. Since our machine learning problems revolve around different types of datasets, we

need to be careful about the data types supported by the programming language we use. Python

has a very high level dynamic data types. It has a number of extensive standard libraries and

third party modules for virtually every task. It can be easily embedded within applications as a

scripting interface. More importantly, Python supports portability. We can run the same source

code without changing across all implementations. It runs everywhere. It is available for

Windows, Linux/Unix, OS/2, Mac, Amiga, and others.

6.1.2. Python Machine Learning tool

Previously we used a machine learning tool WEKA for evaluation which is based on Java. Since

we implemented our method in Python, we needed a similar learning tool for Python. There are a

number of machine learning tools for Python e.g. PyML (http://pyml.sourceforge.net/), MDP

(http://mdp-toolkit.sourceforge.net/), Shogun (http://www.shogun-toolbox.org/), and Orange

(http://orange.biolab.si/). We used Orange because it supports more classifiers than others and

has an interactive graphical user interface. It can also be used for clustering.

Orange is a machine learning tool consisting of functions and objects of C++. This learning tool

has a number of machine learning and data mining algorithms and functions for manipulating the

data. It is written in C++ and is created for Python. At the user level it is developed using the

scripting language Python, which makes it possible for the users to create their algorithms and

add them to the existing library. It provides an environment that helps the users to prototype their

algorithms faster. It also provides various testing schemes and a number of graphical tools that

use functions from library and provide a good user interface. These tools or widgets

communicate with each other using signals. These tools can be assembled together to form an

application using a graphical environment called Orange Canvas. Widgets can be placed on the

canvas and can be connected together to form a schema. Each widget has its own basic function

and signals that are passed between these widgets are of different types. Its objects include

learners, classifiers, evaluation results, distance matrices, and so forth [Zupan and Demsar,

2008].

Without the use of such machine learning tools, we would have to write the entire code ourselves

for all the machine learning tasks e.g. for carrying out cross validation for comparing the

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

101

machine learning algorithms, or for loading data and so on. Machine learning toolkits ease the

programming by providing in built routines for these tasks thus providing flexibility in

experimenting. All we need to do is access these routines from our code.

This machine learning toolkit supports a number of data mining and machine learning tasks

ranging from data preprocessing to modeling and evaluation. Some of the techniques supported

by this machine learning toolkit are listed below:

• It supports a number of popular data formats e.g. C4.5, Assistant, Retis, and tab-delimited

data formats.

• It supports preprocessing and manipulation of data, like sampling of data, scaling and

filtering of data, discretization and construction of new attributes, etc.

• It provides support for development of classification models using functions that consist

of regression, SVM, classification trees, naive Bayesian classifier.

• It also supports various regression methods i.e. linear regression, regression trees, and

instance-based approaches,

• It has support for various wrappers used to calibrate probability predictions of

classification models.

• It also supports ensemble approaches.

• It has various association rules and methods used for data clustering.

• It provides various evaluation methods like hold-out schemes and range of scoring

methods for prediction models including classification accuracy, AUC, and Brier score. It

also supports various hypothesis testing approaches.

The processes on which machine learning algorithms are based are conditional probability

estimation, selection and filtering of data, attribute scoring, random sampling, and many others.

Orange consists of all these processes in the form of its components that are embedded into

algorithms for applying these methods. We can also create new components with the help of

Python prototyping and we can use these new components in place of default components or we

can use them together with an existing set of components to develop a completely new

algorithm. The thing that makes Orange completely different from other machine learning

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

102

frameworks is that it supports signal mechanism between different widgets with the help of

which they can communicate with each other by exchanging objects.

6.2. Combined Learners

The main reason for combining many learners together is reducing the probability of

misclassification due to a single learner by increasing the system’s area of knowledge through

combination. It is a process of creating a single learning system from a collection of learning

algorithms. Learners are combined to achieve a better predictive performance as compared to the

performance obtained from individual learners. There are two ways in which learners can be

combined together. In the first method, the data is divided into a number of subsets and multiple

copies of a single learning algorithm are applied to these different subsets. This method

generates multiple hypotheses using the same base learner and follows variations in data. In the

second method, several learning algorithms are applied to the same application’s data. It is a

broader concept and such systems are called multiple classifier systems and follow variation

among learners. As discussed earlier in this work, we cannot have a single learner that suits to

all learning problems. For each problem there exists an optimal learning algorithm. By

combining the learners we can lessen the risk of choosing a suboptimal learning algorithm by

replacing single model selection with model combination.

Our technique of learner combination follows the second method in which several different

learners are combined and applied to a single application’s data.

6.2.1. Types of Combination Techniques

This section briefly explains different types of techniques for combining the learners and the

related literature of these techniques is provided in the next section. Some of the common types

of combination techniques are:

• Bayes optimal classifier: It is an ideal technique that combines all hypotheses in a

hypothesis space. In this technique the hypotheses are given votes based on if a particular

hypothesis is true and the training set is sampled from the system. After that the vote

given to the hypothesis is multiplied by the initial probability of that hypothesis. The

Bayes Optimal Classifier is represented by the following formula:

 y = argmax cj ϵ C Σ P(cj | hi) P(T | hi) P(hi), hi ϵ H

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

103

where y denotes the predicted class, C represents the set of all possible classes, H is the

hypothesis space, P refers to a probability, and T is the training data.

However, practical implementation of this method is difficult for complex problems. It

can be applied only to simple tasks. The reasons for this issue are: the large hypothesis

spaces, which are difficult for iteration and determine only a predicted class rather than

the probability for each class as required by the term P(cj | hi), and its seldom possible to

estimate the initial probability for each hypothesis P(hi).

• Bootstrap aggregating (bagging) and Boosting: Both of these methods are based on the

variations in data method in which the data is divided into a number of subsets and

multiple copies of a single learning algorithm are applied to these different subsets. Both

these methods combine multiple models built from a single learning algorithm by

systematically varying the training data.

Bootstrap aggregating or bagging is a voting method in which each learner in the

combined learners votes with equal weight. In this method different training datasets are

used to train the base-learners and the training sets are drawn randomly. High accuracy is

obtained in the random forest algorithm because random decision trees are combined

with bagging in a random forest algorithm [Breiman, 1996]. Voting corresponds to linear

combination of learners [Alpaydin, 2010] i.e.

 yi = Σ wjdji where wj >= 0, Σ wj = 1 (1)

If A is a learning algorithm and T is a set of training data, the process of bagging takes N

samples S1,…, SN, from T. The algorithm is then applied to each sample independently to

make N models h1,…, hN. When a new query q has to be classified, these models are

combined by a simple voting scheme, and the query is assigned a class that has been

predicted most often among the N models. Figure 6.1

(http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf) shows the process of

bagging diagrammatically. For generating training datasets, bagging uses bootstrap and

the learners are trained using an unstable learning procedure, and an average is taken

during testing [Breiman 1996]. This method works effectively if the base learner is

unstable i.e. if it is highly sensitive to data i.e. small changes in the training set cause a

large difference in the generated learner. This method can be used both for classification

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

104

and regression. In case of regression, instead average, median is taken at the time of

testing.

Figure 6.1: Bagging

Boosting [Schapire, 1990] is a process which trains the new instances and combines the

learners incrementally in a way such that the focus is laid on the training instances that

were previously wrongly classified. In this method the learner is trained on the mistakes

of the previous learners. Bagging is based on data variation through a learner’s instability

and boosting is based on data variation through a learner’s weakness. A learner is said to

be weak if it derives models that perform slightly better than random guessing. In a weak

learner, the error probability is ½. It means for a two-class problem it is better than

random guessing and a strong learner has small error probability. The most common

example of boosting is adaptive boosting, AdaBoost [Freund and Schapire, 1996]. The

process of boosting works by supposing that if a weak learner is run on different

distributions repeatedly over the training data, and if the weak classifiers are combined

into a single classifier, then it can be made stronger, as illustrated in Figure 6.2

(http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf). The main

disadvantage of the boosting method is its need for large training data. AdaBoost does

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

105

not suffer this problem as it uses the same training set over and over and thus the training

data need not be large, but the classifiers should be simple so that they do not overfit.

Figure 6.2: Boosting

• Stacking: This method exploits variation among learners in which several learning

algorithms are applied to the same application’s data. This method is proposed by

Wolpert in 1992. In this method a number of different learning algorithms are run against

the dataset which creates a series of models. Then the actual dataset is modified by

replacing its each instance by the values that each model predicts for that instance. This

creates a new dataset which is given to a new learner that builds the model, as illustrated

in Figure 6.3 (http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf).

Whenever a new query instance q has to be classified it is first passed through all the

learners which create a new query instance q’. Then the model takes it as an input and the

final classification for q is produced. For better results it is important in stacked

generalization that the learners should be as different as possible so that they will

complement each other and these learners should be based on different learning

algorithms.

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

106

Figure 6.3: Stacking

• Cascading: This method also follows variation among learners approach like stacking

but it differs from stacking because stacking uses the learners in parallel whereas

cascading uses the learners in sequence. Cascading is a process having multiple stages in

which learners are used in sequence i.e. the next learner is used only if the preceding ones

are not confident [Alpaydin, 2010]. This method was proposed by Gama and Brazdil.

Figure 6.4 (http://dml.cs.byu.edu/~cgc/docs/mldm_tools/Reading/ModelCombination.pdf) shows this

process.

Figure 6.4: Cascading

In cascading the data from the base-level learners is not fed into a single meta-level

learner. But each base-level learner also acts as a kind of meta-level learner for the

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

107

learner preceding it. The inputs that are fed to the learner consist of the inputs to learner

preceding it together with the class probabilities produced by the model induced by the

preceding learner. At each step only a single learner is used and the number of steps is

unlimited. A new query instance q is converted into a query instance q’ by gathering data

through the steps of the cascade. The last model of the cascade produces the final

classification.

6.2.2. Related Literature

A lot of research work has been carried out in this field. This section presents the work done in

the direction of combined learners. A technique called attribute bagging has been developed for

improving accuracy and stability of classifier ensembles induced using random subsets of

features. This method has been compared with bagging and other methods on a hand-pose

recognition dataset and has shown better results than bagging and other methods both in terms of

accuracy and stability [Bryll et al., 2002]. Bagging was first introduced by Leo Breiman. He

created a method called Bagging Predictors for generating multiple versions of a predictor and

used these to create an aggregated predictor [Breiman, 1996]. A Bayesian version of bagging

based on the Bayesian bootstrap has been developed. The Bayesian bootstrap has shown to

resolve a theoretical problem with ordinary bagging and resulted in more efficient estimators

[Clyde and Lee, 2000]. An experimental comparison has been carried out between bagging,

boosting and randomization for improving the performance of the decision-tree algorithm C4.5.

The experiments have shown that randomization is slightly superior to bagging but not as

accurate as boosting in situations with little or no classification noise [Dietterich, 1999].

However, it has been shown that in noisy settings bagging performs much more robustly than

boosting. A method of ensemble technique has been developed in which voting methodology of

bagging and boosting ensembles has been used with 10 subclassifiers in each one. It has been

compared with simple bagging and boosting ensembles with 25 sub-classifiers, and also with

other well known combining methods, on standard benchmark datasets and it has been shown

that the new is the most accurate [Kotsiantis and Pintelas, 2004]. An algorithm called RankBoost

has been developed for combining preferences based on the boosting approach to machine

learning. Theoretical results have been shown describing the algorithm’s behavior both on the

training data, and on new test data not seen during training. Two experiments have been carried

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

108

out to assess the performance of RankBoost. In the first experiment, the algorithm has been used

to combine different web search strategies, each of which is a query expansion for a given

domain. The second experiment has been a collaborative-filtering task for making movie

recommendations [Freund et al., 2003]. A statistical perspective on boosting has been proposed

with special emphasis on estimating potentially complex parametric or nonparametric models,

including generalized linear and additive models as well as regression models for survival

analysis. The practical aspects of boosting procedures for fitting statistical models have been

illustrated by means of the dedicated open-source software package mboost [Buhlmann and

Hothorn, 2007]. Theoretical and practical aspects of boosting and ensemble learning have been

discussed and the helpful association that exists between boosting and the theory of optimization

has been identified for easing the understanding of boosting [Meir and Ratsch, 2003]. Voting

classification algorithms like bagging, boosting and variants have been compared in order to find

which of these algorithms use perturbation, reweighting, and combination techniques, and which

of the algorithms affect classification error. The authors have shown bias and variance

decomposition of the error for showing bias and variance decomposition are influenced by

different methods. This comparison has shown that bagging reduces variance of unstable

methods, while boosting methods (AdaBoost and Arc-x4) reduce both the bias and variance of

unstable methods but increase the variance for Naive-Bayes. It has been found that when

probabilistic estimates are used along with no-pruning, then bagging shows an improvement.

Mean-squared error of voting methods has been compared to non-voting methods and it has

shown that the voting methods show reduction in the errors. They have also examined the

problems that arise when boosting algorithms are practically implemented [Bauer and Kohavi,

1998]. Simple online bagging and boosting algorithms have been developed that perform as well

as their batch counterparts. Lossless online algorithms for decision trees and Naïve Bayes models

have been used [Oza and Russell, 2005]. Cohen has developed stacked sequential learning

which is a sequential learning scheme in which an arbitrary base learner is improved so that it

becomes aware of the labels of nearby examples. This method has been assessed on various

problems. It has been shown that on these problems, the performance of non-sequential base

learners improves by sequential stacking; that the performance of learners specially designed for

sequential tasks is improved by sequential stacking [Cohen, 2005]. A learning method using

multiple stacking for named entity recognition has been proposed which employs stacked

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

109

learners using the tags predicted by the lower level learners. This approach has been applied to

the CoNLL-2002 shared task to improve a base system [Tsukamoto et al., 2002]. Different

methods for interpreting the results of multiple, cascading machine learners have been explored.

Each of these methods perform a different task. A framework for modeling cascading learners as

a directed acyclic graph has been developed, which has allowed a construction of three-way

contingency tables on which various independence tests has been performed. These

independence tests have provided insight into how the various learners’ performance depends on

their predecessor in the chain and/or the inputs themselves [Michelson and Macskassy, 2010]. A

technique of localized cascade generalization of weak classifiers has been developed. Using this

technique some local regions have been pointed out that have like properties and the cascade

generalization of local experts has been used for explaining the relationship between the data

characteristics and the target class. This technique has been compared with other well known

combining methods using weak classifiers as base-learners, on standard benchmark datasets and

it has been shown that this technique is more accurate [Kotsiantis, 2008]. A method has been

proposed based on the enrichment of a set of independent labeled datasets by the results of

clustering, and a supervised method has been used to evaluate the interest of adding such new

information to the datasets. The cascade generalization paradigm has been adapted in the case

where an unsupervised and a supervised learner are combined [Candillier et al., 2006]. Bagging,

stacking, boosting and error correcting output codes are the main four methods of combining

multiple models. These have been discussed covering seven methods of combining multiple

learners i.e., voting, bagging, cascading, error-correcting output codes, boosting, mixtures of

experts, and stacked generalization [Witten and Frank, 2000]. A theoretical framework for

combining classifiers in the two main fusion scenarios has been developed. These two main

fusion scenarios are fusion of opinions based on identical and on distinct representations [Kittler,

1998]. For the first scenario i.e. the shared representation they showed that here fusion has been

performed with the aim of obtaining a better estimation of the appropriate a posteriori class

probabilities. For the second scenario i.e. for the distinct representations it has been pointed out

that the techniques based on the benevolent sum-rule fusion are more flexible to errors than those

derived from the severe product rule.

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

110

6.3. Our approach towards combining learners

In our technique we have used uni-representation approach towards combining learners in which

all the learners use the same representation of the input as opposed to multi-representation in

which learners use different representations of input data [Alpaydin, 1998]. Combined learners

are formed of a number of base learners. The performance of combined learners as a whole is

usually much better than that of individual base learners. This process boosts the predicting

ability of the learners. Base learners are generated from training data by a base learning

algorithm which can be decision tree, neural network or other kinds of machine learning

algorithms. As discussed earlier, some methods use a single base learning algorithm to produce

homogeneous base learners, but the technique that we follow uses multiple learning algorithms

to produce heterogeneous learners.

This section discusses the technique that we use for combining learners. Our technique aims to

increase the accuracy of prediction in the classification task. We have used an approach in which

multiple learners are combined and class probabilities are computed. We have used our method

on a classification task. In case of classification, the class with the highest probability is chosen.

Consider we have to combine N learners (l1, l2,… lN). We represent each learner by lj and the

prediction of each learner lj by dj(x). If y represents the final prediction, we can calculate y from

the individual predictions of learners, i.e.

 y = f (d1, d2, . . . , dN | Φ)

f denotes the combining function and Φ represents its parameters [Alpaydin, 2010]. However, for

multiple outputs we can get several y’s and we have to chose the class with maximum value for

y. In that case, prediction of each learner is represented by dji(x), j = 1, . . . , N, i = 1, . . ., K for K

outputs and yi, i =1, . . .,K represent the final predictions. For example, in case of classification,

we choose the class with the maximum yi value, i.e.

 Choose Ci if yi= max yk where k = 1 to K

From equation 1 we get,

 yi = Σ wjdji where wj >= 0, Σ wj = 1

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

111

In case of classification, the weights approximate to the learner probabilities. Therefore,

wj = P(lj)

dji = P(Ci | x, lj)

The above equation can be rewritten as

P(Ci | x) = Σ P(Ci | x, lj) P(lj) for all learners lj

The class probabilities are calculated using this formula.

6.3.1. Procedure of our approach

In our technique, we take a number of learners and apply them on a single dataset. We designed

a technique that takes a number of learners and produces a series of classifiers after applying the

learners on the dataset. As far as the task of classification is concerned, it uses all the produced

classifiers for calculating the class probabilities and chooses the class for which the classifiers

predict the highest probability. Figure 6.5 shows the basic flow of our technique. The steps

carried out in our procedure are listed below:

The problem on which we have applied our procedure is a classification problem. In this

problem, a function maps the inputs to the desired outputs by determining which of a set of

classes a new input belongs to. This is determined on the basis of the training data which

contains the instances whose class is known, i.e. h : X Y, where X represents input and Y

represents the output class. Let the dataset we use be represented as D = {xt, yt} t = 1 to T, where

T is used to represent the number of instances in the dataset. Let there be N number of learners

that we have to combine i.e. l1, l2,.. lN and let K number of output classes in our data i.e. yt can

take values (C1, C2,… CK)

� For each learner lj (j = 1 to N) in the combination

create the classifier mj for lj by training on the dataset D

 mj = lj(D)

� For each class Ci (i = 1 to K) in the data

 For each classifier mj (j = 1 to N)

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

112

Calculate P(Ci) = P(Ci | x, mj) that represents the probability that the classifier mj assigns

to the class Ci.

� Finally, we choose the class with the highest predicted probability, or the class with

maximum value for P(Ci) i.e.

Choose Ci if P(Ci) has the maximum value among all P(Ci)’s

Figure 6.5: Flow of the combined technique

6.3.2. Experimental Setup

As mentioned earlier, for the implementation of the above discussed procedure, we used Python

programming and for applying machine learning methods we used Python machine learning tool

called Orange. We implemented this approach on the classification problem used in the previous

chapter. The dataset (http://www.hakank.org/weka/credit.arff) that we used for our experiment

for implementing our procedure is the Australian Credit Approval dataset from UCI Repository

of Machine Learning Databases and Domain theories

(http://archive.ics.uci.edu/ml/datasets.html). It is the same dataset that we used in previous

chapter for the evaluation of various machine learning algorithms, and its description has already

been provided so we skip it here. However, for using the dataset in Orange we had to change its

format from ARFF (supported in WEKA) to tab delimited format supported in Orange. The

dataset is split into the training and the test sets as done in the previous chapter i.e.

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

113

“trainingcredit” and “testingcredit”. The main reason for using the same dataset is to compare the

accuracy of the individual learners used in the previous chapter with the accuracy of the

combined approach. As discussed earlier, Orange provides a number of inbuilt routines for

performing various machine learning tasks. Without its use, we would have to write the entire

code ourselves for all the machine learning tasks e.g. for carrying out cross validation for

comparing the machine learning algorithms, or for loading data and so on. We provide a list of

routines that we used for our approach of combining various learners:

� First of all, for accessing the learners to be combined we used

 learner = Learner()

where Learner() is a particular learning algorithm in Orange.

� For loading our dataset in D,

 D = orange.Exampletable(“trainingcredit”)

 This loads the dataset that we have used i.e. Credit dataset in D.

� For creating the classifiers by training the learner on the dataset,

Classifier = learner(D)

i.e. the learner is called with the data and returns a classifier.

� For obtaining class probabilities,

Probabilities = Classifier(D, orange.GetProbabilities)

Probabilities are stored in a list and using the max() routine we find the maximum

probability and return the class that has been predicted the highest probability using the

modus() routine on the list.

� Finally, for evaluation of our learners, we use cross validation method just as we used in

the previous chapter.

 Evaluationresult = orange.crossValidation(learners, D)

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

114

The experiment was carried out in Python machine learning tool. For our experiment we used

three learners for combination, i.e. we kept N = 3. The algorithms that we used are

RandomForest, Naivebayes, and kNN. Then we performed cross validation with 10 folds just

like in previous chapter. We split our dataset into training and testing sets.

We carried out our experiment in Python 2.7. It has various modules like IDLE (Python GUI),

Python (Command Line), and PythonWin. We used the Script file of PythonWin to develop our

application. The file is saved as a script file with “.py” extension. PythonWin has an Interactive

Window which allows us to run the commands interactively as well as run our scripts and

analyze the results. Figure 6.6 shows loading and running a script file in Interactive Window, and

Figure 6.7 shows the results of our script file after it is run.

Figure 6.6: Running a Script in Interactive Window in Python

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

115

Figure 6.7: Results of our script on “testingcredit” file

6.3.3. Results

For evaluating the results of performance comparison of the individual learners and the

combined learner, we used F-Measure as used in WEKA in previous chapter. Also we used two

additional measures: accuracy and Brier score. We have already discussed Accuracy and F-

Measure in Chapter 4.

Accuracy = tp + tn

 tp + fp + tn + fn

Precision(P) = tp

 tp + fp

Recall(R) = tp

 tp + fn

F-Measure = 2 * P * R

 P+R

tp (true positives), fp (false positives), tn (true negatives) and fn (false negatives).

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

116

Brier Score: It is a score function that is used to measure the accuracy of probabilistic

predictions. It is used in situations where the predictions assign probabilities to a set of

outcomes. The outcomes can be binary or categorical in nature. This evaluation measure is

proposed by Glenn W. Brier in 1950. It measures the mean squared difference between the

predicted probability assigned to the possible outcomes and the actual outcome. Therefore, lower

the Brier score, the better the predictions. Table 6.1 shows the comparison of the learners on the

basis of accuracy, brier score, and F-Measure.

Table 6.1: Comparison of learners

Figure 6.8: Comparison on the basis of Classification Accuracy

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

ACCURACY

ACCURACY

LEARNERS ACCURACY BRIER SCORE F-MEASURE

RandomForest 0.845 0.217 0.861

NaiveBayes 0.864 0.236 0.881

kNN 0.831 0.247 0.848

Combinedlearner 0.870 0.219 0.885

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

117

Figure 6.9: Comparison on the basis of F-Measure

Figure 6.8 shows the graphical comparison of various learners on the basis of classification

accuracy. It clearly shows that the combined learner has the highest classification accuracy (i.e.

0.870) among all learners. Figure 6.9 shows the graphical comparison of various learners on the

basis of F-Measure. It shows that the combined learner has the highest F-Measure (i.e. 0.885). It

has highest F-Measure than MultilayerPerceptron (0.848) that was the highest in the evaluation

of machine learning algorithms through WEKA in the previous chapter. Therefore, the combined

learner outperforms all the learners for our problem of the classification of the credit dataset.

Table 6.1 shows that the lowest value (best) for Brier Score is shown by RandomForest (0.217)

and the next lowest by our combined approach (0.219).

6.4. Feature Space Design

As discussed in Subsection 3.1.3 of Chapter 3, data preprocessing [Zhang et al., 2002] is an

important task of machine learning. Initially the data collected is not directly suitable for training

and therefore requires some processing before it can be used for example it may have missing

feature values or noise. A number of pre-processing methods have been developed and the

decision of deciding which one to use varies according to the situations. If the collected data

contains some missing features then a method for handling missing data [Batista & Monard,

2003] is used. Similarly, there are methods for detecting and handling noise [Hodge & Austin,

2004]. Some of the problems with the collected real world data are: data can be incomplete i.e.

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

F-MEASURE

F-MEASURE

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

118

some attribute values may be missing, or it may lack certain important attributes, or it may

consist of only aggregate data; there can be presence of noise i.e. it may contain errors or

outliers; the data may be inconsistent i.e. containing variations in codes or names. Data

preprocessing is performed in order to prepare the data for input into machine learning and

mining processes. This involves transforming the data for improving its quality and hence the

performance of the machine learning algorithms, such as predictive accuracy and reducing the

learning time. Once the data preprocessing is complete we get a final training set. A well-known

algorithm has been presented for each step of data pre-processing [Kotsiantis et al., 2006].

There are a number of tasks that are carried out in data preprocessing. These are cleaning,

normalization, integration, transformation, reduction, feature extraction and selection. Data

cleaning involves filling the missing values, smoothing the noisy data, identifying or removing

outliers, and resolving inconsistencies. Data integration consists of using multiple databases, data

cubes, or files and data transformation involves normalization and aggregation. Data reduction

means reducing the volume of the data but producing the same analytical results. Data

discretization is part of data reduction which means replacing numerical attributes with nominal

ones. Feature extraction and selection are tasks of feature space design. Restructuring the feature

space or feature space design is very important and has resulted in a lot of research by the

machine learning communities. Researchers have developed several techniques and methods to

deal with this problem.

As we have shown before, for our machine learning tasks, data is represented as a table of

examples or instances. It is called the dataset. Every instance in the dataset has a fixed number of

attributes, or features, along with a label that denotes its class. The features of a dataset contain

the information about the problem that we are dealing with and help in the classification process.

Usually we believe that if the number of features or attributes is increased in the dataset, it will

increase the efficiency of classification. However, by increasing the features there are chances of

degradation of the classifier performance [Bishop, 1995]. Usually in many real-world problems,

there are a large number of features in the dataset, most of which are irrelevant or redundant.

Therefore, an important task in machine learning is deciding and choosing which of the features

are relevant and which are irrelevant. Before a classifier can move beyond the training data to

make predictions about novel test cases, it must decide which features to use in these predictions

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

119

and which to ignore. Therefore it is necessary to find subsets of the feature population that are

relevant to the target class and worthy of focused analysis [Blum and Langley, 1997]. This

process in which some of the features of the training set are selected and used for classification is

called feature selection.

6.4.1. Feature Selection

The most important purpose of feature selection is to make a classifier more efficient by

decreasing the size of the dataset. This is necessary for the classifiers that are costly to train e.g.

NaiveBayes. The processing time and the cost of the classification systems are increased while

their accuracy is decreased if irrelevant and additional features are used in the datasets used for

classification. Therefore, it is very important to develop the techniques for selecting smaller

feature subsets. However, we have to make sure that the subset which is selected is not so small

that the accuracy rates are reduced and the results lack understandability. So it is very important

that techniques must be developed that help to find an optimal subset of features from the

superset of original features [Witten and Frank, 2000]. There are two ways in which feature

selection can be carried out. These are the filter and wrapper approach [Liu and Motoda, 1998].

The filter approach selects a subset of the features that preserves as much as possible the relevant

information found in the entire set of features [Kohavi and John, 1997; Freitas, 2002]. Some of

the methods that implement filter approach are discussed here. The FOCUS algorithm

[Almuallim and Dietterich, 1991] has been designed for noise-free Boolean domains and it

follows the MIN-FEATURES bias. It examines all feature subsets and selects the minimal subset

of features that is sufficient to predict the class targets for all records in the training set. Another

feature selection method that has been developed is called Relief [Kira and Rendell, 1992]. It is

an instance-based feature selection method. Relief-F is an extended version of Relief that has

been developed for multi-class datasets whereas Relief was designed for two-class problems. In

this method an instance is randomly sampled from the data and its nearest neighbor is located

from the same and opposite class. The sampled instance is compared to the values of the features

of the nearest neighbors and relevance scores for each feature are updated. The process is then

carried out repeatedly for many instances. The main idea is that an attribute should be able to

differentiate between instances from different classes and should have the same value for

instances from the same class. Information gain and gain ratio [Quinlan, 1993] are good

examples of measuring the relevance of features for decision tree induction. They use the

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

120

entropy measure to rank the features based on the information gained; the higher the gain the

better the feature. Moore and Lee [Moore and Lee, 1994] proposed another model using an

instance-based algorithm, called RACE, as the induction engine, and leave-one-out cross-

validation (LOOCV) as the subset evaluation function. Searching for feature subsets is done

using backward and forward hill-climbing techniques. John et al. [John et al., 1994] proposed a

similar method and applied it to ID3 and C4.5 on real world domains. Langley et al. [Langley

and Sage, 1994] also used LOOCV in a nearest-neighbor algorithm. Caruana et al. [Caruana and

Freitag, 1994] test the forward and backward stepwise methods on the Calendar Apprentice

domain, using the wrapper model and a variant of ID3 as the induction engine. Wrapper models

are usually slower than filter models in the sense that inductive learning is carried out more than

once.

6.4.2. Basic Steps in Feature Selection

This section discusses the steps that we followed in selecting the subset of features in our

problem. We applied our combined technique on the problem dataset. In Section 6.3 we already

evaluated its efficiency. Now we use this method in combination with the feature selection

technique. We apply a filter approach on our method that results in a different (filtered) dataset

and evaluate the results. The steps that we followed are:

� Initialize the learner.

learner = Learner()

� Load the dataset in D,

 D = orange.Exampletable(“trainingcredit”)

 This loads the dataset that we have used i.e. Credit dataset in D.

� For creating the classifiers by training the learner on the dataset,

 Classifier = learner(D)

� Compute the relevance (R) of the features/attributes. This is done by applying the

attribute measure method on the dataset (i.e. attMeasure(D)).

� Set some margin, say m, and remove all those features/attributes for which R < m, i.e.

whose relevance is below the selected margin. This is done by applying a filter method

on the dataset. Only the attributes having R > m are used for classification.

� Finally, use the learner on both the datasets and compare the accuracy.

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

121

6.4.3. Experiment and Results

Again for implementing the above procedure we used Python programming and Python machine

learning tool. We carried out the experiment on the same problem and dataset i.e. Credit dataset.

Again we use our “testingcredit” file like in previous experiment. Figure 6.10 shows the results

of feature subset selection method on “testingcredit” file taking margin 0.010. First it shows the

list of all attributes (i.e. 15) in our dataset along with the computed relevance. Then it displays

the list of attributes after feature selection process. It displays a reduced list of attributes (i.e. 11).

Out of 15 attributes only 11 attributes of our dataset are relevant and the remaining 4 are

discarded because their relevance is less than the specified margin (0.010). Finally, it shows the

accuracy and the F-Measure of the learners on the dataset after the process of feature selection.

Table 6.2 shows the comparison of the performances of the learners based on accuracy and F-

Measure with and without feature selection for margin 0.010. The table shows that for all the

learners the accuracy and F-Measure either increases or remains same after feature selection.

This shows that in our problem only 11 attributes are enough for performing efficiently.

Remaining 4 attributes are irrelevant as long as efficiency is concerned. However, we have to

take proper care in selecting the margin because the selected subset should not be so small that it

reduces the accuracy rates and the understanding of the results. So we need to find an optimal

subset of features from the superset of original features.

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

122

Figure 6.10: Results of feature subset selection on “testingcredit” with margin 0.010

Table 6.2: Before and after feature selection comparison of learners with margin 0.010

Figure 6.11 shows the results of feature subset selection taking margin 0.020. Table 6.3 shows

the comparison of the performances of the learners based on accuracy and F-Measure with and

without feature selection for margin 0.020. It shows a decrease in the accuracy and F-Measure of

Learners

Accuracy
Before feature

selection

Accuracy
After feature

selection

F-Measure
Before feature

selection

F-Measure
After feature

selection

RandomForest 0.845 0.852 0.861 0.867

NaiveBayes 0.864 0.864 0.881 0.880

kNN 0.831 0.825 0.848 0.845

CombinedLearner 0.870 0.868 0.885 0.879

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

123

all the learners. After subset selection, only 6 attributes are chosen for classification and

remaining attributes are ignored as there relevance is below the margin. But this decreases the

overall accuracy of the learners. Hence, for our problem the optimal subset of features is

obtained by keeping margin equal to 0.010, which corresponds to 11 out of 15 attributes.

Figure 6.11: Results of feature subset selection on “testingcredit” with margin 0.020

In Table 6.4 we have shown the comparison of learners on the basis of their F-Measures without

feature selection and with feature selection at two different margins. It is clear that feature

selection is important but only as long as it does not decrease the efficiency of the learners by

discarding too many attributes on the basis of their relevance. At margin 0.010, learners perform

better than without any margin. They show increased or similar efficiency depicting the fact that

rest of the attributes were irrelevant. However, at margin 0.020, learners show decrease in

performance indicating that too many attributes are being discarded and hence the chosen subset

is not an optimal subset.

6 COMBINED MACHINE LEARNING AND FEATURE DESIGN

124

Table 6.3: Before and after feature selection comparison of learners with margin 0.020

Table 6.4: Comparing F-Measure at different margins

Learners

Accuracy
Before feature

selection

Accuracy
After feature

selection

F-Measure
Before feature

selection

F-Measure
After feature

selection

RandomForest 0.845 0.838 0.861 0.854

NaiveBayes 0.864 0.858 0.881 0.874

kNN 0.831 0.831 0.848 0.843

CombinedLearner 0.870 0.852 0.885 0.869

Learners

F-Measure
Before feature

selection

F-Measure
After feature

selection (margin
0.010)

F-Measure
After feature

selection (margin
0.020)

RandomForest 0.861 0.867 0.854

NaiveBayes 0.881 0.880 0.874

kNN 0.848 0.845 0.843

CombinedLearner 0.885 0.879 0.869

Chapter 7

Conclusion and Future Work

7 CONCLUSION AND FUTURE WORK

125

7.1. Conclusions

These days, machine learning techniques are being widely used to solve real-world problems by

storing, manipulating, extracting and retrieving data from large sources. Supervised machine

learning techniques have been widely adopted however these techniques prove to be very

expensive when the systems are implemented over wide range of data. This is due to the fact that

significant amount of effort and cost is involved because of obtaining large labeled data sets.

Thus active learning provides a way to reduce the labeling costs by labeling only the most useful

instances for learning.

Chapter 2 discusses current developments and applications in NLP and literature survey of

various machine learning techniques. We identified the different circumstances in which the

learner may ask queries and different querying strategies. Chapter 3 discusses the basic concepts

of supervised learning, active learning and learning for complex models. We presented an

example of learning pipeline models. We concluded that machine learning strategies that take

into consideration the informativeness or the relevance of instances can perform better with

fewer labeled examples as compared to other learning approaches. Chapter 4 examines a

pipelined approach for information extraction with respect to active machine learning. Machine

learning problems solved using a pipeline model show better results. Chapter 5 presents an

evaluation of state-of-the-art machine learning algorithms on the basis of efficiency, for the task

of classification. Chapter 6 presents a combined approach for the design of a learner that aims at

increasing the efficiency of the learning tasks. Machine learning algorithms perform more

efficiently for a classification task when they are combined together. For the prediction of the

correct output class, combined learner selects the class to which highest probability has been

assigned among all the learners. Further we conclude that feature selection is important but only

as long as it does not decrease the efficiency of the learners by discarding too many attributes on

the basis of their relevance.

7.2. Future Work

The combined approach that we presented in this work has some limitations. Although we have

used it on state-of-the-art machine learning algorithms, however, we have evaluated its results on

only classification tasks. It can be extended to be used for other important problems e.g.

7 CONCLUSION AND FUTURE WORK

126

regression and clustering. Moreover, we theoretically showed how active learning can be applied

to part-of-speech tagging and included into the pipeline. In future we intend to show its empirical

implementation and performance evaluation using various evaluation metrics. In field of active

learning future work involves combining active learning with a subfield of machine learning

called transfer learning [Torrey and Shavlik, 2009]. It is applicable in situations when we have a

training set available for one problem but not for another similar problem. It involves

transferring knowledge from one domain to another to speed up learning.

PUBLICATIONS

127

PUBLICATIONSPUBLICATIONSPUBLICATIONSPUBLICATIONS

• Towards Understanding Theoretical Developments in Natural

Language Processing. (Mehnaz Khan, Mehraj-ud-Din Dar, S.M.K. Quadri).

International Journal of Computer Applications (0975 – 8887)Volume 38–

No.2, January 2012.

• Examining a Pipelined Approach for Information Extr action with

respect to machine learning. (Mehnaz Khan, S.M.K. Quadri). International

Journal of Computer Science & Communication Networks,Volume 2,

Number 4, Pages 491-495, ISSN: 2249-5789, August 2012.

• Evaluating Various Learning Techniques for Efficiency. (Mehnaz Khan,

S.M.K. Quadri). International Journal of Engineering and Advanced

Technology, Volume-2, Issue-2, Pages 326-331, ISSN: 2249 – 8958,

December 2012.

• An efficient Uni-representation Approach towards Combining Machine

Learners. (Mehnaz Khan, S.M.K. Quadri).IEEE Conference on Information

and Communication Technologies ICT 2013. (Accepted for Publication).

• Effects of using Filter Based Feature Selection on the Performance of

Machine Learners using Different Datasets. (Mehnaz Khan, S.M.K.

Quadri). BVICAM’s International Journal of Information Technology.

(Accepted for Publication).

REFERENCES

128

REFERENCES

• Abe, N. and Mamitsuka, H. Query learning strategies using boosting and bagging. In

Proceedings of the International Conference on Machine Learning (ICML), pages 1–9.

Morgan Kaufmann,1998.

• Abney, S. Bootstrapping. AT&T Laboratories – Research 180 Park Avenue Florham

Park, NJ, USA (2002).

• Ahn, L.V. Human Computation. School of Computer Science Carnegie Mellon

University Pittsburgh (2005).

• Allwein, E. L., Schapire, R.E. and Singer, Y. Reducing multiclass to binary: A unifying

approach for margin classifiers. Journal of Machine Learning Research1, 113–141

(2000).

• Almuallim, H. and Dietterich, T. Learning with Many Irrelevant Features", "Proceedings

of the Ninth National Conference on Artificial Intelligence. pages 547-552. MIT Press,

1991.

• Alpaydin, E. Introduction to Machine Learning. The MIT Press Cambridge,

Massachusetts London, England (2010).

• Alpaydin, E. Techniques for Combining Multiple Learners.Proceedings of Engineering of

Intelligent Systems’ 98 Conference(Ed. E Alpaydin), Vol 2, 6-12, ICSC Press, 1998.

• Amershi, S., Fogarty, J., Kapoor, A. and Tan, D. Examining Multiple Potential Models in

End-User Interactive Concept Learning. Machine Learning and Web Interactions, 1357-

1360 (2010).

• Anderson, B. and Moore, A. Active learning for hidden markov models: Objective

functions and algorithms. In Proceedings of the International Conference on Machine

Learning (ICML), pages 9-16 (2005).

• Angluin, D. Queries and concept learning. Machine Learning, 2(4):319-342 (1988).

• Angluin, D. Queries revisited. In Proceedings of the International Conference on

Algorithmic Learning Theory, pages 12–31. Springer-Verlag, (2001).

• Anssi, Y. J., Andras, K., and Jacques, S. Finite-state methods and models in natural

language processing. Natural Language Engineering 17 (2): 141–144 (2011).

REFERENCES

129

• Arora, S. and Agarwal, S. Active learning for Natural Language Processing. Language

Technologies Institute School of Computer Science Carnegie Mellon University. (2007).

• Bach, N. and Badaskar, S. “A Review of Relation Extraction”. Language Technologies

Institute, School of Computer Science Canergie Mellon University, Pittsburgh.

• Baldridge, J. and Osborne, M. Active learning and the total cost of annotation. In

Proceedings of the Conference on Empirical Methods for Natural Language Processing

(EMNLP), pages 9-16 (2004).

• Baram, Y., El-Yaniv, R., and Luz, K. Online choice of active learning algorithms.

Journal of Machine Learning Research, 5:255-291. (2004)

• Batista, G. and Monard, M.C. An Analysis of Four Missing Data Treatment Methods for

Supervised Learning, Applied Artificial Intelligence, vol. 17, pp.519-533 (2003).

• Bauer, E. and Kohavi, R. An Empirical Comparison of Voting Classification Algorithms:

Bagging, Boosting, and Variants, Machine Learning, vv, 1-38 (1998)

• Baum, E.B. and Lang, K. Query learning can work poorly when a human oracle is used.

In Proceedings of the IEEE International Joint Conference on Neural Networks, 1992.

• Becker, M. (2008). Active Learning: An Explicit Treatment of Unreliable Parameters.

PhD thesis, University of Edinburgh.

• Becker, M. and Osborne, M. A two-stage method for the active learning of statistical

grammars. In Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), pages 991-996 (2005).

• Becker, M., Hachey, B., Alex, B., and Grover, C. Optimising selective sampling for

bootstrapping named entity recognition. In ICML Workshop on Learning with Multiple

Views (2005).

• Bhide, M.A., Gupta, A., Gupta, R., Roy, P., Mohania, M.K. and Ichhaporia, Z. “Liptus:

Associating structured and unstructured information in a banking environment”.

Proceedings of the 2007 ACM SIGMOD, 915-924.

• Bird, S., Klein, E. and Loper, E. 2006. “Natural Language Processing/ Computational

Linguistics with Python”.

• Bishop, C. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

• Blitzer, J. Domain Adaptation of Natural Language Processing Systems. University of

Pennsylvania (2008).

REFERENCES

130

• Blum, A. and Langley, P. Selection of Relevant Features and Examples in Machine

Learning. Artificial Intelligence, pages 245-271, 1997.

• Blum, A. and Mitchell, T. Combining labeled and unlabeled data with co-training.

COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan

Kaufmann, p. 92-100 (1998).

• Bordes, A., Ertekin, S., Weston, J., and Bottou, L. Fast kernel classifiers with online and

active learning. Journal of Machine Learning Research, 6:1579-1619 (2005).

• Boswell, D., 2002. Introduction to Support Vector Machines: University of Carlifornia,

San Diego.

• Brants, T. (2000) TnT - A Statistical Part-of-Speech Tagger, Proc 6th Applied Natural

Language Processing Conference, ANLP-200.

• Breiman, L. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

• Breiman, Leo (2001). "Random Forests". Machine Learning 45 (1): 5–32.

• Brill, E. Transformation-Based Error-Driven Learning and Natural Language Processing:

A Case Study in Part of Speech Tagging. Computational Linguistics, December 1995.

• Brinker, K. Active learning of label ranking functions. In Proceedings of the

International Conference on Machine Learning (ICML), pages 129-136 (2004).

• Brinker, K. Incorporating diversity in active learning with support vector machines. In

Proceedings of the International Conference on Machine Learning (ICML), pages 59-66.

AAAI Press, 2003.

• Bryll, R., Osuna, R.G. and Quek, F. Attribute bagging: improving accuracy of classifier

ensembles by using random feature subsets, Pattern Recognition 36 (2003) 1291 – 1302,

Elsevier Science Ltd.

• Buhlmann, P. and Hothorn, T. Boosting Algorithms: Regularization, Prediction and

Model Fitting, Statistical Science, 2007.

• Bunescu, R. C. Learning with probabilistic features for improved pipeline models. In

Proceedings of the Conference on Empirical Methods for Natural Language Processing

(EMNLP), volume 670-679 (2008).

• Bunescu, R. C., and Mooney, R. J. 2005. “A Shortest Path Dependency Kernel for

Relation Extraction”. Proceedings of the conference on Human Language Technology

and Empirical Methods in Natural Language Processing, ACL, 724-731.

REFERENCES

131

• Campbell, C., Cristianini, N., and Smola, A. Query learning with large margin classifiers.

In Proceedings of the International Conference on Machine Learning (ICML), pages

111-118 (2000).

• Candillier, L.,Tellier, I., Torre, F. and Bousquet, O. Cascade evaluation of clustering

algorithms. (2006).

• Caruana, R. and Freitag, D. Greedy Attribute Selection. In Machine Learning:

Proceedings of the Eleventh International Conference, W. Cohen and H. Hirsh (eds).

Morgan Kaufmann, 1994.

• Chan, Y. S. and Ng, H. T. Domain adaptation with active learning for word sense

disambiguation. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), pages 49-56 (2007).

• Chang, M.W., Do, Q. and Roth, D. 2006. “Multilingual dependency parsing: A pipeline

approach”. In Recent Advances in Natural Language Processing, 195–204.

• Chen, J., Schein, A., Ungar, L., and Palmer, M. An empirical study of the behavior of

active learning for word sense disambiguation. In Proceedings of the Annual Meeting of

the North American Association of Computational Linguistics (NAACL), pages 120-127

(2006).

• ChengXiang, Z. Statistical Language Models for Information Retrieval A Critical

Review. Foundations and Trends in Information Retrieval 2(3):137–213 (2008).

• Chin, Y. L. and Eduard, H. From Single to Multi-document Summarization: A Prototype

System and its Evaluation. Proceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL), Philadelphia, (July 2002), 457-464.

• Claudia, S., Monica, M., and Piek, V. WordNet-LMF: Fleshing out a Standardized

Format for WordNet Interoperability. CHI 2009, April 4–9, 2009, Boston, Massachusetts,

USA.

• Cleary, J.G. and L.E. Trigg. 1995. K*: an instance-based learner using an entropic

distance measure. In Proceedings of the 12th ICML-95, pages 108-114.

• Clyde, M.A. and Lee, H.K.H. Bagging and the Bayesian Bootstrap, Institute of Statistics

& Decision Sciences, Duke University, Durham (2000).

REFERENCES

132

• Cohen, W.W. Stacked Sequential Learning, Center for Automated Learning & Discovery

School of Computer Science, Carnegie Mellon University, Pittsburgh (2005).

• Cohn, D., Atlas, L., and Ladner, R. Improving generalization with active learning.

Machine Learning,15(2):201-222 (1994).

• Cohn, D., Ghahramani, Z. and Jordan, M.I. Active learning with statistical models.

Journal of Artificial Intelligence Research, 4:129–145, (1996).

• Collins, M. Discriminative training methods for hidden markov models: Theory and

experiments with perceptron algorithms. In Proceedings of the Conference on Empirical

Methods for Natural Language Processing (EMNLP), pages 1-8 (2002).

• Cooper, W.S. The inadequacy of probability of usefulness as a ranking criterion for

retrieval system output. University of California, Berkeley (1971).

• Cortes, C. and Vapnik, V.N. Support-vector networks. Machine Learning, 20(3):273–

297, 1995.

• Cristian, D.N.M., Michael, G., and Susan, D. Mark My Words! Linguistic Style

Accommodation in Social Media In Proceedings of WWW 2011, Hyderabad, India.

ACM, 1 April 2011.

• Culotta, A. and McCallum, A. Reducing labeling effort for structured prediction tasks. In

Proceedings of the National Conference on Artificial Intelligence (AAAI), pages 746-751

(2005).

• Culotta, A., Krisjansson, T., McCallum, A., and Viola, P. Corrective feedback and

persistent learning for information extraction. Artificial Intelligence, 170(14):1101-1122

(2006).

• Dagan, I. and S. Engelson. Committee-based sampling for training probabilistic

classifiers. In Proceedings of the International Conference on Machine Learning

(ICML), pages 150- 157.Morgan Kaufmann, (1995).

• Dasgupta, S., Hsu, D. and Monteleoni, C. A general agnostic active learning algorithm.

In Advances in Neural Information Processing Systems (NIPS), volume 20, pages 353–

360. MIT Press, (2008).

REFERENCES

133

• David, M. Z., Bonnie, J. D., and Jimmy, L. Single-Document and Multi-Document

Summarization Techniques for Email Threads Using Sentence Compression. College of

Information Studies, University of Maryland 2008.

• Day, D., Aberdeen, J., Hirschmann, L., Kozierok, R., Robinson, P. and Vilain, M. Mixed-

initiative development of language processing systems. In Fifth Conference on Applied

Natural Language Processing ANLP-97, pages 348–355, New Brunswick, NJ.

Association for Computational Linguistics (1997).

• Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing

Ensembles of Decision Trees: Bagging, Boosting, and Randomization, Machine

Learning, 1-22 (1999).

• Dimitrakakis, C. and Savu-Krohn, C. Cost-minimizing strategies for data labeling:

Optimal stopping and active learning. In Proceeding of the International Symposia on

Foundations of Information and Knowledge Systems (FoIKS), pages 96-111 (2008).

• Ding, Z., Jiang, B., Shuyi, Z., Hongyuan, Z., and Lee, G. Exploring Social Annotations

for Information Retrieval. ACM, Beijing, China (2008).

• Dipanjan, D., and Andre, F. T. M. A Survey on Automatic Text Summarization.

Language Technologies Institute, Carnegie Mellon University (2007).

• Donmez, P. and Carbonell, J. Optimizing estimated loss reduction for active sampling in

rank learning. In Proceedings of the International Conference on Machine Learning

(ICML), pages 248-255 (2008).

• Donmez, P., Carbonell, J. G., and Bennett, P. N. Dual strategy active learning. In

Proceedings of the European Conference on Machine Learning (ECML), pages 116-127

(2007).

• Dragomir, R. R., Kathleen, M., and Eduard, H. Introduction to special issue on

summarization. Association for Computational Linguistics, 28(4), 399-408 (2002).

• Dredze, M. and Crammer, K. Active learning with confidence. In Proceedings of the

Annual Meeting of the Association for Computational Linguistics (ACL), pages 233-236

(2008).

REFERENCES

134

• Druck, G., Settles, B., and McCallum, A. Active learning by labeling features. In

Proceedings of the International Conference on Machine Learning (ICML), pages 81-90

(2009).

• Dubois, V. and Quafafou, M. "Concept learning with approximation: Rough version

spaces". Rough Sets and Current Trends in Computing: Proceedings of the Third

International Conference, RSCTC 2002. Malvern, Pennsylvania. pp. 239–246.

• Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification. Wiley-Interscience, 2nd

edition, (2001).

• Edmundson, H. P. 1968. Mathematical Models in Linguistics and Language Processing.

• Ellen, M. V. Overview of the TREC. Question Answering Track. National Institute of

Standards and Technology, Gaithersburg, MD 20899 (2001).

• Ellen, M. V. Overview of the TREC. Question Answering Track. National Institute of

Standards and Technology, Gaithersburg, MD 20899 (2002).

• Elworthy, D. Question answering using a large NLP system. The Ninth Text Retrieval

Conference (TREC 9) (2000).

• Federov, V. Theory of Optimal Experiments. Academic Press, 1972.

• Fine, S., Gilad-Bachrach, R., and Shamir, E. Query by committee, linear separation and

random walks. Theoretical Computer Science, 284:25-51 (2002).

• Finkel, J. R.; Manning, C. D.; and Ng, A. Y. 2006. “Solving the problem of cascading

errors: Approximate Bayesian inference for linguistic annotation pipelines”. In Proc. Of

the Conference on Empirical Methods in Natural Language Processing (EMNLP).

• Finn, A. and Kushmerick, N. Active learning selection streategies for information

extraction. In Proceedings of the International Workshop on Adaptive Text Extraction

and Mining, pages 18-25 (2003).

• Franc, V., Zien, A. and Scholkopf, B. Support vector machines as probabilistic models.

In: Proceedings of the 28th International Conference on Machine Learning (ICML-11).

2011, 665–672.

REFERENCES

135

• Francis, B., Hitoshi, I., Sanae, F., Kiyotaka, U., Takayuki, K., and Kyoko, K. 2009.

Enhancing the Japanese WordNet. Proceedings of the 7th Workshop on Asian Language

Resources, ACL-IJCNLP 2009, 1-8.

• Freitas, A. Data Mining and Knowledge Discovery with Evolutionary Algorithms.

Springer-Verlag, 2002.

• Freund, Y. and Schapire, R. E. An decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139

(1997).

• Freund, Y., Iyer, R., Schapire, R.E. and Singer, Y. An Efficient Boosting Algorithm for

Combining Preferences, Journal of Machine Learning Research 4 (2003) 933-969.

• Freund, Y., Seung, H.S., Shamir, E and Tishby, N. Selective samping using the query by

committee algorithm. Machine Learning, 28:133–168, 1997.

• Freund,Y.andSchapire, R. Experiments with a new Boosting Algorithm. In Machine

Learning: Proceedings of the Thirteenth International Conference, 148-156. (1996).

• Fujii,A., Tokunaga, T., Inui, K. and Tanaka, H. Selective sampling for example-based

word sense disambiguation. Computational Linguistics, 24(4):573–597, 1998.

• Geman, S., Bienenstock, E., and Doursat, R. Neural networks and the bias/variance

dilemma. Neural Computation, 4:1-58 (1992).

• Geoffrey, Z., and Patrick, N. 2009. A Segmental CRF Approach to Large Vocabulary

Continuous Speech Recognition. Microsoft Research, Redmond, WA.

• Gerard, M., and Gerhard, W. Towards a Universal WordNet by Learning from Combined

Evidence. CIKM‟09, November 2–6, 2009, Hong Kong, China.

• Gerasimos, P., Chalapathy, N., Guillaume, G., Ashutosh, G., and Andrew, W. S. 2003.

Recent Advances in the Automatic Recognition of Audio-Visual Speech. In Proceedings

of the IEEE, 91(9), September 2003.

• Ghahramani, Z. Unsupervised learning. In O. Bousquet, G. Raetsch, & U. von Luxburg

(Eds.), Advanced lectures on machine learning. Berlin: Springer-Verlag (2004).

• Gregory, D., Gideon, S. and Andrew, M. Learning from labeled features using

generalized expectation criteria., SIGIR, 595-602. ACM (2007).

REFERENCES

136

• Gunn, S.R. “MATLAB Support Vector Machines.” University of Southampton,

Electronics and Computer Science, URL

http://www.isis.ecs.soton.ac.uk/resources/svminfo/ (1998).

• Guo, Y. and Greiner, R. (2007). Optimistic active learning using mutual information. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),

pages 823-829.

• Guo, Y. and Schuurmans, D. Discriminative batch mode active learning. In Advances in

Neural Information Processing Systems (NIPS), number 20, pages 593–600. MIT Press,

Cambridge, MA, 2008.

• Haffari, G. and Sarkar, A. Active learning for multilingual statistical machine translation.

In Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL), pages 181-189 (2009).

• Haffari, G., Roy, M., and Sarkar, A. Active learning for statistical phrase-based machine

translation. In Proceedings of the Annual Meeting of the North American Association of

Computational Linguistics(NAACL), pages 415-423 (2009).

• Hand, David J. (1998): “Reject inference in credit operations,” in Credit Risk Modeling:

Design and Application (ed. E. Mays), 181-190, AMACOM.

• Hauptmann, A., Lin,W., Yan, R.,Yang, J. and Chen, M.Y. Extreme video retrieval: joint

maximization of human and computer performance. In Proceedings of the ACM

Workshop on Multimedia Image Retrieval, pages 385–394. ACM Press, 2006.

• Haussler, D. Learning conjunctive concepts in structural domains. Machine Learning,

4(1):7–40, 1994.

• Henning, W., Benno, S., and Gregor, E. “Constructing Efficient Information Extraction

Pipelines”. CIKM’11 ACM, Scotland, UK (2011).

• Herbrich, R., Graepel, T. and Williamson, R.C. The Structure of Version Space,

Microsoft Research Ltd., Cambridge, U.K. National ICT Australia, Canberra, Australia

(2004).

• Hinton, G. E. and Sejnowski, T. J. Unsupervised Learning: Foundations of Neural

Computation, MIT Press, Cambridge, MA, MIT Press Publishers, 1999.

REFERENCES

137

• Hiroya, T., and Manabu, O. Text Summarization Model based on Maximum Coverage

Problem and its Variant. Proceedings of the 12th Conference of the European Chapter of

the ACL, 781–789, Athens, Greece, 30 March – 3 April 2009.

• Hodge, V. and Austin, J. A Survey of Outlier Detection Methodologies, Artificial

Intelligence Review, Volume 22, Issue 2, pp. 85-126 (2004).

• Hoi, S.C.H., Jin, R. and Lyu, M.R. Large-scale text categorization by batch mode active

learning. In Proceedings of the International Conference on the World Wide Web, pages

633–642. ACM Press, 2006a.

• Hoi, S.C.H., Jin, R., Zhu, J. and Lyu, M.R. Batch mode active learning and its application

to medical image classification. In Proceedings of the International Conference on

Machine Learning (ICML), pages 417–424. ACM Press, 2006b.

• Hwa, R. Sample selection for statistical parsing. Computational Linguistics, 30(3):73–77,

2004.

• Japkowicz, N. and Stephen, S. The Class Imbalance Problem: A Systematic Study

Intelligent Data Analysis, Volume 6, Number 5, (2002).

• Jiang, J. A literature survey on domain adaptation of statistical classifiers. Tech report

(2008).

• Joachims, T. Making large scale SVM learning practical. Advances in Kernel Methods-

Support Vector Learning. MIT-Press

• John, G., Kohavi, R. and Pfleger, K. Irrelevant Features and Subset Selection Problem. In

Proceedings of the Eleventh International Conference on Machine Learning, pages 121-

129. Morgan Kaufmann Publishers, 1994.

• Jones, R. Learning to Extract Entities from Labeled and Unlabeled Text. PhD thesis,

Carnegie Mellon University (2005).

• Jones, R., Ghani, R., Mitchell, T., and Riloff, E. Active learning for information

extraction with multiple view feature sets. In Proceedings of the ECML Workshop on

Adaptive Text Extraction and Mining (ATEM) (2003).

• Jun, W., and Jianhan, Z. Portfolio Theory of Information Retrieval. SIGIR’09, July 19–

23, Boston, Massachusetts, USA (2009).

REFERENCES

138

• Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2nd

edition (2008).

• Jurafsky, D. and Martin, J.H. Speech and language processing: an introduction to natural

language processing, computational linguistics and speech recognition. Upper Saddle

River, NJ: Prentice Hall (2000).

• K.H. Ng, Commercial Banking in Singapore. Singapore: Addison Wesley, 1996, pp. 252-

253.

• Kambhatla, N. 2004. “Combining Lexical, Syntactic, and Semantic Features with

Maximum Entropy Models for Extracting Relations”. Proceedings of the ACL 2004.

• Kapoor, A., Horvitz, E. and Basu, S. Selective supervision: Guiding supervised learning

with decision-theoretic active learning. In Proceedings of International Joint Conference

on Artificial Intelligence (IJCAI), pp. 877–882. AAAI Press, 2007.

• Keller, F. (2002) Evaluation Connectionist and Statistical Language Processing.

• Kevin, M., Michael, B., Jules, B., Wendy, C., John, G., Dilip, G., James, H., and

Elizabeth, L. “Implementation and Evaluation of a Negation Tagger in a Pipeline-based

System for Information Extraction from Pathology Reports”. MEDINFO, 663-667

(2004).

• Khan, M. and Quadri, S.M.K. (2012a). “Examining a Pipelined Approach for Information

Extraction with respect to machine learning”. International Journal of Computer Science

and Communication Networks, Vol 2(4):491-495.

• Khan, M. and Quadri, S.M.K. (2012b). “Evaluating Various Learning Techniques for

Efficiency”. International Journal of Engineering and Advanced Technology (IJEAT),

Vol 2(2):326-331.

• Khan, M., Dar, M. and Quadri, S.M.K. (2012). “Towards Understanding Theoretical

Developments in Natural Language Processing”. International Journal of Computer

Applications, Vol 38(2):1-5.

• Kim, S., Song, Y., Kim, K., Cha, J.-W., and Lee, G. G. Mmr-based active machine

learning for bio named entity recognition. In Proceedings of the Annual Meeting of the

North American Association of Computational Linguistics (NAACL), pages 69-72

(2006).

REFERENCES

139

• King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H.,

Kell, D. B., and Oliver, S. G. (2004). Functional genomic hypothesis generation and

experimentation by a robot scientist. Nature, 427(6971):247-252.

• Kira, K. and Rendell, L. The Feature Selection Problem: Traditional Method and a New

Algorithm. In Proceedings of the Tenth National Conference on Artificial Intillengence,

pages 129-134. MIT Press, 1992.

• Kittler, J. On Combining Classifiers. IEEE TRANSACTIONS ON PATTERN ANALYSIS

AND MACHINE INTELLIGENCE, VOL. 20, NO. 3, MARCH 1998.

• Kohavi, R. and John, G. Wrappers for Feature Subset Selection. Artificial

Intelligence’97, pages 273-324, 1997.

• Kornai, A. Extended Finite State Models of Language (Studies in Natural Language

Processing), Cambridge University Press (1999)

• Kosmopoulos, A., Paliouras, G., and Androutsopoulos, I. Adaptive spam filtering using

only naïve bayes text classifiers. In Proceedings of the Conference on Email and Anti-

Spam (2008).

• Kotsiantis , S. Locally application of cascade generalization for classification problems.

Intelligent Decision Technologies2 (2008) 1-8.

• Kotsiantis S.B. Supervised machine learning: a review of classification techniques.

Informatica 31:249–268, 2007.

• Kotsiantis, S. B. and Pintelas, P. E. Combining Bagging and Boosting,

INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE VOLUME 1

NUMBER 4 2004.

• Kotsiantis, S., Kanellopoulos, D. and Pintelas, P. "Data Preprocessing for Supervised

Leaning", International Journal of Computer Science, 2006, Vol 1 N. 2, pp 111-117.

• Krishnamurthy, V. Algorithms for optimal scheduling and management of hidden

markov model sensors. IEEE Transactions on Signal Processing, 50(6):1382–1397,

(2002).

• Kristan, M., Skocaj, D. and Leonardis, A. Online Kernel Density Estimation For

Interactive Learning. Jounal of Image and Vision Computing (2009).

REFERENCES

140

• Krysta, M. S., Lucy, V., and Christopher, J.C. Enhancing Single-document

Summarization by Combining RankNet and Third-party Sources. Association for

Computational Linguistics.Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning,

448–457, Prague, June 2007.

• Krzysztof, G. and Daniel, S. Preference elicitation for interface optimization. In

Proceedings of UIST 2005.

• Kumaran, A., Naren, D., Ashok, B., Saravanan, K., Anil, A., Ashwani, S., Sridhar, V.,

Vidya, N., Vikram, D., and Sandor, M. WikiBABEL: A System for Multilingual

Wikipedia Content, in in Proceedings of the 'Collaborative Translation: technology,

crowd sourcing, and the translator perspective' Workshop (co-located with AMTA 2010

Conference), Denver, Colorado, Association for Machine Translation in the Americas, 31

October 2010.

• Kumarana, Narend, Ashwani, S., and Vikram, D. WikiBhasha: Our Experiences with

Multilingual Content Creation Tool for Wikipedia, in Proceedings of Wikipedia

Conference India,Wikimedia Foundation (2011).

• Kupiec, J. 1992. Robust part-of-speech tagging using a hidden markoV model. Computer

Speech and Language, 6:225-242.

• Lafferty, J., McCallum, A. and Pereira, F. Conditional random fields: Probabilistic

models for segmenting and labeling sequence data. In Proceedings of the International

Conference on Machine Learning (ICML), pages 282–289. Morgan Kaufmann, 2001.

• Langley, P. and Sage, S. Oblivious Decision Trees and Abstract Cases. In Working Notes

of the AAAI94 Workshop on CaseBased Reasoning, 1994.

• Lars, B., and Markus, F. All in the Family: A Comparison of SALDO and WordNet.

Sprakbanken, University of Gothenburg, Sweden (2009).

• Laws, F. and Schutze, H. Stopping criteria for active learning of named entity

recognition. In Proceedings the International Conference on Computational Linguistics

(COLING), pages 465-472 (2008).

REFERENCES

141

• Lewis, D. and Gale, W. A sequential algorithm for training text classifiers. In

Proceedings of the ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 3–12. ACM/Springer, (1994).

• Lewis, D. D. and Catlett, J. Heterogeneous uncertainty sampling for supervised learning.

In Proceedings of the International Conference on Machine Learning (ICML), pages

148-156 (1994).

• Liang, P., Jordan, M. I., and Klein, D. Learning from measurements in exponential

families. In Proceedings of the International Conference on Machine Learning (ICML),

pages 641-648 (2009).

• Liddy, E.., Diamond, T., and McKenna, M. DR-LINK in TIPSTER III. Information

Retrieval, 3, 291-311 (2000).

• Liere, R. and Tadepalli, P. (1997). Active learning with committees for text

categorization. In Proceedings of the National Conference on Artificial Intelligence

(AAAI), pages 591-597.

• Lindenbaum, M., Markovitch, S. and Rusakov, D. Selective sampling for nearest

neighbor classifiers.Machine Learning, 54(2):125–152, 2004.

• Liu, H. and Motoda, H. Feature Extraction, Construction and Selection: A Data Mining

Perspective. Kluwer Academic Publishers, Boston/Dordrecht/London, Boston, 1998.

• Liu, Y. Active learning with support vector machine applied to gene expression data for

cancer classification. Journal of Chemical Information and Computer Sciences, 44:1936–

1941, 2004.

• Liu, Y. New Issues in Credit Scoring Applications (2001).

• Lodhi, H., Saunders, C., Taylor, J.S., Cristianini, N. and Watkins, C. 2002. “Text

Classification Using String Kernels”. Journal of Machine Learning Research, 419-444.

• Manning, C. and Schutze, H. Foundations of Statistical Natural Language Processing.

MIT Press (1999).

• Manuel, C. D. G., Maria, T. M. V., Alfonso, U. L., and Jose, M. P. O. Using WordNet in

Multimedia Information Retrieval. Workshop. Springer-Verlag Berlin Heidelberg. 185-

188 (2011).

REFERENCES

142

• Marine, C., and Dekai, W. Improving Statistical Machine Translation using Word Sense

Disambiguation. Department of Computer Science and Engineering, University of

Science and Technology, Clear Water Bay, Hong Kong, 61-72 (2007).

• Markovitch, S. and Rosenstein, D. Feature Generation Using General Construction

Functions, Machine Learning 49: 59-98 (2002).

• Martin, C., Michael, G., and Joel, T. The utility of article and preposition error correction

systems for English language learners: Feedback and assessment, in Language Testing,

Sage, July 2010.

• McCallum, A. and Nigam, A. A comparison of event models for naive bayes text

classification. In Proceedings of the AAAI Workshop on Learning for Text

Categorization, pages 41–48, 1998a.

• McCallum, A. and Nigam, K. Employing EM in pool-based active learning for text

classification. In Proceedings of the International Conference on Machine Learning

(ICML), pages 359–367. Morgan Kaufmann, 1998b.

• Meir, R. and Ratsch, G. An Introduction to Boosting and Leveraging. (2003).

• Melville, P. and Mooney, R. Diverse ensembles for active learning. In Proceedings of the

International Conference on Machine Learning (ICML), pages 584–591. Morgan

Kaufmann, 2004.

• Michael, A. C., Remco, V., Masataka, G., Marc, L., Christophe, R., and Malcolm, S.

Content-Based Music Information Retrieval: Current Directions and Future Challenges.

Proceedings of the IEEE 96(4):668-696, April 2008.

• Michel, G., and Chris, Q. Optimal Search for Minimum Error Rate Training, in Proc. of

Empirical Methods in Natural Language Processing, July 2011.

• Michelson, M. and Knoblock, C. “Semantic annotation of unstructured and

ungrammatical text”. In Proceedings of the 19th International Joint Conference on

Artificial Intelligence (IJCAI), 1091–1098 (2005).

• Michelson, M. and Macskassy, S.A. Judging the Performance of Cascading Models: A

First Look, Fetch Technologies, 841 Apollo St, Ste. 400, El Segundo, CA 90245 USA

(2010).

REFERENCES

143

• Michie, D., Spiegelhalter, D.J., Taylor, C.C. and Campbell, J. Machine learning, neural

and statistical classification. Ellis Horwood, Upper Saddle River, NJ, USA, 1994. ISBN

0-13-106360-X. Data available at http://archive.ics.uci.edu/ml/machine-learning-

databases/statlog/

• Mitchell, T. Generalization as search. Artificial Intelligence, 18:203–226, (1982).

• Mitchell, T. Machine Learning. McGraw-Hill, 1997.

• Moore, W. and Lee, S. Efficient Algorithms for Minimizing Cross Validation Error. In

Machine Learning: Proceedings of the Eleventh International Conference, 1994.

• Murphy, K.P. (2006) Naïve Bayes Classifiers.

• Ngai, G. and Yarowsky, D. Rule writing or annotation: Cost-efficient resource usage for

base noun phrase chunking. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), pages 117-125 (2000).

• Nguyen, H. T. and Smeulders, A. Active learning using pre-clustering. In Proceedings of

the International Conference on Machine Learning (ICML), pages 623-630 (2004).

• Nicholas, J. B. 2008. Some(what) Grand Challenges for Information Retrieval. ACM

SIGIR FORUM. 42(1):47-54 June 2008.

• Nilsson, N.J. Introduction to Machine Learning, Department of Computer Science

Stanford University, 2005.

• Nowozin, S. and Lampert, C.H. Structured Support Vector Machines. Microsoft

Research, IST Austria, 2011.

• Oza, N.C. and Russell, S. Online Bagging and Boosting. Computer Science Division,

University of California, Berkeley, 2005.

• Patrick, P., and Ariel, F. Jigs and Lures: Associating Web Queries with Strongly-Typed

Entities, in Proceedings of Association for Computational Linguistics - Human Language

Technology (ACL-HLT-11), June 2011.

• Pearl, P. and Chen, L. User-involved preference elicitation for product search and

recommender systems. AI Magazine, 29(4) (2009).

• Pelossof, R., Jones, M. and Ying, Z. Speeding-up margin based learning via stochastic

curtailment. In ICML/COLT Budgeted Learning Workshop, Haifa, Israel, June 25 2010.

REFERENCES

144

• Provost, F., Fawcett, T. and Kohavi, R. The Case Against Accuracy Estimation for

Comparing Induction Algorithms. In Shavlik, J. (Ed.), Proceedings of the Fifteenth

International Conference on Machine Learning, pp. 445-453 San Francisco, CA. Morgan

Kaufmann.

• Quinlan, J. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, 1993.

• Rabiner, L. R. A tutorial on hidden markov models and selected applications in speech

recognition IEEE, 77(2):257-286 (1989).

• Radev, D. R., Hovy, E., and McKeown, K. Introduction to the special issue on

summarization. Computational Linguistics. 28(4):399-408. [1, 2] (2002).

• Ratnaparkhi, A. A Maximum Entropy Model for Part-of-Speech Tagging, University of

Pennsylvania Dept. of Computer and Information Science, 1996.

• Raymond, J. M. 2007. Learning for Semantic Parsing. Computational Linguistics and

Intelligent Text Processing: Proceedings of the 8th International Conference, CICLing

2007, Springer, Berlin, Germany, 311-324.

• Roche, E., and Shabes, Y. Finite-State Language Processing (Language, Speech and

Communication), MIT Press (1997).

• Roth, D. and Small, K. Active learning for pipeline models. In Proceedings of the

National Conference on Artificial Intelligence (AAAI), pages 683-688 (2008).

• Roth, D. and Small, K. Margin-based active learning for structured output spaces. In

Proceedings of the European Conference on Machine Learning (ECML), pages 413-424

(2006b).

• Roy, N. and McCallum, A. (2001). Toward optimal active learning through sampling

estimation of error reduction. In Proceedings of the International Conference on Machine

Learning (ICML), pages 441-448.

• Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2nd

edition (2003).

• Sarawagi, S. (2007). Information Extraction. Foundations and Trends in Databases, 261-

377.

REFERENCES

145

• Sarawagi, S. and Bhamidipaty, A. 2002. “Interactive Deduplication using Active

Learning”. In Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining(KDD-2002), Edmonton, Canada.

• Schapire, R. E. (1990). The strength of weak learnability.Machine Learning 5(2), 197–

227

• Scheffer, T. and Wrobel, S. Active learning of partially hidden markov models. In

Proceedings of the ECML/PKDD Workshop on Instance Selection (2001).

• Scheffer, T., Decomain, C., and Wrobel, S. Active hidden markov models for information

extraction. In Proceedings of the International Conference on Advances in Intelligent

Data Analysis, pages 309-318 (2001).

• Schein, A. I. and Ungar, L. H. Active learning for logistic regression: An evaluation.

Machine Learning, 68(3):235-265 (2007).

• Schohn, G. and Cohn, D. Less is more: Active learning with support vector machines. In

Proceedings of the International Conference on Machine Learning (ICML), pages 839-

846 (2000).

• Settles, B. “Active Learning Literature Survey”, Computer Sciences Technical Report

1648, University of Wisconsin–Madison (2010).

• Settles, B. 2009. “Active Learning. Advanced Statistical Language Processing”. Machine

Learning Department, Carnegie Mellon University.

• Settles, B. and Craven, M. An analysis of active learning strategies for sequence labeling

tasks. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1069–1078. ACL Press, 2008.

• Seung, H. S., Opper, M., and Sompolinsky, H. Query by committee. In Proceedings of

the Annual ACM Workshop on Computational Learning Theory (COLT), pages 287-294

(1992).

• Shannon, C.E. A mathematical theory of communication. Bell System Technical Journal,

27:379–423,623–656, 1948.

• Shen, D., Zhang, J., Su, J., Zhou, G., and Tan, C.-L. Multi-criteria-based active learning

for named entity recognition. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL), pages 589-596 (2004).

REFERENCES

146

• Silber, H.G., and McCoy, K. F. Efficient text summarization using lexical chains In: H.

Lieberman(Ed.). Proceedings of IUI 2000 International Conference on Intelligent User

Interfaces, 9-12 Jan. 2000, New Orleans, LA. New York: ACM. 252-255.

• Sindhwani, V., Melville, P., and Lawrence, R. D. Uncertainty sampling and transductive

experimental design for active dual supervision. In Proceedings of the International

Conference on Machine Learning (ICML), pages 953-960 (2009).

• Song, J. and Zhao, D.Y. Study of automatic abstracting based on corpus and hierarchical

dictionary. Journal of Software,11, 308-14 (2000).

• Steinwender, J. and Bitzer, S. Multilayer Perceptrons, A discussion of The Algebraic

Mind 2003, University of Osnabrueck, (2003).

• Stock, O. Natural language processing and intelligent interfaces. Annals of Mathematics

and Artificial Intelligence, 28, 39-41 (2000).

• Surdeanu, M., Moldovan, D.I. and Harabagiu, S.M. Performance Analysis of a

Distributed Question/Answering System. IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, 13(6):579-596 (2000).

• Tang, M., Luo, X., and Roukos, S. Active learning for statistical natural language

parsing. In Proceedings of the Annual Meeting of the Association for Computational

Linguistics (ACL), pages 120-127(2002).

• Taskar, B., Guestrin, C., and Koller, D. (2003). Max-margin markov networks. In The

Conference on Advances in Neural Information Processing Systems (NIPS).

• Thompson, C.A., Califf, M.E. and Mooney, R.J. Active learning for natural language

parsing and information extraction. In Proceedings of the International Conference on

Machine Learning (ICML), pages 406–414. Morgan Kaufmann, 1999.

• Tim, P., Michael, G., Scott, C., David, M. C., and Aman, D. Predicting the Importance of

Newsfeed Posts and Social Network Friends, American Association for Artificial

Intelligence , July 2010.

• Tomanek, K., Wermter, J., and Hahn, U. (2007). An approach to text corpus construction

which cuts annotation costs and maintains reusability of annotated data. In Proceedings

REFERENCES

147

of the Conference on Empirical Methods for Natural Language Processing (EMNLP),

pages 486-495.

• Tong, S. and Chang, E. Support vector machine active learning for image retrieval. In

Proceedings of the ACM International Conference on Multimedia, pages 107–118. ACM

Press, 2001.

• Tong, S. and Koller, D. Support vector machine active learning with applications to text

classification. In Proceedings of the International Conference on Machine Learning

(ICML), pages 999–1006. Morgan Kaufmann, 2001.

• Toutanova, K. and Manning, C. 2000. Enriching the knowledge sources used in a

maximum entropy part-ofspeech tagger. In EMNLP/VLC 1999, pages 63–71.

• Toutanova, K., Klein, D., Manning, C. and Singer, Y. 2003. Feature-rich part-of-speech

tagging with a cyclic dependency network. In NAACL.

• Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector

machine learning for interdependent and structured output spaces. In Proceedings of the

International Conference on Machine Learning (ICML), pages 823-830.

• Tsukamoto, K., Mitsuishi, Y. and Sassano, M. Learning with Multiple Stacking for

Named Entity Recognition, Fujitsu Laboratories (2002).

• Tur, G., Hakkani-T¨ur, D. and Schapire, R.E. Combining active and semi-supervised

learning for spoken language understanding. Speech Communication, 45(2):171–186,

2005.

• Turmo, J., Ageno, A. and Catala, N. Adaptive Information Extraction, ACM Computing

Surveys, 38(2) (2006).

• Van den Bosch, A., Daelemans, W. and Weijters, A. 1996. Morphological analysis as

classification: an inductive-learning approach. In K. Ofiazer and H. Somers, editors,

Proceedings of the Second International Conference on New Methods in Natural

Language Processing.

• Vlachos, A. A stopping criterion for active learning. Computer Speech and Language,

22(3):295-312 (2008).

• Vlachos, A. Active annotation. In Proceedings of the Workshop on Adaptive Extration

and Mining, pages 64-71 (2006).

REFERENCES

148

• Voorhees, E. The TREC-8 question answering track report. [Online] Available:

http://trec.nist.gov/pubs/trec8/papers/qa-report.pdf (1999).

• Voorhees, E. The TREC-9 question answering track report. [Online] Available:

http://trec.nist.gov/pubs/trec9/papers/qa-report.pdf (2000).

• Voutilainen, A. (1995). Morphological disambiguation. In (Karlsson et al.,1995), chapter

6, p. 165–284.

• Waldrop, M.M (2001). Natural language processing, Technology Review, 104, 107-108.

• Watanabe, K., Bollegala, D., Matsuo, Y. and Ishizuka, M. “A Two-Step Approach to

Extracting Attributes for People on the Web”. ACM, Madrid, Spain (2009).

• Witten, I. and Frank, E. Data Mining: Pracitcal Machine Learning Tools and Techniques

with JAVA Implementations. Morgan Kaufmann Publishers, 2000.

• Xu, Z., Akella, R., and Zhang, Y. Incorporating diversity and density in active learning

for relevance feedback. In Proceedings of the European Conference on Information

Retrieval (ECIR), pages 246-257 (2007).

• Yan, R., Yang, J. and Hauptmann, A. Automatically labeling video data using multi-class

active learning. In Proceedings of the International Conference on Computer Vision,

pages 516–523. IEEE Press, 2003.

• Yan, R., Yang, J., and Hauptmann, A. Automatically labeling video data using multiclass

active learning. In Proceedings of the International Conference on Computer Vision

(ICCV), pages 516-523 (2003).

• Yu, H. SVM selective sampling for ranking with application to data retrieval. In

Proceedings of the International Conference on Knowledge Discovery and Data Mining

(KDD), pages 354–363. ACM Press, (2005).

• Yu, L. and Liu, H. Efficient Feature Selection via Analysis of Relevance and

Redundancy, JMLR, 5(Oct):1205-1224 (2004).

• Yu, X. and Lam, W. Bidirectional Integration of Pipeline Models. In Proceedings of the

Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) (2010).

• Zhang, C. and Chen, T. An active learning framework for content based information

retrieval. IEEE Transactions on Multimedia, 4(2):260–268, 2002.

REFERENCES

149

• Zhang, S., Zhang, C., Yang, Q. Data Preparation for Data Mining. Applied Artificial

Intelligence, Volume 17, pp. 375-381 (2002).

• Zhang, S.X. and Gales, M.J.F. Structured Support Vector Machines for Noise Robust

Continuous Speech Recognition, Department of Engineering, University of Cambridge,

Cambridge, UK (2011).

• Zhang, T. and Oles, F. J. A probability analysis on the value of unlabeled data for

classification problems. In Proceedings of the International Conference on Machine

Learning (ICML), pages 1191-1198 (2000).

• Zhao, S. and Grishman, R. 2005. “Extracting relations with integrated information using

kernel methods”. Proceedings of the 43rd Annual Meeting On Association for

Computational Linguistics, 419-426.

• Zhu, J. and Hovy, E. H. Active learning for word sense disambiguation with methods for

addressing the class imbalance problem. In Proceedings of the Conference on Empirical

Methods for Natural Language Processing (EMNLP), pages 783-790 (2007).

• Zhu, J., Wang, H., and Hovy, E. H. Learning a stopping criterion for active learning for

word sense disambiguation and text classification. In Proceedings of the International

Joint Conference on Natural Language Processing (IJCNLP), pages 366-372 (2008a).

• Zhu, J., Wang, H., and Hovy, E. H. Multi-criteria-based strategy to stop active learning

for data annotation. In Proceedings the International Conference on Computational

Linguistics (COLING), pages 1129-1136 (2008b).

• Zhu, X. Semi-supervised learning literature survey. Computer Sciences, University of

Wisconsin-Madison (2008).

• Zhu, X., Lafferty, J., and Ghahramani, Z. Combining active learning and semi-supervised

learning using gaussian fields and harmonic functions. In ICML Workshop on the

Continuum from Labeled to Unlabeled Data, pages 58-65 (2003).

• Zupan, B. and Demsar, J. Open-Source Tools for Data Mining, Clin Lab Med 28 (2008)

37–54, Elsevier Inc.

